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Abstract

The analysis o f population pharmacokinetic/pharmacodynamic data is carried out to 
determine a model that describes the population and the individual in terms of the 
plasma concentration-time profile and the pharmacological effect-concentration 
relationship as well as describing the variability between subjects in both the 
pharmacokinetics and pharmacodynamics. Moreover, explaining the variability from 
both data sets and obtaining a model that links both pharmacokinetics and 
pharmacodynamics in a simultaneous analysis is one o f the main goals.

Pharmacodynamics, unlike pharmacokinetics, can be described by a wide range o f 
variables that represent the different effects of the particular drug. As well as there 
being many markers to represent the effect o f the drug, the type o f data that are 
observed can be either continuous, count, categorical or censored. The purpose o f the 
current work is to consider categorical pharmacodynamic data and how such data can be 
analysed. One o f the main aims o f analysing categorical pharmacodynamic data is to 
describe the central tendency of the data and quantify and explain the interindividual 
variability.

Two toxicokinetic data sets for two different compounds which were administered in 
groups o f animals for the evaluation of pharmacokinetics and toxicity o f the drugs were 
considered. The first analysis demonstrated the use o f the proportional odds model and 
mixed effects modelling when applied to categorical pharmacodynamic data and 
considered the effects o f including pharmacokinetic information through the exposure to 
the drug by using estimates o f individual AUC values. Model comparisons were also 
investigated using Bayes factors. This method allows the comparison o f non-nested 
models which is usually difficult to carry out. The second toxicokinetic study 
comprised 9 data sets from 3 animal species. Scaling o f the pharmacodynamics as well 
as the pharmacokinetics was considered across the 3 species. The analysis o f the data 
was carried out in BUGS and NONMEM.

Categorical data was collected from a phase II clinical trial on sumatriptan where the 
pharmacodynamic variable, migraine pain relief, was measure on a 4 point scale, none, 
mild, moderate and severe pain. It was required to characterise the pharmacokinetic and 
pharmacodynamic data in terms o f a population model and quantify the interindividual 
and residual variability and to consider the incorporation o f pharmacokinetic 
information to describe the categorical pharmacodynamic response with the use of 
concentration and AUC predictors. In another study, oxybutynin data was available 
from a phase III trial where one o f the aims was to determine an optimum dose based on 
efficacy and adverse effect data. The efficacy of oxybutynin was measured as the 
number o f urinary urge incontinence episodes in a week and the adverse effect was 
defined as a categorical score on the degree of dry mouth. To determine the optimum 
dose, a utility function was developed and optimised in a Bayesian framework.

Before categorical data can be collected from clinical trials, it is important that the trial 
be designed appropriately so that the information collected is relevant to the objectives 
being considered. D-optimal designs were investigated for the 3 category proportional 
odds fixed effects model with one independent variable. Results obtained showed that 
for a 3 category model, there were typically 3 distinct design points but varied 
according to the total number o f observations required.
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1 Introduction

1.1 Pharmacokinetics

Pharmacokinetics can be described as the study o f drug and metabolite concentration­

time profiles in the body as affected by absorption, distribution and elimination. The 

pharmacokinetics o f a drug is studied during the different phases o f the drug’s 

development. These studies can range from early preclinical studies where the 

compound is administered to animals to large phase III clinical trials where the drug is 

given to individuals for whom the drug is intended. The data collected from such 

studies can be analysed in a variety of ways, but often, one o f the main aims is to 

describe the data in terms of a model. Pharmacokinetic data has been modelled in many 

different ways to try and gain more accurate information on the drug and its 

pharmacokinetic parameters. In terms o f modelling pharmacokinetic data, as well as 

describing the data in a population in terms of an average response, it is important to 

quantify the variability in the data. Variability in pharmacokinetics is an important 

factor to take into consideration when developing a drug as this can lead to important 

differences in how the drug should be administered to different sub-groups o f the 

population. These subgroups can be distinguished by certain subject specific features 

such as age, weight, gender, race and other important covariates that differentiate one 

individual from another. The analysis of pharmacokinetic data where the mean 

response and variability between individuals is quantified is called population 

pharmacokinetics.
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1.2 Pharmacodynamics

Pharmacodynamics can be defined as the study of drug effect related to some function 

o f time, dose or pharmacokinetic measure. Pharmacodynamics is often not as well 

understood as pharmacokinetics, but being able to describe the pharmacodynamics is 

equally, if  not more important, to describing the pharmacokinetics. This is certainly 

true in the opinion of the patient as it is the effect o f the drug that is important to them 

rather than how the drug is absorbed, distributed and eliminated from the body. How 

the drug attains an effect is o f less interest to the patient but having an understanding o f 

how the drug effect is reached is important for the development o f models describing 

the data and hence, for example making sensible inferences about treatment o f the 

condition for the which the drug is designed. The mechanisms for how the drug effect 

is attained are generally harder to determine than the mechanisms that control the 

pharmacokinetics o f the drug. This has been in pail due to the ability to measure 

pharmacodynamic variables in vivo which has lagged behind the ability to measure 

plasma drug concentrations (Levy (1985)). As well as the ability to measure the 

pharmacodynamic variables, there is also the problem of which markers to measure. 

The data that arises from pharmacokinetic/pharmacodynamic studies often arise from 

complex dynamic models. They are typically o f the same format as that o f the 

pharmacokinetics, which are short times series o f repeated measures from a number o f 

individuals. Unlike pharmacokinetic data which are o f a continuous nature, 

pharmacodynamic data can be either continuous, categorical, count or censored data. 

This makes the planning and analysis of pharmacodynamic studies that much more 

difficult than that of pharmacokinetic studies. The ability to select a supposedly 

appropriate model for pharmacokinetic modelling is not quite so easy for
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pharmacodynamic data as ideas such as compartmental modelling do not necessarily 

apply. This means that other models need to be considered and these are often o f an 

empirical nature. The most frequent model for pharmacodynamic data is a variant of 

the sigmoid Emax model described in section 2.2. This is still an empirical model but 

with a pharmacological interpretation and can be found in many pharmacodynamic 

analyses.

1.3 Preclinical and Clinical Trials

Drug development describes the whole process of taking a newly discovered entity 

through regulatory approval and to the point o f market introduction. The process o f 

developing a drug is sequential where the information concerning the compound is built 

up through preclinical studies in animals, then to the first application in man in phase I 

studies where the drug is administered to healthy volunteers and then into larger 

population studies in phase II/III where the drug is given to individuals for whom the 

drug is intended. It is at these stages o f drug development that data pertaining to the 

pharmacokinetic and pharmacodynamics o f the drug are collected.

1.3.1 Preclinical Studies

The first time a drug is studied in vivo is in animals. These studies are performed to 

consider a whole range o f aspects o f the drug which would not be so convenient and 

ethical to do in humans. Primarily, they are to check that the drug in consideration does 

not have toxicities that would possibly be harmful when administered in humans. Such
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toxicology studies are not only for this purpose, but many other types of data are 

collected that might be o f relevance for the particular drug. Also of importance in 

preclinical trials is to gain an understanding o f the pharmacokinetics of the drug in 

animals for helping in designing future clinical trials. Preclinical studies are usually 

performed in homogeneous groups o f animals (such as rats, dogs or rabbits). Often the 

studies are designed so that, for example, in a toxicokinetic study, one plasma 

concentration sample is obtained from each animal at a certain time and for a certain 

dose after the animal has been terminated. Such destructively obtained data allows the 

collection o f other information that might be time and dose varying such as 

concentration data in other tissues in the body..

1.3.2 Phase 1 Clinical Trials

Phase I clinical trials is when the drug is first administered in humans which is usually 

in healthy male volunteers. The main aim of such trials is to obtain information on the 

pharmacokinetics o f the drug in (healthy) humans. Healthy volunteers are selected 

because a homogeneous human population is required to study the pharmacokinetics 

without introducing too many confounding factors. The size o f the phase I population is 

usually small and in a well controlled environment which also allows any variability 

between and within an individual to be reduced. As the volunteer is in a well controlled 

environment, this permits for the collection o f many plasma drug concentrations over 

time. As this produces a rich data setting, it is possible to use classical regression 

techniques for the analysis of each individual’s concentration-time data. Individual 

estimates can be obtained in such a setting but population modelling techniques can also 

be used to study the data, discussed in section 1.4. Other considerations in phase I
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clinical trials include the assessment o f linearity of the pharmacokinetics (dose 

proportionality) and the comparison of different formulations. Information collected at 

phase I can then be used to plan phase II clinical trials.

1.3.3 Phase II Clinical Trials

Phase II clinical trials are designed for the first administration o f the drug into patients 

for whom the drug is intended. The population of patients involved is often only a little 

larger than that in phase I. The sample from the population is still in a well controlled 

setting but some variability is allowed to be introduced so that covariates that may 

influence the pharmacokinetics can be examined. These covariates must be studied 

carefully so that the covariate effect is not confounded with that o f the drug effect which 

can be checked by comparing results in phase II to the results in phase I. One o f the 

main goals in phase II clinical trials is to define a therapeutic window for the drug and 

determine the optimal dosage regimen. The therapeutic window is defined as the range 

of plasma concentrations from the minimum concentration to obtain an effect to the 

concentration that produces the maximum tolerable toxic effect. This can usually be 

determined by the analysis of efficacy and toxicity data also collected at this stage of the 

drug development by comparing the efficacy of the drug to the toxic effects o f the drug. 

An optimal dose is obtained when a balanced level of hopefully high efficacy and low 

toxicity is reached. As well as the linearity o f the pharmacokinetics being studied in 

healthy volunteers, it also needs to be studied in the patients for whom the drug was 

intended, as the linearity may not be the same for the two studied groups. From the 

results of the phase II clinical trials, phase III trials can be planned so that as an optimal 

treatment is administered.
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1.3.4 Phase III Clinical Trials

Phase III clinical trials are designed so that they are as similar to the eventual setting o f 

administering the drug to the population o f individuals who will actually receive the 

drug once the drug has been approved. This is so that the drug can be assessed to see 

how well the drug would perform in a ‘real’ setting. These studies are still planned in 

advance but tend to be observational rather than experimental studies as nearly all o f the 

factors involved in assessing an individual’s pharmacokinetic behaviour are not 

controlled in any way. Phase III trials are often run with a large number of patients, as 

the population is heterogeneous. This allows the assessment o f interindividual 

variability in terms o f subject specific covariates that may have an effect on the 

individual’s pharmacokinetic behaviour. As the collection is not as controlled as in 

phase I and II clinical trials and the plasma concentrations are taken when patients visit 

a trial centre, fewer concentrations tend to be collected from each patient. It is normal 

to have as few as one or two concentration measurements from each individual in phase 

III clinical trials which does not allow for individual model fitting to be carried out. 

Instead, complex statistical techniques are employed which allow both population and 

individual pharmacokinetic parameter estimates to be obtained as well as quantify the 

variability in the data. This type o f approach is known as the population approach.

1.4 Population Pharmacokinetics/Pharmacodynamics

The population approach to the analysis of pharmacokinetic and pharmacodynamic data 

from large scale clinical trials has increasingly become a standard tool in the
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pharmaceutical industry (Vozeh (1997)). For practical and ethical reasons, it is not 

possible to collect extensive amounts o f data from patients in phase III clinical trials as 

in phase I and II trials. In this case, there is limited individual data but data is collected 

from many patients giving a large data base of pharmacokinetic and pharmacodynamic 

information from the population of interest. Such data has come under considerable 

interest over the years and the methods that have generally been applied to analysing 

such data have come to be known as population pharmacokinetic/pharmacodynamic 

modelling.

Population pharmacokinetic modelling was first proposed by Sheiner et al (1977). In 

that paper, a general data analysis technique for estimating population average 

parameters and their interindividual variability from routine clinical pharmacokinetic 

data was described. This approach did not require the intermediate estimation of 

individual pharmacokinetic parameters. The method was applied in a setting where 

patients were sampled on a few occasions only and other routinely assessed variables 

were available. This is the setting encountered when pharmacokinetic and 

pharmacodynamic data are collected from phase III clinical trials and hence succinctly 

described the general problem and one possible solution.

The models used in pharmacokinetics are generally nonlinear and hence nonlinear 

regression techniques are required to obtain parameter estimates. As well as obtaining 

the population average parameter estimates, quantifying the interindividual and residual 

variability are also required. To obtain estimates of these measures of variability, 

nonlinear mixed effects regression analysis needs to be carried out. The ‘mixed effects’ 

corresponds to the fixed effects representing the population average parameters and
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random effects representing the variance components. Fixed and random effects are 

described in more detail in section 2.3.2. How these parameters are estimated has 

resulted in a considerable amount o f research.

As one o f the main aims o f population pharmacokinetics and pharmacodynamics is to 

quantify and hopefully explain the variability between subjects, it is important to 

consider modelling o f subject specific covariates. It is usually desirable to estimate the 

variability as a component o f the pharmacokinetic and pharmacodynamic parameters as 

it is often the parameters that contain much o f the information about the compound. To 

try and explain how the parameters might vary between individuals, the individual 

estimates of the parameters can be regressed 011 as a function o f the subject specific 

covariates. I f  there are any significant relationships between the parameter o f interest 

(clearance and volume of distribution for example) and the covariates, then these can 

reduce the unexplained parameter variability between subjects. What variability is not 

defined by subject specific information in the population model is generally termed 

residual variability. Such covariate modelling is described by Wakefield and Bennett 

(1996) and Mandema et al (1992).

There is a wide range of methods for determining relevant population characteristics. 

Probably the most basic technique for the analysis of population data is the naive 

pooling approach which does not allow for the estimation of interindividual variability. 

This method, as it is called, pools all the data together and then estimates population 

average parameters. This approach tends to produce biased estimates as it does not take 

into account the influence o f different individual’s data on the parameter estimates and 

the combination o f variance components. There has been a wide range o f two step
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approaches proposed, some o f which are described by Steimer et al (1985). The basic 

idea o f the two stage approach is to firstly estimate the individual parameters and then 

by some method, estimate the population parameter estimates and the interindividual 

variability based 011 the individual estimates. A concern with this method is that there 

might be a problem in estimating the individual parameter values and the combination 

o f the population parameter estimates is often an ad hoc procedure. Other more 

sophisticated forms o f the two step approach have been proposed, such as that by 

Mentre and Gomeni (1995). A more general approach is that o f maximum likelihood 

which is essentially carried out by NONMEM (Beal and Sheiner (1992)). This is 

described in more detail in section 2.6.6 but, generally, this method allows a function 

known as the likelihood to be defined that takes into account all the population 

parameters and the interindividual variability simultaneously. I11 NONMEM the 

method used is known as extended least squares which is very similar to other methods 

based on distributional assumptions, also described in section 2.6. Other least squares 

approaches that have been used are generalised least squares and weighted least squares 

which are more or less general than extended least squares respectively (Davidian and 

Giltinan (1995)). As well as maximum likelihood techniques that are based on 

parameter estimation from the data alone, Bayesian methods allow the inclusion o f prior 

knowledge (Racine-Poon and Wakefield (1998)). This is more general than the method 

of maximum likelihood as by simply taking out the prior distributions, a maximum 

likelihood formulation will usually be obtained. The inclusion o f prior beliefs and 

knowledge is a useful step that can be implemented as it allows the passing of 

information from one phase of a drug development program to another. As well as 

parametric approaches, there are nonparametric approaches that do not make explicit 

assumptions about the way in which the data are distributed. Nonparametric methods
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can be considered in terms of maximum likelihood and Bayesian ideas. Mallet et al 

(1988) and Schumitzky (1991) report on nonparametric maximum likelihood methods 

and Wakefield and Walker (1997) report on a Bayesian nonparametric method.

The general ideas o f population modelling apply equally to pharmacokinetics as to 

pharmacodynamics. Most o f the research carried out has been in the area of population 

pharmacokinetics but this has probably been due to the greater understanding o f 

pharmacokinetics than of pharmacodynamics. More interest is growing in applying the 

ideas to pharmacodynamic data as it is just as relevant to understand the variability in 

the pharmacodynamics as the pharmacokinetics. Understanding the link between the 

pharmacokinetics and the pharmacodynamics is also o f utmost importance to describing 

the variability in a particular individual and across a population in terms o f the 

pharmacokinetic and pharmacodynamic models.

Since the introduction o f the population approach to analyse routine clinical 

pharmacokinetic data, there have been many analyses carried out and reported in the 

literature. A few examples o f these are for digoxin (Sheiner et al (1977)), quinidine 

(Fattinger et al (1991) and Davidian and Gallant (1992)), cyclosporine (Mallet et al 

(1988)), paclitaxel (Karlsson et al (1998)) and tobramycin (Aarons et al (1989)). Papers 

corresponding to the population analysis of pharmacodynamic data are ivabradine 

(Rageneau el al (1998)), glibenclamide (Rydberg et al (1997)), ketorolac (Mandema 

and Stanski (1997)) and bromfenac (Sheiner (1994)).
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1.5 Categorical Data and its Analysis

Categorical data is described in section 2.4.1 and recently there has been considerable 

interest in techniques appropriate for modelling such data from pharmacodynamic 

studies. The first paper to focus on the problem of analysing such data was Sheiner 

(1994) when considering the best way o f analysing analgesic drug clinical trials. The 

paper criticised the idea of simply hypothesis testing the different levels o f response 

between the different dose groups from the number o f observations in each category. 

The proportional odds model (McCullagh (1980)) was proposed by Sheiner (1994) to 

model the longitudinal aspect of the pharmacodynamic data and quantify the variability 

between subjects. The use o f the proportional odds model for categorical data was not 

new in the statistical literature but it was for the analysis o f pharmacodynamic 

categorical data. A more mathematical and statistical treatment o f the same problem is 

given in Sheiner et al (1997).

The analysis o f categorical data (with more than two categories) in terms of regression 

has only been considered over the past 20 years. One o f the first papers to look at the 

analysis o f categorical data was that o f Koch et al (1977). Since then there has been an 

increasing amount o f research into categorical data analysis. Some o f the work that can 

be found in the literature is by Korn and Whittemore (1979), Anderson (1984), Chuang 

and Agresti (1986), Armstrong and Sloan (1988), Cox (1988), Conaway (1989), Senn 

(1991), Kalin and Raftery (1996) and Albert et al (1997). The methods used in these 

papers are wide ranging but all look at the development o f models for the description o f 

categorical data.
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1.6 Experimental and Optimal Design

As well as studying the data that arises from clinical trials at all phases of drug 

development, it is necessary that the studies which will produce the data are designed 

well and appropriately. Before a clinical trial is designed there are certain objectives for 

the trial. The clinical trial must be designed so that the objectives can be met and then 

move on and plan the next trial. When one o f the criteria o f the clinical trial is for 

example to assess the safety and efficacy o f the drug then this will involve the collection 

of pharmacodynamic data which in certain circumstances will be categorical. There is a 

considerable amount o f work in the statistical literature on designing experiments, for 

example simple comparisons o f treatment and block effects, as well as the optimal 

design o f studies requiring regression analysis (Federov (1977)). In pharmacokinetics, 

the main requirement is to find the optimal times at which to take plasma 

concentrations. This can also be the case for the collection o f pharmacodynamic data 

but the optimal design could be for determining the optimal dose to be administered to 

patients.

1.7 Aims and Objectives

One of the aims o f this work is to look at general methods for analysing categorical data 

obtained from a range o f preclinical and clinical studies. The analysis o f categorical 

data has gained more importance in recent years in the analysis o f clinical trial data. 

This has been in part due to the growing interest in the analysis o f pharmacodynamic 

data and the need for models to describe the time profile o f the pharmacodynamics and
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relate these to the pharmacokinetics o f the drug. A consequence o f the modelling o f 

categorical pharmacodynamic data is the opportunity to look at comparing the efficacy 

and toxicity o f the compound of interest, as this is one of the main goals o f phase III 

clinical trials. Much of the work on categorical data analysis is given in Agresti (1990) 

and one o f the first papers to look at the analysis o f analgesic drug trials where a 

categorical variable was to be modelled was given by Sheiner et al (1997) where the 

proportional odds model (McCullagh (1980)) was used. As part o f the modelling o f 

categorical data, o f particular interest is to study different components o f variability in 

the data. This is to be carried out using mixed effects models, and in particular the 

proportional odds mixed effects model where interindividual variability can be studied. 

Interindividual variability in drug response is of considerable interest as hopefully it can 

eventually lead to individualisation o f dosage regimens.

As well as considering the description o f the data by the proportional odds mixed 

effects model, it is also o f interest to look at different methods o f analysing the data. 

The two methods considered here will be to look at the use o f maximum likelihood and 

Bayesian methods which will utilise the computer packages NONMEM and BUGS 

respectively.

Finally, the optimal design o f clinical trials, where the analysis o f categorical 

pharmacodynamic data is o f interest, will be investigated. Optimal design has been 

considered in the literature for pharmacokinetic data and to a small degree for the 

analysis o f pharmacodynamic data but only for continuous responses. Optimal design 

has also been studied in the case of logistic regression where the outcome is binary but 

these ideas have not been extended to categorical data. The objective is to consider how
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categorical data should be collected for the aim of determining the parameters as 

accurately as possible (D-optimality) when the proportional odds model is proposed to 

model the data.

The plan o f this thesis is as follows. Chapter 2 is a review o f the methodology that is 

either used in this thesis or is applicable to the field of population pharmacokinetics/ 

pharmacodynamics. Chapters 3 and 4 deal with the analysis o f toxicokinetic and 

preclinical trials. Chapter 5 contains work on population modelling o f intranasal 

sumatriptan data obtained from a phase II clinical trial. Chapter 6 is on oxybutynin, a 

drug for the treatment o f urinary incontinence and deals with the analysis of efficacy 

and adverse effects data collected from a phase III clinical trial. Based on the results o f 

the analysis, it is required to define an optimal dose determined by a general decision 

analysis procedure. Categorical optimal design is considered in chapter 7 and a general 

discussion is given in chapter 8.
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2 Methods

2.1 Population Pharmacokinetics

Population pharmacokinetics can be divided into two sections: a population structural 

model and a variance model explaining the variability of the population data around the 

mean population response. Together, the structural model and the variance model 

should be able to describe both the population data and the individual response.

The population structural model can be defined in several ways, for example 

empirically or using compartmental methods. Both methods will be used but generally 

compartmental methods will be employed. Empirical models are models that describe 

the data but do not have any mechanistic basis. In most cases, these empirical models 

will be the sum of exponentials of the form given in equation (2.1) where the A fs and 

X\’s are coefficients to be determined.

X 0  = Z 4 * r* '' (2.1)
/=1

This empirical model also describes a c compartment model after a bolus dose 

administration. The coefficients A\ s and A fs  can be re-expressed as pharmacokinetic 

parameters which can be interpreted in a practical way whereas the coefficients Aj and 

A/, i= l,...,c  cannot be interpreted easily. The compartmental parameterisation involves 

compartmental volumes o f distribution and intercompartmental clearances.

Compartmental models are derived under assumptions about the way the body can be 

modelled to express the kinetics of the passage o f the drug path through the body by a
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set o f differential equations. In the case o f a bolus administration first-order two 

compartment open model, the concentration of the drug in the two different 

compartments can be summarised by the system of two differential equations and initial 

conditions given in equation (2.2).

dC\
dt

dC 2

dt

~  ^21^2 “ (^12 +£loXrt

= k n C \ - k 2 ]C 2  (2.2)

Ci(0) = ̂ , c 2(0) = 0

dC
—  represents the rate o f change of concentration in the compartment over time, the 
dt

k .’s represent the first-order rate constants that can be reparameterised into clearance 

and volume terms and V is the volume o f distribution. This system o f differential 

equations can be easily solved and the structural model in equation (2.3) is obtained.

C ' ( / )  =  ^  ^ '  -  a ) e ~ a  1 V{CL-P)

a 2  K̂ 12 ^2\ + k ]0 ) "t" 2 +£|o) 4^21^10 1 (2.3)

/ ?  — — [ ( &  12 + ^ 2 1  ^ 1 0  )  ~~ ^ / ( ^ | 2  ^ ^ 2 1  + ^ l o )  ”  4 ^ 2 1 ^ 1 0  ]

This system o f differential equations assumes that the system acts linearly, i.e. the 

differential equations are a linear combination of the variables.

The variance model is defined in order to try and explain the variability around the 

population structural model. As with any model, a functional form can be considered 

based on logical reasoning o f how the variability between subjects and within a subject 

might occur. Usually the variance function is determined by model fitting. Two 

common variance functions are those with a constant variance and those with a constant 

coefficient o f variation. These will be discussed in more detail later.
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2.2 Population Pharmacodynamics

The ideas behind modelling and analysing population pharmacodynamic data are the 

same as those for modelling and analysing population pharmacokinetic data. The 

requirement of defining a structural model and a variance function is still needed but 

extra steps have to be considered.

The effect o f a drug is often thought of as being achieved by a system o f linear dynamic 

processes. The first chain o f events is associated with the pharmacokinetics o f the 

compound and this can be described by a series o f differential equations describing the 

absorption, distribution and elimination o f the drug as for example in equation (2.2). 

The concentration of the drug in the plasma can be determined by convolving these 

linear dynamic processes together and attaining a model for the concentration o f the 

drug in the plasma. Another linear dynamic process can be introduced and that is for 

the effect o f the drug. It is postulated that to obtain an effect, a concentration at an 

hypothetical ‘effect site’ must be achieved. This linear dynamic process can then be 

convolved with that o f the pharmacokinetic component to obtain a model for the effect 

site concentration as a function o f time and relevant pharmacokinetic/pharmacodynamic 

parameters.

Effect site concentrations are in general not available as this would require the 

collection o f some tissue or termination which is not desirable. Instead o f correlating 

effect site concentration to pharmacological effect of the drug, empirical models are 

most frequently used. The empirical approach involves information obtained previously 

which in most cases will be the plasma concentration data. The plasma concentration is
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then used as the predictor for the pharmacologic activity o f the drug. The most 

common empirical models used for the effect of the drug are the nonlinear Emnx, 

sigmoid Emwi and linear models as given in equation (2.4).

£ ,(X )  =   + £ „
ECS0+ X

* , ( * )  = + E ° (2-4)
e c 50 + a

E ,(X )  = ^ - X  + E 0

50

The £ max model (E\) is a function o f a predictor variable, such as plasma concentration 

or effect site concentration and three pharmacodynamic parameters. £ max is the 

maximum effect that can be achieved (this may be positive or negative), EC 5 0  is the 

concentration that must be achieved to attain 50 % o f the maximum effect and Eq is the 

baseline effect, i.e. when X  is zero. Eq is not always included in the model as it is often 

known that this parameter can be set to zero. The sigmoid EmaK model {Ei) is a 

generalisation o f the Emax model as it includes the parameter N which describes steeper 

(N>1) or shallower (0<N<1) curves than the Emax model (N =l). The linear dynamic 

model (E\) can be obtained from the Emgx model when the data is in the early 

approximately linear part o f the curve. The model can be collapsed so that the gradient 

is expressed as a fraction, Emax/EC$o.

These are the most frequently used pharmacodynamic models but more complex models 

such as multiple ligand models exist, however these will not be considered here. These 

models are not always appropriate and empirical models may need to be explored based 

on how well they describe the pharmacodynamic data. Splines or parametric models 

can be used for this purpose.
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2.3 Nonlinear Mixed Effects Modelling

The analysis o f repeated measurement data has progressed considerably in the last 20 

years. The data that is obtained from pharmacokinetic/pharmacodynamic studies are 

usually given by the following setting.

A response variable is measured repeatedly in a particular cluster (human, animal or 

group). The repeated measurements are usually taken over time so the data are 

longitudinal. The observed response variable is denoted by y  and the random variable 

by Y. There are repeated measurements within the clusters and there are multiple 

clusters observed so the response data can be denoted by y,j where z—1 , . i n d e x e s  the 

cluster andy-1, . . indexes the number of observations within a cluster. Note that it is 

not necessary that there be the same number o f observations within each cluster. 

Similarly we can denote the random variable by Yy. Associated with the response 

variable is a set o f q predictor variables or covariates. The set o f covariates are denoted 

by a qx 1 vector xy where the indexing is the same as the above.

To generalise notation slightly, a vector can be specified for each cluster o f observed 

responses and a matrix for each cluster’s covariates. This is denoted by an z?,x 1 vector 

y_i for the ith cluster’s observed responses and a njxq matrix Xj for the ith cluster’s 

repeated covariates. A  p x \  vector corresponding to the parameters is defined as 

When there is no index on the parameter ]3, then this corresponds to population 

parameters but when indexed by z, this corresponds to individual cluster parameters,
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2.3.1 Linear Mixed Effects Models

With the data specified as above, a variety of models can be examined. The simplest 

example that can be applied is a general linear model which is defined in equation (2.5).

W i i )  = P*ij (2-5)

E(,) represents the expected response based on a linear function o f the covariates 

summed over all observations. In this case, p=q+l where the additional parameter is a 

constant term. Associated with this model is an error between the observed and 

expected response. The model can then be written in the form o f equation (2.6).

y-ij = f i x y  + sy  (2.6)

The difference between the observed and expected response is denoted by Sy, Linear 

models o f this kind have assumptions corresponding to the way in which the errors are 

distributed. The standard assumption to make about the general linear regression model 

is that the errors are homoscedastic (additive), independent and identically distributed 

(iid) with mean zero and standard deviation <j and the covariance between errors is 

zero. This is denoted by equation (2.7) where N  represents the normal distribution.

e u ~ N ( 0 ,a 2l i  = 1 =  1 (2.7)

This model allows the estimation of population average parameters known as fixed 

effects but does not allow the estimation of individual parameter values which will be 

referred to as random effects. To obtain both population and individual estimates o f the 

parameters, the general linear regression model must be generalised to incorporate the 

ability to estimate the individual parameters. The standard form of the linear mixed 

effects model is given in equation (2.8).

y i = X ip_ + Z ib t + s i (2.8)
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Here, X-, and (3 are defined as above. Z-, is an subset matrix o f Xj corresponding to

parameters for which individual estimates are to be obtained. The rx l random effect 

vector bj is the offset from the population parameter estimates so that the individual 

parameter value is given by (3n[Xb\ assuming that the vectors are o f the same 

dimension. The residual (error) vector Sj is the difference between the observed vector 

and the expected vector o f responses.

2.3.2 Nonlinear Mixed Effects Models

Linear mixed effects models are a flexible tool for analysing data but in many 

situations, linear combinations o f factors do not describe the data satisfactorily. In 

pharmacokinetics, the models that usually best describe the data are nonlinear and 

require more sophisticated techniques. As there are many different nonlinear models, 

notation must be generalised to include any model that describes the data. In equation 

(2 .9 ) ,/denotes a general function w ithy-,h j3, xy and Sy defined above.

yjj = f ( x il,P ) + s s (2.9)

In a pharmacokinetic m odel,/could  be a one compartment open model with bolus dose, 

where dose and time are the independent variables, Xy and j3 is the vector o f 

pharmacokinetic parameters, clearance and volume o f distribution. In a

pharmacodynamic model, /  could be the Emax model with concentration being the 

independent variable and the pharmacodynamic parameters being Emax and EC50. The 

error term in equation (2.9) assumes that the difference between the observed and 

expected response is the same for all levels o f Xy. The homoscedastic (additive) 

variance function is not necessarily appropriate for all nonlinear regression models 

which will be discussed in section (2.3.2).
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The nonlinear model in equation (2.9) is formulated in terms o f population parameters 

so no individual effects can be estimated. In population pharmacokinetic/ 

pharmacodynamic studies it is necessary to be able to estimate individual parameter 

values, so including random effects into nonlinear models is necessary. The inclusion 

o f random effects can be achieved in a variety o f ways. A simple method to include the 

random effects component would be to add a random effects term into the nonlinear 

fixed effects component in the same way as for the linear mixed effects model. This is 

given in equation (2.10).

+ (2 .10)

The rijxl random effect vector is denoted by h\ and is additive on the model. This form 

o f random effects model can be useful as it acts as a shift for each individual from the 

population average. However, it is also restrictive because it does not allow the 

estimation of individual parameter estimates. To get round this problem, the random 

effects can be directly associated with the population parameters. The model can then 

be defined as in equation (2.11),

y t = f ( X i > 0 ,) + ei
(2.11)

= A,f3_ + Bjbj

The nonlinear mixed effects model has now in effect two levels, one corresponding to 

the individual level and the other corresponding to the population level. The random 

effect is again additive on the parameter which might not necessarily be appropriate but 

this will be discussed in section (2.3.2). The parameterisation o f nonlinear models as in 

equation (2.11), unlike linear models, are analytically intractable and therefore must be 

subject to an analytical approximation, numerical or MCMC method (discussed in 

section 2.8).



2.3.3 Distributional Assumptions and Error Models

2.3.3.1 Residual Error Models

So far, only the types o f structural and variance models that are appropriate for 

analysing repeated measurement data have been discussed. Choosing the relevant 

model to fit to the data is only one aspect o f any population analysis and understanding 

the underlying assumptions is important in determining how to interpret the models that 

are chosen. As well as choosing a structural model for the pharmacokinetic/ 

pharmacodynamic data, it has already been mentioned that it is necessary to describe 

how the data varies around the population average. This is carried out by checking the 

variance models for the inter-subject variability and the residual variability. The inter­

subject random effects model describes how each cluster’s parameters vary from the 

population parameters and the residual error model describes how each observation 

varies from the cluster’s expected value. Residual variability represents all the 

variability that has not been accounted for and can correspond to assay error, 

intraindividual error, measurement error and so on.

Pharmacokinetic data is continuous data and bounded below by zero. It is often the 

case that continuous data is assumed to be from a normal distribution with mean E(Ty) 

and variance var(Fy). In equation (2.6) and (2.7), an additive residual variance function 

was described for a simple linear regression model and the classic assumptions 

associated with such an error model were given. In pharmacokinetic data, an additive 

residual error function is not always appropriate as it might not describe the way the 

variability is distributed around the population average. A common type o f residual
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error model for pharmacokinetic data is the constant coefficient o f variation (C.V.) 

(proportional error) model defined in equation (2.12).

Var{Y/j ) = a 2 f ( X y , /?)2 (2 12)

a-2 = C.V.2

In this residual error model, the standard deviation at a particular level o f xy varies 

proportionally to / ,  i.e. as concentration (y,y) increases then so does the standard 

deviation but the coefficient o f variation remains the same. This is a commonly 

observed variance function in assays and is referred to as a heteroscedastic residual 

error model as the variance is not constant over X j .

A slightly more complicated error model is a combination o f both the additive and 

proportional error model defined in equation (2.13).

VariYiJ) = f - + c r 2f ( x iJ, l ) 2 (2.13)

When the concentrations are high then the proportional error term, cr describes most of 

the variability but when the concentrations are low then the additive error term, ^  

describes the variability as baseline noise.

These are only three possible examples of residual error models for pharmacokinetic 

data but there are others that can be used, see for example Karlsson et al (1995). To 

generalise notation for residual error models, we can specify a structural model and a 

variance model as in equation (2.14). The function g  is a general variance function, 

depending on the mean response, the predictor variables and specific variance 

parameters.
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W i j )  = = cr2 g ( j . i y , h n ^ M y  = W y )  (2.14)

Equation (2.14) specifies the mean and variance o f the normal distribution and with this, 

the likelihood function for the pharmacokinetic data can be obtained.

Another frequently used residual error model involves taking the logarithm o f both the 

model and data so that the model is normally distributed on the log scale as specified in 

equation (2.15).

log(y„) = log( f lf) + e ii
(2.15)

£{j ~ jV(0,ct2)

With this particular model specification, predicted concentrations can not be less than 

zero, whereas with the additive error model, predicted concentrations can be less than 

zero. Data of this form are assumed to follow a log-normal distribution and the error 

model on the original scale is called an exponential residual error model.

2.3.3.2 Intel-individual Error Models

As with the residual error models, similar models can be specified for the variability 

between subjects o f particular parameters. In equation (2.11), an additive error model 

was defined for the parameters. Pharmacokinetic parameters are always defined on a 

positive range so it is quite normal to use an exponential error model on the 

pharmacokinetic parameters, e.g. in a one compartment model, the between subject 

variability would be defined as in equation (2.16). Assuming Cl (clearance) and V 

(volume o f distribution) are constrained to be greater than zero, then all individual 

values will also be greater than zero, where b,i and ba are the random effects.

Cl, = Cl exp(&„ ) ,V ,= V  exp (bi2) (2.16)
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With the model specification in equation (2,11), it is normal to make the distributional 

assumption that b; is distributed normally with mean vector 0 and variance-covariance 

matrix Q.

2.4 Generalised Linear Mixed Effects Models (GLMMs)

2.4.1 Non-Continuous Data

In pharmacokinetic studies, the analysis of concentration-time data is the same generally 

from study to study except for choosing the appropriate models. In pharmacodynamics, 

a wide range of response variables can be observed which means that the type o f 

analysis for pharmacokinetic data, e.g. assumptions about normality and independent 

errors, is not necessarily correct for the pharmacodynamic data obtained. As well as 

continuous measures o f drug effect, pharmacodynamic variables can be measured on a 

categorical, count or censored scale. These types o f variables should not be modelled as 

though they are continuous data and therefore need more general techniques for the data 

to be analysed. As well as making theoretical decisions on how the data should be 

analysed, it is still required that the models should tell us something about the 

pharmacodynamics of the drug and should be able to describe the variability in the data. 

Much o f the work analysing non-continuous data has been published in the case where 

random effects are not included by McCullagh and Nelder (1989). More recently, work 

has been published on generalised linear mixed effects models for both maximum 

likelihood and Bayesian techniques (Zeger and Karim (1991), Booth and Hobert
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(1999)). For more information on analysing non-continuous data, see McCullagh and 

Nelder (1989).

Categorical data is one type of non-continuous data and is the main emphasis in this 

thesis. The definition of a categorical variable is where there is a discrete number of 

possible outcomes that can be chosen (greater than 1). An example o f categorical data 

is where an event can take only two possible courses: the event happens or does not 

happen. This situation could be encountered by observing some toxic response when a 

particular dose o f a drug is given or whether some predefined level o f drug effectiveness 

has been reached after a certain time. An example o f a greater than two categorical 

response is in analgesic clinical trials where pain relief is measured on a 5 point scale 

where l=no pain relief, 2=little pain relief, 3=moderate relief, 4=lot o f relief and 

5=complete pain relief.

There is an important distinction within categorical data about the different types o f data 

that can be observed. The two most important types o f categorical data are nominal and 

ordinal data. Nominal data is where there is no natural ordering o f the categories. A 

simple example o f this is gender (male/female) where it is not o f importance which 

order the categories are but a category is chosen as a reference point from which to 

compare other categories. Another example with more than two categories is race 

(European, Asian or African). This is the type of categorical response that is usually 

associated with predictor variables rather than response variables although nominal 

categorical responses can be observed. Ordinal data is where there is a particular 

ordering to the categories which is more informative than nominal categorical data. An 

example is the pain relief response described above or in determining levels o f toxicity
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(none, low, medium, high). Nominal data and ordinal data are not analysed in the same 

way and therefore need careful consideration. When the data are dichotomous (two 

categories), the nominal and ordinal data can be treated in the same way. The work o f 

this thesis will only involve ordinal categorical response variables.

2.4.2 Generalised Linear Models

In this section, it will be assumed that the data is from the following design. A response 

variable has been independently measured n times so that there is a set o f response data 

yi, Associated with these response data is a qx 1 vector o f covariates denoted by x>, 

F=l,...,«.

To generalise from classical linear models, we can specify three components to the 

model:

1) The random component: the components o f the random variable Y have independent 

normal distributions with E(Y)=U and constant variance o2.

2) The systematic component: covariates x,y, produce a linear predictor ?j

given by equation (2.17).

V, = t x q P ,  (2.17)
./=! ' '

3) The link between the random and systematic components is given in equation 

(2.18).

'? ,= £ < > ,)  (2 -18)
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2.4.2.1 Likelihood Functions for Generalised Linear Models

Assume that the random variable Y  is from the exponential family o f the form

L i O ^ y , )  = exp { 0 (.<9 -6(6>))/ aty)  + c (yn ((>)} (2 .19)

for some specific functions a(,), b(.) and c(.). For example, for the normal likelihood, 

0=ju, (/*=€?> a($)=^, b(9)= $ !2 and c(yh</>)=-1 /2 {y}Icf+ l o g ( 2 )}. The mean and

Quite often, (f> (known as the dispersion parameter) is a scalar so the variance function is 

only a function o f the mean. For the normal distribution, the dispersion parameter is 

simply the variance o2.

2.4.2.2 Link Functions

The link function relates the linear transformed predictor 1] to the expected response 

value ju. In classical linear regression, there is no need to think about a link function 

because the models are already linear and for normally distributed data, the link 

function is the identity link. If the data is assumed to be another member o f the 

exponential family then a link function needs to be considered other than the identity 

link function. If, for example, the data is on the domain [0,1], i.e. binary or binomial 

then a link function that transforms this scale onto the whole real line is required. The 

link function has the effect o f transforming non-normal data onto a continuous range

variance o f the exponential family can be easily derived and is given by equation (2.20).

(2 .20)
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and enabling the assumptions of independent, additive and uncorrelated errors to be 

made. These are discussed in more detail in later sections with specific examples.

2.4.2.3 Binary Data and Logistic Regression

One o f the most frequently seen types of data that is non-normal is binary or binomial 

data so there is a considerable amount of work in the literature dedicated to the analysis 

o f binary data. Collett (1991) is an excellent text on the basic ideas o f binary data 

analysis.

Continuing with the data arrangement specified in section 2.4.2, it is now assmned that 

the response data are a set o f 0’s and l ’s with an associated set o f covariates. The 

standard likelihood assumption for binary data is to employ the Bernoulli distribution 

defined in equation (2.21.

L(e\yi) = er‘ ( \ - e f i~yi) (2.21)

The parameter 6 is the probability of an event occurring, i.e. Pr(7/=1) where 1 

represents an event occurring and 0 is the event not occurring. The log-likelihood is 

given by equation (2.22) for the set of observations:

6
l{0 | y)  = log(L(01 yj)  = log + lo g (l-0)} (2.22)

. 1- 0 .

This log-likelihood can be re-expressed so that it is in the form o f the logarithm o f the 

exponential family and the parameters and functions are then given by equation (2.23).
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<i> = \ 

b(0i) = log(H V-) 
c(y,.,<i>) = 1 (2.23)

eB'--------
1 +

g(Mi) = log

The link function for binary or binomial data is known as the logit link function and is 

the natural link function for binary data. The logit link function is easily interpretable 

as the log odds ratio o f an event occurring to an event not occurring. Other link 

functions are used for binary data such as the probit, complementary log-log, log-log 

and arcsin link functions but it is usual to use the logit link function. The probit link 

function is based on the inverse o f the standard normal cumulative density function 

which makes the assumption that the errors between the observed and expected will be 

normally distributed on the probit scale. Results obtained from using the logit and 

probit link functions are normally very similar and there is a scaling factor of 

approximately 1.6-2 in the difference of parameter estimates if  both the link functions 

work well (Collett (1991)). The probit and logit links are symmetric but the 

complementary log-log and log-log link functions are not. There are tests for assessing 

goodness of link (Pregibon (1980)) but it is generally assumed that the relevant link 

function is known.

When binary data are modelled as a generalised linear regression model then the 

resulting model is called a logistic regression model. The model is often specified on 

the logit link function transformed scale or the probability scale as in equation (2.24).

M i

1 -M i
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log
E(Y,) A

i-£(y() — log
0  1 <i

<1

E(Y,) = 0, =

expC X i/A ,) (2.24)
7=1

l + ex p (E * s/? ,)

The first part in (2.24) gives the logit transformed model on a linear scale and the 

second part is the inverse o f the logit transformation which is on the probability scale 

and is known as the logistic function.

2.4.3 Fixed Effects (Marginal) Models

Returning to the situation where the data is as described in section 2.3, deciding on how 

the data is to be analysed is not as straightforward as in the population pharmacokinetic 

data scenario. Whether it is the population average model that is required or obtaining 

individual fits to the data, different approaches to the analysis can lead to different 

interpretations o f the regression coefficients (Diggle et al. (1994)).

If the data is analysed as though there is no distinction between individuals then this 

corresponds to the case in population pharmacokinetics o f the so-called naive pooling 

method (Steimer et al (1985)). This method does not allow the inclusion o f between- 

subject random effects in the model as there is no way o f knowing from which 

individual the data came. This can also lead to bias o f population parameter estimates 

as individual data are not influencing the population parameter estimates in necessarily 

the correct way. Even though this is not necessarily the best way o f analysing repeated 

measurement data, it acts as a useful starting point.
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Another possible explanation of marginal models is where between-subject random 

effects have been integrated out of the likelihood (Diggle et al (1994)). Although the 

resulting model does not include individual random effects, the population parameter 

estimates have an interpretation that would be more in line with that o f population 

pharmacokinetic models.

2.4.4 Mixed Effects Models

Mixed effects models enable estimation of both the individual and population parameter 

values o f a set o f repeated measurement data. Assuming the generalised linear mixed 

effects (GLMM) model is defined as in equation (2.25), then the population parameter 

model can be found by integrating out the random effects leaving just the population 

parameters. The distribution F is the random effects distribution.

E ( L \ b ; )  = g - \ X i /3 + Z ibi)
~  (2.25)

£(!,-) = J g-'Wfi  + Z'bjdFib')

For categorical data, the model parameters from marginal models and random effects 

models are interpreted differently (Diggle et al (1994)). For the marginal model, the 

parameters describe the ratio o f population odds and for the random effects model, the 

ratio o f individual odds, It has also been noted that the absolute value for marginal 

models is smaller than the parameter estimates for random effects models.

2.4.5 Transition (Markov) Models

Transition (Markov) models, are used when the current value o f the response variable 

explicitly depends on the previous response values. The previous response variables
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can be treated as though they are predictors for the current response. A transition model 

can be specified as in equation (2.26).

The expected response (left hand side) is explicitly shown to depend on the previous 

response measurements but the model (right hand side) shows that there is only 

dependence on the previous response. The model can depend 011 any number o f 

previous responses but this can be tested to see how much these predictors can describe 

the data. One important point is that the spacing (temporal or spatial) between the 

response measurements must be the same or the fitting o f transition models can become 

complicated.

Another way o f thinking about transition models is in terms o f Markov chains. Take, 

for example a binary response, then the probability of being in a particular 

state/category (event occurred or did not occur) depends on the previous response 

observed by the Markov chain in equation (2.27). The previous state/category which is 

known is given by the row and the probability of ‘jum ping’ to the next state/category is 

given by the probabilities in the cells o f the matrix.

(2.26)

0 1 (2.27)

0 1 ^ p  (jC..yg)

1 + exp (X;j p )  1 + exp(x,y /3 + a )
^ l j~l 1 1 exp(x gj f3 + a)

1 + exp(x^. p  + a)  1 + e x p ^ .  p  + a)
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When the event occurred (y,y./=T), the model includes the parameter a, so as to indicate 

y {j-i=\. As the matrix also depends on covariates, then the transition probabilities can 

vary across individuals.

2.4.6 Proportional Odds Model

Having discussed some of the models that are available in the general setting o f 

generalised linear mixed effects models, the main purpose in this thesis is the analysis 

o f categorical data in pharmacokinetic/pharmacodynamic studies. So far, binary data 

has been briefly examined but it is necessary to have a general framework in which to 

analyse any data o f a categorical nature if  the analyses are not going to be arbitrary. 

Agresti (1990) and McCullagh and Nelder (1989) report most o f the theoretical work. 

One of the most important early papers on the proportional odds model is by McCullagh 

(1980).

Assuming that the data are o f the same arrangement as that specified in section 2.3, we 

can make the additional assumption that the response variable is categorical such that Yy 

can only take the values {1,2,...,C}. As these numbers are only representations o f the 

categories and represent the actual response qualitatively, it seems sensible to use 

another measure that can represent the response quantitatively. The easiest measures to 

use are probabilities and log odds ratios. These are used in logistic regression and allow 

the extension o f methods to categorical responses of more than two categories. In 

logistic regression, the probability o f being in a particular category is used as the 

measure we are trying to model, so a similar strategy can be used for polychotomous 

data. As the data are known to be ordered, then it is reasonable to use the ordering o f
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the categories as additional piece o f information. This can be achieved in several ways

by defining the odds ratios in specific ways. Firstly, we need to specify that the data

can be described in terms of cumulative categories and cumulative probabilities as given 

in equation (2.28). R and y  denote the cumulative category observation and cumulative 

probabilities respectively.

Rijk =Ylll+...YiJ„ k  = 2 , . . . ,C - \

Ri/C =1
(2.28) 

r m = Pr(-K#l = 1) = P r(r„  = 1)
r m = P r  (RIJk = 1) = ) + ... + Pr(7it ),k  = 2,...,C  —1

y  ijc = MR,!,- = i) =  i

With this parameterization, the odds ratio can be defined for which the modelling is 

carried out. A commonly defined odds ratio used in ordinal categorical data is the 

continuation odds ratio defined as in equation (2.29) where OR denotes odds ratio.

OR = l iity  ~ Y,Jk , k = 1...., C  -1  (2.29)
r,jk

The continuation odds ratio uses the ordering of the categories but does not include all 

the information available as all categories from k+2 to C are ignored. Another odds 

ratio that uses all the information available is the cumulative odds ratio defined in 

equation (2.30).

ORm = - ^ , k  = \ , . . . , C - 1 (2.30)
' l - r m

This odds ratio in effect uses a dichotomisation of all the ordered categories. This is 

similar to constraining the categories to be in one o f two categories which then can be 

treated like binary data and so logistic regression can be used. For C  categories, there 

are C-l cumulative odds ratios (or cumulative probabilities on the probability scale), so 

there are C-l logistic regression curves. The proportional odds model which is in effect
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a constrained model o f C-l logistic models where each model has the same covariate 

parameter values but the intercepts or ‘cut points’ are allowed to vary as defined in 

equation (2.31).

logh(Pr(y,y < k)) -  log
'P r

= 0k + x iJp 9k = l , . . . ,C - l  (2.31)
. Pr^ y

In equation (2.31), the intercept component is specified by 6fe. The parameters Ok, 

k ~ l,... ,C -l represent the cumulative probabilities when no covariates are measured. 

The reason for the name o f proportional odds model is because the odds ratio between 

any two specified covariate values is independent of what category is observed.

Another way o f thinking about the proportional odds models is that there is an 

underlying latent variable which can only be observed as a particular number o f 

categories. The cut points of the proportional odds model refer to the dividing lines of 

the continuous latent response but between the cut points, the only information available 

is from the covariates and how these influence the probability o f lying between the cut 

points. The idea o f latent variables is how Albert and Chib (1993) deal with analysing 

categorical data in a Bayesian setting.

As with generalised linear models, random effects can be included in the model to allow 

for subject specific parameter values. The mixed effects model can be written in the 

same way as for generalised linear mixed effects models and the model o f the form 

given in equation (2.32) would be obtained.

log/7(PrtXy < k \ b i)) = 6k + x iJl  + z ij b i9k = l t. . . , C - l  (2.32)

Although the main effects vector jB does not include an intercept term, the random 

effects vector z,y can include a random effect on the cut points.
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The distribution for categorical data is usually specified to be the multinomial 

distribution (McCullagh (1980)). Depending on how the data are collected, depends on 

what distributional assumption is made but typically it is either multinomial, 

independent multinomial or poisson (Agresti (1990)). As the proportional odds model 

is in terms o f cumulative probabilities, the multinomial used in later analyses is a 

reparameterisation of the multinomial distribution in terms of cumulative probabilities. 

This is given in equation (2.33) where R is the set of cumulative categories and H is the 

set o f cumulative probabilities.

r  'i  !h i r  i  % • + ! ) / - %

L(R I h )  = , n  (2 .3 3 )
R]rRu....Rkr k~] J [ Y (k+\)i J

2,5 Generalised Nonlinear Mixed Effects Models

So far, for data from the exponential family, only linear models have been considered. 

Analogous to the situation with continuous data, a linear model on the link transformed 

scale might not be adequate in describing the relationship between the predictors and 

the response variable. An example from Sheiner (1994), Sheiner, et al (1997) and 

Mandema and Stanski (1997) use the Emax model on the logit transformed scale to 

model the pain relief scores from analgesic drug clinical trials. With this model on the 

logit transformed scale, there is an upper limit to what the probability o f being in a 

cumulative set o f categories as the Emax asymptotes to a maximum value so the 

probability o f being in the particular cumulative set o f categories can never reach 1. 

This might be a reasonable assumption in some situations where it is known that there is 

never a certain chance o f being in a particular category.
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2.6 Modelling Methods

The models specified in the above sections all need to be fitted to data to find out the 

parameter estimates for each particular model. As well as there being many different 

models with which to explain the data, there are a variety o f methods that can be used 

for the actual model fitting process. Different methods of model fitting are more 

appropriate under different situations, for different types o f data or for different models. 

