
Department of Electrical Engineering and Electronic»

University of Manchester 
Institute of Science and Technology

A NIBBLE-SERIAL PROGRAietSHiJ: m o p M, SIGNAL PROCESSOR 

FOR VLSI IMPLPdTATION

by

Robert A. Cottrell

A thesis submitted to the 
UNIVERSITY OF MANCHESTER 

for the degree of 
DOCTOR OF PHILOSOPHY 

in the Faculty of Technology

May 1987



This thesis describes the design of a programmable Signal Pro­

cessing Element (SPE). Each SPE is 4 bits (nibble) wide. The word 

length is progra— able, and arithmetic is performed in a nibble- 

serial Banner, i.e. in parallel over 4 bits and then serially, four 

bits at a tine, to provide the desired word length. The SPE archi­

tecture is specifically tailored to the iapleaentation of difference 

equation type calculations, such as are used in digital filters. The 

SPE is intended for VLSI iapleaentation, in which case a large rnsaber 

of SPEs could be fabricated on a single chip or wafer. The thesis 

describes the development of the SPE architecture, its simulation at 

a register transfer level, and the detailed IMOS design of certain 

sections of a single SPE. This NMOS design permits assessment of the 

silicon area occupied by these sections, and estimation of their per­

formance. A particular aim of the work was to provide an efficient 

means of using silicon to provide the processing power required by 

digital signal processing system, while maintaining the flexibility 

of programmable systests. This was to be done by allowing programm­

able word length, and by restricting the class of applications. How­

ever, it transpires that the cost of providing programmable word 

length is rather high and significantly reduces the efficiency of SPE 

based systems. Despite this, it is undoubted that SPEs provide a 

means of implementing programmable digital signal processing systems. 

Future work on programmable systems is likely to concentrate on 

architectures like the Texas Instruments TM5320 or the Inmos Tran­

sputer. Silicon compilers could well provide an easy means of pro­

viding custom silicon implementations at much reduced design effort.



ABSTRACT

This thesis describes the design of a programmable Signal Pro­

cessing Element (SPE). Each SPE is 4 bits (nibble) wide. The word 

length is programmable, and arithmetic is performed in a nibble- 

serial aanner, i.e. in parallel over 4 bits and then serially, four 

bits at a time, to provide the desired ward length. The SPE archi­

tecture is specifically tailored to the implementation of difference 

equation type calculations, such as are used in digital filters. The 

SPE is intended for VLSI implementation, in which case a large m m b e r  

of SPEs could be fabricated on a single chip or wafer. The thesis 

describes the development of the SPE architecture, its simulation at 

a register transfer level, and the detailed IMOS design of certain 

sections of a single SPE. This IMOS design permits assessment of the 

silicon area occupied by these sections, and estimation of their per­

formance. A particular aim of the work was to provide an efficient 

means of using silicon to provide the processing power required by 

digital signal processing systems, while maintaining the flexibility 

of programmable systems. This was to be done by allowing programm 

able word length, and by restricting the class of applications. How­

ever, it transpires that the cost of providing programmable word 

length is rather high and significantly reduces the efficiency of SPE 

based systesm. Despite this, it is undoubted that SPEs provide a 

means of implementing programmable digital signal processing systea*. 

Future work on programmable systems is likely to concentrate on 

architectures like the Texas Instruments TMS320 or the Inmos Tran­

sputer. Silicon compilers could well provide an easy means of pro-

viding custom silicon implementations at much reduced design effort.



A C K u n M i - E n f a v r a n x ;

•me author wishes to express his gratitude to the Professors for 

■aking available the facilities of the department, and to Professor 

E.T. Powner for his supervision and encouragement throughout the 

work. Thanks are also due to all eeabers of the Digital Processes 

Group and the Microprocessor Engineering Unit for their advice and 
assistance.

declaration

No portion of the work referred to in this thesis has been sub­

mitted in support of an application for another degree or qualifica­

tion of this or any other university or other institution of learn­

ing.



CONTENTS

PREFACE i

CHAPTER ONE INTRODUCTION TO DIGITAL SIGNAL PROCESSING 1

1.1 ALOORCTtMS FOR DIGITAL SIGNAL PROCESSING 2

1.1.1 Digital Filtering 2

1.1.2 The Discrete Fourier Trans fore and the FFT 5

1.1.3 Hoaoaarphic Filtering and the Cepstna 7

1.1.4 Adaptive Filtering B

1.2 APPLICATIONS OF DIGITAL SIGNAL PROCESSING B

1.2.1 Speech Processing 9

1.2.2 Telecommunications 10

1.2.3 Audio and tfcisic Processing 10

1.2.4 Image Processing 12

1.2.5 Radar 13

1.2.6 Sonar 14

1.2.7 Geophysical Signal Processing 15

1.2.8 Biomedical Signal Processing 16

CHAPTER TWO IMPLBffiNTATION OF DIGITAL SIGNAL PROCESSORS 17

2.1 COMPUTER ARCHITECTURES FOR SIGNAL PROCESSING 18

2.1.1 Early Super-Computers 21

2.1.2 Attached Processors 22

2.1.3 Single Chip Signal Processors 24

2.2 THE IMPACT OF VLSI ON DIGITAL SIGNAL PROCESSORS 26

CHAPTER THREE AIMS OF THE PROJECT 30

3.1 USING STANDARD MICROPROCESSORS 31

3.1.1 B-bit microprocessors 31



f

3.1.2 16-bit Microprocessors 34
3.2 SPECIAL PURPOSE MICROPROCESSORS 35

3.3 NETWORKS FOR SIGNAL PROCESSING 37

3.4 PROCESSORS FOR SIGNAL PROCESSING NEIWORKS 40

CHAPTER FOUR DEVELOPMENT OF ARCH ITECTURE 43

4.1 EFFICIENT ARCHITECTURES FOR SIGNAL PROCESSING 43

4.2 ADVANTAGES AND DISADVANTAGES OF BIT-SERIAL ARITfMETTIC 46

4.3 VARIABLE PRECISION PROGRAMMABLE COMPUTERS 48

4.4 A NIBBLE-SERIAL ARCHITECTURE 49

4.5 FUNCTIONALITY REQUIRED 55

4.6 OPERATIONAL DETAILS 59

4.6.1 Addition and Subtraction 59

4.6.2 Shitting, Input and Output of Data 59

4.6.3 Multiplication 61

4.7 INSTRUCTION SET 63

CHAPTER FIVE REGISTER TRANSFER LEVEL DESIGN OF AN SPE 65

5.1 AN SPE ASSQCLER 67

5.2 A REGISTER-TRANSFER MODEL OF THE SPE 69

5.2.1 Assignaent of Tasks to Clock Phases 71

5.3 SIMULATIONS BASH) ON THE REGISTER-TRANSFER MODEL 77

5.3.1 A MODEL OF A 4-SPE PROCESSOR 77

5.3.2 A SIMPLE SIMULATION: ADDING TWO NUmTOS 80

5.3.3 THE SIMULATION OF MULTIPLICATION 84

5.3.4 THE SIMULATION OF A REAL FILTER 89

CHAPTER SIX THE IMOS IMPLEMENTATION OF A SINGLE SPE 93

6.1 MEMORY DESIGN 96

CONTENTS

6.1.1 Design of a Shiftable Mesiory 97



CONTENTS

6.1.2 Memory Peripheral Circuitry 101

6.1.2.1 Row address decoding and select line driving 101

6.1.2.2 Data line driver circuit 104

6.1.3 Circuit Level Simulation of the RAM 106

6.1.4 Layout of a Test Chip ill

6.1.5 Testing the Fabricated RAM Chip 112

6.2 DATAPATH DESIGN 115

6.2.1 Design of an Arithmetic Unit 115

6.2.2 Design of a Barrel Shifter 118

6.2.3 Register Designs 120

6.2.4 Circuit Level Simulation of the Datapath 120

6.2.5 Layout of a Test Chip 122

6.2.6 Testing the Fabricated Datapath Chip 124

6.3 CONTROL LOGIC DESIGN 127

6.3.1 DATAPATH CONTROL 127

6.3.2 GENERAL CONTROL LOGIC AND HIRING 132

CHAPTER SEVEN CONCLUSIONS 133

7.1 Evaluation of Project 133

7.1.1 SPE Achievements 133

7.1.2 VLSI implementation of SPE-based processors 134

7.1.2.1 The provision of program memory 134

7.1.2.2 Testability of SPE-based processors 139

7.1.3 Comparison with Intel 2920 139

7.1.4 Suitability for Signal Processing Algorithms 141

7.1.5 Incorporation of delay function in memory 143

7.1.6 Silicon Area Efficiency 144

7.2 Recommendations for Further Research 146

7.2.1 Programmable Systems 147



con t h i t s

7.2.2 Hardwired Systeas 150

APPENDIX A FILTER USED FOR COMPARISON OF PROCESSORS 154

APPENDIX B INTEL 2920 PROGRAM FOR TEST FILTH* 156

APPENDIX C SPE INSTRUCTION SET 157

APPQTOIX D HILO DESCRIPTION OF AN SPE 159

REFERQJCES 162



LIST OF FIGURES

Fig. 2.1 Pipelined Processors 19
Fig. 4.1 3 SPEs Form m 12-bit Coaputer 50

Fig. 4.2 Basic Operation of Processor made from SPEs 54

Fig. 4.3 TWo Methods for shift-and-add Multiplication 57

Fig. 4.4 Carry propagation for addition and subtraction 60

Fig. 4.5 Selection of operation far Booth's Algorithm 62

Fig. 5.1 Definition file for the SPE assembler 68
Fig. 5.2 Block Diagram of a Single SPE 70

Fig. 5.3 HILO Description of a 4-SPE Processor 78

Fig. 5.4 SPE program to add two 16-bit numbers 80

Fig. 5.5 Circuit INSTIN for simulation of addition 81

Fig. 5.6 HILO circuit DATAIN for simulation of addition 82

Fig. 5.7 HILO Waveform file for all simulations 82

Fig. 5.8 Output from Simulation of Addition 83

Fig. 5.9 SPE program for multiplication of two 16-bit numbers 85

Fig. 5.10 Circuit DATAIN for the simulation of multiplication 87

Fig. 5.11 Results of simulation of multiplication 88
Fig. 5.12 SPE program for the filter of Appendix A 90

Fig. 5.13 Filter output from HILO simulations at various frequen­
cies 92

Fig. 6.1 Circuit diagram of a n m o s static RAM cell 94

Fig. 6.2 Possible layout of a NMOS static RAM cell 95

Fig. 6.3 Circuit diagram of a shiftable RAM cell 96

Fig. 6.4 Layout of a shiftable RAM cell 98

Fig. 6.5 Circuit diagram of a non-shiftable RAM cell 99

Fig. 6.6 Layout of a non-shiftable RAM cell 100

Fig. 6.7 Circuit of address decoder and select line driver 102

Fig. 6.8 Example layout of address decoder and select driver 103



Fig. 6.9 Circuit of bidirectional data line driver 104

Fig. 6.10 Layout of bidirectional data line driver 105

Fig. 6.11 Block diagraa of model of RAM circuit simulated 107

Fig. 6.12 SPICE simulation results for RAM - part 1 109

Fig. 6.13 SPICE simulation results far RAM - part 2 110

Fig. 6.14 Layout of RAM test chip 113
Fig. 6.15 Layout of a 4-bit Arithmetic Unit 117

Fig. 6.16 Layout of a 4-bit Barrel Shifter 119

Fig. 6.17 Layout of the entire datapath 121

Fig. 6.18 Layout of the datapath test chip 123

Fig. 6.19 PLA layout for IF dependent control signals 129

Fig. 6.20 SPICE Simulation of Control PLA 131

LIST OF FIGURES



p r e f a c e

One of the sain challenges posed by Very Large Scale Integration 

(VLSI) is how best to Bake use of its potential. It is not difficult 

to envisage applications which could benefit froa this enoraous 

potential, but it is not always so easy to devise Beans of harnessing 

the raw processing power in any particular application.

Digital signal processing premises to be a very fruitful area for 

the exploitation of VLSI. Processing signals digitally in real tiae 

demands vast raw processing power. Moreover, aany of the algorithms 

employed show a high degree of concurrency, making them strong con­

tenders for the successful application of parallel processing tech­

niques.

This thesis is concerned with the means of harnessing the poten­

tial processing power afforded by VLSI for digital signal processing 

applications. The merits and failings of both custom designed 

hardware and programmable systems are recognised, but it is on pro­

grammable systems which this thesis concentrates its attention. In 

the VLSI era, custom hardware will increasingly imply the use of 

Application Specific Integrated Circuits (ASICs), and this is also a 

key area for research in relation to digital signal processing appli­

cations.

The first chapter of the thesis constitutes a survey of the tech­

niques of digital signal processing and their applications. This is 

followed in chapter two by a survey of past attempts to design pro­

i



grammable digital signal processors.

Chapter three sets out and justifies the aims of the project, 

naaely to design a programmable processor, specifically tailored to 

the implementation of difference equation calculations, and suitable 

for connecting in a pipeline to exploit concurrency. Several proces­

sors which were available at the start of the project are considered 

for suitability, but all are rejected for a variety of reasons. The 

application area was deliberately chosen to be narrow to give the 

best chance of obtaining an efficient solution.

The development of the processor architecture is described in 

chapter four. A Signal Processing Element (SPE) is developed, which 

can be used to produce processors of configurable wordlength. This 

is achieved by using synchronous carry in a nibble-serial fashion. 

It is envisaged that many such SPEs would be integrated on a single 

VLSI chip, together with all necessary memory. The feasibility of an 

SPE based approach is demonstrated by simulation at the register 

transfer level, as described in chapter five. This includes the 

simulation of a 2nd order low-pass filter.

Certain key elesents of an SPE were designed in detail for imple­

mentation in m o s  technology. This is described in chapter six. Two 

test chips were fabricated and tested. These designs provide impor­

tant information on the silicon area occupied by various parts of the 

SPE, and circuit level simulations yield information on likely per­

formance.

ii



The final chapter is concerned with evaluation of the project and 

suggestions for further research. Although the achievements of the 

project are recognised, it is admitted that the approach adopted is 

probably not the most promising. Further research is suggested both 

in programmable systems utilising multiple processors, and in Appli­

cation Specific Integrated Circuits (ASICs) for custom hardware 

implementation of digital signal processing systems.

iii



1

CHAPTER OWE

1WIRODOCTIOW TO DIGITAL SIGNAL PROCESSING

There are many advantages in using the techniques of digital 

electronics in the processing of signals. Digital circuits are not 

subject to the effects of component drift as are their analogue coun­

terparts. Their performance can be accurately predicted and will not 

vary with time or temperature. Analogue processing elements always 

introduce unwanted noise; the noise introduced by digital processing 

can be reduced as far as is desired simply by using higher precision 

arithmetic. Analogue recordings deteriorate with time, and each re­

recording introduces noise and distortion. Digital recordings do not 

deteriorate, or at least signals can be perfectly restored with no 

noise or distortion being introduced in the process. These advan­

tages have been well understood for some years now, as have the basic 

algorithms for digital signal processing. It is however only 

recently, with the advent of Large Scale and Very Large Scale 

Integration (LSI and VLSI), that electronic components have become 

available at sufficiently low cost and in sufficiently large quanti­

ties to permit digital signal processing techniques to be adopted in 

all but the most sophisticated applications.

For something which has as many advantages as digital signal pro­

cessing, there has to be a major disadvantage. In this case, it is 

the sheer computational power required. Digital signal processing 

systems operate on sampled data in discrete time. Sampled data sig­

nals contain all the information of the continuous time signals which 

they represent, provided that the sampling frequency is greater than



2
twice the maximum frequency component of the signal [32]. In a sys­

tem such as a digital filter, a particular set of calculations Bust 

be performed for each and every saaple. Thus the cosiputational power 

required for a particular application is determined by the signal 

bandwidth and hence the saapling frequency, and the complexity of the 

calculation to be performed. Far example, a simple second order 

filter section requires four multiplications and four additions. To 

perform this operation on a high fidelity music signal with a 

bandwidth of 15kHz requires one multiplication and one addition to be 

performed 120 000 times per second, or within 6 microsecond. To per­

form the same operation on a television signal with a bandwidth of 

5Miz requires the same operations to be performed within 25 

nanosecond. As this operation is one of the simplest which can be 

performed, it is evident that the computational power required can be 

fearsome.

K_1 A L O Q R n W S  FOR DIGITAL SIGNAL PROCESSING 

1.1.1 Digital Filtering

The simplest digital signal processing system is the digital 

filter. The aim of the digital filter is the same as that of its 

analogue counterpart, and hence there are low-pass, high-pass, band­

pass filters etc. There are similar factors to consider when design­

ing digital filters, such as stability and phase linearity.

Analogue filters are commonly represented in the complex fre­

quency, s, or Laplace transform domain, whereas digital filters are 

represented in the Z-transform domain. Just as an analogue filter is 

described by the locations of poles and zeros in the «-plane, so a



3
digitai filter is described by poles and zeros in the z-plane. There 

is, in fact, a direct Mapping between the s-plane and the z-plane, 

thus a digital filter may be designed from its analogue equivalent. 

The reader is referred to an introductory text on digital signal pro­

cessing, such as [11], for further details.

In the z-tra ns for* doswdn, a generalised digital filter is 

represented by the equation:

Y(z) - H(z).X(z)

where X(z) and Y(z) are the z-transforas of the input and output 

sequences, and H (z) is the z-trans for* of the impulse response: the 

transfer function of the filter. H(z) is expanded as follows:

The roots of this numerator and denominator are, respectively, the 

zeros and poles of H(z). Such a filter as this is represented in the 

time doaain as

and can thus be realised as a difference equation.

The filter described here is known as a RECURSIVE or INFINITE 

DCULSE RESPONSE (IIR) filter. It is recursive because previous 

values of the output sequence are used to determine the value of the 

next output sample. The impulse response is infinite, not because y 

tends to infinity at any time (this would be an unstable filter), but

H

M LM
\

*n * 1 V n - k  ’ 1 V n - k
k*0 k-1



4

because the impulse response does not become zero within a finite 

time. Thus the energy of the impulse response is infinite.

There is a second class of digital filters known as TRANSVERSAL

or FINITE INPULSE RESPONSE (FIR) filters. Such filters have no

poles, and thus the transfer function H(z) is simply 
M

H(z) - ^  
k*0

and each output sample is determined as 
M

* L V r H c
k-0

Thus the impulse response is finite: it becomes zero after M samples. 

It can be seen that FIR filters represent the digital convolution of 

the input response with the impulse response sequence a^, 

k«0,l,2,...,m.

Both IIR and FIR filters can be designed to meet almost any per­

formance requirement. In general, FIR filters require more stages to 

achieve the same response. However, IIR filters need much more care 

to be taken to ensure their stability (FIR filters, possessing no 

feedback, cannot be unstable). Instabilities in IIR filters can 

arise not only from poles outside the unit circle in the z-plane, but 

also from roundoff noise due to the finite word length used for cal­

culations. In general IIR filters need longer word lengths than FIR 

filters, both due to the stability problem and to the possibility far 

arithmetic errors to accumulate as the output is fed back to the 

input.



4

because the impulse response does not become zero within a finite 

time. Thus the energy of the impulse response is infinite.

There is a second class of digital filters known as TRANSVERSAL

or FINITE IMPULSE RESPONSE (FIR) filters. Such filters have no

poles, and thus the transfer function H(z) is simply 
M

H(z) - ^  akz_k 
k*0

and each output sample is determined as 
M

»n ' l Vrrk 
k»0

Thus the impulse response is finite: it becomes zero after M samples. 

It can be seen that FIR filters represent the digital convolution of 

the input response with the impulse response sequence a^, 

k=0,l,2,... ,m.

Both IIR and FIR filters can be designed to meet almost any per­

formance requirement. In general, FIR filters require more stages to 

achieve the same response. However, IIR filters need much more care 

to be taken to ensure their stability (FIR filters, possessing no 

feedback, cannot be unstable). Instabilities in IIR filters can 

arise not only from poles outside the unit circle in the z-plane, but 

also from roundoff noise due to the finite word length used for cal­

culations. In general IIR filters need longer word lengths than FIR 

filters, both due to the stability problem and to the possibility for 

arithmetic errors to accumulate as the output is fed back to the 

input.



5
It is extremely difficult to establish the stability of an IIR 

filter of greater than second order, i.e. with sore than two poles. 

However this is no real limitation as more complex filters can be 

reduced to a number of second order sections, either connected in 

parallel or cascade [11 ppl6-19].

FIR filters have a nueber of advantages, including the shorter 

word length requirement and their inherent stability. They are used 

in adaptive filters[33], where the filter coefficients are time- 

varying, dependent on some function of the input or output signal, as 

it is impossible to establish the stability of IIR filters with 

time-varying coefficients. In many cases, the adaptation algorithms 

tend to be simpler for FIR filters, lhe execution of FIR filters can 

be speeded up by using the Fast Fourier Transform algorithms in their 

implementation (see next section), although the reduced number of 

computations required is balanced by the increased complexity of data 

management.

¡.}t2 The pjscrete F9ffiy Transform ftnd thg fFT

Just as the power spectrum of an analogue signal can be 

represented by the Fourier transform of the signal, so there exists a 

similar algorithm, the Discrete Fourier Transform (1X7), far digital

signals. The DPT of an N-point complex sequence (xn>,

n»0,l,2,...,H-1 is also an N-point complex sequence < V '
p-0,1,1,...,N-1 and is defined by the relation: 

I W
*p ■ l N * V * "

n»0



6
-2V?

where « e N

The DFT can be used to determine the power spectrum of a signal 

[11 ppl56-159]. As it is impractical to determine directly the DFT 

of a very long sequence, the practice is to farm DFTs of short sub­

sequences, modified by a window function to avoid discontinuities at 

the ends of the subsequences, and fora averages of these DFTs.

As mentioned in the previous section, DFTs can be used to imple­

ment FIR filters [11 ppl59-164]. This is because convolution in the 

time domain corresponds to multiplication in the frequency domain. 

Thus the DFT of the input sequence is formed, it is multiplied by the 

DFT of the impulse response, and the output sequence is reconstructed 

by an inverse DFT. The DFT of the impulse response is constant and 

need be calculated only once. The input signal is partitioned into 

segments for this process, and some corrections are required at the 

boundaries to obtain the correct result. It does not seem initially 

that this implementation should be faster then the direct implementa­

tion. However it proves to be considerably faster when the Fast 

Fourier Transform algorithm is used to implement the DFT

The existence of the Fast Fourier Transform (FFT) algorithms [12] 

is one of the main reasons for the great interest in the DFT today. 

In the direct impleswntation of the DFT, the number of computations 

grows as N2, where N is the length of the sequence. The FFT algo­

rithms farm the DFT of a sequence from a combination of the DFTs of 

subsequences. By doing this recursively, the computation rate only 

grows as (N In N). A simple description of the FFT can be found in 

[11 pp!42-152]. The major disadvantage of the FFT is that in reduc­



7

ing the computation rate it increases the complexity of the data 

flow.

1.1.3 Homomorphic Filtering and the Cepetm»

In general, non-linear systems are difficult to analyse and 

apply. However, there is a class of non-linear systems which are 

useful, known as homomorphic systems, these obey an extension of the 

superposition principle for linear systems, described in [6 pl72]. 
One such system makes use of the logarithm. If two signals are mul­

tiplied in the time domain, such as in amplitude modulation where the 

modulating signal is multiplied by the carrier, then taking the loga­

rithm means that the signals are now added, thus the signals can 

more easily be separated and processed independently. It is neces­

sary to use the complex logarithm, as the input signal cannot be con­

strained to being positive; thus homomorphic processing has no 

equivalent in analogue terms. Exponentiation is required at the out­

put to restore the signal.

Homomorphic processing can be usefully applied to convolved sig­

nals as well as multiplied signals. Here, the DFT is used to convert 

the convolved signal in the time domain into a multiplied signal in 

the frequency domain. The logarithm can then be taken to yield an 

additive system. If a DFT is once again applied, then the cepstrum, 

the spectrum of the log magnitude of the spectrum, is formed [34]. 

The cepetrum is once again in the time domain, and may be considered 

as a measure of the periodicity of the spectrum. It can thus be used 

to detect such things as echo or reverberation.



e

1.1.4 Adaptive Filtering

Adaptive filtering, as its naae implies, is where the filter 

adapts itself to some function of its environment, usually to some 

function of the input or output signal. In general, some measure is 

made of how the output signal diverges from the desired output, and 

an attempt is made to alter the filter coefficients to produce a 

result nearer to that desired. In some ways, the tern "adaptive” is 

a misnomer, as the system is wholly deterministic and the output can 

be expressed as a function of the input. It is, however, a good 

description of how the systems are implemented.

The problems with adaptive systems are in determining a suitable, 

simple error measure and an algorithm for estimating the best filter 

coefficients to minimise the error. This estimation is usually a 

recursive algorithm, and hence the computational power required can 

be enormous. Compromise is usually necessary in order to perform the 

computations in the available time.

1.2 .APPLICATIONS OF DIGITAL SIGNAL PROCESSING

Digital signal processing began as an alternative to analogue 

approaches such as active filters. The digital approach provides 

absolute stability which is unavailable to the analogue designer due 

to component drift. Digital signal processing was particularly use­

ful in low frequency systems, where the computational power required 

is not too great and analogue components are often large and cumber-

Digital signal processing has now matured into a subject in its 

own right; indeed there are digital processing functions which have



9
no obvious Meaning in analogue terms. Digital signal processing has 

found application in Many areas of engineering, which have widely 

varying requirements in teras of speed (due to the signal bandwidth) 

and computational complexity.

What follow is a very brief overview of some of the application 

areas where digital signal processing techniques have been success­

fully used. For a mare detailed consideration, the reader is 

referred to [13].

1.2.1 Speech Processing

Speech processing includes a wide range of functions, such as 

speech recognition, speech synthesis and speech data compression. 

This last function is used for the efficient digital storage and 

transmission of speech.

All areas of speech processing depend on a model of the speech 

signal. The most popular model is that of a filter, representing the 

vocal tract, excited either by a periodic waveform (for voiced 

sounds) or by a noise source (for unvoiced sounds). Naturally, both 

the excitation and the filter must be time-varying.

The main problem in speech processing is the deconvolution of the 

speech signal into these two components. The two most popular tech­

niques are to use homomorphic filtering to perform cepetral smooth­

ing, or to use linear prediction to produce an all-pole model of the 

vocal tract filter. For the purpose of this thesis, it is most 

important to note that the former relies heavily on the FFT, whereas 

the latter uses matrix operations.



10

1.2.2 Telecommunications

Telecommunications Is in many ways the home of signal processing, 

as it is wholly concerned with the transmission of signals. Digital 

filters can be used to implement the high order filters required to 

band-limit signals prior to multiplexing, and there are many cases 

where signals need to be shifted in frequency, modulated, demodulated 

etc. With the increasing use of digital coding far the transmission 

of signals, it makes sense to do much of this processing digitally 

too.

Tone detectors are an important part of modem telephone systems, 

and these are ware and wore being implemented digitally. The system 

must be able to recognise the control tones used, and to differen­

tiate between these and speech signals.

One of the more complicated operations in telephony is the con­

trol of echo on long distance circuits, especially on international 

lines. The favoured approach today is to use echo cancellers which 

are adaptive filters. These can adapt to the properties of different 

lines, and to the variations with time on a single line. The main 

difficulty here is differentiating between echo signals and true out­

going signals.

L 2 t ?  M rti?  and » h tfK  p r e s s in g

This area is one of the richest for signal processing, with many 

varying requirements throughout. The recording and transmission of 

music signals is concerned with giving the listener subjectively the 

best sensation, and thus many of the operations performed must be 

developed with the principles of psychoacoustics in mind. At the



11

simplest level, this Means taking account of the frequency range of 

huaan hearing, there is little virtue in the high fidelity reproduc­

tion of signals which the huaan ear cannot hear, unless it is 

intended to please the listener's dog or confuse a passing bat!

Digital techniques are being used More and More in the Music 

industry, both for recording and processing. Since the advent of 

compact discs, digital recording, or at least playback, has been 

available in hone systems. in analogue systems, each component 

degrades the signal and introduces noise, this need not be so with 

digital techniques, which can be essentially error-free, and added 

noise Made negligible by selecting an adequate word length.

Electro-acoustic transducers: microphones, loudspeakers, etc. are 

a Major cause of problems in audio systems. Signal processing tech­

niques can be used to correct for any errors inherent in particular 

transducers, and also has a large part to play in research and 

development for new improved transducers

Modem recordings are typically Made on aulti track tapes, with 

one track for each instrument or group of instruments. This signifi­

cantly reduces the aaount of acoustic background noise. However, if 

the signals were simply mixed together, the result would be unbear­

able. At "mix-down", artificial reverberation has to be introduced 

to simulate the effect of the concert hall, and the spectrum of each 

signal must be corrected far the idiosyncrasies of the recording 

environment. Many other effects are available to the recording 

engineer. For example, a single instrument or voice can be made to 

sound like a chorus by introducing random delays and frequency 

shifts, etc. There is a great need for flexible, programmable sys-



12

teas in this application area to give the sound engineer as auch con­

trol as possible over the final sound.

there are a host of other applications for signal processing in 

music. Companding, or dynamic range compression, is ideally suited 

to digital homomorphic filtering techniques. Many other processes 

are available, such as "ambience enhancement" for producing a 

pseudo-quadrophonic signal from a stereo signal, echo removal for 

removing tape "print-through" using cepetral techniques, and blind 

deconvolution techniques for restoring old recordings. The possibil­

ities are limited only by the inventiveness of the mind.

1-2.4 Image gggcgssing

there is always some doubt as to whether image processing falls 

within the area of signal processing. However it is clear that many 

of the algorithms and techniques of signal processing are used in 

image processing.

One important area within image processing is data rate compres­

sion. this is due to the enormous quantities of data concerned with 

images. A single picture of 512x512 pixels and 6 bits per pixel 

requires two megabits of storage. However the high spatial correla­

tion of most images, and especially the inter-frame correlation of 

moving pictures, mean that data rates can often be reduced by the 

order of 30il to 50:1. Various techniques are used. One technique, 

similar to the linear predictive coding of speech, uses a statistical 

predictor to predict the next sample value. Thus only the difference 

from the expected value need be transmitted.



13

Image restoration and enhancement is another iaportant area. 

Out-of-focus images can be restored, and some assistance is available 

here in that a mathematical model of out-of-focus photography can be 

constructed. Contrast and edge enhancement are also possible. Impor­

tant techniques here are spatial filtering, analogous to ordinary 

digital filters but in two dimensions, and especially homomorphic 

techniques.

A final area of importance is the reconstruction of images from 

projections. This is of use in medicine, in head and body scanners, 

and in locating hidden metallurgical defects. The FFT is all- 

important here. The DFT is farmed far each projection, and all the 

DFTs are put together to farm what is essentially a 2-dimensional DFT 

of the image. It is necessary to perform interpolations to convert 

the polar arrangements of the data from the projections to the carte­

sian arrangement needed to perform the inverse transform to recon­

struct the image.

1.2.5 Radar

Radar is an area of signal processing which is of particular 

importance to the military, but is also relevant to other applica­

tions such as weather forecasting. The main problem with radar is 

the high bandwidth of the signals involved. Nobody seriously wants 

to process the microwave radar signals themselves digitally, but the 

modulating signals have bandwidths in the region of 10 to 100 Mb. 

This puts considerable strain on the signal processing system, not 

least on the analogue-to-digital converters themselves. Radar sys­

tems begin with a signal generator, which nay be digital. This sig­

nal is then modulated and transmitted. The received signal is



13

Image restoration end enhancement is another ieportent area. 

Out-of-focus images can be restored, and some assistance is available 

here in that a mathematical model of out-of-focus photography can be 

constructed. Contrast and edge enhancement are also possible. Impor­

tant techniques here are spatial filtering, analogous to ordinary 

digital filters but in two dimensions, and especially homomorphic 

techniques.

A final area of importance is the reconstruction of images from 

projections. This is of use in medicine, in head and body scanners, 

and in locating hidden metallurgical defects. The FFT is all- 

important here. The DPT is formed far each projection, and all the 

DFTs are put together to farm what is essentially a 2-dimensional DFT 

of the image. It is necessary to perform interpolations to convert 

the polar arrangements of the data from the projections to the carte­

sian arrangement needed to perform the inverse transform to recon­

struct the image.

1.2.5 Radar

Radar is an area of signal processing which is of particular 

importance to the military, but is also relevant to other applica­

tions such as weather forecasting. The main problem with radar is 

the high bandwidth of the signals involved. Nobody seriously wants 

to process the microwave radar signals thesuelves digitally, but the 

modulating signals have bandwidths in the region of 10 to 100 Mb. 

This puts considerable strain on the signal processing system, not 

least on the analogue-to-digital converters themselves. Radar sys­

tems begin with a signal generator, which may be digital. This sig­

nal is then modulated and transmitted. The received signal is



14

demodulated and passed through a matched filter to reduce noise. 

When implemented digitally, this is normally an FIR filter imple­

mented by fast convolution using the FFT. Next, there is data rate 

reduction in the fora of thresholding to decide which signals 

correspond to real targets. The threshold level can be varied to 

maintain a constant "false alarm" rate. On this reduced data, calcu­

lations of target metrics, such as position and velocity, are per­

formed. The whole system is under the control of a host computer.

The data rates involved decrease further away from the actual 

radar signals, so digital techniques first found application here. 

After the introduction of a host computer, the next function to be 

"digitised" was the target metric generation. This is commonly a 

programmable system, as great benefit can be obtained from the flexi­

bility this brings. More recently, the thresholding and matched 

filtering have come to be implemented digitally with the availability 

of higher speed and more dense digital logic.

1.2.6 Sonar

Sonar is to the ocean as radar is to the air, except that sonar 

is used not only to detect objects such as ships and submarines, but 

also to discover the nature of the sea bed. Sonar depends heavily on 

models of sound propagation in water; radar has no such problem as 

the propagation of microwaves in air is essentially rectilinear.

There are two basic types of sonar: active and passive. Active 

sonar is similar to radar in that pulses are transmitted and their 

reflections received and interpreted. Many of the operations, 

matched filtering, thresholding etc., are essentially the same as far



15

radar.

Passive sonar, as its naae implies, consists only of listening, 

and attempts to locate objects from the sounds they themselves emit. 

It is thus very wide in scope, but two important techniques are worth 

mentioning. Spectral estimation using the FFT is very important, as 

are beamforming techniques using arrays of antennae (or a moving 

antenna) and adaptive filtering.

1,2.7 Geophysical ?iqx>al Processing

Geophysical, or seismic, processing is concerned with research 

into the structure of the earth. Its main applications are in 

predicting earthquakes and in the location of mineral deposits, in 

particular petroleum.

In common with many areas of science, geophysics depends on 

models of the earth's crust. The most popular model is of well- 

defined strata, or layers, and that signals are reflected at the 

boundaries of these strata. In some places, the structure is quite 

simple and the detection of the stratum boundaries is quite straight­

forward. In other places, the structure is more complex and multiple 

reflections cause difficulty in interpreting the signals. It is in 

this area that digital signal processing has proved useful in geophy­

sics. Using statistical methods on large amounts of data, it is pos­

sible to deconvolve the signals, i.e. to separate the effects of the 

different boundaries and so determine the structure of the ground. 

Many of the algorithms are quite complex, making significant use of 

matrix techniques. Many systems today use not only simple vertical 

reflections, but use arrays of detectors, when 2-dimensional filter­



16

ing becomes important.

1.2.8 Biomedical Signal Processing

One of the aain uses for signal processing in aedicine is com­

puter aided tomography, or the reconstruction of 2- and 3-diaensional 

images from x-ray and ultrasonic projections of the body. This is 

discussed above under Image Processing. Image enhancement techniques 

can also be applied to improve ordinary x-ray pictures to aid diag­

nosis. Indeed image processing systeas can be programmed to enhance 

features associated with a particular ailment.

Signal processing is also used in the analysis of EBG (electro­

encephalogram) and BOG (electro-cardiogram) signals. Here, the aain 

concern is with spectral analysis and thus the FFT is all important.



17

c h a p t e r t w o

mPLBOrTATION OF DIGITAL SIGNAL PROCESSORS

Implementations of digital signal processors can be divided into 

two major classifications: hardwired systems using specially designed 

hardware, and programmable systems using general purpose hardware. 

Many systems, of course, do not fall entirely into one class or the 

other. Such systems have some specially designed parts under the 

control of a computer.

Hardwired systems always provide the most efficient means of 

using a particular technology. The highest performance can be 

obtained for the lowest component cost. However, design costs can be 

astronomical, as can the cost of any modifications required at a 

later date. Thus hardwired implementations are used in very high 

performance systems, where programmable systems simply cannot provide 

the required processing power, and in high volume applications, where 

the design cost can be amortised over many units.

Programmable systems do provide many advantages. System design 

now becomes essentially software design, which can be done much mare 

quickly and cheaply than hardware design, and is much more easily 

verified. Flexibility is provided too; if it becomes  necessary to 

alter the specification at a later date, this can often be done sim­

ply by re-writing part of the program. However, the component cost 

of a programmable system is likely to be much higher that for a 

hardwired system. Thus programmable systems find application mainly 

in relatively low volume or low performance systems. They are par­

ticularly useful in research laboratories, in that algorithms can be



developed, tested end Modified with great ease.

2.1 COMPUTER ARCHITECTURES FOR SIGNAL PROCESSING

The advantages afforded by programmable systems in terms of flex­

ibility and ease of design have led to many attempts to improve the 

cost-performance ratio of general purpose computers. Almost all gen­

eral purpose computers today are based on the architecture proposed 

by John von Neumann [3], although he was designing a special purpose 

machine for the calculation of artillery trajectories! The essen­

tials of this architecture are a unified memory containing both 

instructions and data, communicating with a Central Processing Unit 

(CR1) via data and address buses. Instructions are fetched from 

memory and executed in strict sequence. It is this sequential 

fetch-execute operation which gives the machine its elegant simpli­

city and general applicability, but it is also its most severe limi­

tation. Processing power is limited by the speed of the fetch- 

execute cycle, and there is no mechanism for any concurrency whatso­

ever. A number of ameliorative techniques have been developed over 

the years, such as instruction queues, cache memories, interrupts and 

direct memory access. Such techniques have been successful in pro­

viding an increase in speed greater than that due simply to techno­

logical advance, albeit at the expense of additional circuit complex­

ity. However, although they all serve to speed up the fetch-execute 

cycle, they do not provide any real concurrency of operation.

Over the last twenty years or so, much effort has been expended 

in trying to improve the performance of computers for signal process­

ing and general scientific work such as weather forecasting. Mich of 

the work has been on the exploitation of concurrency in the

is



algorithms, and within the arithmetic operations themselves. In gen­

eral, this means using multiple processors in some sense, connecting 

them up in some suitable arrangement, and dividing up algorithms 

among them. This last operation is often non-trivial.

Systems using multiple processors can be classified into three 

different groupe [1]: Single Instruction stream Multiple Data stream 

(SDO), Multiple Instruction stream Single Data stream (MISD) and 

Multiple Instruction stream Multiple Data stream (MDO). S D O  

machines, as their name implies, perform the same operation con­

currently on multiple items of data. They are often known as vector 

or array processors. Modem supercomputers are generally S D D  

machines. They are particularly suited to matrix arithmetic, and can 

be used successfully in many signal processing applications. They 

are also very useful in many general scientific applications such as 

weather forecasting. They are not very efficient as general purpose 

computers because the degree of concurrency in many algorithms is 

difficult or impossible to identify.

19

W E R E T I 'J E  INETHJCTKNS INETRlCTICNS

Fig. 2.1 Pipelined Processors

The most popular implementation of MISD machines is the pipeline. 

A pipeline of processors is illustrated in figure 2.1. Each item of 

data is processed by each processor in turn. Although the multiple



2 0

instruction streams are not operating on a single itea of data con­

currently, the pipeline is still classified as MISD because there is 

a single identifiable data streaa. Pipelined architectures are not 

popular in programmable systems, being probably even less generally 

useful than vector processors, but they are very popular in hardwired 

systems. They are particularly appropriate for the implementation of 

recursive digital filters, which are usually farmed from a cascade of 

second order elements.

The most common HIM) architecture is the multiprocessor. In this 

case, the individual processors operate in an essentially independent 

fashion, but sharing a comson bus and common memory. The individual 

processors may also have a private bus and local messary. Tasks are 

shared out among the processors, and communication takes place via 

common memory. The main limitation on multiprocessors is the 

bandwidth of the common bus. Five or ten processors might typically 

give a performance improvement of two or three times; adding further 

processors will be to little avail. There is also the problem of 

sharing the tasks between the processors, which varies widely from 

application to application. Other HIM) architectures are possible, 

but there is always a trade-off between communications bandwidth and 

cost of provision. A fully interconnected network, where each pro­

cessor has a direct connection to every other processor, soon becomes 

impractical i All HIM) structures suffer from the problem of dividing 

up the task.



2 1

2.1.1 Early Super-Computers

IT* first of the Machines known as super-coaputers tats the 

TIi.IAC-IV, designed at the University of Illinois, this consisted of 

four quadrants, each with 64 processors. The quadrants could be con­

figured to operate independently or cooperatively. Each quadrant 

contained one control unit, and each processor executed the saae 

instruction but on different data. It was therefore basically a S H O  

■achine, although it in fact had four instruction streaMs. The pro­

cessors were on a square grid, and each was connected to its four 

nearest neighbours. As can be iaagined, the ULIAC perfomed Magni­

ficently on suitable tasks such as Matrix operations, but was of lit­

tle use for Much else.

The Texas InstruMents Advanced Scientific Coaputer (ASC) [15] 

attacked the problea in another way. At the centre of this processor 

were four highly pipelined arithaetic units operating in parallel. 

The rest of the Machine was concerned with getting the data in and 

out fast enough to satisfy these units. The whole Machine was con­

trolled by a peripheral processor which ran the operating systea. 

The high data bandwidth «as obtained by the special design of the 

Memory. The aeaory was organised into 6 separate banks, each of 

which could be connected to any of 8 processor parts. Thus the 

mesnry accesses could occur in parallel, provided they were to dif­

ferent Mceory banks, and thus the processor aeaory bandwidth was 

increased by a factor of 8. The ASC was therefore a M M  Machine 

with auch attention paid to coaaunications bandwidth.

These two computers demonstrate an important principle in the 

design of high-performance computers, and that is that the coaaunica-



2 2

tions problem if much more difficult to solve than that of the compu- 

tation alone. Thus the ASC, with its aore general coaaunications and 

control scheae, was aore generally useful than the ILLIAC-IV, which 

was limited to a very saall set of algorithas far efficient opera­

tion, although the TIJ.TAC outperformed the ASC on appropriate calcu­

lations . The overall complexity of the ASC was also greater, 

although it had only four processing units.

The ASC also desonstrates the exploitation of parallelism within 

the processing elements themselves. The fundamental arithmetic 

operations are divided up into various different parts, fetching the 

data, multiplication, normalisation, etc., and connected together in 

a pipeline. This provides the benefits of parallel processing to 

algorithas which otherwise could not support it.

2.1.2 Attached Processors

One of the aost significant developments in the implementation of 

prograsaable digital signal processing systems, and general scien­

tific computation, has been the attached processor. This is a spe­

cial purpose processor which is "attached” to a general purpose mini­

computer by some coaaunications link, and has its architecture tuned 

to perform scientific computing algorithas efficiently.

One of the earliest attached processors was the Fast Digital Pro­

cessor (FDP) [16] developed at the Lincoln Laboratories. This 

operated under the control of a Uni vac 1219 computer. The PDP uses 

four identical arithmetic elements (AEs), each consisting of a multi­

plier and an adder operating in parallel, and registers. There were 

also two data mesnries, accessible simultaneously, and a separate



23

instruction memory. The data memories were connected via buffers to 

the aain Uni vac seamy, t w o instructions were executed at once: one 

to control data flow and the other to control the AEs. The design 

and interconnection of the AEs were optimised far complex arithmetic, 

second order filter sections and the FFT "butterfly" operation.

The FDP had two main problems. One was the bottleneck of commun­

ications between the Uni vac memory and the FT*" meamies, and the 

other was the difficulty of programing the four AEs in parallel.

Using the experience gained with the FDP, the LSP/2 was designed, 

again at the Lincoln Laboratories [6 pp261-264]. Rather than using 

four identical arithmetic units, the LSP/2 used separate functional 

units: an arithmetic logical unit (ALU), a multiplier, a divider, a 

shift and normalise unit, etc. There were 64 dual copy registers and 

a 4Kx32 data memory. All these units communicated on three buses. 

Program memory was separate. The common buses and memory  proved to 

be a bottleneck, and in any one cycle an operation could only be ini­

tiated in one unit, along with a result being captured from one other 

unit. This made programing the LSP/2 for maximum efficiency a very 

difficult task.

These two attached processors illustrate, among other things, the 

usefulness of separating program and data memory. The combination of 

these into a single entity was one of Von Neumann's main contribu­

tions to computer design. However their separation increases the 

processor memory bandwidth and thus speed of operation, at the 

expense of same loss of generality.

The problems in programing these early devices have been greatly 

reduced with the introduction of microprogramming techniques. The



24

Data General AP/130 [6 pp267ff] is designed as an attached signal 

processor for the S/130 ainicoeputer. This was not greatly different 

from earlier machines in its architecture. It had separate pipelined 

multipliers and add/subtract units and a sine/cosine look-up table. 

Frograsaing the machine, however, was auch simpler. Instead of pro­

gramming the functional units separately, as with the LSP/2, the 

AP/130 will execute array operations, digital filters and FFTs all as 

single instructions which are extensions of the S/130 assembly 

language. This makes the programming of many signal processing sys- 

tems an almost trivial task!

The recent trend towards providing computing power by distributed 

workstations has been accompanied by a number of attached processors 

far such workstations. Due to advancing technology they are auch 

faster and cheaper than their predecessors. They can be attached to 

one workstation on the network and accessed as a network resource; 

indeed there could well be a few different special purpose attached 

processors on one network.

2.1.3 Single Chip Signal Processors

More suitable for use in systems which are likely to be produced 

in quantity are the single chip signal processors which have appeared 

on the Market. The S2811 froa AMI [17] is similar to the attached 

processors mentioned above, but it is designed to be micro-programmed 

by the user, and is auch less tightly coupled to the host computer 

than the AP/130. The S2811 in fact has several architectural simi­

larities to the FDP: it has two data memories and a separate instruc­

tion memory. It has a multiplier and an adder tdiich operate con­

currently, as does the arithmetic element of the FDP. The S2811,



25

however, has only one arithmetic element.

The Intel 2920 [2] is different in that it is designed to operate 

independently of any host computer, and in that it includes analogue 

circuitry as well as digital. It is in fact designed as an 

analogue-in, analogue-out, single-chip digital signal processor. It 

can perform 9-bit analogue-to-digital and digital-to-analogue conver­

sion, although internal arithmetic operations are 24-bits wide. It 

hats no multiplier, multiplications being performed ats a series of 

additions and shifts. The chip employs a barrel shifter and an 

arithmetic unit which operate concurrently. It has found wide appli­

cation in the telecommunications market for which it was primarily 

designed.

More recent than the S2811 and the 2920 are the TM5 320 series of 

processors from Texas Instruments [35], and a number of similar pro­

ducts from other manufacturers. These have concentrated on providing 

the basic operations as fast as possible, such that the latest ver­

sion of the TMS320, the 320C25 can perfora 16-bit multiply-accumulate 

operations in only 100ns. This is tremendous power from a micropro­

cessor.

The Inmos transputer [36] is also interesting for signal process­

ing. The transputer architecture is particularly designed to relieve 

the communications bottleneck in multi-computer systems, but the 

individual transputers also provide formidable processing power.



25

however, has only one arithmetic element.

The Intel 2920 [2] is different in that it is designed to operate 

independently of any host computer, and in that it includes analogue 

circuitry as well as digital. It is in fact designed as an 

analogue-in, analogue-out, single-chip digital signal processor. It 

can perform 9-bit analogue-to-digital and digital-to-analogue conver­

sion, although internal arithmetic operations are 24-bits wide. It 

has no multiplier, multiplications being performed as a series of 

additions and shifts. The chip employs a barrel shifter and an 

arithmetic unit which operate concurrently. It has found wide appli­

cation in the telecommunications market far which it »a s  primarily 

designed.

More recent than the S2811 and the 2920 are the TMS 320 series of 

processors from Texas Instruments [35], and a number of similar pro­

ducts from other manufacturers. These have concentrated on providing 

the basic operations as fast as possible, such that the latest ver­

sion of the TMS320, the 320C25 can perform 16-bit multiply-accumulate 

operations in only 100ns. This is tremendous power from a micropro­

cessor.

The limns transputer [36] is also interesting for signal process­

ing. The transputer architecture is particularly designed to relieve 

the communications bottleneck in multi-computer systems, but the 

individual transputers also provide formidable processing power.



26

2.2 TOE IMPACT OF VLSI OH DIGITAL SIGNAL PROCESSORS

It has already been pointed out that the eain effect of the 

advances in integrated circuit technology has been to sake electronic 

components available in such volvae and at such a low cost as to sake 

digital signal processing viable for eany ware applications. For 

example, the FDP was implemented using 10 000 SSI integrated circuits 

in BCL technology. The AMI S2811 is a single LSI integrated circuit 

implemented in VMOS technology, and achieves about one quarter the 

throughput of the FDP [6 p272]. The comparison is quite staggering. 

It is interesting to note that, although increases in component den­

sity in analogue circuits have occurred, they have not been to the 

sane extent as for digital circuits. This is largely because analo­

gue components require a high signal to noise ratio, which cannot be 

achieved with the small dimension transistors used in digital cir­

cuits. This serves to reduce the penalty in terms of component cost 

for using digital techniques in signal processing. This effect is 

likely to become more noticeable as component dimensions in digital 

circuits are further reduced. Scientists believe that 100 nanometre 

is about the smallest usable transistor which can be fabricated. 

Such a transistor would, however, be of use only as a switch in digi­

tal circuits; it would be useless for analogue applications.

Early hardwired digital signal processing systems were imple­

mented using many SSI circuits. A typical system would consist of 

many boards full of 16-pin packages. As technology progressed 

through MSI to LSI, larger building blocks, such as monolithic multi­

pliers, became available. These larger building blocks are connected 

together using SSI circuits as a kind of "glue". Designers can even 

use gate arrays to replace these SSI circuits and further reduce the



27
component count.

With the advent of VLSI, however, it becomes possible to imple­

ment quite large signal processing systems on one integrated circuit, 

or on very few. Apart form the programmable devices already men­

tioned, there are a number of "standard parts” in this area. Many 

telecommunications signal processing functions are available off the 

shelf, and monolithic multipliers are becoming larger and faster. 

However, as circuit density increases further, more and more signal 

processing systems designer« are needing to become involved with 

integrated circuit design. This situation is by no means unique to 

signal processing, as witnessed by the greatly increased interest in, 

and availability of. Application Specific Integrated Circuit (ASIC) 

design over the last few years.

Where full custom design is appropriate, in high volume applica­

tions, this does not pose any major problems. However, lower volume 

applications nay suggest a semi-custom approach, but general purpose 

sead-custom systeau such as gate arrays are likely to be sosiewhat 

inappropriate, in the same way as general purpose computers are usu­

ally inappropriate for the implementation of progmmnwl digital sig­

nal processing systeaus. standard cell approaches are more likely to 

be of use, provided that suitable cells are available for signal pro­

cessing. Lyon [9] proposes such a system based around bit-serial 

building blocks. Denyer [10] presents a silicon compiler for digital 

signal processing, again based around bit-serial arithmetic. This is 

certainly an exciting and very worthwhile area of research.

This use of bit-serial arithmetic highlights two important 

issues. First is the fact that bit-serial arithmetic is more effi­



28

cient than parallel, because there is no carry-ripple delay or com­

plicated carry look-ahead circuitry. This can give an advantage when 

the algorithms give rise to sufficient concurrency for many opera­

tions to be performed at the same tine. This is normally so in the 

case of digital signal processing.

The second issue highlighted by the use of the bit-serial 

approach is in the area of data transmission. It is a fact of life 

in integrated circuit design that the wiring tends to take up much 

more space than the active components, and the inter-processor com­

munication problem has already been highlighted. The interconnection 

of modules by single data lines has a great advantage over doing the 

sane thing with, say, 24-bit buses. It will also alleviate the prob­

lem of pin-out limitations on integrated circuits and simplify 

printed circuit board design.

This wiring difficulty may even have an effect on the selection 

of algorithms suitable for VLSI. For example, the FFT algorithm is 

computationally much more efficient than a straight implementation of 

the DFT. However, the data communications strategy for an implemen­

tation on multiple processors is far more complex. Present means of 

evaluating algorithms tend to concentrate on the number of multipli­

cations required; they take no account of interconnection strategies. 

There has been much interest shown by VLSI designers in systolic 

array structures [25 chapter 6] i arrays of identical processing ele­
ments connected together in a regular manner. Such systems put great 

emphasis on local communications, each processor being connected only 

to its nearest neighbour. Algorithms suitable for implementation on 

such structures are likely to be favoured far VLSI.



29

However, there are always going to be those who, for some reason 

such as low voluee, flexibility or short design tiee, do not wish to 

be involved in IC design. This «fill tend to increase the deswmd far 

efficient, easily used, prograsmwhle components for digital signal 

processing. Thus it is worthwhile to investigate the Means of making 

the power of VLSI available most effectively to the designer of pro- 

grammed digital signal processing systems. it is to this end that 

the work described in this thesis was carried out.



30

CHAPTER t h r e e 

AIMS OF THE PROJECT

The principle aim of the project is to make the potential pro­

cessing power of VLSI available in progra— wrt digital signal process­

ing systems. The advantages of programmable systems over hardwired 

systems in terms of flexibility and ease of design have already been 

described. This work is aimed at reducing their disadvantages by 

improving their efficiency in use of silicon. This is to be achieved 

by tailoring the systems to a particular class of applications.

It was decided to concentrate effort on efficient implementation 

of difference equation calculations, such as are widely used in digi­

tal filtering applications. It was considered necessary to limit the 

field under consideration in such a way in order to obtain some con­

crete results. It would have been possible to concentrate on a dif­

ferent class of algorithms, such as the Past Fourier Transform (FFT), 

but as has been pointed out these FFT algorithms pome problems in 

multiple processor configurations due to the non-locality of communi­

cation of data. Once a suitable design has been established for this 

one class of algorithms, its applicability for other algorithms can 

be evaluated. Such studies nay suggest modifications to the archi­

tecture which would improve its suitability for these other algo­

rithms without significant adverse effect on its suitability for the 

algorithms far which it was primarily intended.

Any attempt to design real-time signal processing systems must 

involve the exploitation of concurrency. The raw speed is simply not 

available to permit the majority of signal processing systems to



operate in a purely sequential Banner. Fortunately, the aajarity of 

signal processing algorithms are aaenable to this treatment. Thus 

the means used to exploit concurrency is a key issue, and in particu­

lar the inter-processor communication strategy adopted. It has been 

seen that the probleas associated with the aanipulation and communi- 

cation of data are often such greater than those associated with the 

actual coaputations.

3.1 USING STANDARD MICROPROCESSORS

The project began as an investigation of the use of aultiple 

standard microprocessors far the iapleaentation of digital signal 

processing systems. it was hoped that in this m y  sufficient pro­

cessing power could be Bade available far at least some signal pro­

cessing applications. However, it was soon discovered that this 

approach was not really viable.

3.1.1 6-bit microprocessors

Most 8-bit microprocessors were aimed primarily at control type 

applications requiring little in the m y  of arithmetic computation. 

Consequently their arithmetic capabilities are poor. Consider, for 

example, using the Intel 8085 [22] to implement the digital filter 

described in appendix A. This filter is used throughout this thesis 

for the purpose of comparing various different implesientation stra­

tegies.