Two distinct types of analyses, classical and Bayesian will be taken in future data 

analyses. The first general ideology, frequentist or classical statistics is where the 

parameter estimates are based solely on the data and specified assumptions. Classical 

modelling techniques are least squares methods, maximum likelihood and 

nonparametric maximum likelihood methods. The second ideology is where both the 

data and prior information about aspects of the model such as the parameter estimates 

are mathematically included in the model fitting. This is known as Bayesian statistics. 

When there are not any strong prior beliefs then the results o f Bayesian method 

converge to those o f frequentist methods as all information arises from the data.

The next few sections describe some of the frequentist methods that are used 

commonly. The Bayesian methods are left to section 2.7.

2.6.1 Weighted Least Squares

Weighted least squares (WLS) can be used for the fitting of any function to a set o f data. 

The idea is to minimise an objective function which will then give the best fit of the 

model to the data based on the criteria defined. The weighted least squares objective
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function is defined by equation (2.34), where the indexing in j  is ignored for the 

moment.

Qlm = ' Z * ’, ( y , - f (X n l ) ) 2 (2-34)/

In addition to the model /  and the data y h there is associated with each data point a 

weight Wi. This weight has to be specified before the analysis then examined afterwards 

through weighted residual plots to see if  it is an adequate weighting scheme. In the 

situation of pharmacokinetic data with a constant coefficient o f variation residual error 

model, the weights would be the inverse o f the variance for each data point. Therefore 

the weights would be the reciprocal o f the square of the model prediction multiplied by 

the standard deviation. The standard deviation is estimated after the regression 

parameters have been estimated making the interpretation of the standard deviation 

straight forward as being a measure of everything that has not been explained by the 

model and the chosen weighting scheme.

When no weighting scheme is used in the weighted least squares objective function then 

this reduces to ordinary least squares (OLS).

2.6.2 Extended Least Squares

Extended least squares is a generalisation of weighted least squares in that it allows the 

estimation o f parameters associated with the weighting scheme (variance function) 

which is not possible in WLS or OLS (Peck et al (1984)). By choosing a function for 

the variance that will allow a variety of ways of describing the variation around the 

population average, the choice of a weighting scheme should no longer be a problem. 

However things are not normally as simple as this and models usually have to be
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refitted with different variance functions. The extended least squares objective function 

is defined by equation (2.35).

+ log(cr 2g ( x n p,qi)) (2.35)

The extra term log(.) acts as a penalty so that the variance does not become too big in 

the first part of the objective function.

The extended least squares objective function is implemented in the program 

NONMEM which will be described in section (2.6.6).

2.6.3 Generalised Least Squares

In weighted least squares the weight function is fixed and assumed known whereas in 

extended least squares, the parameters of the (variance) weight function can be 

estimated but the structure can not. In generalised least squares, the variance function 

can be estimated as in extended least squares but it is not done simultaneously. The 

algorithm for generalised least squares is that the model parameters and variance 

parameters are estimated at separate steps. The procedure is as follows:

1. First fit the data using ordinary least squares and obtain the parameter estimates jjPK

2. Use residuals from the preliminary fit to estimate and <p. Create estimated 

weights based on the estimates o f the variance parameters to form the weight 

function described in equation (2.36).

w ,= g - | f e , / ’, ,£ ) (2.36)
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3. Using the estimated weights from step 2, re-estimate (3 by minimising the weighted 

least squares objective function. Treating the new estimates as preliminary 

estimates return to step 2.

Generalised least squares is a robust method of estimating the parameters o f the 

structural model and the variance model and has been recommended for analysing 

pharmacokinetic data (Davidian and Giltinan (1995)). Despite this extended least 

squares is often the choice o f analysis as it is implemented in commonly available 

software, e.g. NONMEM (Beal and Sheiner (1992)). Extended least squares is 

adequate in most cases but has been shown to have some undesirable statistical 

properties when the wrong variance function is assumed (Houwelingen (1988)).

2.6.4 Maximum Likelihood

The method o f estimation by maximum likelihood is a widely used method in parameter 

estimation problems in general but does not tend to get used in pharmacokinetic 

analyses. The reason for this is partly due to the development o f the NONMEM 

package at an early stage in the development o f population pharmacokinetic methods. 

Maximum likelihood theory is based on distributional assumptions about the data and 

then the likelihood is maximised with respect to the model parameters. When the mean 

and variance function are specified, the results obtained by maximum likelihood 

techniques are the same as those obtained from extended least squares as the extended 

least squares objective function has the same structure as the log-likelihood for 

normally distributed data. Generalised least squares has been shown to be more robust 

to variance component estimation than maximum likelihood but restricted maximum

50



likelihood improves estimation o f variance components. More information on 

maximum likelihood and least squares estimation can be found in Searle et a l (1992).

2.6.5 Nonparametric Methods

The nonparametric maximum likelihood approach puts no restriction on the population 

distribution o f the parameters (Racine-Poon and Wakefield (1998)). A structural model 

is still defined but no assumptions about how the individual parameters may vary across 

the population are specified. Mallet (1986) introduced the theory for NPML and 

showed that the discrete distribution obtained can be related to D-optimal design theory. 

This method requires the full specification of the residual error model which if  specified 

incorrectly will lead to biases in the parameter estimates. Also, no standard errors o f the 

parameter estimates are obtained. Schumitzky (1991) proposes a similar method using 

the EM (Expectation-Maximisation) algorithm called NPEM. Other nonparametric 

programs and methods are briefly described in Aarons (1999).

2.6.6 NONMEM

Because NONMEM is such a widely used program in the analysis o f pharmacokinetic 

and pharmacodynamic data, it is important to understand some o f the methods it 

employs. The data specification is the same as in section 2.3.

The population likelihood is specified as in equation (2.37).

L(£.£,<T2) = njA <>,, I mdb, (2.37)

The two distributions,/?/ (individual likelihood) andp 2 (random effects distribution) are 

usually specified to be normal or log-normal In the case where the distributions are

51



normal and the model is linear, the integral in (2.37) is analytically tractable but if  the

model is nonlinear as is usually the case with pharmacokinetic data then the integral can 

not be solved analytically. With the linear case, the integral is tractable but the resulting 

equation can not be analytically maximised to obtain the parameter estimates so a 

numerical technique is required such as the Newton-Raphson algorithm (Lindstrom and 

Bates (1988)) to solve for the parameters. With a nonlinear' model, before any 

maximisation takes place, an approximation for the intractable integral must take place. 

NONMEM uses an analytical approximation to the integral o f which there are several. 

Once the approximation is carried out then the objective function that is numerically 

minimised is the objective function given in equation (2.38) where V-, is the variance 

function and J  is the matrix o f first partial derivatives o f size (pxn).

V = J t Q J + T,

The objective function is numerically minimised with respect to the population 

parameters by the use o f a derivative free quasi-Newton type algorithm.

The analytical approximations to the likelihood are based on Taylor series expansions 

about the random effects, bj. The most widely used approximations are first-order and 

are known as the First Order (FO) and First Order Conditional Estimation (FOCE) 

methods. The FOCE method is an expansion around the current estimate o f bj obtained 

at each iteration of the algorithm. It is called “conditional estimation” because the 

estimate o f bj is derived conditional on the current estimates o f the random effects. The 

FO method is a simplification of the FOCE method with the bj are set to zero. There 

exists a second-order approximation called the Laplacian method (Tierney and Kadane

aNONMHM I U t , . - n x i, i i)) + lo g ^ )}
(2.38)
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(1986)) and is essentially the same as the first-order methods but gives a better 

approximation to the likelihood.

Th latest version o f NONMEM (Version V) also allows the specification o f a user 

defined likelihood. This is useful in the modelling o f non-continuous or non-normal 

data as the approximations and assumptions for normally distributed data will not 

necessarily be correct. Any approximations are then taken from the user defined 

likelihood and will give better estimates. In this case, a residual error term is not 

estimated as this acts as a switch between whether the data are to be analysed using in­

built distributions or a user defined likelihood.

2.7 Bayesian Statistics

The methods so far described are based solely on the data and assumptions about the 

way in which the data are distributed. Sometimes, the assumptions made with classical 

methods are not fully realised and it is important to understand the constraints being 

made as this affects the way the data will be interpreted. As well as making the 

standard assumptions about the way the data are distributed and modelled, Bayesian 

statistics uses an extra level of ‘assumptions’ to specify the beliefs about aspects of the 

data, the model or the variance and so on. These prior beliefs are included in the 

analysis and have an effect 011 the results. Depending 011 how strong these beliefs are 

will determine how much influence they have on the final parameter estimates. In the 

case where there is little information in the prior distribution then Bayesian results 

converge to those o f classical likelihood methods. These prior beliefs are formulated in
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terms of a prior distribution, the information supplied by the data is given in the 

likelihood and the combination o f these two sets of information gives the posterior 

distribution. These three distributions are linked by Bayes’ theorem as specified in 

equation (2.39) where p{.\.) is a conditional distribution and p{.) is a marginal 

distribution.

, x  1 = P(X  I X ) p { X )  = p ( Y  I X ) p { X )
\ p ( Y \ X ) p ( X )  p{Y)

This is an equation o f conditional probability where p(X\ Y) is the posterior distribution, 

p(Y\X) is the likelihood and p(X) is the prior distribution.

Since the introduction o f Monte Carlo Markov Chain (MCMC) techniques, Bayesian 

methodology has been used more and more and there has been an increase in the use o f 

Bayesian methods for the analysis of population pharmacokinetic and 

pharmacodynamic data, see for example Wakefield (1996), Lunn and Aarons (1998) 

and Racine-Poon and Wakefield (1995).

2.7.1 Prior, Likelihood and Posterior

The main feature of a Bayesian analysis that distinguishes it from classical analyses is 

the use o f prior distributions. The type o f distribution before the use o f  computers was a 

particular concern because due to the intractability o f the integral in the denominator o f 

equation (2.39). Without an easy way o f obtaining this integral, Bayesian methods were 

seen as very difficult and only specific types of distributions were used with specific 

likelihood functions. For example, in linear models a normal likelihood and a normal 

prior results in a normal posterior distribution. These types of distributions are known 

as conjugate distributions as the prior is of the same form o f distribution as the posterior

54



given a particular likelihood. Other prior distributions that resulted in intractable 

integrals were not considered. With MCMC methods, there are no longer problems in 

what prior distributions are chosen, as the posterior will generally only be reported as a 

summary o f the first two moments even though it is more informative to display the 

complete distribution.

The prior will primarily contain information about the data and model before the data 

set to be analysed is actually known. If nothing is known before the data are collected 

then low information priors can be specified. If  information is available about certain 

parameters before a set of data is modelled then this can be included in the prior with 

low variability to show that the value is a priori known to a reasonable degree.

The likelihood is part of the modelling process that does not change from Bayesian to 

classical analyses. The most frequently used likelihood in a parametric setting for 

pharmacokinetic data is normal or log-normal. The only time this changes is in a 

nonparametric analysis where the likelihood is not defined explicitly.

The combination o f the prior distribution and the likelihood via Bayes’ theorem gives 

the posterior distribution. Using conjugate analysis then the posterior might be o f a 

known form but more likely, the posterior will not be a standard distribution. In 

nonlinear pharmacokinetic models, the posterior distribution is not o f a known form but 

often asymptotic theory is used to approximate the posterior by a normal distribution. 

In pharmacodynamic studies where the data are non-normal then a complicated 

posterior distribution will result unless a conjugate prior is used. Again, this is not a
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problem as the distribution is often summarised by the first two moments. A 

comprehensive text on Bayesian theory is that by Bernardo and Smith (1994).

2.7.2 Hierarchical Models

Data arising from a population study falls naturally into the setting o f a hierarchical 

model. A hierarchical model defines multiple levels of distributions at which each 

level, the parameters depend on the next level of distributions. This is particularly 

applicable in population pharmacokinetic and pharmacodynamic settings where the goal 

is to determine population and individual parameters and variability. The hierarchies in 

a Bayesian analysis are referred to as stages. The first stage is the level at which the 

individual models and parameters are defined, moving to the population level and then 

to the level of prior distributions. A standard hierarchical setting will have three stages 

but can have as many as desired, for example in a data set with interoccasion 

measurements, then four stages are used (Lunn and Aarons (1998)). Hierarchical 

models are also used in classical analysis and Lee and Nelder (1996) have developed a 

method for hierarchical generalised linear models using /7-likelihoods.

The next three sections will define the three stages using a hierarchical pharmacokinetic 

model as an example. Details o f this analysis can be found in Wakefield (1996) and 

Davidian and Giltinan (1995). A similar strategy could be used for generalised linear 

mixed effects models for pharmacodynamic data but using the relevant distributions in 

the particular case.
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2.7.2.1 Stage 1

Assume that the data is as defined in section 2.3.

At the first stage o f the hierarchical model, the probability distribution for the individual

is defined in equation (2.40).

y,j \P_rv ~ »/[,■)>T_isiXfj>M u ))

T~] =ar2>Mu=f(Xv>P,)
(2.40)

The reason for parameterising in terms of x instead of c f  is because the inverse o f the

variance when distributed as a gamma distribution is a conjugate distribution for a 

normal likelihood. The assumption that the data are independent allows the likelihood 

to be defined as in equation (2.41). Assume for the moment that there are no variance 

parameters <&- to be estimated.

The likelihood for the data has now been specified and consideration o f how the 

individual parameters are distributed in the population can be addressed.

1.1,2.2 Stage 2

The individual parameters are often assumed to arise from a multivariate normal 

distribution. Whether it is the parameter or some transformation o f the parameters that 

are normally distributed is not a problem as it is usual to take a log transformation to 

ensure positivity of the parameters and also other constraints to ensure identifiability 

such as ordering the rate constants (Wakefield (1995)).

y  I ~ I I f t N ( / ( * „ , p  ), x~xg{xu, ju.fj))
M.H —' ' (2.41)
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p t \ P ,? T '~  N ( p (2.42)

The individual parameter vectors ai'e specified as being realisations from a population 

with a common mean J3 and precision matrix E '1 (inverse o f the variance-co variance 

matrix). At this level, covariate models on the parameters can be introduced. The 

variance-co variance matrix, E represents the interindividual variability o f the population 

parameters or their transformations.

Another approach for the second stage probability distribution is to use a Student t 

distribution. This distribution allows for the inclusion of outliers as it is heavier in the 

tails and does not give such low probabilities to these observations. The model would 

then be specified as in equation (2.43). The degrees of freedom v  are usually set to a 

low value, e.g. v=4 as this corresponds to a heavy tailed distribution.

- » „ ( £ ,  IT 1) (2.43)

To complete the model specification for the second stage, a probability distribution is

specified for the precision parameter t .  This distribution is usually taken to be gamma

as defined by equation (2.44).

t \ v 0 , t 0 ~ G (0 .5 i/ 0,0.5v0?-0) (2.44)

The values are usually set at this stage for the precision parameter distribution and the 

parameters specifying the distribution are given values that specify a low information 

prior.
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2.1.23 Stage 3

The third stage of the hierarchical model defines the prior distributions on the 

population parameters. The standard distributional assumptions to make are typically 

conjugate, although this is not a requirement and are given in equation (2.45).

P ~  ~ W ((p R ) - \p ) (2.45)

W(.,.) denotes a Wishart distribution which is a multivariate gamma distribution. It is at 

this stage that the distribution is fully specified to give prior information on how much 

is known about the parameters. It is usually the case that little information is known so 

the values o f p , C, p  and R are chosen so that they reflect this lack o f information. The 

value o f % is set to the initial estimate o f {3 and C is often large as to make the 

distribution flat and o f low information. R is chosen to be the initial estimate o f E with 

p  being set equal to the dimension o f the matrix.

2.7.2.4 Joint Posterior Model

To obtain the joint distribution of the parameters given the data, Bayes’ theorem must 

be used. The posterior distribution is given in equation (2.46).

p(P ,r,ri,T . 1 y )  = ----------  —  -     (2.46)
-  -  -  p (y )

The second term in the numerator is a combination of the second and third stages o f the

hierarchical model which can be rewritten to show this as equation (2.47).

. , P (y\P ,T )p (P ,T \T l,'Z~ ')p (ri,X -')
P(P, r , 7 ,Z  |y )  = — -   --------= — = ---------=-------  (2.47)

— -  -  p (y )
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Conditional 011 f3 and t ,  the distribution o f is independent o f and S '1. Lastly the 

assumption is made that [3 and t  are conditionally independent and so are each o f the 

prior distributions giving equation (2.48).

(R  v-U  P W P '  T)P(P  17h s “' )p(ri)P<S)P(£~') „  . „p (0 ,  r , 77, S ) -  -  ....... ......... ........ ... x—  ----------------- (2.48)
~  ~  p (y )

Each o f the distributions in equation (2.48) has been specified in sections 2.7.2.1-2.7.2.3 

so the posterior distribution can be written as in equation (2.49).

t , ?/, S"1 [ y )  oc f l  f t  N ( f  (Xjj, ), T^ g i Xy , p y )) x

n  S _l) X G(O.5v0,0.5r0v0) x (2.49)
/=1
N(?l 9 C ) x W ( ( p R y \p )

Even though conjugate families are chosen for most pharmacokinetic models (i.e. 

nonlinear models), the solution o f the Bayesian model is intractable hence numerical 

integration techniques, e.g. MCMC methods are required.

2.8 Monte Carlo Markov Chain (MCMC) Methods

The growth in the use of MCMC methods in the 1990’s has seen the use o f Bayesian 

data analysis increase considerably. The advances in computer power and speed have 

made MCMC techniques an additional method for modelling pharmacokinetic and 

pharmacodynamic data. These sampling methods are now a standard option in 

analysing any data and are likely to be used more as computer software such as 

WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs) is used and computing power 

increases.
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Markov chain Monte Carlo methods can be described in two parts. Firstly, Monte Carlo 

integration refers to simulations for the evaluation of E(J(Xj) with respect to some 

distribution tz(X). By drawing samples {Xht= \ w h e r e  n is the sample size from 

7i(X) and then approximating

£ ( / 0 0 )  « - £ / ( * , )  (2.50)
n /=i

So the population mean o f/fT ) is estimated by a sample mean. When the samples are 

independent, laws o f large numbers ensure that the approximation can be made as 

accurate as possible by increasing the sample size. Drawing independent samples is not 

always possible in practice so any method can be used where the samples can be made 

to be independent in some way. Using Markov chains is one way o f sampling where 

7i(.) is the required stationary distribution.

Secondly, Markov chains define the process by which the random samples are chosen. 

Suppose a sequence o f random variable is generated, {Xq,X i , .. .} ,  such that at each time 

t>0, the next state X t+i is sampled from a distribution P{Xt+i\Xt) which depends only on 

the current state o f the chain X t. This sequence is called a first-order Markov chain and 

P(.|.) is called the transition distribution o f the chain. Another feature o f Markov chains 

is that as the random variables are sampled, the chain will gradually ‘forget’ its initial 

state and converge to the stationary distribution that does not depend on X q or t.

2.8.1 The Gibbs Sampling Algorithm

The Gibbs sampling algorithm was first introduced by Geman and Geman (1984) and 

was then applied to Bayesian analysis by Gelfand and Smith (1990). Wakefield et al
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(1994) applied Gibbs sampling to population pharmacokinetic data and Wakefield and 

Racine-Poon (1995) applied it to population pharmacokinetic and pharmacodynamic 

data.

The Gibbs sampler requires that the joint distribution can be factored into full 

conditional distributions. The notation o f Wakefield et al (1994) will be used to explain 

the Gibbs sampler.

Assume there is a joint distribution of random variables {Xj,X 2, ...,Xk) given by 

p(X hX 2, and each of the conditional distributions p(Xs\Xr,r^s) can be identified at 

least up to proportionality. Given arbitrary starting values Xf°*=(X/ ° \ ..., X / 0)) for the k 

random variables, we then generate the following random variables:

(251 )

This completes one iteration o f the sampling scheme giving X^1}= (X /r), X /^). After t 

such iterations we have X (t)={X/t\ X //J). The Markov chain just generated has 

equilibrium distribution /7(X/,X2,...,Xt), the joint distribution o f the random variables. 

Smith and Roberts (1993) showed that under weak regularity conditions, it follows that 

as t - » o o ,  X (t) tends in distribution to a drawing from p(Xi,X 2 , and the ergodic

average is a consistent estimator of the expected value o f any integrable function g(X). 

The ergodic average is in essence a “moving average” and is defined by equation (2.52).

s W = l t g ( X ('>) (2.52)
0 = t
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To obtain a random sample from the joint distribution, either a long run is performed 

collecting suitably spaced realisations or by performing parallel independent runs o f the 

chain and collecting the final realisation from each.

For population pharmacokinetic data, the full conditional distributions are given in 

Wakefield (1996).

2.8.2 The Griddy Gibbs Sampling Algorithm

As noted in the previous section, the full conditionals need to be known to be able to 

sample from. Also, in many situations, the conditional distribution is univariate. When 

the full conditional distribution in the Gibbs sampling algorithm is hard to sample from 

or is not o f a known distributional form, then the idea o f the Griddy-Gibbs sampler is to 

form a simple approximation to the inverse cumulative distribution function on a grid o f 

points (Ritter and Tanner (1992)). The algorithm is as follows:

1. Evaluate p(Xs\Xnr^s) at X s=xi,X2, ...,Xk to obtain wi,w 2  w*. The weights w are

assigned to the vector (X},X2 ,...,Xk) that has been drawn from the current 

approximation to the joint distribution g t via

w = (2.53)
g ,(X 15...,X A)

where q is proportional to p , the distribution of interest.

2. Use Wi,W2 ,...,w/[ to obtain an approximation to the inverse cumulative distribution 

fmiction o f p(Xs\Xr,r?%).

3. Sample a uniform (0,1), deviate and transform the observation via the approximate 

inverse cumulative distribution function.
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The conditional probability function p  need only be known up to proportionality (q) 

because the normalisation can be worked out directly from the weights. The grid does 

not need to be uniform, as a grid that puts more mass in neighbourhoods o f greater

remain constant throughout. As the sampling scheme is run then the grid can become 

finer as more information is built up.

This algorithm is employed in version 0.6 of the BUGS program as a way o f estimating 

parameters in nonlinear models.

2.8.3 The Metropolis Algorithm

Metropolis et al (1953) introduced the Metropolis algorithm into the field o f calculating 

chemical properties. It is implemented in the case where the probability density 

function p(X) is known only up to proportionality and in its current form can not be 

sampled from directly. The Metropolis algorithm is implemented to obtain realisations 

from p(X)/fp{X)dX. Firstly, a proposal distribution, q(X\ T) must be defined such that 

random variates from this distribution are readily obtained and lie in the same range o f 

interest. For the Metropolis algorithm, the proposal distribution must be symmetric 

such that q(X\ Y)=q(Y\X). The algorithm for the ith iteration is the following:

1. Generate Z from q{X-, \ Y).

2. Define:

density is more efficient. Also, the number o f points on the grid does not have to

a  = miiri 1, (2.54)

3. Generate TJ from a uniform distribution on (0,1).
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4. Let Xi+i—Z  if  a<U, otherwise X i+t=Xj.

Then as the number iterations, t->oo the realisations will converge to those from the 

desired distribution.

The Metropolis algorithm is easy to implement within the Gibbs sampler when the 

conditional distribution is not of a known form. This algorithm is implemented in 

WinBUGS.

2.8.4 The Metropolis-Hastings Algorithm

Hastings (1970) generalised the method of Metropolis to allow for the proposal 

distribution not to be symmetric and allow more freedom in the choice o f this 

distribution. The generalisation comes at step 2 o f the Metropolis algorithm and is 

replaced by the following step:

2. Define:

The rejection step must now take into account that the proposal distribution is not 

symmetric and does not factor out. This generalisation allows for more distributions as 

proposal distributions will hopefully mean that less iterations are rejected.

2.8.5 The Rejection Sampling Algorithm

The rejection sampling algorithm is presented in Ripley (1987) and is a method for 

drawing independent samples from a distribution proportional to p(X). Rejection

p { Z ) q ( Z \ X i)
(2.55)
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sampling is not a MCMC method as each sample is independent o f the last so it does 

not have the Markov property but is a Monte Carlo method. To be able to sample from 

p(X), it is required to be able to sample readily from q{X) for which there is a finite 

constant m such that mq(X)>p(X) over the whole range of X. For practical purposes it is 

important to be able to calculate m easily. The ith step in the algorithm is the following:

1. S ample X, from q{X) .

2. Sample U from uniform distribution on (0,1).

3. If  p(Xj)/mq(Xi)<U then go back to step 1, else set XR=Xj.

4. Return X r.

Rejection sampling does not require the evaluation o f the integration o f the distribution 

over its domain. This is very convenient for sampling from full conditional 

distributions when they are known only up to a constant of proportionality.

One o f the main problems of rejection sampling is the acceptance rate can be very low 

meaning that it can take a long time for an adequate number o f independent samples to 

be collected. The acceptance rate is dependent on m and the higher the value implies 

greater numbers o f iterations being rejected.

2.8.6 The Adaptive Rejection Sampling Algorithm

Gilks and Wild (1992) introduced the adaptive rejection sampling algorithm as a way of 

getting round the problem of poor acceptance rates in rejection sampling. This is 

accomplished by updating the sampling density q{X) at each iteration so as to reduce the 

number o f rejections and speeding up the time to collecting an adequate number o f
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samples. This improvement is made by incorporating information about p(X) in q(X) so 

it approximates closer, the true distribution.

An important condition for adaptive rejection sampling is that the density function be 

log-concave. The definition of this is given by the following where D  is the domain of 

the distribution p , which is not necessarily continuously differentiable: Log-concavity 

ensures that envelopes can be easily constructed for the distribution in question.

lo g (^ (a ))- 2 log(/>(Z>)) + log(/?(c)) < 0 ,V a t , b,c & D ,a  <b < c (2.56)

For the adaptive rejection sampling algorithm, choose a set o f points 

S„={Xi;i=0, ...,«+/} in ascending order. For 1 <i<j<n let Ljj(x;Sl}) denote the straight line 

through points [xitln(p(xj))] and [xy,//3(p(xy))], and for other (/,/) let Ljj(x;S„) be undefined. 

Define a piecewise linear function hn(x)=mm[Lj.it,{x;Sn), Li+jtj+2 (x;S„)], X j < x < x i+ i where 

the notational dependence of h„(x) on S„ is suppressed. h„(x) is an envelope everywhere 

for log(p(x)), i.e. h„(x) > log(p(x)). Adaptive rejection sampling can now be performed 

with the sampling distribution given by equation (2.57).

3 M(*) = — exp(fcH(jt))

where (2.57)
;n„ = J exp(/ii; (x))dx

The adaptive rejection sampling is as follows:

1. Initialise n and Sn.

2. Sample X  from q„(x).

3. Sample U from uniform distribution (0,1).

4. If  p(X)/exp(h„{X))<U then (rejection step) set S„+i=Snu {X } ,  relabel points in Sn+i in 

ascending order, increment n and go back to step 2, else (acceptance step) set X A-X .

5. Return A7(.
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At each rejection, the number of points in S  is increased by one, thereby reducing the 

probability o f rejection at the next step.

2.8.7 The Adaptive Rejection Metropolis Algorithm

Gilks et al (1995) introduced a method where sampling can take place from non-log- 

concave distributions. The Metropolis algorithm is capable o f this but to avoid many 

rejections during sampling, the proposal distribution can be updated as in adaptive 

rejection sampling. The mixture of these two sampling algorithms allows the 

development of a good proposal distribution from which to sample. Unlike adaptive 

rejection sampling which produces independent samples, the adaptive rejection 

Metropolis algorithm produces correlated samples due to the Markov property o f the 

algorithm. Details o f this algorithm are given in Gilks et al (1995).

2.8.8 BUGS and WinBUGS

BUGS (Bayesian inference Using Gibbs Sampling) was originally developed at the 

University o f Cambridge by Gilks et al (1994). The purpose o f the original program 

was to allow Gibbs sampling to be applied to complex statistical models that when 

tackled using Bayesian methods previously, would require programs to be written from 

scratch. Since its original development, BUGS has progressed from a DOS based 

program to a Windows program with the introduction of WinBUGS. Earlier work in 

this thesis was carried out using BUGS but some o f the later analyses were carried out 

using WinBUGS.
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BUGS (referring to both BUGS and WinBUGS) assumes a full Bayesian probability 

model, in which all quantities are treated as random variables. The model consists o f a 

defined joint distribution over all unobserved (parameters and missing data) and 

observed quantities (the data). The data is then conditioned on to obtain a posterior 

distribution over the parameters and unobserved data. The model can also be defined 

by a directed acyclic graph (DAG) which gives a graphical view o f how the full 

distribution model is put together and each part is connected to the parent nodes.

BUGS 0.5 only allowed for the estimation o f linear models, generalised linear models, 

survival models, and other simple models but with complicated distributional structures. 

This was due to the fact that within the Gibbs sampler, there was not a routine for non­

log-concave distributions to be sampled from and so nonlinear models could not be 

considered. BUGS 0.6 included a Griddy-Gibbs sampler to allow for the estimation o f 

nonlinear models and then the introduction o f WinBUGS allowed for general nonlinear 

models to be considered as an adaptive Metropolis algorithm was included. With the 

latest version being released, WinBUGS 1.2, the program should be more general and 

allow for an even wider class of models to be analysed. The current program already 

allows for many o f the types o f models that are found in pharmacokinetic and 

pharmacodynamic analyses to be estimated.

2.9 Model Checking and Diagnostics

The inspection o f standardised residuals has become one o f the main methods for 

determining goodness of fit in normally distributed data. The use o f the objective
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function in NONMEM and its asymptotic properties has also provided a method for 

comparing nested models. These methods are not necessarily appropriate for non­

normal data and model checking must be given some consideration. A range o f 

methods are possible as there is some work in the literature 011 model checking for 

categorical data such as the work by Albeit and Chib (1995), Lemenshow and Hosmer 

(1982), Farrington (1996) and Pregibon (1981). A few o f the standard methods will be 

reviewed now as well as a Bayesian method called Bayes Factors which can be used for 

model comparison for any types o f models.

2.9.1 Goodness of Fit Statistics

In fitting models to data, it is important to show that a particular model fits the data well 

or is superior to other models. In population pharmacokinetic analysis, the ideas behind 

determining how well a model fits the data are well understood. In categorical data 

analysis, it is not quite so obvious how to compare models 01* to see how well a model 

fits the data. One method for nested models without random effects is to use the 

deviance statistic. Assume that there are two models called the current model and the 

saturated model. The current model is being tested to see how well it fits the data. The 

saturated model is where the model predicted data coincides with the observed data. 

The deviance statistic is defined as in equation (2,58).

D — - 2  log
r L  Ncurrent 

V  ^  saturated J

= -2 [lo g (ICBnwi/) -  l o g ( T „ w/)] (2.58)

where L is the likelihood value. The deviance statistic compares the current model to 

the saturated model by equation (2.58). Large values of D are encountered when the
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current model is a poor fit to the data and small values when it is a good fit. For binary 

data, the deviance statistic is given in equation (2.59).

D = 2 1  .y,. log P i ,saturated Pi ,saturated
1 ~ Pi,cur,

(2.59)
rent JPi,current

For binary data, the log o f the full model likelihood is zero so the deviance can be 

simplified to equation (2.60). As can be seen, the deviance does not depend on the data, 

so the deviance statistic cannot be used for the special case o f binary data (Collett 

(1991)).

D  = -2 X  log
f  \

Pi,current

1 Pi,cnrren

(2.60)

To compare models, usual large sample theory is used to show that the deviance statistic 

is distributed as a £  with in-p) degrees o f freedom where n is the number o f 

observations and p  is the number o f parameters in the current model. To compare 

models, the difference in the deviance statistics is compared to the £  on the (p-q) 

degrees o f freedom which is the difference in the number o f parameters between the two 

models.

The Pearson statistic is another statistic that can be used for model checking but it does 

not allow for the comparison o f models. Lemeshow and Hosmer (1982) discuss several 

other statistics for logistic regression modelling in the field o f epidemiologic research.
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2.9.2 Residual Analysis

Residual analysis plays a large part in determining whether models for population 

pharmacokinetic data are adequate. The standardised residuals method used in 

population pharmacokinetic analysis is not appropriate in population pharmacodynamic 

analysis where the response is categorical. Several papers have dealt with the topic of 

residuals for binary and binomial data such as Albert and Chib (1995), Jennings (1986), 

Landwehr et al (1984) and Pregibon (1981).

The types o f residuals usually defined for binary or binomial data are those that are 

linked to the statistics defined in section 2.9.1. A common type o f residual to use is the 

deviance residual defined in equation (2,61) for binary data

where sgn(.) is +1 when yi>p, and -1 otherwise. By summing over the square o f the 

deviance residual, the deviance statistic is obtained. This residual is more like an 

ordinary residual for the normally distributed data case.

Another common type o f residual is the Pearson residual also connected to the Pearson 

statistic and is defined in equation (2.62) for binary data.

Anscombe specified another type o f residual in 1953 called the Anscombe residual. 

The problem with the interpretation of residuals is helped if  their distributional 

assumptions to the fitted model are known. Since the exact distribution o f the residuals

d, = sgn(x- -  Pi )V“  2LP/ log p , + (1 -  y , ) log(l -  p , )] (2.61)

y t - P i (2.62)
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defined above are not known exactly, this suggests that if some function of the data can 

be found that is approximately normally distributed, then a standardised residual 

defined to approximate unit variance can be defined. The Anscombe residual is defined 

in equation (2.63).

rAf =— (2.63) 
s.e~{A(yi) - A ( y i)}

This residual has rarely been used in practice because finding the function A(.) which 

makes the data approximately normally distributed is difficult.

Landwehr et al (1984) suggested a series o f diagnostic plots for analysing binary and 

binomial data fitted using logistic regression. Local mean deviance plots are suggested 

which Tump’ near binary points together and use the estimated proportion o f success 

for the deviance statistic. An empirical probability plot was also suggested where the 

residuals are plotted against simulated quantiles to check for model adequacy by 

looking for a straight line. Another residual is the partial residual which is used to see 

whether there are any missing predictors or whether a current covariate should be 

transformed to improve the fit o f the model.

All of these residuals are not particularly satisfactory as the distributions for residuals 

are intractable which does not make the interpretation easy. Residual plots can not be 

interpreted in the same way as for normally distributed data as the nature o f binary data 

can mean that correlation can occur in residual plots even if  the model fits the data well. 

For this purpose, it is believed something based on simulations will give a better idea of 

how good the model fits the data as is the case for Bayes factors described in the next 

section.

73



2.9.3 Bayes Factors

The Bayesian approach to hypothesis testing was first developed by Jeffreys 

(1935,1961) as reported by Kass and Raftery (1995). Rather than being related to the 

testing o f hypotheses, Bayes factors deal with the comparison of two or more competing 

models. Much work has been carried out on Bayes factors (e.g. Carlin and Chib (1995), 

Smith and Spiegelhalter (1981) and Aitkin (1991)). One o f the advantages o f Bayes 

factors is that it deals with prediction o f the response variable rather than a comparison 

of models based on asymptotic theory. Therefore any models can be compared whether 

they are nested or not.

Carlin and Chib (1995) described the problem of model choice with the use o f Bayes 

factors. Suppose the problem is to choose between K  models for an observed set o f 

data, y. Corresponding to each model there is a distinct parameter vector 0j, j= l 

Assume an integer subscripts the model, then interest lies in p(M=j [y) and pQ^Ij'X the 

probability o f getting model j given the data and the posterior distribution o f the 

parameter vectors given the data respectively. The Bayes factor for the comparison o f 

two models is given in equation (2.64). It is defined as the ratio o f posterior to prior 

odds in favour of model 2. By Bayes’ theorem, it is the ratio of the observed marginal 

densities for the two models.

p {y  \M  = 2)
B2  i = — =------------  (2.64)

p ( y \ M = l )

The Bayes factor is derived by starting from Bayes theorem as defined in equation 

(2.65).
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PrO H M JPiW ,)
Pr(M,, v) = ------------------=--------------- ---------- ------

-  Pity IM,) Pr(M,) + Pr(y | M2) Pr(M2) (2.65)

*  =  1,2

The posterior odds are given by equation (2.66) and so the posterior odds can be 

obtained by simply multiplying the prior odds by the Bayes factor as defined in

equation (2.64). As the value o f the Bayes factor increases in value then there is more

support for model 2 against model 1.

Pr(M, | y) Pr(y | M ,) pr(M ,)
 =_ — = -    (2.66)
Pr(M2 |y ) Pr(y|M 2)Pr(M 2)

75



3 Toxicokinetic Data Set I

3.1 The Study and The Data

For toxicokinetic evaluation, 4 groups of rats were studied at different doses o f the drug. 

Group one was the placebo group and contained 5 rats per gender. Group 2 was given a 

dose between 0 and 30 mg/kg but was unknown and 3 rats per gender were assigned to 

the group. Group 3 received 30 mg/kg and there were 3 rats per gender randomly 

assigned to this treatment group. Finally, group 4 received 200 mg/kg of which 5 rats 

per gender were assigned to this group. The rats were given the drug (which was also 

unknown) orally once a day for 4 weeks. On day 28 o f the study, plasma samples were 

obtained at 0.5, 1, 2, 4, 8 and 24 hours post-dose (assumed steady state). Rats in the 

control group had samples taken at 1 horn* post-dose. The number of concentrations 

(ng/mL) obtained from dose groups 3 and 4 are given in table 3.1. Group 2 was not 

considered as the dose was unknown.

Table 3.1. Number o f  concentration measurements for groups 3 and 4.

30 mg/kg (n) 200 mg/kg (n) Total (n)
Male 18 (3) 30 (5) 48 (8)
Female 18 (3) 30 (5) 48 (8)
Total 36 (6) 60 (10) 96 (16)
(n) number o f rats.

At the end o f day 28, the rats were sacrificed and were dissected to observe the severity 

o f lesions within the rats conjectured to be caused by the drug. In this case, three rats 

per gender per group were sacrificed and observed for lesions. Data was only available 

on the 30 and 200 mg/kg groups. The severity o f the lesions were used as the
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pharmacodynamic measure of the drug. Severity was defined on a five category scale, 

where 0=no lesion, l=very slight lesion, 2=slight lesion, 3=moderate lesion and 

4=marked lesion. Lesions were observed in several physiological areas o f the rat such 

as skin, subcutis and fascia, eyes, lacrimal gland, lymphoid tissues, pyloric stomach, 

intestinal tract, liver, bone marrow and prostate gland. Within these areas, subsections 

were observed for lesions. In total there were a possible 25 lesion scores for each rat. 

Data is available for the 30 and 200 mg/kg groups. The number o f lesions observed for 

each group is given in table 3,2.

Table 3.2. Number o f  lesions in 30 and 200 mg/kg groups.

30 mg/kg 200 mg/kg Total
Male 60 75 135
Female 59 71 130
Total 119 146 265

3.2 Pharmacokinetic Analysis

To construct a pharmacokinetic/pharmacodynamic model, it is first necessary to be able 

to describe the pharmacokinetics. The data was initially viewed graphically to check 

what model might be appropriate. After examining the data, a 2 compartment first order 

absorption model at steady state was assumed as the drug was known to be given orally. 

The model was analysed in NONMEM version IV on a Hewlett Packard workstation 

using the UNIX operating system. The 2 compartment model is given in equation (3.1).

P~K<
E(C ) = A, — -------+ A2 ■■ .  + A3 - , (3.1)

1 1 — e “r \ — e~P l - e ~ K'

where
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a ~ 2 ^ ^ 10 + ^U + ^ 2 i )  +  a /^1 0  +^12 + ^ 2 l ) 2 “ 4 ^ 0 ^ 2 1  ) 

P  “ ^{(^10 + ^12 + ^2i)~a/(^10  + ^12 + ^ 2 l ) 2 ~4&io&21 }

Aj =

/l2 = 

A3 =

{ a ~ k 2 l )
{ka -a){a-p)Vx 

(k2\ -Qf)
(*a -/?)(<*- £ ) F i  

(*2l ~ ka)
( a - h a ) { /3 - k a )Vx 

Vi — volume o f distribution o f the central compartment 

k } 2  and = intercompartmental rate constants 

kio = elimination rate constant 

ka = absorption rate constant 

ki2  = CIJVi 

k2i = Cld/V 2  

kio = CUVi

Figure 3.1. Plot o f  dose normalised data.
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In this model, ka was set to a value o f 10 h r'1. Viewing the data in figure 3.1 shows that 

the drug appears to be completely absorbed by the time the first concentration 

measurements are taken at 0.5 hours. The value of 10 h r'1 corresponds to a very rapid 

absorption phase. An exponential error model was used for the interindividual variance 

estimates on the parameters Cl/F  and VjlF and on the residual error term. The 

population parameter estimates are given in table 3.3 and the individual estimates of 

apparent clearance and apparent central compartment volume o f distribution are given 

in table 3.4. The residual and weighted residual plots and two individual plots are given 

in figures 3.2-3.5. A one compartment model and a variety o f error models were also 

tried but these did not fit the data adequately.

Table 3.3. Population parameter estimates fo r  two compartment firs t order absorption 

model.

Mean Standard Deviation
Cl/F(L/hr) 2.55 0.334
Vj/F(L) 14 4.87
V2/F(L) 11.4 10.8
Cld/F(L/hr) 0.883 0.467
<bc\l 0.0824 0.0612

2.15 1.69
a 2 0.394 0.169
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Table 3.4. Individual estimates o f  apparent clearance and central compartment volume 

o f  distribution. 3 rats per gender in 2 0 0  mg/kg group corresponding to the rats with 

pharmacodynamic data available.

Rat i.d. Dose(mg/kg) Gender Cl/F Vi/F
496 30 Male 2.513 7.18
497 2.531 4.562
498 2.15 4.769
515 Female 2.705 8.168
516 1.921 3.317
522 1.666 2.643
499 200 Male 2.423 9,780
501 2.483 10.915
503 2.563 8,683
518 Female 3.088 9.143
519 3.079 6.318
520 2.592 10.901

F igure 3.2. Residual versus predicted p lo t.
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Figure 3.3. Weighted residual versus predicted plot.
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Figure 3.4. Rat 496.
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3.3 Pharmacodynamic Analysis

The pharmacodynamic data is in the form o f 25 different responses which correspond to 

the different areas o f the dissected rat. To analyse these data fully would require a 

multivariate logistic regression analysis where the response vector for a particular rat 

and covariate pattern would be o f dimension 25x1 which would lead to a complicated 

analysis. The data could have been analysed where each response component (each 

observed area o f the rat) was analysed separately but there might not have been enough 

information in the separate components o f the rat to enable this. The data were analysed 

by pooling the observations in each category for each rat. These data are given in table

3.5. This is not necessarily the best way o f analysing these data as it does not include 

any marker to indicate what part o f the rat the data came from but will give an overall 

measure of the degree o f lesions in the rat. An analysis o f counts from each main 

category (skin, subcutis and fascia, eyes, lacrimal gland, lymphoid tissues, pyloric 

stomach, intestinal tract, liver, bone marrow and prostate gland) o f the dissected rat 

could have been carried out and could have been reasonable at describing the data but 

this was not done.
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Table 3.5. Counts o f  lesion scores fo r  each rat.

Category 0 1 2 3 4
Rat Dose Gender AUC
496 30 Male 11.94 13 4 3 0 0
497 11.85 17 1 2 0 0
498 13.95 16 4 0 0 0
515 Female 11.09 18 2 0 0 0
516 15.62 8 3 7 2 0
522 18.01 11 4 4 0 0
499 200 Male 82.35 2 2 11 7 3
501 80.56 0 7 8 7 3
503 78.04 4 8 10 2 1
518 Female 64.76 4 12 6 1 0
519 64.95 13 6 5 0 0
520 77.17 8 7 6 3 0

The AUC estimates in table 3.5 are based on F.Dose/Cl where the Cl/F  estimates are 

those in table 3.4. The numbers in table 3.5 are the counts o f each score for each rat 

where the total number o f observations in each rat is found by adding the number of 

scores.

From this table, certain characteristic probabilities can be obtained such as the 

probability having no lesions by the end of the study for either the 30 or 200 mg/kg dose 

group or the difference in probabilities o f being in a certain category between male and 

female rats. These probabilities (percentages) for each rat can be seen easily in figure

3.6. It can be seen that the first six rats (corresponding to dose group 30 mg/kg) has 

higher percentages in the lower categories compared to the last six rats (corresponding 

to the 200 mg/kg dose group).
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Figure 3.6. Empirical probabilities o f  being in each category fo r  each rat. Numbers I- 

12 correspond to same order 496-520 as in table 3.5.
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Another possible difference between the number of counts o f each rat could be due to 

the pharmacokinetics o f the drug which is taken into account in the estimation o f the 

AUCs for each rat. Figure 3.7 shows how the counts change as a function o f AUC. The 

figure is in the form o f a scatter plot rather than a percentage bar plot as in figure 3.6 

because the predictor, AUC, is continuous rather than categorical (although dose can be 

treated as continuous).

Figure 3.7. Counts as a function o f  AUC.

20
18 ♦
16 ♦ ♦
14
12 ♦

c
3 10 ♦
o
o 8 ♦

6 A

4 ■■ n
2 X

B

0 B
BGKXX i— 

20 40

a
A
♦

60

M  A 
■ BX
A
♦

X XX 
X ■
X

X ♦

80

4  Category 0 

□  Category 1 

A Category 2 
X Category 3 

X Category 4

100
AUC

84



Instead o f following a route o f hypothesis testing, e.g. the difference between 

probabilities from different groups of the data, the purpose o f this analysis is to find a 

model that describes the data. Hypothesis testing will not allow prediction to new dose 

ranges or different levels of exposure to the drug through the AUC value. Whether 

these predictions are any good would need to be tested but modelling still allows this 

possibility. There is also the possibility of designing new studies based on the model 

obtained from the data analysis.

For data of an independent multinomial sampling form (Agresti (1990)) as in table 3.5, 

one of the appropriate models to use is the proportional odds model as described in 

section 2.4.6. A proportional odds model with five categories would have four cut 

points corresponding to the baseline cumulative probabilities. The models that were 

tried for these data correspond to the general form given in equation (3.2).

log/Y(Pr(T/ < k  | bj))  = 6^ + Xj/3 + Zjbi , k  = 0,1,2,3 (3.2)

This model allows for the inclusion o f random effects components.

The program used to estimate any parameter estimates was BUGS version 0.5. This is 

one o f the earlier versions that did not allow the estimation o f nonlinear parameter 

models, such as pharmacokinetic models. Generalised linear models could be estimated 

with the use o f the adaptive rejection sampling algorithm. BUGS was used because it 

allows the specification of distribution and model characteristics easily. All model 

specifications and distributions will be defined for each model.

The first model to be considered was a linear model in all factors other than AUC as 

given in equation (3.3). An interaction term was included between dose and gender and
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only linear components were considered as there were only two doses and so 

polynomials in dose would not have added anything.

log/Y(Pr(7;- < k  | bj)) = 0^ + (3 [dose ̂ + ^gender^  + fi^dosegenderi + bj, k = 0,1,2,3

Yi ~Mult(y0, y l , y 2,y 3 ,ni )

9k ~  JV(0,1 x 105 ), /c = 0,1,2,3 

Ay ~ A l(0 ,lx l0 5) J  = 1,2,3

r~ G (0 .0 0 1,0.001)

(3.3)

Gender was binary with 0 representing male and 1 for female. The gamma distribution 

in BUGS is parameterised so that Y  ~ G{af ) ,  E(Y) =alb and var(Y) = alb2. The gamma 

distribution for the precision (reciprocal of the variance) is the standard conjugate 

distribution when a normal distribution is put on the random effect b,. The results for 

this model are given in table 3.6.

Table 3.6. Results fo r  BUGS estimation o f  linear proportional odds model

\ogit(Fr(Yj < k \ b j ) )  -  0^ + j3\dose; + /?2 gender) + /?3dose^genderi +b j , k  = 0,1,2,3.

Mean Standard Deviation 95% Credible Interval
Oq 2.076 0.618 (0.779,3.171)
0 , 3.467 0.633 (2.158,4,575)
0 2 5.439 0.667 (4.082,6.627)
6 3 7.239 0.758 (5.784,8.677)

Pi -0.0229 0.00412 (-0.0306,-0.02316)

Pi -1.498 0.868 (-3.097,0.4013)

Ps 0.0171 0.00566 (0.00487,0.0303)
a 0.845 0.326 (0.3209,1.598)

These parameter estimates are based upon a burn in of 500 iterations then a sample of 

2000 was saved for parameter estimation. The mean is the arithmetic average o f the 

sample and the standard deviation is the sample standard deviation.
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The cut points correspond to baseline probabilities of Pr(7,<0) = 0.88, Pr(7,<l) = 0.97, 

Pr(7,<2) = 0.996 and Pr(7,<3) = 0.999. It is easily seen that the model predicts that 

there is greatest probability o f having no lesions (7y=0) when the dose is 0 mg/kg and 

the rat is male. Significance tests are not usually performed in Bayesian statistics but 

one way of looking at the importance o f certain components o f the model is by looking 

at the 95% credible interval (the middle 95% of the samples obtained from Gibbs 

sampling). The 95% credible interval for the interaction between dose and sex dose not 

include 0 as a sample so it can be interpreted that there is a 95% probability that the 

parameter value is different from 0. This means that there is no need to remove any 

parameters from this model as the interaction term is ‘significant’. The value o f a  is the 

standard deviation for the variability around the model on the logit scale. This acts as a 

shift for the individual from the population average. This shift occurs on the logit scale 

so that probabilities remain on the probability scale [0,1]. The magnitude o f the 

interaction term is small and so linear models without the interaction term and without 

the interaction and gender terms were considered for completeness. The model 

equations are given in equation (3.4) and the results are given in table 3.7. The prior 

distributions are the same as those in equation (3.3) where any parameters not in the 

model, the priors are excluded.

logzY(Pr(f} < k  | bf )) = 0k + Aldosei + h g endei'i +bh k = 0,1,2,3
logzY(Pr(7} < k \ b i )) = 6k + fa d o s e +  bh k  = 0,1,2,3
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Table 3.7. Results o f  linear models in dose and dose+gender.

Dose+gender model Dose model
Mean S.D. 95% C.I. Mean S.D. 95% C.I.

@0 0.782 0.651 (-0.0441,2.055) 1.328 0.696 (0.0326,2.751)
01 2.153 0.663 (0.902,3.48) 2.697 0.715 (1.331,4.142)
02 4.103 0.687 (2.828,5.481) 4.634 0.753 (3.176,6.171)
03 5.888 0.763 (4.487,7.484) 6.431 0.841 (4.9,8.1)
Pi -0,0133 0.00437 (-0.022,-0.00452) -0.0144 0.00456 (-0.0231,-0.0058)
A 0.848 0.717 (-0.436,2.477) - - -
a 1.158 0.35 (0.6125,1.978) 1.192 0.352 (0.671,2.051)
S.D. Standard deviation

In the dose and gender model, the 95% credible interval for the gender term includes 0 

and so it appears that between the dose and dose+gender model, there is not a 

significant difference in model fit. A plot of the dose model is given in figure 3.8. 

Pearson and deviance residual plots are given in figures 3.9a-b and 3.10a-b.

F igure 3,8. Proportional odds model fo r  linear dose.
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Figure 3.9a, Pearson residuals versus dose fo r  linear dose model.
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F igure 3.9b, Pearson residuals versus predicted count fo r  linear dose model.
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Figure 3.10a. Deviance residuals versus dose fo r  linear dose model
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F igure 3.10b. Deviance residuals versus predicted count fo r  linear dose model.
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As well as dose being a possible predictor of response, AUC is also commonly used as a 

correlate with pharmacodynamic responses. The first model considered in terms of 

AUC is given in equation (3.5).

\ogit(Pr(Yj <k\bj) ' )  = <9/c + [5\.AUC ; + J32gender; + fa  AUC; gender; + b ;,k  -  0,1,2,3

Y;~ M ult ty^YuYi iT^n i)  

e k ~ N ( 0 , \ x \ 0 s ) ,k = 0,1,2,3 

/?; ~ jV (0 ,lx l0 5),./ = l,2,3

6/ ~ iV (0 .r -1) 

v ~ G(0.001,0.001)

(3.5)

As the AUC values are individual rat estimates and are continuous, a wider range of 

models could have been considered but instead, only simple linear* models were 

considered. The results o f this model are given in table 3.8.

Table 3.8. Proportional odds model in AUC.

Mean Standard Deviation 95% Credible Interval
do 1.979 0.619 (0.799,3.384)
Qi 3.362 0.638 (2.215,4.802)
@2 5.333 0.687 (4.101,6.838)
e3 7.128 0.786 (5.671,8.759)
Pi -0.0544 0.0118 (-0.0776,-0.0313)
Pi -1.192 0.893 (-2.757,0.6638)
Ps 0.0348 0.018 (-0.00573,0.0657)
a 0.7586 0.306 (0.302,1.453)

The 95% credible interval for the interaction term does includes 0 so a new model was 

run with no interaction term. The results are in table 3.9 and the 95 % credible interval 

for the gender term includes 0. A new model was run with only AUC as a predictor and 

the results are also in table 3.9. A plot of the proportional odds model is given in figure

3.11 and individual category probabilities in figure 3.12.