The 8085 is an 8-bit machine, thus multiple precision arithmetic 

must be used far signal processing. In this case, 16 bit arithmetic 

is used. All arithmetic is performed on the 8085 using a single



32

accumulator register, known as the A register. Thus the assembly 

code to add the 16-bit nustoer stored in the D and E registers to one 

stared in the B and C registers is as follows: 

pperator operands

NOV A,C
ABO E
NOV C,A
NOV A,B
ADC D
NOV B,A

Each of these instructions takes 4 Machine cycles to execute, 

these register-to-register instructions being the fastest on the pro­

cessor. Thus the total time required for this addition is 24 cycles, 

or 8 ps on a 3 ttiz 8085. There are only two registers left, and 

these are normally used for holding a 16-bit memory address. Thus if 

higher precision arithmetic were required, it would be necessary to 

store one of the makers in memory. The following is the assembly 

code far such a 24-bit addition. This adds the 24-bit number stared 

in the three bytes of memory starting at address "ABB" to that stored 

in the B, C and D registers:

This takes a total of 67 smchine cycles, or over 22 ps.

cvcle« operator gperftnfls
10 IXI 
4 NOV 
7 ABO 
4 NOV
6 DOC 
4 NOV
7 ADC 
4 NOV
6 DOC 
4 NOV
7 ADC 
4 NOV

H, ADR
A,D
N
D,A
H
A,C
N
C,A
H
A, B 
N
B, A



33
Shift operations are just as bad. There is no possibility of 

multi-bit shifts, so all shifts have to be performed one bit at a 

time, and they can only be performed on the accimnilator. Moreover, 

there is no arithmetic shift instruction far sign extension when 2's 
complement numbers are to be shifted right; this has to be concocted 

from a combination of one left rotate and two right rotate through 

carry instructions. Thus the instructions required to perform a 1- 

bit right shift on a 16-bit number in registers B and C is as fol­

lows:

pperator operand?

MOV A,B
RLC
BAR
RAF
MOV B,A
MOV A,C
RAR
MOV C,A

Once again, all these instructions take 4 cycles, and thus the 

total is 32 cycles or nearly 11 ps. This code must simply be 

repeated far multi-bit shifts.

It can be seen from these examples that the 8065 is rather inef­

ficient for implementing this kind of algorithm. Most of the time is 

spent shuffling data around rather than on the actual computations. 

This is due in part to the accumulator being a bottleneck: every 

arithmetic operation involves moving data to the accumulator before 

the operation and away again afterwards. Also, the delay involved in 

using off-chip memory can be seen. It will be seen that providing 

sufficient on-chip memory can make a significant contribution to the 

efficiency of signal processors.



34

3.1.2 16-blt Microprocessors

If the early 8-bit microprocessors were aimed at fairly simple 

control type applications, the next generation of 16-bit microproces­

sors are intended for much more general application. The Motorola 

68000 series of processors, far example, is very popular in single- 

user workstations, and the best-selling IBM Personal Computer (PC) is 

based on the Intel 8086 range. For the purposes of this thesis, the 

Intel 8086 [23] will be compared with the 8-bit 8085 considered 

above.

At first glance, it is clear that the 8086 offers significant 

advantages over the 8085. It has, for example, a multiply instruc­

tion, although it still takes up to 133 machine cycles for a 16x16 

bit multiplication, or 27 ps far a 5 Hiz 8086. The 8086 has four 

general purpose registers, and all of these can be used for arith­

metic operations, thus largely avoiding the accumulator bottleneck of 

the 8085. It would be possible to perform the add and shift opera­

tions of the filter described in appendix A on mabers up to 32-bit 

precision without needing to store one of the operands in memory. 

This was only possible up to 16-bit precision with the 8085.

As with the 8085, multi-bit shift operations are not provided. 

However, an arithmetic right shift is provided, and along with the 

absence of the accumulator bottleneck this means that shifting can be 

performed very much faster. It might be thought that the shift 

operations would not be so critical in a processor with a multiply 

instruction. However, the sequence of shift and add operations in 

appendix A for multiplying y2 by its coefficient can be performed 

more quickly than using a multiply instruction. The total number of



35

shifts is 15, with 10 additions. In register-to-register mode, these 

operations take 2 and 3 machine cycles respectively. Thus 60 cycles 

are required altogether, as compared with a minimum of 118 for a mul­

tiplication. This is because the 8086 multiply instruction is imple­

mented in microcode rather than with multiplication hardware, and 

coding the multiplier into the program as in appendix A is more effi­

cient. In addition, the multiply instruction yields a 32-bit result, 

whereas the system proposed here discards the least significant 16 

bits of the product. Where word lengths of more than 16 bits are 

involved, the saving from using shifts and adds are likely to be even 

more evident, as multiple precision multiplications are rather awk­

ward.

It can be seen, therefore, that the 8086 is much better suited to 

digital filtering than the 8085. However, this advantage has been 

gained only at the cost of greatly increased complexity, including a 

higher chip count for a minimum usable system. Much of this complex 

functionality would not be used in digital filtering applications and 

is thus wasted. Moreover, the 8086 is still not ideal, lacking such 

things as multi-bit shift operations and sufficient on-chip memory. 

Such facilities would be much more useful than a number of those 

which are provided.

3.2 SPECIAL PURPOSE MICROPROCESSORS

Special purpose prograasMtble signal processors have been men­

tioned a number of times already in this thesis. One of the earliest 

to became available was the Intel 2920 [2]. It is interesting to 

cohere its performance with general purpose processors such as the 

8085 and 8086 considered above. The program for implementing the



1
filter design of appendix A in the 2920 is in appendix B. Note that 

this prograa just performs the digital filtering; the 2920 also con­

tains hardware far digital to analogue and analogue to digital 

conversion, and part of the instruction word is given over to con­

trolling this analogue circuitry. In fact, with a filter as simple 

as this, the analogue functions take aore time than the filter compu­

tations, and including them in this prograa would only confuse the 

issue. It can be seen that the entire filter can be iapleaented in 

23 instructions. As the 2920 executes one instruction every aachine 

cycle, this will take less than 10ps on a 2.5 MHz 2920. This is 

clearly such faster than is possible on either an 8066 or an 8085.

This great increase in speed is due to the m y  the 2920 is 

tailored to digital filtering applications. It is very efficient at 

performing additions and shift operations. A barrel shifter is 

available, permitting aulti-bit shifts up to 2 bits left and 13 bits 
right. One shift operation and one ALU operation aay be performed in 

each machine cycle. Also, the entire system is contained on one 

chip, and there are none of the delays associated with off-chip 

memory access. Program and data memories are separate, permitting 

both to be accessed simultaneously and thus enabling single cycle 

instruction execution. The amount of memory provided, both for pro­

graa and data, is, although small, quite adequate for most filtering 

applications. Indeed, the 2920 is primarily intended for the pro­

cessing of telephone quality speech signals with a sampling frequency 

of 8 kHz. If more memory were provided to permit the implementation 

of more complex algorithms, then this sampling frequency could not be 

maintained.

36



37

3.3 NETWORKS FOR SIGHAL PROCESSING

In the design of systeas involving Multiple processors, two prob­

lems are frequently encountered. One is the partitioning of algo­

rithms to make use of the parallel processing power available. The 

other is the establishment of an efficient inter-processor communica­

tion strategy. Fortunately, in signal processing the partitioning of 

algorithms to exploit concurrency is often much simpler than is the 

case in general.

Various different interconnection strategies have been proposed 

for multiple processor systems. In the most general case, each pro­

cessor is connected to every other processor by a direct link. This 

is clearly not practical for more than a very few processors. One 

alternative is to use a regular array of processors, with each con­

nected only to its nearest neighbours. The Illiac IV (qv section 

2.2.1) is an example of this, although such an interconnection scheme 
could also be implemented with the processors executing different 

instruction streams rather than the common instruction stream of the 

Illiac. As was pointed out for the Illiac, such architectures are 

particularly suited to a small set of algorithms such as matrix 

operations, but are grossly inefficient far much else. It should be 

pointed out, however, that a multiple instruction stream system might 

prove to be of somewhat more general applicability than the Illiac.

Other interconnection schemes use multiple ports into a common 

memory, or communication on a bus connected to all processors. True 

multi-port memory is very difficult to achieve and typically memory 

must be split up into "banks”, with only one processor able to access 

a particular bank at any one time. Once again, such systeas are only



38

viable when a fairly n a i l  number of processors is involved. Bus 

systeas suffer a similar limitation due to restricted bandwidth, and 

neither system is suitable far systeas involving large numbers of 

processors.

Swartzlander and Heath [20] point out two unique aspects of sig­

nal processing networks. The first is that data can often be grouped 

into quite large blocks. The second is that the networks are typi­

cally topologically irregular, the topology being related directly to 

the algorithms. They propose a circuit switching scheae, the tine 

taken to set up a circuit being a snail part of the transmission time 

for a reasonably large block of data. Circuit switching nodes can be 

made much more simply than packet switching nodes, the aain disadvan­

tage being this set-up time.

Real tine signal processing systeas must be able to process data 

sufficiently fast to keep up with the sampling rate. This could be a 

potential problem in a systea which allocates tasks to different pro­

cessors, or establishes coaaunication paths, at execution tine. This 

could pose problems to a systea implemented using the method proposed 

by Swmrtzlander and Heath. It cannot be guaranteed beforehand that a 

particular link can be established, and thus a data block transmit­

ted, within the tine required. One possible solution would be to 

allocate circuits in advance far particular streams of data, rather 

than allocating then for individual data blocks during systea opera­

tion. This approach, however, could Bean that there would not be 

sufficient circuits available to set up all the required communica­

tions paths. It would be possible in this case to enable communica­

tions paths to share individual interconnection circuits, as with the 

Swartzlander and Heath scheae, but in this case still allocating them



39

in advance to provide guaranteed performance. This pre-allocation 

could be done by simulating a system operating the Suartzlander and 

Heath scheme to ensure that the system performed adequately.

The adoption of pre-allocation techniques loses the fail-soft 

aspects of the Swartzlander and Heath approach. However "fail-soft" 

is a doubtful concept in real-time signal processing, as a soft 

failure which reduces the speed of operation below the threshold far 

real-time operation is, in effect, a hard failure, unless the system 

can somehow reconfigure itself to perform a simpler set of opera­

tions. If a system is to be reliable, providing guaranteed perfor­

mance even in the face of failure of one or more of its processing 

nodes, then the effect of such a failure must be analysed in advance 

and allowed far in system design.

It is important to remember when discussing these signal process­

ing networks that the systems under consideration in this thesis are 

intended for implementation as VLSI circuits. In section 2.2 it was 

pointed out that locality of communications is very important in 

VLSI, and indeed it always yields simpler wiring idtatever means of 

implementation is used. This tends to favour regular arrays of pro­

cessors, connected to their nearest neighbours, and has led to many 

researchers to seek out algorithms suitable for implementing on such 

systolic array structures. The scheme of Swartzlander and Heath 

could in fact be realised on such an array, imposing an irregular 

communication topology on a regular connection structure. The effi­

ciency of such a scheme would depend on the algorithm being imple­

mented. It might be necessary when using such a scheme for the nodes 

in any particular communication path to pass data on to subsequent 

nodes in the path in subsequent cycles, otherwise the delays in



40

sending data over long paths would negate the speed advantages of 

local communications.

With regard to the implementation of digital filters, IIF filters 

can be formed froa second order sections connected in cascade or in 

parallel. FIR filters are aost appropriately constructed froa cas­

caded sections of any appropriate length. Thus both I IF and FIR 

filters can easily be implemented in cascade fora on a simple pipe­

line of processors. The alternative for I IF filters, namely parallel 

connection, is auch harder to handle in practice. The input data 

must be distributed to all the parallel processors, and their outputs 

recombined in bosk way. Pipelines are therefore the most appropriate 

fora of multiple processor for the implementation of digital filters.

This is an example of the way in which selection of a suffi­

ciently narrow field of application can significantly reduce the com­

plexity of a solution. The techniques of Swartz lander and Heath can 

be left to processors of more general applicability. It also illus­

trates how algorithms can be selected not only on the grounds of com­

putational efficiency but also architectural efficiency. The paral­

lel and cascade forms of IIR filters have identical computational 

efficiency, but the cascade fora fits in better with the architectur­

ally simple pipeline.

3 ,4  PROCESSORS F9P ? I « A L  PEQ C g SB «? NETWORKS

It would be perfectly possible to connect general purpose 

microprocessors together to fora a network suitable for digital sig­

nal processing. This would not, however, overcast the essential 

inefficiency of such processors far signal processing. It is worth



41

investigating how special purpose signal processors eight be used in 

networks.

The Intel 2920 has been seen to be suitable for the implementa- 

tion of digital filters. However, it is not designed far use in pro­

cessor networks; it is intended for use as an analogue-in, analogue- 

out signal processing systea on one chip. It is in fact possible to 

connect 2920s together, but as they are not designed with this in 

aind it is rather cxabersome. The AMI S2811 is acre hopeful in this 

regard, being a purely digital processor with no analogue functions, 

operating under the control of a host mini- or aicro-cosputer. How­

ever, this chip is available only in a aask-prograaaable version, 

which aakes it difficult to use in a research environment. The 

serial input/output interface of this processor could undoubtedly be 

very useful far connecting it into networks due to the simplicity of 

the wiring.

The Texas TMS320 processor is well suited to the implementation 

of a wide range of digital signal processing algorithms. A single 

processor provides formidable processing power; a network of such 

processors could prove very powerful indeed. The inmos transputer, 

being designed with interconnection in mind, could be significantly 

easier to use in networks, and also provides significant processing 

power. A combination of the two architectures could be very 

interesting indeed. However, neither was available at the start of 

the project.

Having discovered problesm in the use of any available processor 

at the time the project began, it was decided that the aim of the 

project should be the design of a processor for digital signal pro­



42

cessing, suitable Cor use in a network. This decision happily coin­

cided with the availability to the author of coaputer aided design 

tools far c us toe integrated circuits, and the possibility oC proto­

type fabrication. In line with all the above considerations , and in 

order to sake the design tractable and the implementation efficient, 

difference equations were chosen as the target application, and pipe­

lines as the target network architecture. The processor should be as 

flexible as possible in use, providing that this should not interfere 

with the overriding requireswnt for efficiency to enable it to com­

pete with hardwired systems. Once designed, its suitability for 

other digital signal processing algorithms can be evaluated. This 

■ay lead to suggestions for improveswnts to the architecture. Once 

again, these would only be implemented if to do so would not be to 

the detriment of its performance for difference equations.



43

CHAPTER p o u r

DEVELOPMENT OF ARCHITECTURE

4.1 EFFICIENT ARCHTTBCTtHES FOR SIGNAL PROCESSING

It has been stated that it is always possible to achieve higher 

performance fro« hardwired systems than from programmed systems 

implemented in the same technology. This is because all elements of 

a hardwired system are designed far the particular application in 

question. They are likely to be in constant use, or at least for 

the majority of the time, otherwise their function would be combined 

with other units. On the other hand, some elements of a programmable 

system may not be used in a particular application, or nay not be 

ideally suited to it. They may only be operational far a relatively 

saall proportion of the time. Hardwired systems therefore make more 

efficient use of their constituent parts than programmable systems. 

The reason far the design of specialised programmable signal proces­

sors is to eliminate those parts of a general purpose system which 

are not required far signal processing applications, and to include 

extra parts which are useful in signal processing but are not usually 

provided in general purpose processors. In this way, they can became 

mare efficient in using their constituent parts.

The resources available to the designer of VLSI signal processing 

systems are silicon area and time; he must try to eliminate waste as 

far as possible in both these quantities. His own time is indeed 

another resource which he does not wish to waste: it is not worth 

spending man-years of effort in squeesing out the last few square 

microns of chip area. Adopting a strategy of local communications is



44

an example of trying to conserve both chip area and tine. Compli­

cated wire routing is a classic way to use vast areas of silicon, and 

long-distance coeeunications pose problems due to propagation delays. 

In fact, wasting time with long delays is similar to wasting area, as 

it means that a large area of silicon is waiting, or being wasted, 

during such delays. Efficiency can be assessed roughly by the pro­

portion of a system which is actively being used at any one time.

A signal processing system consists of four types of circuitry: 

memory, communications, arithmetic, and control. These are required 

in both hardwired and programmable systems, although in hardwired 

systems the control logic will be implied in the wiring, whereas in 

programmable systems the control logic consists of the program memory 

itself and the instruction decode circuitry. As the main concern in 

digital signal processing is to perform large lumbers of arithmetic 

operations fast, efficient utilisation of the arithmetic logic is of 

paramount importance. All other areas, memory, control and communi­

cations, must be kept down to a minimum.

It has already been suggested that the area consumed by communi­

cations circuitry can be kept down by employing only local communica­

tions. It is also important to consider memory. Memory is an impor­

tant part of signal processing systems, the Z-transfarm function z 1 
representing delays of one sample period and implying memory. In 

hardwired systems, only the required amount of memory is provided. 

It is important in programmable systems to waste as little memory as 

possible. Memory is wasted when word-lengths are longer then 

required, and when too many memory locations are provided. Using 

excessively long word-lengths causes inefficient use of arithmetic 

logic as well as memory. From this point of view, it would be



45
desirable to have variable ward-length available under prograa con­

trol.

The question of how auch data memory to provide is a thorny prob- 

lea. Providing too auch is wasteful; providing too little can wean 

that certain algorithms cannot be implemented. When designing a pro­

cessor with on-chip memory, or worse still a processor with its own 

memory which can be part of a multi-processor chip, then the problem 

becomes acute. It is understandable that one should err on the side 

of generosity. However, when the chip area taken up by memory 

becomes significantly larger then the rest of the processor, it makes 

little sense to add more memory. It makes mare sense to replicate 

the processor and have two processors and twice as auch mem ory. This 

strategy provides more efficient use of chip area where there is suf­

ficient mesnry in one processor, and the second processor may be used 

for another task. In the case where all the memory is required by one 

processor, the unused processor does not consxaie a large proportion 

of the overall silicon area. This consideration should be a great 

help in determining the amount of memory to be provided with each 

processor. It is, in fact, unlikely that memory from one processor 

will be used by an adjacent processor as implied in this discussion; 

what is more likely is that the algorithm will be further subdivided 

to run on two processors when the memory available on one processor 

is insufficient. This does not, however, alter the basic argument as 

to the amount of memory which ought to be provided.

Reducing the silicon area consumed by the control circuitry is 

best achieved by reducing the size of the prograa memory. The size 

of the instruction decoder is also important. Good instruction set 

design can help to keep down both the complexity of the decoder and



46

the Mount of program memory required. As with the data memory, it 

makes sense to use extra processors to provide extra memory rather 

than to provide vast amounts with each processor. In fact, the 

requirements for program memory and data memory are related, and a 

sensible ratio between these could be established far the type of 

algorithm being considered.

4.2 ADVANTAGES AND DISADVANTAGES OF BIT-SERIAL ARITOfiTIC

A number of researchers in the field of digital signal processing 

have advocated the use of bit-serial arithmetic techniques (qv sec­

tion 2.2). This means that carry propagation is performed synchro­

nously, and thus cycle times can be lower as it is not necessary to 

wait for carry signals to propagate across the full ward length in 

each cycle, nor is it necessary to use complex carry look-ahead 

logic. This reduced cycle time can lead to higher throughput pro­

vided that sufficient arithmetic operations can be performed con­

currently. This can be illustrated by a simple example. If it is 

required to add together 6 p a i n  of 6-bit numbers, then 6 cycles and 
8 full adders are required to perform the additions sequentially 

using parallel arithmetic or concurrently using serial arithmetic. 

However, in the former case the requirement far carry ripple will 

increase the cycle time, making the throughput higher in the latter. 

This higher throughput represents more efficient use of silicon.

Bit-serial transmission of data has also been seen to be advanta­

geous over parallel transmission, especially when the communications 

requirements are complex. It must be pointed out, however, that 

parallel arithmetic and serial communications are not wholly incompa­

tible as data may be serialised for transmission to other processing



47
unita.

A Major disadvantage of bit-serial arithmetic is that there is no 

algorithm for bit-serial division. This is pointed out by Chen and 

Hilloner in their paper on a bit-serial Multiplier [24]. Although 

this would be devastating in a general purpose computing environment, 

division is not used in the vast Majority of signal processing algo­

rithms .

It is notable that bit-serial techniques are only proposed for 

hard-wired signal processing systems. In such systems, the required 

function is defined by the interconnection of the processing ele­

ments. In programmable systems, the function is defined by a program 

which is interpreted by the control portion of the processor. This 

control portion will typically be about the same complexity however 

many bits there are in the wards being processed. Thus in bit-serial 

approaches the ratio of silicon area consiaed by control logic to 

that consumed by the arithmetic logic is likely to be very high. 

This is highly undesirable when the desired end is to perform arith­

metic operations as efficiently as possible. It may be possible to 

get round this efficiency problem by using a S D O  (Single 

Instruction-stream Multiple Da ta-stream) architecture, where each 

instruction would operate on a number of data items. This, however, 

produces the limitation that only identical operations could be per­

formed concurrently. In other words, the possible applications would 

be further restricted.

There is a further advantage in using bit-serial arithmetic i it 

makes configurable wordlength easier to achieve. In the case of 

hardwired systems, the wordlength is determined by the designer. In



48

the case of prograeeable systeas, however, configurable wardlength 

would be a significant advantage, increasing efficiency far systeas 

requiring a short wordlength and easing the iapleaentation of those 

requiring long wardlength. Far example, I IK filters typically 

require sore precise calculations than FIR filters, since the output 

is fed back and roundoff errors can acciamlate. Also, as the poles 

of IIR filters approach the unit circle in the 2-plane, the required 
precision increases; as the poles approach the unit circle the filter 

is becoming nearer to instability, and accumulated roundoff error 

could make the filter unstable. It is generally agreed that 24 bit 

precision is adequate for nearly all filters except the most 

unstable, therefore processors such as the Intel 2920 provide 24 bit 

precision for all calculations. However, most FIR filters can be 

adequately implemented using 12 bits and most IIR filters using 16 

bits. Hhat is mare, all memory locations are 24 bits wide in the 

2920, and this can result in a significant waste of resources if it 

is not required, as memory typically accounts for a large proportion 

of all digital systems.

4 - t  uaniaws: purttstom  PBnramaani.E mMPtrrEws

A computer architecture has been proposed by Kartashev and Kar­

tashev [21], which uses 16-bit wide computer elements (CEs). These 

can be configured dynamically, under program control, to form a vary­

ing number of dynamic computer (DC) groups. Each DC group contains a 

number of CEs and has a word-length which is a multiple of 16 bits. 

Although this architecture is intended for large complex supercomput­

ers, it does give some insight into a means for providing programm­

able systems with varying word-length.



49

When a DC group is Coned in the Kartashev and Kartashev ays tee, 

arithmetic is performed in parallel within the group, thus there is a 

problee of carry propagation when large word-lengths are used. It is 

obvious, for example, that carry propagation in a 64-bit DC group 

will take longer than in a 32-bit group. An interesting alternative 

to consider is using synchronous carry between CEs within a DC group. 
This would avoid the carry propagation problem but would bring with 

it many new ones of its own making. Such is engineering.

4.4 A NIBBLE-sebtat. i p t h tTPCIURE

What is being proposed is, in essence, a compromise between a 

bit-serial and a fully parallel architecture. If the word-length of 

the CEs is sufficiently short, then the carry propagation delay 

within each CE will not be significant, and adequate flexibility of 

overall word-length nay be provided. If it is sufficiently long, 

then the ratio of silicon area used for control logic to that used 

for arithmetic logic and memory may be low enough for reasonable 

efficiency. The area occupied by control logic in each CE will, to a 

first approximation, be independent of the wordlength of the CE. 

Clearly a compromise must be made. A word-length of 4 bits was 

chosen for this project, as it seemed to give such a reasonable 

compromise. Undoubtedly carry propagation across 4 bits should pose 

no problem, and a word-length variable in increments of 4 bits should 

give adequate flexibility. In terms of data communications, the 

routing of 4-bit buses is not as easy as far single lines, but gives 

a significant advantage over routing 24-bit buses. The option of 

serialising the data far transmission remains a possibility. It is 

more difficult at this stage to assess the ratio of control logic to



50

arithmetic logic; this will be clearer when the project is completed, 

and say suggest that a longer word-length would be more appropriate. 

The choice of 4 bits is certainly not sacrosanct. As 4 bits has been 

chosen, the architecture can be described as nibble-serial. The 4- 

bit wide processing element will be known as a Signal Processing Ele-

,  Q P r i >DM* N » 1 '

L
K O S T

S I G N I F I C A N T
L E A S T

S I G N I F I C A N T

Fig. 4.1 3 gPEs F p n  S-l2-bit Computer

went (SPE). The fundamental mode of operation can best be explained 

by means of a simple example. Consider a 12-bit computer made up 

from three SPEs as in fig. 4.1. If two 12-bit numbers are to be 

added together, then in the first machine cycle the least significant 

four bits of each number are added together in SPE1. The carry bit 

from this addition is then passed on to SPE2, there in the next cycle 

this is used as the carry input far the addition of the next most 

significant four bits of the two numbers. Once again, the carry out­

put from this operation is used as the carry input far the addition 

performed during the next cycle in SPE3 of the four most significant 

bits.

Once an SPE has completed its part of any operation, it is free 

to go on to perform a new operation while other SPEs are still per­

forming the original operation on more significant sections of the



51

operands. It mist also be noted that one particular SPE always 

operates on the saae 4-bit field in every number, and thus all memory 

for this particular field for every word is incorporated within that 

SPE.

It can be seen that an operation which is perforaed during one 

cycle is perforaed during the next cycle in the next aost significant 

SPE: the SPE next on the left. It seeas reasonable, therefore, that 

SPE instructions should be passed each cycle froa one SPE to its 

neighbour on the left. This will ensure proper synchronisation of 

operation.

The aode of operation is in aany ways siailar to performing mul­

tiple precision arithmetic on an 8-bit microprocessor. In this case, 

the operations are also performed on successively more significant 

fields of the numbers, and the carry output froa one operation is 

used as the carry input for the next. However, the operations are 

all performed on the saae piece of hardware. Although this use of 

one piece of hardware throughout is simpler conceptually and avoids a 

number of probleas, it does have some fundamental disadvantages. The 

aost obvious is reduced throughput i the processor must wait until an 

entire operation is completed before proceeding to the next. The 

throughput of the SPE approach will generally be n times greater, 

where n is the matter of nibbles in a word. The word-length used can 

be increased in the SPE approach simply by using an extra SPE and 

with virtually no effect on throughput.

Another disadvantage of the single processor approach is not so 

apparent. It has to do with the provision of memory. If a single 

processor has enough memory to store all the data required for its



envisaged applications using 16-bit words, it will not have suffi­

cient if the ward-length Bust be increased to 24 bits. On the other 

hand, using the SPE approach, the extra memory will automatically be 

added with the extra SPE which Bust be added to increase the ward- 

length.

the Bain problea with this nibble-serial approach lies in the 

implementation of conditional instructions. In a conventional com­

puter, condition codes are set according to the results of arithaetic 

operations, far instance indicating if a result is zero, or if an 

overflow has occurred, filth the nibble-serial approach an instruc­

tion is not completed, nor can condition codes be set, until the fol­

lowing instructions are being executed. In addition, the codes would 

be generated in the aoet significant SPE, some distance from the 

least significant SPE there the instructions are being generated. It 

is thus considered impractical to iapleaent a condition aechanisa. 

This has the side effect of Baking division impossible, but division 

is not generally required in signal processing (qv section 4.2). The 

lack of conditionals, in particular overflow detection, might be con­

sidered serious. However, a comparison with the Intel 2920 is once 

again helpful; this processor provides very little in the way of con­

dition handling, and overflow is handled by controlling whether a 

nuaber "wraps around" or Halts on overflow. If no overflow handling 

is provided, nuabers will wrap around. The limiting behaviour of the 

2920 is used to siaulate clipping in analogue signal processing sys­

tems, however good design can eliminate the possibility of overflow.

In bit-sequential processors, data Bust be supplied least- 

significant bit first, as carry propagates froa least-significant to 

aost-signifleant. Similarly, with nibble-sequential processors, the

52



53

data Bust be supplied least-significant nibble first. It is also 

desirable that all input data should be supplied to the same place, 

that is the saae SPE. If it were necessary to supply data to the SPE 

which is to process that particular nibble, then extra circuitry 

would be required to direct it to the correct place. If data is sup­

plied least-significant nibble first to the aost-significant SPE, and 

passed on in subsequent cycles to the next less significant SPE, the 

SPE on the right, then after the requisite number of cycles the data 

will be in the correct place. Similarly data can be output from the 

least-significant SPE, least-significant nibble first.

Fig. 4.2 desnnstrates the basic operation of a processor made 

from SPEs. In this diagram, a 12-bit number is input to a processor 

made from 3 SPEs, a 12-bit number stored in memory in the SPEs is 

added to it, and the result is output. Bach box represents the state 

of an SPE, the upper half containing the instruction being executed, 

and the lower half the contents of the accumulator at the end of the 

machine cycle. An "XIO" instruction, external Input Output, causes 

an SPE’s accumulator to be loaded with the contents of the accumula­

tor of the SPE to its left. The leftmost SPE's accumulator will be 

loaded with externally presented data, and the contents of the right­

most SPE's accumulator will be output. An "ADO" instruction causes 

the contents of register B of an SPE to be added to its accumulator. 

A "NOP" instruction means no operation. Mare detail on the operation 

of these and the rest of the SPE instructions will be given later. 

Xj, Xj and XQ represent the three nibbles of the maber being input, 

and Y2, Y1 and Yq the nibbles of the output msfcer. Successive rows 

of the figure represent successive machine cycles.



54

•/*---- ------ —  r/ /

/ /

\

SR
/

/

/

/
NOP

✓

/
/

SR
(\m ) Vp Aß

✓
✓

/
✓

/

B_2_
/

b 2

/ /
I n o p K  |s r

✓/
NOP

(uU Ü  [ Â T } ^  — { aV b 2

Fig. 4.2 Basic Operation of Procewor w>de trow SPEs



55

There are two points of interest worth noting at this stage. The 

first is the requirement for NOP instructions between successive n o  

instructions. This is unavoidable in this schesw, although the NOPs 

can be replaced with any internal SPE instruction which does not 

affect the accxaulatar. The second is that sore cycles are used 

shifting iwabers in and out than in the addition itself. However, in 

real systems the calculations will be more complex than a single 

addition, and the overhead for the input and output of data will not 

be such a great proportion.

4.5 PIHCTIQUALITY REQUIRED

Having established the basic mode of operation of processors 

formed from SPEs, it is necessary to establish exactly what func­

tionality is required for the chosen application area. Difference 

equations involve above all the calculation of sims of products.

This implies the basic operations of addition, subtraction and 

multiplication. It is worth considering the functionality of the 

Intel 2920, as this processor has been found useful in digital 

filtering applications. It does not include a hardware multiplier. 

In many cases, the multiplications required in digital filters are by 

a pre-determined constant, for example one of the filter coeffi­

cients; this can be implemented as a series of additions or subtrac­

tions and shifts coded directly in the program. Multiplication by a 

variable, required far example by adaptive filters, can also be 

implemented by this shift and add approach, provided that the arith­

metic operations can be made conditional upon certain bit-positions 

in the multiplier operand. Because different SPEs are assigned to 

specific nibbles in the mabers, it would be difficult to implement



56

any kind of hardware multiplier, even if it were to operate only on 4 
bit sections of the numbers. However, the approach used in the 2920, 

based on shifts and additions, is perfectly possible.

As has been seen, division is not generally required in signal 

processing. Scaling down can be performed by aultiplication, and in 

some cases scaling by the nearest power of two by shifting is ade­

quate. The 2920 does not provide any weans for division. Both far 

this scaling, and far aultiplication as described above, it is vital 

to provide shift operations. It was pointed out in section 3.1 that 

one of the drawbacks of general purpose microprocessors for signal 

processing is the lack of aulti-bit shift operations. The Intel 2920 

provides shifts varying froa 2 places left to 13 places right in a 

single instruction; in fact these shifts are performed on one of the 

operands to an ALU operation in the sane cycle as the ALU operation. 

With an SPE-based processor, it would be possible to implement shifts 

of up to 4 bits in either direction by incorporating a barrel 

shifter; any longer shifts in a single cycle would violate the rule 

of local communications only, as one SPE would have to obtain its 

data other that froa its own nearest neighbours.

It aay be thought that this limiting of shift distance to 4 bits, 

rather than the 13 bits in the 2920 eight lead to inefficiencies in 

the implementation of aultiplication. However, there are two dis­

tinct ways of implementing shift and add multiplications, as illus­

trated in Fig 4.3. In the first case, Fig 4.3 (a), which corresponds 

to standard long aultiplication as taught at junior schools, the mul­

tiplicand is shifted by an appropriate number if bits prior to being 

added into the product. At each stage the multiplicand is only added 

into the product if the corresponding bit of the multiplier is a one.



57

0000
0000(a) 01010101

0101 x 0011 ( 5 x 3 )

00001111 (15)

00000000 
♦ 0101

01010000 shift 00101000 
4 0101

01111000 (b) shift 00111100 4 0000
00111100 shift 000111104 0000
00011110shift 00001111 (15)

Fig. 4.3 TWo Methods for ahift-and-add Multiplication

In the second case, Fig 4.3 (b), the Multiplicand is always added 
into the high order bits of the product, and the product is shifted 
right by one bit after each addition. Once again, the addition is 
only perfaraed if the corresponding bit of the Multiplier is a one, 
and in this case the bits of the Multiplier Must be taken least sig­
nificant first. This Method rcaovca the need for the long shifts 
required by the first technique, and has another significant advan­
tage. It is usual in signal processing systeas to use fractional 
maters, i.e. the Most significant bit represents ^ the next bit 
etc. Thus when two 4-bit maters are Multiplied to give an 8-bit 
product, then the least significant 4 bits aay be discarded to leave



56

a number of the M a e  significance and precision as the original 

nuabers. Thus only a 4-bit adder is required, and the bits which are 

shifted out at the least significant end aay be discarded. In the 

first case a full B-bit adder is required.

Meaary is another function required in a signal processor, as 

implied by the delay operation z *. As has been said, it is diffi­

cult to decide how auch aeaory to provide. One second order filter 

section with both poles and zeros requires four neaury locations, so 

the 40 locations provided on the 2920 would allow far 10 such sec­

tions. As this seeaed a not unreasonable complexity of calculation 

for one processor, it was decided to provide 64 locations, this being 

the nearest nuaber also a power of two and thus Baking best use of 

the 6-bit address required to address 40 locations. As with the 

choice of 4 bits for the width of an SPE, this decision is not sacro­

sanct. It will be easier to assess if this is a reasonable choice 

when it becomes apparent what proportion of the silicon area is taken 

up by this aeaory (q.v. section 4.1), and what kind of aaxiaum data 

rate would be permitted when using all the aeaory.

While considering memory, it is worth pointing out that the z 1 
delay essentially consists of aoving data froa one meaary location to 

another. On aost processors, including the 2920, this can only be 

done one datum at a tiae. It aay be useful to be able to shift 

larger blocks of aesnry in one cycle by building this operation into 

the design of the aea ory. It is at least worth investigating the 

cost in terms of silicon area of building this operation into the

aeaory.



59

4.6 OPERATIONAL DETAILS

4.6.1 Addition and Subtraction

The operation of addition has already been described in section 

4.4. Subtraction is easily iepleeented by the use of 2's coepleeent 

nuaber representation, «(hereby a subtraction is implemented by coe- 

pleeenting and adding. Forming a 2's complement involves negating 

each bit and adding a one at the least significant bit position. 

This is eoet easily implemented by setting the carry input to the 

adder to a one, rather than to zero as is used far addition. For 

this reason, the carry input to an SPE is inverted far subtraction, 

so that it can be held at zero permanently for the least significant 

SPE. TO permit proper carry propagation between SPEs, the carry out­

put aust also be inverted. Fig 4.4 shows how carry propagation 

operates far both addition and subtraction.

4.6.2 Shifting. Input and Output of Data

Shift operations of one to four bits are to be provided in each 

direction. All shift operation by their nature require communication 

between neighbouring SPEs, which is achieved by using 4-bit wide 

bidirectional ports on each side of an SPE.

When an SPE executes a right shift instruction, data is required 

from the SPE to its left. This SPE, however, is not yet aware of the 

arrival of the shift instruction. It is therefore necessary for each 

SPE to output the contents of its accuaulator on its right hand data 

part at all times when it is not executing a left shift instruction. 

In this way data is always available to the SPE on the right should 

it be executing a right shift instruction.



6 0

(a) A d d itio n

(b) S u b tra c tio n

Fig- «.4 Carry propagation for addition and subtraction

A problem arises in the most significant SPE due to the adoption 

of 2‘s complement number representation. When a 2 ’s complement 

number is shifted right, the sign bit must be replicated rather than 

zeros being shifted into the most significant bit position. Thus the 

most significant SPE must know that it is such; there seems to be no 

alternative but to include this in the configuration programming.

Input and output of data is achieved by a sequence of right shift 

operations. In this case all the shifts are 4 bits in length. When 

data is input, the most significant SPE must transfer data which, it 

is assumed, will be presented at its left hand data port. This is in



6 1

contrast to ordinary shifts, when this SPE Bust rather replicate the 

sign bit. the output of data requires no such special operation, 

except that it Bust coincide with the input of data by the SPE to the 

right of the least significant SPE, trtiich will be the aoet signifi­

cant SPE of the next processor in the pipeline.

Left shifts require data to be delayed by one cycle before being 

presented to the SPE on the left. Thus when executing a left shift 

instruction, an SPE loads the contents of its accuaulator into a spe­

cial purpose latch before loading the data presented at its left hand 

data port into its accumilatar. In the next cycle, when the SPE to 

its left is executing the left shift instruction, the data froa the 

latch will be output to the left hand data port. As indicated above, 

this is the only situation where the transfer of data is froa right 

to left, and the contents of the accuaulator are not output on the 

right-hand data port.

4.6.3 Multiplication

Multiplications are to be implemented by aeans of shifts and 

additions, in accordance with the scheae of Fig 4.3 (b). this scheme 

does not cover the use of 2's coapleaent numbers, but can be siaply 

extended to implement Booth's Algorithm. In the unsigned case, an 

addition is performed if the corresponding bit in the multiplier is a 

one. With Booth’s Algaritha, the possibility of a subtraction is 

introduced, and the operation is selected according to two bits of 

the multiplier, the current bit and the previous bit. The least sig­

nificant bit is still considered first. The operation is selected 

according to Fig 4.5. With the first bit of the multiplier, there is 

no previous bit and it is considered to be sere. In many cases it



62
Present bit Previous bit Operation

0
0
1
1

0
1
0
1

No-operation
Addition
Subtraction
No-operation

Fig. 4.5 Selection of operation for Booth's Algorithm

will be desired to Multiply by a constant. In this case, the con­

stant can be progressed as an appropriate sequence of shifts, addi­

tions and subtractions. Multi-bit shifts aay be used where a series 

of no-operations is required.

In soae circuastances, however, it will be necessary to Multiply 

by a variable. This requires additions, subtractions and no­

operations to be perforaed conditionally according to the appropriate 

bit-positions of the Multiplier. A Multiplier register is provided 

which way be shifted right by one bit positions in any one Machine 

cycle, in a Manner similar to the shifting of the accuMulatar. The 

least significant SPE executes an instruction which causes an addi­

tion, subtraction or no-operation to be performed dependent upon the 

value of the least significant bit of the Multiplier and its previous 

value. This addition, subtraction or no-operation is then passed on 

to subsequent SPEs in place of the original instruction.

It is worth noting that it is not necessary for the Multiplica­

tion to use the full configured precision of the processor far the 

Multiplier. Far exaeple, in a particular filter it May be sufficient 

to use 6-bit filter coefficients while using 16-bit arithmetic, in 

this case the Multiplications could be performed in 16 cycles rather 

than 32 cycles if a full 16-bit Multiplier were used. Two cycles are 

required for each Multiplier bit« one far the addition, subtraction



63
or no-operation and the other Cor shifting the product.

4.7 neroucnoN set

As the Intel 2920 has been used as a guide to the functionality 

of the SPE, it is reasonable to look to it far assistance in defining 

the instruction set. It is however alarming to realise that the 

instruction words of this processor are 24 bits wide. Admittedly 

bosk of these bits are used to control the analogue elesents of the 
2920, but a significant problem remains. Each SPE has to pass 

instructions in and out, making such an instruction width totally 

unacceptable.

It is therefore of vital importance to reduce the instruction 

width. The 2920 uses 2-operand memory to memory operations, and thus 

the instruction includes source and destination addresses, each 6 
bits wide. These can be eliminated by using registers with implied 

function. The only operations involving memory are load and store, 

and these have only one address.

An SPE has 64 swmory locations and thus requires 6 bits of 

address. There are three registers: an accumulator, a B register and 

a multiplier. The B  register is used to contain the second operand 

for the two-operand operations add and subtract and hence far multi­

plicands. To provide load and store instructions for each of three 

registers requires six operations, or three bits, leaving 126 codes 

out of a 9-bit word for non memory operations. However, the B regis­

ter and the multiplier never need to be stored, as the results of all 

operations are put into the accumulator. Thus only four load and 

store operations are required, but with an 6-bit word and 6-bit



64

addresses no codes are left far other operations. If the "load accu­

mulator" instruction is emitted, then 64 codes remain far non-memory 

operations.

This loss of the "load accumulator" instruction is not expected 

to be serious. An instruction can be provided to load the accumula­

tor from register B, thus making it possible to load the accumulator 

in two cycles. In fact it will rarely be necessary to load the accu­

mulator. When performing multiplications, the accumulator must be 

initialised to zero, for which an instruction can be provided. For 

the sum of product type calculations required to implement difference 

equations, a multiplication can be performed first, and then other 

numbers can be loaded into register B and added into the accumulator. 

The result can then be stored in memory.

The instruction set is described fully in Appendix C. It can be 

seen that the remaining instructions fit easily into the 64 possible 

codes. The arithmetic operations of addition, subtractions, etc. 

require 6 codes and the shift instructions require 4 codes in each 

direction to indicate the length of the shift from one to four bits. 

Thus 48 codes remain for input-output instructions and the "special" 

instructions to implement Booth's Algorithm multiplication and to 

move half of memory by one location to implement the z 1 delay. 

There is ample space for more instructions should they be required.



65

CHAPTER FIVE

REGISTER TRANSFHt LEVEL DESIGH OF AN SPE

Having developed an architecture far a nibble-serial processor, 

it is necessary to verify its operation by building a Model. The 

ideal vehicle for this is a functional or register-transfer level 

simulator, which permits the concepts to be tested before proceeding 

to eore detailed design and implementation.

However, although in theory design may proceed in a totally top- 

down fashion, in practice it is preferable to take account of likely 

implementations if wise, informed decisions are to be taken. This 

was highlighted by Mead and Conway [25 pi57] when they incorporated a 

barrel shifter into their OM data path chip. A designer working with 

standard TTL parts would avoid a barrel shifter at all costs, whereas 

in NM05 it is relatively simple, small and regular. This was presum­

ably an influence in the inclusion of a barrel shifter in the Intel 

2920. It certainly was in the case of the SPE, thus demonstrating 

that likely implementation has already affected the design process. 

In fact, the whole philosophy of the SPE and nibble-serial processing 

arises from the intention to fabricate many of them on a single VLSI 

device.

It is becoming very clear that CMOS is destined to be the dom­

inant technology far VLSI, largely due to its law power consumption. 

The speed of NOS processes is also increasing steadily as device 

geometries shrink. Whereas high speed bipolar technologies such as 

K L  may have a future, they are ruled out for VLSI on account of 

their high power consumption. Even IMOS is likely to consume too



66

much power for the implementation of the densest (ULSI?) chips. Cir­

cuits based on III-V semiconductors such as Gallium Arsenide (GaAs) 

may well become popular in the future due to their inherently faster 

operation resulting from the higher mobilities of the charge car­

riers, but the technology is at present only in its infancy and it 

will be some time before it poses a real challenge to silicon. 

Therefore the SPE designs should be targeted towards CMOS implementa­

tion.

Apart from the items already mentioned, such as the inclusion of 

a barrel shifter, one major influence of the technology is the selec­

tion of the clocking strategy. This is particularly important in the 

SPE with the requirement that all instructions be executed in pre­

cisely one cycle. The most popular clocking strategy for MOS designs 

is that based on two-phase non-overlapping clocks, used in conjunc­

tion with level sensitive transparent latches [30 pp203ff]. This 

posed a problem with the first register transfer simulator tried, 

ISPS. The registers in this simulator are all edge-triggered, making 

it difficult to simulate such MOS designs sensibly. In particular, 

if designs make use of the transparency of the latches, simulation is 

virtually impossible. It was attempted to work around the problem by 

timing some transfers at the beginning of a clock phase and others at 

the end, but whereas this did help a little, it proved rather cumber­

some and error-prone.

When the HILO simulator [27] became available, it was decided to 

investigate the possibility of using it at the functional level in 

place of ISPS. HILO provides the level sensitive latches required 

and permits the declaration of arrays of HILO circuits, which is how 

a system incorporating several SPEs is described. One disadvantage



67

of H H O  when compared with ISPS is the inflexible output format, the 

output being available only in binary. Where an output represents a 

digitised analogue quantity as in signal processing, a decimal 

representation would be more useful. However, it was easy to write a 

simple post-processor program to convert the HILO output into a more 

suitable format. The advantage of being able to use level-sensitive 

latches and thus produce a much more accurate simulation model cer­

tainly outweighed the disadvantages of HILO.

In fact, graphical output packages were available for post­

processing output from both HILO and SPICE, the circuit simulator 

used [28]. The HILO graphical post-processor produces a timing 

diagram typical of logic analyser output, whereas the SPICE post­

processor produces plots af analogue voltages and currents against 

tine. When simulating SPEs, the digital output from HILO actually 

represents an analogue quantity. A program called SPEPRO was there­

fore written to convert the HILO output file into the form of a SPICE 

results file, and it was thus possible to plot the output of the sys­

tem as an analogue quantity using the SPICE post-processor. This was 

much simpler than writing a new graphics package.

5.1 a m s p e ass»— a «

It is evident that adequate verification of the SPE architecture 

requires the development of programs for filters. Whereas it is 

Always possible to write machine code by hand, it is a slow, error- 

prone task. The HILO simulations were to prove to be very slow, tak­

ing several hours of CPU tine on a PRIME 750 minicomputer to simulate 

a few cycles of a filter program, and the debugging of programs was 

therefore a slow and expensive process.



68

On the other hand, it would be an enormous task to develop an 

asseabler specifically far the SPE, so an alternative approach was 

sought. A microcode asseabler systea had been developed at H O S T  to 

assist people working with bit-slice microprocessors to develop their 

instruction sets [29]. The systea allows fields to be defined within 

an instruction word with particular characteristics, and associates 

mnemonics with operation codes in these fields. Finally, legitimate 

combinations of fields for constructing an instruction word are 

defined. A new asseabler can be constructed by providing a defini­

tion file containing this information. This systea was found to be

word 8
field aemop <7:6> 
field aeaad <5:0>
field aiers <5> (default 0,, overlap or) 
field instr <7:0> (,,overlap or) 
field sftop <7:2> (,,overlap or) 
field sftln <lt0> 
field extio <7:0> (,,overlap or) 
setof aeaop sacc-01b,lrb=llb,lmier=10b 
setof aiers smier»lb 
setof instr

cond-OOOOllOOb,
saea*00001101b,
nop-OOOb,
neg-OOlb,
aO-OlOb,
b0-01lb,
ab-lOOb,
ba-lOlb,
add-11Ob,
sub-lllb

setof sftop sl*010b,sr»100b
setof sftln bl*00b,b2*01b,b3“10b,b4-llb
setof extio xi*10100b,xo«11000b,xio«11100b
inform instr,aiers 
inform sftop, sftln, aiers 
inform extio,aiers

Fio. 5.1 Definition file for the SPE assembler

suitable to implement a simple asseabler for the SPE. The definition 

file far the SPE assembler is included as Fig. 5.1. The reader is



69

not expected to fully comprehend this text, but rather to gain an 

appreciation of how simple it is to create a new assembler using this 

system.

The assembler produces a listing file showing the source and the 

object code produced in hexadecimal format. It also produces a 

binary file containing the object code. The system is written in the 

PASCAL programing language, and PASCAL procedures are provided to 

access the object code from the binary file. A program called 

MCSTOHILO was written in PASCAL using these procedures to translate 

the binary file into a format suitable far use as input to HILO simu­

lations.

£t2 A REGISTER-TRANSFER MODEL OF THE SPE

A block diagram of a single SPE is given in Fig 5.2. The 

detailed operation of an SPE will be described in this section, and 

the various blocks related to their declarations in the HILO descrip­

tion of an SPE, which can be found in Appendix D. The operation of 

the SPE is greatly constrained by the need for each operation to be 

executed in precisely one clock cycle. This is a great contrast to 

the majority of general purpose microprocessors. In the M05 imple­

mentation of an SPE, the use of a two-phase non-overlapping clock is 

envisaged, as is customary with such a technology. It is therefore 

vital to assign tasks to the appropriate clock phase early in the 

design cycle.



Fig. 5.2 
Block Diaar&n of a Single SPE

Bnucnai OUT

um cur
ULTIRJB) IN

L F T  OAT à PCFT



71
5.2.1 Assignment of Task8 to Clock Phases

The overall timing framework is governed by the relationship 

between arithmetic operations within one SPE and the transfer of data 

between adjacent SPEs. For example, when a right shift operation is 

performed immediately following an addition, then the result of the 

addition performed in a particular SPE must be available for transfer 

to the SPE on its right during the same clock cycle. This imposes a 

basic discipline that arithmetic operations will be performed during 

01 and inter-SPE data transfers during 02. It is assumed that two 

adjacent SPEs will be controlled by the same clock signals, and 

therefore that all SPEs on a chip will be clocked together. At first 

this seems to violate the principle of local communications, but this 

is not the case. The clock must be generated in one location, but 

can then be passed on from one SPE to the next. In this way there 

may be significant clock skew over the entire chip, but it will not 

be significant between two adjacent SPEs. In any case, this chip­

wide distribution of one or two signals for a synchronised clock is a 

very different matter to the global communication of random signals. 

VLSI technologies are likely to use more than one layer of metal. 

The clock signals could be distributed on one of the upper layers 

where the metal will be thicker and the tracks wider, thus keeping 

propagation delays down to a minimum.

The HILO functional description of the SPE may be found an Appen­

dix D. The reader may find it useful to refer to this while reading 

the remainder of this section.

As the arithmetic operations are performed during 01, instruc­

tions must be properly in place by the start of this phase. There­



72

fore instructions, as well u  data, aust be transferred during 02. 
The new instruction is latched into the instruction register, 

referred to as IF in the HILO description, at the end of this phase. 

The "OOND" instruction (q.v. section 4.3.1), which causes addition, 

subtraction or no-operation to be performed according to certain bits 

of the Multiplier register, is interpreted at the saae tiae, and it 

is an -ADO", "SUB" or "NOP" instruction which is latched into the 

instruction register rather than the "OOND” instruction itself. This 

not only ensures that the correct arithmetic instruction is ready for 

execution during 01, but also ensures that the interpretation of the 

"OOND” instruction occurs in the least significant SPE. The instruc­

tion register is therefore constant during 01, but cannot be used to 
control operations during 02. Far these, the Instruction Output 

register, 10, is decoded. This is loaded directly free the Instruc­

tion Register IR and latched at the end of 01. It is therefore con­

stant during 02. It is also directly froa this register that the 

instruction is output to the next SPE on the left.

The timing of the arithmetic operations is rather complicated. 

They are implemented using an adder whose output is latched into the 

ALU output register AO at the end of 01 in every clock cycle. The 

selection of operation is achieved by controlling the inputs to the 

adders INA, INB and INCI. The adder is to be implemented using a 

Manchester carry chain [25 pi50], which will be precharged during 02 

so that the operation can take place in 01. The inputs to the adder 

Mist therefore be correctly determined before the start of 01 so that 
the carry lines are not discharged due to incorrect data. INA and 

INB, which do not represent real registers but rather combinatorial 

logic and thus are never latched, therefore need to be stable before



73

01. In fact, the logic represented by INA and INB could have been 

incorporated into the definition of AO; their separate definition 

serves only to improve the clarity of the HILO description. They are 

loaded according to IR from the accumulator and the bus, and are con­

stant from before the end of 02 of the previous cycle until after the 
beginning of 02 of the current cycle, INCI, the carry input, is a 

real latch which depends on IR and is controlled by 02. Thus INCI is 

also constant for the sane period. It has been said that 10 should 

be used rather than IR to control operations which take place during

02, however in this case the latching of INCI can be viewed as 

preparation for the current cycle during 02 of the previous cycle, 

and therefore controlled by the new instruction being latched into IR 

rather than the existing instruction to be found in 10. IR will be 

valid before the end of 02 and can therefore be used to control a 

latch whose output must be valid by, and is latched on, the falling 

edge of 02.

The ALU output register AO is latched at the end of 01. It 

should be noted that the ALU performs a NOP operation, i.e. the AO 

register is loaded with the contents of the accimnilator, whenever the 

SPE is executing a non-arithmetic instruction. The AO register is 

actually 5 bits wide, the most significant bit being used to stare 

the carry output from the ALU operations. This bit appears at the 

carry output of the SPE (CO in the HILO description) for transfer to 

the next most significant SPE. Note the inversion of the carry sig­

nal during subtraction to achieve correct 2‘s complement operation.

It is from the least significant 4 bits of the AO register that 

data are taken for output on the right hand and left hand data ports 

respectively. This ensures that this output, which occurs during 02,



74

takes account of any arithmetic operations which have taken place 

during 01 while being unaffected by any shift operations which may 

affect the contents of the acoaulator during 02. It is this use of 

the AO register which makes it important that it is loaded from the 

accumulator during 01 for all non-arithmetic operations.

The output to the right hand data port RDP occurs during all 

cycles other than those when a left shift is being performed. The 

tri-state buffer RDPB, controlled by the signal RDPQJ, enables data 

from AO onto the RDP. During cycles when such output is required, 

RDPQJ is raised at the start of 02 and lowered at the start of 01. 

The value of RDPQJ is determined from 10 rather than IR, in accor­

dance with the overall timing strategy. The timing of RDPQJ ensures 

that data is valid at the end of 02, when it nay be required by the 

adjacent SPE, while also ensuring that it will never be enabled at 

the sane time as the left hand data port of the adjacent SPE, which 

would cause a clash.

Output to the left hand data port LDP is similarly under the con­

trol of the signal LDPOJ and the tri-state buffer LDPB. In this 

case, output to the LDP must only take place one cycle after the exe­

cution of a left shift instruction. This delay is achieved for the 

data by the latches IDPX1 and 1DPX2, and for the control signal LPDEN 

by latches LDPEX1 and LDPEX2.

The accumulator itself is called ACC and is latched at the end of 

02. Its input is taken from the output of a barrel shifter Uiich 

allows it to take its data from sosm combination of the left data 

port LDP, the ALU output register AO and the right data port RDP. 

Unless a shift operation is being performed, the barrel shifter



75
implements a zero bit zhift and the input to the accumulator is taken 

directly from the AO register. During right shift operations, the 

signal MSPE, which must be set to one in the most significant SPE, 

controls whether data is taken fro* the LDP or by sign extension from 

the AO register.

The multiplier register consists of two registers, MIQ* and 

MIQUC, which are latched by the clock signals 02 and 01 respectively. 