91



Table 3.9. Results ofAUC+gender and AUC model.

AUC+sender model AUC model
Mean S.D. 95% C.I. Mean S.D. 95% C.I.

% 1.216 0.825 (-0.833,3.037) 1.643 0.463 (0.815,2.695)
e, 2.581 0.836 (0.496,4.479) 3.008 0.485 (2.136,4.074)

4.514 0.864 (2.458,6.506) 4.938 0.556 (3.984,6.181)
o3 6.302 0.945 (4.187,8.377) 6.711 0.684 (5.5,8.153)
P, -0.0392 0.0124 (-0.0838,-0.0107) -0.0431 0.00793 (-0.0589,-0.0286)
P2 0.426 0.607 (-0.663,1.791) - - -
( J 0.989 0.348 (0.475,1.809) 0.9276 0.285 (0.48,1.574)

F igure 3.11. Plot o f  AUC proportional odds model.
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Figure 3.12. AUC model in terms o f  individual category probabilities.

0.9 
0.8 

&  0-7 
=  0.6 

0.5 
0.4 
0.3 
0.2

E(Pr(Y=4))£(Pr(Y=0))

E(Pr(Y=2))

E(Pr(Y=1)) E(Pr(Y=3))

0 50 100 150 200

AUC

92



The cut points for the models given in equations (3.4) and (3.5) (dose and AUC models 

with interaction terms) are very similar as they correspond to the logit o f the baseline 

cumulative probabilities. The models with dose+gender and AUC+gender have a 

difference o f approximately 0.3 between the corresponding cut points and comparing 

the dose and AUC models, the difference is approximately 0.45.

As a Bayesian analysis was used, one important aspect o f the analysis that can be 

checked is the sensitivity o f the final parameter estimates to the prior distribution 

specification and random effects distributions. Only one aspect o f sensitivity was 

checked and that was for the distribution o f the random effects. In the previous models, 

the random effect was assumed to be normally distributed with mean 0 and variance f 1. 

A common alternative to this assumption is that the distribution has heavier tails due to 

possible out lying points so a Student-t distribution was specified, such as in population 

pharmacokinetic studies (Wakefield et al (1994)). As there are only 12 rats, a range o f 

distributional assiunptions might work but this was the only alternative that was tried. 

As the Student-t distribution requires an additional parameter, the degrees o f freedom v, 

a value was not explicitly specified but a discrete prior distribution was assigned to the 

parameter.

The model defined in equation (3.5) can be adapted to include a Student-t distribution 

on the random effect as defined in equation (3.6).
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log#(Pr(Y/ < k  j bj)) = @k + f i \AUCj  + fagenderj + P^AUCfgenderf k = 0,1,2,3

Yf - M u l t { y Qir \ ^ 7 3 ^ ni)

0k ~ N (  0 , lx l0 5),k  = 0,l,2,3 

p } ~ A (0 ,lx l0 5 ) ,. /=  1,2,3

bt ~ Sty(0 ,T_1) 

t  ~  0 ( 0 . 0 0 1 , 0 . 0 0 1 )

U ~To* w^ ere z = 2,4,6,8,10,12,15,20,30,50

(3.6)

The distribution for u  is discrete in BUGS because of the difficulty in sampling from the 

conditional distribution for this parameter. The discrete nature o f the prior is like 

sampling with the Griddy Gibbs sampler but in version 0.5 o f BUGS, this was not 

implemented so it had to be specified explicitly. The results o f this model are given in 

table 3.10 where the burn in was for 1500 iterations and the sample was 5000 iterations. 

Also in table 3.10 are the results for a similar' model where AUC is replaced by dose.

Table 3.10. Results o f  AU C and dose models with Student-t distribution on the random

effect.

AUC+gender+AUCx gender model dose+gender+dosexgender model
Mean S.D. 95% C.I. Mean S.D. 95% C.I.

O0 1.929 0.653 (0.615,3.325) 1.82 0.619 (0.722,3.156)
&, 3.305 0.677 (1.975,4.779) 3.195 0.64 (2.75,4.554)
02 5.268 0.723 (3.836,6.837) 5.149 0.685 (3.954,6.64)
03 7.069 0.821 (5.471,8.761) 6.933 0.78 (8.597,6.887)

Pi -0.0541 0.0112 (-0.08,-0.0336) -0.0212 0.00436 (-0.0315,-0.0136)

P2 -1.054 1.005 (-3.104,1.047) -1.282 0.995 (-3.406,0.587)
Ps 0.0331 0.0176 (-8.5xl0‘\  0.071) 0.0158 0.00645 (0.00349,0.0291)
a 0.698 0.316 (0.238,1.461) 0.741 0.314 (0.26,1.501)
D 13.9 9.042 (2,30) 10.94 7.925 (2,30)

The parameter estimates have not changed greatly by changing the random effects 

distribution from a normal to a Student-t distribution. The change in random effects
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distribution has caused the parameter values to decrease in magnitude. The standard 

deviation o f the random effects component has been reduced with the use o f the 

Student-t distribution but whether this is the same reduction as the parameter values or 

because o f a better description of the model is not known. The degrees o f freedom 

parameter, u was between 10 and 14 as well as in other analyses not reported here 

which corresponds to a distribution with heavy tails.

The logit link function is not the only link function that can be used for categorical data 

models. Two other common types o f link function are the probit link function and the 

complementary log-log link function. These link functions are defined in equation

For the probit link function, the integral in (3.8) is the distribution function o f the 

standard normal random variable, U, so p=Pr(U<^) for some probability p . The probit 

and complementary log-log link functions were run with AUC as a linear predictor. 

The results compared to the logit link function are given in table 3.11 and figure 3.13. 

The model specification is the same as that in equation (3.5) but omitting the gender and 

interaction terms.

(3.8).

complementary lo g - log = log(- log(l -  p))

probit -  - ex p (-—u 2)du
2

(3.8)

95



Table 3.11. Logit, probit and complementary log-log models with AUC as a linear

predictor.

Logit model Probit model Comp, log-log model
Mean
(S.E.)

95% C.I. Mean
(S.E.)

95% C.I. Mean
(S.E.)

95% C.I.

6o 1.643
(0.463)

(0.815,
2.695)

0.924
(0.325)

(0.301,
1.642)

0.393
(0.271)

(-0.123,
0.995)

01 3.008
(0.485)

(2.136,
4.074)

1.729
(0.334)

(1.084,
2.476)

1.25
(0.273)

(0.733,
1.885)

02 4.938
(0.556)

(3.984,
6.181)

2.849
(0.357)

(2.159,
3.638)

2.341
(0.294)

(1.792,
3.014)

03 6.711
(0.684)

(5.5,
8.153)

3.8
(0.394)

(3.05,
4.631)

3.136
(0.325)

(2.514,
3.876)

Pi -0.0431
(0.00793)

(-0.0589,
-0.0286)

-0.0246
(0.00602)

(-0.0368,
-0.0127)

-0.023
(0.00621)

(-0.0357,
-0.00986)

CT 0.928
(0.285)

(0.48,
1.574)

0.562
(0.169)

(0.313,
0.968)

0.575
(0.172)

(3.045,
0.98)

F igure 3.13. Plot o f  logit, probit and complementary log-log model with linear AU C  

predictor for Pr(Y=0).
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As can be seen from figure 3.13, there is virtually no difference between the logit and 

probit models. This is quite common when both link functions work well in fitting the 

data. It is common to get a scaling factor o f between 1.6 and 2 when both the logit and
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probit models fit the data. In this case, the scaling factor is approximately 1.75 between 

the parameters o f the two models.

3.4 C om parison of M odels

As discussed in section 2.9.3, one way o f comparing non-nested models (or any models) 

is with the use o f Bayes factors. To see which of these models best describe these data, 

a method such as Bayes factors is needed to show which model has the ability to predict 

response best. The first comparison was made between the best o f the AUC models and 

the best o f the dose models. This is a check to see whether including pharmacokinetic 

information through the AUC values is better at describing the pharmacodynamic 

variability than models not including such information. The dose+gender+dosexgender 

model was compared to the AUC model in BUGS using the method described by Carlin 

and Chib (1995). The model specification in BUGS requires a prior to be put on the 

model so that the sampling algorithm can choose which model to sample from. The 

results o f the BUGS run to compare the two proportional odds models are given in table 

3.12.

Table 3.12. Results o f  model comparison betw>een the dose+gender+dosexgender and  

AUC models.

Prior Probabilities B2 1

M i: logit(dose+gender+dosexgender) 0.999 10126
M 2\ logit(AUC) 0.001

Kass and Raftery (1995) reported a scale for the Bayes factor that is on the same scale 

as the deviance and likelihood ratio test statistics. The scale is based on twice the
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natural logarithm o f the Bayes factor. The levels o f model comparison are given in 

table 3.13.

Table 3.13. Levels o f  evidence based on Bayes factors.

21oge(B2i) (B2.) Evidence against model 1
0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

The Bayes factor in table 3.12 is over 10,000 so there is very strong evidence that model 

2 (AUC model) describes the data better than model 1 (dose+gender+dosexgender 

model).

Although there are such things as goodness o f link tests (Pregibon (1980)), another way 

of comparing models with different link functions, is with the use o f Bayes factors as 

again, non-nested models are being compared. As the previous comparison in table

3.12 showed, the AUC model is better so only models with an AUC linear term were 

compared across link functions. The Bayes factors for pairwise comparison between 

link functions are given in tables 3.14-4.16.

Table 3.14. Results o f  model comparison between probit and logit model linear in 

AUC.

Prior Probabilities B2i
My. probit(AUC) 0.5 13.61
M 2: logit(AUC) 0.5
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Table 3.15. Results o f  model comparison between complementary log-log and logit

model linear inAUC.

Prior Probabilities B2i
M g  cloglog(AUC) 0.999 4990
M2: logit(AUC) 0.001

Table 3.16. Results o f  model comparison between complementary log-log and probit 

model linear inAUC.

Prior Probabilities B2i
M r  cloglog(AUC) 0.5 383.6
M2: probit(AUC) 0.5

As can be seen, the logit model is superior to the probit and complementary log-log 

models. The difference between logit and probit models is small but there is positive 

evidence in favour o f the logit model which was suspected previously.

3.5 Discussion

The emphasis o f this data analysis was to show how pharmacodynamic data o f a 

categorical nature could be modelled. The pharmacodynamic and pharmacokinetic data 

allowed a model to be developed for the description of the drug’s concentration-effect 

profile. As there was virtually no information on the drug’s pharmacokinetics and 

pharmacodynamics, the value in this analysis was not in gaining a specific description 

o f the pharmacokinetic/pharmacodynamic model for this drug, but how such a model 

might be obtained for categorical pharmacodynamic data with pharmacokinetic 

information. The pharmacodynamic data was not longitudinal but cross sectional, 

whereas the pharmacokinetic information was considered at steady state.
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The modelling o f the pharmacokinetics was o f secondary importance but it was still 

important to be able to describe this data. This was required for predicting the 

pharmacodynamics through a parameter or summary measure o f the pharmacokinetics, 

in this case the AUC measure (based on apparent clearance and dose). Whether the 

pharmacokinetic information was useful as a predictor for the pharmacodynamic data 

was examined in the comparison o f the AUC and dose models in section 3.4. The two 

compartment first order absorption model at steady state used to describe the 

pharmacokinetic data was an adequate description of the data. As there was so little 

information in the absorption phase, the intravenous bolus administration model could 

have been used but instead, the absorption rate was frxed to 10 h r'1. As this chapter was 

an exercise in how to analyse pharmacodynamic data, the model for the 

pharmacokinetic data was chosen to be the most suitable simple model.

The pharmacokinetic/pharmacodynamic modelling ideas used for the analysis o f the 

data are not new. The belief that the use o f pharmacokinetic information in the 

prediction o f the pharmacodynamics will give a better correlation with the 

pharmacodynamic data than the use o f dose alone has been the general idea for a long 

time (Levy (1985)). The use o f dose as a predictor for the pharmacodynamics is like 

using some averaged measure o f the pharmacokinetics over the population. The 

variability between individuals’ pharmacokinetic information is not accounted for in 

dose alone so this metric is not expected to do as well as an individualised measure. 

The models used for the description o f the data showed that the model using individual 

estimates o f the AUCs appeared to be a better predictor o f the pharmacodynamics than 

dose and gender. Similar* types o f analyses have been reported where the 

pharmacodynamics can be better described by the inclusion o f individualised
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pharmacokinetic parameters rather than dose such as in Moore and Theissen (1992) and 

Danhof et al (1992). Plasma concentration at the effect site was not computed as at 

steady state, the concentration in the plasma and at the effect site would be in 

equilibrium and no advantage would be gained in obtaining such data, but this is only 

for infusions.

The software used was NONMEM version IV and BUGS version 0.5. NONMEM was 

used in the estimation o f the individual and population pharmacokinetic parameters. 

With the parameter values o f apparent clearance obtained, the individual AUC estimates 

were put into BUGS to then model the pharmacodynamics. The pharmacokinetic 

parameters could have been estimated in BUGS but this would have required a discrete 

prior distribution to be put on the individual parameters which probably would have 

resulted in inadequate parameter estimates. NONMEM could have been used for the 

estimation o f the pharmacodynamic model parameters but the distributions for 

categorical data are more easily specified in BUGS. As NONMEM is virtually a 

maximum likelihood package and BUGS a Bayesian package, the use o f both methods 

to obtain a pharmacokinetic/pharmacodynamic model could be questioned on grounds 

that the two different methods might have produced very different answers had either o f 

the packages been used for the whole analysis.

The use o f the proportional odds model for the analysis o f the categorical 

pharmacodynamic data has been described by Sheiner et al (1997), Mandema and 

Stanski (1996) and Sheiner (1994). The proportional odds model is a useful model for 

the description o f categorical data but has not been used to any great extent yet in the 

development o f pharmacokinetic/pharmacodynamic models with categorical data. The
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assumption that odds are proportional between categories was not tested but not using 

such a constraint can lead to complicated models. If  a category specific fixed effect was 

assigned to each gradient parameter, then this can lead to negative probabilities being 

obtained for being in a particular category. This can be seen graphically when the 

cumulative logistic regression curves cross. If  this happens in the region o f interest 

(such as between two dose groups) then this implies the model is nonsense. If  the 

curves cross at a level that was outside the region o f interest, then this problem can be 

ignored. The models considered were linear in the predictor variables, which made the 

analysis easier. For this particular data set, they probably were appropriate, especially 

for the dose model where there were only two dose groups available, but had more data 

been available then more complicated models could have been considered such as 

nonlinear models on the logit scale. Another approach that could have been considered 

was that of Karlsson et al (1998). The approach used in their paper was to describe an 

extra model between the observed pharmacokinetic and pharmacodynamic models. The 

extra model was a model based on an unobserved effect linking the pharmacokinetics 

and the observed pharmacodynamics. The model for the unobserved effect would have 

to be postulated and a possible range of models tested to see what model was 

appropriate. This could have been useful for this data set where the unobserved model 

could have been the E„iax model as a function of concentration and then the area under 

the indirect model used as a predictor for the observed effect. This would have brought 

some physiological interpretation to the model, as a model that is well understood 

would have linked the observed pharmacokinetics and pharmacodynamics.

All the models used included a random effect term. One random effect was assigned to 

each model and it was always additive on the cut points on the logit scale. The reason
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for the random effect being included on the logit scale is so that the predicted 

probabilities remain on the scale [0,1]. The random effect acts as a shift for the 

individual from the population average. When on the probability scale, the random 

effect acts like a shift left and right determining where the logistic curve crosses the 

probability axis. The estimates of the standard deviation for the dose and AUC models 

show that there is a reduction in the variability when AUC was used as a predictor 

(1.192 and 0.9276). If  this is due to using the individual estimates o f AUC then this 

shows that more variability is accounted for when using the pharmacokinetics to predict 

the pharmacodynamics.

The use o f the Bayes factors to determine which model fits the data best is a general 

method for model comparison. Within BUGS, it is an easy method to implement and 

can be used for the comparison of any models to describe a particular data set. 

Although, this technique was performed using a Bayesian package, the idea of 

simulation to determining model choice and adequacy is something that can be applied 

to any form o f modelling paradigm. Similar methods have been used in the frequentist 

literature but have been given the name of posterior predictive checks. These methods 

do not require any asymptotic theory as samples are being obtained from the posterior 

distribution through the full conditional distributions. As well as being applied to 

pharmacodynamic models, there is no reason why this method can not be applied to any 

area o f population pharmacokinetic/pharmacodynamic modelling.
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4 Toxicokinetic Data Set II

4.1 Introduction

The data analysed in this chapter comprises 10 data sets: 9 preclinical studies and 1 

phase I study. The compound never progressed any further than the first phase I study 

due to toxicity.

The compound, PD -142676 is an acetylcholinesterase inhibitor and potential cognition 

activator. The compound had a proposed use in the treatment o f Alzheimer’s disease. 

The chemical structure is l,3-dichloro-6,7,8,9,10,12-hexahydro-azepino[2,l- 

b]quinazoline monohydrochloride and a molecular weight o f 305.637.

The 10 studies are given two research report numbers, one corresponding to the plasma 

concentration data collected and the other research report number for all other data 

collected, such as clinical signs, hematology, biochemistry, urinalysis, pathology and 

histopathology. The research report numbers are given in table 4.1 for reference.

The data for each species were analysed separately. Within each species, the 

pharmacokinetic analyses o f each data set will be reported and then the 

pharmacodynamic analyses.

All of the analyses were carried out using NONMEM Version V on a Hewlet Packard 

work station using the UNIX operating system.
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Table 4.1. Research report numbers for studies on PD-142676.

Species Study Duration PK Data Other Data

Wistar Rat 2 Weeks 764-01891 745-02051

4 Weeks 764-01978 250-01686

4 Weeks 764-02167 745-02222

13 Weeks 764-02041 250-01696

Beagle Dog 2 Weeks 764-02152 745-02250

4 Weeks 764-02185 745-02251

Cynomolgus

Monkey

2 Weeks 764-01936 745-02083

4 Weeks 764-02162 745-02236

13 Weeks 764-02064 250-01694

Human Single Dose 744-00357

4.2 Rat Studies

There are four Wistar rat studies, ranging from a 2 week to a 13 week oral toxicity 

study. In studies 764-01891, 764-01978 and 764-02167, the compound PD-142676 was 

given orally, as this was the intended route o f administration for humans. The drug was 

administered by oral gavage using a stainless steel oral dosing cannula or infant feeding 

tube attached to a hypodermic syringe. The drug was administered as a suspension (in 

0.5% aqueous methylcellulose) daily on a mg active drug moiety/kg body weight/day 

basis. The dose volume was 20 mL/kg. Control group animals received vehicle only at 

the same dose volume as the treated animals. Study 764-02167 was different to the 

other three rat studies in that PD-142676 was administered as a food admixture.
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Dose selection criteria and rat numbers will be given in each study section as these 

altered from study to study.

4.2.1 Pharmacokinetic Analyses of Rat Data Sets

4.2.1.1 Study RR-764-01891 -  2 Week Study

4.2.1.1.1 Study Design

For toxicokinetic evaluation, 3 different dosing groups o f rats per gender were given 

PD-142676 as an oral dose solution once daily for 2 weeks. The doses were selected 

based on an acute toxicology study in rats. In 2 female rats, single oral doses o f PD- 

142676 were administered 30, 50, 70, 90, 100 and 300 mg/kg. Deaths occurred within 

180 minutes post-dose in 1 animal at 70 mg/kg, 1 animal at 100 mg/kg and 2 animals at 

300 mg/kg. In each case, neurologic signs (tremor, hyperactivity, hypertonia and 

convulsion) preceded death. No effects were noted at 30 and 50 mg/kg. Subsequently, 

3 males and 3 females were given 90 mg/kg. Salivation was the only sign elicited in all 

males and 1 female. The other 2 females died within 180 minutes post-dose following 

tremors and convulsions. Based on this information, 60 mg/kg administered for 2 

weeks was expected to produce neurologic signs and was chosen as the high dose. A 

low dose o f 15 mg/kg was expected to produce no clinical signs o f toxicity. A mid-dose 

o f 30 mg/kg was expected to be intermediate in toxicity. The numbers in each dosing 

group was 30 per group per gender and an additional 5 rats per gender in the placebo 

group.
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On Day 14, plasma samples were obtained from 5 rats per gender in each dose group at 

each o f 6 time intervals: 2, 4, 8, 12, 18 and 24 hour's post-dose. This study resulted in 

just one plasma sample per rat. Plasma concentrations were determined with a validated 

HPLC method. The limit o f quantification was 0.01 pg/mL.

4.2.1.1.2 Pharmacokinetic Analysis

The total number o f concentrations above and below the limit o f quantification (BLQ) 

are given in table 4.2.

Table 4.2. Concentration measurements fo r  2 week toxicity study in Wistar rats.

0 mg/kg 15 mg/kg 30 mg/kg 60 mg/kg Total

Male 0(5) 14(16) 18(12) 19(8) 51(41)

Female 0(5) 11(19) 16(14) 20(10) 47(48)

Total 0(10) 25(35) 34(26) 39(18) 98(89)

Q B L Q

Out o f a total o f 187 possible plasma concentrations, there were 98 above the limit of 

quantification. Only values above the limit o f quantification were used in the modelling 

procedure.

Preliminary analyses indicated that the half life, t}/2, ranged from 2 to 6 hours and 

increased with dose. This is characteristic of drugs that exhibit nonlinear 

pharmacokinetics. As there is so little data (one observation from each rat and a total o f 

98 observations), it was considered unlikely that it would be possible to fit a 

complicated pharmacokinetic model to these data. To simplify the analysis and to allow
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reasonable parameter estimation, a one compartment, first-order absoiption model at 

steady state was considered. As the half life was between 2 and 6  horns, after 14 days, 

the concentrations were assumed to be at steady state. The structural model equation is 

given in equation (4.1).

* ( Q =
C l - V k ~ k „ r  \  _ r / r

(1- " V )  o - . o

(4.1)

E{C) is the expected concentration where C denotes concentration. F  is the 

bioavailability o f the compound, D  is the dose, V is volume o f distribution, Cl is 

clearance and ka is the absorption rate constant. The duration between doses is given by 

t  and time is t .  The first error model considered for these data was the exponential error 

model given on the log scale in equation (4.2).

log(C) = £(log(C)) + t7
2 (4.2)

var(?7) -  co

As there were no intravenous data, the bioavailability term F  can not be estimated so 

clearance and volume estimates become apparent parameter estimates, i.e. normalised 

by bioavailability to become Cl/F  and V/F. There is only one data point per rat and so 

the residual term in equation (4.2) is an interindividual error term as there are no 

repeated measurements within a rat. The results obtained using this model specification 

and using the FO method are given in table 4.3 as model (1). I f  the standard errors are 

not shown in any o f the tables, then they were unable to be estimated.

The value o f ka is very high at 45.9 virtually corresponding to a bolus administration o f 

PD-142676. This parameter is probably being estimated very poorly due to the lack o f 

data immediately after dosing. Also the correlation between the estimates o f Cl/F  and 

ka is 0.986 suggesting some identifiability problems. This could be due to not using a
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more appropriate model specification. To see if  the error model fitting could be 

improved, an additive interindividual error model was considered and the results are in 

table 4.3 as model (2). The objective function was increased by approximately 50 

points suggesting a worse description of the variability around the mean 

pharmacokinetic model. The comparison o f the error models by finding the difference 

in the objective function values is an empirical way of comparing models as they are not 

based on asymptotic distributional theory. The values o f Cl/F and VIF did not change 

much but the value o f ka was reduced by an order o f magnitude. This again is probably 

due to the lack o f information in the time immediately after the drug is given. The 

estimates of the half life for model (1) and (2) are 3.8 and 3.04 hours respectively which 

is in the region expected from the preliminary analyses.

The situation o f one sample per animal in preclinical studies has been discussed by Ette 

et al (1995) and McArthur (1988) and they have shown that the estimation o f random 

effects in such models are a problem as the interindividual and residual variability can 

not be partitioned. As it is not possible to estimate both interindividual and residual 

variability at the same time in such settings, then fitting a model with the random effects 

on the parameters themselves may prove a better option for describing the data. This 

gives a measure o f the variability of the pharmacokinetic parameters. Keeping the same 

structural model, the error model is now assigned to the parameters rather than the 

model. The error model is now given in equation (4.3).

Cl = E(C l)e1Ia, V = E (V )e,,r

var(?7(:, ) = a>a, varfa,) = co$

There is no random effect on the absorption constant as estimating this parameter has 

proved difficult even in the simplest of settings. The results are given in table 4.3 as
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model (3). This model reduced the objective function value by approximately 20 points 

when compared to the previous best model (model (1)). The interindividual variability 

for Cl/F has an approximate coefficient o f variation o f 0,6% while the coefficient o f 

variation for VIF is approximately 732%. These values would appeal* to be inaccurate, 

as there is not much information in the data and probably cannot be estimated well. To 

try and improve the fit o f the model to the data, an additive error model was tried on the 

parameters (model (4)). This resulted in an approximate 110 increase in the value o f the 

objective function from model (3) and hence is much worse at fitting the data. From 

these NONMEM runs, it appeal’s that a proportional error model best describes the 

variability around the one compartment first-order absorption model.

It was noticed in the preliminary analyses that there could be nonlinear 

pharmacokinetics as clearance appeared to be dose dependent. Instead o f fitting a 

Michaelis-Menton type equation that would be computationally difficult, a fixed effect 

model was used, such that at each dose level separate estimates o f Cl/F, VIF and ka were 

obtained for each dose. A proportional error model was used and the results are given 

in table 4.3 as model (5). The results show that apparent clearance is decreasing with 

increasing dose implying nonlinear pharmacokinetics. This model reduced the 

objective function value by 35 points from the previous best model (3). A nonlinear 

pharmacokinetic model was not tried due to the lack o f information in the data.

The models used until now have involved the same structural model but different 

random effects models. A two compartment model is unlikely to improve the fit but a 

different absorption model was considered. Although PD-142676 was given by oral 

gavage, a zero-order absorption model was considered as an alternative to the first-order
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absorption model. The one compartment zero-order absorption model at steady state is

given in equation (4.4).

E{C) =

y l  i n SL,
SLT 

{ l - e  r-

+ (1 -  e v )],f < 7]i n f

Tm -CI

ci, ,yO Anf)

(4.4)

J l r  
( l - e  " )

i n f

Wlien this model is fitted to the data (model (6)) with exponential random effects on the 

parameters, Cl/F  and V/F, the objective function is increased by 35 points as compared 

to the same model with first-order absorption. It appears in this case that the first-order 

absorption model is better at describing the data. Due to the possible nonlinearity of the 

pharmacokinetics, a fixed effect was used at each dose level for each parameter (model

(7)) in the zero-order absorption model. This resulted in the clearance values once 

again increasing as the dose decreased. The objective function value was virtually 

identical to that o f the first-order absorption model version (model (5)).

From these NONMEM runs, it appeal's that the model best describing these data is the 

fixed effects model on the parameters at each dose level. Whether a zero or first-order 

absorption model is more appropriate is impossible to distinguish at this stage as the 

true error model could be a mixture of both absoiption processes. Plots o f the model, 

residuals and weighted residuals are given in figures 4.1-4.5.
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Figure 4.1. One compartment first-order absorption model fo r  dose 15 mg/kg.
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Figure 4,2. One compartment first-order absorption model fo r  dose 30 mg/kg.
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Figure 4.3. One compartment first-order absorption model fo r  dose 60 mg/kg.



Figure 4.4. Residual versus predicted plot for model (5) in 2 week rat study 764-01891,
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Figure 4.5. Weighted residual versus predicted p lo t fo r  model (5) in 2 week rat study 

764-01891.
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Table 4.3. Results o f  NONMEM analyses for 2 week Wistar rat study 764-01891.

Model O.F. Cl/F
(S.E.)

V/F
(S.E.)

ka
(S.E.)

Tmf
(S.E.)

coi2 
(S.E.)

co-r
(S.E.)

(1) -315.858 10.7
(0.819)

59.2
(5.92)

45.9
(2.26)

“ 0.3a “

(2) -266.941 13.2
(1.33)

57.8
(12.5)

4.34
(0.061)

- 0.0242b
(0.008)

“

(3) -335.12 15.4
(2.01)

10.6
(2.1)

0.146
(0.061)

“ 4.3xI0Oc 
(1.7x10"5)

53.6d 
(56.8)

(4) -246.638 6.54 139 0.0101 “ 21.T 1 .lxlO"41

(5) -371.345 [15]18.7 
[30] 14.7 
[60] 10.7

[15]0.476
[30]0.194
[60]0.133

[15]0.324
[30]0.219
[60]0.133

0.324a

(6) -301.083 14.3
(1.08)

46.7
(4.97)

“ 2.4
(0.22)

0.449°
(0.102)

0.226d
(0.0597)

(7) -371.345 [15126.1 
(2.5) 
[30] 17.5 
(0.806) 
[60] 11.9 
(1.13)

[15]80.5
(12.7)
[30]79.8
(8.85)
[60]89.4
(16.1)

[15]2 
(4x10'4) 
[30] 1.5 8 
(0.96) 
[60]1.83 
(2.18)

0.324a
(0.0476)

exponential error on the model. 
b additive error on the model. 
c proportional error on Cl/F. 
d proportional error on VIF. 
e additive error on Cl/F. 

additive error on V/F.
[.] Dose group.

4.2.1.2 Study RR-764-01978 -  4 Week Study

4.2.1.2.1 Study Design

For toxicokinetic evaluation, 3 groups o f 10 rats per gender were given PD-142676 as 

an oral dose solution once daily for 4 weeks. 5 rats per gender were assigned to a 

placebo group. The doses to be administered were 0, 30, 60 and 90 mg/kg and were 

based on preliminary results from the 2 week oral toxicity study 764-01891. The 30 

mg/kg dose was expected to produce transient clinical signs in some animals. The 60
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mg/kg dose was expected to produce moderate and probably transient clinical signs in 

most animals but no deaths. The 90 mg/kg dose was expected to produce moderate to 

severe clinical signs in most animals and possibly some deaths. The rats were 

randomised to one of the dose groups and then randomised within each dose group.

On day 6 o f week 4, blood samples were obtained from 5 rats per gender in the 30 and 

60 mg/kg dose groups and 2 male and 3 female rats in the 90 mg/kg dose group at 0 

(predose), 1 and 4 hours post-dose. Another group o f 5 rats per gender in the 30 and 60 

mg/kg dose groups and 2 male and 3 female rats in the 90 mg/kg dose group were 

sampled at 0.5, 2 and 6 hours post-dose. Blood samples were collected from control 

rats at one hour post-dose. Plasma concentrations were determined with a validated 

HPLC method. The minimum limit o f quantification was 0.01 pg/mL.

4.2.1.2.2 Pharm acokinetic Analysis

The total number o f concentrations above and below the limit o f quantification (BLQ) 

are given in table 4.4.

Table 4.4. Concentration measurements fo r  4 week toxicity study 764-01978.

0 mg/kg 30 mg/kg 60 mg/kg 90 mg/kg Total

Male 0(5) 26(4) 25(2) 11(1) 62(15)

Female 0(5) 26(4) 28(2) 12(2){3 } [1] 66(13){3} [1]

Total 0(10) 52(8) 53(7) 23(3){3}[1] 128(28){3 } [1]

(.) BLQ 
{.} Rat died
[.] missing due to insufficient sample
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Out o f a possible 160 concentration measurements, 128 are above the limit of 

quantification. In the female 90 mg/kg group, three rats had excessively high 

concentrations possibly due to an incorrect dose being administered. These three rats 

died and their concentration measurements were withdrawn from the analysis which left 

121 concentration measurements.

As there are repeated measurements in each rat, it is possible to distinguish between 

interindividual and residual variability. The first model to be fitted to the data was a 1 

compartment first-order absorption model at steady state with exponential error models 

on the parameters CL/F  and V/F and an exponential residual error model. The FO 

method was used. The results are given in table 4.5 as model (1). The interindividual 

variance values are very close to zero which would mean that any empirical Bayes 

estimates o f the individual parameters would be virtually identical to the population 

values. It appears that all o f the variability is being estimated as part o f the residual 

variance. To see if  any other error models would describe the variability better, three 

more models were run in NONMEM. Model (2) specified additive random effects on 

both the parameters and the residual term, model (3) has additive errors on the 

parameters and exponential error on the residual term and model (4) has exponential 

errors on the parameters and additive error on the residual term. The results are given in 

table 4.5. The only significant difference is due to changing the interindividual error 

model. An additive error model results in an increase o f the NONMEM objective 

function value by approximately 6 points. In all cases, the interindividual error terms 

are poorly estimated, probably due to the lack o f data.
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To see if  a different structural model could improve the fit, a one compartment zero- 

order absorption model at steady state was considered. Models (5) and (6) both have 

exponential error models 011 the parameters and an exponential and additive error model 

for the residual term respectively. The objective function values did change appreciably 

from the first-order absoiption model.

To try and gain a better estimate o f the interindividual variability, a combination o f the 

data from studies 764-01891 (2 week) and 764-01978 (4 week) were used. The total 

number o f concentration measurements available were 223 from 146 rats. Even though 

the first study corresponded to a 2 week study and the second to a 4 week study, the 

profiles were assumed to be at steady state so the data were pooled as though the data 

had been collected under the same conditions.

Table 4.5. Results o f  NONM EM  analyses fo r  4 week Wistar rat study 764-01978.

Model O.F. Cl/F
(S.E.)

V/F
(S.E.)

ka
(S.E.)

Till/
(S.E.)

COi
(S.E.)

•)
0)2~
(S.E.)

•>cr
(S.E.)

(1) -141,28 5.17
(0.98)

102
(35.5)

10
(1.5xl0'6)

“ 2.4xlO'IUa 
(1.2x1 O'9)

0.0049a
(0.187)

0.323a
(0.0427)

(2) -135.11 4.05
(0.246)

392
(100)

9.91
(0.17)

“ 5.1xl0'Kb 
(6.6x1 O'7)

2340b
(8xl04)

0.112b 
(0.0203)

(3) -141.49 4.5
(1.07)

100
(70.6)

0.44
(0.151)

- 2.2x10'4b 
(0.00113)

3560b 
( lx l 04)

0.312a 
(0.0452)

(4) -135.18 3.94 400 0.444 - 7.3xl0'IOa 7xl0'4a 0.117b
(5) -141.48 5.25 102 - 0.499 5.5xl0'lta 8.17a 0.328a
(6) -136.28 3.75 3.75 - 4 3.34x10'7a 1.71" 0.113b

Exponential error model. 
b Additive error model.
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Table 4.6. Results o f  NONMEM analyses for combined 2 and 4 week Wistar rat

studies.

Model O.F. ClIF
(S.E.)

V/F
(S.E.)

ka
(S.E.)

coa
(S.E.)

COy
(S.E.)

or
(S.E.)

(1) -462.163 9.64
(0.532)

70
(4.8)

19.2
(17.7)

0.0153
(0.0267)

2.3xl0'12
(2.3xl0'n)

0.442
(0.0457)

(2) -396.183 10.1
(0.523)

49.2
(3.31)

1 (fixed) 0.0238
(0.0356)

0.301
(0.131)

0.467
(0.0559)

(3) -381.709 9.58
(0.505)

49.4
(3.6)

1 (fixed) 0,0851
(0.0189)

" 0.541
(0.0736)

All error models are exponential.

Only the first-order absorption model was considered for this set o f data as the zero- 

order model did not improve the description o f the absorption phase. Model (1) in table 

4.6 is a one compartment model at steady state with exponential errors on both the 

parameters and residual term. This model appears to give a better estimate o f the 

interindividual variability on apparent clearance but not on apparent volume. The 

absorption rate constant at 19.2-hr"1 virtually corresponds to a bolus dose. The 

absorption rate constant was next held fixed at 1-hr'1 (model (2)) as this would 

hopefully allow the other parameters to be estimated with more confidence even though 

there is no information at the absorption stage. Model (2) resulted in an increase o f 66 

points in the objective function. By removing the variance term on apparent volume the 

objective function increased by a further 15 points but allowed the interindividual 

variance to be estimated better. Residual plots are given in figures 4.6-4.8 for model (3) 

o f table 4.6. The dose effect observed in 2 week study 764-01891 was not included in 

the combined model. As the nonlinearity o f the 2 week model was not accounted for in 

the combined model, this would have lead to incorrect estimates o f the parameters. In 

table 4.6, apparent clearance seems independent o f holding ka fixed but apparent volume 

appears to be positively correlated giving a much reduced estimate o f apparent volume.
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The estimates o f apparent clearance given in table 4.6 is approximately a doubling o f 

the estimates obtained in table 4.6. The estimates o f apparent volume based on only the 

4 week data are poorly estimated whereas the estimates obtained from the combined 

data set are better estimated given the correlation with ka.

Figure 4.6. Residual versus time p lo t for 2 and 4 w>eek combined Wistar rat data.
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Figure 4.7. Residual versus predicted p lo t fo r  2 and 4 week combined Wistar rat data.



Figure 4.8. Weighted Residual versus predicted plot for 2 and 4 week combined Wistar

rat data.

4.2.1.3 Study RR-764-02041 -  13 Week Study

4.2.1.3.1 Study Design

For toxicokinetic evaluation, 3 groups of 10 rats per gender were given PD-142676 as 

an oral dose solution once daily for 13 weeks. 5 rats per gender were assigned to a 

placebo group. The doses to be administered were 0, 5, 15 and 30 mg/kg and were 

based on preliminary results from the 2 week and 4 week oral toxicity studies. The 5 

mg/kg dose was expected to be a no-effect dose. The 15 mg/kg dose was expected to 

produce moderate transient clinical signs in most animals. The 30 mg/kg dose was 

expected to produce moderate to severe clinical signs in most animals and possibly 

some deaths. The rats were randomised to one of the dose groups and then randomised 

within each dose group.
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During week 13, blood samples were obtained from 5 rats per gender in each dose 

group at 0.5, 2 and 6 hours post-dose. Another group of 5 rats per gender in each dose 

group were sampled at 1, 4 and 24 hours post-dose. Blood samples were collected from 

placebo control rats at 1 hour post-dose. Plasma concentrations were determined with a 

validated HPLC method. The limit of quantification was 0.01 pg/mL.

4.2.1.3.2 Pharm acokinetic Analysis

The total number o f concentrations above and below the limit o f quantification (BLQ) 

are given in table 4.7.

Table 4.7. Concentration measurements fo r  13 week toxicity study 764-02041.

0 mg/kg 5 mg/kg 15 mg/kg 30 mg/kg Total

Male 0(5) 25(5) 25(5) 19(5) 69(15)

Female 0(5) 23(7) 25(5) 25(5) 73(17)

Total 0(10) 48(12) 50(10) 44(10) 142(32)

(•) BLQ

Out o f a possible 174 concentration measurements, 142 are above the limit o f 

quantification. There were repeated measurement data so individual parameters could 

be estimated. A one compartment first-order absorption model was fitted to the data 

with a range o f error models. The results are given in table 4.8 (models (l)-(4)). The 

best fitting model out o f the models (l)-(4) was that with exponential errors on the 

parameters Cl/F  and V/F and the residual term. Specifying a fixed effect model on the 

dose level (models (5) and (6)) did not seem to improve the fit o f the model appreciably 

as the objective function value decreased by only 10 points. Model (6) shows that there
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was a decrease in apparent clearance as dose increased. Although this suggests 

nonlinear pharmacokinetics, the model fit was not significantly better in terms o f the 

objective function than model (2). The apparent volume estimates appeared poorly 

determined. There did not appeal" to be any correlation between apparent clearance and 

dose and so linear pharmacokinetics could be assumed for this data set. This could be 

explained by the difference in the dosing levels between the two studies, 764-01891 and 

764-02041, and nonlinear pharmacokinetics only becoming apparent at higher doses. A 

one compartment model with zero-order absorption was also considered (model (7)) 

with exponential error terms but this did not improve the fit to the data at all.

Table 4.8. Results o f  NON M EM  analyses fo r  13 week Wistar rat study?64-02041.

Model O.F. ClIF
(S.E.)

V/F
(S.E.)

ka
(S.E.)

T,,,/
(S.E.)

(oct
(S.E.)

COy

(S.E.)
et
(S.E.)

(1) -271.54 4.68
(1.85)

0.452
(0.214)

0.0617
(0.059)

- 0.141a
(1.4)

1130a 
(1970)

0.016b 
(0.006)

(2) -421.21 6.19
(5.02)

56.4
(32.6)

18.2
(18.8)

- 0.43a 
(1.4)

0.151a 
(0.495)

0.412a 
(0.372)

(3) -421.18 6.09 56.7 46.2 - 15b 476b 0.417“
(4) -342.96 6.67

(1.14)
58
(9.41)

7.21
(9.41)

- 25.5 b 
(28.1)

I200b
(1210)

0.0212b 
(0.009)

(5) -431.7 [5J3.96
(2.44)
[15]3.63
(2.48)
[30]3.76
(2.72)

[5]75.1
(87.4)
[1510.312
(0.175)
[30J0.504
(0.251)

[5]6.13
(1.95)
[15J0.013
(0.0746)
[30J0.169
(0.112)

4x 10'4b 
(4x10'4)

0.49b
(0.0264)

(6) -431.3 [5]7.17
(2.27)
[15]4.31
(1.05)
[30]3.76
(2.72)

[5J0.336
(0.11)
[15]0,348
(0.336)
[30]0.249
(0.0753)

[5]0.144
(0.07)
[15]0.062
(0.0369)
[30J0.015
(0.0802)

0.043a
(0.0407)

0.481“
(0.0786)

(7) -420.96 8.32 86.6 - 42.3 1 x 10'5a 0.03033 0.499“
Exponential error model. 

b Additive error model.
[.] Dose.
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To try and improve the estimates o f the interindividual variance parameters, all three 

data sets were combined (studies 764-01891, 764-01978 and 764-02041). This 

combined data set has 365 concentration measurements from 204 rats. The models 

considered were the one compartment first-order absorption model at steady state ((1)-

(4)) and a one compartment zero-order absorption model at steady state (5). The results 

are given in table 4.9. The best of these models was the first-order absorption model 

with exponential error model on the interindividual and residual terms. Residual plots 

for model (1) are given in figures 4.9-4.11.

Table 4.9. Results o f  NONMEM analyses fo r  combined 2, 4 and 13 week Wistar rat 

studies.

Model O.F. Cl/F
(S.E.)

V/F
(S.E.)

ka
(S.E.)

T in f

(S.E.)
COci
(S.E.)

2
COy

(S.E.) (S.E.)
(1) -809.203 8.45

(0.61)
58.4
(4.41)

50
(7.6x10‘8)

0.135a 
(0.264)

6xl0‘lla 
(5x1 O'10)

0.503a
(0.113)

(2) -671.03 7.75
(0.7)

3.12
(0.61)

0.103
(0.021)

" 0.126a 
(0.0372)

4.71a 
(2.17)

0.0339b
(0.0078)

(3) -645.91 9.43
(2.44)

63.8
(12.7)

15.4
(11.3)

“ 30.lb 
(47.5)

1020b
(179)

0.0402b
(0.0161)

(4) -795.192 10.6
(3.52)

64
(11)

10.6
(1.98)

75.9b
(162)

1070b
(2060)

0.46a
(0.845)

(5) -780.77 7.24 97.2 - 0.501 0.256a 1.99a 0.519a
Exponential error model. 

b Additive error model.
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Figure 4.9. Residual versus time p lo t for 2, 4 and 13 week combined Wistar rat data.
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Figure 4.10. Residual versus predicted p lo t for 2, 4 and 13 week combined Wistar rat 

data.
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Figure 4.11. Weighted residual versus predicted p lo t for 2, 4 and 13 week combined

Wistar rat data.
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4.2.1.4 Study RR-764-02167 — 4 Week Study With Dietary Admixture 

Administration

4.2.1.4.1 Study Design

For toxicokinetic evaluation, 3 groups o f 30 rats per gender were given PD -142676 as a 

drug-diet admixture on a mg/kg body weight basis. 5 rats per gender were assigned to a 

placebo group. The doses to be administered were 0 ,15, 30 and 90 mg/kg.

Plasma samples were collected from 5 rats representing each gender in the 15, 30 and 

90 mg/kg dose groups into heparinised tubes at 1, 2, 4, 8, 12, and 24 hours from the 

beginning o f week 4. Only one sample was obtained from each rat.
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4.2.1.4.2 Pharmacokinetic Analysis

The number o f concentration measurements are given in table 4.10.

Table 4.10. Concentration measurements fo r  4 week toxicity study with dietary 

admixture 764-02167.

0 mg/kg 15 mg/kg 30 mg/kg 90 mg/kg Total

Male 0(5) 22(8) 23(7) 30(0) 75(20)

Female 0(5) 27(3) 28(2) 25(1) 80(11)

Total 0(10) 49(11) 51(9) 55(1) 155(31)

(.) BLQ

The results o f NONMEM runs are given table 4.11. As the route o f administration was 

different from all the other studies, the results are just reported for completeness and are 

not considered further. For future pharmacodynamic analyses, no clinical signs o f 

interest were reported so no analysis could be carried out.

Models:

(1) 1 compartment first-order absorption -  exponential error model on parameters and 

residual.

(2) 1 compartment first-order absorption -  exponential on parameters and additive 

residual.

(3) 1 compartment first-order absorption -  additive on parameters and exponential 

residual.

(4) 1 compartment first-order absorption -  additive error model on parameters and 

residual.
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(5) 1 compartment zero-order absorption -  exponential error model on parameters and 

residual.

(6) 1 compartment first-order absorption -  fixed effects on dose levels with exponential 

error on model for interindividual and residual terms.

Table 4.11. Results o f  NONMEM analyses for 4 week Wistar rat study 764-02167.

Model O.F, Cl/F
(S.E.)

V/F
(S.E.)

ka
(S.E.)

Ti,{f
(S.E.)

(Da
(S.E.)

7CDy
(S.E.)

cr
(S.E.)

(1) -702.722 12.5
(0.518)

92.5
(8.63)

0.132
(0.0106)

8x 10"9a 
(2x1 O'8)

0.3653
(0.412)

0.232a
(0.041)

(2) -692.774 13.2
(0.738)

58.5
(10.5)

0.0991
(0.0135)

“ 0.287a
(0.0971)

0.866a
(0.574)

lxlO '10b 
(3x1 O'10)

(3) -687.879 13.8 46 0.0775 - 83b 12.6b 4xl0 'lua
(4) -701.722 12.5

(0.518)
92.5
(8.63)

0.132
(0.0106)

- lxl0"/b 
(3x10‘7)

3120b
(3530)

0.232b
(0.041)

(5) -698.414 11.6
(0.586)

139
(26.3)

“ 9.14
(1.73)

0.0092a 
(0.0337)

1.5xl0'Oa 
(4x1 O'6)

0.261a 
(0.0561)

(6) -644.858 [15]11 
[30] 13.2 
[90]10.9

[15]99.6
[30]99.9
[90]90.6

[15]1.16 
[30]0.13 
[90]0.13

0.179a 0.114a

Exponential error model. 
b Additive error model.
[.] Dose.

4.2.2 Pharmacodynamic Analyses of Rat Data Sets

4.2.2.1 Study RR-745-02051 -  2 Week Study

4.2.2.1.1 Pharmacodynamic Data

Although clinical data were collected on a daily basis, the observations were 

summarised and reported on a weekly basis. This meant that there were a maximum of 

2 observations per rat. I f  the rat died in one o f the two weeks then the clinical signs
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until death were reported. If the death occurred in week one then that rat would have 

one pharmacodynamic measurement whereas if  it died in week two then that rat would 

have two pharmacodynamic measurements. Even if  a rat was observed to have more 

than one convulsion a week, it was still reported only as having a convulsion in that 

week. The response variable is therefore binary with 0=no convulsion and 

1 ̂ convulsion. Out of a total o f 190 rats, there were 379 pharmacodynamic 

measurements as one male rat died in week one in dose group 60 mg/kg.

The type o f clinical signs and symptoms reported included alopecia, salivation, 

convulsion, soreness of skin, tremors, and urine discharges. Instead o f taking an overall 

measure o f clinical outcome, it was decided that convulsion would be used as the 

univariate measure of clinical outcome. This will be used throughout all studies in all 

animals as the pharmacodynamic measure.

4.2.2.1.2 Pharm acodynam ic Analysis

The number o f convulsions observed in each dose group and at each time is given in 

table 4.12.

Table 4.12. Number o f  convulsions in 2 week Wistar rat study 745-02051.

Gender Week 0 mg/kg 15 mg/kg 30 mg/kg 60 mg/kg Total

Male 1 0(5) 0(30) 0(30) 1(30) 1(95)

2 0(5) 0(30) 0(30) 1(29) 1(94)

Female 1 0(5) 0(30) 0(30) 0(30) 0(95)

2 0(5) 0(30) 0(30) 0(30) 0(95)

Total 0(20) 0(120) 0(120) 2(119) 2(379)

(.) Total number o f possible observations
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Had this been the only data set and as there are only two convulsions, usually there 

would be nothing done in terms of a statistical analysis of such data. However as there 

were other data sets with similar data but with more convulsions, an attempt at finding a 

model for these data was carried out.

In the equations below, i indexes the rat and j  indexes the week {1,2}.

(1) lo g i/(£ (P i-(K = l|6 ,,)))  =

(2) log;7(ii(Pr(}j = 11 bu))) =

(3) log^(£(Pr(^,- = 11 *„.))) =

/?, + bu , Dose = 0 

P\ + Pi + by,Dose = 15 
/?, + p 2 4-  bu,Dose = 30 

/?j + J3a + by, Dose = 60

/?, + p stimeu + by, Dose -  0 

Pi + Pi + P S meij + bu,Dose = 15 

P\ + Pi + P 5time- + bu, Dose = 30 

/?, + y?4 + /3stimeij + by, Dose = 60

-  50 + p 2timeu + by, Dose = 0

-  50 + p 1timeiJ + by , Dose = 15

-  50 + P 2timejJ + by, Dose = 30 

-  50 + p x + P 2timejJ + bu, Dose = 60

(4) log it(E(?iiY.. = \ \ b , ))) = /?, + p 2AUC + bt

(5) logiV(£(Pr(Pj;. = 11 bu))) = f t  + ftA U C , + f t t im e ,  + bu

(6) \ogit(E(Vv(YjJ = 1 1 £,.))) = (/?, + by) + P 2AU C! + + b ^ tim e^

r  a t j c
(7) \ogit(E(¥r(Yij = 11 by))) = + K

(8) log tf(£ (P r(^  = 1 1 bu))) = p x + p 2timev + by

Models (3) have a baseline logit o f -50  as there were no convulsions observed in these 

dose groups so the placebo logit was arbitrarily set to a small value.
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All o f these models are random effects models as they are conditional on the random 

effect component, bj. The low value of the NONMEM objective function value can be 

attributed to the fact that the vast majority o f observations are zero.

Table 4.13. Results o f  NONMEM pharmacodynamic analyses fo r  2 week Wistar rat

study 745-02051.

Model O.F. Pi
(S.E.)

P2
(S.E.)

A
(S.E.)

P4
(S.E.) (S.E.)

oof
(S.E.)

0)21 
(S.E.)

(1) 12.033 -16.6 -36.7 -36.7 5.07 - 245 -
(2) 7.093 -63.9 -1.82 -1.81 17 15.7 7980 -

(3) 20.309 45.9 0.0156 - - - 0.0562 -

(4) 12.093 -15.5 0.613 - - - 260 -
(5) 7.101 -53.1

(4.72)
0.955
(0.471)

15.8
(0.865)

“ “ 8490
(3270)

-

(6) 6.800 -27.6 0.561 3.82 - - 1.61 3450
(7) 12.284 -13.6

(1.78)
2.88
(0.169)

" " “ 312
(323)

-

(8) 7,203 -52.8
(28.7)

17.5
(10.7)

“ 18800
(lx lO 5)

-

The models in table 4.13 involving dose as a covariate ((l)-(3)) are defined so that there 

is a dose specific intercept. O f the dose specific models, model (2) is the best (based on 

which model has the lowest objective function value).

The models with AUC  as a covariate ((4)-(8)) are based on estimates o f AUC=DoselCl. 

The clearance estimates, are individual estimates from the one compartment first-order 

absorption model at steady state fitted to the combined pharmacokinetic data from the 

week 2 and 4 data sets. Individual estimates could not be obtained from the 2 week data 

set alone as the data had only one sample per rat. The best model involving A UC as a 

covariate was model (5) which has linear terms in AUC  and time and an additive 

random effect on the logit scale. The objective function is not quite as low as that o f 

model (6) which has a random effect on the time parameter (7.115 versus 6.8) but since



there is virtually no variability in the pharmacodynamic response, then the random 

effects would not be expected to explain much. The model that would best describe this 

data set is that which has neither dose nor A UC as a covariate, model (8). This model 

which includes only time as a covariate does 110 worse than any o f the dose or A UC 

models because there is very little information in the data. An objective function value 

o f 7.203 is only slightly worse than the AUC models which probably describe the data 

just as well. The implication of this model will be discussed in section 4.5.

Although a model has been selected as being best in terms o f parsimony and objective 

function value for this data, no inferences should be considered at this stage, as the data 

in this study, by themselves, do not produce much information.

4.2.2.2 Study RR-250-01686 -  4 W eek Study

4.2.2.2.1 Pharmacodynamic Data

All rats were observed on a daily basis but the observations were recorded as being 

summarised and reported at the end o f each week. The same types o f clinical signs 

were observed in this study as were observed in the 2 week rat study. Convulsion was 

used as the pharmacodynamic measure. The number of convulsions are given in table 

4.14.
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Table 4.14. Number o f  convulsions in 4 week Wistar rat study 250-01686.

Week 0 mg/kg 30 mg/kg 60 mg/kg 90 mg/kg Total

Male 1 0(20) 0(25) 0(25) 7(25) 7(95)

2 0(20) 0(25) 4(25) 4(23) 8(93)

3 0(20) 0(24) 5(23) 7(20) 12(87)

4 0(20) 0(24) 2(19) 9(15) 11(78)

Female 1 0(20) 0(25) 2(25) 6(25) 8(95)

2 0(20) 0(25) 3(25) 9(23) 12(93)

3 0(20) 0(24) 7(23) 9(20) 16(87)

4 0(20) 3(24) 9(22) 7(11) 19(77)

Total 0(160) 3(196) 32(187) 58(162) 93(705)

(.) Total number o f observations.

It can be seen in table 4.14 that as dose increases then the number o f convulsions 

increases. Also as time and dose increases, the mortality increases. For example, the 

marginal number o f convulsions and total number of observations for each dose group 

over time and gender are 0(160), 2(196), 12(185) and 36(162) for dose groups 0, 30, 

60and 90 mg/kg respectively. To make this trend more apparent, table 4.15 gives the 

number of convulsions with gender not included as a factor. In table 4.16, the number 

o f deaths or being withdrawn from the study in terms of gender, week and dose is 

presented. Rats were withdrawn by the investigators if  it was required to cany out a 

reversibility study or because the animals were suffering unnecessarily. It can be seen 

that by the end o f the study, 52 rats had dropped out o f a possible 190 rats. Table 4.17 

shows the number o f dropouts with gender not included as a factor. The drop-outs are
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recorded as being in the week they occurred which is different to the convention where

drop-outs are recorded as the time up until the drop-out occurred.

Table 4.15. Number o f  convulsions without gender as a factor in 4 week Wistar rat 

study 250-01686.

Week 0 mg/kg 30 mg/kg 60 mg/kg 90 mg/kg Total

1 0(40) 0(50) 2(50) 13(50) 15(190)

2 0(40) 0(50) 7(50) 13(46) 20(186)

3 0(40) 0(48) 12(46) 16(40) 28(174)

4 0(40) 3(48) 11(41) 16(26) 30(155)

Total 0(160) 3(196) 32(187) 58(162) 93(705)

(.) Total number o f observations.

Table 4.16. Number o f  dropouts in 4 w>eek Wistar rat study 250-01686.

Week 0 mg/kg 30 mg/kg 60 mg/kg 90 mg/kg nn j_ iTotal

Male 1 0(20) 0(25) 0(25) 2(25) 2(95)

2 0(20) 1(25) 3(25) 3(23) 7(93)

3 0(20) 0(24) 4(22) 5(20) 9(86)

4 0(20) 0(24) 0(18) 9(15) 9(77)

Female 1 0(20) 0(25) 0(25) 2(25) 2(95)

2 0(20) 1(25) 2(25) 3(23) 6(93)

3 0(20) 0(24) 1(23) 9(20) 10(87)

4 0(20) 0(24) 2(22) 5(11) 7(77)

Total 0(160) 2(196) 12(185) 38(162) 52(703)

(.) Total number o f possible observations at start o week.
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Table 4.17. Number o f  dropouts without gender as a factor in 4 week Wistar rat study

250-01686.

Week 0 mg/kg 30 mg/kg 60 mg/kg 90 mg/kg Total

1 0(40) 0(50) 0(50) 4(50) 4(190)

2 0(40) 2(50) 5(50) 6(46) 13(186)

3 0(40) 0(48) 5(45) 14(40) 19(173)

4 0(40) 0(48) 2(40) 14(26) 16(154)

Total 0(160) 2(196) 12(185) 38(162) 52(703)

(.) Total number o f possible observations at stall o f week.

4.2.2.2.2 Pharmacodynamic Analysis

The data that was obtained in this toxicokinetic/toxicodynamic study is found in many 

settings. Longitudinal data with missing observations is an important area o f research 

and only recently have methods been devised to analyse such data. Some early papers 

for analysis o f longitudinal data with missing values include Schluchter (1992) and 

Diggle and Kenward (1994) for continuous variables and Conaway et al (1992), 

Kenward et al (1994), Follmann and Wu (1995) and Fitzmaurice et al (1995) for 

categorical data. Sheiner et al (1997) described a general analysis for data collected 

from analgesic drug clinical trials where the probability o f dropping out o f the clinical 

trial was dependent on the level of analgesia. Work by Ten Have et al (1998) and 

Pulkstenis et al (1998) described similar settings for longitudinal data with missing data. 

The last three papers describe data settings similar* to the rat data observed in study 250- 

01686. The data is observed repeatedly over time in each rat but some rats do not have 

full pharmacodynamic profiles (data up to the end o f the study) due to censoring. The
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way in which these data are statistically assumed missing can vary. The three standard 

assumptions o f how clusters can drop out of studies and create missing data are the 

following:

1.) Completely random drop-out (CRD) -  the dropout and measurement processes are 

independent.

2.) Random drop-out (RD) -  the drop-out process depends on the observed 

measurements, i.e. those preceding drop-out.

3.) Informative drop-out (ID) -  the drop-out process depends on the unobserved 

measurements as well as the observed measurements, i.e. those that would have 

been observed if  the unit had not dropped out.

In the case o f the rat data studied here, the assumption that the data are missing 

completely at random would be wrong as there is a definite trend in the numbers o f 

drop-outs in terms o f dose and probably time as seen in tables 4.16 and 4.17. The 

assumption that the data are missing at random is plausible in that rats dropped out due 

to the dose o f the PD -142676 given previously. This would be a sensible assumption to 

make but informative drop-out could also be a possibility. The probability o f dropping 

out depending on some unobserved variable is also possible as rats dying could be due 

to some other factor other than exposure to the drug.

The first method to be tried for 250-01686 was that o f Sheiner et al (1997). In their 

work, they refer to using a ‘selection model’ where they model the longitudinal data and 

the drop-out data conditional on the longitudinal data independently rather than a 

‘pattern-mixture model’ which models the drop-out data and the longitudinal data 

conditional on the drop-out data independently. NONMEM code was downloaded from
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the NONMEM repository (Mandema and Stanski (1998)) which is o f a very similar 

form to that of Sheiner et al (1997). The code was adapted from being appropriate for a 

5 point categorical variable to being binary but this code failed to run in NONMEM and 

was abandoned.

The method o f Ten Have et al (1998) was also tried for the analysis o f study 250-01686. 

This method is used for the analysis o f longitudinal binary response data to incorporate 

informative drop-outs. The model consists o f observed longitudinal and missing 

response components that share random effects parameters. FORTRAN code was 

available from the author but unfortunately, would not work on the rat data set. The 

reason for not producing any results was due to technical problems with running the 

code.

The important part o f the analysis o f study 250-01686 is to be able to describe the 

probability o f getting a toxic response, i.e. a convulsion. The drop-out is o f secondary 

interest in this case but must be taken into account, as a wrong assumption about the 

way in which the data are missing might lead to bias o f the parameter estimates in the 

logistic regression models.

In the following, a simple method of determining how the missing data might have 

affected the parameter estimates and the choice o f model is given. Firstly, the binary 

convulsion data are analysed as though the mechanism for the missing data could be 

completely ignored. Secondly, the missing data are imputed with values last observed 

for that particular rat. Thirdly, the missing data was imputed as all zeros. Finally, the 

missing data was imputed as all ones. This method should in a sense put bounds on
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what the parameter estimates would be at the extremes if  the missing data were all zeros

or all ones.

In the first case, a wide range o f models were fitted to the data. They are all random

effects models o f the form logzY(Pr(7^ = 1 1 b ,-)) = / ( A £ / > * y )» w h e re /is  given below.

(1) A + * , /

(2) p x + P 2dosej + bu

(3) A  + f i2dosei + Pjfimejj + bu

(4) A  + P 2^ osei + Ppiwiejj + P4dose dime +bu

(5) (A +bli) + /32dosei + (A  +b2i)time9

(6) A + fi2d°sei + Pdimeij + P^sex, + hXi

(7) (A + bVl) + ( A  + b2i)timel}

(8) A  + p2auci + K

(9) A  + A awc/ + Pd'imej + bXj

(10) A  + P2auci + P2timetj + p 4 aucjtimejj + A

(11) Px + p 2auc.t + Ppime-j + p 4sexi + bXi

(12) p x + p 2auc} + Ppimej + P4ciucjtimel-j + A Jfi*/ -+A

(13) A + P2auc} + p t̂itne v + p^mcpme^ + P5sexj + p 6aucjsexl + bx

(14) (A +bu) + (P2 +b2j)aucl

(15) (A + bu) + (A  exp(A))«wc,

(16) (A +6w) + A ^ /  + (A  +b2i)timej

(17) A + p 1auci + (A  + bXj)timet

(18) p x + p 2auc.t + (A  + + A je*/
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(19) /?, + P 2auci + p 3aucf +bu

P \ a u c i , i .(20) ------- + bup 2 + auct

Table 4.18. Results o f  NONMEM runs fo r  4 week rat study 250-01686 with unimputed 

data.

M od el O .F A
(S.E.)

A
(S.E.)

P3
(S.E.)

p4
(S.E.)

A
(S.E)

A
(S-E.)

cop
(S.E.)

(Op
(S.E.)

(1 ) 524 -2.56
(0.314)

“ “ ~ - 2.57
(0.993)

“

(2) 419 -4.95 0.0491 " “ " - 0.425 "

(3) 378.4 -9.68
(1.83)

0.078
(0.0168)

0.95
(0.237)

" “ 2.34
(1.51)

(4 ) 400.7 -4.37 0.0271 -0.0156 0.0064 “ * 0.101 -

(5) 378.2 -9.75
(2.04)

0.0795
(0.0193)

0.934
(0.26)

“ " 2.08
(1.69)

0.0487
(0.165)

(6 ) 374.9 -9.98
(2.04)

0.0782
(0.0184)

0.919
(0.242)

0.749
(0.42)

2.6
(1.51)

"

(7) 429.8 -45.8
(7.2)

8.38
(1.69)

“ " - " 1500
(742)

159
(60.8)

( 8 ) 420.3 -5.52
(0.522)

0.565
(0.0659)

“ “ 0.653
(0.066)

"

(9) 380.8 -10.1
(1.38)

0.817
(0.124)

0.991
(0.205)

“ 2.72
(1.24)

(10) 380.8 -10.2
(1.81)

0.839
(0.224)

1.03
(0.484)

-0.006
(0.0494)

“ - 2.7
(1.23)

“

( 1 1 ) 377 -10.4
( 1 .4 )

0.815
(0.121)

0.968
(0.199)

0.823
(0.431)

" 2.45
(1.1)

(12 ) 377 -10.5
(1.84)

0.83
(0.221)

I
(0.477)

-0.0046
(0.0683)

0.823
(0.43)

" 2.44
(1.12)

-

(13) 376.6 -11
(2.05)

0.908
(0.252)

0.994
(0.465)

-0.005
(0.0669)

1.74
(1.1)

-0.131
(0.155)

2.39
(1.1)

-

(14) 420.3 -5,24 0.565 " 0.652 5.84x1
O'10

(15) 420 -5.24 0.528 “ “ “ 2.71x1
O'9

0.0389

(16) 380.6 -10.2
(1.49)

0.846
(0.146)

0.973
(0.219)

" " - 2.39
(1.41)

0.0724
(0.197)

(17) 384.7 -9.28
(1.32)

0.809
(0.139)

0.735
(0.159)

" " 0.336
(0.23)

(18) 381.7 -9.39
(1.27)

0.784
(0.131)

0.726
(0.155)

0.673
(0.406)

- 0.271
(0.19)

"

(19) 412.9 -9.12 1.9 -0.106 " - - 0.322 -

(20) 607.6 -2.74 4.9x10'
10

6.93
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To decide on a ‘best’ model, parsimony and the objective function value was used as a 

model choice criteria. Under this criteria, the best model would be model (6), which is 

a linear' function in dose, time and sex which has an objective function value o f 374.9. 

Model (5) is similar in objective function value but has one less fixed effect parameter 

and one more random effect (additive on time). The models involving AUC as a 

predictor do not perform any better than models involving dose as a predictor. Models

(11) and (12) have objective function values of 377 with 3 and 4 fixed effects 

respectively.

For the models tried with the imputed data where the last observed value was carried 

forward for any missing data, there are three alternative models to those given in the list 

for the unimputed data set: these are replaced by the following in table 4.19. These 

models were replaced because they were either inappropriate or because the previous 

models did not run.

(7) (/?, + bu) + /32timeiJ

(15) /?, + f32dosei + (/?3 + bu )timejJ

(18) + (J32 + bu )dosei + p^titne-

The best model that describes the imputed data set is between model (3), linear in dose 

and time and model (6), linear in dose, time and sex, both with one additive random 

effect. As model (6) only reduces the objective function value by just over 2 points, 

then model (3) would appeal’ to be the best model. Once again the models including, 

AUC are not superior to the dose models in any way but models (10) and (11) come 

close in terms o f the objective function value.
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Table 4.19. Results o f  NONMEM runs for 4 week rat study 250-01686 with imputed

data as the same value as last observed value.

Model O.F. Pi
(S.E.)

A
(S.E.)

f t
(S.E.)

P4
(S.E.) (S.E.)

Pt
(S.E)

Q)f
(S.E.)

cof
(S.E.)

(1) 606.68 -3.47
(1.05)

“ “ “ 9.8
(5.92)

“

(2) 496.83 -6.74
(0.774)

0.0752
(0.01)

“ " - “ 2.34
(0.803)

“

(3) 401.03 -14.1
(1.89)

0.114
(0.017)

1.52
(0.249)

" " " 7.37
(2.73)

(4) 467.55 -5.04 0.0253 0.0257 0.0117 “ 0.103 “

(5) 401.02 -14.1
(1.85)

0.114
(0.0163)

1.52
(0.256)

“ - " 7.4
(3.03)

0.0003
(0.108)

(6) 398.85 -14.6
(1.99)

0.115
(0.0172)

1.52
(0.252)

0.893
(0.603)

" 7.32
(2.76)

“

(7) 491.05 -14.9
(2.42)

2.13
(0.467)

“ - “ 94.7
(34.1)

(8) 500.04 -6.82
(0.721)

0.763
(0.0916)

2.53
(0.8)

“

(9) 404.19 -14.1
(1.84)

1.14
(0.161)

1.52
(0.247)

“ - “ 7.76
(2.77)

(10) 404.19 -14.1
(2.91)

1.15
(0.347)

1.53
(0.707)

-0.0006
(0.0931)

" 7.78
(2.81)

“

(11) 401.63 -14.7
(1.94)

1.16
(0.166)

1.52
(0.248)

0.983
(0.614)

“ “ 7.67
(2.78)

“

(12) 401.63 -14.7
(2.98)

1.15
(0.347)

151
(0.702)

0.0002
(0.0929)

0.985
(0.62)

“ 7.7
(2.78)

“

(13) 401.49 -15.2 1.21 1.53 1.66 -0.001 -0.09 7.66

(14) 500.04 -6.81
(0.719)

0.762
(0.0914)

“ “ “ 2.52
(0.798)

ixio"7 
(1 x 10'5

(15) 404.53 -12.5 0.11 1.06 " “ - 1.05 -

(16) 404.19 -14.1
(1.83)

1.14
(0.163)

1.52
(0.248)

“ “ 7.75
(2.8)

3x1 O'5 
(0.016)

(17) 407.44 -13.5
(1.77)

1.2
(0.176)

1.12
(0.219)

* - - 1.31
(0.593)

-

(18) 404.86 -11.8
(1.37)

0.09
(0.0128)

1.47
(0.228)

" - 0.0012
(0.0004

-

(19) 495.04 -10.7
(2.14)

2.18
(0.73)

-0.113
(0.582)

" 2.09
(0.798)

-

(2 0 ) 674.8 -3.03
(0.779)

3xl0'y 
(3x1 O’6) ‘

12.2
(4.59)
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For the third scenario where the missing data are imputed as all 0’s, less models were 

considered as some models seemed unlikely to be appropriate for this data set such as 

the Emax model on the logit scale. These models are given below.

(1) /?, + pjdosej +bu

(2) /?! + P 2dose, + p itimeil +bu

(3) /?, + p 2doset + pp im e- + p 4dose.timen +bu

(4) /?, P 2dosei + ppimejj + P 4sexi +bu

(5) (/?, +bu) + p 2dosei + (P 3 +b2l)timeg

(6) (/?, + P 2dose( + (/?3 + bu')timejJ

(7) p x + (P 2 + b]j)dosei + P3lime{!

(8) p } + p 2auci +bXj

(9) /?, + p 2auCj + p 2time(j +bXi

(10) /?, + P 2auct + ppimejj + p^cmcpme^ + bu

(11) /?, + P 2aucj + p 3time(j + p 4sext. + bXj

(12) (/?, + bu) + P 2auc{ + (/?3 + b2j)time.j + p^aucpm e-

(13) {p x + bu) 4- P 2auci + (/?3 + b2i )timejj
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Table 4.20. Results o f  NONMEM runs fo r  4 week rat study 250-01686 with imputed 

data being all 0 ’s.

Model O.F Pt
(S.E.)

P2
(S.E.) (S.E.)

Pi
(S.E.)

<Q\
(S.E.)

g)22
(S.E.)

(1) 458.207 -4.75 0.0439 “ * 1.5x1 O’4 ”

(2) 450.462 -5.41 0.0423 0.312 ” 0.0067 "

(3) 452.064 -5.8 0.0528 0.335 -0.0028 0.108 “

(4) 448.665 -5.23 0.0372 0.288 0.463 0.0216 “

(5) 456.86 -4.61 0.0321 0.289 “ 8 .7x l0 '4 8.1 xlO"4

(6) 454.898 -4.76 0.034 0.288 ” 1.4x1 O'4 “

(7) 450.566 -5.38 0.0422 0.292 1.3xl0"b

(8) 460.366 -4.75
(0.357)

0.444
(0.0427)

“ 2x10 '11 
(0.0086)

“

(9) 452.301 -5.6
(0.429)

0.45
(0.0422)

0.308
(0.116)

“ 2 x l0 'b
(0.0071)

“

(10) 449.648 -8.34 0.803 1.2 -0.116 8.6x10'4 “

(11) 447.707 -5.91 0.453 0.311 0.521 2.6x1 O'7 “

(12) 447.636 -5.97 0.462 0.303 0.533 1.8x1 O’8 0.00883

(13) 452.201 -5.66
(0.435)

0.46
(0.0488)

0.298
(0.126)

2.6xl0"8
( lx l0 ‘8)

0.0115
(0.05)

The lowest values o f the objective function are associated with models involving AUC 

as a predictor ((10)-(12)) but these models have more parameters than model (2) which 

has three fixed effects parameters and one random effect parameter. The objective 

function value for model (2) (linear in dose and time) is 450.5, which is only 2.6 points 

greater than that for the AUC models (10)-(12). It would appear that the best model for 

this imputed data set is linear in dose and time.
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The last set of imputed data has all missing values set to 1. The models considered are 

given below.

1) P x + P 2dosej + bXi

2) /?! + doset + pjtimejj + bXj

3) /?, + f i2dosej + P 3time{j + p 4dosejtimetJ + bXi

4) p x + J32dosej + p 3time9 + P 4sexi + bu

5) (Pi + K )  + P 1dosei + {fi3 + b2i)timeff

6) (Pi + K )  + (fii +b2i)dosei + (J33 +b3l)timeiJ

7) p x + p 2a u c ,+ bxt

8) P x + P 2auci + p 3timeu + bXi

9) p x + P 2aucj + p p im ej + P 4aucitimej +bXj

10) p x + p 2auc. + ppim ey + P 4sexj + bXi

11) (P x + bXi)+ p 2 due,. + (p 3 + b2i )timeu

12) (Pi + K -) + (p 2 + b2i )auci + (P3 + b2i )timev

13) (p x + bXi ) + ( p 2 + b2j )aucj + pjftm etJ
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Table 4,21. Results o f  NONMEM runs for 4 week rat study 250-01686 with imputed

data being all 1 ’s.

Model O.F P i
(S.E.)

$ 2
(S.E.)

3̂
(S.E.) (S.E.) (S.E.)

CO2
(S.E.)

CO3
(S.E.)

(1) 529.58 -6.11
(0.703)

0.0683
(0.0092)

0.0683
(0.0092)

“ 2.23
(0.76)

■ “

(2) 421.28 -13.8
(1.88)

0.109
(0.0166)

1.6
(0.26)

" 7.86
(2.94)

“

(3) 496.155 -4.21 0.0136 -0.0228 0.016 0.104 - “

(4) 419.049 -14.3
(1.96)

0.11
(0.0167)

1.6
(0.26)

0.893
(0.59)

7.72
(2.9)

*

(5) 416.179 -15
(2.29)

0.124
(0.0203)

1.57
(0.306)

- 5.59
(3.07)

0.723
(0.533)

(6) 416.174 -15.1 1.74 - - 5.66 lxlO '18 0.73

(7) 528.353 -6.27
(0.658)

0.708
(0.0848)

“ 2.26
(0.714)

-

(8) 420.172 -13.9
(1.84)

1.11
(0.162)

1.6
(0.256)

“ 7.74
(2.78)

■ “

(9) 420.158 -14.1
(2.78)

1.14
(0.331)

1.66
(0.65)

-0.008
(0.0863)

7.79
(2.83)

- “

(10) 417.316 -14.5
(1.92)

1.12
(0.163)

1.6
(0.256)

1.02
(0.592)

7.62
(2.76)

-

CD 415.514 -15.3
(2.2)

1.28
(0.199)

1.6
(0.293)

“ 5.88
(2.89)

0.693
(0.529)

(12) 415.514 -15.3 1.28 1.6 5.88 4x10'" 0.693

(13) 420.172 -13.9 1.11 1.6 “ 7.75 5.9x1 O'* -

The best models appeal' to be linear in dose or AUC with time and sex (models (4) and 

(10)) or linear in dose with an additive random effect or AUC with time and additive 

random effects on the intercept and time parameter (models (5) and (11)). The models 

with sex as a predictor have slightly higher objective function values but one less 

random effect. In this case it was decided to choose the model with a random effect on 

time and the intercept and dose as a linear predictor.

The final chosen models for the 4 data sets are the following:
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Data set A. Unimputed data.

(A) log*Y(£(Pr(i;. = 11 6,.))) = /?, + f 2dosei + j82timejj + f Asexi + bu 

Data set B. Imputed data with last value earned forward.

(B) lo g /rC ^ P r^ . = 11 &,.))) -  p x + f 2dosej + f f i m e ^  + bu 

Data set C. Imputed data as all O’s.

(C) logiY(£(Pr(P,y = 11 &,.))) = /?, + f 2dosef + f i3timetJ + bu 

Data set D. Imputed data with all 1 ’s.

(D) logit(E(?v(YfJ = 11 /?,))) = (/?, + bu) + f i2dose, + (/?3 + b2l)timey

To compare how the imputed data has an effect on the parameter estimates, the linear 

logistic model in dose and time with an additive random effect was chosen as the 

comparison model. The parameter estimates for these models are given in table 4.22.

Table 4.22. Parameter values fo r  the linear logistic model /?, + J32dosej + J33timefj + bi 

fo r  the 4 different data sets in the rat 4 week study 250-01686.

Data set O.F A
(S.E.)

A
(S.E.)

A
(S.E.)

cof
(S.E.)

A 378.4 -9.68 0.078 0.95 2.34
(1.83) (0.0168) (0.237) (1.51)

B 401.03 -14.1 0.114 1.52 7.37
(1.89) (0.017) (0.249) (2.73)

C 450.462 -5.41 0.0423 0.312 0.0067

D 421.28 -13.8 0.109 1.6 7.96
(1.88) (0.0166) (0.26) (2.94)

In figure 4.12 the models are compared graphically for probability as a function o f time, 

where dose has been set to 30 mg/kg.
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Figure 4.12, Logistic regression plots o f  4 data sets fo r  model in dose=30mg/kg and  

time.
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The probabilities here are very low, with the probability of a convulsion in week 4 being 

approximately 0.04 for data set A (unimputed data). The parameter estimates for data 

sets A and B are similar, but imputing the data as the last observed observation causes 

an increase in the magnitude of the parameter estimates by approximately 50%. As 

expected, imputing the missing values all as 0’s (C) initially ‘flattens’ the curve by 

reducing the magnitude o f the parameter estimates and imputing the missing data as all 

F s  (D) increases the parameter estimates magnitude making the logistic curve steeper.

4.2.2.3 Study RR-250-01696 - 1 3  W eek Study

4.2.2.3.1 Pharm acodynam ic D ata

All rats were observed on a daily basis but the observations were recorded as only being 

from a particular week. The same types of clinical signs were observed in this study as
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were observed in the 2 and 4 week rat studies. Convulsion was used as the 

pharmacodynamic measure. The number o f convulsions are given in table 4.23.

Table 4.23. Number o f  convulsions in 13 week Wistar rat study 250-01696.

Sex Week 0 mg/kg 5 mg/kg 15 mg/kg 30 mg/kg Total
Male 1 0(20) 0(25) 0(25) 0(25) 0(95)

2 0(20) 0(25) 0(25) 0(25) 0(95)
3 0(20) 0(25) 0(25) 0(25) 0(95)
4 0(20) 0(25) 0(25) 0(25) 0(95)
5 0(20) 0(25) 0(25) 0(24) 0(94)
6 0(20) 0(25) 0(25) 0(24) 0(94)
7 0(20) 0(25) 0(25) 0(24) 0(94)
8 0(20) 0(25) 0(25) 1(24) 1(94)
9 0(19) 0(25) 0(24) 0(24) 0(92)
10 0(19) 0(25) 0(24) 0(24) 0(92)
11 0(19) 0(25) 0(24) 1(24) 1(92)
12 0(19) 0(25) 0(24) 0(24) 0(92)
13 0(19) 0(25) 0(24) 5(24) 5(92)

Female 1 0(20) 0(25) 0(25) 0(25) 0(95)
2 0(20) 0(25) 0(25) 0(25) 0(95)
3 0(20) 0(25) 0(25) 0(24) 0(94)
4 0(20) 0(25) 1(25) 2(24) 3(94)
5 0(20) 0(25) 0(25) 0(24) 0(94)
6 0(20) 0(25) 0(25) 0(24) 0(94)
7 0(20) 0(25) 0(25) 0(24) 0(94)
8 0(20) 0(25) 0(25) 2(24) 2(94)
9 0(20) 0(25) 0(25) 0(23) 0(93)
10 0(20) 0(25) 0(25) 0(23) 0(93)
11 0(20) 0(25) 1(25) 2(23) 3(93)
12 0(20) 0(25) 1(25) 1(22) 2(92)
13 1(20) 0(25) 2(25) 1(22) 4(92)

Total 1(515) 0(650) 5(645) 15(623) 21(2433)
() Total number o f possible observations.

4.2.2.3.2 Pharm acodynam ic Analysis

The models considered for the analysis o f study 250-01696 are given below. 

0 ) Px+K
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(2) p x + P 2dosel + bu

(3) /?, + p 2dose} + Pftim ey + bu

(4) ( #  + bu) + P 2dosej + (/?3 + b2i)timetJ

(5) (/?, + 6U) + p 2dosei + (/?3 + b2i)timeij + P 4sext

(6) p x + P 2dosei + (/?3 + b^timCy

(7) /?, + p 2AUC; +bu

(8) /?, + P 2AUCj + Pstimej + bu

(9) (/?, + *„) + P 2AUCf + (p3 + b2i) tm ey

(10) (/?, + bu) + P 2AUCj + (/?3 + b2i )timey + P4sexj

Table 4.24. Results o f  NONM EM  runs fo r  13 week rat study 250-01696.

Model O.F Pi
(S.E.)

Pi
(S.E.)

A
(S.E.)

Pi
(S.E.)

mi
(S.E.)

0)2
(S.E.)

(1) 231.383 -8.47
(1.01)

” “ " 21.1
(10.4)

“

(2) 220.825 -8.21 0.0941 " " 5.26 “

(3) 201.565 -8.57 0.0543 0.181 “ 4.12 "

(4) 182.893 -12.1 -0.0129 0.155 - 26.9 0.688

(5) 183.175 -12.1 -0.0183 0.0532 1.49 22.7 0.735

(6) 193.003 -7.36 0.507 “ - 0.77 “

(7) 226.194 -7.8
(1.69)

0.507
(0.193)

~ - 6.4
(7.73)

“

(8) 191.574 -14
(9.09)

0.619
(0.55)

0.446
(0.423)

- 22.6
(42.4)

“

(9) 181.072 -13.1 0.62 0,167 “ 18.6 0.424

(10) 180.697 -12.5 0.539 0.035 1.6 12.3 0.487
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Out o f the models considered, the best model is either model (4) or (9). Both models 

have 3 fixed effects parameters and 2 random effects parameters on the intercept and 

time covariate. The difference between the two models is the use o f either dose or 

AUC. The objective function values for the dose and AUC models are 182.893 and 

181.072 respectively. As there is virtually nothing between the objective function 

values, the dose model is preferred as it does not require the computation of the 

individual AUC’s.

4.3 Dog Studies

There were two Beagle dog studies, a 2 week and 4 week oral toxicity study. In studies 

764-02152 and 764-02185, the compound PD-142676 was given orally. The drug was 

administered in gelatin capsules on a mg/kg body weight basis. Dose selection criteria 

and dog numbers will be given in each study section as these altered from study to 

study.

4.3.1 Pharm acokinetic Analyses of Dog D ata Sets

4.3.1.1 Study RR-764-02152 -  2 W eek Study

4.3.1.1.1 Study Design

For toxicokinetic evaluation, 8 beagle dogs per gender were assigned to 8 experimental 

groups of 2 dogs o f the same gender/group. Dogs were administered PD-142676 at 0, 5,
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20 and 60 mg/kg in a gelatin capsule once daily for two weeks. Plasma samples were 

collected either on day 1 or day 9 at 1, 2, 4, 6, 8 and 12 hours post-dose.

Escalating dose and 2 week repeated dose toxicity studies with PD-142676 in monkeys 

demonstrated that CNS effects occurred at oral doses between 20 and 75 mg/kg. 

Without prior experience in dogs, an initial dose of 60 mg/kg was used based on the 

lack of clinical signs in another study in monkeys. A dose o f 20 mg/kg was 

subsequently selected based on clinical signs induced at 60 mg/kg, and 5 mg/kg was 

selected based on clinical signs at 20 mg/kg.

4.3,1.1.2 Pharm acokinetic Analysis

The number of plasma concentrations measured are given in table 4.25.

Table 4.25. Number o f  concentration measurements fo r  2 week toxicity study in beagle 

dogs study 764-02152.

0 mg/kg 5 mg/kg 20 mg/kg 60 mg/kg Total

Male 0(14) 5(9) 7(1) 8(0) 20(24)

Female 0(14) 0(14) 19(4) 8(0) 27(32)

Total 0(28) 5(23) 26(5) 16(0) 47(56)

Q B L Q

There are only 47 concentration measurements above the limit o f quantification from 16 

dogs. An examination of the data showed that there is very little information and only 

simple models o f the type used for the rat data were used. One compartment models
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were used with either first-order absorption or bolus administration. The models

examined are given below. The results are in table 4.26.

(1) One compartment first-order absorption, exponential random effects on apparent 

clearance and apparent volume, exponential and additive residual error model.

(2) One compartment first-order absorption, exponential random effects on apparent 

clearance and apparent volume and exponential residual error model.

(3) One compartment bolus administration, exponential random effects on apparent 

clearance and apparent volume, exponential and additive residual error model.

(4) One compartment bolus administration, exponential random effects on apparent 

clearance and apparent volume, exponential residual error model.

Table 4.26. Results o f  NONMEM runs fo r  2 week beagle dog study 764-02152.

Model O.F. Cl/F
(S.E.)

VIF
(S.E.)

ka
(S.E.)

(Oc'f
(S.E.)

a>v
(S.E.)

o f
(S.E.)

02
(S.E.)

(1) 559.02 5.02
(0.858)

35.6
(7.34)

2.83
(0.821)

0.141
(0.129)

0.759
(.303)

0.49
(0.189)

3xl0"y
(0.277)

(2) 559.22 5.03
(0.862)

35.7
(7.37)

2.83
(0.819)

0.142
(0.129)

0.76
(0.305)

0.499
(0.19)

“

(3) 559.38 4.86 34.9 “ 0.144
[0.097]

0.855 0.504 5 x l0 '5

(4) 559.66 4.86
(0.825)

34.8
(7.25)

“ 0.126
(0.126)

0.781
(0.333)

0.516
(0.192)

“

[.] Covariance between apparent clearance and apparent vo ume.

As the objective function values are virtually the same, the simplest, model (4) would 

seem appropriate. Residual and weighted residual plots o f model (4) are given in 

figures 4.13 and 4.14.
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Figure 4.13. Residual versus population predicted for model (4) fo r  beagle dog 2 week

study .
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Figure 4,14. Weighted residual versus population predicted fo r  beagle dog 2 week 

study.
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4.3.1.2 Study RR-764-02185 -  4 Week Study

4.3.1.2.1 Study Design

For toxicokinetic evaluation, 4 groups o f 3 dogs per gender were given PD-142676 as 

an oral dose once daily for 4 weeks. Male and female beagle dogs were administered 

PD-142676 at 0, 5, 10 and 20 mg/kg/day. The 20 mg/kg/day group was divided into 10 

mg/kg given 4 hours apart. The dosing interval for animals in the 20 mg/kg dose group 

was extended during the study because o f adverse drug reactions. Doses were given 6 

hours apart to 2 female dogs on days 3 and 4. Dosing interval was increased to 8 hours 

for all female dogs beginning on day 5 and for all male dogs beginning on day 7 o f the 

study. On days 1,14 and 22 of the study, plasma samples were collected from the dogs 

representing each gender and each dose group at 1 ,2 ,4 ,  6, 8, 12 and 24 hours post-dose. 

The 4 hour sample on day 1 and the 8 hour sample on days 14 and 22 were obtained 

prior to administration o f the second dose for the 20 mg/kg dose group. A single 

sample was obtained 2 hours post-dose for the placebo group.

Doses were selected based on the previous 2 week oral toxicity study. All dogs 

convulsed after a single dose of 60 mg/kg and one animal died. At 20 mg/kg, both 

males convulsed after a single dose and dosing was continued. At 5 mg/kg, dogs 

exhibited no clinical signs with 2 weeks of dosing. Based on these data, doses o f 5, 10 

and 20 mg/kg were chosen for this study. The 20 mg/kg dose was split to reduce deaths 

and maintain exposure. As the 20 mg/kg/day dose group was divided into two 10 

mg/kg doses, this suggests that it was considered that Cmax might have been an 

important parameter but was not considered at the time o f analysis.
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4.3.1.2.2 Pharmacokinetic Analysis

The number o f concentration measurements are given in table 4.27.

Table 4.27. Number o f  concentration measurements fo r  4 week toxicity study in beagle 

dogs.

0 mg/kg 5 mg/kg 10 mg/kg 20 mg/kg Total

Male 0(9) 30(33) 41(22) 44(5) 115(60)

Female 0(9) 33(30) 42(21) 54(9) 129(60)

Total 0(18) 63(63) 63(43) 16(0) 244(120)

(•) b l q

There are 244 concentration measurements from 18 dogs. The measurements are not 

only repeated within a particular day but repeated on 3 days (1, 14 and 22). Such data 

comes under the name o f multi-occasion data and requires extensions o f the current 

methods of interindividual and residual variability modelling to include quantification 

o f the variability due to observations being made at different occasions. Karlsson and 

Sheiner (1993) and Lunn and Aarons (1997) have reported on methodology for 

analysing multi-occasion data using NONMEM and MCMC methods respectively. 

This data set is not specifically in the form o f multi-occasion data as the dosing is 

repeated daily. The natural way to think o f multi-occasion data is where the drug is 

given on completely independent occasions. From the previous 2 week dog study, tm  

was estimated to be 5 hours, so by the end o f 24 hours, approximately 95% o f the drug 

would have been eliminated. This is approximately analogous to the drug being given 

on independent occasions.
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To test that there was not a trend in the concentration profiles from occasion to 

occasion, individual AUC values were obtained by the trapezoidal rule and ANOVA 

was used to test for significant differences between the AUCs on different occasions for 

the dosing groups. No significant difference was seen, so there was no need to look for 

trends between occasions. The models considered for the 4 week dog study were:

(1) 1 compartment first-order absorption, exponential variability on Cl/F  and VIF and 

residual tenns.

(2) 1 compartment first-order absoiption, exponential variability on Cl/F  and V/F and 

combined error on residual term.

(3) 1 compartment first-order absoiption, exponential variability and exponential 

interoccasion on Cl/F  and V/F and combined error residual term.

(4) Same as (4) with exponential error on ka.

(5) 1 compartment first-order absorption, exponential error and exponential 

interoccasion on Cl/F  and V/F and exponential error residual term.

(6) 1 compartment first-order absorption, additive error on Cl/F, V/F and ka and 

exponential residual term.

(7) 1 compartment first-order absorption, exponential error on Cl/F, VIF, ka and residual 

terms.

(8) 2 compartment first-order absorption, exponential error on Cl/F  and VIIF and 

exponential residual term.

(9) 2 compartment first-order absoiption, exponential error on Cl/F, VI IF  and ka and 

exponential residual term.

The results o f these models are given in table 4.28.
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Inclusion o f interoccasion variability on the parameters did not reduce the objective 

function by an appreciable amount and so it was decided that an interoccasion 

parameter was not needed to be estimated for this data set. A two compartment model 

with first-order absorption did not improve the fit and so the model chosen as best 

describing this data set was model (7), a one compartment first-order absorption with 

exponential errors on the parameters Cl/F, V/F, ka and the residual term. Residual plots 

are given figures 4.15 and 4.16.

F igure 4.15. Residual versus population predicted fo r  4 week beagle dog study.
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Figure 4,16. Weighted residual versus population predicted fo r  4 week dog study.
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4.3.2 Pharmacodynamic Analyses of Dog Data Sets

4.3.2.1 Study RR-750-02250 -  2 Week Study

4.3.2.1.1 Pharmacodynamic Data

Clinical signs were observed on a daily basis and reported in 745-02250 on a daily 

basis. The type of clinical signs observed were emesis, convulsion, salivation, tremor, 

hyperthermia, diarrhoea, hyperemia, tachypnoea and ataxia. Convulsion was used as 

the measure o f pharmacodynamic response.

4.3.2.X.2 Pharmacodynamic Analysis

The number o f convulsions are given in table 4.29

Table 4.29. Number o f convulsions in 2 week beagle dog study 745-02250.

0 mg/kg 5 mg/kg 20 mg/kg 60 mg/kg Total

Male 0(28) 0(28) 2(2) 2(2) 4(60)

Female 0(28) 0(28) 2(23) 2(2) 4(81)

Total 0(56) 0(56) 4(25) 4(4) 8(141)

(.) Total number of possible observations.

All 4 dogs in the 60 mg/kg group were withdrawn after one day o f treatment for a 

reversibility study due to severe toxicities after one dose. One female dog died after one 

day in the 60 mg/kg group. Both male dogs in the 20 mg/kg group were also withdrawn

158



due to severe toxicities after one dose but the female dogs continued but were sacrificed 

on days 11 and 12. The models considered for the analysis o f study 745-02250 were the 

following.

(1) P\ +bu

(2)

(3)

(4)

(5)

(6)

/?, + bu>Dose — 0 
f3x + by, Dose = 5 

J3X+ J32 + f3Atime{j + bXi,Dose = 20 

Px + /?3 + /3Atime{j + bXi,Dose = 60

/?, + by 9 Dose = 0 

/?! + bv , Dose = 5 

Pi + Pitim ev + by, Dose — 20 

JB4 + p 5timej + bljt Dose -  60

-  50 + fijim ey  + bv , Dose = 0

-  50 + p^timefj +bu, Dose = 5 

- 5 0  + /?, + P3time(j + bu, Dose — 20

-  50 + /?2 + p 2time(j + bu , Dose = 60

- 5 0  + by, Dose = 0 

— 50 + bli9 Dose = 5
-  50 + /?, + + by, Dose = 20

-  50 + /?2 + /?3timei} + bu , Dose -  60

- 5 0  + by, Dose = 0 

- 5 0  + by,D ose -  5

-  50 + /?, + by, Dose = 20

-  50 + f i2 + bXi, Dose = 60

The results o f these models are given in table 4.30.

Models linear in dose and AUC could not be estimated, probably due to the lack o f 

information in the data. The models considered are all fixed effects models on the dose 

level as this was the only way to see if  there was an effect by dose. Apart from model
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(3) which has five parameters and model (1), the other models all have relatively the 

same fit to the data in terms of the objective function. As no convulsions were observed 

in the placebo and 5 mg/kg group, it is not sensible to estimate a baseline probability but 

better to fix it to a number corresponding to a low probability. This was set arbitrarily 

to -50 and the baseline values in the 20 and 60 mg/kg dose groups could be estimated 

with respect to this level. Model (6) was chosen because it did not require an estimate 

for the baseline probability in the lowest two dose groups and in total required the 

estimation o f two other baseline probabilities for the two highest dose groups.

Table 4.30, Results o f  NONM EM  runs fo r  2 week beagle dog study 745-02250.

Model O.F Pi
(S.E,)

$2
(S.E.)

P3
(S.E.)

04
(S.E.)

05
(S.E.)

co/
(S.E.)

(1) 51.803 -8.45
(4)

“ - “ 110
(193)

(2) 33.52 -9.85 8.92 9.82 -0.224 “ 0.004

(3) 17.974 -35.9 -2.31 0.052 22.1 -14.3 1.2x10 '7

(4) 33.541 49.2 50 -0.242 “ " 4.8x10*

(5) 33.689 49.3 50.2 -0.275 ~ “ 1.3x10‘4

(6) 34.771 48.1
(1.04)

50.7
(3.07)

~ “ “ 3.37
(5.48)

4.3.2.2 Study RR-745-02251 -  4 W eek Study

4.3.2.2.1 Pharmacodynamic Data

Clinical signs were reported on a daily basis in study 745-02251. The number o f 

convulsions are reported in table 4.31.
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Table 4.31. Number o f  convulsions in 4 w>eek beagle dog study 745-02251.

0 mg/kg 5 mg/kg 10 mg/kg 20 mg/kg Total

Male 0(84) 0(84) 0(84) 2(67) 2(319)

Female 0(84) 0(84) 0(84) 3(84) 3(336)

Total 0(168) 0(168) 0(168) 4(151) 5(655)

(.) Total number o f possible observations.

One male dog in the 20 mg/kg group had convulsions and was sacrificed on day 11. 

One female dog in the 20 mg/kg group had convulsions but survived to the end o f the 

study.

4.3.2.2.2 Pharm acodynam ic Analysis

The models considered for the analysis o f the 4 week beagle dog study were:

(1) h + K

(2) /?, + P 2dosei + bu

(3) /?, + J32dosej + J33timetj +bu

(4) /?, + f31dosei + p 3time{j + p 4seXj +bu

(5) /?, + P 2timeiJ + J33sexj + bu

(6)

/?{ + bu, Dose = 0 

P x + P 2 + ^i/ > Dose = 5 
Px + /?3 + bXi, Dose ~  10 

p x + P 4 + by, Dose = 20

(?) Px + P 2auci +bu

(8) p x + P 2auci + Pf imey  +bu
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(9) /?! + f31auci + P 3timetj + P^aucfim e- +bu

(10) (y?| +bu) + p  2 owe,. + (P3 + b2. )time{j

The results o f these models are given in table 4.32.

T able 4,32. Results o f  NONMEM runs fo r  dog 4 week study 745-02251.

Model O.F fii
(S.E.)

A
(S.E.)

A
(S.E.)

A
(S.E.)

co/
(S.E.)

20)2
(S.E.)

(1) 42.476 -11.2
(1.31)

“ “ 65.6
(21.5)

-

(2) 40.457 -22.4 0.876 “ “ 5.53

(3) 29.601 -33.7 1.58 -0.412 " 4.99 "

(4) 29.569 -30.1 1.4 -0.408 0.382 4.6 “

(5) 31.652 -8.36 -0.447 0.13 “ 62.7 -

(6) 40.452 -24.6 -13.4 -13.3 19.9 49.8

(7) 36.524 -10.8
(3.25)

3.54
(1.11)

“ “ 1.02
(1.72)

“

(8) 27.016 -8.89
(3.07)

3.72
(1.27)

-0.426
(0.186)

" 2.84
(3.46)

-

(9) 27.126 -8.97 3.73 -0.418 -0.0118 3.36 “

(10) 27.015 -8.73 3.65 -0.423 - 2.85

oT—HXOO

The models with the lowest objective function are those where AUC is a predictor but 

these are only slightly lower than those in dose. The best model appears to be model

(3), the model involving dose and time as linear predictors. Unlike previous models in 

the rat data, the time coefficient is negative. This implies that as time increases, the 

probability o f observing a convulsion reduces.
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4.4 Monkey Studies

There were three Cynomolgus monkey studies, a 2, 4 and 13 week oral toxicity study. 

In studies 764-01936, 764-02162 and 764-02064, the compound PD-142676 was given 

orally as this was intended to be the route of administration when given in human 

clinical trials. The drug was administered by oral gavage as a suspension in 0.5% 

methylcellulose on a mg/kg body weight basis. Dose selection criteria and monkey 

numbers will be given in each study section as these altered from study to study.

4.4.1 Pharmacokinetic Analyses of Monkey Data Sets

4.4.1.1 Study RR-764-01936 -  2 Week Study

4.4.1.1.1 Study Design

Two male and 2 female monkeys were assigned at random to each o f four dose groups, 

0, 5, 10 or 20 mg/kg given orally daily for 2 weeks. On day 10, plasma samples were 

obtained at each o f 7 time intervals post-dose: 0.5, 1, 2, 4, 8, 12 and 24 hours. In the 

control group, 1 sample was obtained from each monkey 24 hours post-dose.

Doses were selected based on a dose escalation study in which significant clinical 

effects were not seen until 20 mg/kg was reached. On this basis, the upper dose group 

was selected as 20 mg/kg with the lower dose groups as 5 and 10 mg/kg.
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4.4.1.1.2 Pharmacokinetic Analysis

The number o f concentration measurements are given in table 4.33.

Table 4.33. Number o f  concentration measurements in monkey 2 week study 764- 

01936.

0 mg/kg 5 mg/kg 10 mg/kg 20 mg/kg Total

Male 0(2) 14(0) 13(1) 13(1) 40(4)

Female 0(2) 8(6) 12(2) 14(0) 34(10)

Total 0(4) 22(6) 25(3) 27(1) 74(14)

(.) Number o f concentrations BLQ.

There are 74 concentration measurements from 12 monkeys. A male monkey in the 5 

mg/kg dose group had exceptionally high concentrations uncharacteristic o f the other 

monkeys so this monkey was deleted from the analysis. Animals were deleted form the 

study if  it was considered that an incorrect dose was administered or the data had been 

reported incorrectly. This reduced the number o f concentrations to 67 from 11 

monkeys. The models considered in the pharmacokinetic analysis o f PD-142676 are 

given below.

(1) 1 compartment first-order absorption, exponential variability on CL/F, V/F and 

residual terms.

(2) 1 compartment first-order absorption, exponential variability on CL/F  and V/F and 

combined residual error model.
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(3) 1 compartment first-order absorption, full exponential interindividual variance 

matrix on CL/F  and V/F and exponential residual error model.

(4) 1 compartment first-order absorption, exponential variability on CL/F, VIF, ka and 

residual terms.

(5) 1 compartment first-order absorption, exponential variability on CL/F, V/F and ka 

and combined residual error model.

(6) 2 compartment first-order absorption, exponential variability on CL/F, V/F and 

residual terms.

The results o f these models are given in table 4.34.

Models (2) and (5) appeal' to show that the addition o f an additive component in the 

residual error model cause downward bias in the estimates o f the Vl/F. From table 

4.34, the best model is model (5), the one compartment first-order absoiption model 

with exponential errors on all three parameters and a combined residual error model. 

Residual plots are shown in figures 4.17-4.19. Figures 4.20 and 4.21 give individual 

and population fits for two monkeys, one male from the 5 mg/kg group and the other, a 

female from the 20 mg/kg group.
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Figure 4.17. Residual versus time for model (2) from monkey 2 week study.
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Figure 4.18. Residual versus predicted fo r  model (2) from  monkey 2 week study.
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Figure 4.19. Weighted residual versus predicted fo r  model (2) from  monkey 2 week 

study.
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Figure 4.20. Individual p lo t for male monkey 681 from 5 mg/kg dose group.
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4.4.1.2 Study RR-764-02162 -  4 Week Study

4.4.1.2.1 S tudy Design

Four groups o f 2 monkeys per gender were given PD-142676 as an oral dose suspension 

once daily for 4 weeks. Male and female monkeys were administered 25, 40, 60 and 

120 mg/kg. An additional 2 monkeys per gender were given placebo. Plasma samples 

were collected on day 9 at 0, 1, 2, 4, 10 and 24 hours post-dose for the 25, 40 and 60 

mg/kg dose groups. The placebo group had one sample per monkey taken at 4 hours 

post-dose. Animals in the 120 mg/kg group were sampled oil day 3 at the same times as 

those in the other groups.

Doses were based on the previous 2 week toxicokinetic study. The initial doses for this 

study were intended to explore a higher range o f doses than had been tested previously 

in repeated dose regimens.

4.4.1.2.2 Pharm acokinetic Analysis

The number o f concentration measurements are given in table 4.35.

Table 4.35. Number o f  concentration measurements in 4 week study 764 02162.

0 mg/kg 25 mg/kg 40 mg/kg 60 mg/kg 120 mg/kg Total

Male 0(2) 10(2) 10(2) 6(0) 10(0) 36(6)

Female 0(2) 11(1) 10(2) 11(1) 11(1) 43(7)

Total 0(4) 21(3) 20(4) 17(1) 21(1) 79(13)

(.) BLQ
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There are 79 concentrations above the limit o f quantification from 15 monkeys. A male 

monkey was deleted from the study due to exceptionally high concentrations in the 120 

mg/kg dose group which resulted in death for the monkey. This left 75 concentrations 

from 14 monkeys. The models considered were the following.

(1) 1 compartment first-order absorption, exponential variability on CL/F, V/F and 

residual terms.

(2) 1 compartment first-order absoiption, exponential variability on CL/F , V/F and ka 

and exponential residual error model.

(3) 1 compartment first-order absoiption, exponential variability on CL/F, V/F and ka 

and combined residual error model.

The results are given in table 4.36.

Table 4.36. Results o f  NONMEM runs fo r  monkey 4 week study 764-02162.

Model O.F. Cl/F V/F ka cocf 20)y
2----

( O k a erf <7 2

(S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

(1) 693.2 21.9
(2.91)

40.4
(9.27)

0.193
(0.011)

0.106
(0.053)

0.433
(0.361)

- 0.272
(0.049)

(2) 692.16 22.4
(3.13)

46
(11.2)

0.2
(0.01)

0.108
(0.057)

0.399
(0.259)

0.07
(0.14)

0.258
(0.049)

(3) 691.29 23
(3.22)

58.3
(16.5)

0.228
(0.033)

0.124
(0.064)

0.328
(0.201)

0.221
(0.295)

0.22
(0.068)

23.2
(35.7)

As all the objective function values are similar, model (1) was chosen as it was the 

simplest. Residual plots for model (1) are given in figures 4.22 and 4.23.
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Figure 4.22. Residual versus population predicted for model (1) in monkey 4 week

study,
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F igure 4.23. Weighted residual versus population predicted fo r  model (1) in monkey 4 

week study.
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4.4.1.3 Study RR-764-02064 -  13 Week Study

4.4.1.3.1 Study Design

Three groups o f 4 monkeys per gender were given PD-142676 as an oral dose solution 

once daily for 13 weeks. Male and female monkeys were administered PD-142676 at 1, 

5 or 20 mg/kg. An additional 4 monkeys per gender were given dosing vehicle and 

used as controls. Plasma samples were collected at 0, 1, 2, 4, 10 and 24 hours post­

dose.