Each is 5 bits wide, as the Booth algorithm for multiplication 

requires the previous value of the least significant bit of the mul­

tiplier to be remembered. The multiplier register nay be loaded from 

memory during 01, or shifted right by one place during 02. Bence all 

inter-SPE transfers take place during 02. As with the accvmnilatar 

shifts, successive shifts of the multiplier should not occur in suc­

cessive cycles. This does not pose any speed reduction for multipli­

cation as each stage consists of two instructions: a "COND" instruc­

tion and a right shift instruction.

A BUS is used for certain communications within the SPE to reduce 

the mmiber of direct connections required: it is used far the 

transfer of data to and from the SPE's memory and to take data from 

the B register RB to the INB logic for input to the adder. Curing 

02, BUS is always loaded from RB so that the data for the adder can 

be valid before the start of 01 as is required. Being fabricated in 

MOS technology, the bus will have capacitance and can be used as a 

short term storage element and is therefore declared as a register in 

the HILO description. Memory reading and writing is performed during 

01. Although this will overwrite the value of RB loaded onto the bus 

during 02, it does not matter in this case as memory and arithmetic 
operations cannot be performed simultaneously and therefore the data



76

from RB cannot be required by the adder. HILO does not allow RAM to 

be declared as level sensitive, so writing the RAM locations is 

achieved using the " W E N ” statements at the end of the description. 

These statement also simulate the operation of the "SHOT instruction 

which causes all data in memory to be shifted by one location. The 

register XAER, which does not exist within a real SPE, is required 

for this simulation. The memory writing and shifting is where the 

HILO functional description deviates furthest from the eventual 

implementation, but in this case it is not considered to be a signi­

ficant problem. HILO certainly enables the SPE to be modelled much 

more accurately than would have been possible with ISPS.

The Data Strobe Input and Output lines (DSI and D60) are used to 

indicate when the most significant SPE requires data from the outside 

world and when the least significant SPE has data available for the 

outside world. They nay or nay not be used within an eventual sys­

tem, but are used within the HILO simulations.

The fact that the functional HILO description of the SPE only 

occupies about one page of computer printout should not lead the 

reader to consider that its derivation is trivial. Indeed the 

development of the SPE architecture to the point of this description 

represents the majority of the work involved in this doctorate. The 

subsequent detailed design in IMOS technology did not involve as much 

effort, and the original work of the thesis is largely contained 

within this succinct description. The following simulations based on 

this HILO description will demonstrate that the concept of SPE-based 

systems can indeed be made to work, and the detailed implementation, 

described in chapter six, is of secondary importance in the academic 

value of the project.



77

5.3 SIMULATIONS BASED ON TOE REGISTER-TRANSFER MODEL

The register transfer model of the SPE provides an ideal vehicle 

far the verification of the concepts used in the development of the 

architecture. The simulations included in this section are based on 

a 16-bit processor consisting of four SPEs, and they progress from a 

simple 16-bit addition to a full filter implementation. No attempt 

has been made to simulate a pipeline of such processors. There are 

two reasons for this. The first reason is that the simulations based 

on this processor used significant amounts of computer time; a more 

complex processor would consume even more resources. The second rea­

son is that the full implications of attempting to integrate a recon- 

figurable pipeline of processors on a VLSI chip have not yet been 

addressed. Further consideration will be given to this topic in 

chapter seven.

5.3.1 A MODEL OF A 4-SPE PROCESSOR

Before any simulations could begin, it was necessary to develop a 

model of a system consisting of four SPEs. This is fairly trivial 

using HILO, and the description of such a system, known as SYS4, is 

given in figure 5.3. Data and instructions are provided by the HILO 

circuits DATAIN and INSTIN. They are purely for the purposes of the 

simulations, and do not represent circuits which would be implemented 

in a real system. They are very simple circuits which consist of 

ROMs with a strobe line. Whenever the strobe line is pulsed, the ROM 

address is incremented and the next value output. DATAIN is strobed 

by the Data Strobe Input (DSI) line from the most significant SPE. 

INSTIN is simply strobed by 01, to provide a new instruction every 

clock cycle. In general, INSTIN is configured so that the program



78

OCT SYS4(OJ»);
SPE

MSPE(CMD,,LDP[3!0],,,,,,,,,M[2],C[2],D3[2],D2[2],D1[2],D0[2],
I7[2],I6[2],I5[2],I4[2],I3[2],I2[2],I1[2],I0[2],
D6I,, VOC,FHIl,PHI2)

LSPE(M[0],C[0],D3(0],D2[0],D1[0],D0[0],
I7[0],I6[0],I5[0],I4[0],I3[0],I2[0],I1[0],I0[0],,GMD,RDP[3:0],IIN[7t0],,DSO,GHD,PHI1,PHI2)

XSPE[1lO](M[2:1],C[2:1],D3[2:1],D2[2:1] ,D1[2:1],DO[2:1], 
I7[2:l],I6[2:l],I5[2:l],I4[2:l],I3[2:l],I2[2il],Il[2:l], 
IO[2:l],M[l:0],C[l:O],D3[l:O],D2[l:O],Dl[l:O],DO[l:O], 
I7[lsO],I6[l:0],I5[1:0],I4[1:0],I3[1iO],I2[l:0],I1[1sO], 
I0[1:0],,,GND,FHI1,PHI2);

DAT AIN GETDATA(DIN[3tO],D6I,CLK);
INSTIN GETINST(IIN[7:0],PHIl,CUt);
BUFIF1(1,1) DIHUF[3:0](U3P[3:0],DIN[3:0],D6I)

BODGE[3:0]QOOOC,DOUT,CIH);
CLOCKO(100,300,700) Pl(PHIl);
CLOCXO (600,300,700) P2 (PHI2);
SUPPLY0 GMD;
SUPPLY1 VOC;
TRI IDP[3:0] RDP[3tO] XXXX[3sO] D3[2:0] D2[2t0] Dl[2:0] D0[2:0];
UNID FfQl PHI2 D6I DSO DDJ[3:0] IDJ[7sO] I7[2:0] I6[2s0] I5[2:0] 

I4[2:0] I3[2:0] I2[2:0] Il[2:0] I0[2:0] M[2:0) C[2:0];
INPOT CU);
REGISTER(1,1) DOtfT[3s0]*0 LQADIF1 CL*;
WHEN DSO(1 TO 0) DO DOUT-RDP;
w m  DSO(0 TO 1) DO DOOT-XXXX.

Fig. 5.3 HILO Description of a 4-SPE Processor

goes back to the start when all the instructions have been executed; 

this would be the normal mode of operation for implementing filters. 

DATAIN is usually configured to stop the simulation when all the data 

have been used, to provide a means of stopping the simulations. This 

method of data and instruction input has been found to be very flexi­

ble and useful, meaning that different simulations could be performed 

simply by changing the definitions of these two circuits. The pro­

gram which converts the SPE assembler output into H U D  is written to 

produce an appropriate definition of INSTIN directly, making the pro­

cess even simpler. The definitions of DATAIN far the simple simula­

tions were written by hand. For the filter simulations, a program 

was written to produce a definition of DATAIN corresponding to a



79

sinusoid of a particular frequency.

It proved a little sore difficult to get the data output in a 

suitable format. This in fact illustrates one of the limitations of 

HILO. Output is only produced in binary; several lines cannot be 

grouped together and, for example, output as an octal or decimal 

number. Also, the control of when output values are printed is also 

crude. (Xrtput can be printed whenever one of the output values 

changes, using the DISPLAYCHANGE command, or alternatively whenever 

the circuit enters a stable state, using a DISPLAYSTAHLE command. 

What is desired in these simulations is that the data output should 

be printed whenever an active transition occurs on the Data Strobe 

Output (DSO) line of the least significant SPE. HILO provides no 

obvious means of achieving this. A register DOCJT was defined within 

SYS4 (see figure 5.3), which takes its data from the right hand data 

port of the least significant SPE on every negative-going transition 

of the DSO line of that SPE. This should ensure that DOUT changes 

every time a transition occurs on the DSO line, and therefore the 

HILO DISPLAYCHANGE command can be used. However, it is possible that 

two successive values of DOUT will be identical, thus preventing the 

data from being printed by the DISPLAYCHANGE command. It was there­

fore arranged that on every positive-going edge of DSO, DOUT should 

be set to -don't care" (binary XXXX in HILO). This indeed ensures 

that the value of DOUT is printed every time a pulse occurs on DSO. 

Unfortunately, the intermediate XXXX value is also printed, but this 

can be ignored.



5.3.2 A SIMPLE SIMULATION: ADDING TOO HJHBERS

loc in CO line s<

0000 4 lc 1. xio0001 2 00 2. nop
0002 4 lc 3. xio
0003 2 00 4. nop
0004 4 lc 5. xio
0005 2 00 6. nop
0006 4 lc 7. xio
0007 2 05 8. ba
oooe 4 14 9. xi
0009 2 00 10. nop
000a 4 14 11. xi
000b 2 00 12. nop
000c 4 14 13. xi
OOOd 2 00 14. nop
000e 4 14 15. xi
OOOf 2 06 16. add

Fig. 5.« SPE program to add two 16-bit numbers

This first simulation is of the addition of two 16-bit numbers. Fig­

ure 5.4 shows the listing file from the SPE assembler for this simu­

lation. The "xio" instructions, external Input and Output, cause a 

4-bit number to be read into the accumulator of the most significant 

SPE, and output from the accumulator of the least significant SPE. 

The "xi" instructions cause only external Input. These instructions 

are, of course, essentially 4-bit shift instructions, causing the 

value in the accumulator of one SPE to be transferred to the accumu­

lator of the SPE on its right. As with all shift instructions, they 

have to be separated by "nop" (No operation) instructions to ensure 

correct operation. However, these can be replaced by other non-shift 

instructions, and in this case the "ba" instruction causes register 

"b" to be loaded from the accumulator, and the "add" instruction 

causes the value from register "b" to be added into the acc\aulatar. 

This means that the calculation can be embedded entirely in the time 

required to implement the shifts. In more complex programs, this



6 1

would not be so, however the time taken up by input and output may 

still not be insignificant.

CCT DBTIN(INST[7:0],STB,CLR);
DJPUT STB CUl;
RESISTER(1,1) INST[7:0)«0 LOADIFl CLR 

ADR[3:0]«0 LO AD IF 1 O A ;
ROM(0:15) IROM[7:0] (6 BIN)
00011100,
00000000,
00011100,
00000000,
00011100,
00000000,
00011100,
00000101,
00010100,
00000000,
00010100,
00000000,
00010100,
00000000,
00010100,
00000110;
tUOi STB (0 TO 1) DO INST=IROM[ ADR] ; 
m o i  STB (1 TO 0) DO IF ADR-15 THEN ADR=0 

ELSE ADR-ADR+1 SOIF.

E4q. 5.5 Circuit fflSTïN {9F siwjlation of »dation

Figure 5.5 shows the HILO definition for the circuit INSTIN which 

corresponds to the prograa of figure 5.4. It is produced automati­

cally fro« the assembler binary file by a simple pascal program writ­

ten by the author. As can be seen, it simply defines a ROM, which 

contains the SPE machine code for the prograa. Each time a pulse 

occurs on the strobe line, the ROM address is incremented by one and 

the next instruction output. The program will loop indefinitely.

Circuit DATAIN provides the data for the simulation and also 

causes the simulation to finish once all the data have been 

exhausted. Its HILO definition can be found in figure 5.6. The 

numbers are input four bits at a time, with the least significant



82

OCT DlATAIN(DATA[3:0],STB,CL*);
INPUT SIB CL*;
REGISTER(1,1) DATA[3:0)*0 LOADIF1 CL* 
ADR[7:0]«0 LOADIF1 CL*;
ROM(0:23) DR0M[3i0](4 BIN)
0000, 0000, 0000, 0000,
0000, 0000, 0000, 0000,
0000, 1001, 1000, 0011,
0000, 1011, 1100, 0111,
0000, 0000, 0000, 0000,
0000, 0000, 0000, 0000;
««04 STB (0 TO 1) DO IF ADR>23 TH04 FINISH 

ELSE DATA«DROM[AER] ENDIF;
«HEN STB(1 TO 0) DO ADR-ADR+1.

Fig., ,5.6 HILO circuit DATAIN tor simulation of addition

four bits first. The first two 16-bit numbers are both zero; the 

second pair farming the real test of addition. The two numbers are 

0011100010010000 and 0111110010110000 respectively. The sum should 

be 1011010101000000. If the numbers were interpreted in 2's comple­

ment notation, this would represent an overflow; however this does 

not affect the addition test as the addition of unsigned numbers or 

2's complement numbers is identical. The final two matoers are again 

both zero. This is to allow the SPEs to finish operating on the pre­

vious numbers before the simulation is terminated.

«4AVEF0RM HSYS 
STIMULUS CL*=1; 
1 CLR-0.

Fig. 5.7 HILO Waveform file for all simulations

HILO simulations require a waveform file to define the inputs to 

the circuit being simulated. In the case of these simulations, the 

system SYS4 is virtually self-contained, containing its own instruc­

tions, data, and clock definitions. The only signal required in the 

waveform file is the CL* signal which initialises all the registers.



63

The actual waveform file used can be found in figure 5.7.

---TIME—

DCCD0000
uuuu
TTTT
[[[[
3210
)]]]

0 0000
1602 XXXX
1902 0000
3602 XXXX
3902 0000
5602 XXXX
5902 0000
7602 XXXX
7902 0000
17602 XXXX
17902 0000
19602 YXXX
19902 0000
21602 XXXX
21902 0000
23602 XXXX
23902 0000
33602 XXXX
33902 0000
35602 XXXX
35902 0100
37602 XXXX
37902 0101
39602 XXXX
39902 1011
49602 XYYY
49902 0000
51602 XXXX
51902 0000

Fia. 5.6 Output from Simulation of Addition

The results of the simulation are shown in figure 5.6. The rea­

son far the "XXXX" lines is described above. The first four non-XXXX 

values output, from time 1902 to time 7902 are meaningless, as they 

correspond to output before any data have been input. The next four, 

from time 17902 to time 23902, represent the output arising from the 

first two numbers input. As these were both zero, it is not



84

surprising (but very comforting!) that the output is also zero. The 

next four, from time 33902 to time 39902 correspond to the second 

pair of nmbers input. The 4-bit nibbles are output least signifi­

cant nibble first, so this output corresponds to the binary m a b e r 

1011010101000000, which has already been established as the correct 

sun far the two numbers. This simulation therefore serves to demon­

strate that the SPE architecture developed is at least capable of 

adding two numbers together. The numbers used were carefully 

selected to verify the operation of the adders far all combinations 

of A, B and Carry inputs, and to check the operation of inter-SPE 

carry propagation. It nay seem that the achievement of addition is 

trivial, however it does verify the majority of the timings carefully 

derived in the previous sections. Indeed, while the SPE definition 

was being developed, once the simulation of addition was operating 

correctly, there were very few flaws revealed by the subsequent simu­

lations .

5.3,3 THE SIMULATION OF MULTIPLICATION

The SPE is intended for the implementation of difference equation 

type digital filters, and is therefore to be capable of addition, 

subtraction, multiplication and the storage of data. The capability 

far addition has already been demonstrated. The filter simulations 

to follow will demonstrate the majority of the possible functions of 

an SPE, but they do not implement multiplication by a variable. Mien 

a fixed filter is being implemented, as in these simulations, the 

filter coefficients are programmed as a series of shifts and addi­

tions or subtractions. The SPE is, however, capable of multiplica­

tion by a variable, which could be of use in adaptive filter applica-



65

tions.

loc in co line source.

0000 4 le 1. xi o
0001 2 00 2. nop
0002 4 le 3. xi o
0003 2 00 4. nop
0004 4 le 5. xio
0005 2 00 6. nop
0006 4 le 7. xio
0007 1 40 6. sacc 1î
0008 4 14 9. xi
0009 1 60 10. laier 0
000a 4 14 11. xi
000b 2 00 12. nop
000c 4 14 13. xi
OOOd 2 00 14. nop
000e 4 14 15. xi
OOOf 2 05 16. ba
0010 2 02 17. aO
0011 2 0c 16. cond
0012 3 30 19. sr bl saier
0013 2 0c 20. cond
0014 3 30 21. sr bl saier
0015 2 0c 22. cond
0016 3 30 23. sr bl saier
0017 2 0c 24. cond
0016 3 30 25. sr bl saier
0019 2 Oc 26. cond
001a 3 30 27. sr bl saier
001b 2 Oc 28. cond
001c 3 30 29. sr bl saier
OOld 2 Oc 30. cond
001e 3 30 31. sr bl saier
OOlf 2 Oc 32. cond
0020 3 30 33. sr bl saier
0021 2 Oc 34. cond
0022 3 30 35. sr bl saier
0023 2 Oc 36. cond
0024 3 30 37. sr bl saier
0025 2 Oc 38. cond
0026 3 30 39. sr bl saier
0027 2 Oc 40. cond
0026 3 30 41. sr bl saier
0029 2 Oc 42. cond
002a 3 30 43. sr bl saier
002b 2 Oc 44. cond
002c 3 30 45. sr bl saier
002d 2 Oc 46. cond
002e 3 30 47. sr bl saier
002f 2 Oc 48. cond

Elq. 5.9 SPE proarm for Multiplication o£ two mwterg



86

The SPE progrès for the Multiplication of two 16-bit mabers is 

given in figure 5.9. Many of the instructions used are the saae as 

far as addition and require no further explanation. The first maber 

read in is to be the Multiplier. As there is no instruction provided 

for direct transfer from the accumulator to the Multiplier register, 

it is necessary to go via aeanry. In this prograa, Memory location 0 

is used, the transfer being achieved by the instructions "sacc 0” and 
"laier 0". These instructions aean "Store Accumulator" and "Load Mul­

ti pi 1ER" respectively. There is no tine penalty froa using two 

instructions; they are interleaved in the obligatory gape between 

shift instructions. The second nvsaber is treated as the Multipli­

cand, and is stared in register "b". The accumulator is set to zero 

by the "aO" command before coanencing Multiplication. The Multipli­

cation itself is iaplesented by a sequence of "cond" and "sr bl 

snier" instructions. The "cond" or "OONDitional" instructions cause 

addition, subtraction or no-operation to be performed according to 

the least significant bits of the Multiplier register in the least 

significant SPE, for the correct operation of Booth’s Algorithm Mul­

tiplication using 2's complement numbers. The "sr" instruction is a 

•Shift Right" instruction; the "bl" flag signifies that this is a 

one-bit shift. The "saier" or "Shift MultiplIER" flag aay be added 

to any instruction which does not access memory to cause the Multi­

plier register to be shifted right by one bit. In this case, there 

is one less "sr" instruction than there are "cond" instructions. 

This is correct when the mssbers are considered as fractional, i.e. 

the leftmost bit is the sign bit and the next bit has a weighting of 

0.5. This is the aost likely Mode of operation for signal processing 

applications. If integer Multiplication is required then an extra 

"sr” instruction would be necessary.



87
OCT DATAIN(DATA[3¡0],STB,CLR);
INPUT SIB CLR;
REGISTER (1,1) DATA[3:0]«0 LOADIF1 CLR 

ADR[7:0]*0 LOADIF1 CLR;
ROM(0:43) DROM[3:0](4 BIN)

0000, 0000, 0000, 0100,
0000, 0000, 0000, 0010,
0000, 0000, 0000, 0100,
0000, 0000, 0000, 1110,
0000, 0000, 0000, 1100,
0000, 0000, 0000, 0010,
0000, 0000, 0000, 1100,
0000, 0000, 0000, 1110,
0110, 1100, 1101, 0100,
1011, 1110, 0111, 1011,
0000, 0000, 0000, 0000;

WHEN STB (0 TO 1) DO IF ADR>43 THEN FINISH 
ELSE DATA*DROM[ ADR] ENDIF;

W E N  STB (1 TO 0) DO ADR*ADR+1.

Fig. 5.10 Circuit OATAIN for the simulation of Multiplication

Figure 5.10 is the HILO definition for circuit DATAIN far the 

simulation of multiplication. Each pair of 16-bit numbers will be 

multiplied together, the former of each pair farming the multiplier 

and the latter the multiplicand. The format of the DATAIN file is 

exactly as for the simulation of addition. The first two numbers 

represent 0.5 and 0.25, using the fractional notation discussed 

above. The subsequent three numbers represent the other three qua­

drants of this multiplication, thus the first sum is 0.5 * 0.25, the 

second 0.5 * -0.25, the third -0.5 * 0.25 and the fourth 

-0.5 * -0.25. The last two numbers represent, in binary, 

0.100110111000110 and -0.100100000010101 respectively. The decimal 

equivalents are approximately 0.60760 and -0.56314. The correct 

Answer to the multiplication is -0.0101011110011001 (decimal 

-0.34217). The 2's complement notation for this is 1101010000110011.

The results of the simulation of multiplication are presented in 

figure 5.11. The XXXX lines have been omitted to save space and



88

-TOC—

DODD
0000uuuu
TTTT
[[[[
3210
]]]]

0 0000
1902 0000
3902 0000
5902 0000
7902 0000

49902 0000
51902 0000
53902 0000
55902 0001
97902 0000
99902 0000
101902 0000
103902 1111
145902 0000
147902 0000
149902 0000
151902 1111
193902 0000
195902 0000
197902 0000
199902 0001
241902 0011
243902 0011
245902 0100
241302 1101

Fig. 5.11 Résulta of s i t u a t i o n  of a u l t lP U c s t io n

•void confusion; they were, of course, present in the actual output 

free HILO. Once again, the first four output values, froa tiae 1902 

to tiae 7902, can be ignored. The next four values correspond to the 

output for the first test. The value output is 0001000000000000, 

which in our foraat corresponds to 0.125, the correct result for the 

first sub which was 0.5 * 0.25. The next output value is 

1111000000000000, or -0.125 in deciaal, and is once again correct. 

The subsequent values, -0.125 and 0.125, are correct results for 

their respective aultiplications. The final four 4-bit values, out­

put froa tiae 241902 to tiae 247902, are the result of the final aul-



69

tiplication. The value is 1101010000110011, which has been seen to 

be the correct answer, corresponding to -0.34217. The correct opera­

tion of Multiplication has thus been demonstrated.

5.3.4 THE SIMULATION OF A REAL FILTER

A 2-pole Chebyshev low-pass filter was designed far the purpose 

of verifying the operation of a processor built from SPEs. The 

details of the filter design are given in Appendix A. The cut-off 

frequency in the digital domain is gy  of the sampling frequency.

The SPE program for this filter is given in figure 5.12. The 

filter coefficients are built into the program as sequences of "sr" 

(Shift Right), "add” and "sub” instructions. This is the most effi­

cient way to implement multiplication by a constant on SPEs; multi­

plication by a variable was verified by the simulations in the previ­

ous section. Memory locations 20 and 21 are used as scratchpad 

memory for the storage of intermediate results. Location 32 is used 

for the storage of y^_j, the previous value of the filter output, and 

location 33 far yn_2' Locations 34 through 36 are used for the 

storage of x, x j and x^_2 respectively. The "seem" (Shift MDtary) 

instruction is used in this program. It causes the contents of 

memory to be moved one location higher, simulating the z-1 function, 
i.e. providing a delay of one sample time. In this case, only three

values: y ,, x and x , are affected by this instruction. In ihl n-i
filters with many mare terms, use of this instruction would result in 

a significant reduction in program size, and hence execution tine, 

over transferring values from one mem ory location to the next sequen­

tially via the accvmrulator.



90
loc in CO line source loc in CO line source

0000 4 lc 1. xio 0021 2 07 34. sub0001 2 00 2. nop 0022 3 13 35. sr b40002 4 lc 3. xio 0023 2 00 36. nop
0003 2 00 4. nop 0024 3 10 37. sr bl
0004 4 lc 5. xio 0025 2 07 38. sub
0005 2 00 6. nop 0026 3 10 39. sr bl
0006 4 lc 7. xio 0027 2 07 40. sub
0007 1 eO 8. lit) 32 0028 3 10 41. sr bl
0006 3 11 9. sr b2 0029 2 07 42. sub
0009 1 62 10. sacc 34 002a 3 12 43. sr b3
000a 2 02 11. aO 002b 2 07 44. sub
000b 2 06 12. add 002c 3 11 45. sr b2
000c 3 11 13. sr b2 002d 2 07 46. sub
00 Od 2 06 14. add 002e 3 10 47. sr bl
OOOe 3 11 15. sr b2 002f 2 07 48. sub
OOOf 2 06 16. add 0030 3 10 49. sr bl
0010 3 10 17. sr bl 0031 1 54 50. sacc 20
0011 2 06 18. add 0032 1 e3 51. lrb 35
0012 3 11 19. sr b2 0033 2 04 52. ab
0013 2 06 20. add 0034 2 06 53. add
0014 3 10 21. sr bl 0035 1 e2 54. lrb 34
0015 2 06 22. add 0036 2 06 55. add
0016 3 11 23. sr b2 0037 1 e4 56. lrb 36
0017 2 06 24. add 0038 2 06 57. add
0018 3 12 25. sr b3 0039 3 13 58. sr b4
0019 2 06 26. add 003a 1 d5 59. lrb 21
001a 3 10 27. sr bl 003b 3 13 60. sr b4
001b 2 06 28. add 003c 2 06 61. add
001c 3 10 29. sr bl 003d 1 d4 62. lrb 20
OOld 2 06 30. add 003e 2 06 63. add
OOle 1 55 31. sacc 21 003f 2 Od 64. snern
OOlf 2 02 32. aO 0040 1 60 65. sacc 32
0020 1 el 33. lrb 33

Fig. 5.12 SPE proqraa for the filter of Appendix A

The HILO definition for the circuit INSTIN was produced in the 

saae way as for the other simulations, that is automatically from the 

assembler object file, and configured to repeat the program ad infin­

itum. The circuit DATAIN was, however, slightly different. A pro­

gram was written to produce a definition of DATAIN corresponding to 

one cycle of a sinusoid whose frequency is an integer multiple of the 

sampling frequency. The peak amplitude in each case m s  unity. The 

DATAIN circuit was in this case configured to repeat in the saae m y



91

u  the INSTIN circuit, thus producing a repeating sinusoid. The 

simulation was stopped by putting a FINISH statement in the waveform 

file for the simulation at an appropriate time to permit the simula­

tion of several cycles of the sinusoid. The waveform file was other­

wise identical to that of figure 5.7. The output from the simula­

tions came out as usual in the relatively incomprehensible HILO for­

mat. A program was written to read in this HILO format and print out 

the numbers as decimal fractions. The format chosen was identical to 

that output by the circuit simulator SPICE [28], in order that the 

graphical post-processor available for that simulator could be used.

Four simulations of the filter were performed, with input 

sinusoids of frequencies joo' 50» 25 ant* °* *** 8M|Plin9 fre­
quency. The filter is a low-pass filter with a cut-off frequency of 

of the sampling frequency, so these correspond to a half, one, two 

and five times the cut-off frequency respectively. The output of the 

filter simulations for each of these frequencies is presented graphi­

cally in figure 5.13. The peak amplitudes for these output sinusoids 

are approximately 0.48, 0.51, 0.28 and 0.04 respectively. At least 

the simulations show a low-pass filter! In fact, a simple pascal 

program was written to implement this digital filter, and there is 

very good agreement between the results obtained from this program 

and the HILO simulations. These simulations therefore verify that a 

processor based on SPEs can indeed implement difference equation type 

digital filters.



>. 
VO

LT
AG

E

Fig 5.13 Filter output From HILO simulations at various Frequencies



VO
LT

AG
F

3.33F 30 3.29E 07 8.57E 07

» T H E
8.8GE 37 3.11E 08 0.1 AE 38 0.17E 08 8.20E 38 8.23E 08 3.26E 38 3.29E 38

Fig 5.13 Filter output From HILO simulations at various Frequencies



93

CHAPTER SIX

THE NMOS IMPLEMENTATION OF A SINGLE SPE

The theoretical studies so Car described demonstrate that proces­

sors built free SPEs can indeed be used to iapleswnt digital filters. 

However, the aim of the project is not siaply to verify the correct­

ness of the design, but to make some assessment of its efficiency. 