The doses were selected based on the previous 2 and 4 week toxicokinetic studies. The 

high dose selected for this study, 20 mg/kg, was expected to cause significant clinical 

signs in at least some monkeys. The low dose,l mg/kg, was expected to be a no-effect 

dose or to elicit mild clinical signs, 5 mg/kg was chosen as the middle dose.

4.4.1.3.2 Pharm acokinetic Analysis

The number o f concentration measurements are given in table 4.37.

Table 4.37. Number o f  concentrations in monkey 13 week study 764-02064.

1 mg/kg 5 mg/kg 20 mg/kg Total

Male 4(20) 9(15) 20(4) 33(39)

Female 5(19) 11(13) 13(11) 29(43)

Total 9(39) 20(28) 33(15) 62(82)

(.) BLQ
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There were 62 concentration measurements from 20 monkeys. The models considered

for this data were the following.

(1) 1 compartment first-order absorption, exponential error on CL/F, V/F and residual 

terms.

(2) 1 compartment first-order absorption, exponential error on CL/F  and V/F and 

combined residual error model.

(3) 1 compartment first-order absorption, flill interindividual variance matrix on CL/F  

and V/F and combined residual error model.

(4) 1 compartment first-order absorption, exponential error on CL/F, V/F, ka and 

residual terms.

The results of these models are given in table 4.38.

Table 4.38. Results o f  NONMEM runs fo r  monkey 13 week study.

Model O.F. Cl/F V/F ka (Oci G)y G)ka cr/ <32

(S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

( i) 395.34 28.9
(3.58)

99.5
(19.6)

0.49
(0.076)

0.16
(0.066)

1.73
(0.862)

- 0.101
(0.031)

-

(2) 390.0 32.8
(3.07)

197
(32.5)

0.401
(0.075)

0.0002
(0.035)

2.79
(1.74)

- 0.0782
(0.028)

53.2
(23.4)

(3) 395.9 53.2
(22.5)

77.4
(27.8)

0.325
(0.053)

1.02
(1.41)

0.184
(0.318)

0.113"
(0.45)

0.059
(0.066)

52.8
(25.7)

(4)
—------

404.76 33.2
(4.02)

32.4
(8.06)

0.372
(0.036)

0.244
(0.095)

0.048
(0.066)

1.08
(0.428)

0.06
(0.021)

Covariance between CL/F  and V/F.

The model best describing this data set is model (1). Although model (2), has an 

objective function value which is 5 points lower, there is an extra residual error term 

and does not add much to the description o f the variability around the population mean. 

Residual plots are given in figures 4.24 and 4.25.
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Figure 4.24. Residual versus predicted plot for 13 week monkey study.
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Figure 4.25. Residual versus predicted p lo t fo r  13 week monkey study.
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4.4.2 Pharmacodynamic Analyses of Monkey Data Sets

4.4.2.1 Study RR-745-02083 -  2 W eek Study

4.4.2.1.1 Pharmacodynamic Data

Clinical signs were observed on a daily basis but only reported and summarised as being 

from a particular week. The types of clinical signs and symptoms observed in monkey 

were anorexia, emesis, alopecia, skin soreness, convulsions and comatose. Convulsions 

were not observed in any of the monkeys so there was no data to analyse in the 2 week 

study.

4.4.2.2 Study RR-745-02236 -  4 W eek Study

4.4.2.2.1 Pharmacodynamic Data and Analysis

Clinical signs were reported on a daily basis in study 745-02236. The number o f 

convulsions are given in table 4.39.

Table 4.39. Number o f  convulsions in monkey 4 week study 745-02236.

0 mg/kg 25 mg/kg 40 mg/kg 60 mg/kg 120 mg/kg Total

Male 0(56) 0(56) 0(56) 1(29) 1(8) 2(205)

Female 0(56) 0(56) 4(45) 1(48) 1(10) 6(215)

Total 0(112) 0(112) 4(101) 2(77) 2(18) 8(420)

(.) Total number o f possible observations.
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There were 420 observations, 8 o f which are convulsions from 20 monkeys.

The models considered for this study were the following. 

0) P i + K

(2) /?, + p 2dosei + [3J im 6a + bu

(3) /?, + f i2time{j + bu

(4) (/?, + bu) + f i2dose,. + (&  + b2i)time}j

(5)

Pi + b i 

Pi + b \ 

Pi  +  P i  + b \
Pi + /?3 + bx

P \ + P a + b \

, Dose = 0 

, Dose = 25 

, Dose = 40 

, Dose — 60 

, Dose = 120

(6)

/?, + P dim e}j + b 

P x + J35time(j + b

P \ + P i  + Pstime tj  + bu

Pi + P 3 + P 5timetJ +b 

Pi + Pa + P 5timeiJ +b

,, Dose = 0 

Dose = 25 

f , Dose = 40 

i , Dose — 60 

i, Dose = 120

(7) /?, + P 2aucx + bXj

(8) /?, + p 2auc{ + fidime-'j + bXj

(9) (/?, +bu) + [32auci + (/?3 + b^ tim e^

The results o f these models are given in table 4.40.

The model of choice from the models shown is model (2) which is linear in dose and 

time. The same model in AUC has a slightly lower objective function value but 

requires the computation of the AUC. The models with two random effects also have
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slightly lower values for the objective function but not enough to warrant the use o f 

another random effect in the model.

Table 4.40. Results o f  NONMEM runs fo r  monkey 4 week study.

Model O.F A
(S.E.)

A
(S.E.)

A
(S.E.)

A
(S.E.)

A
(S.E.)

cof
(S.E.)

CD2
(S.E.)

0 ) 40.175 -9.98
(2.22)

“ “ “ 70.3
(80.2)

“

(2) 34.236 -21.8 0.0608 0.389 “ ~ 176 ”

(3) 35.445 -19.2 0.326 " ~ " 280 ”

(4) 32.786 -15.1 0.005 0.0213 ” “ 216 2.09

(5) 36.933 -14.5 8.85 10.7 10.8 " 2.97 “

(6) 32.659 -42 4.9 6.44 26.1 0.949 648 ”

(7) 39.875 -10.6
(2.53)

0.434
(0.26)

” " “ 58.1
(79.4)

"

(8) 34.007 -38.4 0.9 0.908 “ " 916 "

(9) 32.147 -34.8 3.47 0.293 “ “ 552 6.12

4.4.2.3 S tudy RR-745-01694 -  13 W eek Study

4.4.2.3.1 Pharm acodynam ic D ata and Analysis

Convulsions were observed on a daily basis but were reported as being from a particular 

week. The number o f convulsions are given in table 4.41.
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Table 4.41. Number o f  convulsions in monkey 13 week study 745-01694.

0 mg/kg 1 mg/kg 5 mg/kg 20 mg/kg Total

Male 0(52) 0(52) 0(52) 0(52) 0(208)

Female 0(50) 1(52) 0(52) 0(52) 1(206)

Total 0(102) 1(104) 0(54) 0(104) 1(414)

(.) Total number o f possible observations.

Out o f 414 observations from 32 monkeys, there was only one convulsion from a 

female in the 1 mg/kg dose group. The ability to estimate any sort o f model from this 

data is negligible so no data analysis was earned out.

4.5 Discussion

The analysis of the rat pharmacokinetic data sets did not prove to be an easy task. The 

rat 2 week data set was from a destructive sampling scheme with only one sample 

available per rat. This meant that it was only possible to obtain one level o f random 

variability and that was on the inter-rat level. When inter-rat variability was estimated 

as a function o f the model (one compartment first-order absorption at steady state), the 

constant coefficient of variation (exponential error model) was estimated as 

approximately 55% whereas the additive error model gave an estimate of the variability 

o f 0.16 (standard deviation). The parameter estimates o f the apparent clearance and 

volume were approximately the same for different error models, but the first-order 

absorption rate constant changed by an order of magnitude. This implied that the 

absorption phase was poorly determined as could be seen from an examination o f the
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data. When the inter-rat variability was estimated as a component o f the apparent 

parameters, there was a lack of information as could be seen from the estimates o f the 

variability as they altered markedly under different assumptions. Supposedly better 

estimates o f the variability on the parameters were determined when a zero-order 

absorption model was chosen and proportional errors were assigned to the parameters 

Cl IF  and VIF although this did not prove to be the best model o f those considered. The 

best model considered was one where fixed effects were estimated for each dose level. 

This resulted in the lowest objective function value whether a first or zero-order 

absoiption model was assumed. From the fixed effects model, as dose increased 

apparent clearance decreased implying nonlinear pharmacokinetics.

The rat 4 week data set had three concentration measurements from each rat that 

allowed the estimation o f interindividual as well as residual variability. Again, one 

compartment models at steady state were used with first and zero-order absorption 

models. For this data set, there was considerable difficulty in estimating the apparent 

volume term. It appeared to be better to use an exponential error model on the 

parameters and residual term, but a combination of additive and exponential errors 

caused the volume term to vary considerably under different model assumptions. The 

absorption rate constant was difficult to estimate due to the absence o f data in the 

absorption phase and the infusion time in the zero-order model was also difficult to 

estimate. Inter-rat variability was also difficult to determine with parameter estimates 

varying by 6 orders o f magnitude under different assumptions. The best model 

appeared to be the first-order absorption model with exponential error model for the 

inter-rat and residual variability.
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For the 13 week rat data set, there were multiple observations from each rat so both 

levels o f variability were estimated. The same models were considered as in the two 

previous data sets with the fixed effects models on dose giving the lowest objective 

function values. As with the two week data set, there appeared to be an increase in 

clearance as dose decreased but this was only the case when an exponential error model 

was assigned to the inter-rat and residual variability. A one compartment first-order 

absorption mixed effects model resulted in an increase in the objective function by 10 

points from the fixed effects models with a difference o f 6 fixed effects parameters. It 

was decided that the best model o f those considered was the one compartment first- 

order absorption model at steady state.

As none o f the three rat data sets were particularly well estimated, all three sets o f data 

were combined to see if this would improve estimation o f the inter-rat variability in 

particular. As was the case with the three separate data sets, the best model was a one 

compartment first-order absorption model with exponential error terms. Even with this 

model specification and combined data, it was still difficult to estimate inter-rat 

variability for V/F and also difficult to estimate the absoiption rate constant.

The 2 week dog study had plasma concentration data collected on two days which 

meant that a multiple dose model was needed. There was only a total o f 47 

concentration measurements taken and so there was not much data with which to 

develop a model. Only one compartment models were considered. The best model of 

the four considered was the bolus model with exponential error on the parameters and 

residual term. A simple model such as this was probably all that could be estimated 

with such limited data.
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The 4 week dog study allowed the estimation of interoccasion variability as plasma 

samples were collected on three separate occasions although PD -142676 was 

administered once daily. From the data analysis, it was found that including an 

interoccasion component in the model did not improve the model an appreciable 

amount. Adding another compartment into the model did not improve the fit either and 

the best model o f those considered was a one compartment first-order absoiption model 

with exponential error on all three parameters and on the residual error term.

There were three monkey data sets. Similar results were found in these studies as for 

the rat and dog studies. For the 2 week monkey data set, the best model was a one 

compartment first-order absorption model with exponential error on all three parameters 

and a combined residual error model. For the 4 week data set, the best model was again 

a one compartment first-order absorption model with exponential error on apparent 

clearance and volume and exponential residual error. For the 13 week data set, the best 

model was o f the same type as for the 4 week data set. Throughout all the toxicokinetic 

data sets, the model that systematically described adequately the different species data 

sets (except for dog 2 week data) was the one compartment first order absorption model. 

However, even though a first order absorption model was chosen, this was consistently 

difficult to estimate. Nothing more complicated could be discerned from the data, 

probably due to the low number o f concentration measurements and high levels of 

variability in the data sets.

In preclinical studies, one o f the main aims is to accrue information about the 

pharmacokinetics and pharmacodynamics of the drug to aid in the study o f the drug in 

humans. One way o f doing this is by looking at relationships between species in terms

182



of body weight and then extrapolating to man (Cosson et al (1997)). As the human data 

was not considered, this was not possible but it was possible to look at the scaling 

between the three species analysed here. As the drug was given normalised to the 

animals weights, the apparent parameters estimated previously needed to be scaled to be 

independent o f weight. The results are given in table 4.42.

Table 4.42. Values o f  apparent clearance volume independent o f  body weight.

Species Time
scale

Body
Weight
(kg)

CliFi kg V/Flkg ClIF V/F

Rat 2 week 0.268 10.7 59.2 2.87 15.87
4 week 0.303 5.17 102 1.57 30.91
13 week 0.411 6.19 56.4 2.54 23.18

Dog 2 week 11.577 4.86 34.8 56.26 402.88
4 week 10.777 16 103 172.43 1110.03

Monkey 2 week 3.963 23.1 59.4 91.55 235.40
4 week 3.707 21.9 40.5 81,18 150.13
13 week 3.502 28.9 99.4 101.21 348.10

The values chosen for the apparent clearance and volume were from models which were 

analysed from each specific data set alone, rather than combined data. The values o f the 

body weights in table 4.42 are the arithmetic means o f the animals in the particular data 

sets. In figures 4.26 and 4.27 are log-log plots of the apparent clearance and volume 

estimates versus average body weight. As no information was available on 

bioavailability, absolute clearance and volume could not be estimated. As can be seen, 

the log-log plot for apparent volume shows very good linearity implying that a power 

function in terms of body weight would be an appropriate model for apparent volume. 

The log-log plot for apparent clearance was not quite as good but was still reasonable. 

It was surprising that such a good plot was found given bioavailability was not 

accounted for.
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Figure 4.26. Plot o f  apparent clearance versus average body weight.
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F igure 4,27. Plot o f  apparent volume versus average body weight.
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The results o f the power function fitted to the data are given in table 4.43 and graphs are 

given in figures 4.26 and 4.27. These results were obtained from Splus 4.5.
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Table 4,43. Results o f  power function fitted  to apparent parameters versus average 

body weight log(CI(V) /F )  = a  + j3\og(weight).

Parameter Value Standard Error t value Pr(>|t|) R2
Apparent
Clearance

a 2.351 0.279 8.440 0.0002 0.886

p 1.180 0.173 6.826 0.0005
Apparent
Volume

a 4.198 0.174 24.132 0.000 0.928

j . 0.949 0.108 8.793 0.0001

The phai'macodynamics o f PD-142676 was difficult to analyse due to the sparseness o f 

the data (lack o f convulsions). As well as this, the data were binary corresponding to 

whether a convulsion was observed or not. In several o f the data sets, there were only a 

few convulsions and in one data set, no convulsions were observed. In such a setting, it 

was highly unlikely that any model o f interest would be found to describe the data and 

allow inferences to be made.

For the rat pharmacodynamic data, the quality o f data varied considerably between 

studies. In the two week data set, there were only 2 observed convulsions from 379 

observations and one o f these rats died post convulsion. The model that was selected 

did not include dose or AUC as a predictor o f the drug response demonstrating the 

limited information in the data. In this particular case, including pharmacokinetic 

parameters into the model would not have improved the modelling. The objective 

function values were all small in magnitude as nearly all the observations were zero and 

the model was adequate in describing such data. For the 13 week data set, there were 

21 convulsions from a possible 2433 observations. This was better for modelling 

purposes as there were more convulsions to model but the probabilities o f observing 

convulsions for different doses and times were very small. The best model chosen was 

a lineai' logistic model in terms o f dose and time with additive subject specific random
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effects on the intercept and time parameters. A similar model in terms o f AUC had a 

lower objective function value (by 1 point) but was not chosen because it involved the 

estimation o f individual AUC values. Including the random effect on the time 

parameter caused the dose parameter estimate to switch sign. This was worrying 

because it makes it difficult to interpret what the random effect in this particular case 

was adding.

The 4 week rat data set was more informative as 93 convulsions were observed out o f a 

total o f 705 observations. In this data set, there was a problem with missing data as 

many o f the rats that had convulsions subsequently died. This meant that to see how the 

missing data affected the results of the modelling, a sensitivity analysis was carried out 

where different imputing methods were considered. By imputing the missing data as 

the last observation carried forward or as all 0’s resulted in the graphs in figure 4.12, 

being similar to analysing the data as though the data were missing completely at 

random. The biggest change came by imputing the data as all Us and produced a 

markedly different graph on the 4 week time scale. By imputing the data as all Us 

resulted in all the parameters increasing in magnitude and imputing the missing data as 

0’s resulted in a decrease in the magnitude o f all the parameters. By imputing the data 

as the last observation earned forward resulted in parameter values similar to those o f 

imputing the missing data as all Us because most o f the missing data followed 

convulsions. From the four different data sets, the models were variations on linear 

dose and time. The unimputed data set included sex as a covariate whereas the imputed 

data sets did not. It appears that for whichever imputation method was chosen, 

approximately the same model was obtained.
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For the 2 week dog pharmacodynamic data, there were 8 observed convulsions from a 

possible 141 observations. This data set proved difficult to analyse as models o f the 

form from the 13 week rat data could not be estimated. The models that were chosen 

were dose specific models, and the model chosen as the best model out o f the ones 

considered was where the intercept was fixed for the two lowest doses and for the 20 

and 60 mg/kg dose groups, dose specific intercepts were estimated. Dogs were 

withdrawn for reversibility studies as 6 dogs had convulsions after just one dose. This 

meant that convulsions were observed at earlier but not later times and so there was 

very little information with which to define a model for such data. In the 4 week dog 

data, there were 5 observed convulsions from a total o f 655 observations. A linear dose 

and time model was chosen but the time coefficient was negative. These convulsions 

occurred earlier in the study which probably caused the time parameter estimate to be 

negative. The standard errors could not be estimated implying that the parameters were 

probably not well identified and there was limited information in the data.

The monkey data had very few observed convulsions which made modelling difficult or 

even unnecessary. In the 2 week monkey data set, no convulsions were observed so no 

modelling was required. In the 4 week monkey data, 8 convulsions were observed out 

o f a possible 420 observations. Again the model chosen was a model linear in dose and 

time. The 13 week monkey data set had 1 observed convulsion from a total o f 414 

observations and so it was considered worthless to model such data.

As well as scaling the pharmacokinetics between species, it was o f interest to look at the 

scaling of the pharmacodynamics between species. This was more difficult because 

unlike the pharmacokinetics, the models were empirically based. No mechanism for the
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action o f PD-142676 was proposed for the modelling and so simple exploratory models 

were examined. A comparison o f the dose or time parameter estimates could have been 

made but because o f the different models, this would have been difficult to cany out 

and interpret. Instead, a method o f looking at the graphical representation o f the models 

was considered to see how well the graphs overlapped. This would allow a way o f 

checking how well the models from shorter time studies were at predicting longer time 

studies in a particular species and across species. The logistic curves for the rat data are 

shown in figure 4.28. The 2 week data did not include dose as a predictor and so no 

dose is shown.

F igure 4.28. Plot o f  2 and 4 week rat models.
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The time parameter for the rat 2 week data was large and so when time was greater than 

the length of the actual study, the model predicted that there was a certain chance 

(Pr(T=l)= l) o f observing a convulsion. The 4 week rat data only reached high 

probabilities o f convulsion when a high dose was given and the end o f the study was 

approached. The 13 week rat study produced very low probabilities as shown in figure
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4.29 which would have resulted in a straight line in figure 4.28. The different rat data 

sets did not fit together, as can be seen from the two figures.

F igure 4.29. Plot o f  13 week rat study.
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As the dog data produced negative time parameter estimates which was different to the 

other species studies, this would not allow scaling at all to the other species. Also, 

partly because o f the difference in the number o f convulsions in the two data sets, the 

models did not scale well between the two dog studies either.

The 2 week monkey pharmacodynamic data did not have any observed convulsions so 

no analysis took place. For the 13 week pharmacodynamic data, there was only one 

convulsion so again no modelling took place. For the 4 week pharmacodynamic data, a 

plot o f the model is given in figure 4.30.

To see how well the logistic curves superimpose on each other, it was assumed a 20 

mg/kg dose was given and then the curves were plotted over the longest study period to
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see how well they would extrapolate and relate to each other. As can be seen, the 

curves are markedly different implying that the curves do not scale well.

F igure 4.30. Plot o f  4 week monkey pharmacodynamic model.
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Figure 4,31. Plot o f  4 different studies based on given a 20 mg/kg dose.
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There are many possible reasons why the pharmacodynamic models did not scale well 

in this case. Firstly, one problem could be due to the data being binary. Categorical 

data contains less information than continuous data and trying to scale models that are
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based on response variables that are binary is a difficult task and requires well designed 

and rich data settings.

Another problem with the modelling and extrapolating o f the models was the use o f 

different time scales for the time covariate. In some studies, time was measured in days 

and in others, time was in weeks. This meant that the parameter estimates were on 

different scales for the time effect which would have affected the results. Also, because 

the time effect was sometimes measured in weeks, this was less informative than if  the 

time was in days because the time measure was split into smaller components giving 

more precise times. When time was measured in weeks, even if  there had been more 

than one convulsion in a week, this would still have been considered as observing one 

convulsion in a week and no account was taken of the frequency in a particular week.

The different lengths o f the studies gave the opportunity to study the extrapolation o f 

the shorter studies to the longer studies but this proved not to be possible. Because of 

the difference in the number o f convulsions in each study, there was a lot o f variability 

in how well the models could be defined. Some models were difficult to estimate and 

not much confidence can be put in these models as they were poorly determined. 

Estimation o f standard errors also seemed to be a serious problem. Extrapolation for 

these data should not have been considered due to the lack o f quality of the data. The 

different number o f animals in each study probably also contributed to a difficult task o f 

scaling the logistic curves as different models were based on different numbers o f 

observations.

191



Scaling pharmacodynamics is still possible but not from the approach taken here for 

such data. Only one pharmacodynamic measure was chosen but there were several 

measures that could have been taken as the response variable. Instead o f taking a 

univariate approach to the problem, all the response variables could be analysed in a 

multivariate form which would hopefully allow more information for scaling purposes. 

Drugs do not have a singular effect but instead multiple effects and it seems sensible to 

analyse the pharmacodynamics in such a way. This would automatically get rid o f the 

problem o f choosing which variable to take as the response variable. Scaling o f the 

pharmacodynamics would be very useful in planning phase I clinical trials and so 

suitable doses could be selected without severe toxic effects being encountered. The 

advantage o f pharmacodynamic scaling is that it may be possible to predict the 

pharmacological activity in man from preclinical studies.
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5. Sumatriptan -  Phase II Data Set

5.1 Review of Sumatriptan

Sumatriptan is a selective agonist at a subtype o f the 5-hydroxytryptamine-l (5-HT1) 

receptor. Sumatriptan mediates vasoconstriction o f cranial blood vessels which may 

form the basis o f its efficacy in migraine and cluster headache. Sumatriptan is currently 

marketed as a subcutaneous injection and oral tablet with dose ranges 1-16 mg and 25- 

400 mg respectively. Migraine episodes are often associated with nausea and vomiting 

and patients suffering these symptoms may find it difficult to take an oral formulation. 

A subcutaneous injection is a possible alternative but injections are disliked by some 

people. A nasal spray o f sumatriptan has been formulated as a way o f bypassing the 

problems associated with the oral and subcutaneous formulations.

Duquesnoy et at (1998), report a comparative study on the clinical pharmacokinetics o f 

single doses o f sumatriptan following subcutaneous, oral, rectal and intranasal 

formulations in 23 patients. The pharmacokinetics of intranasal sumatriptan showed 

multiple peaks in most of the 23 subjects. The intranasal formulation performed 

similarly to that o f the oral tablet in terms of absorption and excretion but this could 

possibly be due to a large amount of the drag being swallowed. The bioavailability for 

the intranasal and oral formulations relative to the subcutaneous was 15.8% and 14.2% 

respectively. Cmax and tmax were similar for intranasal and oral. The pharmacokinetic 

analysis presented by Duquesnoy et at (1998) could not explain the observed higher 

efficacy in terms o f migraine relief at early time points after intranasal administration
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compared to oral. A deconvolution method was used to obtain an absorption rate-time 

profile for the formulations. From these profiles, it could be seen that the average 

profile for the intranasal spray peaked much earlier than that for the oral tablet. This 

could help explain why more subjects had greater migraine pain relief at earlier times 

when using the intranasal spray rather than the oral tablet.

The following work was based on a dose ranging study into intranasal sumatriptan. The 

purpose o f the work was to carry out a population analysis of the pharmacokinetic and 

pharmacodynamic data. The computer package BUGS version 0.6 was used for the 

analysis. In this version o f BUGS, the Griddy-Gibbs sampling algorithm was 

implemented, so nonlinear pharmacokinetic models could be analysed. The 

pharmacokinetic and pharmacodynamic analyses were carried out separately and an 

attempt at a simultaneous analysis o f the pharmacokinetic/pharmacodynamic data was 

made. The pharmacokinetic and pharmacodynamic data were measured longitudinally 

up to 2 hours. For many patients, this corresponded to being in the absorption phase o f 

the drug (in the study o f Duquesnoy et al (1998), the range for tmax was 0.25-3 hours).

5.2 Study Design

The design o f the study was a double-blind, placebo-controlled, parallel group, 

randomised study and was carried out on a multicentre, multinational basis. The dose 

levels considered were 0, 2.5, 5, 10 and 20 mg. The primary study objective was to 

compare the efficacy o f intranasal sumatriptan to that o f placebo in the acute treatment 

o f migraine in terms of headache relief and resultant severity grades post-dose.
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Secondary objectives were to compare the efficacy o f intranasal sumatriptan with 

placebo in terms of resolution o f nausea, vomiting, photophobia/phonophobia, reduction 

of patients’ clinical disability scores and the time to meaningful headache pain relief. 

Data was only available for the primary objective and so the secondary objective was 

not considered here.

Based on the primary objective o f the study reported in the trial protocol (to compare 

improvement rates at 120 minutes between 10 mg and placebo), assuming 70% 

improvement on 10 mg and 25% improvement on placebo from baseline migraine 

severity, 22 evaluable patients per group were required to detect this difference at the 

5% level o f significance, with 80% power. The actual number o f patients in each arm 

o f the study available for analysis were the following; 0 mg = 11 patients, 2.5 mg = 15 

patients, 5 mg = 19 patients, 10 mg = 1 8  patients and 20 mg = 20 patients. The 

concentrations were measured in ng/mL with a limit of detection o f 1 ng/mL.

The pharmacodynamic variable, pain severity, was measured on a categorical scale 

defined as the following: 0 = no pain, 1 = mild pain, 2 = moderate pain and 3 = severe 

pain.

The number o f time points at which pharmacokinetic and pharmacodynamic 

measurements were taken differed for the two response variables. There were 8 

possible concentration measurements and 6 possible migraine pain severity 

measurements per individual. The times (in minutes) at which these measurements 

were taken are given in table 5.1.
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Table 5.1. Times at which concentration and pain severity measurements were taken.

Concentration times(mins) 0 1 0 " 2 0 30 45 60 90 1 2 0

Pain Severity times(mins) 0 " 15 ~ 30 “ 60 90 1 2 0

It is not known what selection criterion was used to determine these time points for the 

phaimacokinetic and pharmacodynamic measurements. Patients were allowed to drop 

out at any time if  it was felt it was to the detriment o f the patient to continue the study 

or the patient reported inadequate migraine relief.

5.3 Pharmacokinetic Analysis

The total number o f concentrations measured from the 83 patients not including 0 

ng/mL concentrations (time = 0 minutes) or concentrations below the level o f detection, 

were 364. The mean number o f concentration measurements per individual not 

including the placebo group was 5.06 with a range o f 0-7 observations per individual. 

Individuals with no concentrations (in active treatment groups) did not contribute to the 

parameter estimates.

The pharmacokinetic analysis was carried out using BUGS 0.6. As reported in 

Duquesnoy et al (1998), the time over which the data were collected (0-120 minutes) 

corresponds to the absorption phase in most individuals. For this reason and the fact 

that there was no information on the disposition o f intranasal sumatriptan in these data, 

an empirical model was used. A standard model could have been used where the 

distribution and elimination parameters were fixed to published results on intranasal
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sumatriptan but this was decided against because Cosson and Fuseau (1998) reported in 

a population analysis o f a set o f oral formulation data that the best model describing the 

data was a 2  compartment model with a first order absoiption process followed by a 

zero order absorption process. This would have been a complicated model to estimate 

in BUGS without the Metropolis algorithm. Instead, the empirical model defined in 

equation (5.1) was used to describe the data.

E(C) = Dose x e(/)'+fi2fime) (1 -  e~ppime) (5.1)

This model is sufficiently flexible to allow the concentration data observed in this data 

set to be modelled adequately. The model is shown in figures 5.1-5.3 where in each 

figure, one parameter is altered at a time to show the effect of such a change.

Figure 5.1. Plot o f equation (5.1) with default parameter values given by (/?/,/%,/??) = 

(0,-0.005,0. l)where /?/ changes value.
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Figure 5.2. Plot o f equation (5.1) with default parameter values given by (/?/,/?2,/?j) 

(0,-0.005,0.l)where /% changes value.
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Figure 5.3. Plot o f equation (5.1) with default parameter values given by (/?/,/%,/%) 

(0,-0.005,0. l)where /?? changes value.
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This empirical nonlinear model has three parameters that require estimating. With the 

parameterisation o f the model shown in equation (5.1), all three parameters are 

nonlinear in that to sample a random variable from the full conditional for Gibbs 

sampling, a Metropolis step was required because each full conditional distribution is 

non-log-concave. As this would result in the use of the Griddy-Gibbs routine in BUGS 

and hence a much slower time to produce results due to more complicated sampling 

procedures, a log transformation o f the model and data was performed. The 

transformed model is given in equation (5.2),

£(log(C)) = log(Z)o^e) + J3\ + time + log(l -  e ~ ^ time) (5.2)

This model only requires the Griddy-Gibbs algorithm on one parameter, fy . The other 

two parameters, /?/ and can be sampled directly by Gibbs sampling. The residual 

error model for these data was assumed to be homoscedastic on the log scale 

(exponential on the original scale).

The parameters /?/, and are not pharmacokinetic parameters such as clearance and 

volume. This function was chosen because only three parameters per individual needed 

to be estimated compared to a nonparametric model which might require as many 

parameters as data points. Most patients’ data takes the form o f a jum p in 

concentrations from time 0  minutes to 1 0  or 2 0  minutes during which time the drug is 

rapidly absorbed and then the concentration profile flattens off until 1 2 0  minutes. 

Because o f this characteristic of the data, it was difficult to estimate /% so all individual 

values o f were set to the estimated population value which was estimated during the 

model fitting. Additive random effects were assigned to the parameters J3j and so 

individual estimates could be obtained.
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As a Bayesian analysis was carried out, it was important to state all distributional 

assumptions about the likelihood, population distributions and priors. At the first stage 

o f the hierarchical model, the likelihood was assumed to be a log-normal distribution 

(or equivalently the logarithm is normally distributed) as defined in equation (5.3).

log(^y) ~ N ( f  (Dosej, t i m e r “l ) (5.3)

where f=l 83 is the total number o f individuals in all groups and j= \ , . . .9ni is the

number of observations for each individual not including time = 0 minutes. The 

structural model is denoted by/(.) and f 1 is the residual variance.

At the second stage o f the hierarchical model, the population distribution of the 

parameters was established. As the parameter was fixed to be the same for every 

individual, the prior distribution for this parameter can be left to the third stage. The 

common assumption to make at this stage is that the parameters come from a normal or 

log-normal distribution. For the parameters fii and it was not necessary that they be 

positive so no transformation of the parameters was made and a bivariate normal 

distribution was assumed. This distribution is given in equation (5.4).

A ' ~ N , A '
~ _ 2  2

P\
\

A .
2

A .
ST2 ST2

_CFP\Pl a Pl _J

At the third stage of the hierarchical model, information that was available before the 

data were collected could be used to form a distribution on the remaining unknown 

parameters. As no information was available given such a model formulation, low 

information priors were assigned to the population parameters and interindividual 

variance-covariance matrix as well as the residual variance. A bivariate normal 

distribution was assigned to the population parameters, /?/, and with mean vector set 

1° (0,0) and variance covariance matrix C set to 100x1 where I is the 2x2 identity
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matrix. The parameter /?j was constrained to be positive by assigning a uniform 

distribution on the range (0.01,12). A bounded distribution has to be specified when the 

Griddy-Gibbs algorithm is implemented so a histogram can be constructed. The 

Wishart distribution was defined for the interindividual variance-covariance matrix 

where the matrix R is the prior estimate of the interindividual variance covariance 

matrix and p  is the dimension o f the matrix, 2. A gamma distribution was assigned to 

the inverse o f the residual variance. The full model specification is given in equation

(5.5).

l°g(^7 ) = log (Dose,) + + fi^tim ej + log(l -  ) + s.. = /  (Dose,,time tJ,/? .) + Sj

log(Tff) ~ N (f{D o se t , time,j, /?.), r~1)

~Pu~ ~ N ,
/

" A Oft O ftP 2

J v .
2

\ A .
5

P A  a Pi _)
t  ~ G(0.001,0 .0 0 1 )

A ’ ~ n 2
f

~ P \ " Q, c 12
_Pi _

z
\ _ C 21 r 22 _

P 3 ~ £7(0.001,12)
2 2 -1 / f r \ -i \

Oft Oftft 
2 2 ~  Wish P A i  A 2

_ ftPi a p2 _
\ K _i?21 -̂22 _/ J

(5.5)

This model was run in BUGS 0.6 and the results are given in table 5 .2 . The first 5000 

iterations were discarded as the burn-in to allow the Markov chain to converge to the 

stationary (posterior) distribution and then eveiy tenth iteration o f the next 2 0 0 0 0  

iterations were saved. This gave a sample o f 2000 iterations from which the parameter 

probability density functions could be formed.
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Table 5.2. Results o f  the model specified in equation {5.5).

Mean Median Standard Deviation 95% Credible Interval

P i -0.747 -0.747 0.0959 (-0.941,-0.555)
$2 -3.321X10*4 -7.679xl0"4 0.0115 (-0.0223,0.0217)

Ps 0.536 0.183 1.638 (0.1437,6.671)
_  2 
&{}1 0.457 0.443 0.092 (0.31,0.673)
&/31 $2 -0.00351 -0.00345 0.00792 (-0 .0 2 ,0 .0 1 2 2 )

2
&P2 0.00824 0.00807 0.00152 (0.000583,0.0116)
a 0.226 0.226 0.0104 (0.207,0.247)

The value o f the covariance between fi\ and has a 95% credible interval o f (-0.02, 

0 .0 1 2 2 ) which suggests that the covariance between the two parameters was negligible 

and probably did not add anything to the model. Although the inclusion o f the 

covariance term in this model has no adverse effect on parameter estimation, the model 

was re-run with the covariance term set to zero. To achieve this, instead o f specifying a 

bivariate normal distribution on the individual parameters, fin  and two independent 

univariate normal distributions were specified with the same mean and variance as in 

equation (5.5). The 95% credible interval for p 2  includes zero but this does not mean 

that fi2  should be removed from the model as this parameter was allowed to range over 

zero. The 95% credible interval for fii did not include zero and was negative implying a 

normalising constant o f between (0,1). The new model without the covariance term was 

run and the results are given in table 5.3.

Table 5.3. Results o f  model where covariance term was fixed  to zero.

Mean Median Standard Deviation 95% Credible Interval
P i -0.777 -0.778 0.0893 (-0.95,-0.601)
p2 7.812xl0"4 8.156xl0"4 0.00126 (-0.00183,0.00316)
Ps 1.27 0 . 2 0 2 2.73 (0.151,10.3)
o-pi2 0.431 0,422 0.0806 (0.296,0.613)
<Jp22 7.384x10"5 7.156xl0’3 1.515x1 O' 3 (5 .1 4 7 x l0 '\l.0 9 4 x l0 ‘4)
cr 0.227 0.227 0.0105 (0.208,0.248)
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It can be seen that there is very little difference in the parameter estimates of /?/ and f '2 

between table 5.2 and 5.3. /% is quite different but the Standard Deviation in both tables 

is large showing that this parameter is poorly determined. A plot o f the model using the 

parameter estimates from table 5.2 is given figure in 5.4. The data correspond to the 20 

mg dose group.

F igure 5.4. Population predicted and data fo r  20 mg dose group.
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As can be seen from figure 5.4, the population model is not particularly useful for 

describing the data.

F igure 5.5. Individual p lo t from  20 mg dose group.
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Figure 5.6. Individual p lo t from 20 mg dose group.
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A plot of two individuals from the 20 mg dose group are given in figures 5.5 and 5.6. 

Figure 5.5 shows a good fit o f the model but figure 5.6 shows the amount o f variability 

in the data. As can be seen, the empirical model chosen is flexible enough to model the 

very different profiles. The two peaks in the observed data can be seen easily in figure

5.6 and in figure 5.5 to a lesser extent. Residual plots are given in figures 5.7-5.9.

F igure 5.7. Residual versus time p lo t fo r  population model defined in equation (5.5).
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Figure 5.8. Residual versus population predicted p lo t for model defined in equation

(5.5).
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Figure 5.9. Weighted residual versus population predicted p lo t fo r  model defined in 

equation (5.5).
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The weighted residual is defined in equation (5.6).

■ R Q r,-E (r ,y )
wt*~ = // (5.6)
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The residual versus time plot in figure 5.7 shows a good fit o f the model to the data. 

The residual versus population predicted shows a reasonable amount o f evenness but 

the weighted residual versus population predicted appears to show that possibly the 

wrong structural model was used.

5.4 Pharm acodynam ic Analysis

The variable measured for the pharmacodynamics of intranasal sumatriptan was 

migraine severity. This was measured on a categorical scale as described in section 5.2. 

The number of scores in each category for a particular time and dose are given in tables 

5.4a-e.

Table 5.4a. Number o f  scores in each category fo r  0 mg dose group .
Category Time(minutes) Total

0 15 30 60 90 1 2 0

0 0 0 0 1 1 1 3
1 0 1 2 2 1 1 7
2 6 5 4 3 4 4 26
3 5 5 5 5 5 5 25
Total 11 1 1 11 11 11 11 6 6

T able 5.4b. Number o f  scores in each category fo r  2.5 mg dose group.
Category Time(minutes) Total

0 15 30 60 90 1 2 0

0 0 0 1 2 3 3 9
1 0 1 1 1 0 3 6

2 6 8 7 7 6 3 37
3 9 6 6 5 5 3 36
Total 15 15 15 15 14 14 8 8
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Table 5.4c. Number o f  scores in each category for 5 mg dose group.
Category Time(minutes) Total

0 15 30 60 90 1 2 0

0 0 2 3 3 3 3 14
1 0 2 1 3 4 7 17
2 1 0 8 1 0 7 5 2 42
3 9 7 5 5 5 5 36
Total 19 19 19 18 17 17 109

Table 5.4d. Number o f  scores in each category fo r  10 mg dose group .
Category Time(minutes) Total

0 15 30 60 90 1 2 0

0 0 0 1 2 3 4 1 0

1 0 2 4 5 4 2 17
2 11 11 9 6 5 5 47
3 7 5 4 4 5 6 31
Total 18 18 18 17 17 17 105

Table 5.4e. Number o f  scores in each category fo r  20 mg dose group .
Category Time(minutes) Total

0 15 30 60 90 1 2 0

0 0 1 4 7 8 9 39
1 0 6 5 5 6 3 25
2 1 2 5 6 5 4 4 36
3 8 8 5 3 2 2 28
Total 2 0 2 0 2 0 2 0 2 0 18 118

There were 486 observations out of a possible 498 observations and so no attempt was 

made to account for missing data. As can be seen in tables 5.4a-e, the number o f scores 

observed in the no and mild pain categories ( 0  and 1) increases as dose and time 

increases. To see if  there was a placebo effect (time effect for placebo dose), the 

placebo data was modelled alone. A look at the data for the placebo group seems to 

suggest that there is no time trend. Firstly, a constant baseline proportional odds model 

was fitted to the placebo data which is defined in equation (5.7) with likelihood 

specification and priors. This model was parameterised so that the cumulative 

categories were grouped in terms o f the highest value categories.
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Table 5.5. Results o f  constant baseline proportional odds model.

Mean Median Standard Deviation 95% Credible Interval
01 12.84 12.65 4.396 (5.865,22.88)
02 1 0 .2 10.04 4.323 (3.436,20.23)
03 -2.968 -2.968 4.063 (-12.05,4.563)
<7 13.21 1 2 .2 2 6.041 (5.24,28.27)

The results o f this model are given in table 5.5. The cut points correspond to individual 

category probabilities o f Pr(T=0) -  0, P r(7=l) -  05 Pr(7=2) = 0.949 and Pr(7=3) = 

0.051. This is not a particularly good representation o f the observed data. A new model 

was run with a time effect as defined in equation (5 .8 ).

log/*(Pr(fy > k | bj)) = log itijki] ) = + fitimejj +bj
(j.o )

J 3 ~ N (  0,10)

A relatively informative prior (compared to previous priors on gradient parameters) was 

assigned to the gradient term as this parameter was not expected to be estimated well 

due to only 11 patients being in the placebo group. It was expected a priori that there 

would be no time trend over 2  hours. The results are given in table 5.6. Table 5.6 

shows that the 95% credible interval for the time effect parameter includes zero. Based 

on this, it was assumed that there was no placebo effect in the pharmacodynamic data 

for intranasal sumatriptan.

208



Table 5.6. Results o f  baseline proportional odds model with time effect.

Mean Median Standard Deviation 95% Credible Interval
e , 14.84 14.55 4.073 (7.913,23.93)
02 11.59 11.3 3.831 (5.311,20.05)
03 -3.012 -2.493 4.457 (-13.3,4.332)

P -0.0246 -0.02363 0.0136 (-0.0548,8.595xl0'4)
a 15.39 13.4 8.862 (5.813,36.4)

The placebo data was also analysed in terms of a Poisson regression model where the 

counts in table 5.4a became the response variable rather than the probability o f being in 

a particular set o f cumulative probabilities. The model is defined in equation (5.9) and 

uses the log-linear transformation on the counts. This model was estimated using Splus 

version 4.5 as only fixed effects were to be estimated. This program uses a weighted 

least squares method to estimate the parameters. The results are given in table 5.7.

\og(E(count)) -  / ? 0 + j3xtime + f 2c a tl  + j32catl + J34cat0 (5.9)

The covariates cat2, catl and catO are binary variables defining whether the count was 

in category 3 ,2 , 1 or 0.

Table 5.7. Results o f  Poisson model.

Mean Standard Deviation t value
P° 1.609 0.447 3.599
P i 2 x 1 0 “4 0.0031 0.0596
P i -0.0861 0.502 -0.172
P i -1.379 0.401 -3.440
P4 -2.225 0.582 -3.822

It can be seen from table 5.7 that the time parameter was not significantly different from 

zero based on the t value. This confirmed the results of the BUGS analysis for the 

placebo model and no time trend need be taken into account.
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Once the placebo model was taken into account, then the whole data set was analysed. 

The first model to be examined was a simple proportional odds model with linear dose 

as a predictor. This dose-effect model is defined in equation (5.10) where the likelihood 

is as in equation (5.7). The term s y  acts like a residual term and ts }  is the estimate o f 

the residual variance on the logit transformed scale. The results o f this model are given 

in table 5.8 where the parameters are based on an initial burn-in o f 2000 iterations then 

a sample o f 5000 iterations.

log //(Pr(T,y > k \ b j ) ) ~  Ofr + fldosej + b,- + Sy 

0X ~ 7/(5,1000), # 2  ~ 7/(3,1000), 03 ~ 7/(1,1000)
/?~7/(-0 .1 ,1000) (5.10)

b, ~ N(0, r~ ' ), rb ~ G(0.001,0.001)

Sjj ~ N(0,T~i ) , rs ~G(0.001,0.001)

The dose effect is significant in terms o f dose with the coefficient being negative 

implying for example that as dose increases, the probability of being in the category 3 

(severe pain) decreases. A plot o f the mode is give in figure 5.10.

Table 5.8. Results o f  proportional odds model with linear dose.

Mean Median Standard Deviation 95% Credible Interval
e . 4.679 4.647 0.587 (3.681,5.829)
02 2.972 2.953 0.508 (2.023,3.992)
03 -0.323 -0.306 0.452 (-1.313,0.532)

P -0.119 -0.119 0.0349 (-0.190,-0.0472)
o-b 2.746 2.705 0.374 (2.148,3.617)
cr£ 0.475 0.397 0.382 (0.0523,1.571)
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Figure 5.10. Plot o f  linear dose proportional odds model with observed data averaged 

over time.
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The plot o f the model in figure 5.10 shows observed probabilities averaged over time. 

This might not be appropriate, as there might be a time effect in the active treatment 

groups. The patients were administered a single dose o f intranasal sumatriptan once the 

migraine had begun and hence for there to be a difference in the number o f patients with 

lower scores in the active treatment groups at later times as compared to earlier times 

would require a model with time. To check this, the dose effect model can be expanded 

to test for a linear trend in time. More complicated models in time could have been 

tested but these time trends can be included in the measurements o f the concentrations 

or truncated AUC values. If  there were any time effect in the data then a linear model 

would hopefully indicate such a correlation. The model is given in equation (5.11). No 

residual term, sj, was included in the model as initial attempts at estimating this 

parameter were unsuccessful so this parameter was dropped from the model 

temporarily.

211



logzY(Pr(7^- > k  | bj)) — 0£ + J3\dosej + / ? 2 timey + bj 

Ox ~#(4,1OOO),02  ~#(2,1OOO),03 -# (0 ,1 0 0 0 )

01 ~ #(0,1000), p 2 ~ #(0,1000)

b, ~ N (0 ,rj;{),Tb ~ G(0.001,0.001)

The results from this BUGS run are given in table 5.9.

Table 5.9. Results ofdose+time proportional odds model.

Mean Median Standard Deviation 95% Credible Interval
0 / 6.683 6.681 0.723 (5.28,8.182)
02 4.661 4.655 0.673 (3.337,6.027)
03 0.889 0.883 0.616 (-0.291,2.151)

Pi -0.126 -0.126 0.0515 (-0.229,-0.0223)
P2 -0.0259 -0.0258 0.0029 (-0.0318,-0.0202)
<?b 3.208 3.186 0.379 (2.534,4.004)

The 95% credible interval for both the dose and time parameters do not include zero so 

there was a time effect in the data. This model implies that when the dose is zero 

(placebo), there is a change in probability over time given by the time parameter. This 

contradicts the placebo model but was required for the active treatment groups. As the 

time parameter estimate was negative, this infers that as time increases, the probability 

o f being in a higher category decreases.

As both the dose and time parameter estimates were important to explaining the data, an 

interaction term was included in a new model but unfortunately, this model was unable 

to be estimated in BUGS. The problem was the Markov chains corresponding to the 

conditional distributions would not settle down to a stationary distribution.

A simple generalised linear model in terms o f dose and time was significant in terms o f 

the parameter estimates being different from zero. The linear assumption was an

212



obvious and simple first step to make in fitting such a proportional odds model. Linear 

time and dose is just one function of time and dose to be used to predict the 

pharmacodynamics. Another function o f time and dose (as well as other 

pharmacokinetic parameters) to predict the pharmacodynamics is the concentration time 

profile. As stated in chapter 3, it is generally believed that using the plasma 

concentration data should be better at correlating with the pharmacodynamics o f a drug 

than dose alone (although this is not exclusively the case).

There are different ways in which the concentrations can be modelled to the migraine 

pain severity scores. One way is to determine the hypothetical effect site concentrations 

from the plasma concentration and pharmacodynamic data and use these measurements 

as regressors for the pain severity scores. The concentrations at the effect site are 

believed to correlate better with the pharmacodynamic outcome than say plasma 

concentration although this is not always the case. Using the observed plasma 

concentrations as a predictor for the effect measurements is another way o f using the 

pharmacokinetics to predict the pharmacodynamics. This can be problematic if  the 

times at which the concentrations and scores are taken are different and interpolation is 

required to get values for the concentrations at the same times as the score 

measurements. Also, assay error and other error components may not be taken into 

consideration which will cause a possible underestimate o f the variability in the 

pharmacodynamic model. Instead o f using observed concentrations, predicted 

concentrations could be used. This method allows interindividual variability in the 

pharmacokinetics to be included in the analysis but residual variability is not accounted 

for. Again, this would cause an underestimate o f the variability, however it would 

circumvent the problem o f different measurement times. A simultaneous method of
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analysing both the pharmacokinetics and pharmacodynamics is another, more general 

way o f analysing such data. This allows the possibility of finding correlations between 

pharmacokinetic and pharmacodynamic parameters that would not be possible with 

sequential methods discussed above. This method allows all levels o f variability 

associated with the pharmacokinetics to be included in the analysis o f the 

pharmacodynamics. This supposedly gives better estimates o f variability in the 

pharmacodynamics conditional on the variability in the pharmacokinetics. This method 

is usually difficult to implement but with MCMC methods, such issues as analytical 

intractability should be overcome. An example o f a simultaneous analysis for simple 

lineai’ regression models is given at the end of this chapter as an appendix. A 

simultaneous analysis within BUGS 0.6 was attempted but failed to run. The model 

compiled but iterations were unable to be produced. The reason for this was not 

resolved.

It was decided initially to use the predicted concentrations from the BUGS run o f the 

pharmacokinetic model. The model used was a proportional odds model with linear 

concentration as a predictor. This model could also be considered as a nonlinear model 

in terms o f dose, time and predicted pharmacokinetic parameters but this is not the case 

as the pharmacodynamic parameters were linear in the model. The model is defined in 

equation (5.12). The results of this model are given in table 5.10.

log/Y(Pr(f)y > k \ b i ) )  = 0/c + ficoncjj + bj + sy

$l ~ N (4,1000), &2 ~ # ( 2,1000),03 ~ # ( - 1,1000)
p  ~ #(-0.005,1000) (5.12)

b, ~ N( 0 , T^ l ),Tb ~  G(0.001,0.001)

Sfj ~  N(0,  r j 1), ts ~ G(O.OOl.O.OOl)
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The results in table 5.10 are based on an initial burn-in o f 2000 iterations and a sample 

o f 8000 iterations.

Table 5.10. Results o f  proportional odds model with linear plasm a concentration

predictor.

Mean Median Standard Deviation 95% Credible Interval
Oi 5.165 5.161 0.469 (4.278,6.102)
@2 3.221 3.207 0.402 (2.459,4.039)
03 -0.284 -0.283 0.364 (-0.990,0.434)

P -0.327 -0.326 0.0443 (-0.418,-0.243)
<?b 2.782 2.768 0.316 (2.222,3.465)
cr£ 0.232 0.196 0.144 (0.0492,0.605)

F igure 5.11. Plot o f  proportional odds model versus predicted concentration.
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Figure 5.12. Plot o f  individual category probabilities versus predicted concentration.
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One o f the problems o f modelling the effect as a linear function o f concentration is that 

the model implies that the effect at the present time only depends on the current 

concentration. This could be misleading if, for example, the current concentration was 

high and the previous concentration was low, there could be a time lag before the effect 

o f the drug sets in which a model with an independence assumption from time to time 

could not account for. A model that includes an autoregressive type correlation could 

be introduced into the model as a way of getting round the possible time lag. This type 

o f model is difficult to implement when the time spacing between observations are 

unequal. Another possible solution is to look at the exposure to the drug by using an 

individual truncated AUC value as a predictor for the pharmacodynamics. The 

truncated AUC was the integral o f the concentration-time profile up to time t as given in 

equation (5.13).

A U C f f ^ D o s e ^ e ^ — (eM  - 1) -------- !------ (e<A,-ftv, _ ] )
P li iP n  ~  P i )

(5.13)

The model involving AUC is given in equation (5.14) and the results are in table 5.11.
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log ;7(£(P r(^  £  k \ b,))) = 0t +fiAUC„ +b, 

e x ~ N (4,1000), 02 ~ N (2,1000), 0, ~ JV(0,1000) 
P  ~  JV(0,1000) 

b, ~  ~ G (0 .001,0.001)

Table 5.11. Results ofproportional odds model with linear AUC as predictor.

Mean Median Standard Deviation 95% Credible Interval
01 5.182 5.167 0.494 (4.269,6.179)
02 3.079 3.068 0.424 (2.288,3.929)
03 -0.602 -0.604 0.388 (-1.361,0.178)

P -0.0048 -0.0048 5.636xl0 '4 (-0.0059,-0.0038)
3.031 3.007 0.356 (2.409,3.789)

The parameter estimate corresponding to the AUC term was significant and negative.

5.5 M odel Checking

It was important to compare the models derived for the migraine pain severity scores so 

it could be seen which model fitted the data best in the set o f models considered. 

Before the models were checked, it was considered that the model in AUC would fit the 

data best, whereas the model with just dose would fit the worst. This was due to the 

preconceived idea that the pharmacokinetics would correlate better with the 

pharmacodynamics than dose alone.

The method used in this chapter to determine goodness-of-fit was to define an objective 

function and use the value obtained for a particular model as a measure o f how well the 

model fit the data. The objective function used is defined in equation (5.15) and is a 

possible generalisation o f the deviance statistic for dichotomous data. The categories
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{0,1,2,3} have been renamed {1,2,3,4} for convenience. The objective function defined 

in equation (5.15) is in terms of individual category probabilities rather than cumulative 

category probabilities.

llikey = Y.3
( v  V y  f  y  'N

k=1 \ k J
f-lo g  (n„) +

llike.sat = Xe> —  —  log(T,) +
k=i 1r ^

i — — 
k

lo g (l- /r ,y)

T,
i - H

k
logO ~ Y U)

[1,5 = 1 

U, otherwise

D ~  2  Y, Hike,satjj -  YHike
v ' /j

(5.15)

Apart from the dose and dose+time models, these models are noil-nested. The standard 

distributional assumptions about deviance residuals could not be used here to compare 

the models partly due to the non-nestedness of the models but also since these models 

included random effects and such approximations (% 2 distribution) are known not to be 

appropriate. As such, comparisons between models were made on an informal basis 

where the lower the objective function value, the better the model was at describing the 

data. The results are given in table 5.12.

Table 5.12, Objective function values fo r  the proportional odds models.

Model Objective Function Value
Dose 843
Dose+Time 733
Predicted Concentration 779
Predicted AUC 727

The model with the lowest objective function value was the predicted AUC model with 

an objective function value o f 727 and the worst was the dose model with a value o f 843 

as expected. For the model with linear’ time and dose, the objective function value was 

733, only a difference o f 6  from the AUC model. This does not seem to be a big
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difference when the values of the objective function values are o f the order o f 

magnitude o f hundreds. Based on this, it was decided that the dose+time model was 

best as it did not require complicated calculations of the truncated AUC values.

5.6 Discussion

The purpose o f this work was to firstly carry out a general population 

pharmacokinetic/pharmacodynamic analysis of intranasal sumatriptan. The population 

pharmacokinetic analysis was not in the usual form o f a compartmental model (other 

published analyses for sumatriptan have used a two compartment disposition model). 

As the data were only up to two hours, very little information if  any was available on 

the disposition o f intranasal sumatriptan. For this reason, an empirical parametric 

model was used to model the pharmacokinetic data. The obvious problem of doing this 

sort o f analysis was that no physiologically interpretable pharmacokinetic parameters 

were estimated. It would not have been straight forward to fit such a model to the data 

available, as many o f the parameters would have to have been fixed for the disposition 

stage o f the profile. The empirical model used was adequate for describing the 

population and the individual.

The emphasis o f this chapter was on the analysis o f repeated measurement 

pharmacokinetic/pharmacodynamic data when the effect was measured on a categorical 

scale. The pharmacodynamics in this study was not easy to analyse, as is often the case 

with modelling categorical data. Techniques for analysing this sort o f population 

pharmacodynamic data have been taken from the statistical literature as well as more
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recent publications where such techniques have been applied to categorical 

pharmacodynamic data, for example Sheiner (1994), Sheiner et al (1997) and Mandema 

and Stanski (1996). These methods (for categorical data) are not as well developed as 

those for nonlinear mixed effects models as for population pharmacokinetic data. The 

difficulty in obtaining individual estimates (by including random effects components) 

from population categorical data is due to the nature o f categorical data itself. 

Categorical data contains little information when compared to continuous data and 

extracting adequate models o f the individual and population can be difficult. Standard 

statistical packages do allow the estimation of proportional odds and logistic regression 

models but usually only in a fixed effects setting. SAS can be used to fit generalised 

linear mixed effects models by using PROC MIXED within a macro but this is only one 

o f the few commercially available programs that has the capability. Currently, Splus

4.5 has a nonlinear mixed effects routine but no random effects for generalised linear 

models. NONMEM is capable o f mixed effects modelling for categorical data and is 

quite flexible as it allows the user to specify their own likelihood. The models 

considered for intranasal sumatriptan only included one subject specific random effect. 

This was assigned to the cut points additively so it acted like a shift on the model on the 

logit scale. Random effects were often not possible on the gradient parameters such as 

dose and time. This type o f random effect is possible in NONMEM but it is not known 

how good the estimate o f the variability is. The residual term used in a couple o f the 

models (dose and predicted concentration) acts like a residual term in linear mixed 

effects models as it enters the model on the linear logit scale rather than on the 

probability scale. NONMEM is not capable o f estimating such a term as it uses the 

residual term to indicate a switch between normally distributed data and user defined 

distributions. Comparing the models with only a random component on the cut points,
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(dose and predicted AUC) the standard deviation o f the between subject variability for 

the two models were 3.208 and 3.031 implying that the AUC model could explain more 

o f the variability than dose alone when no residual component was included. 

Comparing the models with a residual component as well (dose+time and predicted 

concentration), the between subject variability estimates were 2.746 (0.475) and 2.782 

(0.232) where the residual standard deviation is given in parentheses. The between 

subject variability was greater for the predicted concentration model but the residual 

variability was approximately half that for the dose+time model. This implies that both 

models estimate the between subject variability to approximately the same level but 

dose+time does not explain as much o f the residual variability.

The models that were used to model the pharmacodynamics o f intranasal sumatriptan 

were different from the usual model that is commonly associated with 

pharmacodynamics, as they do not use any variant o f the Emax model. Instead, they are 

generalised linear regression models with predictors being combinations o f dose, time, 

predicted concentration or predicted AUC. The models used were linear on the logit 

scale. An Emax model, which takes the modelling into generalised nonlinear mixed 

effects modelling, is very complicated and possibly only NONMEM is capable o f fitting 

such models although how well is unknown. The models used in the above analysis are 

adequate in fitting the data and as previously stated, AUC was the best model for fitting 

the data according to the objective function defined in equation (5.14). Not far behind, 

in terms o f the objective function was the model in terms o f linear time and dose. If  the 

model fit was not significantly worse than the AUC model then this implies that 

including the pharmacokinetic information in the model to predict the 

pharmacodynamics is not necessarily any better than simple functions o f time and dose.
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Had an interaction term in time and dose been able to be estimated, such a model might 

have been superior to the AUC model. This could be due to the inherent lack of 

information in categorical data or due to greater variability in the pharmacodynamics 

which the pharmacokinetic data could not explain. It is often the case that there is 

greater variability in the pharmacodynamics between subjects than in the 

pharmacokinetic data.

The computer program BUGS 0.6 was used instead of NONMEM to analyse the 

intranasal sumatriptan data set. Apart from the main difference between the two 

programs o f BUGS being a Bayesian package and NONMEM a frequentist package, 

there were several other differences of importance. The ability to estimate nonlinear 

models was restricted in this version o f BUGS as the Griddy-Gibbs sampling algorithm, 

although useful in the estimation of nonlinear statistical problems, was not always up to 

the task o f estimating n parameters in complex nonlinear models. Such an empirical 

parametric model as defined in equation (5.1) would have been estimated without too 

much difficulty in NONMEM. The Griddy-Gibbs sampler also inhibited the ability to 

estimate more complicated models in BUGS, although whether these would have been 

able to be estimated in either BUGS or NONMEM would be debatable. The ability to 

specify more complicated random effects structures (such as exponential errors) is 

possible in NONMEM but whether the estimates of these parameters are any good is 

questionable. More complicated error structures in BUGS usually resulted in the model 

crashing which was typically an indication of the model being more complicated than 

the data allowed and was not worth considering further. The random effects 

distribution can be changed easily in BUGS from a library o f distributions but in 

NONMEM, only normal or log-normal distributions are specified. The ease with which
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user defined objective functions can be created is another useful feature in BUGS that is 

not possible in NONMEM when the objective function given is not the one wanted for 

analysis.

A ppendix

This appendix is an example o f how a simultaneous analysis could be carried out using 

Gibbs sampling and BUGS. Code was written in BUGS for a simultaneous analysis o f 

the intranasal sumatriptan data, which compiled but failed to run. As a simple example, 

two linear models are to be estimated using Bayesian methods. The two linear models 

can be considered to be the pharmacokinetic and pharmacodynamic models. With 

Gibbs sampling, the ideas given here can be generalised to any models for the 

pharmacokinetic and pharmacodynamic data, although the sampling algorithms become 

more complicated as the models increase in complexity.

Consider the situation where we have data that is o f the form given in table A5.1:

T able A5.1. Data set to be modelled.

X Y z
Xj yi Zl
X2 Y2 Z2
. . .

Xn Yn Zn

It is required to fit two linear’ regression models, one for y on x  and another for z on y so 

the models are as in equation (A5.1).
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y ^ a  + Px i  + Si

z i = r + ^ y i + 'ni (A 5.i)
/ = 1

I f  it were required to fit the first o f the above models using Bayesian methods, 

distributional assumptions would be made for the likelihood and the prior distributions 

on the parameters. For linear models, these might be of the form in equation (A5.2).

Yi~  N ( a  + f txi ,<j2s)
a ~ N ( j u a , o - l )

(A5.2)

—,~G (c,d)
<J~E

As is the usual case for linear regression models, a normal likelihood is assigned to the 

data and an additive error model is used. Rather than being assumed known and fixed, 

the parameters are assumed to be random variables and are given prior distributions. 

Conjugate priors are used for the parameters a  and ft, and the residual term is given an 

inverse gamma distribution which is also conjugate to the normal likelihood. The 

reason why a linear model is being used in this appendix is because it is tractable and 

easy to conceptualise. More complicated models could have been used but this would 

have detracted from the main idea o f the appendix.

Suppose it was required to cany out Gibbs sampling to estimate the parameters o f the 

linear model as in equation (A5.1). This is not necessary as the posterior can be 

determined exactly but it is an easy example to work with. The full conditional 

distributions need to be defined to sample from to estimate the parameters. These 

posterior distributions are given in equation (A5.3).
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P(a\P>T*>y)~N
T£'Lyi - ^ 'LX i  + TaMa J

n  T e +  T a nT f +Te Ta

p ( P \ a , Te>y)~N
TfiEyi Xi “« Z y i  + r / » ^  j

r «SXi +f / !  TellXi+Tp

. . . 1 _  . . .  ^

(A5.3)

p(Ts\a,f i,y) ~ G - + c - l  A + - ? l ( y r ( t t +f i x d )
l  i y

Taking samples from these full conditional distributions is equivalent to taking samples 

from the joint posterior distribution.

Suppose the next step was to fit the second model in equation (A5.1). A Bayesian 

approach is to be used again by implementing Gibbs sampling. The full conditional 

distributions are the same as in equation (A5.3) but the parameters o f the second model 

replace the parameters for the first model in equation (A5.1).

^ Z z i - ^ Z y ;  + Tr Mr I ^

n  Tn +  Ty n r,, + 7>

p ( S \ y >Tirz ) ~ N
^r,,Z ziy i - r l l z i  + TsjUg  ̂ ^

rnY  y ; +rs r,S y; + T S
(A5.4)

p(r,IM>z)~<^f+e-l,f+Ix(zi-(r+.Syi))2)

By sampling from these distributions, the parameter estimates for the second model can 

be obtained. Two models would then have been fitted independently.

Now assume that the following is known: X is measured without error, Y and Z are 

measured with error. With this in mind, using the observed y values to fit a model to z 

is not desirable, as this will introduce bias in to the parameter estimates. Instead of 

using the observed y data, the predicted y values could be used instead. Without taking 

into account the parameter uncertainty, using predicted values will be as biased as using
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the observed data. It is therefore necessary to take into account the error in estimating 

the parameters. The full conditional distributions are therefore going to be of the form 

given in equation (A5.5).

p ( y \ S , Tt))z ) ~ N
n  T tf +  Ty

p ( 5 \ y , T,liz ) ~ N
r „ Z z i ( a  +  f t  X i )  -  Y  H z i  +  n  P s

T  +  f3 X i )2 +  T s  T , , ' L ( a  + f i x i f +  T S

n
2 7

P ( a \ 0 ,T s , y ) ~ N
TslLy-rP'Lx&TaPa J

n r f +T s Ta

P ( f i \ a > T e , y ) ~ N
T ^ y i x i - a ' Z y .  + TpMp j

TslLX\+Tf] Te'L x \+Tp

P(Te\a,pty) ~ g(^-+c-l,d+^2:(yi-(a+/?xi))2l
\ Z  Z  i J (A5.5)

As can be seen from the full conditionals, the y-x model does not depend on the z-y 

model but the z-y model does depend on the y-x model through the conditional 

distributions for a  and /?.

The following algorithm then gives the sampling procedure necessary to estimate the 

parameters.

1. Set initial estimates to the parameters of the two models (a,j3,yS).

2. Sample parameters for y-x model.

3. Using current sampled parameters from y-x model, sample z-y parameters from

full conditionals given in equation (A5.5).

4. Go back to 2.
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This method will allow the parameters from both the y-x and z-y model to be estimated 

and enable the variability from the y-x model to be incorporated into the z-y model. 

Such a method is easily implemented in BUGS and could be easily generalised to 

include nonlinear models for the pharmacokinetic data and any model for the 

pharmacodynamic data.
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6 Oxybutynin -  Phase III Efficacy and Toxicity Data

6.1 Review of Oxybutynin and Incontinence

Urinary incontinence refers to the involuntary loss o f urine in sufficient amounts to be 

considered a social and health problem. While it is psychologically distressing and 

socially disruptive, urinary incontinence is believed to be an under reported and under 

diagnosed medical condition. There are four basic categories o f incontinence: stress, 

urge, functional and overflow. Urge incontinence is associated with detrusor muscle 

overactivity. Stress incontinence is associated with an incompetent outlet. In geriatric 

patients a major cause of incontinence is bladder instability due to detrusor instability 

and detrusor hyperreflexia. Initial management involves identification and treatment o f 

reversible causes. In patients with urinary incontinence and detrusor instability, bladder 

relaxant medications, such as oxybutynin, have shown some effectiveness.

Oxybutynin is a tertiary amine compound with direct antispasmodic effect on smooth 

muscle, an anticholinergic effect and local anaesthetic effect. Studies in patients with 

uninhibited neurogenic and reflex neurogenic bladders demonstrate that oxybutynin 

increases urinary bladder capacity, decreases the frequency o f uninhibited contractions 

o f the detrusor muscle and delays the initial desire to void. Oxybutynin has been 

officially approved by the FDA (Food and Drug Administration) for the 

pharmacological treatment o f incontinence.
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Oxybutynin is a good candidate for controlled drug delivery because it is an effective 

therapeutic agent, it has a short plasma half life and it undergoes extensive first pass 

metabolism. Controlled drug delivery by OROS oxybutynin chloride (sustained release 

formulation) or TTS (Transdermal Therapeutic System formulation) would eliminate 

the need for dosing three times a day, enhance patient compliance, and possibly 

eliminate or reduce troublesome side effects. The most common side effect experienced 

with oxybutynin is dry mouth; other adverse effects included constipation, drowsiness, 

blurred vision, nausea, abdominal discomfort, facial flushing and difficulty in 

micturition. In general, clinical studies with oxybutynin show that it is significantly 

better than placebo in improving urinary incontinence, but many patients drop out 

because o f side effects (Kirkali and Whitaker (1987)).

Oxybutynin is rapidly and well absorbed. The recommended daily dose in adults is 5 

mg, two or three times a day. Following oral administration o f 5 mg oxybutynin in 

normal volunteers, the mean maximum plasma concentration (Cmax) was 8 .2  ng/mL at 

0.8 hours. Mean half life value reported for 5 mg tablet (instant release) was 2.44 

hours, and 2.31 hours following a intravenous infusion of 5 mg over 10-20 minutes.

6.2 Study Design

OROS oxybutynin chloride and TTS oxybutynin are being developed for the treatment 

o f urge incontinence. Potential benefits o f these dosage forms are improved efficacy 

and reduced frequency of dosing and reduced side effects. The study carried out was a 

randomised, double-blind, placebo controlled, escalating dose, parallel group study with
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one week o f single-blind placebo run in followed by randomisation to one o f the 5 

treatment groups. After randomisation, the study was double-blind with respect to 

active versus placebo treatment. The study was to be performed in 120 evaluable 

middle aged and elderly women (40 years and older) with urge incontinence to compare 

the safety and efficacy o f OROS oxybutynin chloride and TTS oxybutynin with IR 

(immediate release formulation) oral oxybutynin and with placebo. 176 patients were 

enrolled to complete 120 patients as follows: 30 patients for OROS oxybutynin 

treatment, 30 patients for TTS oxybutynin treatment, 30 patients for the IR oxybutynin 

treatment and 15 for each of the two placebo (oral and trans-dermal) groups. The actual 

number o f patients available for analysis is given in table 6.1. Out o f a possible 134 

evaluable patients, 118 completed the study. Patients dropped out for reasons unrelated 

to the study.

Table 6.1. Number of patients in each treatment group.

OROS IR TTS Placebo
(TTS)

Placebo
(oral)

Total

Number at 
start

34 32 35 17 16 134

Number
completed

32 30 25 16 15 118

The study objectives were:

(1) To compare the efficacy o f OROS oxybutynin chloride and TTS oxybutynin to that 

o f active control, IR oral oxybutynin chloride, and to placebo in middle aged and 

elderly patients with urinary urge incontinence. The primary efficacy measure was 

number o f urge incontinence episodes per week (as recorded in the patient urinary 

diary).
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(2) To evaluate the side effect profile of OROS, TTS and IR before and after the first 

dose o f each week through subjective assessment o f anticholinergic effects: dry 

mouth, constipation, blurred vision, nausea and drowsiness.

(3) To determine steady state plasma concentrations o f oxybutynin and its metabolite, at 

weekly time points before the first dose of each week and one hour after the last 

dose o f the study.

(4) To determine the urine concentration of oxybutynin and desethyloxybutynin 

(metabolite) at the end o f each two week interval.

Only study objectives (1) and (2) were considered here as concentration o f the parent 

and metabolite were not available.

These data were analysed also by Gupta et al (1999) using a NONMEM approach and 

their results were contrasted to those obtained in the following work.

6.3 Efficacy D ata Analysis

The pharmacodynamic measure used for the efficacy o f oxybutynin was the number o f 

urge incontinence episodes in a seven day period. This measure is a count and in this 

work, Poisson log-linear regression models were used to analyse the data. The 

covariates available for the analysis of these data were dose, time and baseline count 

(the number o f urge incontinence episodes in the first week). The data analysed 

corresponds to the OROS, IR and oral placebo groups. The analysis for TTS and patch 

placebo is not reported here. BUGS 0.6 was used for the analysis o f the data throughout 

this chapter.
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6.3.1 Placebo Model

As the design o f this study was a forced dose escalation study then dose was 

confounded with time. With the inclusion o f a placebo group, it was then possible to 

model the time trend of urge incontinence independent o f any dose effect.

As the data were in terms o f counts o f urge incontinence episodes per week, it was

assumed that the data were from a Poisson distribution. The Poisson distribution is a

discrete distribution (equation (6 .1)) based on a non-negative integer number o f events 

per unit o f time or space.

P r(7  = y )  = e~fJ ^-7 ,y  = 0,1,2,...,// > 0. (6.1)

The link function associated with the count data is the log link function. This can be 

derived based on distributional assumptions that the Poisson distribution is a member of 

the exponential family and then the link function can be derived from the cumulant 

function. Details are given in McCullagh and Nelder (1989).

The first model to be fitted to the placebo data was a mixed effects model linear in time 

as defined in equation (6.2). Normal priors were assigned to the fixed effect parameters 

and a normal distribution was assigned to the random effect with the inverse o f the 

variance being assigned a gamma distribution.

log(£(^, I b, )) = £ „ +  Pxtimefj + b,

YIJ\ p ,b ,~ P o i S(E(Yil \b,))

P 0 ~ N (0,10000),p, ~ Af(0 , l x l 0 4) (6.2)

b, ~ JV(0,crj ) ,-T  ~ G(0.001,0.001) 
o’,,
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The random effect is additive on the intercept term. The parameter values were 

determined from taking a sample o f 5000 iterations after a burn-in o f 1500 iterations. 

The results are given in table 6.2.

Table 6.2. Results o f  log-linear model with linear time.

Mean Standard Deviation Median 95% Credible Interval
Po 2.87 0.236 2.877 (2.303,3.346)

P i -0.0168 0.00186 -0.0168 (-0.0205,-0.0133)
<?b 0.889 0.188 0.860 (0.607,1.329)

From these placebo data, there was a significant time effect based on the 95% credible 

interval. This implies that without giving oxybutynin or any other drug, the number o f  

urge incontinence episodes will converge to zero. If  this were truly the case, then there 

would be no need to administer any drug to alleviate incontinence. To see if  more 

complex models might describe the data better, a cubic and quadratic polynomial model 

was fitted to the data and the results are given in tables 6.3 and 6.4.

Table 6.3. Results o f  cubic polynomial fo r  efficacy placebo data.

Mean Standard Deviation Median 95% Credible Interval
Po 2.875 0.280 2.845 (2.375,3.451)
P i -0.0264 0.0231 -0.0256 (-0.0763,0.0138)
P2 4 .584xl0 '4 9,65xl0 '4 5.647x10'4 (-0.00124,0.00246)
P s -6x1 O'” 1.182X10'3 -6.819xl0‘b (-2.97x1 O'5,1.57x10'*)
<?b 0.887 0.180 0.860 (0.614,1.306)

Table 6.4. Results o f  quadratic polynomial fo r  efficacy placebo data.

Mean Standard Deviation Median 95% Credible Interval
Po 2.946 0.279 2.907 (2.51,3.67)
P i -0.0165 0.00796 -0.0171 (-0.0312,2.55 lx l  0’G)
P2 -8.071 xlO ' 6 1.456x10‘4 4.987x10'6 (-3.131x10"4,2.62x 10~4)
Ob 0.904 0.198 0.875 (0.61,1.386)
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The cubic term in table 6.3 was small in magnitude and the 95% credible interval 

included zero. The quadratic term in table 6.4 was also non-significant so it appeared 

that the model linear in time was as good as the quadratic and cubic models. Another 

possible model for the efficacy placebo data was to use logarithm o f time rather than 

lineal' time. The results o f such a model are given in table 6.5.

Table 6.5. Results oflog(time) model efficacy placebo data.

Mean Standard Deviation Median 95% Credible Interval
Po 3.364 0.229 3.371 (2.867,3.797)
Pi -0.334 -0.0351 -0.333 (-0.407,-0.268)
Ob 0.895 0.188 0.869 (0.608,1.338)

A plot o f the log(time) and linear time models are given in figure 6 .1. Pearson residuals 

are given in figure 6.2 and figure 6.3 for the linear time and log(time) models 

respectively.

F igure 6.1. Comparison o f log(time) and linear time models.

a>o
ca)
c
■'P c/)
C 0
o  -a o o  c  «

Q. 
O 111 •*-> 
c
=3O
O

70

60

50

40

30

20

10

0

O

O

o

O-
7 14 21 28 35 42 49

O Data
Linear Time

_& _L og(tim e)

Tim e(days)

234



Figure 6.2. Pearson Residuals versus model predicted linear time model.
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The Pearson residuals for the Poisson distribution are defined in equation (6.3).

r„ = (6.3)

There is little difference between the fit of the model in figure 6.1, and the Pearson 

residual plots also show little difference in the quality o f the fit. Based on this, it was 

decided to choose the linear time model.
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It can be seen that for the population model, the Pearson residuals are large in 

magnitude and unevenly distributed around the axis implying that the model is not 

satisfactory in describing the data.

As already mentioned previously, the linear time model predicts that the number o f 

incontinence episodes will converge to zero as time increases implying no need for drug 

administration. The arithmetic mean of the number of incontinence episodes per week 

at 49 days in the placebo group was 10.2. A model that does not converge to zero by 

default could be fitted to see if  the number of incontinence episodes as time increased 

asymptoted to a non-zero value. Such a model is given in equation (6.4).

E(YIJ) = y M - p 2( \ - e - h,l‘ )) (6.4)

In this model, ym is the baseline count o f urge incontinence episodes (first 7 days). For 

future collected data, yo could be treated as the average number o f the incontinence 

episodes in a week. This covariate acts like a normalising constant so that at the end o f 

the first week (day 7) then the model predicts the baseline incontinence count. As time 

increases, this model converges to (/?/-/??) which is the number o f incontinence episodes 

that will be reached without administering any drug. To ensure non-negativity,

The parameter is the rate at which the incontinence episodes decrease. The desired 

Bayesian model specification is given in equation (6.5). I(a,b) denotes the distribution 

is truncated between a and b.

Yj ~  Pois{E{Yij)) (6.5)

/?, ~ t f O v lx lO 4) , ^  ~ N ^ l x l O ^ I ^ ^ l o g ^ )  ~ JVGua ,1x104)

There are several problems with this specification o f the model when using BUGS for 

estimation. Firstly, this model was not a generalised linear model as the model is
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nonlinear in the three parameters for a log-linear Poisson model, BUGS 0.6 uses an 

adaptive rejection sampling algorithm for generalised linear models (other than 

normally distributed models) and the Griddy-Gibbs algorithm for normal distributed 

nonlinear models (implying a non-log-concave full conditional distribution). BUGS 

requires an adaptive Metropolis algorithm for sampling from generalised nonlinear 

models. As BUGS 0.6 does not have such an algorithm, then this model specification 

could not be estimated. Instead, the following model specification was used.

~ N(E(¥ l W ) I ( . 0 , c O)
I (6 .6)

—  ~ G (0 .001,0.001) 
a

f t  ~ U ( 0 , 5 \ f t  ~ t / ( 0 , /? ,),&

The Poisson likelihood was approximated by a normal distribution which was truncated 

to be positive. Whether a log normal distribution would have been more appropriate 

was not considered. Instead of using normal priors on the parameters, uniform priors 

were used so that f t > f t  and f t  was positive. The parameter estimates are given in table 

6 . 6  and are based on a run o f 1 0 ,0 0 0  iterations where every second sample was saved to 

estimate the parameter values.

Table 6 .6 . Results o f  nonlinear placebo model.

Mean Standard Deviation Median 95% Credible Interval
Pi 1.337 0.2135 1.293 (1.067,1.805)
P2 1 0.173 0.990 (0.685,1.351)
Pi 0.054 0.0263 0.47 (0.0233,0.114)
a 10.41 0.743 10.36 (9.121,11.95)

The number of counts converges to 0 .3 3 7 xj^, which for an initial count o f 25 

incontinence episodes is 8.5 episodes per week as time increases. The residual term is 

on a different scale in the normal model compared to that in the Poisson distribution.
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The residual is additive in the normal distribution and multiplicative in the Poisson 

distribution. Individual population predicted plots (no subject specific random effects) 

are given in figures 6 .4-6.7. Residual and weighted residual plots are given in figures 

6 .8  and 6.9 respectively.

F igure 6.4. Plot o f  nonlinear model fo r  subject 112.
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F igure 6.5. Plot o f  nonlinear model fo r  subject 301.
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Figure 6.6. Plot o f  nonlinear model fo r subject 516.
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Figure 6,7. Plot o f  nonlinear model fo r  subject 901.
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Figure 6 .8 , Residual versus time p lo t fo r  nonlinear placebo model.
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Figure 6.9. Weighted residual versus population predicted p lo t fo r  nonlinear model
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The individual fits in figures 6.4-6.7 show a varying degree of quality o f fit. Individual 

112 was a reasonable individual fit, individual 301 was under predicted, 901 was over 

predicted and individual 516 had considerable inter-week variability which made the 

data difficult to model. The residual plot (figure 6 .8 ) shows a good fit to the population 

data and the weighted residual plot (figure 6.9) appears satisfactory.

Gupta et al (1999) reported a similar type of placebo model where the equivalent 

parameter o f (3$ was 0.029 compared to 0.054 estimated here. The result is not directly 

comparable but gives an indication o f the different estimates. A pseudo half-life can be 

estimated by ln(2)/ fy  and are 24 and 13 days for the number o f incontinence episodes 

to drop by half for Gupta et al and this work respectively.
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6.3.2 Active Treatment Groups

The purpose of the placebo model was to be able to correct for any time effects in the 

active treatment groups that were not due to the drug. As there was a time effect in the 

placebo data, this needed to be included in the active treatment group model. The 

placebo model can be included in the active treatment model easily by scaling the 

population placebo model by the initial seven day run-in urge incontinence count. To 

obtain a correct dose effect model, the placebo model must be included but the form of 

the dose model was probably dependent on the placebo model chosen.

As described earlier, there are two active treatment groups, the IR (immediate release) 

group and the OROS (sustained release) treatment group. One o f the primary study 

objectives was to compare the efficacy and adverse effect profiles o f the two 

formulations. The purpose of this section was to define models for the two treatment 

groups and compare the dose effects of the two formulations in terms o f the efficacy.

The number o f women in each treatment group at the end o f each week are given in 

table 6.7.

Table 6.7. Sample sizes in each group at the end o f  each week.

Time(days) 7 14 2 1 28 35 42 49
IR 32 32 32 32 31 30 30
OROS 34 34 34 34 34 34 32
Placebo 16 16 16 15 15 15 15

As can be seen from table 6.7, by the end of day 49, 2 women had dropped out o f both 

the IR and OROS treatment groups and 1 woman dropped out o f the placebo treatment
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group. As this corresponds to only 6 % of the total number o f women in these three 

groups, it was decided not to incorporate any method to adjust for the missing data. It 

was reported in the data summary supplied by the company that missing data was not 

associated with the drug and can be treated as missing completely at random. It should 

be noted that when BUGS encounters a missing variable, it treats it as a random 

variable that needs to be determined and estimates the missing data.

The general form in which the model can be written is given in equation (6.7).

log ( ^  )) = / , + / „ + / „ ,  (6.7)

fp , fu  and fpo  are the placebo, dose and interaction models respectively. The placebo 

model is as described in section 6.3.1, the dose model is a function in dose alone and the 

interaction model is a model that takes into account any combination effects between 

dose and time. The fpo  model was not considered here. The log link function was used 

as the data were urge incontinence episodes.

The first model fitted to all the data was that defined in equation (6 .8 ).

Placebo data

~ # ( £ ( W > CTk ) / ( 0 , ® ) , £ ( W  = y 0, (/?,

- 4 -----0(0.001,0.001),/?, ~ 0(0,5), P2 ~ 0(0,/?,),&  ~ 0(0,1)
O' plac

Active treatment data

Yij<,c,i,e ~  Pois{E(Yljacli„))  ( 6 . 8 )

E(Ymct™) = f t , ( y al (/?, -  p 2 (1 -  <TA'»)) + p omsdose, )

+ (1 -  trtl)(yai(Pl ~ P i 0 -e~N t )) + P IRdose,) + el}

Poms ~  # ( 0 ,1 0 0 0 ), p m ~ Af(0 ,1 0 0 0 ),

s,j ~ N(0,crlalJ ^  0 (0.001,0.001)
active

242



In this model specification, the placebo model is refitted using the same Bayesian 

specification so as to allow the parameter uncertainty to be included in the time model 

for the active treatment groups. The population placebo model was still used but 

normalised to the active treatment week 1 urge incontinence count. The results o f this 

model are given in table 6.9. The placebo parameters are the same as those given in 

table 6 .6 .

Table 6.9. Results o f  linear dose model fo r  active treatment groups.

Mean Standard Deviation Median 95% Credible Interval
PoROS -0.145 0.0132 -0.145 (-0.168,-0.121)
PlR -0.105 0 . 0 1 2 2 -0.105 (-0.126,-0.0835)
Oactive 0.889 0.0486 0.887 (0.797,0.986)

The estimates o f the dose parameters are both negative with the OROS data having a 

steeper gradient. This might imply that OROS has better efficacy than IR as the 

gradient is steeper implying that a lower dose is required to attain the same effect as IR. 

Plots o f the linear dose OROS and IR models are given in figure 6.10 and 6.11 

respectively.

F igure 6.10. Plot o f  linear dose OROS model.

c
3oo

50
45
40
35
30
25
20
15
10

5
0

O

W-
i®
m

14 21 28 35 42 49
Time(days)

243



Figure 6.11. Plot o f  linear dose IR model.
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To see if  there was a statistically significant difference between the gradient terms for 

the two treatment groups, the model was redefined in terms o f equation (6.9). This 

model parameterisation allowed the checking o f the difference o f  the dose estimates by 

considering the 95% credible intervals.

Wjiiactive ) = trti Oo, (A  -  P 2 (! -  )) + O R O S  d o se )

+ (1 — t r t j  )(<y0/ (/?[ — f 3 2 ( \  — e 1)) + ( P OROS + f t n i - o R o s  )dosef) + £ j  (6.9)

Poms ~ N(0,l00Q ),/Im_oROS -  N {0 ,1 0 0 0 )

The results o f this model are given in table 6.10.

Table 6,10. Results o f  reparameterised linear dose model fo r  active treatment groups.

Mean Standard Deviation Median 95% Credible Interval
fioROS -0.145 0.0132 -0.146 (-0.168,-0.122)
PlR-OROS 0.0402 0.0116 0.0403 (0.0172,0.0622)
Gactive 0.8879 0.0497 0.887 (0.798,0.991)

The 95% credible interval on the parameter, fim-onos does not include zero so there was 

a statistically significant difference between the OROS and IR dose effect. The term 

(Jactive is an overall residual error term and no random effect was included in the model.



Another linear dose model was run with a subject specific additive random effect on the 

intercept and a residual error term for each active dose group. The model is given in

equation (6 .1 0 ) and the results are given in table 6 .1 1 .

E (¥jjactive  )  ~  ^ ' 0  ( T 0 /  ( A  —  P i  —  6  ’ ) )  ^  PoRO S d o S C { +  bOROSi +  S OROSij )

+  (1 — t v t j  XTo/ ( A  —  A  0  ~  e  1 ) )  +  ( A )r o s  T P i r - o r o s  ) d ° s e j +  bJRj +  £miJ.)  ^   ̂ ^

bOROSi ~  & OROSb ) s  S OROSij ~  & OROSe )

^ / / f /  ~  A ^ ( 0 ,  C T m h ) , £ mjj  ~  A ( 0 , £ T W / ; )

Table 6.11. Results o f  linear dose model with additive random effects and residual

terms.

Mean Standard Deviation Median 95% Credible Interval
POROS -0.132 0.0127 -0.132 (-0.157,-0.107)
PlR -0 .1 0 1 0.0132 -0 .1 0 2 (-0.126,-0.0741)
O'OROSb 0.519 0.0854 0.511 (0.368,0.704)
CT/Rb 0.772 0.119 0.760 (0.574,1.032)
VOROSe 0.507 0.0616 0.504 (0.403,0.623)
CTlRs 0.633 0.0617 0.631 (0.532,0.747)

The interindividual and residual variability appears to be larger in the IR treatment 

group than the OROS treatment group. The dose parameter estimates were smaller in 

magnitude compared to the model with only an overall residual error term. The model 

was rerun without the treatment group specific residual term to see if  the parameters 

changed substantially. The parameter values are given in table 6.12.

Table 6.12. Results o f  linear dose model with additive random effects.

Mean Standard Deviation Median 95% Credible Interval
POROS -0.0944 0.00987 -0.0947 (-0.113,-0.0744)
P lR -0.0541 0.00906 -0.0544 (-0.0707,-0.0353)
<yQROSb 0.388 0.0626 0.383 (0.283,0.527)
O'lRb 0.524 0.0753 0.517 (0.399,0.693)
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Again, the dose parameter estimates were down on the previous estimates and so were 

the between subject variability estimates. This could be due to the different model 

specification or just inter-BUGS run variability where different seeds are used to start 

the sampling procedure at each run.

Another model with linear dose as a predictor was run in BUGS where there was no 

additive random effect but with an additive residual component. The parameter 

estimates are given in table 6.13.

Table 6.13. Results o f  linear dose model with residual error terms.

Mean Standard Deviation Median 95% Credible Interval
PoROS -0.137 0.0115 -0.137 (-0.16,-0.115)
PlR -0.109 0 .0 1 2 1 -0.109 (-0.132,-0.085)
&OROSs 0.744 0.0661 0.742 (0.622,0.880)
&lRe 1.005 0.0732 1 .0 0 2 (0.871,1.16)

The parameter estimates for the dose effect are closer to those in tables 6.9 and 6.11 .The 

residual components also show that there was greater variability in the IR treatment 

group than the OROS treatment group.

The next step was to check whether more complicated dose models would be able to fit 

the data any better. A cubic polynomial in dose was considered as defined in equation 

(6.11).

W ija c iv e ) = trtf ( yQi (Px -  p 2 (1 -  e~N<i))

P orosi d o s e j +  f OROS2d o s e i +  P o R o s^ o s e i ^  ^ o m i  +  s oroso)  ( 6  1 1 )

+ (1 -  ( /? , - f 3 2( \ - e ~h 'ij))

f t  jR \dose j + j3IR1d o s e  f. + P mi d o s e t + b1Kj + £/Rjj}

The results of this model are given in table 6.14.
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Table 6.14, Results o f  cubic dose model.

Mean Standard Deviation Median 95% Credible Interval
P oR O S 1 -0.0541 0.0607 -0.0573 (-0.169,0.0706)
PoROS2 -0.0191 0.0115 -0.0192 (-0.0424,0.00132)
POROS3 9.836X10-4 5.164xl0"4 9.963xl0 '4 (5 .6 6 x l0 '\l .9 6 8 x l0 'J)
&OROSb 0520 0.0882 0.511 (0.369,0.713)
OOROSs 0.499 0.0621 0.497 (0.393,0.619)
P lR 1 -0.0649 0.0440 -0.0663 (-0.158,00237)
P lR 2 -0.00951 0.00756 -0.00955 (-0.0225,0.00825)
P lR 3 5.125xl0 '4 3.662x10'4 5.402x10'4 (-2.953x10‘4,1.082x 10‘J)
O'lRb 0.772 0 . 1 2 0 0.760 (0.571,1.046)
OlRe 0.628 0.0619 0.624 (0.529,0.742)

The cubic parameter estimate for the OROS treatment group was significantly different 

from zero but the magnitude o f the parameter was very small. The cubic term for the IR 

treatment group was not significant. The model was re-analysed without the cubic 

terms and the results are given in table 6.15.

Table 6.15. Results o f  quadratic dose model.

Mean Standard Deviation Median 95% Credible Interval
POROSI -0.166 0.0309 -0.168 (-0.223,-0.107)
POROS2 0.00274 0.00209 0.00278 (-0,00121,0.00651)
O'OROSb 0.519 0.0882 0.511 (0.373,0.719)
O'OROSs 0.508 0.0616 0.505 (0.402,0.630)
P lR l -0.131 0.0310 -0.131 (-0.193,-0.0698)
P lR 2 0.00225 0 .0 0 2 0 1 0 .0 0 2 2 1 (-0.00173,0.00617)
O'lRb 0.776 0 .1 2 0 0.763 (0.577,1.043)
OlRs 0.634 0.0627 0.630 (0.530,0.753)

It can be seen from table 6.15 that both quadratic terms are not significant and hence are 

not any better at predicting the active efficacy treatment data than the linear dose model. 

As the IR data was best described by a linear model, these data were not considered 

further. To see whether there was a practically significant difference between the cubic 

and lineal* models for the OROS treatment group, a simple comparison o f the two
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models was made. In figure 6.12, a plot of the cubic and linear models are shown. 

There does not appear to be much of a difference between the two models in terms o f 

model fit. In figures 6.13 and 6.14 are Pearson residual plots to see if  this shows any 

difference between the models. Again, there was not much difference but the cubic 

model appeal's to be more evenly distributed. One problem with the cubic dose model 

is that the cubic term is positive implying that as dose increases, then the model will 

predict that the number o f urinary urge incontinence episodes will eventually increase 

with dose whereas the linear dose model implies that the count converges to zero as 

dose increases.

F igure 6.12. Cubic and linear dose model fo r  OROS data.
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Figure 6.13. Pearson residual versus predicted for linear dose model for OROS data.
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Figure 6.14. Pearson residual versus predicted fo r  cubic dose model fo r  OROS data.
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The results o f Gupta et al (1999) were based on assuming a linear dose effect on the log 

scale. They showed that there was a significant difference between the active treatment 

intercepts but no difference between the rate o f the dose effect. This was probably due 

to the use o f a different model to that presented here and will be discussed later.
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6.4 Adverse Effects Data Analysis

The pharmacodynamic measure used for the adverse effects o f oxybutynin was dry 

mouth. This was measured on a 4 point ordinal categorical scale where 0 = no dry 

mouth, 1 = mild dry mouth, 2 = moderate dry mouth and 3 = severe dry mouth. As with 

other categorical data previously analysed, the proportional odds model was used.

6.4.1 Placebo M odel

As with the efficacy data of oxybutynin, a placebo model needed to be considered first 

as the data between time and dose were confounded. Since categorical data has less 

information in the data compared to count data, models that were tried were necessarily 

less sophisticated. The number o f counts in each category at each time is given in table 

6.16.

Table 6.16. Counts o f  observations in each category at each time.

Time(days) Cate OQ O <3 i

0 1 2 3
7 1 2 4 0 0

14 11 4 1 0

2 1 11 4 1 0

28 1 0 4 1 0

35 11 3 1 0

42 1 2 2 1 0

49 11 3 1 0

Total 78 24 6 0

As can be seen in table 6.14, the counts stay reasonably constant over time. The first 

model to be considered for the adverse effect data was a simple linear' model in time.
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The full model specification is given in equation (6.12) where it is the individual 

category probability and 1 is the number o f samples for the particular (/?/)th response.

Wjj ~ Multi(7tQjj, 7C\\j 5 ft2ij ’ ̂ 3ij 

logzY(Pr(lfy < k \ b i )) = 6jc + f5\time^ + k = 0 ,1 ,2

0o ~jV(3,lxlO5),01 ~ N(n,lxlO5),02 ~iV(800,lxl05) (6.12)

P i  ~ N (0 ,1x105),6,- ~ N ( 0 , < x 2 ) , d r ~ G (0 .0 0 1 ,0.001)
a 2

The results o f this model are given in table 6.17.

Table 6.17. Results o f  linear time adverse effects placebo model.

Mean Standard Deviation Median 95% Credible Interval
Go 2.823 3.303 3.075 (-5.735,8.190)
Oi 13.6 5.71 12.63 (5.158,26.94)
o2 1153 737.5 1056 (75.23,2771)

Pi 0.0036 0.0247 0.00463 (-0.0447,0.0520)
cr 8.435 4.113 7.508 (3.244,19.14)

It can be seen from these results that the proportional odds model with linear time did 

not show any time effect (95% credible interval included zero). It was not expected 

therefore that any other placebo model would do any better. This was expected because 

if  the linear time effect model did not show a significant effect then more complicated 

models which would require more parameters to be estimated were unlikely to show 

any effect. Based on the results in table 6.17, no placebo model was included when 

modelling the active treatment group data.

6.4.2 Active T rea tm en t G roups

The number o f counts in each adverse effect category at each time for OROS and IR 

oxybutynin is given tables 6.18a and b respectively. The number o f counts in each
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category at each dose for OROS and IR oxybutynin are given in tables 6.19a and b 

respectively.

Table 6.18a. Counts o f  observations in each category at each time for OROS

oxybutynin,

Time(days) Category
0 1 2 3

7 24 9 1 0

14 2 0 11 3 0

2 1 17 14 3 0

28 11 14 6 3
35 1 2 13 7 2

42 8 1 0 1 0 5
49 6 13 9 4
Total 98 84 39 14

Table 6.18b. Counts o f  observations in each category at each time fo r  IR oxybutynin.

Time(days) Category
0 1 2 3

7 27 4 0 1
14 13 16 1 1
2 1 13 16 1 1

28 6 16 9 1

35 7 17 4 3
42 2 15 8 6

49 4 15 7 4
Total 72 99 30 17

Table 6.19a. Counts o f  observations in each category at each dose fo r OROS

oxybutynin.

Dose(mg) Category
0 1 2 3 Total

0 24 9 1 0 34
5 37 25 6 0 6 8

1 0 23 27 13 5 6 8

15 14 23 19 9 65
Total 98 84 39 14 235
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Table 6.19b. Counts o f  observations in each category at each dose fo r  IR oxybutynin.

Dose(mg) Category
0 1 2 3 Total

0 27 4 0 2 33
5 26 32 2 1 61
1 0 13 33 13 4 63
15 6 30 15 1 0 61
Total 72 99 30 17 218

The first model considered for the active treatment group was a proportional odds 

model in terms o f linear time, dose and dosextime interaction. The full model 

specification is given in equation (6.13).

Wjj ~  Mu!ti(7V0iJ, 7rUj , n 2ij > n Vj >*) 

log iY (P r(^  <Lk\bi)) =

trtj (0 OROSk +  PoRO S\^osei +  PoROS2tim eij +  ^OROS3^oseitim eij + ^OROSi)

+ (1 - tr t j ) ( 6 mk + fiIRldosei + j3 j^ t im e y  + jSj^doseftim ejj + bIRi) ,k  = 0,1,2

0OROSO ~ N ( l J ^ x l 0 5 ) , 9 O RO Sl  ~-W (4.8,lxlO 5 ) ,0 o m s 2  ~ AT(7.3,lx 105)

P o R O S l  ~  iV (-0 .3 ,lx l0 5 )>y9o f l o s 2  ~  1V(0,1 x 105 ) ,P o R O S 3  ~ W (0 ,lx l0 5) (g J3 )

b o R O S i  ~  -------------- 0(0.001,0.001)
a OROS

6m  ~ jV (1.2 ,lx lO 5 ),0 /fil ~ A1(4.3,1x105 ) , % 2 ~ ^(6.2,1 x l O5)

P l R S l  ~  N (-0 .4 , lx l0 5) ,p m2 ~ N (0 ,U lO s ) , f i IR3 ~1 V (0 ,1 x 1 0 5 )

blRi ~ N ( —  G(0.001,0.001)
°1 R

The results obtained from this model are given in table 6.20.
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Table 6.20. Results o f  proportional odds model in terms o f  linear time, dose and 

dosextime interaction.

Mean Standard Deviation Median 95% Credible Interval
Ooroso 2.585 0.913 2.632 (0.949,4.314)
0OROS1 5.736 1.015 5.759 (3.888,7.662)
@OROS2 8.204 1 .1 0 1 8.188 (6.153,10.42)
fioROSl -0.335 0.147 -0.347 (-0.592,-0.0284)
fioROSl -0.0456 0.0543 -0.0504 (-0.141,0.0524)
@OROS3 0.00340 0.00290 0.00376 (-0.00272,0.00793)
&OROS 2.459 0.450 2.407 (1.693,3.437)
&IR0 2.215 0.629 2.163 (1.072,3.552)
O lR l 5.410 0.757 5.361 (4.064,6.989)
G}R2 7.265 0.848 7.186 (5.799,8.992)
f lR l -0.510 0.138 -0.517 (-0.779,-0.256)
PlR2 -0.0129 0.0523 -0.00288 (-0.124,0.0807)
PlR3 0.00513 0 . 0 0 2 2 1 0.00498 (0.00103,0.00939)
&IR 0.973 0.250 0.954 (0.549,1.518)

The interaction term for the OROS data was not significant whereas it was for the IR 

data. The model was rerun without the interaction term in the OROS group. The 

results for the OROS model are given in table 6.21.

Table 6.21. Results o f  linear dose+time model for OROS treatment group.

Mean Standard Deviation Median 95% Credible Interval
&OROSO 1.807 0.576 1.753 (0.745,0.2825)
&OROS1 4.888 0.726 4.852 (3.628,6.269)
0oROS2 7.337 0.873 7.28 (5.83,9.023)
POROS I -0.245 0.0834 -0.253 (-0.400,-0.0859)
POROS2 -0 .0 1 1 1 0.0291 -0 .0 1 1 1 (-0.0655,0.0474)
&OROS 2.385 0.473 2.343 (1.609,3.412)

The time parameter estimate 95% credible interval includes zero so the model was re­

analysed without the time effect. The results are given in table 6.22.
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Table 6.22. Results o f  linear dose model for OROS treatment group.

Mean Standard Deviation Median 95% Credible Interval
Ooroso 1.757 0.524 1.728 (0.804,2.866)
&OROS1 4.877 0,626 4.865 (3.686,6.118)
@OROS2 7.355 0.745 7.343 (5.963,8.849)
fioROSl -0.278 0.0371 -0.278 (-0.353,-0.207)
<?OROS 2.428 0.453 2.378 (1.691,3.516)

The dose parameter estimate was significant so the dose parameter remained in the 

model. The IR data was also run with just the dose term included and the results are 

given in table 6.23.

Table 6.23. Results o f  linear dose proportional odds model fo r  IR dose group.

Mean Standard Deviation Median 95% Credible Interval
& IR 0 1.361 0.342 1.357 (0.691,2.038)
OlRl 4.48 0.501 4.470 (3.539,5.523)
0 1 R 2 6.337 0627 6.320 (5.176,7.628)

f i l R I -0.273 0.0349 -0.272 (-0.343,-0.207)
<?IR 0.902 0.469 0.900 (0.381,1.426)

Figures 6.15 and 6.16 are plots of the linear dose proportional odds models for the 

OROS and IR treatment groups respectively.

Figure 6.15. Plot o f  linear dose proportional odds model fo r  OROS dose group (results 

in table 6.22).
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Figure 6.16. Plot o f  linear dose proportional odds model fo r  IR dose group (results in 

table 6.23).
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To see if  there was a significant difference between the dose effects in the OROS and IR 

dose groups, a model o f the form specified in equation (6.14) was examined, 

log it(E(Pi(WiJ < k  | bj))) = trt){0OROSk + f iOROŜ dosei + bOROSi)
(6,14)

+ (1 ~ trtj )(0mk + (floRosi + ftim-oRos\) dose i + bmi), k  = 0 ,1 ,2  

The results for this model are given in table 6.24.

Table 6.24. Results o f  linear dose comparison model.

Mean Standard Deviation Median 95% Credible Interval
Ooroso 1.735 0.544 1.732 (0.679,2.841)
OoROSl 4.854 0.647 4.842 (3.602,6.149)
&OROS2 7.405 0.780 7.393 (5.918,8.955)
fioROSl -0.273 0.0350 -0.273 (-0.342,-0.202)
(Toros 2.487 0.466 2.437 (1.735,3.528)
Giro 1.347 0.338 1.338 (0.695,2.043)
& IR 1 4.458 0.490 4.446 (3.540,5.474)
0 1 R 2 6.303 0.613 6.271 (5.162,7.551)
PlRl-OROSl 7.43 lx lO ' 4 0.0491 0.00165 (-0.0969,0.0968)
< ?IR 0.898 0.0249 0,890 (0.430,1.404)
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The 95% credible interval corresponding to the parameter for the difference in the dose 

effects included zero so there was not a significant difference between the toxicity o f the 

two formulations.

Gupta et al (1999) showed similar results as the work presented here. They showed that 

a placebo model was not needed to be accounted for and there was not a significant 

difference between the dose effects in the adverse effects data.

6.5 Decision Analysis

Decision analysis is concerned with the problem of making decisions. These decisions 

are made in the presence of information through data, knowledge through previous 

analyses and a priori beliefs and preferences to different decisions that could be made. 

The statistical analysis in work carried out in this thesis was usually geared towards 

describing and comparing data in the hope of defining a model for future use in 

prediction o f new patients’ outcomes or comparing new dosage regimens for example. 

The modelling process was ended when it was considered that a suitable model had 

been found. Being able then to go on and use the model for some practical purpose is of 

prime importance in clinical studies. A general framework such as decision analysis is 

described in detail by Berger (1985) and Bernardo and Smith (1994) and is well placed 

for the types o f decisions that are made before, during and after the implementation o f 

clinical trials. Decision problems can be framed in terms o f frequentist or Bayesian 

ideas, but here the problem will be in terms of Bayesian decision theory.
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The purpose o f this section is to define an optimal dose for the use o f once daily 

oxybutynin chloride based on the efficacy and toxicity data studied previously. The 

optimal dose was to be defined based on the Bayesian analysis o f the data and 

clinicians’ beliefs on what would be suitable levels of efficacy and toxicity for 

oxybutynin. These beliefs would then be described in terms o f a mathematical function 

which could then be included into the Bayesian analysis to produce an answer to the 

question o f an optimal dose.

6.5.1 Decision Analysis F ram ew ork

The basic elements of a decision problem were outlined briefly above. This section is 

described in more detail in Berger (1985) and is a summary o f the elements involved in 

making decisions.

The unknown quantity which affects the decision (or action) that might be taken is 

commonly called the state o f nature and is denoted by (f> and the set o f all possible states 

o f nature is given by d>. In making decisions it is clearly important to consider what the 

possible states o f nature are. O f course, $ can be multivariate and in the work 

undertaken here, the possible states o f nature are the parameters o f the models for the 

efficacy and toxicity data.