This basically means providing the required performance at the lowest 

cost. Efficiency as it relates to signal processors is discussed in 

some detail in section 4.1, where it is seen that the main aim is to 

reduce silicon area, in particular the proportion occupied by the 

control logic and, to a lesser extent, memory. In order to obtain 

real data to assess the efficiency of SPE based systems, it is neces­

sary to perform some detailed integrated circuit layout and circuit 

simulation. Fabrication of devices is desirable to verify the design 

and the accuracy of the simulations, but is not essential to the pro­

ject. It has Already been stated in chapter 5 that the system is 

likely to be implemented in CMOS, however the only technology avail­

able to the author at the time of the design was the 6 micron NMOS 
process at Edinburgh University. There was a possibility of fabrica­

tion if the design were performed far this process. Although a 6 
micron process is clearly LSI rather than VLSI, this should not be a 

problem for prototype design; hopefully the eventual VLSI process 

would be significantly faster in operation as well as allowing a 

greater level of integration. The differences between IMOS and CMOS 

are sufficiently small that data on such matters as silicon area 

ratios should not be drastically different.



94

It m u  therefore decided to attempt the design of a single SPE in 
this technology with the hope of having it fabricated. In the event, 

the timescales far the available fabrication runs were such that only 

sections of the SPE could be fabricated.

An SPE is divided into to three main sections: the memory, the 

data path and the control logic. Salient points in the design of 

each of these will be considered in this chapter. The design of the 

control logic was not completed in time for fabrication and so the 

memory and data path sections were fabricated as individual chips. 

The provision of program memory is not considered at this stage; the 

problems associated with this are discussed in the next chapter.

DATA VDD DATA/

Fig. 6.1 Circuit disarm of a W P S  static RAM cell





.6.2 P o s s i b l e  l a y o u t  o f  a NMOS s t a t i c  RAM c e l l



96

SOI

Fig. 6.3 Circuit diagram of a shiftable RAM cell 

6.1 MEMORY DESIGN

Each SPE is to incorporate 64 nibbles (4-bit words) of read-write 

memory. This small quantity of memory is clearly best implemented as 

static RAM; the additional complex circuitry associated with dynamic 

memories would outweigh any potential Advantages.

The circuit diagram of a 6-transistor NMOS static RAM cell is 

given in figure 6.1. Detailed descriptions of various kinds of 

read-write memory can be found in Heste and Eshragian [30 pp348ff] 

and in Mavor, Jack and Denyer [31 ppl27ff]. A possible layout for 

such a RAM cell is given in figure 6.2; the colour code used far all 

layout diagrams in this thesis is that used by Mead and Conway [25 

p64]. the cell measures 78.0 by 106.5 micron, therefore a memory 

consisting of 256 such cells (64 by 4) would occupy 2.13 square am.



97
6.1.1 Design of a Shiftable Memory

As discussed in section 4.5, it was decided to investigate the 

possibility of providing the z-1 operation in one cycle by enabling 
the entire memory to be shifted by one location in a single cycle. 

This clearly cannot be achieved using the standard memory data lines 

but iaplies sane local intelligence in the memory. After soae con­

sideration it was realised that it was impractical to base a aeaory 

cell with such capability on a simple static RAM cell. Instead, a 

cell based on a modification of a semi-static register [25 p70] was 

developed, and the circuit diagram is given in figure 6.3 with a pos­

sible layout in figure 6.4. This cell supports several nodes of 

operation. The cell is based around two inverters formed by transis­

tors M1DN, M1UP M2DN and M2UP, and a few pass transistors. When the 

memory is inactive, not reading, writing or shifting, data is main­

tained in the cell by the feedback path provided by transistors M5FX, 

MtD and M R .  Data is written using transistors MS EL and M R  and read 

using MSEL and MRD. The gate of K>EL is connected to the horizontal 

select line and is used to select the appropriate row of the memory 

array for reading or writing. The shifting of memory data by one 

location is achieved using transistors I6FT and M5FX. With M R  and 

►RD help off, these allow an entire colimn of the memory to be con­

nected as a shift register.

This memory cell consists of 9 transistors rather than 6 far a 
standard RAM cell, and what is more important requires 6 vertical 
metal tracks through each cell rather than 4. The size of the layout 

of figure 6.4 is 174 by 82.5 micron, therefore a memory consisting of 
256 such cells would occupy 3.67 square mm.



F i g . f i .  4 L a y o u t  o f  a s h i f t a b l e  RAM c e l l



F i g . 6 . 4 L a y o u t  o f  a s h i f t a b l e  RAM c e l l



99

Fig. 6.5 Circuit diagram of a non-shiftable RAM cell

It has been decided (qv section 4.7) only to provide this feature 

for half the aesiory, on the grounds that some of the aesiory should 

reaain in place for the storage of fixed data such as coefficients. 

A memory consisting of both types of cells described above would be 

difficult to implement due to the different Beans of controlling 

each. It was therefore decided to design a simpler, non-shif table 

version of the shiftable memory cell which would share the same con­

trol methodology. A circuit diagram for such a cell is given in fig­

ure 6.5 with a possible layout in figure 6.6. This cell is naturally 

smaller than the shiftable cell, occupying an area of 133.5 by 82.5 

micron, although it is still larger than a conventional static RAM 

cell. The height of this cell and of the shiftable cell are identi­

cal, which is essential to the sensible construction of the memory 

cell array. The area of a cell array consisting of 128 shiftable



F i g . 6 . 6  L a y o u t  o f  a n o n - s h i f t a b l e  RAM c e l l





1 0 1

cells and 128 non-shiftable cells will be 3.25 square mi.

6.1.2 Memory Peripheral Circuitry

Unfortunately, the design of a memory does not only consist of 

the design of the cells. They not only need to be put together in an 

array, but also peripheral circuitry such as address decoders and 

data drivers are required. In this case, fortunately, only one level 

of colimn Multiplexing will be required: conceptually the memory is 

64 by 4 bits and a reasonable aspect ratio for the memory can be 

achieved by using 32 cells by 8 cells. Minimising the column multi­

plexing was taken into account when choosing the aspect ratio for the 

cells themselves; 82.5 microns was found to be the smallest height 

consistent with a small overall area. In fact, the column multi­

plexers will be used to choose between the shiftable and non- 

shif table halves of the memory. It would not make any sense to put 

shiftable and non-shiftable cells in one column due to their dif­

ferent size in the x-direction. However, having all the shiftable 

cells for each bit in the same column avoids awkward routing of data 

from the top of one column to the bottom of the next. This means 

that 32 by 8 is the ideal configuration for our purposes.

6.1.2.1 Row address decoding and select line driving

The most complicated memory peripheral circuitry is associated 

with the decoding of row addresses to drive the select lines, also 

known as word lines, which run across the memory array. In this 

case, 5 bits of the memory address are decoded by the row decoders to 
drive the 32 select lines. It was decided to use a simple NOR-gate 

decoder with a super-buffer [25 pl7] driver. The capacitance of the



1 0 2

Fig. 6.7 Circuit of address decoder and select line driver

select lines is quite high, due to the long polysilicon word line and 

the eight transistor gates to which it is connected. However the 

resistance of the line, being in polysilicon rather than aetal, was 

the limiting factor in speed rather than the power of the select line 

driver. The circuit for a single address decoder is given in figure 

6.7 with an example layout in figure 6.8. Note that the height of 

this cell is identical to the height of the mesK>ry cells, for pitch- 

matching purposes.

Address line drivers are also required to provide the true and 

inverse version of each of the five address bits, with sufficient 

drive capability for 16 address decoders. It is desirable far these 

drivers to pitch-match with the address decoders to avoid routing, 

but this was not found to be practical. Once again, super-buffers 

were chosen to provide this function.



F i g . 6 . 8  E x a n p l e  l a y o u t  o f  a d d r e s s  d e c o d e r  and
s e l e c t  l i n e  d r i v e r



" V  .

_____________ . J-------- 1

^  T ] j
i

i— i

[ Z l ~ ~

, ni____ 1 !

i n  ii____ r

; • (
4  } 1

J--------1 . .z4 yJ
I i

_ n L
J T i___ _ r

□ __ 1
:

rfL-i
-|----

' ^ 1

□

I i

L i 1
t

1 . _i_:___ . C L.. j

J

F i g . 6 . 8  E x a m p l e  l a y o u t  o f  a d d r e s s  d e c o d e r  and
s e l e c t  l i n e  d r i v e r



104

<VDD

D A TA

Fig. 6.9 Circuit of bidirectional data line driver 

6 .1.2.2 Data line driver circuit

The data lines are bidirectional, being used both to write data 

into the memory and read it out. Hence bidirectional drivers are 

necessary for the data lines. To provide bidirectionality, it is 

necessary to use enhancement mode devices both to pull up and pull 

down the data lines. The depletion node pull-up devices normally 

used in NM05 cannot be turned off and are therefore unsuitable. The 

use of enhancement-mode pull-ups limits the voltage which can be 

realised on the data lines and reduces the pull-up speed.

The circuit of the data line driver can be found in figure 6.9, 

with the layout in figure 6.10. During a memory write cycle, either 

the pull-down or pull-up device will be turned on, writing a 0 or 1 

respectively into the selected memory cell, taring a read cycle, 

both these devices will be turned off, and the value on the data line 

will be that stored in the selected cell. In fact, prior to the 

read, the data lines are pre-charged to an intermediate voltage by 

turning on both devices, to decrease the response time. A simple



F i g . 6 . 1 0  L a y o u t  o f  b i d i r e c t i o n a l  l i n e  d r i v e r



□

;

F i g . 6 . 1 0  L a y o u t  o f  b i d i r e c t i o n a l  l i n e  d r i v e r



106
inverter is used to buffer the value on the data line to the outside 

world. A »ore coaplex sense amplifier could be used in place of this 

inverter to further reduce the response ti»e. This was not imple­

mented on the test chip due to simulation problems and lack of time. 

A suitable circuit for a sense amplifier, intended for a dynamic RAM 

but which could be adapted far use in this case, can be found in 

Mavor, Jack and Denyer [31 pl34].

It was later realised that the method adopted for the precharging 

of the data lines to an intermediate value was not ideal. This would 

be much better achieved by using the crossover point of the sense 

amplifier to establish the precharge voltage. In this case, «there 

the sense amplifier is a simple inverter, this can be done by con­

necting its input and output together. This voltage would be applied 

to the data lines through a further pass transistor.

6.1.3 Circuit Level Simulation of the RAM

Circuit level simulations of various parts of the RAM have been 

performed using the circuit simulator SPICE2G.5 developed at the 

University of California, Berkeley. These simulations verify the 

functionality of the cells and provide performance estimations for 

the memory as a whole. It would be impracticable to include results 

from all the simulations within this thesis, however the results from 

an attempt to realistically simulate a model of the entire RAM are 

included.

It is worth pointing out at this point the extreme difficulty 

found by the author in obtaining results from the SPICE simulator. 

More often than not, the simulator would fail to converge on a result



107

either during the initial dc analysis of the circuit or at sane tiae 

during the transient analysis. This experience is common to all 

those involved in MOS IC design at UMIST and to aany elsewhere known 

to the author, and indeed appears to be significantly worse for CMOS 

circuits than the NMOS circuits considered here. Some proprietary 

simulator products are available which claia to have solved this 

problea, however they were not available to the author. Consequently 

auch tiae was wasted in trying to get simulation results, and the 

results obtained were not as comprehensive as would be desirable. 

The problems were particularly acute with larger simulations, with 

the effect that the author had to be content in the aain with simula-

Fia. 6.11 Block diagram of model of RAM circuit giaixq^^gd

tions of circuits consisting of only a few transistors.

Even were the simulator reliable, it would not be reasonable to 

expect to simulate the entire RAM at once. The computer time

3« A1



loe
involved in circuit simulation on such a large scale would be prohi­

bitive. A model was therefore devised which would test out each 

individual cell of the RAM, including capacitive and resistive loads 

to represent the rest of the circuitry. A block diagram of this 

model can be found in figure 6.11. the simulation was built around 

four memory cells - two of the shiftable variety and two non- 

shiftable, in a two by two arrangement. Thus two address decode and 

select line drive blocks were required along with two data line 

drivers. There is therefore one data line for the shiftable cells 

and one for the non-shiftable. Address line drivers were included 

for the active address lines AO and Al. The cells being simulated 

occupied locations 0 and 1, therefore these address lines give the 

possibility of selecting either or neither used location.

This circuit, although considerably simplified from the real RAM 

circuit, proved still very difficult to simulate. The author spent 

many fruitless hours and days making small modifications to the cir­

cuit and to some parameters to SPICE in attempts to obtain results. 

Eventually a result was obtained, thanks to advice from the SPICE 

support staff at the SERC Rutherford Appleton Laboratory, but this 

was several months after the first attempt to simulate the circuit! 

The results of this simulation are presented graphically in figures 

6.12 and 6.13. The nearcry operates in two clock phases, in common 

with the rest of the SPE. The first is used for reading and writing, 

and the second for refreshing and shifting. The simulations 

presented in the diagrams represent seven clock cycles. The first 

two are write cycles for addresses 0 and 1 respectively and the sub­
sequent two are read cycles for the sane addresses. The fifth cycle 

i* a shift cycle and the final two are further read cycles for the



VO
LT

AG
E

----------------------- »  TIME
Fig G.12 SPICE simulation results For RAM - part 1



VO
LT

AG
E

•59 C_
0.80E »  8 .13E-3B 0 . 2 0 - *  0 .3 3 M 6  0.52E-06

------------------------3-  TI HE
Fig G.12 SPICE simulation results For RAM - part 1



VO
LT

AG
E

H I T E  <ŒAC SELECT 8 - . r "  HATA MS vATA ? .  i.AT ü -T  '  > J F *
------------------------------ 1--------------------------------- 1--------------------------------- 1--------------------------------- 1 -------- ------------------ I — ---------------------- T---------------------------------1--------------------------------- 1--------------------------------- 1--------------------------------- T

- .5 9  ü
0 .12E-05 0.13 E-8 5 0.13E-05 0 .H E -8 5 0 .15E-05 0 .I6 E-0 5 0 .1G E-05 0 .17E -0 5 0.18E-05 0.19E-0 5 0.19E-0 5

— ->■ TI HE
Fig G.13 SPICE simulations results For RAM - part 2



V
O

LT
A

G
E

___ t___
0.15E-05

part 2

0.16E-05 0.1GE-85 0 .17E -0 5 0 .18E-05
-•53[I_______ *________ .

0.12E-0 5 0.13 E-0 5 0.13 E-0 5 0 .H E -0 5
-------------------------------- =»- T I M E

Fig S.13 SPICE simulations results For RAM -

0 .I9 E-0 5  0.19E-0 5



Ill
two addresses. This simulation clearly demonstrates that data can be 

read and written to cells in the memory and verifies the correct 

operation of the memory shift. One interesting point to notice is 

the way the inverter on the data lines cleans up the data line 

waveforms. The waveform marked TATA S" represents the actual data 

line through the shiftable RAM cells and that marked TATOOT S" 

represents the output from the inverter whose input is TATA S". 

Whereas the waveform TATA S" is very messy, that of TATOOT S" shows 

clean transitions from high to low voltages. This simulation also 

shows that the limiting factor in the speed of the memory is the 

delay in the select lines. This is mainly due to the high resistance 

of the polysilicon word lines, although it also depends on the delay 

through the address decoders and select line drivers themselves. The 

overall delay observed in the select lines is about 50ns., with very 

little delay due to the changeover of the data output line for a read 

cycle.

6.1.4 Layout of a Test Chip

As has been explained, separate test chips were fabricated for 

the memory and data path sections of an SPE. The control portion was 

never fabricated. Although this subdivision arose initially due to 

lack of time because of the fixed deadline for the fabrication run, 

in many ways it was an advantage. In particular, it eased the prob­

lem of testing the fabricated chips.

It was decided to fabricate as simple a chip as possible to give 

the best chance of obtaining working parts; that is it was decided to 

include as little circuitry as possible whose purpose was purely for 

the test chip and would have no use in a real SPE. In view of this,



1 1 2

the three connections to each data drive block were taken straight to 

the outside world via the appropriate drive or protection circuitry. 

These consist of two inputs, the write 0 and write 1 signals and one 
output. The address lines were fed directly fro« the input pads to 

the address line drivers. The main read, write, shift and other con­

trol signals were taken straight free the input pads to the memory 
cell array. This was later realised to be a mistake, as the high 

capacitance associated with these lines in conjunction with the 

resistance iaposed by the input protection circuitry (about 3 
kiloha), could coepromise the operating speed of the memory.

In view of the small scale possible, a full colour plot of the 

test chip was not considered appropriate. However, a monochrome ver­

sion can be seen in figure 6.14, and some salient features can be 

picked out. Eight columns of RAM cells are visible, alternating 

between shiftable cells and the narrower non-shiftable cells. The 

address decoders can be seen at one side of the memory array. At one 

end are the data line drivers and at the other end, displaced to one 

side are the address line drivers. The plot serves at least to give 

sos* impression of the space taken up by the different parts of the 

mesnry.

6.1.5 Testing the Fabricated RAM Chip

Having been able to arrange fabrication of the RAM test chip, it 

was possible to perform some tests. The sain concern vas to estab­

lish that the memory did indeed function as intended and to verify 

the performance indicated by the SPICE simulations. However, it must 

be emphasised that the main reason far performing the layout vas not 

to obtain fabricated chips but data on the silicon area occupied by



113

.s h ifi

various different parts of the overall design.

While establishing the test which would be required, it mls real­
ised that a faulty connection had inadvertently been aade. The SFX 

line to all the shiftable RAM cells (see figure 6.3 for identifica­

tion of this line) was connected to the ENABLE line of the select 

line drivers. In the operation of the RAM, the SFX line is supposed 

to be high during 01 and low during 02. The select lines should be



113

Fio. 6.14 Layout of RAH teat chip

various different parts of the overall design.

While establishing the test which would be required, it m s  real­

ised that a faulty connection had inadvertently been Bade. The SFX 

line to all the shiftable RAM cells (see figure 6.3 for identifica­

tion of this line) m s  connected to the BJAHLE line of the select 

line drivers. In the operation of the RAM, the SFX line is supposed 

to be high during 01 and low during 02. The select lines should be



114
enabled during 01 and disabled during 02, however the sense of the 

HJABLE line is inverse, Meaning that SELECT should be the inverse of 

SFX, rather than identical to it. A workaround is possible by adding 

a third phase between 01 and 02 during which SFX can be brought high. 

In this case SFX can be kept high during 02 without risk of corrupt­

ing the stored data, which would otherwise be a possibility. During 

shift cycles, SFX must still be kept low during 02, however the 

resultant enabling of the select lines will not interfere with eeaory 

operation as it would in a refresh cycle. As always envisaged, the 

data lines will be pre-charged to an interaediate voltage during 02 
in anticipation of a possible read operation during the next cycle.

The test results obtained were disappointing: basically the chips 

did not work. Very few of the data lines on any of the chips showed 

any change in output, aost being stuck at high or low. Those few 

which did actually change state did not sees to do so in any sensible 

aanner. During a write cycle at least, one could expect the data 

lines to show a one or a zero depending on whether a one or a zero 

was being written. This however «as not the case. Indeed, the data 

lines which seeaed closest to working showed a logic zero whenever 

data was being written and a logic one whenever data was being read. 

In such circuastances, further testing was impractical. The varia­

tions in behaviour between chips and between data lines within a par­

ticular chip would see* to indicate processing problems, although it 

would be unfair to attribute blaae without further investigations.

This experience serves to highlight the problem of testing chips 

fcrtvich apparently do not work at all. It is extremely difficult to 

distinguish between processing problems and some fundamental design 

error, as access to internal nodes is impossible. However, although



115
the negative test result* are disappointing, the essential data frosi 

the design exercise, namely the silicon area used, is still valid. 

It is hardly likely that any design errors could be so fundamental as 

to significantly affect the silicon area.

WftPATO PESICH

The second major part of an SPE is the datapath. This consists 

of three main sections: an arithmetic unit capable of performing 

addition and subtraction, a 4-bit barrel shifter, and some registers. 

The floorplan of the datapath is traditional, consisting of four 

identical bit slices connected together by abutment. The only excep­

tion to this is the barrel shifter, although the only difference 

between the bit slices of the barrel shifter is the position of one 

contact. All the individual cells which go together to form the 

datapath are therefore the sane height. In general, the control sig­

nals run vertically across all the bitslices in the datapath and the 

data signals horizontally along each bit slice. There are obvious 

exceptions to this such as the carry signal in the arithmetic unit 

and some of the data in the barrel shifter, both of which must run 

vertically.

6.2.1 Design of an Arithmetic Unit

The basic requirement for the arithmetic unit is to perform addi­

tion and subtraction, taking its inputs from the accumulator and 

register RB and returning the results to the accumulator. This is 

easily achieved by providing an adder, either of whose inputs can be 

inverted, set to zero or used as they are. Such an arithmetic unit 

can perform all the arithmetic instructions listed in Appendix C



116
except those which alter the value of the B register. These will 

have to be provided elsewhere in the datapath.

The adder implementation decided upon was based on the Manchester 

carry chain [25 pl50]. This uses a single pass transistor in each 

adder to effect the carry propagation and therefore is Much faster 

then a ripple carry adder based on conventional logic gates. The 

complexity of carry look-ahead logic is avoided, although for long 

word-length adders there is a very siaple carry look-ahead scheme 

which can be implemented in conjunction with a Manchester carry chain 

[30 p325]. This is, of course, unnecessary for a 4-bit adder for 

which a siaple Manchester carry adder is ideally suited. The adder 

is a dynamic circuit, all the carry signals being pro-charged during 

one of the clock phases, in this case 02. During 01, the evaluate 

phase, two signals KILL and PROPAGATE are established from the adder 

inputs which respectively cause the carry output to be discharged to 

ground oir the propagation of the carry input signal to the carry amt- 

put. If neither of these signals is generated, then the carry output 

remains at the high level to which it is precharged. As it happens, 

the sue output of the adder can be farmed from the exclusive-or of 

the PROPAGATE signal and the carry input.

The logic necessary for the generation of the KILL and PROPAGATE 

signals can be used in this case to control the function of the 

arithmetic unit. If a general function block [25 pl51] is used to 

generate these signals, then they can be made to be produce any logic 

function of the adder inputs under the influence of external control 

lines. By this method, the adder can be made to perform addition, 

subtraction and all the other operations required of it and is 

transformed from a siaple adder into an arithmetic unit.



F i g . 5 . 1 5  L a y o u t  o f  a 4 - h i t  a r i t h m e t i c  u n i t



c K ; r a : : r a

K i r a :

s ;k k . .r a i  -  K K H .

^ 5 i ; ; i a ^ a i : ; t a ] fa .
>•___ it, It . itrt. IT. t*. It. 11.

F i g . 5 . 1 5 L a y o u t  o f  a 4 - h i t  a r i t h m e t i c  u n i t



l i e

The layout of the 4-bit arithmetic unit can be seen in figure

6.15. The key question in the layout of a Manchester carry chain 

adder is to keep the carry propagation delay as short as possible. 

The main technique available to achieve this is to reduce the capaci­

tance of the carry line. It is therefore run in metal, keeping the 

active area and polysilicon connected to it down to a minimum. The 

height of the adder cell, and hence the whole bit slice, is also kept 

as small as is compatible with good overall usage of silicon area. 

The only transistor gate connected to the carry input lines is of 

minimum size, again to reduce capacitance. This transistor farms the 

pull-down device of an inverter whose output is used in the genera­

tion of the sum signal. The transistors used to effect the propagate 

and kill functions are 12 micron wide, rather than the minimum 6 
micron, to reduce their on-resistance and also reduce the carry pro­

pagation delay. They could be made wider still, and this would prob­

ably be useful in an adder of longer word-length.

6.2.2 Design of a Barrel Shifter

The barrel shifter is based on a design in Mead and Conway [25 

pi57]. it is based on pass transistor logic, and one of its main 

strengths is that no signal passes through more than one transistor, 

thus keeping delays down to a minimum. The design has been modified 

slightly to allow for the different functionality required in this 

case. The layout of the 4-bit barrel shifter is given in figure

6.16. Data from the output register of the arithmetic unit is fed 

back into the barrel shifter on the long polysilicon tracks at the 

top of each bit slice. Data is also fed into the barrel shifter per­

pendicular to the normal data flow. This data will be from the left



F i g . f i . 1 f i L a y o u t  o f  a 4 - h i t  b a r r e l  s h i f t e r



F i g . 6 . 1 6  L a y o u t  o f  a 4 - h i t  b a r r e l  s h i f t e r



1 2 0

or right data port of the SPE as appropriate to the direction of the 

shift operation. Control signals are provided to determine the 

direction and distance of the shift operation.

6.2.3 Register Designs

There are four registers incorporated in the datapath of the SPE, 

each with specific functions. They are the accumulator, the RB 

register, the multiplier register and the output register of the 

arithmetic unit. They are all based on the two-phase semi-static 

register described by Mead and Conway [25 pi63], with modifications 

depending on the possible sources and destinations for their data. 

Their locations can be seen on the layout of the whole datapath which 

is presented in figure 6.17. The multiplier register is at the 

extreme left of each bit slice, the RB register being between it and 

the barrel shifter. The accumulator may be found between the barrel 

shifter and the arithmetic unit, with the arithmetic unit output 

register being at the extreme right of the bit slice.

6.2.4 Circuit Level Simulation of the Datapath

Circuit level simulations of the individual cells which make up 

the datapath were performed using the SPICE2G.5 simulator. These 

verified the functionality of the cells. More complex simulations 

would be required to estimate the performance of the datapath. The 

longest delay is likely to be associated with the arithmetic unit, 

and in particular the carry chain. Firstly, the carry chain itself 

was simulated, but without realistic load capacitances or input 

waveforms. As soon as any more circuitry vms added to produce a 

model of the arithmetic unit similar to that used for the RAM, the







1 2 2

simulations tailed to converge. After spending several days on this 

problem, it was abandoned following the experience with the RAM chip 

simulations. In fact, it is likely that the RAM access time will be 

the limiting factor in terms of speed rather than delays in the data­

path, especially as the length of the carry chain is only four bits.

These experiences with SPICE demonstrate very clearly the need 

for an improved circuit simulation tool for MOS IC design. The 

arithmetic unit is simple enough that it ought to have been possible 

to simulate it in its entirety and obtain accurate results, without 

resorting to try to devise a simplified model, whose simulations 

failed to converge in any case.

6.2.5 Layout of a Test Chip

With the designs completed as above, the datapath could be fabri­

cated immediately. The only problem was to decide on which signals 

to connect to the outside world to keep the total number of pins 

below 40, as it would be possible to make many mare connections than 

this. A number of control lines were identified which should always 

be enabled either during 01 or 02 in normal operation, and so these 
were connected together to the appropriate clock phase input. This 

having been done, it was possible to connect all the remaining con­

trol lines to input pins along with the carry input signal. The data 

inputs to the barrel shifter which would eventually be connected to 

either the left or right data port of an SPE were also connected to 

input pins as a means of reading data into the system. The four bus 

lines, along with the carry output line were all connected to output 

pins. This provided a chip with many inputs but not many outputs, 

which is something of a disadvantage in terms of testing. It would







124

have been useful also to connect the outputs fix» the accxaulator 

output register to output pins, but these pins were siaply not avail­

able. However, the configuration adopted would be able to verify the 

operation of the datapath if everything worked properly; it would be 

a little eare difficult to locate the source of a protolea in the case 

of failure.

6.2,6 Testing the Fabricated totapath chip

The testing of the datapath chip tats soaewhat sore successful 

than that of the RAM chip. Altogether six packaged chips were avail­

able, but unfortunately none of thea performed correctly. The most 

premising chip showed soae problea associated with the top (aoet sig­

nificant) bit; all the others showed more fundamental problems.

the first test siaply consisted of writing a value into the accu­

mulator and then reading it out again. The data was input through 

the barrel shifter and read out on the bus. These are the only ways 

of getting data in and out of the test chip as it had been connected 

up. Various patterns of data were tried, and all tests were success­

ful except that the top bit tats always read as a zero. The remaining 

test chips were rejected at this stage as only one or two bit posi­

tions could be modified on each of thea, the others being permanently 

stuck at one or zero.