Decisions are commonly called actions in the literature, Whitehead and Brunier (1995) 

for example. Particular' actions are denoted by a while the set o f all possible actions are 

denoted by A. In the oxybutynin study, the set o f actions could be the decision 

regarding which formulation o f oxybutynin to give a patient.
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A key element of decision theory is the utility (gain) function or sometimes referred to 

in terms o f loss (negative gain) (Wakefield (1994)). I f  a particular action aj is taken and 

<j>i turns out to be the true state of nature then a utility o f U,(0i,cii) will be observed. 

Thus, a utility function is defined for all (0,«)e QxA. The loss function in the 

oxybutynin data set is defining the relative desirability of the efficacy and toxicity 

responses.

When a statistical investigation is performed to obtain information about <f>, the outcome 

(a random variable) will be denoted by 7. Often, 7  will be a vector, as when 

7 = (7 /,7 2 , . . . ,7 „), the 7,’s being independent observations from a common distribution. 

The probability distribution of 7  will depend on the unknown parameter (f>. The 

distribution o f 7 conditional on (ft is denoted by P{Y\(f)) (which is the likelihood).

The last piece o f information to be included in the decision problem is the prior 

information concerning (J). The symbol £($) will be used to represent a prior density on 

the parameters (j).

As the decision problem is usually formulated in terms o f uncertainties, it is usual to 

work with expected utilities. Hence the actual incurred utility will never be known with 

certainty (at the time o f decision making). The Bayesian expected utility is defined in 

equation (6.15).

P(Z, a) = E(U t (0, a)) OC t  u , (0, a)P (y \ (6.15)

This expectation is being evaluated with respect to the posterior distribution and 

therefore equation (6.15) can be re-expressed as equation (6.16).

a) = E{U, {(j), a)) = ^  U, (<p, d)P($ \ y)d<p (6.16)
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The expected utility is maximised over the posterior distribution so that both uncertainty 

in the random variable Y  and the parameters, (J> can be taken into account. If  there are n 

possible actions that can be taken, then the action that maximises the expected utility 

(pmax) is chosen as defined in equation (6.17).

p max = m ax(p (0 ,af)),Z = 1 ( 6 . 1 7 )
i

6.5.2 Utility Function for Oxybutynin

The utility function for the oxybutynin data was defined in two parts: one pail for the 

efficacy data and one part for the adverse effects measure. The utility functions had to 

be defined in a certain way so as to bring both variables onto the same scale. The 

efficacy data was measured on a non-negative integer scale and the adverse effects were 

measured on a categorical scale. The expected response was a non-negative continuous 

variable for the efficacy data and a probability for the toxicity data. The way in which 

the clinicians defined the desired levels o f efficacy and toxicity was in terms o f a 

population mean response. The required level o f efficacy and toxicity defined by the 

clinicians was the following:

Efficacy

“The number o f  urinary urge incontinence episodes in a week must be less than 

or equal to 6 .”

Toxicity

“The probability o f  having severe dry mouth must be less than 0.1 and the 

probability o f  moderate or severe dry mouth be less than 0.7.”

Another aspect o f the utility function that could have been specified was the ‘weighting’ 

o f the toxicity and efficacy measures. This weighting would determine how much
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importance was assigned to the different aspects o f the pharmacodynamics o f 

oxybutynin. If  the toxicity were given more weight then this would imply that toxicity 

is more important in determining the optimal dose, whereas if  efficacy were given a

specification about whether efficacy or toxicity was more important, they were both 

given equal weighting.

The defined level of desired efficacy was such that there be less than 7 urinary urge 

incontinence episodes a week. It was assumed for the efficacy utility function, there 

were on average, 20 incontinence episodes a week. This value, if  changed would have 

an impact on the final optimal dose but the sensitivity on this value was not carried out. 

The range o f the efficacy utility function was between 0 and 1. When the number o f 

incontinence episodes is greater than 6 , the efficacy utility function returns a value o f 0 . 

When the number o f urge incontinence episodes was 0 then the utility function returned 

1. When the number o f incontinence episodes are between 0 and 6  then the utility 

function increases from 0 to 1 as the number of episodes decreases from 6  to 0. The 

utility function is defined in equation (6.18) and exemplified in figure 6.17.

greater weight then the converse would be true. As the clinicians did not make any

/ 20(0,, -  02, (1 -  e-Sl,‘ ^
6V J

(6.18)
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Figure 6.17. Example p lo t o f  efficacy utility function.
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A step function could have been defined but it was thought more appropriate to use a 

smooth function as the number of incontinence episodes decrease from 6 .

The defined level o f desired toxicity was based on two probabilities: the probability o f 

having severe dry mouth being less than 0 .1  and the probability o f having severe or 

moderate dry mouth being less than 0.7. The range o f the toxicity utility function was 

from —1 to 0. The utility function was 0 when tire probability o f being in category 3 was 

less than 0.1 and the probability of being in category 2 and 3 was less than 0.7. If  the 

probability o f being in categories 2 and 3 is less than 0.7 and the probability o f being 

category 3 is greater than 0.1 then the utility is defined by the logistic curve 

Pr(Y<l).When the probability of being in categories 2 and 3 is greater than 0.7 and the 

probability o f being in category 3 is greater than 0.1, then the utility function returns -1 . 

The utility function is defined in equation (6.19) and is graphically exemplified in figure 

6.18.

T. (y) = /(Pr(l^. < 2) -  0.9) + (1 -  /(Pr(7, < 2) -  0.9))) Pr(7, < ^  1) -  0.3) - 1

(6.19)
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Figure 6.18. Example p lo t o f  efficacy utility function.
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The combined utility function was simply set to the sum of the efficacy and toxicity 

utility functions. A small arbitrary amount was subtracted from the combined utility 

function to account for hypersensitivity (Rowland and Tozer (1995)). The combined 

utility function is defined in equation (6 .2 0 ).

Ui = S i + 7 )-0 .0 5  (6.20)

To determine the expected posterior utility, the efficacy and toxicity models needed to 

be rerun in the same BUGS code so that parameter uncertainty in the population 

parameter estimates could be accounted for in the utility function. Linear dose effect 

models were used for both the efficacy and toxicity data.

The results o f the efficacy, toxicity and combined utility functions are shown in figures 

6.19-6.21 respectively.
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Figure 6.19. Results o f  efficacy utility function.
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Figure 6.20, Results o f  toxicity utility function.
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Figure 6.21. Results o f  combined utility function.
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From figure 6.19, the utility for OROS was greater than the utility for the IR 

formulation o f oxybutynin, once dose levels had exceeded 5 mg. There was very little 

difference between the toxicity utility of the two formulations except after 

approximately 12.5 mg when the utility of IR was lower but the 95% credible interval 

was very wide and included that of the OROS formulation. The combined utility o f 

efficacy and toxicity shows that most of the combined result comes from the efficacy 

outcome and toxicity does not really start to have any impact until the top range o f the 

doses were considered. Although there was not a significant difference between dose 

effects in the toxicity proportional odds models, there appears to be some down turn in 

the IR combined utility function before that o f OROS. This was certainly the case but 

the 95% credible interval gets wider at this point and shows a lot o f variability. The 

optimal dose o f IR oxybutynin appeal's to be at approximately 12.5 mg and for the 

OROS oxybutynin, somewhere just above 15 mg.

6 . 6  Discussion

The study design was a forced dose escalation study. This type o f design is not as 

frequently met in the analysis of clinical trials as the parallel dose group design but is 

useful for the study o f efficacy and toxicity of a drug. Although dose and time as 

predictors for the pharmacodynamics o f the drug are restricted to a certain degree by the 

study design, it was still possible to determine dose and time effects by the active 

treatment group data alone. The placebo data allowed the estimation o f a more 

complicated placebo model but the active treatment data allowed the estimation o f 

lineai' time trends only. This was because while dose remained the same for 2 weeks at
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a time, the time component changed and there were two longitudinal measurements 

within a particular dose for a particular individual. This was the same for both the 

efficacy and toxicity data. A linear' time component could have been tested in the 

efficacy data but because a more descriptive model was derived from the placebo data, 

it was not considered necessary. Other models for the placebo data could have been 

considered such as the E,liax model but only the model in equation (6.4) was considered.

The efficacy placebo model was able to describe the data well with the inclusion o f the 

placebo run-in episode count as a covariate in the model. This was a good choice o f 

model because it allowed easy application to the active treatment groups as all that was 

required was a weekly count of the number of urinary urge incontinence episodes. The 

model chosen by Gupta et al (1999) is defined in equation (6.21) where X is the mean 

number o f incontinence episodes.

log (X) = a  + e~/3lime (6.21)

This model does not include a subject specific covariate for the baseline count and so 

any individual estimates need to be estimated with the use o f subject specific random 

effects. This model also only requires two population parameters which was an 

improvement on the model used in this work. The model used previously could be 

simplified by assuming one of the parameters to be fixed (/?2= 1 ) so as to make the 

placebo model go through the baseline count and the other parameter (/%) being an 

offset to estimate the asymptote as time increases. The model used here could easily be 

implemented in the NONMEM analysis to obtain a reasonable estimate o f the 

individual data. In the NONMEM analysis, a random effect was assigned to the time 

effect parameter which allowed for different rates o f decrease (or increase) in 

incontinence counts between individuals to be estimated but in the BUGS analysis, only
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the population parameter was estimated. This was due to the use o f the Griddy Gibbs 

algorithm in BUGS which requires the use o f a truncated distribution to be discretised 

into a histogram and so a uniform distribution was selected. Individual estimates could 

have been obtained but this would have required a slightly different Bayesian model 

specification. Such a model would be estimated easily in WinBUGS as there is a 

Metropolis algorithm step implemented. This would allow both individual and 

population parameter estimates on this parameter to be estimated.

The above analysis of the active treatment group data showed different results to that of 

the analysis by Gupta et al (1999). The IR dose group had the same linear dose trend on 

the log scale as the NONMEM analysis but the OROS data showed a cubic relationship 

between incontinence counts and dose in the BUGS analysis. It was not reported 

whether other dose models were considered for the active treatment group efficacy data 

in the NONMEM analysis. Although a cubic dose model was found for OROS, the 

cubic term was positive which when extrapolated to higher doses would lead to an 

incorrect dose-effect relationship. In the NONMEM final model, the dose parameter 

estimate for OROS and IR was -0.144 as it was assumed that both treatment groups had 

the same dose effect but different intercepts compared to -0.145 and -0.105 in the 

BUGS analysis. Whereas the BUGS analysis showed there was a difference between 

the dose effect o f the two formulations, the NONMEM analysis did not but did show a 

significant difference between the intercept terms. The difference in results could also 

be due to the different placebo models used having an effect on the estimation o f the 

dose parameters. In both analyses, it was shown that there was a higher number o f 

incontinence episodes in the IR treatment group as compared to the OROS treatment 

group.
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Other efficacy models could have been considered for these data. One important class 

o f models that could have been studied were those that included autoregressive 

components. Zeger (1988) reported an approach to modelling a time series o f counts 

where the correlation was assumed to arise from an unobservable process added to the 

lineal' predictor in a log linear model. Other autoregressive type models have been 

reported by Azzalini (1994), Cessie and van Houwelingen (1994) and Fahrmeir and 

Kaufman (1987) which have been applied to binary and categorical data. Stiratelli et al 

(1984) took a random effect approach to accounting for autoregression between the 

serially correlated data. Such models can be expressed as in equation (6.22).

g {E(Y„)) = P x ,  + r ,r,_, + r 2YIJ_2 + ,.. + r  j-\Yh (6 .22)

The first part o f equation (6.22) is the standard covariate part of the model with 

regression parameter J3 and the second part of the model is made o f previously observed 

response data giving the model a time series flavour. These models are usually only 

applicable when the spacing between serially observed data are equal as was the case 

for the oxybutynin data. It is possible to take into account unequal spacing as described 

by Jones and Boadi-Boateng (1991) but this was not necessary. Random effects models 

as described by Gupta et al (1999) could have been applied and even more complicated 

random effects structures but were not due to the difficulty of implementation in BUGS.

The placebo adverse effects data in both the BUGS and NOMEM analysis included no 

time effect. This does not imply that it is not possible to estimate a time effect in the 

active treatment groups as mentioned previously.

In the active treatment groups, again there was a difference in results between that from 

BUGS and NONMEM although this time, there was greater similarity in the types o f
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models used. For the IR data, the BUGS analysis showed that there was a statistically 

significant interaction between dose and time which was not reported in the NONMEM 

analysis. The OROS models were the same for the two different analyses. When a 

linear dose model was run in BUGS, there was no statistically significant difference 

between the IR and OROS formulations.

Like the efficacy data, the adverse data could have been modelled using a model with an 

autoregressive component. For categorical data, such models have a dynamic Markov 

chain feel as the probability o f going from category to category can be modelled but the 

probabilities change due to the influence of covariates. The baseline category could 

have also been used as a covariate in the model although it was not tried and therefore 

not known whether such a model would improve the fit.

The analysis o f the efficacy and toxicity data was carried out independently o f each 

other. A more suitable analysis could have been to use a multivariate technique to take 

into account the correlation between the toxicity and efficacy. W ork has been carried 

out on the analysis o f bivariate toxicity and efficacy data by Tubert-Bitter et al (1995), 

Murtaugh and Fisher (1993), Thall and Russell (1998), Jennison and Turnball (1993) 

and Cook and Farewell (1994). In these studies, the theme was to look at determining 

an optimal dose and monitoring o f efficacy and toxicity for a range o f  different response 

variables. A multivariate analysis o f oxybutynin might allow the determination o f more 

information from the data on how the efficacy and toxicity are related to 

pharmacokinetics and other covariate information. Often in clinical trials, there is more 

than one variable associated with the efficacy and toxicity o f the drug so such problems 

are nearly always going to be seen in a multivariate form.
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The decision analysis approach to determining the optimal dose for oxybutynin is a 

general way o f setting up decision procedures in clinical trials. Such a method does not 

have to be performed in a Bayesian setting and such problems can be defined in a 

ffequentist framework. Defining utility functions for outcomes such as efficacy and 

toxicity measures is a useful way of looking at clinical end points and determining safe 

and effective doses. It allows the different variables to be defined on a univariate scale 

without loss o f information from the original data and include prior information through 

the posterior distribution. From these utility functions, it is possible to make decisions 

about certain aspects o f the drug, such as dosing schedules, therapeutic windows and 

optimal doses. In the case of oxybutynin, the utility o f the OROS formulation was 

consistently higher than that o f IR over the dose range of 5-15 mg. Whereas the IR 

combined utility function had begun to turn down due to the toxicity o f the drug (even 

though there was no significant difference in the toxicity o f the two formulations), the 

OROS combined utility function was still rising as the toxicity had not reached a 

previously defined unacceptable level. The utility function was not tested for any 

sensitivity to any aspect o f the model. The actual modelling stage o f the analysis was 

considered to be reasonably stable as it gave similar answers as the NONMEM 

approach. It can be shown that changing the specification o f the utility function would 

have altered the optimal dose but not the choice o f formulation.
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7. D-Optimal Design for Ordinal Categorical Data

7.1 Introduction to Optimal Design

Optimal design for categorical response data has received little attention in the statistical 

and pharmaceutical literature. What work that has been published has been associated 

with logistic regression for binary or binomial data. The ways in which these problems 

have been approached has been to use a range o f optimality criteria. These criteria have 

included minimising fiducial intervals, D-optimality, sequential designs, Bayesian 

designs and constant information measures. Quite often the studies were results o f 

simulations and applications to toxicology examples. With this body o f work, the 

results for optimal design in logistic regression have become well established. 

Although this is a start to work on optimal designs for categorical response data, there 

are still many outstanding areas o f research for categorical data optimal design, such as 

categorical mixed effects optimal design but areas such as logistic mixed effects models 

at a more basic level have also not been tackled.

The purpose of this chapter is to extend the ideas for deriving optimal designs for binary 

data to where we have more than two categories in the response variable. The work will 

be restricted to the three category model and to the one independent variable case for 

ease o f understanding and computation. The model investigated was the one used 

throughout the thesis: the proportional odds model. This model is a generalisation o f 

logistic regression for dichotomous data. This work was originally motivated from the 

need for more efficient clinical trial designs, especially in Phase II/III clinical trials and
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even in pre-clinical studies where categorical data are common. However, initially the 

fixed effects proportional odds model case was investigated.

7.2 O ptim al Design Theory

Optimal design and experimental design dates back to the work o f Fisher at the 

Rothamsted field station. The general idea o f optimal design is to design an 

experiment/data collection procedure where there is optimal efficiency in collecting the 

data for extracting specific required information. The required information could be to 

estimate a parameter o f interest, prediction at a different predictor level, to test the 

difference between two means or determine whether a model is linear or quadratic for 

example. The way in which these requirements are met is by the specification o f 

different optimality criteria. There are many optimality criteria such as A, C, D and G 

optimality, with D optimality being the most frequently encountered. A optimality 

minimises the sum of the variances of the parameter estimates, C-optimality minimises 

the variance o f a linear combination o f parameters, D optimality minimises the 

variability associated with parameter estimation and G-optimality minimises the 

maximum over the design region o f the standardised variance (Atkinson and Donev 

(1992)). These are only a few examples of optimality criteria which require the model 

to be known before the optimal design is derived for further data collection. For linear 

models with normally distributed errors, most o f the different design criteria produce 

the same design (which corresponds to taking observations at the extremes o f the 

domain region). Therefore parameter values do not need to be known for the linear 

model. When the model is nonlinear, the optimal design (for example D-optimal design)
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is dependent on parameter values. This is because the variance matrix which is often 

approximated by the negative inverse o f the Fisher information matrix is a function of 

the model parameters. The paradox o f having to know what the parameter values are 

before they are estimated from the optimal design means that D-optimal designs are 

impossible to find in practice. As parameter estimation is the main interest in D- 

optimality, assuming that the parameters are known before the experiment is designed 

might not seem the most appropriate thing to do. To get round the problem o f not 

knowing the parameter values a priori, as is usually the case, a measure o f uncertainty 

can be assigned to the parameters. This can be made possible by the specification o f a 

distribution on the parameters. This would give a measure of location and dispersion of 

the parameter and allow parameters uncertainty to be incorporated into the design 

problem. This type o f approach to designing experiments is usually referred to as 

Bayesian optimal design (Chaloner (1984), Firth and Hinde (1997), Chaloner and 

Larntz (1989) and Merle and Mentre (1995)). Another approach to initial parameter 

specification is to use a sequential design where the design o f the data collecting 

procedure is split into sections (Spears, Brown and Atkinson (1997)). In this method, 

data collected at the first stage is used to design the next stage so as to try and make the 

data collecting procedure as efficient as possible. In this chapter, the work will 

concentrate on the application of D-optimal designs to ordinal categorical data as 

commonly found in pharmacodynamic studies.

The definition o f D-optimality is to minimise (maximise) the determinant of the 

variance-covariance (information) matrix o f the parameter estimates.

4'(M(f)) = min{det(M_1(?))} (7.1)
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where *P is the optimality criterium, £ is the design space, M is the Fisher information 

matrix and det is the determinant o f the matrix. The variance-covariance matrix is 

determined by the (expected) negative inverse of the Fisher information matrix. The 

Fisher information matrix is defined as the Hessian matrix o f the likelihood with 

respect to the parameters to be estimated.

M (S) = E }
r d 2L (y

d0 : d6
z'J = 1, (7.2)

j y

where Ey is the expectation over the random variable Y, % is the data, L  is the likelihood 

function and 0  is the px 1 parameter vector.

7,3 Application to Pharmacokinetic/Pharmacodynamic Studies

Optimal design has not been a widely used method for designing pharmacokinetic and 

pharmacodynamic studies. The theoretical basis has been applied in the literature but 

not carried out in practice to any extent. One of the first examples o f the design o f a 

pharmacokinetic study is D ’Argenio (1981) who used D-optimal design and 

approximated the variance-covariance matrix by a first-order Taylor series 

approximation to the normal likelihood. In the pharmacokinetic setting, the goal is to 

determine the times when drug concentration measurements should be made. Other 

works have looked at the design of pharmacokinetic experiments. D ’Argenio (1990) 

and Merle and Mentre (1995) examined D-optimal design with parameter uncertainty in 

fixed effects regression. Tod and Rocchisani (1997) examined D-optimality and 

variants o f D-optimality for fixed effects nonlinear pharmacokinetic models. Mentre et 

al (1997) considered optimal design in a mixed effects setting. Jonsson et al (1996)
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looked at sparse sampling under varying conditions in practical settings. These 

approaches have greatly improved knowledge o f efficient sampling schedules but more 

work needs to be earned in a population setting. Some work has been carried out on 

continuous measure pharmacodynamic models, for example Merle and Mentre (1995). 

The same ideas used for designing pharmacokinetic experiments can be applied to 

continuous measure pharmacodynamic studies. Very little has been published 

specifically for the optimal design of pharmacodynamic studies. As well as continuous 

measure pharmacodynamic studies, there are of course non-continuous and non- 

noimally distributed data which need to be considered.

7.4 O ptim al Design for B inary D ata

Finney (1971) applied the ideas o f optimal design to binary and binomial data in his 

work on probit analysis. Other statisticians took up the idea throughout the 1970s and 

80s during which the basic methods were developed. The first paper o f any real 

substance was that by Abdelbasit and Plackett (1983). Abdelbasit and Plackett looked 

at a range o f optimality criteria for dichotomous data, such as fiducial intervals, D- 

optimality, sequential designs and constant information designs. Minkin (1987) then 

extended and made more rigorous, the work on D-optimal design and made a distinction 

between local and global D-optimal designs. Chaloner and Lam tz (1989) then extended 

the work to include the situation where the parameter values are not known a priori and 

a prior distribution is assigned to the parameters to formalise the information that is 

available on the parameters. Then Spear's et al (1997) generalised the Bayesian design 

to include multi-stage designs and made available a FORTRAN program.
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The context in which this research was undertaken was for the efficient estimation o f 

the parameters o f a logistic regression model. Other forms o f optimal design were not 

considered, such as prediction to new ranges of the independent variable or model 

specification. In many situations where an experiment is designed to gain some 

important piece o f information, the goal is estimating an important parameter. The 

research described above usually concentrated 011 models where the dichotomous 

response was a linear function o f one independent variable (for example, dose in the 

context o f a toxicology problem). This is the simplest situation as the functional form is 

simple and there is only one independent variable.

Consider the situation where we have data for i = 1,...,«. The x /s  are the

individual values o f the independent variable x. It is assumed that this variable is 

standardised to make it symmetrically distributed around zero. The y ?s are the 

individual values o f the independent variable. It is assumed in this analysis that y  is 

dichotomous and has been assigned values 0 or 1. Binary data o f this kind are assumed 

to be from a Bernoulli distribution. The likelihood is given in equation (7.3).

(7 .3)
~  (=1

The parameter tv-, is the expected probability of ‘success’ where this is taken to be 

probability o f observing y t =1. The log-likelihood is given in equation (7.4).

K y\% ) = log(£(;y | k )) = f i( y i \og7rj + (1 -  y , ) log(l -  ;r,.)) (7.4)
~ — /=i

Logistic regression relates the probability o f observing a response in a particular

category given that a particular* level of the independent variable x  was observed. The

model can be written in the form o f equation (7 .5 ).
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* , = H T ,  = H * , )  = - exp(^ 0 + ^ ) . (7.5)
1 + exp( / ? 0 + p\x{)

With binary data there is a variety of link functions such as the logit, probit and 

complementary log-log link functions. In the following work, the logit link function 

will be used as it is computationally easier to work with and because it is also the 

natural link function for binary data. The model can be written in a linear form by 

transforming equation (7.5) with the logit link function.

log itiOi) = log it(Pr(Yi = 1 1 *,-)) = / ? 0 + P m  (7.6)

An optimal design for this type of model is achieved by minimising the variability in 

estimating the parameters po and pi. This allows the parameters to be estimated as 

efficiently as possible. This minimisation is carried out on the determinant o f the 

asymptotic variance-covariance matrix, which is proportional to the area contained 

within the confidence ellipsoid for (j3o,fii). For the model shown in equation (7.6), the 

asymptotic variance-covariance matrix (expectation of the Hessian matrix o f the 

likelihood with respect to the model parameters) is defined in equation (7.7).

“i - l

Var(P h p k )
^  K i  (1 ~ X i  )  X j7T  i  (1 ~ 71 i )
/=1 /=1
n n

/ ( I  — 71 ;•) X( 711 (1  — 71 j )

> 1  /=]

j ,  Jc -  0,1 (7.7)

The difficulty in finding the optimal design for this problem (which is the problem with 

all nonlinear models) is that the matrix is a function o f the parameters for which the 

optimal design is being sought. In this situation, an initial estimate is used in place of 

the parameter as though it were known. This could be derived from a pilot study for the 

purpose o f determining the initial values. Another way o f detennining the initial values 

is using published results or using some other estimate. The problem of using an exact 

initial value is that the optimal design might be sensitive to departures from the initial

277



values and the optimality of the design might decay very rapidly as the initial guess 

moves away from the true value. Another possibility is to specify a distribution on the 

parameter values, as this is more appropriate when the parameter values are not known 

exactly a priori. In the present context, exact stalling values will be used although the 

problems associated with this are recognised. The standard method o f D-optimality is 

to take the determinant o f the asymptotic variance-covariance matrix as given in 

equation (7.7), Once this is done, then the problem becomes a matter o f minimising the 

variance-covariance matrix (i.e. minimising the variability associated with estimating 

the parameters). How this is minimised is a matter o f choice. A variety o f minimisation 

algorithms could be used but for simplicity, the simplex algorithm has been used 

(Nelder and Mead (1965)), as it does not require the use of derivatives which are needed 

for directional search algorithms. The simplex works on the basis o f a simplex/poly tope 

searching over the surface o f the function in the form o f contractions, expansions and 

reflections until a minimum is obtained.

The results that were obtained were for the simple case o f equation (7.5), the case where 

there is a binary outcome with one independent variable. There are two optimal design 

points that are symmetric around the point corresponding to probability 0.5. If  the 

initial values are taken to be (/?&/?;)=(0 , 1) then the optimal design points are 

(-1.543,1.543). These two points correspond to the probabilities, (0.178,0.824) which 

can be seen in figure 7.1. The design points seem to be intuitively sensible although the 

exact points would not be easy to guess. The points lie on the logistic curve where there 

is the most ‘informative5 change in the direction of the curve. I f  the design points were 

in the tails then there would be no information concerning where the curve starts to have 

a steeper gradient. I f  the design points were closer to the centre o f the curve then again
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it might be too difficult to determine how steep the curve is because there is more 

uncertainty to what the response is in this region.

F igure 7.1. Plot o f  design points fo r  logistic regression model with {fo,(3j)-{0J).
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A general formula can be derived for determining where the design points are given the 

initial starting values. This is given in equation (7.8).

(x1,x2) = ((1.5434-/?0) / A s( - 1 .5 4 3 4 - A ) /A )  (7.8)

Another important aspect o f optimal design is to determine the number o f  observations 

at each design point. Assume that it is required to take N  observations, how many o f 

these should be assigned to the design point xi and how many to x f l  According to 

Minkin (1987), this is simply a case o f dividing equally the observations between xj and 

X2  for even N  whereas for odd N, an extra observation should taken from either design 

point. This result contradicted that o f Abdelbasit and Plackett (1983) that there is a 

three point optimal design for odd N. Current work using the simplex method o f 

minimising the determinant has shown Minkin to be correct.
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An important aspect o f optimal design, in particular D-optimal design is to study how 

well the design performs when the initial parameter values are a distance from the true 

values. This is usually measured in terms of the ratio o f the determinant o f the incorrect 

design to the correct design raised to the inverse power o f the number o f parameters in 

the model as defined in equation (7.9) where p  is the number o f parameters.

_i_

n  _  \  ̂  ̂ estim ate  )  ]  1 m

A # - U ( i r r j  ( 7 - 9 )

Deff  is called the relative efficiency. The relative efficiency for the logistic model is 

given in table 7.1 and is defined in terms of the ED50 (otlfi) and scale parameter (5 as 

reported by Abdelbasit and Plackett (1983). The initial estimates are given by (a,j3) and 

the true values by (a 0 iPo). Table 7.1 is specified in terms of the ratio o f the true gradient 

to the initial estimate and the difference between the true and initial ED50 scaled by the 

initial gradient parameter. The efficiencies are given in this form because it gives a 

symmetric approach to looking at the divergence from the true values. From table 7.1, 

there is greater departure from optimality when the gradient is overestimated than when 

it is underestimated. As the difference in the ED50 increases, then there is a greater loss 

in the relative efficiency.

Table 7.1. Relative efficiencies fo r  logistic regression.

j3(ao/j3o-a/j3) Poip
0 .8 0.9 0.95 1 .0 1.05 1 .1 1 .2

2.5 2 0 . 0 18.1 17.1 16.1 15.2 14.3 1 2 .6
2 . 0 35.1 33.4 32.2 30.8 29.4 28.0 25.3
1.5 53.9 53.8 52.9 51.6 50.0 48.3 44.6
1 .0 72.6 75.4 75.4 74.6 73.4 71.7 67.7
0.5 8 6 .1 91.9 92.9 93.0 92.3 91.0 87.3
0 .0 91.1 98.0 99.5 1 0 0 .0 99.6 98.5 95.0
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7.5 Optimal Design of the Proportional Odds Model - 3 Categories

Optimal designs for the three category proportional odds model have not been reported 

in the statistical or pharmaceutical literature. This could firstly be due to the relatively 

recent introduction o f the proportional odds model for the analysis o f categorical 

response data although it is commonly encountered now in many areas. The model was 

originally described by McCullagh (1980). The name o f the proportional odds model is 

from the property o f the model that the log odds ratio difference at xj and Xk is 

independent o f the category that has been observed. Changing notation slightly horn 

the previous section, the model is defined in equation (7.10).

logit(Pr(7 < m | x)) = a m + J3xx (7.10)

Y is the categorical response variable defined on the K  categories ( 1 , 2 The index 

m can take a value horn the K -l categories (1,...,A^-1). The predictor variable is x and 

(31 is the gradient parameter. The parameters am are the so called ‘cut points’ or 

intercepts. These represent the baseline logit values when x-0. Equation (7.10) can be 

written in the untransformed form.

Pr(y < m , x) = _ ^ P K ± A ^ L  (7.n )
l + exp(tt,„+/?,*)

It can be seen that the parameterisation of the equation gives a cumulative probability o f

m
the form Pr(7 < m) — P r(7  = U T*) • h  is easy to revert back to individual category

*=i

probabilities by subtracting the relevant cumulative probabilities.

P r(7 = j )  = Pr (T < j )  -  P r(7 < j  - 1) (7.12)

Another part o f the problem that needs to be generalised is the distribution o f the data. 

The standard distribution for categorical data is the multinomial distribution and this is 

usually o f the form given in equation (7.13).
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n is the total number o f observations such that n = y i+ yz± .. .+ ym- The tt/ s are the 

individual category probabilities such that 711+712^ . . . 7im= 1. This parameterisation is in 

the form o f individual category probabilities but the proportional odds model is in the 

form o f cumulative probabilities so the likelihood can be reparameterised into the form 

o f cumulative probabilities. Using McCullagh’s parameterisation, we have

where ty = y i+ . . .+ y /  and yy ~  f t i + - R  is the random variable o f cumulative scores 

and T is the set o f cumulative probabilities. As the proportional odds model 

corresponds to this parameterisation, then in the likelihood, the cumulative probability 

can be replaced by the probability model in equation (7.11). It is with this information 

that the asymptotic variance-covariance matrix can be determined by differentiating 

with respect to the model parameters twice and inverting the negative o f the matrix. 

The general formulae for these derivatives for any number o f categories are given in an 

appendix at the end o f this chapter.

The optimality criterion to be used is D-optimality. The determinant is proportional to 

the area enclosed by the parameter ellipsoid and the smaller this area, the more accurate 

are the estimates. D-optimality is only one way o f finding an optimal design but it is 

probably one o f the easier ones to implement and so was used for the current problem. 

D-optimality has been used for logistic regression problems published by several

L( R | r )  - n\
rXi\r2i\..rmi\

r 2i - Y u  

r 2i

(7.14)



different authors (Khan and Yazdi (1988), Sitter (1992), Heise and Myers (1996), 

Minkin (1987) and Abdelbasit and Plackett (1983)).

7.6 Proportional Odds Model Results

The results for the proportional odds model where there are only two categories to 

choose from were presented in an earlier section and so will not be included here. The 

results for the three category case are presented in this section and conform to standard 

results on D-optimality, that is, the minimum number o f distinct optimal design points 

in the optimal design is the same as the number parameters in the model. To check that 

this is indeed the case, simulations were carried out. These simulations were performed 

using a double precision program written in Fortran 77 compiled on a Salford Fortran 

90 16 bit compiler.

The first simulations were designed to investigate how the design points would change 

as the initial estimates of the parameters were changed. To make the scenario easier to 

understand, only symmetric designs were considered. The symmetrical initial 

parameter assumption implied that the design itself would be symmetric due the 

symmetry o f the model. Also minimisation was limited to return three design points 

only. As a starting reference point for the initial values, the following initial values will 

be referred to throughout: ( ct/, <^ ,̂/7)=(-1 ,1 ,1). The cut points are symmetric around zero 

and the gradient is unity. Figure 7.2 shows a plot o f the proportional odds model with 

design points plotted on the curves. The optimal design points are symmetrically 

distributed around the probability (y) axis as expected, at (-1.866, 0,1.866). It can be
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argued from the graph, that these design points are not unreasonable. It must be noted 

that if  the data had been dichotomised as though it were intended to fit two simple linear 

logistic regression models, then this design would not be the most efficient and would 

require four optimal design points corresponding to the two intercept and gradient terms 

given by the formula for the binary case in equation (7.8). The current optimal design is 

in some way a trade-off between having an optimal design for the non-proportional 

odds model case and having the constraint on the gradient parameter so as to make both 

gradients equal. The optimal design can be presented in a slightly different way by 

plotting the optimal design points as individual category probabilities as in figure 7 .3 . 

Again the optimal design points look reasonable even in a slightly different setting, and 

o f course the design points were not determined based on individual category 

probabilities.

F igure 7.2. Plot o f  model and D-optimal design points fo r  3 category model with
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Figure 7.3. Plot o f  model in terms o f  individual category probabilities and D-optimal 

design points fo r  3 category model with (a t,a 2 ,(!)-(-1,1,1).
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The next step was to systematically change the cut points and the gradient parameter 

and to investigate what effect this had on the optimal design points. Firstly, the gradient 

term was held fixed and the cut points were allowed to vary. To keep symmetry, otj was 

made equal to -a j. With this scenario, it is known that the design points are symmetric 

and any plot requires only that the symmetric optimal design points be plotted against 

at. This is shown in figure 7.4. A relationship is shown between the optimum design 

point and the cut point. As the cut point converges to zero, i.e. as the two proportional 

odds lines converge towards each other, so the design point converges to the situation 

where there are only two categories in the response variable. This is inferred by the fact 

that as the lines converge together, then the probability o f being in the middle category 

tends to zero leaving only two categories with non-zero probabilities. As the cut points 

increase in magnitude, the design points also increase in magnitude and asymptote to 

the line o f identity.
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Figure 7.4, Plot o f  design point versus a  (with ft held fixed).
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The next step was to see how the optimum design points altered as the gradient was 

changed and the cut points remained fixed. The results o f these simulations are shown 

in figure 7.5. When the gradient was small in magnitude, the design points become 

further apart which was as expected as the logistic curve becomes flatter then there is 

less information in the middle section of the design space. As the gradient increases in 

magnitude, then according to the simulations, the optimal design points converged to 

zero. This was also expected since as the gradient becomes steeper, the steepest part o f 

the curve becomes closer to the probability (y) axis.
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Figure 7.5. Plot o f  design point versus (5 (with a  help fixed).
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Another important aspect o f the optimal design apart from the position o f the design 

points is the allocation o f the number o f observations to the distinct design points, i.e. 

assuming it is required to take n observations, how do these observations get allocated 

to the independent variables? To determine the number o f allocated observations at 

each design point, further simulations were carried where the number o f design points 

were varied. The results o f the simulations are given in Table 7.2.

Table 7.2. Results o f  number o f  observations and design points.

Number of
observations
(n)

Design Points(replications)

DPI DP2 DP3 DP4
3 - 1 .8 6 6 0 1 .8 6 6 -

4 -1.718 -1.185 1.185 1.718
5 -1.685(2) 0 1.685(2)
6 - 1 .8 6 6 (2 ) 0 (2 ) 1 .8 6 6 (2 ) -
7 -1.615(3) 0 1.615(3) -

8 -1.750(3) 0 (2 ) 1,750(3) -
9 -1.866(3) 0(3) 1.866(3) -
1 0 -1.687(4) 0 (2 ) 1.687(4) -

287



The first row corresponds to the same number o f design points as parameters required 

by the model (standard result o f D-optimality). Ignoring the case where n-4  for the 

moment, all the cases have three distinct design points. When n is a multiple of three, 

then the design points are the same as those for the case when n=3 but there is an equal 

number o f replicates at each distinct design point. When the number o f points is not a 

multiple o f three then the number o f replicates and the position o f the design points are 

not the same as when n is a multiple o f 3. In this case, the replicates are arranged in a 

symmetrical form so that there are more replicates on the outside design points. For 

example, when n~5, there are 2  replicates on the outside design points and 1 replicate o f 

the middle point and when n=7, there are 3 replicates on the outside points and 1 in the 

middle. It seems that there will not be a difference of more than two replicates between 

the outside points and the middle point. Along with this feature are the positions o f the 

distinct design points. When there are more replicates on the outside points than when 

there is an equal number of replicates at each design point, the position o f the points are 

pulled towards the middle, for example, when t?=7, the distinct design points are ( 

-1.615, 0,1.615) and for n~5, the design points are (-1.685,0,1.685). It appears that as 

the ratio o f the middle design point number of replicates compared to the number o f 

replicates on an outside design point diverges from 1 :1 , then the positioning o f the 

points tends towards the middle. This can be seen in the table. 7.3.

Table 7.3. Position o f  outside design point compared to ratio o f  number o f  replicates o f  

middle design point to outside design point.

Ratio o f middle point to outer point
1 :1 2:3 1 :2 1:3

Design Point 1 .8 6 6 1.75 1.685 1.615
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This leads to the description o f why there are 4 distinct optimum design points when the 

minimisation was searching on only 4 observations. It seems as though there is a 

requirement that there be at least three distinct design points. If  the problem can not be 

solved with three distinct design points and symmetric weighting o f the replicates, then 

a solution is to have 4 distinct design points symmetric around 0. The reason for there 

not being a similar situation when 8  design points are required is because a 3 distinct 

point design can be derived with symmetric weighting o f the replicates in this case and 

in any other case with a multiple o f 4 design points.

As with binary data, the efficiency o f the design as the chosen design points vary from 

the true design points for the parameter set needs to be considered. The parameter 

values chosen as the reference parameter set were (aj,cc2 ,/3 )=(-1 , 1 , 1 ) which has optimal 

design points (-1.866,0,1.866). The efficiencies are determined by equation (7.9). The 

results correspond to a combination of design points of DP1= (-4.866,-3.866,-2.866, 

-1.866,-0.866), DP2=(-0.5,0,0.5) and DP3=(0.866,1.866,2 .8 6 6 ,3.866,4.866). The 

efficiencies are given in tables 7.4-7.6 corresponding to DP2=0, DP2=0.5 and 

DP2=-0.5.

Table 7.4. Efficiencies (Vo) o f  proportional odds model with middle design poin t 

DP2=0.

DP3 0 . 8 6 6 1 .8 6 6 2 . 8 6 6 3.866 4.866
DPI -4.866 72.1 74.7 70.7 63.4 56.1

-3.866 84.3 85.2 79,5 71.1 63.4
-2 . 8 6 6 93.8 95.3 88.9 79.5 70.7
- 1 .8 6 6 94.1 1 0 0 95.3 85.2 74.7
-0 . 8 6 6 78.7 94.1 93.8 84.3 72.1
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Table 7.5. Efficiencies(%) o f  proportional odds model with middle design point 

DP 2 —0.5.

DP3 0 . 8 6 6 1 .8 6 6 2 . 8 6 6 3.866 4.866
DPI -4.866 69.4 69.5 6 6 .2 60.4 54.7

-3.866 83.5 81.7 76.4 69.5 60.4
-2 . 8 6 6 94.2 94.4 87.4 76.4 6 6 . 2

- 1 .8 6 6 96.0 99.2 94.4 81.7 69.5
-0 . 8 6 6 80.5 96.0 94.2 83.5 69.4

Table 7.6. Efficiencies(%) o f  proportional odds model with middle design poin t DP2= 

-0.5.

DP3 0 . 8 6 6 1 .8 6 6 2 . 8 6 6 3.866 4.866
DPI -4.866 75.0 77.8 72.2 63.3 54.7

-3.866 85.0 86.4 79.4 69.5 63.3
-2 . 8 6 6 92.7 94.9 87.4 79.4 72.2
- 1 .8 6 6 92.4 99.2 94.9 86.4 77.8
-0 . 8 6 6 80.5 92.4 92.7 85.0 75.0

From these tables, the most striking feature is that it is worse to over estimate the 

middle design point than to underestimate it. As the design points become wider 

(increase in magnitude) then the efficiency falls away.

7.7 Discussion

The results obtained here are for the three category proportional odds model and show 

that the results o f D-optimality hold. For the three category proportional odds model, 

there are three distinct design points, as there are three parameters in the model. The 

design points are a compromise for the case where two logistic curves are estimated 

independently o f each other giving four parameters and design points.
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The number o f distinct design points remains at three except for the case where four 

design points are required. Unlike binary data, where the position o f the design points 

does not depend on the number of observations required, for the three category model, 

there is a dependence between the two variables. It appears that the position o f  the 

design points depends on the ratio o f the number of replicates on the outside design 

point to the number o f replicates on the middle design point which was not the case for 

binary data. Based on this, it might be possible to find a relationship between the 

position o f the design points based on the number of replicates at the middle and end 

points. For the case o f four observations, this was unique because the number o f 

replicates could not be divided equally among three distinct design points with there 

being at least as many replicates on the outside design point as there is on the middle 

design point.

These results need to be expanded by considering models with more than three 

categories. There is no need to consider too many categories (certainly no more than 

10) as continuous approximations come into play. To expand the results, 4 and 5 

category models could be considered and see whether the results o f D-optimality still 

hold, such as four and five distinct design points for four and five parameter models. 

Also, whether there is any relation between the number o f observations and the position 

and the number o f distinct design points.

There are many potential directions for future work in this area. At the moment the 

current work needs to be completed and clarified with mathematical and statistical 

rigour.

291



As mentioned above the studies need to be extended to problems where there are more 

than three categories. This would lead to a body of work that was appropriate for any 

number o f categories including the binary case where there is one independent variable. 

Technically, this would be no more difficult than the current work except it would 

become more complicated due to the higher dimensionality o f the problem. Another 

direction that could be considered is to include more independent variables in the 

proportional odds model. Again this would not be any more technically challenging but 

would be more complex due to the increasing size o f the problem.

To bring these two parts together, would require the derivation o f an explicit formula 

for the calculation o f the design points from the initial parameter estimates as is the case 

for linear logistic regression. This would give a definitive answer to the position o f the 

optimum design points for any number o f categories and independent variables.

The main push o f this work is in the area o f population pharmacokinetic/ 

pharmacodynamic modelling. As already stated earlier, categorical data is commonly 

encountered for pharmacodynamic responses. Designing pharmacokinetic/ 

pharmacodynamic studies is an important aspect of clinical trial design and the ability to 

obtain relevant and useful information is not left to chance. When data is being 

collected from many individuals and in a longitudinal manner, then it is important that 

the optimal number of data points in each individual and over all individuals is 

collected, in order to make the data analysis/population modelling as efficient as 

possible. This leads to the efficient design of studies for mixed effects modelling. This 

is generally where work is leading. Corresponding to this is the need to incorporate 

parameter uncertainty in the design stage. This comes under the area o f Bayesian
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optimal design and has been widely studied for binary data. This would lead to new 

difficulties o f minimising functions derived from the design criteria as integrating over 

the prior distribution will generally be analytically intractable.

Finally, there is the need for optimal design o f simultaneous pharmacokinetic/ 

pharmacodynamic studies. This would be a procedure where the data collection in these 

studies were designed for the purpose of modelling the pharmacokinetic and 

pharmacodynamic data together rather than sequentially as is usually the case

A ppendix A7.1

This appendix gives the Hessian matrix and the Fisher Information matrix (negative 

expectation o f the Hessian) for the three category proportional odds models.

Observed second derivatives

d2l d2l
= -riQ-~ri)R2xda} df5 d/3dal

QR2 ~ R, )  (R3 - R 2) 

( T i - r i )  ( Y z - Y i )

~ ~Y2

-](i ~  2 x 2) —r 2 (i -  )[
(R2 - R , )  ] (RZ ~ R 2) 

(;r 2 ~ Y i f  (Y3 - Y 2 ) 2

d2l d2l
da2df5 d/3da2
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Negative expected second derivatives 

E (— ) = r ' <'l ~ 7 2 X1 - ? , i ) 2

5«i (r2-r0

-  E ( d*1 ) = E ( 821 ) = -  T j f l z Z i l t i l z Z a l
d a 2 d a 2 d a l (y2 -  ̂ )

£ 0 = “£(^ )= r i ( i“ ri)r21

-£(-^4-) = r22(i-r2)2(— -— +— -— )
O w . )  O w , )

-  £(-^t) = O'i (i -  r i )y2 -  r2 G -  r2 )(r3 -  r,) )x2

A ppendix A7.2

Fisher Information matrix for k  category proportional odds model with 1 linearly 

modelled covariate.

Likelihood given by:

I L R I D  = 7u ^ 2/ -  Yu \ Y(k-])i \ Yhi X(A-1)1/

1 Yu J '"1 Yu J 1 YU J

where the notation is given as before.
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The model is given by: 

log zY(Pr(Y < m)) = y m = Qm +

Fisher information matrix

-  Ei-pr) = rl 0  -  r J 2 (7— -— 7+7— -— 7)
(Ym - Y „ - \ )  (r,„tI -Ym)

E, d *1  ̂= _ r,„(.1- r J r m+iQ--r„n,)
S a „ d a „]+1 0 „1+, - r , „ )

d 2l
^  0 ,1 ; m= 3

d a »d a «*,,

£(-|T) = (E r,„ (i -  r,„ )(r,„+i -  r,„-,))/»=1

d 2l
E(-:5—^  = ;cir„,(i-r„ )(/„,♦! -r„-i) d a J P i
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8 Conclusions

The proportional odds model was used consistently throughout this thesis whenever it 

was required to model categorical pharmacodynamic data. It was shown by the analysis 

o f several different data sets that the proportional odds model can be applied to a variety 

o f different types o f analysis. In most o f the analyses, such as the pharmacokinetic/ 

pharmacodynamic model in the sumatriptan analysis and the adverse effects model in 

the oxybutynin data set, the proportional odds model was applied in a longitudinal 

setting. This is going to be one of the most common applications o f the proportional 

odds model in pharmacodynamics as it is often a requirement to study the time course 

o f the pharmacological effect o f the drug. The proportional odds model can 

accommodate time effects in a similar fashion to any other covariate. Toxicokinetic 

data set I did not include a longitudinal component (in the pharmacodynamics) as the 

data were collected at steady state which meant that the proportional odds model was 

implemented independent o f time. This is a common situation in which the 

proportional odds model can be used to show differences between factors, such as 

gender differences or between dose groups. Nearly all the models considered were 

linear in terms o f the covariate effects except for one case in which an Emax model was 

used (in toxicokinetic data set II) within the proportional odds model.

Although the proportional odds model can be applied to a variety o f different study 

situations, there are aspects o f the model that were restrictive. The main restriction 

encountered with the proportional odds model was the essential requirement of 

proportional odds. This requirement forces the model to have the same gradient
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parameters for each cumulative category level while the cut points are the only category 

specific parameters. By allowing the gradient parameters to vary across categories 

permits more flexible models. One problem with this is that the logistic curves should 

not cross in the region of interest, as this would lead to illogical results such as negative 

probabilities. It can be seen in the plots o f empirical cumulative probabilities, e.g. 

figure 6.15, that the odds are not always constant over the categories, but anecdotal 

evidence says that all that is required for proportional odds is that all the odds be less 

than or all greater than 1. Another problem with the use o f the proportional odds model 

is the combination o f covariates selected for the model. A particular model where this 

was a problem was the model involving linear time and dose. The critical problem was 

in interpreting the model, for example in the sumatriptan case where the drug was 

administered once. Assume that there is a significant dose and time effect. When dose 

is zero, then the model is dependent only on time and varies accordingly. When the 

dose is non-zero then the dose o f the drug has an effect. The effect o f the drug is a 

constant dose effect according to the model but the response varies over time and this is 

taken into account by the time parameter. The effect o f the dose is instantaneous 

according to the model but this is not observed in the data where usually the response is 

changing with respect to time. On average, the same baseline categorical scores are 

observed at the time the drug is taken (time=0 ) regardless of the dose given but if  the 

dose is non-zero then the proportional odds model predicts that an instantaneous effect 

is obtained. To get round this problem, a dose specific model could be implemented 

where the time effect parameter is estimated separately for each dose. This would 

probably result in the time parameter values increasing in magnitude as the dose 

increased, assuming that the effect o f the drug increased with dose. Although this 

circumvents the problem of an instantaneous effect due to dose, it introduces the
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problem o f extrapolating to doses outside the range o f those considered. This problem 

does not occur with concentration or AUC as these pharmacokinetic predictors o f the 

pharmacodynamics are functions o f time and dose, as at time zero, the AUC and 

concentration is predicted to be zero and increases accordingly with time and dose.

A major criticism o f the models employed throughout the different data analyses in this 

thesis is that they are not mechanistic. It is often the case that the mechanism for how 

the drug attains an effect is not well understood, such as in the case o f  sumatriptan 

(Plosker and McTavish (1994)). Trying to develop a model that incorporates a 

physiological interpretation is difficult and when it is possible, often results in a 

complex model. This leads to difficulties in parameter estimation and for categorical 

pharmacodynamic data, experience shows that this would be difficult to accomplish. 

The models used have all been empirical and have been devised to describe the data as 

best as possible given the information available. Modelling categorical 

pharmacodynamic data as described in this thesis has been o f interest over the last 5 

years approximately. In all the studies reported, the models have been empirical, even 

if  they have been given a pseudo physiological interpretation. The problem o f including 

mechanistic models into categorical data analysis has not been considered seriously to 

any great extent. This needs to be studied in depth if  categorical data is to be given the 

same level o f treatment as other forms of pharmacodynamic data. As the models are 

empirical, it is difficult to know how well they are likely to extrapolate to different 

studies for the same drug and whether the models have any generality.

It is always o f importance in any clinical trial to quantify and assess the variability. 

Interindividual variability is probably of greatest importance in pharmacokinetic/
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pharmacodynamic data and so describing the interindividual variability in categorical 

data should also be one o f the main investigations of the modelling process. All the 

models considered in this thesis were random effects models, but usually the random 

effect model had a simple structure. The most common way o f describing the 

interindividual variability was in the form o f an additive random effect on the cut 

points. This acted as a shift on the logit scale for the individual response to shift from 

the population mean response. This was often adequate at describing the variability 

between individuals but it is common to include random effects on the gradient 

parameters as well. In BUGS this often proved to be difficult to estimate for the 

categorical models, but in NONMEM, it seemed possible to estimate any interindividual 

variance structure required. However the standard errors often could not be estimated. 

How much confidence can be placed in such estimates is not known but it would 

probably be unwise to consider them seriously. The interpretation o f the random effect 

estimates needs to be considered carefully as it is different to that o f continuous models. 

The simplest way o f interpreting the interindividual variability is to report it as it is 

estimated on the logit scale. The standard distributional assumption to make for the 

random effects structure is to use a normal distribution (which can be readily changed in 

BUGS) so to report the variability on the logit scale gives it the same flavour as that for 

normally distributed data. It might also be required to consider the variability on the 

probability scale. In the case of a dose-effect model with an additive random effect, the 

amount o f variability between individuals on the probability scale will depend on the 

mean response. For example, table 6.23 gives the results o f a dose-effect model for 

oxybutynin with the interindividual standard deviation estimated as 2.428. The 

probability o f being in category 0  given a placebo dose ± 1 standard deviation is 

(-0.671,4.185) on the logit scale and (0.338,0.992) on the probability scale and for a
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dose o f 15 mg is (-4.841,0.015) on the logit scale and (0.008,0.504) on the probability 

scale. This gives a difference in probabilities of 0.654 and 0.496 for the 0 and 15 mg 

doses respectively. Interpretation o f the variability is therefore o f importance as the 

way in which the variability changes with mean response can have an effect on 

inferences made from the data.

As well as considering the interindividual variability, it is also o f interest to consider the 

residual variability. The residual variability is not estimated in NONMEM and only 

possible sometimes in BUGS. It is not often considered in the analysis o f categorical 

data to quantify the residual variability. Why this is the case is not known but should be 

included in the model if  possible to account for the remaining variability. The 

interpretation o f the residual variance component can be made in the same way as that 

for the interindividual variance component. It is known that including a subject specific 

random effect can cause a change in the population parameter estimates when compared 

to a fixed effects model. It has not been described whether including a residual 

component will do the same thing also. It is not likely to have a great effect if  the 

subject specific components account for most of the variability in the data but may have 

an effect if  the residual component is larger than the interindividual variability.

Checking the ability o f a model to describe the data is an important step in the 

modelling process. Whether it is a case o f choosing a selection o f different models and 

then deciding on the best model via some selection criteria or starting with an initial 

model and building in or taking out different components, there are a number o f ways to 

check the ability o f a model to describe the data. A range o f techniques were 

investigated such as the examination of residuals, comparing the deviance statistic,
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Bayes factors and the NONMEM objective function. Residuals plots were informative 

in showing how well the model fitted the data but there were differences in the Pearson 

and deviance residuals for the same model. Within each type o f residual, there was 

consistency in deciding which model was superior, for example in toxicokinetic data set 

I. Other residuals were not considered because o f the difficulty in interpretation 

whereas the residuals that were used are more similar to the residuals used in 

continuous data analysis in terms o f their interpretation. Summary statistics such as the 

deviance statistic are useful when comparing different models but do not give a picture 

o f how each separate model fits the data. The same problem is encountered with the 

NONMEM objective function but incorrect residuals are given in the NONMEM output 

file as it is reported as the observed score minus the predicted probability o f observing 

that score. It was considered that the best method of comparing models was by the use 

o f Bayes factors. Although this is a method used in a Bayesian setting, it is a predictive 

method o f comparing models and can therefore be used in a frequentist framework but 

requires a different interpretation due to the exclusion o f prior information. Although 

the method was used in a pairwise manner in toxicokinetic data set I, it can be 

formulated to compare multiple models simultaneously. As it is a predictive method, 

models do not need to be nested and random effects models can be compared to fixed 

effects models as well as nonlinear models to linear' models without having to change 

the way in which the comparison is made. As well as being applicable to categorical 

pharmacodynamic models, it could also be applied to pharmacokinetic models.

Two separate analyses in this thesis were from toxicokinetic studies, data set I and II. 

Each study had varying quality o f results but in both cases, sophisticated models were 

out o f the question. In data set I, there were only two dose levels that could be
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modelled which meant that essentially, only a comparison o f the dosing levels could be 

made. The modelling showed that the 200 mg/kg dose had a more toxic effect than the 

30 mg/kg dose but it would have been appropriate to have the placebo dose group data 

to compare the treatment groups to the placebo group. The data were rich as there were 

between 19 and 25 observations per rat and so modelling the data was not a problem, 

although for the 30 mg/kg dose group there was only one rat with scores in any o f the 

upper two categories. The main restriction in analysing the toxicokinetic studies was in 

the data that was available. In data set II, the preclinical trials were usually designed 

with good intentions, i.e. selecting doses that would (hopefully) give a no effect dose, a 

high toxicity dose and a median effective dose. The problem occurred when the data 

were collected and there were very few convulsions that could be used to develop a 

model. This meant that modelling most of the animal studies was difficult if  not 

impossible. Pharmacokinetic modelling for data set II was more straight forward than 

modelling the pharmacodynamics but even this was not simple. There was considerable 

variability in the pharmacokinetic data which made obtaining a population model 

difficult as well as there being small amounts o f data in some o f the studies. Trying to 

model the pharmacokinetic and pharmacodynamic data in the same model from such 

studies did not prove informative in any way as usually the dose-effect models were as 

good if  not better than the models including pharmacokinetic information through the 

AUC values. It was possible to use the pharmacokinetic information in data set I as 

there was sufficient data but data set II showed that by doing this was no more 

informative than using dose. Trying to model the pharmacodynamics when only a few 

pharmacodynamic events occur based on highly variable pharmacokinetic data was not 

a good combination for modelling. This brings into question the design o f the studies 

and what data should be collected from animal studies. Certainly, in data set II, a whole
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range o f measurements were taken representing different parts o f the animals and so any 

variable could have been chosen for the pharmacodynamic model. As this was a 

retrospective analysis, in that the study was not designed for the analysis carried out 

here, it begs the question, what was the data to be used for? If one o f the goals was to 

gain information on the compound to help design phase I clinical trials, then some 

modelling or scaling must take place to help choose dose groups, sampling times, 

patient numbers and so on. I f  the preclinical data is not used in this way then it must be 

questioned whether the collection o f so much animal data is needed for the assessment 

o f toxicity only. The scaling o f the pharmacokinetics proved to be effective between 

the three species but the scaling of the pharmacodynamics was non-existent. Most 

scaling studies are performed with pharmacokinetic variables but correlating the effect 

o f the drug must be of interest as studying the toxicity o f the drug in healthy humans is 

one o f the aims o f phase I clinical trials. The study of toxicokinetic data given in this 

thesis shows that if  such studies are to be o f use then more consideration needs to be 

given to what is required from the data, how the studies are to be designed and 

subsequently analysed and how the information is to be used.

Categorical data has already been considered in the literature in terms of population 

pharmacokinetic/pharmacodynamic analyses (Sheiner (1994), Mandema and Stanski 

(1996) and Sheiner et al (1997)). The approach taken in the literature was to assume 

that the models were known and had some form of physiological interpretation by 

including the Emax model as a component o f the pharmacodynamics. For the analysis o f 

sumatriptan, the models for both the pharmacokinetics and pharmacodynamics were 

empirical. The primary reason for this was that data was available for the first two 

hours only. It was known from previously reported clinical trials, that this time frame
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corresponded to being before or at Cmax and so no information was available on the 

disposition o f sumatriptan. For this data set, it was possible to try several different 

models with different levels o f random effects included in the proportional odds models. 

Interindividual variability was included in all the models considered but residual 

variability was unable to be estimated for the AUC and dose models. Estimates o f the 

interindividual variability was approximately the same for each o f the models but the 

residual variability when estimated for the dose and time and concentration models were 

different by a factor o f two with the dose and time model having greater residual 

variability. Model checking with the deviance statistic showed that AUC was the best 

model in describing the data but the dose and time model was almost as good on this 

basis. This showed again that including the pharmacokinetic information does not 

necessarily produce a better fit to the categorical pharmacodynamic data. AUC was 

superior to concentration and so some form o f exposure to the drug may be a better 

predictor o f the drug effect than plasma concentration. For the sumatriptan data set, 

modelling complex relationships between the pharmacokinetics and categorical 

pharmacodynamic response measure was possible and some nice relationships were 

obtained but these relationships remained linear on the logit scale.

There were other interesting features that could have been considered in some o f the 

data sets but were not, such as serial correlation. The models implemented in the data 

analyses o f this thesis all used the assumption o f independence from time to time within 

an individual. This assumption is probably not true in such situations. Serial 

correlation could have been taken into account for the toxicokinetic data set II, 

sumatriptan and oxybutynin data sets. It is reasonable to think that for a particular 

individual that the categories observed over time are longitudinally dependent and this
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needs to be checked by the inclusion o f an autoregressive component. Random effects 

models take into account the heterogeneity of a studied population but another way o f 

correcting for unexplained variability is the inclusion of an overdispersion parameter. 

This takes into account the difference in the variability between the observed and model 

predicted variability and used to ensure that variance components are not 

underestimated.

NONMEM and BUGS were the two computer programs used for parameter estimation. 

NONMEM has been in development for approximately 15 years more than BUGS and 

so would be expected to be at a more advanced level o f development. Although this is 

the case, BUGS has been extremely useful in the estimation o f a wide range o f models. 

Both NONMEM and (Win)BUGS can estimate nonlinear mixed effects models, but 

NONMEM has built in models for pharmacokinetic modelling as it is specialised for 

this area. BUGS does not have this ability although there is a proposed add on to 

BUGS called PKBUGS which has a library o f pharmacokinetic models which can be 

selected, but this is still to be released. NONMEM is flexible in that it allows the 

specification o f a user defined likelihood but there are restrictions on the number o f 

levels o f random effects that can be estimated. BUGS has a library o f distributions that 

can be selected for likelihood and prior distributions and any level o f random effects can 

be incorporated. BUGS is more flexible in this respect but NONMEM is generally 

more stable at estimating nonlinear models, in the sense that it does not crash as much. 

Both packages are suitable for estimating proportional odds models but BUGS is more 

flexible in the type of random effects distributions that can be selected whereas 

NONMEM allows the estimation of nonlinear proportional odds models more freely.
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Optimal design for categorical data has not been discussed in the literature before and 

the results given here are preliminary results for further work in categorical data optimal 

design. I f  the analysis o f population categorical pharmacodynamic data is to progress 

then the design o f studies for the analysis of such data must also be considered when 

designing clinical trials. Optimal design has been considered for binary and binomial 

data but only in terms o f fixed effects models. Before population designs are 

considered for categorical models, it would be worth considering optimal designs for 

logistic mixed effects regression models. This could then be used to expand to mixed 

effects proportional odds models. The results obtained for the three category 

proportional odds model showed that the optimal design for such models are not trivial 

and require further investigation.

There is considerable scope for further research into the analysis o f categorical 

pharmacodynamic data. One of the most important inadequacies o f categorical data is 

the lack o f information when compared to continuous data. This needs to be 

investigated to see how complex models can become for categorical data. This could be 

carried out by simulation studies where continuous models are simulated with different 

levels o f variability and then categorised and reanalysed to study the models that can be 

estimated. The same problem could be assessed in terms o f considering when the 

number o f categories become substantial enough to use continuous approximations? As 

well as studying the estimability o f fixed effects parameters, the random effects could 

be considered to check how well the variability is estimated in terms o f interindividual 

and residual variability. NONMEM and BUGS were used to estimate the models in this 

thesis but other programs could be used and other techniques such as nonparametric 

techniques and possibly the implementation o f the EM algorithm to maximise
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population likelihood functions. Model validation is another important area o f  research 

as particularly the asymptotic distribution o f binary-normal mixed distributions is not 

known and this would be useful for model checking in terms o f residuals and summary 

statistics. As well as the analysis o f categorical data, it would be appropriate that the 

trials be designed appropriately for the modelling of such data. Optimal design is one 

method of designing preclinical and clinical trials but in terms o f population analysis, 

optimal design is still in the early stages for mixed effects models, even for continuous 

data. Clinical trial simulation has become a popular method for designing trials and so 

this could also be considered.
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Appendix. Programs for Parameter Estimation

A1 BUGS Code

A l . l  BUGS Code For Proportional Odds Model (From Toxicokinetic Data Set I)

model auclb.bug; 

const
1 = 1 2 , # number o f rats 
J = 5; # number o f categories

var
gam ma[I,J-l], theta[J-l], betal, eta[I], tau, sigma, Y[I,J], 

E[I,J], beta2, betal2, auc[I], sex[I], dose[I], ncount[I];

data auc, sex in "aucl.dat", Y, ncount in "aucla.dat";

inits in "auc 1 .in";

{
for (i in 1 :1) { 

for (j in 1:J-1) {
# logit function

cloglogCgammafij]) <- theta[j] + betal *auc[i] + beta2 *sex[i] 
+ beta 1 2 * auc [i]* sex [i] + eta[i];

}
# Probability o f being in category j for rat i 

pi[i,l] <- gamma[i,l];
for (j in 2 :J -l)  { 

p i[ij] <- gam ma[ij] -  gam m a[ij-l];
}t t
pi[i,J] <- 1 -  gam ma[i,J-ll:

# Distribution o f Y
Y[i,] ~ dmulti(pi[i,],ncount[i]); 
eta[i] ~ dnorm(0 ,tau);

}
for (i in 1 :1) { 

for (j in 1: J) {
E [ij] <- ncount[i]*pi[ij];

}
}
tau ~ dgamma(0 .0 0 0 1 ,0 .0 0 0 1 ); 
sigma <- l/sqrt(tau);
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# Ordered cut points
theta[l] ~ dnorm(l,1.0E-5)I(,theta[2]); 
theta[2] ~ dnorm(2,1.0E-5)I(theta[l],theta[3]); 
theta[3] ~ dnorm(3,1.0E-5)I(theta[2],theta[4]); 
theta[4] ~ dnorm(4,L0E-5)I(theta[3],);

# Gradient paramters 
betal ~ dnorm(0,1.0E-5); 
beta2 ~ dnorm(0,l .OE-5); 
betal2 ~ dnorm(0,l,0E-5);

}

A1.2 BUGS Code For Bayes Factors Estimation

model comaucd3.bug;

const 
1= 12, 
J = 5, 
M = 2:

# Number o f rats
# Number o f categories (lesion scores)
# Number o f models

var
Y[I,J],
ncount[I]
P[M],
pM2,
m,
pi[M,I,J].

# response for rat is category j
# number o f observations per rat
# prior for model m
# probability for model 2

# true model
# probability for rat i, having lesion score j and being in model m 

gamma[M ,I,J-l], # cumulative probability for rat i, lesion score j and model m 
theta[J-l], # cut points for model 1
phi[J-1 ], # cut points for model 2
dose[I], # dose covariate
AUC [I], # AUC covariate
sex [I], # gender covariate
betal 1 , # coefficient for dose
b eta l2, # coefficient for AUC
beta2 1 , # coefficient for sex model 1 (dose model)
beta22, # coefficient for sex model 2 (AUC model)
beta31, # coefficient for interaction model 1 (dose model)
beta32, # coefficient for interaction model 2 (AUC model)
mu.theta[M,J], # mean o f theta for category j , model m
tau.theta[M,J], # precision o f theta for category j, model m
mu.phi[M,J], # mean o f phi for category j, model m
tau.phi[M,J], # precision o f phi for category j, model m
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mu.betal 1 [M], # mean o f betal 1 for model m 
tau.betal 1 [M], # precision of betal 1 for model m 
mu.betal 2 [M], # mean o f betal2 for model m 
tau.betal 2 [M], # precision of betal 2 for model m 
mu.beta21 [M], # mean o f beta21 for model m 
tau.beta21 [M], # precision o f beta21 for model m 
mu.beta22[M], # mean o f beta22 for model m 
tau.beta22[M], # precision of beta22 for model m 
mu.beta31 [M] 5 # mean o f beta31 for model m 
tau.beta31 [M], # precision of beta32 for model m 
mu.beta32[M], # mean o f beta32 for model m 
tau.beta32[M]; # precision o f beta32 for model m

data auc, dose, sex, ncount in "comaucd.dat", Y in "comaucde.dat"; 
inits in "comaucd.in";
{
# model (node) prior distribution. Categorical distribution 

m ~ dcat(p[]);
p [l] <- 0.999; p[2] <- 0.001; # use for joint modelling 
pM2 <- step(m - 1.5);

# model structure 
for (i in 1 :1) {

for (j in 1 :J-1 ) { 
logit(gam m a[l,ij]) <- theta[j]+betall*dose[i]; 
logit(gamma[2 ,i.j]) <- philjj+betan^aucfi];

}
# Probability o f being in categoiy j and covariate pattern i and model i

p i[ l ,i,l]  <- gam m a[l,i,l]; 
pi[2 ,i,l] <- gamma[2 ,i,l]; 
for (j in 2:J-1) { 

p i[1 4 J] <- gam m a[l,ij]-gam m a[l,ij-l]; 
pi[2 ,ij]  <- gamma[2 ,i,j] -gamma[2 ,i,j-1  ];

pi[l,i,J] <- l-gam m a[l,i,J-l]; 
pi[2,i,J] <- l-gam m a[2,i,J-l];

}
# Distribution o f Y 

for (i in 1 :1) {
Y[i,] ~ dmulti(pi[m,i,],ncount[i]);

}
# Model 1

theta[l] ~ dnoi*m(mu.theta[m,l],tau.theta[m,l]); 
theta[2 ] ~ dnorm(mu.theta[m,2 ],tau.theta[m,2 ]); 
theta[3] ~ dnorm(mu.theta[m,3],tau.theta[m,3]); 
theta[4] ~  dnonn(mu.theta[m,4],tau.theta[m,4]); 
betal 1 ~ dnorm(mu.betal 1 [m],tau.betal 1 [m]);

# beta2 1 ~  dnorm(mu.beta2 1 [m],tau.beta2 1 [m]);
# beta31 ~  dnorm(mu.beta31[m],tau.beta31[m]);
# Estimation priors

m u.theta[l,l] <- 0 ; tau .theta[l,l] <- 0 .0 0 1 ;



m u.theta[l,2 ] <- 0 ; tau.theta[l,2 ] <- 0 .0 0 1 ; 
mu.theta[l,3] <- 0; tau.theta[l,3] <- 0.001; 
mu.theta[l,4] <- 0; tau.theta[l,4] <- 0.001; 
m u .b e ta ll[ l]  < - 0 ; tau.betal 1 [1] < - 0 .0 0 1 ;

# mu.beta2 1 [l] <- 0 ; tau.beta2 1 [l] < - 0 .0 0 1 ;
# m u.beta31[l] <- 0; tau.beta31[l] <-0.001;
# Pseudo-priors

m u.phi[l,l] <- 1.12; tau .phi[l,l] <- 13; 
m u.phi[l,2] <- 2.368; tau.phi[l,2] <- 9.6; 
m u.phi[l,3] <- 4.124; tau.phi[l,3] <- 7; 
m u.phi[l,4] <- 5.836; tau.phi[l,4] <- 3.8; 
m u.betal2[l] <- -0.037928; tau.betal2[l] <- 48000;

# mu.beta22[l] <- 0.5669; tau.beta22[l] <- 17;
# mu.beta32[l] <- 0; tau.beta32[l] <- 30000;
# Model 2

phi[l] ~ dnorm(mu.phi[m,l],tau.phi[m,l]); 
phi[2 ] ~ dnonn(mu.phi[m,2 ],tau.phi[m,2 ]); 
phi[3] ~ dnorm(mu.phi[m,3],tau.phi[m,3]); 
phi[4] ~ dnorm(mu.phi[m,4],tau.phi[m,4]); 
b e ta l2  ~ dnoi*m(mu.betal2 [m],tau.betal2 [m]);

# beta2 2  ~ dnorm(mu.beta2 2 [m],tau.beta2 2 [m]);
# beta32 ~  dnorm(mu.beta32[m]5tau.beta32[m]);
# Estimation priors

mu.phi[2 ,l]  < - 0 ; tau.phi[2 ,l]  < - 0 .0 0 1 ; 
mu.phi[2 ,2 ] <- 0 ; tau.phi[2 ,2 ] < - 0 ,0 0 1 ; 
mu.phi[2,3] <- 0; tau.phi[2,3] <-0.001; 
mu.phi[2,4] < -0 ; tau.phi[2,4] <-0.001; 
m u.betal2 [2 ] <- 0 ; tau.betal2 [2 ] <- 0 .0 0 1 ;

# mu.beta2 2 [2 ] <- 0 ; tau.beta2 2 [2 ] <- 0 ,0 0 1 ;
# mu.beta32[2] <- 0; tau.beta32[2] <- 0.001;
# Pseudo-priors

mu.theta[2 ,l]  <- 0.87; tau.theta[2,l] < -17; 
mu.theta[2,2] <- 2.08; tau.theta[2,2] <-14; 
mu.theta[2,3] <- 3.78; tau.theta[2,3] <-10; 
mu.theta[2,4] <- 5.47; tau.theta[2,4] <- 4,3; 
mu.betal 1 [2] <--0.0128; tau .betall [2] <-450000;

# mu.beta21[2] <-0,784; tau.beta21[2] <-16;
# mu.beta31 [2] <- 0; tau.beta31 [2] <- 30000;
}

A1.3 BUGS Code For Simultaneous Analysis of Sumatriptan Data

model pkpd4.bug; 

const



N  = 83, # number o f individuals in PD data
T = 6 , # number o f time points in PD data
T2= 7, # number o f time points in PK data
K  = 4; # number of cut points

var
alpha[N], lambda[N], time[N,T], W[N,T], phi[N,T,K-l], beta, theta[K -l], 
a[N], tau.a, AUC[N,T], sigma.a, pi[N,T,K], dose[N], id[N], conc[N,T], 
lnmu[N,T2], epsilon[N,T2], abs, tau, sigma, Y[N,T2], mu.alpha, mu.lambda, 
tau,alpha, tau.lambda, sigma.alpha, sigma.lambda, nobs[N], idpk[N], 
timepk[N,T2], b[N,T], tau.b, sigma.b; 

data idpk, timepk, nobs, Y in "logpk.dat", id, dose, time, W in Meffic.txt"; 
inits in r,pkpd4a.in";
{

for (i in 1 :N) { 
for 0  in 1 :nobs[i]) {

lnmu[i,j] <- log(dose[i])+alpha[i]+lambda[i]*timepk[i.j]+log(l-exp(-abs*timepk[i,j])); 
Y [ij] ~ dnorm(lnmu[ij],tau);

}
alpha[i] ~ dnoi*m(mu.alpha,tau.alpha); 
lambdafi] ~ dnorm(mu.lambda,tau.lambda);

}
mu.alpha -  dnorm(-0.5,0.0001); 
mu.lambda -  dnorm(0 ,0 .0 0 0 1 ); 
tau.alpha ~ dgamma(0 .0 0 1 ,0 .0 0 1 ); 
tau.lambda -  dgamma(0 .0 0 1 ,0 .0 0 1 ); 
sigma.alpha <- l/sqrt(tau,alpha); 
sigma.lambda <- l/sqrt(tau.lambda); 
abs -  dunif(0,3); 
tau ~ dgamma(0 .0 0 1 ,0 .0 0 1 ); 
sigma <- l/sqrt(tau); 
for (i in 1 :N) { 

for (j in 1 ;T) {
# AUC[i,j] <- dose[i]*exp(alpha[i])*((l/lambda[i])*exp(lambda[i]5}i
# time[i,j]) - (l/(lambda[i]-abs)):}iexp((lambda[i]-abs):iitime[i,j])
# + l/(lambda[i]*(lambda[i]-abs)));

conc[ij] <- dose[i]*exp(alpha[i]+lambda[i]H:tim e[ij])*(l-exp("abs:f:time[i,j]))
* (1  -equals(dose[i] ,0 )); 

for (k in 1:K-1) { 
logit(phi[ij,k]) <- thetafkj+beta^concfi j]+a[i]+b[ij];

}
W [ij]~ d ca t(p i[ij,l:K ]); 
p i [ i j , l ] < - 1 -p h i[ i j ,l ] ;  
pi[i,j,2 ] <- p h i[ij,l]  - ph i[ij,2 ]; 
pi[i,j,3] <- phi[ij,2] - phi[ij,3]; 
pi[i,j,K] <- phi[i,j,K-l]; 
b[iJ] -  dnorm(0 ,tau.b)

}
a[i] -  dnorm(0 ,tau.a);

}
tau.a ~  dgamma(0.001,0.001);
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tau.b ~  dgamma(0 .0 0 1 ,0 .0 0 1 );
sigma.a <- l/sqrt(tau.a);
sigma.b <- l/sqi*t(tau.b);
theta[l] ~  dnorm(l 0 ,0 . 0 0 0  l);#I(,theta[2 ]);
theta[2] ~  dnorm(5,0.0001);#I(theta[l],theta[3]);
theta[3] ~ dnorm (4 ,0,000 l);#I(theta[2],);
beta ~  dnorm(0 ,0 .0 0 0 1 );

}

A1.4 BUGS Code For Deviance Statistic in Sumatriptan Data Analysis

model pkpdb.bug; 

const
N = 83, # number o f individuals in PD data 
T = 6 , # number o f time points in PD data
T2= 7, # number o f time poinys in PK data
abs = 0.5364,
K = 4; # number o f cut points

var
alpha[N], lambda[N], time[N,T], W[N,T], phi[N,T,K-l], beta, theta[K-l], 
AUC[N,T], pi[N,T,K], dose[N], id[N], conc[N,T], lnmu[N,T2], 
tau, sigma, Y[N,T2], nobs[N], idpk[N], timepk[N,T2], 
a[N], tau.a, sigma.a, dosepk[N], betal, beta2, beta3, 
llike[N,T], llike.sat[N,T], deviance,b[N,T],tau.b,sigma.b,
W likel [N,T], Wlike2[N,T], Wlike3[N,T], Wlike4[N,T]; 

data alpha, lambda in "pkparam.txt", id, dose, time, W in "effic.txt"; 
inits in "pkpd4a.in";
{

for (i in 1 :N) { 
for Q in 1 :T) {

# A U C[ij] <- dose[i]*exp(alpha[i])*(l/lambda[i]5!;(exp(lambda[i]!,:tim e[i,j])-l)
# -l/(lambda[i]-abs)*(exp((lambda[i]-abs)*time[ij])-l));
# conc[ij] <- dose[i]*exp(alpha[i]+lambda[i]:i:tim e[ij]):}i( l “exp(-abs:{:time[i,j])) 

for (k in 1 :K-1) {
logit(phi[ij5k]) <- -(theta[k]+betal5i:dose[i]+beta2 t'time[i,j]

+a[i]+b[ij]);
}
b[ij] ~  dnorm(0 ,tau.b);
W [ij]~ d ca t(p i[ij,l:K ]); 
p i[ i j , l ]< -  p h i[ij,l]; 
p i[ ij,2 ] <- ph i[ij,2 ] - phi[i,j,l]; 
pi[i,j,3] <- phi[ij,3] - phi[i,j,2]; 
pifijjK ] <- 1 - phi[i,j,K-l];
W likel [ij] <- equals(W [ij],l);



W like2[ij] <- equals(W [ij],2);
Wlike3[i,j] <- equals(W [ij],3);
W like4[ij] <- equals(W[i,j],4);
Hike[iJ] <“ Wlike 1 [i,j ] * (W [ij] * log(pi[ij, 1 ])+(1 -W[i,j])*log( 1 -p i[ij, 1 ]))

+ Wlike2 [ij ] * ((W [ij ]/2) * log(pi [ij ,2])+(1 - W[i J  ]/2) * log( 1 -pi [ij ,2]))
+ Wlike3[ij]*((W[ij]/3)*log(pi[ij,3]>+<l-W[y]/3)*log(l-pi[ijs3]))
+ W like4[iJ]*((W [i5>j]/4)^log(pi[ij,4])+(l-W [iJ]/4)*log(l-pi[iJ94]));

llike.sat[ij] <- W likel[ij]*(W [ij]* log(W [ij])+(l-W [ij])* log(l-W [ij]))
+ Wlike2 [i j  ] * ((W[i,j]/2)*log( W[i,j ]/2)+( 1 -W [i j  ]/2) * log( 1 - W[i j  ]/2)) 
+ W like3[ij]n(W [ij]/3)nog(W [ij]/3H l-W [ij]/3)nog(l-W [ij]/3)) 
+ W like4[y]*((W [iJ]/4)*log(W [ij]/4)+(l-W [ij]/4)*log(l-W [i!j]/4));

}
a[i] ~ dnonn(0 ,tau.a);

}
theta[l] ~ dnorm(4,0.0001);
theta[2 ] ~ dnorm(2 ,0 .0 0 0 1 );
theta[3] ~  dnorm(0,0.0001);
betal ~ dnorm(0 ,0 .0 0 0 1 );
beta2  ~ dnorm(0 ,0 .0 0 0 1 );
beta3 ~ dnorm(050.0001);
ta u .a -  dgamma(0 .0 0 1 ,0 .0 0 1 );
sigma, a <- l/sqrt(tau.a);
tau.b ~ dgamma(0 .0 0 1 ,0 .0 0 1 );
sigma.b <- l/sqrt(tau.b);
deviance <- 2 *(sum(llike.sat[,]) - sum(llike[,]));

}

A1.5 BUGS Code For Utility Functions in Oxybutynin Data Analysis

model oxyutil; 

const
N = 65, # number o f individuals 
M -  82,
K = 4, # number o f categories
D = 2, # number o f treatments
T = 7; # number o f time points per individual

var
trt 1 [M] ,trt2 [M] ,trt3 [M], Y [M,T] ,dose [M,T], # data
Y tim el [M,T],time[T],W[M,T],id[M],Yl [M], # data
plac[M,T],mu[M,T],phi[N,T,K“l],pi[N,T,K], # mean responses 
plac 1 ,plac2,plac3 ,tau.plac,sigma.plac, # efficacy placebo parameters
betaell,betael2,betael3,betae21,betae22,betae23, # efficacy parameters



betaal 1 ,betaal2,betaal 3,betaa21 ,betaa22,betaa23, # adverse parameters 
thetal [K -l],theta2[K -l], # adverse parameters (cut points)
etaal [N],etaa2[N],taual ,taua2,sigmaal ,sigmaa2, # adverse random effects 
etael [M],etae2[M],tauel ,taue2 ,sigmael ,sigmae2 , # efficacy random effects 
epsilon 1 [N,T] ,tau 1,sigma 1 ,epsilon2 [N,T] ,tau2,sigma2, # efficacy residual 
epsilona[M,T],taua,sigmaa, # adverse residual
S [2,T],V[2,T],U[2,T],d[T],heure[T]; # loss function variables

data id, tr tl, trt2, trt3, dose, Y, W, Y l, Ytimel in "oxyl.dat", time in "time.dat"; 
inits in "oxyutil.in";
{

for (i in 6 6  :M) { 
for (j in 1:T) { 

plac[i,j] <- Yl[i]*(placl-plac2*(l-exp(-plac3*time[j])));
Y [ij] ~ dnorm(plac[i j],tau.plac)l(0,); 
m u[ij] <- 0 .0 ;

}
}
for (i in 1 :N) { 

etael [i] ~ dnorm(0 ,tauel); 
etae2 [i] ~ dnorm(0 ,taue2 ); 
for (j in 1 :T) {

log(m u[ij]) <- trtl [i]*(log(Yl [i]*(placl-plac2*(l-exp(-plac3*time[j]))))
+betael 1 *dose[ij]+betael2 *pow(dose[i.j],2 )
+etael [i]+epsilonl [i,j])

+trt2[i]* (log(Y 1 [i] * (plac 1 -plac2* (1 -exp(-plac3 *time[j]))))
+(betae2  l)*dose[i,j]
+(betae2 2 ) *pow(do se [i j  ] ,2 )
+etae2  [i]+epsilon2  [i,j ]); 

epsilonl[i,j] ~ dnorm(0 ,taul); 
epsilon2 [ij] ~ dnorm(0 ,tau2 ); 
for (k in 1:K-1) {

logit(phi[i,j,k]) <- -trtl[i]*(thetal [k]+betaal 1 *dose[ij]+betaal2 *pow(dose[i,j],2 ) 
+etaal [i])

-trt2  [i] * (theta2  [k]+(betaa2 1) * do se [i j  ]
+(betaa2 2 ) *pow(dose [i j  ] ,2 )+etaa2  [i]);

}
W [ij] ~ dcat(pi[ij,l:K ]);
Y [ij] ~ dpois(mu[ij]); 
plac[i j ]  <- 0 .0 ; 
p i[ i j ,l ]  <- l-phi[i,j,l]; 
for (k in 2:K-1) { 

pi[ij,k] <- ph i[ij,k - 1 ]-phi[i,j,k];
}
pi[ij,K ] <- ph i[ij,K -l];

}
etaal [i] ~ dnorm(0 ,taual); 
etaa2 [i] ~ dnorm(0 ,taua2 );

}
placl ~ dunif(0,5); 
plac2  ~ dunif(0 ,placl);
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plac3 ~ dunif(0,l);
tau.plac ~ dgamma(0.001,0.001);
sigma.plac <- l/sqrt(tau.plac);
be tae ll ~ dnorm(0,0.0001);
betael2 ~ dnorm(0,0.0001);
betae21 ~ dnorm(0,0.0001);
betae22 ~ dnorm(0,0.0001);
taul ~ dgamma(0.001,0.001);
sigmal <- l/sqrt(taul);
tau2 ~  dgamma(0.001,0.001);
sigma2 <- l/sqrt(tau2);
the ta l[l]  ~ dnoim (l.7,0.0001);
thetal [2] ~ dnonn(4.8,0.0001);
thetal[3] ~ dnorm(7.3,0.0001);
theta2[l] ~ dnorm (l.2,0.0001);
theta2[2] ~ dnorm(4.3,0.0001);
theta2[3] ~ dnorm(6.1,0.0001);
be taa ll ~ dnonn(0,0.0001);
betaal2 ~ dnorm(0,0.0001);
betaa21 ~ dnorm(0,0.0001);
betaa22 ~  dnorm(0,0.0001);
taual ~ dgamma(0.001,0.001);
taua2 ~ dgamma(0.001,0.001);
sigmaal <- l/sqrt(taual);
sigmaa2 <- l/sqrt(taua2);
tauel ~ dgamma(0.001,0.001);
taue2 ~ dgamma(0.001,0.001);
sigmael <- l/sqrt(tauel);
sigmae2 <- l/sqrt(taue2);
d[l] <- 0; d[2] <- 2.5; d[3] <- 5; d[4] <- 7.5;
d[5] <- 10; d[6] <- 12.5; d[7] <- 15;
heure[l] <- 7; heure[2] < -14; heure[3] <- 21;
heure[4] <- 28; heure[5] < -35; heure[6] <- 42;
heure[7] <- 49;
for (1 in 1 :T) {

S[l,l] <- (l-step(20*(placl-plac2*(l-exp(-plac3*heure[l])))*exp(betael 1 *d[l])-6))* 
(6-20*(placl -plac2*(l -exp(-plac3*heure[l])))*exp(betael 1 *d[l]))/6;

S[2,l] <- (1 -step(20*(placl-plac2*(l-exp(-plac3*heure[l])))*exp((betae21 )*d[l])-6))* 
(6-20 * (plac 1 -plac2 * (1 -exp(-plac3 * heure [1]))) * exp ((betae21) * d[l]))/6;

V[1,1] <- step(exp(thetal [3]+betaal 1 *d[l])/(l+exp(thetal [3]+betaal 1 *d[l]))-0.9)+ 
(l-step(exp(thetal [3 ]+betaal 1 *d[l])/( 1 +exp(thetal [3]+betaal l*d[l]))-0.9))* 
exp(thetal [2]+betaal 1 *d[I])/(l+exp(thetal [2]+b etaal 1 *d[l]))* 
step(exp(thetal [2]+betaal 1 *d[l])/(l+exp(thetal [2]+betaal 1 *d[l]))-0.3)-1;

V [2,1] <- step(exp(theta2[3]+(betaa2l)*d[l])/(1 +exp(theta2[3]+(betaa21) * d [l]))-0.9)+ 
(1 -step(exp(theta2 [3]+(betaa21 )* d[l])/( 1 +exp(theta2 [3 ]+(betaa21 )*d[l]))-0.9))* 
exp(theta2[2]+(betaa21)*d[l])/(l+exp(theta2[2]+(betaa21)*d[l]))* 
step(exp(theta2[2]+(betaa21 )*d[l])/(l+exp(theta2 [2]+(betaa21 )* d[l]))-0.3)-1;

U [l,l] <- S[l,l] + V [l,l] - 0.05;
U[2,l] <- S[2,l] + V[2,l] - 0.05;

}}
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A2 NONMEM Code

A2.1 NONMEM Code For Two Compartment First Order Absorption Model

TWO COMPARTMENT FIRST ORDER ABSORPTION MODEL

SUBROUTINE PRED (ICALL,NEWINDsTHETA,DATREC,INDXS,F,G,H) 
DIMENSION THETA(*),DATREC(*),INDXS(*), G(*),H(*)
DIMENSION ETA(IO), EPS(IO)
REAL KA,K10,K12,K21,L1,L2 
SAVE
COMMON /NMPRD4/ CO,CL, VI 
IF (ICALL.EQ.4) THEN 

IF (NEWIND.NE.2) CALL SIMETA(ETA)
CALL SIMEPS(EPS)

ELSE
IF (NEWIND.NE.2) THEN 

CALL GETETA(ETA)
EPS(01)=0.0 

END IF 
END IF 
TAU=24.
ID=NINT (D ATREC (1))
TIME=DATREC(2)
DOSE=DATREC(4)* 1000.0 
CL-THETA(1 )*EXP(ETA(1))
Y 1 =THETA(2)*EXP(ETA(2))
V2~THETA(3)
VSS=V1+V2
CLD=THETA(4)
KA=T0.0
RO=DOSE*KA
K12=CLD/V1
K21=CLD/V2
K10=CL/V1
SUM=K10+K12+K21
ROOT-SUM* SUM-4.0*K10*K21
L1 =0.5 0 * (SUM+SQRT (ROOT))
L2=0.50*(SUM-SQRT(ROOT))
Cl=(Ll-K21)/((KA,-Ll)>f!(Ll-L2)*Vl)
C2=(K21 -L2)/((KA-L2)*(L 1-L2)* V 1)
C3=(K21 -KA)/((L1 -KA)* (L2-KA)* V 1)
DL1CL=0.5*(LOW1H).5*(2.0*SUM/V1-4,0*K21/V1)/(SQRT(ROOT)))
DL2CL=0,5*(1.0/V1-0.5*(2.0*SUM/V1-4.0*K21/V1)/(SQRT(ROOT)))
DC 1 CL=DL 1 CL * (KA-K21)/ ((KA-L1) * (KA-L 1) * (L1-L2) * V 1)
1 -(DLlCL-DL2CL)*(Ll-K21)/((KA-Ll)*(Ll-L2)*(Ll-L2)5itY l)



DC2CL=-DL2CL * (KA-K21)/((KA-L2) * (KA-L2) * (L1-L2) * V 1)
1 -(DL 1CL-DL2CL) * (K21-L2)/((K A-L2) * (L1-L2) * (L1-L2) * V 1)
DC3CL=-(K21 -KA)*(DL 1 CL/(L 1 -KA)+DL2CL/(L2-KA))/((L 1 -KA)*(L2-KA) * V 1) 
DC 1 KA=-C 1 /(KA-L 1)
DC2KA=-C2/(KA-L2)
DC3KA=-C3/(K21 -KA)+C3/(L 1 -KA)+C3/(L2-KA) 
DL1V1N).5*(-K10m-K12mm5*(-2.0*SUM *(K10/Vl
1 +K12/^1)+4,0*K10*K21/V1)/
2 (SQRT(ROOT)))
DL2Vl=0.5*(-K10/Vl-K12/VT-0.5*(-2.0*SUM*(K10/Vl
1 E02/V1)+4.0*K10*K21/V1)/
2 (SQRT(ROOT)))
DC 1V 1 =DL 1V 1 * (KA-K21 )/((KA-L 1) * (KA-L 1) * (L1-L2) * V 1)
1 - (DL 1V 1-DL2 V 1) * (L1-K21 )/((KA-L 1) * (L1-L2) * (L1-L2) * V 1)
2 -C l/V l
DC2 V 1 =-DL2 V 1 * (KA-K21)/((KA-L2) * (KA-L2) * (L1-L2) * V 1)
1 -(DL 1V 1-DL2 V 1) * (K21 -L2)/((KA-L2) * (L1-L2) * (L1-L2) * V 1)
2 -C2/V1
DC3 V 1 " (K 2 1 -KA) * (DL 1V 1 /(L1 -KA)+DL2 V 1 /(L2-KA))/ ((L1 -KA) * (L2-KA) * V 1) 
1 -C3/V1
F1 =C 1 * (EXP(-L 1 * TIME))/(1 .-EXP(-L1 *TAU))
F2=C2 * (EXP(-L2 * TIME))/(1. -EXP(-L2 * T AU))
F3=C3 * (EXP(-KA* TIME))/(1. -EXP(-KA* T AU))
F=(F1+F2+F3)*R0
CO=F
G(1)=DC1CL*EXP(-L1 *TIME)/(1 .-EXP(-L1 *TAU))
1 -Cl *TIME*EXP(-L1 *TIME)*DL1CL/(1 .-EXP(-L1*TAU))
1 -Cl *EXP(-L1 *TIME)*DL1 CL*TAU*EXP(-L1 *TAU)
1 /((l .-EXP(-L1 *TAU))*(1 .-EXP(-L1 *TAU)))
2 +DC2CL *EXP(-L2 * TIME)/(1 ,-EXP(-L2*TAU))
3 -C2*TIME*EXP(-L2*TIME)*DL2CL/(1 .-EXP(-L2*TAU))
3 -C2*EXP(-L2*TIME)*DL2CL*TAU*EXP(-L2*TAU)
3 /((l.-EXP(-L2*TAU))*(l .-EXP(-L2*TAU)))
4 +DC3CL*EXP(-KA*TIME)/(1.-EXP(-KA*TAU))
G(1)=G(1)*R0*CL
G(2)=DC1V1 *EXP(-L1 *TIME)/(1 .-EXP(-L1 *TAU))
1 -C1*TIME*EXP(-L1*TIME)*DL1V1/(1.-EXP(-L1*TAU))
1 -Cl* EXP(-L 1 * TIME) * DL 1V 1 * T AU* EXP(-L 1 * TAU)
1 /((1. -EXP(-L 1 * TAU)) * (1. -EXP(-L 1 * TAU)))
2 +DC2V1 *EXP(-L2*TIME)/(1 .-EXP(-L2*TAU))
3 -C2 * TIME*EXP(-L2 * TIME)* DL2 V 1/(1 .-EXP(-L2*TAU))
3 -C2 * EXP(-L2 *TIME) * DL2 V 1 *TAU* EXP(-L2 * T AU)
3 /(( l. -EXP(-L2 * TAU)) * (1 .-EXP(-L2*TAU)))
4 +DC3V1 *EXP(-KA*TIME)/(1 .-EXP(-KA*TAU))
G(2)=G(2)*R0* V 1

C G(3)=DC1KA*EXP(-L1 *TIME)/(1.-EXP(-L1 *TAU))
C 1 +DC2KA*EXP(-L2*TIME)/(1 .-EXP(-L2*TAU))
C 2 +DC3KA*EXP(-KA*TIME)/(1 .-EXP(-KA*TAU))
C 3 -TIME * C3 * EXP(-KA* TIME)/ (1 .-EXP(-KA*TAU))
C 4 -C3*EXP(-KA*TIME)*TAU*EXP(-KA*TAU)
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C 5 /( ( l . -EXP (-KA* T AU)) * (1. -EXP (-KA* T AU))) 
C G(3)=G(3)*R0*KA 
C G(1)=F 

H(1)=F 
C H(2)=l.

END

A2.2 NONMEM Code For Proportional Odds Model

SUBROUTINE PRED(ICALL,NEWIND,THETA, DATREC, INDXS, F, G, H) 
DIMENSION THETA(*), DATREC(*), INDXS(*), G(10,*), H(10,*) 
DIMENSION ETA(10),EPS(10)
DIMENSION PC(5), PB(5), DPCDE(5),DDPCDE(5)
COMMON /NMPRD4 / Y 
COMMON /ROCM12/ MSEC 
INTEGER PID 
NCAT-  5
IF(ICALL.EQ.4)THEN 

IF (ICALL.NE.2)CALL SIMETA(ETA)
CALL SIMEPS(EPS)

ELSE
IF (NEWIND.NE.2)THEN 

CALL GETETA(ETA)
EPS(1)=0.

ENDIF
ENDIF
D = DATREC(2)
PLP = THETA(5)*D+ETA(1)
DO 101 = UNCAT-1 
PLP = PLP + THETA(I)
X = EXP (PLP)
PC© = X/(1.0+X)
DPCDE(I) = PC© - PC(I)*PC(I)
DDPCDE(I) = DPCDE(I)-2.*PC(I)*DPCDE(I)

10 CONTINUE
PID = NINT(DATREC(3))
PB(1) = PC(1)
PC(NCAT) -  1 
DPCDE(NCAT) = 0.
DO 20 I = 2,NCAT 
PB(I) = PC© - PC(I-1)

20 CONTINUE 
F = PB(PID)
Y=F
IF (PID.GT.l) THEN 

G(U1) = DPCDE(PID) - DPCDE(PID-1)
ELSE



G (l,l)  = DPCDE(PID)
ENDIF
IF(MSEC.EQ.1)THEN 

IF (PID.GT. 1 )THEN 
G(1,2)=DDPCDE(PID)-DDPCDE(PID-1) 

ELSE 
G(1,2)=DDPCDE(PID)

ENDIF
ENDIF
H(1,1)=G(1,1)
END

A3 FORTRAN Code

A3.1 FORTRAN Code For Categorical Data D-Optimal Design

PROGRAM SIMPLEX
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
P ARAMETER(NP=3 ,MP=4 ,FTOL= 1 .OE-14)
DOUBLE PRECISION X, P, Y, FTOL, DET 
DIMENSION P(MP,NP), Y(MP), X(NP)
INTEGER MP,NP,ITER,NDIM 
EXTERNAL FUNK 
P(151) = L3 
P(l,2) = 0.6 
P(l,3) — -0.8 
P(2,l) = -1.0 
P(2,2) = 0.2 
P(2,3) =1.1 
P(3,l) = 0.0 
P(3,2) = 0.4 
P(3,3) = -0.6 
P(4,l) = 0.1 
P(4,2) = 0.4 
P(4,3) = -0.2 
NDIM = NP 
DO 121= 1SMP 

DO 11 J = 1,NP 
X(J) = P(IJ)

11 CONTINUE 
Y(I) = FUNK(X)

12 CONTINUE
CALL AMOEBA(P}Y,MP ,NP,NDIM,FTOL,FUNKJTER,RTOL) 
DET=-Y(1)
PRINT *, RTOL
PRINT *, "X(l) = ",P(1,1),"X(2) = ",P(1,2),"X(3) = ",P(1,3)



PRINT *, DET 
END PROGRAM

DOUBLE PRECISION FUNCTION FUNK(X)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION X,ALPHA1 ,ALPHA2,BETA1 
DOUBLE PRECISION G11,G12,G13,G21,G22,G23 
DOUBLE PRECISION A11,A12,A13,A21,A22,A23,A31,A32,A33 
DIMENSION X(3)
ALPHA 1=-1.
ALPHA2=1.
BETA1=1.
G11 =DEXP(ALPHA 1+BETA1 *X(1))/(1 .+DEXP(ALPHA 1+BETA1 *X(1))) 
G12=DEXP( ALPHA 1+BETA1 *X(2))/(1 ,+DEXP(ALPHAl+BETAl *X(2)))
G13=DEXP( ALPHA 1+BETA1 *X(3))/(1 .+DEXP(ALPHA1+BETA1 *X(3))) 
G21=DEXP(ALPHA2+BETA1*X(1))/(1.+DEXP(ALPHA2+BETA1*X(1))) 
G22=DEXP(ALPHA2+BETA1 *X(2))/(1. +DEXP( ALPH A2+BET A 1 *X(2))) 
G23-DEXP(ALPHA2+BETA1 *X(3))/(1 .+DEXP(ALPHA2+BETA1 *X(3)))
A11= G11*G21*(1.-G11)*(1.-G11)/(G21-G11)+G12*G22*(1.-G12)*
1 (1 .-G12)/(G22-G12)+G13*G23*(1 .-Gl 3)*(1 .-G13)/(G23-G13)
A12= -G11*(L-G11)*G21*(L-G21)/(G21-G11)-G12*(1.-G12)*G22*
1 (l.-G22)/(G22-G12)-G13*(l.“G13)*G23*(l,-G23)/(G23-G13)
A13= X(1)*G21*(1.-G11)*G11+X(2)*G22*(1.-G12)*G12+X(3)*G23*
1 (l.-G13)*G13
A21=-G11*(L-G11)*G21*(L-G21)/(G21-G11)-G12*(1.-G12)*G22*
1 (1 .-G22)/(G22-G 12)
2 -G13*(L-G13)*G23*(1.-G23)/(G23-G13)
A 22- G21*G21*(1.-G21)*(1.-G21)*(1./(G21-G1 1)+1./(1.-G21))
1 +G22*G22*(1 .-G22)*(l .-G22)*(l ./(G22-G12)+l ./(l .-G22))
2 +G23*G23*(1.-G23)*(1.-G23)*(1./(G23-G13)+L/(1.-G23))
A23= X(1)*G21*(L-G11)*(L-G21)+X(2)*G22*(1.-G12)*(1.-G22)
1 +X(3)*G23*(1.-G13)*(1.-G23)
A31= X(1)*G11 *G21*(1 .-Gl 1)+X(2)*G12*G22*(1 .-G12)+X(3)*
1 G13*G23*(1.-G13)
A3 2= X(1)*G21 *(1 .-Gl 1)*(1 .-G21)+X(2)*G22*(1 .-G12)*(l .-G22)
1 +X(3)*G23*(1.-G13)*(1.-G23)
A3 3= X(1)*X(1)*(G11*G21*(1.-G11)+G21*(1.-G21)*(1.-G11))
1 +X(2)*X(2)*(G12*G22*(1.-G12)+G22*(1.-G22)*(1.-G12))
2 +X(3)*X(3)*(G13 *G23*(1 .-Gl 3)+G23*(l .-G23)5i!(l ,-Gl 3))
FUNK = -(Al 1*(A22*A33-A23*A32) -
1 A12*(A21*A33-A31*A23) +
2 A13*(A21 * A32-A31 * A22))
END FUNCTION

SUBROUTINE AMOEBA(P,Y,MP,NP,NDIM,FTOL,FUNK,ITER,RTOL) 
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NMAX=20,ALPHA=1.0,BETA=0.5,GAMMA=2.0,ITMAX=1000) 
DIMENSION P(MP,NP),Y(MP),PR(NMAX),PRR(NMAX),PBAR(NMAX) 
DOUBLE PRECISION ALPHA,BETA,GAMMA,P,PR,PRR,PBAR,FTOL,RTOL 
INTEGER MPTS,NDIM,ITER,ILO,IHI,INHI
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C OPEN(65FILE="P03 SIMP.RES")
MPTS=NDIM+1 
ITER -0

I ILO=l
IF( Y( 1). GT. Y (2))THEN 

IHI-1 
INHI=2 

ELSE 
IHI=2 
INHI-1 

ENDIF
DO 11 I-LM PTS 

IF(Y(I).LT. Y(ILO)) ILO=I 
IF (Y (I) .GT. Y (IHI))THEN 

IN HI-IH I 
IHI=I

ELSE IF( Y (I). GT. Y (INHI))THEN 
IF(I.NE.IHI) IN H I-I 

ENDIF
II  CONTINUE

IF(Y(IHI).EQ.0.AND.Y(ILO).EQ.0) THEN 
RTOL= 0.
ELSE

RTOL=2. * DAB S (Y (IHI)-Y (ILO))/ (DAB S (Y (IHI))+D AB S (Y(ILO))) 
PRINT*,"Iteration ITER,"RTOL =",RTOL,"Y =",Y(ILO)
ENDIF
IF (RTOL.LT.FTOL)THEN 

RETURN 
ENDIF
IF(ITER.EQ.ITMAX) PAUSE 'Amoeba exceeding maximum iterations.' 
ITER=ITER+1 
DO 12 J=1,NDIM 

PBAR(J)=0.
12 CONTINUE 

DO 14 I=1,MPTS
IF(I.NE.IHI)THEN 

DO 13 J=T,NDIM 
PBAR(J)=PBAR(J)+P(I,J)

13 CONTINUE 
ENDIF

14 CONTINUE 
DO 15 J-1,N D IM

PBAR(J)=PBAR(J)/NDIM
PR( J)=( 1. +ALPHA) * PB AR( J) - ALPHA* P(IHI,J)

15 CONTINUE 
YPR-FUNK(PR)
IF(YPR.LE. Y(ILO))THEN

DO 16 J-1,N D IM
PRR( J)=G AMM A* PR( J)+( 1. -GAMMA) * PB AR( J)

16 CONTINUE



YPRR=FUNK(PRR) 
IF(YPRR.LT.Y(ILO))THEN 

DO 17 J=1,NDIM 
P(IHI,J)=PRR(J)

17 CONTINUE 
Y(IHI)=YPRR

ELSE
DO 18 J=1,NDIM 

P(IHI,J)=PR(J)
18 CONTINUE 

Y(IHI)=YPR
ENDIF

ELSE IF(YPR.GE. Y(INHI))THEN 
IF (YPR.LT. Y(IHI))THEN 

DO 19 J=1,NDIM 
P(IHI}J)=PR(J)

19 CONTINUE 
Y(IHI)=YPR

ENDIF
DO 21 J=1,NDIM

PRR(J)=BETA*P(IHI5J)+(1.-BETA)*PBAR(J)
21 CONTINUE 

YPRR=FUNK(PRR) 
IF(YPRR.LT.Y(IHI))THEN

DO 22 J=1,NDIM 
P(IHI,J)=PRR(J)

22 CONTINUE 
Y(IHI)=YPRR

ELSE
DO 24 I=1,MPTS 

IF (I.NE.ILO)THEN 
DO 23 J=1,NDIM 

PR(J)=0.5*(P(I,J)+P(ILO,J))
P(I,J)=PR(J)

23 CONTINUE
Y (I)=FUNK(PR)

ENDIF
24 CONTINUE 

ENDIF
ELSE

DO 25 J=1,NDIM 
P(IHI,J)=PR(J)

25 CONTINUE 
Y(IHI)=YPR

ENDIF 
GO TO 1 
END
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