The next test was on the RB register. In this case, data m i  

written into the accumulator, transferred to the RB register and then 

read out again. As the transfer to the RB register was necessarily 

performed on the bus, a different value was written into the accumu­

lator and read out again between transferring the data into the RB



register and reading it out again, in order to verify that reading 

the RB register actually altered the value on the bus. Once again, 

this test was successful except for the top bit sticking at zero.

The testing of the Multiplier register was not so successful. 

There is no way of reading the data out of this register in parallel, 

however the register is designed as a parallel-in, serial-out regis­

ter, so data written in parallel should be possible to read out seri­

ally. As the serial data output of the Multiplier had been connected 

to an output pad of the test chip, this was indeed tried. However, 

the output proved to be permanently stuck at zero.

The arithmetic unit can be prograaaed to perform various dif­

ferent functions in accordance with the values on the control lines 

to the propagate and kill logic function blocks. One basic procedure 

was adopted with only a few Modifications to test out these various 

functions. Firstly, the accvanilator and the RB register were loaded 

with suitable data in the Manner described above. Then the arith­

metic unit was operated for one cycle, and the output loaded back 

into the accumulator. This value was then read out onto the bus. 

The carry input and output lines were also available for control and 

observation respectively. Hi thin the constraint of the non­

functional top bit, all the operations required by the SPE: addition, 

subtraction, negation of the accumulator, etc., were all verified. 

The effect of the value of the carry input was clearly seen. The 

carry output bit could only be observed in the subtraction operation; 

the top bit being zero Meant that the carry output was alwys zero 

during addition.



ft« barrel shifter had already been largely checked out by the 

previous tests. As already stated, the only way to get data into the 

test chip was through the barrel shifter, and data routed free the 

output of the arithmetic unit to the accumulator also goes through 

the barrel shifter. These basically verify shifts of zero and four 

bits distance, four bit shifts left and right being identical as far 

as the datapath is concerned. The test far the arithmetic unit was 

easily modified to test other shift distances when the output from 

the arithmetic unit was fed back into the accumulator. The effect of 

the sticking top bit was rather a nuisance in this case, but as far 

as could be verified the outputs were as expected.

One of the main reasons for producing test chips was to verify 

the likely speed of operation. This partly working chip gave that 

possibility. In a finished SPE, many of the control signals would be 

ANDed or ORed with one of the clock phases, whereas in this case they 

were directly connected to the tester. This meant that four tester 

clock cycles had to be used for each SPE clock cycle: two for the 

phases 01 and 02 and two for the inter-clock gape to ensure non- 

overlapping. In a real system, the gape would naturally be much 

shorter than the phases thesuelves, which might not in fact be the 

same length. In all the tests above, the clock frequency of the tes­

ter was increased until the output began to change. In each case, 

this happened at about 5Mte, meaning that 01 and 02 were each of 

200ns duration. The gape could probably be reduced to about 50ns 

each, giving an overall clock period of 500ns. It therefore appears 

that the SPE could be expected to operate at a clock frequency of 

about 2Mb. This is not wholly unreasonable for a 6-micron M O S  
technology, and could be expected to be about ten times faster for a



truly VLSI CMOS process.

6.3 OQfflEOL LOGIC DESIGN

The third »ajar part of an SPE is the control logic. This could 

not, unfortunately, be implemented in time for the fabrication run 

used for the memory and datapath chips. It was therefore decided to 

perform a design study of the control logic sufficient to give 

approximate estimates of the area occupied and the timing. In view 

of the problems previously encountered with SPICE previously, and the 

inordinate amount of time expended trying to obtain results, it was 

also decided not to spend a great deal of time on SPICE simulations, 

but to concentrate on realistic estimates of delays in the circuit.

The major part of the control logic is concerned with providing 

the control signals to the datapath. Other parts are required to 

perfora the decoding associated with the COHD instruction provided 

for the iaplesMntation of multiplication (qv section 4.6.3) and for 

the communication of data to and from the right and left data ports.

L2:l POTAPATfl QQNTROL
The control signals for the datapath are formed from combina­

torial logic functions of the instruction registers XR and 10 and the 
clock signals. There are two different classes of control signal: 

those which are active during 01 and are derived from the IR regis­
ter, and those which are active during 02 and are derived from the 10 
register. The former group consists of the Arithmetic Unit (AU) con­

trol signals and those which control the writing of the multiplier 

(MIER) and RB registers. The latter group consists of the barrel



shifter control signals and those which control the refreshing and 

shifting of the MIER register.

The obvious choice for implementing the logic to derive these 

control signals is the Progra— ed Logic Array (PLA) [25 p79ff], how­

ever other possibilities were explored before settling on the final 

arrangement. There are clearly no common product terms between those 

signals which depend on IR and those which depend on 10, and hence 

separate logic for these, whether in the farm of PLAs or otherwise, 

is sensible. As far as the AU control signals are concerned, there 

are many common product terms among the control signals, and there is 

no real sensible alternative to a PLA. It was also found that the 

other two control signals dependent upon IR also fitted well into

this PLA. The layout of the PLA is given in figure 6.19. It occu-
2pies an area of 730 by 550 micron, or 0.40 am .

The IO dependent signals are rather different. There are no pro­

duct terns common between signals, and a number of signals are 

derived from only one product tern. Indeed, there are only two sig­

nals derived from multiple product terms, namely those which cause no 

shift or a 4-bit shift through the barrel shifter. These two signals 

are known as SO and SRL4 respectively. For those signals derived 

from only one product tern each, a distributed NOR gate, essentially 

identical to the AND plane of a typical NOR-NOR PLA, is adequate and 

probably the best solution. For the SO and SRL4 signals, the possi­

bility of using individual complex AND-OR-INVERT or OR-AND-INVERT 

gates was considered. However, preliminary investigations indicated 

that this was not a practical approach. The number of series 

transistors involved in such gates in either form were such that, for 

reasonable sized pull-down transistors, the pull-up transistor would



CTo** *p~ *7°** IZsCl 1

F i g . 6 . 1 9  P L A  l a y o u t  f o r  1 R d e p e n d e n t  c o n t r o l  s i g n a l s



F i g . 6 . 1 9  P L A  l a y o u t  f o r  I R  d e p e n d e n t  c o n t r o l  s i n n a l s



130
have to be very long. This resulted in a rise-time for the gates in 

excess of 100ns being obtained free SPICE simulations, when loaded 

with a einieue size transistor. It was therefore decided that a PLA 

would once again be the best solution for these two signals. This 

PLA has fewer product teres and outputs than the previously described

one, and is therefore smaller and faster. It occupies an area of 400
2by 430 micron, or 0.17 mm .

In view of the difficulties involved in SPICE simulations in the 

previous designs, only a very simple simulation of the PLAs has been 

performed. As the first PLA described is larger and therefore 

slower, it alone has been simulated. The capacitances of the long 

tracks have been estimated. The AND and OR planes have each been 

represented as an inverter with appropriately sized transistors. The 

input and output buffers have also been simulated. Each section was 

initially simulated separately, and then they were all connected 

together. Somewhat to the surprise of the author, this simulation 

worked first time. The results are presented graphically in figure 

6.20. These results show the overall delay through the PLA to be of 

the order of 30ns. This is unlikely to degrade the performance of 

the overall system. The main timing requirement is that the output 

should be valid well before the end of the clock phase in which it is 

required.

The control logic described so far only performs the derivation 

of the logic signals as functions of the instruction registers. 

Those which control the loading of registers, as opposed to the func­

tion of the barrel shifter and AU, must also be ANDed with the 

appropriate clock signal. All the signals will need appropriate 

buffering to drive the datapath control lines. As the datapath is



». 
VO

LT
AG

F.

UfVT . ASLlil _ «  O U T  . tj JF {H/T

F i g  6 . 2 0

0 . »  *  8.20E—97 0 .4 0 E-0 7 0 .G 0E-0 7 0.8 0E-0 7
----------------------- »• TIME

SPICE simulation oF control PLA

I8 E —96 0.20F-060 .I0 F-0 6 0.12E-9 6 0 .M F-0 6 0.16 E-0 6



VO
LT

AG
F

Fig G.20 SPICE simulation oF contro. PLA



132
relatively small, these will not need to be very sophisticated. 

GENERAL OOWTROL l o g i c a n d w i r i n g

The rest of the SPE would be Bade up with the other snail pieces 

of control logic referred to above, and with wiring. The logic 

involved is relatively siaple, and its implementation would to a 

large extent depend on wiring considerations. It was not considered 

necessary to proceed any further with detailed design, as it would 

not significantly contribute to estimates of performance or area. In 

particular, the problem of the provision of program memory, con­

sidered in the next chapter, shows that items of detail in the con­

trol logic are not really relevant to the overall assessment of effi­

ciency in use of silicon.



CHAPTER SEVPj

CONCLUSIONS

hi Evaluation of Project

The aia of the project was to design a program a ble signal pro­

cessor with variable word length, capable of performing difference 

equation calculations, and which could be replicated many times on a 

single VLSI integrated circuit. This hats been achieved. The archi­

tecture has been verified using the HILO functional simulator. 

Salient parts of the architecture have been subject to custom 

integrated circuit design, some of which has been fabricated. Some 

circuit simulation has also been performed. These permit estimates 

to be made of system performance in terms of speed and silicon area. 

The results must now be evaluated and compared with other approaches 

to assess the viability of the approach adopted, and recommendations 

made for further research.

7 , 1 . 1  S P E  A c h ie v e m e n ts

The aim of developing a programmable signal processor with vari­

able word length has been achieved with the nibble-serial architec­

ture adopted. A processor is formed from the appropriate number of 

nibble-wide Signal Processing Elements (SPEs). Data is input from 

the left into the most significant SPE and instructions from the 

right into the least significant SPE. This system poses severe con­

straints on the processors. Each instruction must be executed in 

precisely one clock cycle, and no branching instructions are permis­

sible. This would clearly be unacceptable in a general purpose



134
microprocessor, but the determinism of difference equation calcula­

tions aakes it acceptable. Indeed the Intel 2920, which was used as 

a reference point for such of the design, works under similar con­

straints. The register transfer level simulations described in 

chapter five were used to verify the operation of the architecture as 

described, and a real filter was implemented.

The custom IC layout undertaken, and described in chapter six,

allows an estimate to be made of the silicon area occupied by an SPE.

The data memory occupied 3.25 mm2, the datapath 0.62 am2, and the

control FLAs together 0.57 mm2 . This gives a total of 4.44 am2.

Allowing reasonable area for the wiring and remaining control logic,
oit is unlikely that an SPE could occupy less that about 6 mm . Pro­

gram memory would need to be separate. Before estimating how many 

SPEs could be integrated onto a single chip using a VLSI process, it 

is necessary to consider in mare detail the provision of program 

memory.

7.1.2 VLSI implementation of SPE-based processors

7.1.2.1 The provision of program memory

So far, the provision of program memory far SPE based processors 

has not been considered. If many SPEs are to be fabricated on a sin­

gle VLSI chip, then clearly both the SPEs and their program memory 

must be integrated. The SPEs themselves do not have any provision 

for sequencing the program memory, and therefore simple sequencers 

must also be provided. As no instructions can change the program 

flow, this would simply consist of a program counter, which would be 

reset after a preset count had been reached.



135
The program memory could be provided in three fores: as read only 

■eaory (ROM), erasable programmable ROM (EPROM) or as read-write 

■eaory (RAM). In this last case, the prograa memory would need to be 

loaded from external ROM or EPROM after power-up. Despite this draw­

back, this approach has many attractions. ROM would certainly pro­

vide the saallest solution: the area of a ROM cell designed for the 

Edinburgh 6 micron M40S process measures 16 by 24 micron, or 432 

square micron, whereas the RAM cell described in section 6.1 measured 

78 by 106.5 micron, or 8307 square aicron. A ROM implementation, 

however, would wipe out many of the advantage of a programmable sys­

tem. An EPROM cell would be smaller than a RAM cell although larger 

than pure ROM, and would seem to be ideal except for the relatively 

long access times of EPROM devices. This would be likely to seri­

ously reduce the possible clock frequency. RAM therefore appears to 

be the main contender. It would be possible to produce two versions, 

one with RAM for program memory and the other with ROM. The RAM ver­

sion could then be used for development purposes and the ROM version 

for production. The use of off-chip program memory even for develop­

ment purposes is clearly not possible when many processors are imple­

mented on one chip.

The most serious problem in the provision of prograa memory is 

that it is not known which SPEs will require program memory. Word- 

length is variable by using a variable maiber of SPEs in a single 

processor, and prograa memory is only required at the least signifi­

cant SPE. The configuration of the SPE-based processors will need to 

be performed using memory bits dedicated to this purpose, which will 

need programming in a similar manner to the main prograa memory. As 

four to six SPEs would be used in each processor in most cases,



representing 16 to 24 bit wardlengths, this could result in throwing 

•way between 75% and 83% of the prograa aeaory. This is clearly 

unacceptable, and sose m y  Bust be aade to share prograa aeaory 

between SPEs in a flexible Banner.

Allied to this problea is the question of how auch program memory 

is required. One way to assess this is to consider the ratio between 

the clock frequency and the sampling frequency. Hopefully a clock 

frequency of about 20»tlz could be achieved with a VLSI process. A 

sampling frequency of about 10kHz is probably the lowest which could 

be contemplated, this corresponding to telephone quality speech. 

This provides 2000 clock cycles per saaple. As there are no branch­

ing or looping instructions in the SPE, and each instruction is exe­

cuted in precisely one cycle, this would suggest the provision of 

2000 prograa aeaary locations per processor. Another, probably more 

realistic approach is found by considering the filter program of Fig­

ure 5.12. This utilises 63 instructions, and occupies 7 memory loca­

tions. It could be supposed that a program of about 500 instructions 

would use up alaost all the 64 locations of data memory in the SPE. 

In any case, it is undesirable to provide excessive prograa Beamy, 
as this will reduce the efficiency of use of silicon. If it is 

further assumed that each bank of program memory will be shared 

between four SPEs at least, this suggests providing 128 locations per

SPE. Once again, using the RAM cell previously designed, the cell
2array part of such a memory would occupy 8.5 mm . This is signifi­

cantly aare than the data aeaory, datapath and control logic

described in chapter 6 put together. With the required memory peri-
2pheral circuitry, the area occupied would be more like 10 mm . If 

ROM were to be used, the area would be auch smaller. 128 bytes of



2ROM would occupy only 0.44 mm for the central array, or probably
2about 1 am to include peripheral circuitry. It may well be that the 

RAM cell layout of figure 6.1 could be improved. This is particu­

larly so if a process tailored to the implementation of memory were 

used. This would not be inappropriate, as memory fonts a large pro­

portion of the chip in any case.

It has been seen to be necessary to share program memory between 

SPEs to avoid excessive waste. The silicon area calculations above 

only serve to esiphasise this point. One possibility would be to pro­

vide a block of program memory to any one of four SPEs. This would 

mean wasting 33\ of program memory for 24-bit wordlengths and 50\ for 

32-bit wordlengths. Uordlengths of less that 16 bits would not be 

available, although this is not likely to be a limitation in prac­

tice. The only other alternative would be to provide some reconfi- 

gurable way of organising program mesory into blocks. The result of 

this would be that processors with longer wordlengths would have more 

program memory available. There is no reason that they should 

require more, as, using the guidelines above they have the same 

number of data mesnry locations. Although it would be poasible to 

devise some such reconfiguration scheme, it is likely to have a not 

insignificant overhead in silicon area and possibly performance. The 

best compromise seems to be to provide a block of program memory, 

together with a simple sequencer, for every four SPEs. It is very 

unfortunate, but it seems that there is no way that the flexibility 

afforded by the SPE-based approach can be extended to the configura­

tion of program mesnry.

There is now sufficient data to estimate the number of SPEs which 

could be integrated on one VLSI chip. The area of a single SPE has



been estimated at 6 » 2 and the area of program memory at 10 mm2 or a 
total of 16 mm2. This probably ought to be rounded up to 20 mm2 for 
further Miring, etc. However, this area relates to a 6 micron pro­
cess. A VLSI process with feature sizes as low as, say, 0.5 micron 

is not hard to envisage. In this case, the total area per SFE would 

be reduced to 0.2 mm2, assuring all dimensions scale proportionately. 
k VLSI chip having 100 am2 available far the main circuitry (peri­

pheral circuitry being extra) seems reasonable. This would indicate 

that 500 SPEs could be implemented on a single chip. This chip would 

possess formidable processing power. If ROM were used for program 

memory in place of RAM, even more could be integrated. In the case 

of Wafer Scale Integration (HSI), if such ever becomes practical, the 

processing power available could be phenomeral, although it is doubt­

ful that applications could be found for such power, given that the 

processor would still essentially only be capable of implementing 

difference equations.

The programming of a VLSI chip containing about 500 SPEs would 

not pose too great problems in the configuration envisaged above. 

With 512 bytes of program memory far every four SPEs, the total pro­

gram mem ory size would be about 64kbytes. It would be possible to 

make every address location directly accessible by using a 16-bit 

address bus for programedng purposes. This would violate the princi­

ple of local communication, but only for programming purposes. It 

would not necessarily compromise performance during normal operation. 

An alternative programed ng method would be to make extensive use of 

shift registers to move data round the chip. A single shift register 

could be used to select which memory blocks to program, permitting 

the jirujrsmmi nrj of a single block, or of many blocks in parallel when



139
they are to execute the ease program. s h if t  registers could also be 

used to move the prograa data around the chip. In conjunction with 

counters to cycle through prograa memory addresses in each block, the 

aeaory could be efficiently prograaaed.

7.1.2.2 Testability of SPE-based processors

Testability is a vitally iaportant concern in the design of VLSI 

circuits, with built-in self test rapidly becoming the only practical 

way to achieve good testability coupled with acceptable time on the 

tester. In the case of SPE processor chips, the situation is eased 

because they consist of a large number of identical and reasonably 

simple elements. This means that the question can be broken down 

into two main problems, the testability of the SPEs themselves, and 

access to their inputs and outputs. This access, and the generation 

of test patterns and the analysis of outputs could be achieved using 

Built-In Logic Block Observer (BILBO) elements [37] or similar. The 

testability of the SPEs themselves should be inherently quite good, 

as access is available to most components under program control. If 

adequate test cover could not be achieved in this manner, B U B O  tech­

niques could equally well be applied within each SPE. As far as 

testing the prograa memory is concerned, this essentially means 

ensuring it can be read as well as written.

7.1,3 Comparison with Intel 2920

The Intel 2920 has been used as a guide far the design of the 

SPE. It is therefore interesting to compare their performance. For 

this reason, the filter of Appendix A has been coded up for the Intel 

2920. The prograa is given in Appendix B. This should be compared



140
with the SPE prograa for the same filter, given in figure 5.12. No 

attempt has been aade to include the analogue portions of the 2920, 

to permit better comparison with the SPE.

The first factor to note is that whereas the SPE program has 65 

steps, the 2920 program only has 23, although 7 of the SPE instruc­

tions are concerned with the input and output of data which is not 

covered by the 2920 program. The main reason for the difference is 

that shifting and adding are two separate operations in the SPE, but 

one in the 2920. This has to be so to support the nibble-serial 

operation of SPE-based processors. Another reason for the extra 

instructions is that all the data memory locations in the 2920 are 

directly available for arithmetic operations; in the SPE implied 

registers are used and data must be moved around more. This was done 

to reduce the width of the instruction word, which is 24 bits in the 

2920 but only 8 bits in the SPE. The limitation of shift length to 4 

bits per shift in the SPE only caused one minor inconvenience in the 

SPE prograa, resulting in two extra instructions being required.

The Intel 2920 was implemented in an IM0S process of the late 

1970s, not totally dissimilar to that used to fabricate the SPE test 

chips. Its maximum clock frequency of 2.5Mb is similar to that 

predicted for the SPE. The power of the 2920 would be roughly com­

parable to the power of an SPE-based processor consisting of 6 SPEs 
and a block of prograa memory, although due to the requirement for 

more program steps, the SPE-based solution would be slower for the 

same clock rate. The 192 words of program memory in the 2920 would 

provide approximately the same functionality as the 512 words pro­

posed for the SPE, taking into consideration the comparison of pro­

grams above. In fact, 512 by 8 (4096 bits) for the SPE is slightly



less memory overall than 192 by 24 (4606 bits) for the 2920. The 

2920 employed EPROM for the prograa aeaory, which would be auch 

saaller that the RAM proposed for SPE based systeas. A chip fabri­

cated in 6 micron technology, incorporating 6 SPEs and one block of 
prograa aeaory implemented in RAM would occupy about 76 aa2: a large 

chip, but not impossible. This would be reduced to about 40 aa2 if 
ROM were used far the prograa aeaory, which provides a wore fair com­

parison with the 2920. The chip area of the 2920 is not known, but 

it is known to be produced on a single NMOS chip.

7.1.4 Suitability for Signal Processing Algorithms

The SPE has been designed specifically to be efficient in the 

implementation of difference equation calculations. These are used 

to implement both recursive and transversal digital filters. Other 

important signal processing algorithms include adaptive filtering, 

the Past Fourier Transfora (FFT), matrix arithmetic, and logarithms 

and exponentiation. These last two are relevant to homomorphic pro­

cessing (q.v. section 1.1.3). There is no reason in principle thy 

some of these algorithms should not be implemented on SPE based pro­

cessors, however there would be limitations which would probably 

prevent their effective use. For example, the FFT butterfly opera­

tion could easily be programmed into the SPE. However, the saall 

data and program memories would limit the calculation to FFTs with 

very few points indeed. Similar considerations would apply to matrix 

operations. Transcendental functions such as logarithms and exponen­

tiation could once again be programmed into an SPE, permitting the 

implementation of certain homomorphic processing algorithms. How­

ever, such things as calculating the cepetrum require FFT calcula­



tions, and these have been seen to be impractical. It must be 

pointed out, however, that these s a w  restrictions all apply to the 

Intel 2920 in just the same way, and yet that has found application, 

particularly in speech bandwidth telephone circuits. It would have 

to be accepted that an SPE based processor would probably only find 

application in similar areas. Alternative architectures would have 

to be explored for more general application.

It might at first seem that SPE-based processors would be likely 

candidates for implementing adaptive filters, because these usually 

use FIR filters with time-varying coefficients to perform the actual 

filtering. The calculation of the filter coefficients is handled 

separately. SPEs would be perfectly capable of implementing the 

filters, and the ability to execute multiplication by a variable, 

rather than coding the multiplicand into the program, would enable 

adaptive filtering. The calculation of the filter coefficients, how­

ever, is not something which could easily be performed by the SPEs, 

and would have to be handled by a separate processor. The main draw­

back would be communicating the filter coefficients to the individual 

SPE-based processors. The only path available for this data is that 

used for the signal data itself. All the filter coefficients for 

each processor in the pipeline would need to be sent to the SPEs dur­

ing each sample time, unless the program memory sequencer were made 

much more complex. This would be an unacceptable overhead, seriously 

reducing performance. It is therefore unlikely that adaptive filter­

ing could sensibly be performed on SPE-based processors without sig­

nificant modification to the architecture.

The only way SPE based processors can be used for parallel pro­

cessing is as a pipeline. Once again, this is fine for implementing



143
digital filters by difference equations. A vector processor would be 

■ore appropriate for implementing matrix arithmetic, it is not so 

clear what form of parallel processing is suited to calculating FFTs. 

Any flexibility in the interconnection scheme for SPE based proces­

sors would greatly increase the complexity. This goes against the 

fundamental principle of keeping the SPE as simple as possible, so 

that as many as possible can be fabricated on a single chip.

7,1,5 Incorporation of delay function in memory

The data mesnry of the SPE has been designed so that half of it 

is shiftable, pensitting the z 1 delay to be performed for all data 
in only one cycle (qv section 4.5). This, of course, incurred some

cost. The area of the central cell array of a 64 by 4 bit RAM was
2found to be 2.13 am (q.v. section 6.1). The area of the memory 

incorporating the shifting function into half of it was found to be 

3.25 am2 . This is a significant increase in area, although the func­

tion is clearly very useful. It could, however, probably be better 

implemented by having an index register which would be added to the 

address in the instruction. This index register could be incremented 

each time a x_1 delay is required. This approach was considered dur­

ing the design of the SPE, but was rejected as it involved an extra 

6-bit addition in each memory access cycle. It was thought that this 

might reduce the performance of the SPE. In retrospect, it must be 

admitted that this was rather naive, and the index register would be 

unlikely to significantly affect the performance of the SPE. The 

area occupied by the extra register and adder would certainly be 

smaller than the overhead of providing the shiftable memory.



7.1,6 Silicon Area Efficiency

The aain reason for targeting a processor at a particular appli­

cation area such as signal processing, is to improve the efficiency 

in use of silicon over general purpose processors. In this case, the 

aia of Making the wordlength configurable was also to i»prove silicon 

area efficiency. There can be little doubt that an SPE based proces­

sor represents »ore efficient use of silicon than a general purpose 

Microprocessor for signal processing applications, but it aust be 

doubted whether the configurable wordlength really justifies its 

cost. In particular, the difficulty of providing progra» memory in a 

configurable aanner negates Many of the advantages of the wordlength 

configurability. This is particularly so when the doainance of pro­

gra» aeaary in terms of silicon area is recognised. Other approaches 

to building signal processors, such as the Texas Instruments TMS320, 

and the Inaos Transputer, also offer big improvements over standard 

Microprocessors, and achieve a far greater generality of application 

than SPEs or indeed the Intel 2920.

It has transpired that the datapath of the SPE is saall in rela­

tion to the data and progra» memories. The control logic and the 

program aeaory can be regarded as a single entity for these purposes, 

as they are both concerned with the implementation of program con­

trol. The Arithmetic Unit itself is even smaller than the datapath, 

which also includes the registers and barrel shifter, although it 

Must be admitted that the barrel shifter can be regarded as perform­

ing arithmetic operations too. In any case, this relatively saall 

area of silicon which is actually doing the work is unfortunate, as 

the main aia is to aake as auch arithmetic processing power as possi­

ble available. It aust be admitted in the SPE’s favour that the



situation would be several times worse in a general purpose micropro­

cessor. The only way around this seems to be to integrate more dedi­

cated functions in hardvaxe, but still under program control. A 

parallel multiplier would be an obvious suggestion. This would both 

increase the silicon area used for real arithmetic processing, and 

reduce the area used for program memory, which would no longer be 

full of as many shift and add instructions. This approach could be 

extended to complex multiplication, and such things as the FFT but­

terfly operation, although this begins once again to make the proces­

sor very specialised.

This kind of approach would mean abandoning the configurability 

of wardlength, although it has already been seen that the advantages 

of this are dubious. In designing the SPE it was recognised that the 

nibble serial approach was essentially incompatible with parallel 

multiplication. It might be possible to implement 4 by 4 bit multi­

plication in each SPE, but this would certainly require a major 

redesign. The present schesie essentially permits 1 by 4 bit multi­

plication. A similar schesw could be adopted, whereby the multiplier 

would be circulated to each SPE in any processor, 4 bits at a time. 

Every 4 bits of the multiplicand, which would remain fixed in the 

appropriate SPE, would be multiplied by every 4 bits of the multi­

plier. The 6-bit sub-products resulting from each multiplication 

would need to be added together to produce the final product. This 

would be achieved by passing the lower 4 bits of each sub-product to 

the next SPE on the right, and adding both nibbles into the product. 

The product itself would be shifted right by four bits after each 4 

by 4 bit multiplication. This corresponds to the single bit shift 

employed at present. As has been stated, this would involve a major



146
redesign, but if the SPE were thought to have enough potential, could 
well be worthwhile.

Another way in which the efficiency of SPE based solutions could 

be i«proved would be by increasing the number of bits in each SPE. 

Without fundamentally altering the architecture, 8 bit SPEs could be 
built in place of 4 bit. The reduced wardlength flexibility Bight 

not prove too much of a problem, but increasing the number of bits 

much beyond 8 would probably take away most of the advantage of pro­
viding configurable wordlength. This seems attractive at first, as 

it reduces the overhead of control logic. However, it has been seen 

that the program memory takes up much more area than the control 

logic, and therefore the gain would be much less than would appear at 

first. Essentially, each SPE would almost double in size, but the 

program memory would only be shared by two SPEs in place of four. 

The program mesnry overhead would be the same in each case. The only 

gain would therefore be from the fact that an 8 bit SPE would be less 
than twice the size of a 4 bit SPE. This, in fact, would depend on 

other decisions, too. If 8 bit shifts were permitted, an 8 bit bar­
rel shifter is roughly four times the size of a 4 bit shifter. This 

ratio would also apply if a 4 by 4 bit multiplier as proposed above 

were replaced by an 8 by 8 bit multiplier. These last two possibili­

ties could improve the performance for SPE based processors at the 

expense of extra area.

7.2 RecnmmrnilitInTir f~T PlrthlT

It has to be admitted that taking all these things into con­

sideration, SPE based systems do not seem to have a real future as a 

means of providing programmable digital signal processors. Their



application area is very limited, and the compromises necessary to 

achieve configurable wordlength have reduced the efficiency in use of 

silicon to too great an extent. However, the principle of designing 

special purpose processors as a means of obtaining efficient use of 

silicon without sacrificing the flexibility and ease of implementa­

tion of programmable systems is still vitally important. It would 

probably be more practical to produce a family of processors of 

differing wardlength but executing basically the same instruction set 

than to attempt to provide configurable wordlength. Base of perform­

ing multi-precision arithmetic could be used to good advantage as an 

alternative to configurable wordlength, say on a 16-bit processor. 

Extra parallelism would have to be exploited to achieve the 

equivalent throughput. A family of processors could indeed differ in 

more than just wardlength, for example some could include floating 

point aritteetic and others just fixed point. Two new processors 

recently announced by AT&T, the HE DSP 16 and WE DSP 32 [26] differ 

in this way, although only advance information was available to the 

author, so it is not clear how similar they are in other ways. How­

ever, what is clear is that the D6P 16 provides very high performance 
16 bit fixed point arithmetic, whereas the DSP 32 includes a 32-bit 

floating point processor.

7.2.1 Programmable Systems

As is well known, a large number of programmable signal proces­

sors have come onto the market during the execution of this project. 

None of them uses an approach remotely resembling the SPE based 

approach, which is probably just as well for the originality of this 

thesis, but also serves to confirm the conclusions above that it is



148
not the best way to proceed. The Texas TMS320 family is certainly 

one of the eoet popular, but many of the the others are not too dis­

similar. The approach which has been successful in the THS320 is to 

make each arithmetic cycle as fast as possible, and to tailor the 

instruction set to signal processing applications. The provision of 

a hardware multiplier has been seen above to provide increased sili­

con efficiency, and this is included in the TMS 320. Indeed an adder 

is also included which operates in parallel with the multiplier to 

enable one multiply-accumulate operation to be performed in each 

machine cycle. Clever design of the instruction set means that in 

that same cycle, memory addresses can be incremented to access the 

next data for the multiply-accumulate operation, enabling a 

multiply-accumulate operation to be performed every machine cycle. 

Furthermore, the data can be moved in memory, also in the same cycle, 

to implement the z_1 delay operation, albeit only on one data item at 
a time. Another nice feature is the implementation of bit-reversed 

memory addressing, which greatly eases the problem of data reordering 

for FFT calculation. The use of separate program and data memory 

effectively increases the processor-memory bandwidth, as indeed it 

does with the SPE, so that an instruction can be executed in only one 

machine cycle. The latest version of the TMS320, the 320C25, which 

has a cycle time of only 50ns can implement 20 multiply-accumulate 
operations per microsecond. It is claimed that it can implement a 

1024 point complex FFT in only 7.1 ms.

Two areas of research in programmable systems seem to offer sig­

nificant reward. The first is the connection of processors into net­

works, and the second is the establishment of functions which can 

usefully be hardwired into a programmable processor, or made particu­



149
larly easy to implement by clever instruction set design. The Ires 

transputer shows great potential for the implementation of networks 

of processors. This is, after all, the key concept behind the tran­

sputer. Inter-processor communications can go on at the same time as 

arithmetic operations in the processors, providing yet another farm 

of parallelism. Especially in view of the latest transputers incor­

porating floating point processors, the potential for signal process­

ing applications is quite clear. Combining this with some of the 

clever instruction set design of the TMS320 would seem to show great 

promise.

The incorporation of hardware multipliers, multiplier- 

accumulators and even floating point processors has been seen to be 

very successful in improving the efficiency of programmable signal 

processors. These are, of course, still very general purpose tools, 

and indeed the signal processors described often also find applica­

tion in general scientific calculations. One way to increase 

throughput further would be to increase the provision of hardwired 

functions. An obvious example would be complex multiplication, or 

even a whole FFT butterfly. It is now quite possible to integrate 

several hardware multipliers on a single chip, making such possibili­

ties worth exploring. The drawback is, of course, that such func­

tions could be totally useless and therefore wasted in many applica­

tions. It might, however, be quite possible to provide several 

aultiplier-accimnilators within a single processor, which could either 

be used to perform pre-configured operations such as the FFT but­

terfly or programmed by the user for parallel use. This certainly is 

an area of research worth pursuing. It may be decided, of course, 

that the best approach is simply to integrate several processors on



150

on chip or wafer, in a similar way to that envisaged for SPE based 

processors. In this case, very careful attention will need to be paid 

to the provision of the right amount of memory, and to inter- 

processor communications. The exploitation of VLSI complexity and 

beyond far programm able digital signal processing systems is a great 

challenge to ingenuity.

7.2.2 Hardwired Svstj^s

As far as can be envisaged, there will be a continuing require­

ment for custom designed hardware to implement digital signal pro­

cessing systems. Programmable systems may provide a solution far 

most audio frequency applications, and indeed possibly well above 

audio bandwidth«. However, applications such as digital video and 

broadband communications systems will remain beyond the scope of pro­

grammable systems for the foreseeable future.

Recent hardwired signal processing systems have tended to use 

components such as multipliers and multiplier-accumulators, typically 

up to 24 by 24 bits, and having clock frequencies in excess of lOMIz. 

However, the days of such an approach are limited. It is now possi­

ble to integrate several multiplier-accumulators on a single chip, 

operating at similar frequencies, utilising advanced CMOS technology. 

The Inmos A100 [7] chip is an example. This implements a 32-stage 

FIR filter, and can process 16-bit data with 4-bit coefficients at a 

data rate of lOMhz using a 20ttiz clock. Coefficient wordlengths of 

8, 12 and 16 bits take proportionately longer. The chip therefore 

effectively includes 32 multipliers of 4 by 16 bits. The output of 

the multiplier-accumulator array is 36 bits wide, and the chip output 

is 24 bits wide, selected from the 36 available. These chips will



150
on chip or tafer, in a similar way to that envisaged for SPE based 

processor«. In this case, very careful attention will need to be paid 

to the provision of the right amount of memory, and to inter­

processor communications. The exploitation of VLSI complexity and 

beyond for programmable digital signal processing systems is a great 

challenge to ingenuity.

7,2.2 Hardwired Systems

As far as can be envisaged, there will be a continuing require­

ment for custom designed hardware to implement digital signal pro­

cessing systems. Programmable systems may provide a solution far 

most audio frequency applications, and indeed possibly well above 

audio bandwidths. However, applications such as digital video and 

broadband communications systems will remain beyond the scope of pro­

grammable systems for the foreseeable future.

Recent hardwired signal processing systems have tended to use 

components such as multipliers and multiplier-accusulatars, typically 

up to 24 by 24 bits, and having clock frequencies in excess of lOMIz. 

However, the days of such an approach are limited. It is now possi­

ble to integrate several multiplier-accumulators on a single chip, 

operating at similar frequencies, utilising advanced CMOS technology. 

The Inmos A100 [7] chip is an example. This implements a 32-stage 

FIR filter, and can process 16-bit data with 4-bit coefficients at a 

data rate of lOMhz using a 20ttiz clock. Coefficient wordlengths of 

8, 12 and 16 bits take proportionately longer. The chip therefore 

effectively includes 32 multipliers of 4 by 16 bits. The output of 

the multiplier-accumulator array is 36 bits wide, and the chip output 

is 24 bits wide, selected from the 36 available. These chips will



151

find easy application in video, and possibly radar, signal process­

ing.

It becoaes increasingly difficult to establish general purpose 

components as levels of integration increase, and in many cases it is 

desirable to implement the system in one chip or a very few chips. 

It is these considerations which have brought Application Specific 

Integrated Circuits (ASICs) to the fore in many application areas. 

Until recently, ASICs were not generally suited to signal processing 

applications, it making much more sense to utilise standard 

multiplier-accumulator chips, albeit possibly with gate arrays imple­

menting some of the random logic. However, it is looking increas­

ingly likely that ASICs will become more and more important for sig­

nal processing systems, and this seems to be a very promising area of 

research.

Traditional gate arrays and standard cell systems will not be a 

great deal of use in such systems. Same more advanced tools will be 

required. The FIRST silicon compiler [10] is an example of such a 

system, designed at the University of Edinburgh. This implements 

bit-serial signal processing systems, producing silicon layout 

directly from a textual specification. This specification is at a 

fairly low level, thus the designer has to tailor his design to the 

basic functions provided by the FIRST system. Nonetheless, this sys­

tem represents a very important step forward in custom VLSI for sig­

nal processing.

There is currently much interest in the ASIC world in general 

cell systems, such as the Flessey Megacell system [4]. In a standard 

cell system, cells are all the same height and placed in rows on a



152
chip for easy routing. Although cells of varying width can be accost- 

nod* ted, the eost coeplex cells available are similar to MSI TTL 

chips: counters, adders, etc. In general cell systems, cells of 

varying height and width can be accoamodated. Thus larger subsystems 

such as RAM, ROM, FLA, and multipliers can be provided as cells. 

Moreover, these cells can often be paraneterised, that is they can be 

produced automatically by software to a specification provided by the 

designer. This means he can have available multipliers of any 

desired configuration, for example 12 by 20 bits or whatever he may 

require. He may also be able to trade silicon area far performance 

in some cases. Such systems are clearly of interest to the designer 

of signal processing systems, as they could potentially provide him 

with just the building blocks he requires. Indeed he would be better 

off designing such systems based on paraneterised cells, than design­

ing with standard components, as these cannot be tailored precisely 

to his needs.

Hith such a general cell system available, it would be possible 

also to create higher level design tools, perhaps deserving of the 

name of silicon compiler. Such tools could take a specification from 

the designer, select an appropriate architecture, and generate the 

required cell specifications for the general cell system. For exam­

ple, an FFT compiler could be conceived, where the designer would 

specify the nvaber of points and performance required, and the com­

piler could select the appropriate level of parallelism and generate 

the chip automatically. This kind of tool could also be provided for 

other classes of function, such as digital filtering. In this case, 

the compiler could choose, or assist the designer in the choice, 

between recursive or transversal filtering, and in the latter case



153

between direct implementation or fast convolution via the FFT. For 

this kind of system, some kind of expert system will be required, for 

example to assist in the selection of architecture. The limited 

range of such architectures far signal processing suggest that real 

success could be achieved in developing such systems. This is the 

area in which the author would like to concentrate his research fol­

lowing the completion of this thesis.



FILTER USED FOR COMPARISON OF PROCESSORS

APPENDIX A

154

A simple filter design was chosen to be implemented on all the 

processors considered, in order to provide a means of comparing their 

performance. The filter selected was a 2nd. order Chebyshev low pass 

filter with the following parameters:

This filter was translated into the z-plane for implementation as 

a digital filter, using the bilinear z transform. The sampling fre­

quency used was 50 times the cut-off frequency, so that sine waves of 

a reasonably smooth appearance could be observed at frequencies up to 

5 times the cut-off frequency. It should be noted that the cut-off 

frequency of the filter need not necessarily be 1 Hz, but will always 

be times the sampling frequency. It is common practice to design 

digital filters with unity cut-off frequency in this way. The 

transfer function of the filter in the z-plane is:

Filter Order: 2

Max. Ripple in Passband: 0.1

Cut-off frequency: 1 rad s-1

Transfer Function: H(s) * 1
s2 + 1.522041s + 1.6583122

H(z) -
278.48711 (1 - 1.7946004z"1 ♦ 0.82625952z"2)

which can be implemented as:

^=2-4 1.7946004yi>_1 - 0.82625952yn_2278.48711



155

In practice, it is not necessary to have the gain precisely correct, 

thus xn can be divided by a suitable power of 2, in this case 1024 

(210), to ensure that the filter gain is less than unity and to 

prevent arithaetic overflow.

BINARY VALUES OF OOEFFICIHiTS

1 . 7 9 4 6 0 0 4 1Q *  1 . 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 U 2

0.8 26 25 9 52 j Q = 0 . 1 1 0 1 0 0 U 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 2



INTEL 2920 PROGRAM POR TEST FILTER

APPENDIX B

156

1 LDA Y,Y1,L1
2 SUB Y,Y1,R2
3 ADD Y,Y1,R4
4 SUB Y,Y1,R5
5 ADD Y,Y1,R6
6 SUB Y,Y1,R8
7 ADD Y,Y1,R9
8 SUB Y,Y1,R11
9 ADD Y,Y1,R12
10 SUB Y,Y1,R13
11 SUB Y,Y2
12 ADD Y,Y2,R2
13 SUB Y,Y2,R3
14 ADD Y,Y2,R4
15 SUB Y,Y2,R6
16 ADD Y,Y2,R9
17 ADD Y,X,R10
18 ADD Y,X1,R9
19 ADD Y,X2,R10
20 LDA Y2,Y1
21 LDA Y1,Y
22 LDA X2,X1
23 LDA XI,X



APPENDIX C 

SPE INSTRUCTION SET

In the following instruction descriptions, "aaaaaa" represents a 

6-bit address, "11" represents a 2-bit shift length where "11" is one 

less than the shift length and "■" represents a bit determining 

whether or not the multiplier register is to be shifted.

Memory Operations

Olaaaaaa SAGC Store Accumulator

lOaaaaaa 1XIER Load Miltiplier Register

llaaaaaa U B Load Register B

Shift and I/O Operations

OOmOlOll SL Shift Left

00ml0011 SR Shift Right

OOmlOlOO XI External Input

00ml1000 XO Bcternal Output

OOmlllOO XIO External Input and CXitput

Arithmetic Instructions

OOmOOOOO NOP No Operation

OOmOOOOl NBG Negate Accumulator

OOmOOOlO A0 Set Accumulator to Zero

00*00011 B0 Set Register B to Zero

00*00100 AB Load Accumulator from Regi

OOmOOlOl

OOmOOUO

BA Load Register B from Accumulator

ADD Add Register B to Accumulator

SUB Subtract Register B from AccumulatorOOmOOlll



Special Instruction»

OOaOllOO GOND

SMEX

ADD, SUB or NOP conditional 

upon Multiplier bits 

Move memory by one location00*01101



HILO DESCRIPTION OF AN SPE
APPENDIX D

159

* Circuit header and external connections

OCT SPE(MI,CO,LDP[3:0],IO[7:0],KIB?X[1],CI,RDP[3:0],II[7:0], 
D6I,DSO,MSPE,PHI 1,PHI2) ;

* Tri-state buffers for left and right data ports 

BUFIF1(1,1)
LDPB[3:0] (LDP[3:0],LDPX2[3:0],LDPQJ) 
RDPB[3:0] (RDP[3:0],AO[3:0],RDPBO;

INPUT MI Cl II[7¡0] M5PE PHI1 PHI2;

TRI LDP[3:0] RDP[3:0];

* Instruction registers including GOND instruction decode

RESISTER(1,1) IR[7:0]«VALCASE II[7:0],
00701100=VALCASE HIER[1:0],

01*(II[7:5],BIN 00110),
10-(II[7:5],BIN 00111),
DEFAULT«(II[7:5],BIN 00000) B4DCASE,

DEFAULT«II[7:0] ENDCASE L0ADIF1 PHI2;

REGISTERS,1) IO[7:0]-IR L0ADIF1 PHI1;

* Arithmetic unit

REGISTER(1,1) INA[3:0)«VALCASE IR[7s0], 
00700001«NOT AOC[3:0],
00700010:00700100-BIN 0000,
DEFAULT«ACC[3:0] ENDCASE LOADIF0 BIN 0;

REGISTER(1,1) INB[3:0]-VALCASE IR[7:0], 
00700100:00700110=BUS[3:0], 
00700111-NOT BUS[3:0],
DEFAULT-BIN 0000 ENDCASE LOADIFO BIN 0;

REGISTER (1,1) INCI-VALCASE IR[7:0],
00700001100700111-NOT Cl,
DEFAULT-CI ENDCASE L0ADIF1 PHI 2;

REGISTER(1,1) CO-VALCASE IR[7:0],
00700001:00700111-N0T AO[4],
DEFAULT«AO[4] ENDCASE LOADIF1 PHI1;



AU output register

REGISTER(1,1) AO[4:0]=(BIN 0,INA[3:0])+(BIN 0,INB[3:0])+ 
(BIN 0000,INCI) LO ADIFI PHI1;

Single cycle delay for left data port

REGISTER(1,1) LDPX1[3:0]=AO[3:0] LOADIF1 PHI2;

REGISTER(1,1) LDPX2[3:0]=LDPX1 LOADIF1 PHI1;

REGISTER(1,1) LDPEXl=AND((IO[7 :6],IO[4:2]> BQV BIN 00010) 
LOADIF1 PHI2;

REGISTER (1,1) LDPEX2=LDPEX1 LOADIF1 FHI1;

Enable signal for left and right data port tri-state buffers

REGISTER (1,1) LDPQ*= LO ADCASE (PHI1,PHI2), 
01-LDPEX2,
10=0 SOCASE;

REGISTER (1,1) RDPQ4= LO ADCASE {PHI1,FHI2>,
Ol-4ÍAND((IO[7:6],IO[4:2]> BQV BIN 00010),

10=0 SOCASE;

Multiplier register

R E G I S T E R ( 1 , 1 )  M I H ? X [ 4 : 0 ]  = VA L C A S E  I R [ 7 : 6 ] ,
10 = ( B U S [ 3 : 0 ] , B I N  0 ) ,
D E F A U L T  = M ID? [ 4 : 0 ]  S O C A S E  L O  AD I F I  P H I 1 ;

R E G IS T E R  ( 1 , 1 )  M I S ? [ 4 : 0 ]  = V A LG A S E  I O [ 7 : 5 ] ,
001 = ( M I , M I E R X [ 4  s1 ] ) ,
D E F A U L T  = K I E R X [ 4 : 0 ]  EN D C A S E L O A D IF 1  P H I2 ;

RB Register
REGISTS?(1,1) RB[3:0]-LOADCASE (PHI1,IR[7:6],IR[4:0]), 

111?????:10000011:10000101 =BUS[3:0] BOCASE;

Data memory
RAM(0:63) MEM[3:0];

Main Communications bus

REGISTER(1,1) BUS[3:0]«LOADCASE (PHI1,PHI2,IR[7:6],IR[4:0]), 
01???????=RB[3:0],
1001????? : 100000011:100000101 =AOC[ 3:0], 
101??????^4EM[IR[5:0]] SOCASE;



REGISTER(1,1) ACC[3:0]=VALCASE (I0[7:0],MSPE), 
00701000?«{ AO[ 2:0], RDP[ 3] ), 
00?01001?*{AO[1:0],RDP[3:2]),
00701010?*{AQ[0],RDP[3:1]),
00701011?*RDP[3:0],
007100000*(U>P[0],AO[3 s1]>,
00?100010*(LDP[1:0],AO[3:2]),
00?100100«(LDP[2:0],AO[3]>,
007100110*IDP[3:0],
00?100001«(AO[3],AO[3:1]), 
00?100011*(AO[3],AO[3),AO[3:2]), 
007100171*(AO[3],AO[3],AO[3],AO[3]), 
00?10100?:00?11?00?*LDP[3:0],
DEFAULT*AO[3:0] ENDCASE LOADIF1 PHI2;

A c c u m u l a t o r  i n c o r p o r a t i n g  b a r r e l  s h i f t e r  o p e r a t i o n

Data Strobe In and Data Strobe Out:
- used only to support test simulations

REGISTER(1,1) DSI*LOADCASE (PHI2,IO[7,6,4,2]),
10011*1,
0???7*0 ENDCASE;

REGISTER(1,1) DSO=U>ADCASE (PHI2,IO[7,6,4,3]),
10011*1,
0???7*0 ENDCASE;

Program for writing and shifting mesiory

REGISTER(1,1) XADR[5:0);
WHEN PHI1(1 TO 0) DO CASE IR[7:0],

01?????? - MEH[IR[5:0])*BUS,
00701101 - EVOiT XI ENDCASE;

WHEN XI DO XADR-63 EVENT X2;

WHEN X2 WAIT 1 DO IF XADR >* 32 THDJ
HEN[XADR]«4ffiN[XADR-l] EVENT X3 B©IF;

WHEN X3 WAIT 1 DO XADR*XADR-1 EVENT X2.



A c c u m u l a t o r  i n c o r p o r a t i n g  b a r r e l  s h i f t e r  o p e r a t i o n

RBGISTQ)(1,1) ACC[3:0]-VALCASE (IO[7:0],MSPE), 
00?01000?-<AQ[2 s 0],RDP[3]>,
00?01001?*{AO[1:0],RDP[3:2]>, 
00?01010?-{AO[0],RDP[3:1]},
00701011?-RDP[3:0], 
00?100000-<UJP[0],AO[3:1]),
00?100010-<U>P[1:0],AO[3:2]},
00?100100-{LDP[2:0],AO[3]>,
00?100110=IDP[3:0],
00?100001-{A0[3],AO[3:l]>,
00?100011-<AO[3],AO[3],AO[3:2]>,
00?1001?1-<AO[3],AO[3],AO[3],AO[3]),
00?10100?:00?11?00?-LDP[3:0],
DEFAULT=AO[3:0] ENDCASE LOADIF1 PHI2;

Data Strobe In and Data Strobe Out:
- used only to support test simulations

REGISTER(1,1) DSI=LOADCASE {FHI2,I0[7,6,4,2]),
10011- 1 ,
0????-0 ENDCASE;

REGISTER(1,1) DSO-LOADCASE (PHI2,IO[7,6,4,3]),
10011- 1 ,
0????*0 WDCASE;

Program for writing and shifting meswry

REGISTER(1,1) XADR[5:0];

W E N  PHI1(1 TO 0) DO CASE IR[7:0],
01?????? - HOI[IR[5:0]]-BUS,
00701101 - EVENT XI BIDCASE;

W E N  XI DO XADR-63 EVENT X2;

WHEN X2 WAIT 1 DO IF XADR >- 32 TOO»
MEN[XADR]H4EN[XADR-1] EVENT X3 ENDIF;

W E N  X3 WAIT 1 DO XADR»XADR-1 EVENT X2.



162
REFERENCES

1. G.A. Anderson and E.D. Jensen, "Computer Interconnection Struc­
tures: Taxonomy, Characteristics and Examples", Computing Sur­
veys, vol 7 no. 4, December 1975

2. Intel, "2920-10 Signal Processor", Data sheet, 1979.

3. A.W. Burks, H.H. Goldstine and J. Von Neumann, "Preliminary dis­
cussion of the logical design of an electronic computing instru­
ment", Part 1, Vol I, Report prepared for US Army Ordnance Dept, 
1946 in J. Von Neumann, "Collected Works vol V: Design of com­
puters, theory of automata and metrical analysis", ed A.H. 
Taub, Pergamon press, Oxford, 1963.

4. J.S. Brothers, J.W. Tomkins and J.S. Williams, "The Megacell 
Concept: an approach to painless custom design", Proc. IEE pt. 
E, 132, pp91-98, 1985.

5. H. Kurokawa et al., "The architecture and performance of Image 
Pipeline Processor", Proc VLSI 83 Conference, North-Hoi land, 
1983, pp275-284.

6. B.A. Bowen and W.R. Brown, "VLSI Systems Design for digital sig­
nal processing", Prentice-Hall, 1982.

7. Inmos, "IMSA100 Cascadable Signal Processor", preliminary data 
sheet, June 1986.

B. M.G.H. Katevenis et al., "The RISC-II Micro-architecture", Proc. 
VLSI 83 Conference, North-Hoi land, 1983.

9. R.F. Lyon, "A Bit-Serial VLSI Architectural Methodology for Sig­
nal Processing", Proc VLSI 81 Conference, Academic Press, 1981, 
ppl31-140.

' 10. P.B. Denyer, D. Renshaw and N. Bergmann, "A Silicon Compiler for 
VLSI Signal Processors", Proc ESSCIRC 82, pp215-218.

11. A. Peled and B. Liu, "Digital Signal Processing, Theory, Design 
and Implementation", Wiley, 1976

12. J.W. Cooley and J.W. Tukey, "An Algorithm for the Machine Calcu­
lation of Complex Fourier Series", Mathematics of Computation, 
vol 19, no 90, 1965 pp297-301

13. A.V. Oppenheim, ed., "Applications of Digital Signal Process­
ing", Prentice-Hall, 1978

14. Barnes, et al., "The ILLIAC-IV Computer", IEEE Transactions on 
Computers, vol C-17 no 8, August 1968, pp 746-757.

i 15. Watson, W.J., "The TI ASC - A Highly Modular and Flexible Super 
Computer Architecture", Proc AFIPS, 1972 FJCC, Vol 41 pp221-228, 
AFIPS Press, Montvale, NJ, 1972



163

16. Gold, B., et al., T h e  FDP, A Fast Programmable Signal Proces­
sor", IEEE Transactions on Coaputers, voi C-20, pp33-38.

17. R.H. Biasco, "V-MOS chip joins Microprocessor to handle signals 
in real time", Electronics aagazine, 30 August 1979.

18. S.S. Magar and D.A. Robinson, "Microprogriimw u M e Arithmetic Ele­
ment and its Application to Digital Signal Processing, I EE 
Proc., voi 127 part F no 2, April 1980, pp99-106.

19. H.K. Luk and H.F. Li, "Microcomputer-based real-time/online CCt 
processor", I EE Proc., voi 127 part E no 1, January 1980, ppl8- 
23.

20. E.E. Swartz lander and D.J. Heath, "A Routing Algorithm for Sig­
nal Processing Networks", IEEE Transactions on Coaputers voi C- 
28 no 8, August 1979 pp667-572.

21. S.I. Kartashev and S.P. Kartashev, "A Multicomputer System with 
Dynamic Architecture", IEEE Transactions on Coaputers, vol C-28 
no. 10, October 1979, pp704-721.

22. Intel, "MSC-65 User's manual", June 1977.

23. Intel, "The 8086 Family User's Itenual", October 1979.

24. I-Ngo Chen and Robert Hilloner, "An 0(n) Parallel Multiplier 
with Bit-Sequential Input and Output", I EE Trans. Coaput., voi 
C-28 no. 10, pp721-727, October 1979.

25. Carver Mead and Lynn Conway, "Introduction to VLSI Systems", 
Addi son-Wes ley, 1980.

26. AT&T, "HE DSP16" and "HE D6P32", Product Descriptions, 1986.

27. GenRad, "HILO-2 User Manual”, 1984.

28. L.H. Nagel, D.O. Pederson, "Simulation program with integrated 
circuit emphasis", Proc 16th Midwest Symp. Circ. Theory, Hater- 
loo, Canada, April 1973.

29. A. Matthews, "Digital Processes Group Microcode System User 
Manual", UMIST internal report, 1981.

30. Neil Weste and Kamran Eshraghian, "Principles of CMOS VLSI 
Design", Addison-Wesley, 1985.

31. J. Mavor, M.A. Jack and P.B. Deny er, "Introduction to MOS LSI 
Design", Addison-Hesley, 1983.

32. D. Linden, "A Discussion of sampling theorems", Proc. IRE, voi 
47, ppl219-1226, July 1959.

33. M.M. Sondhi, "An Adaptive Echo Canceller", Bell System Tech. 
J., voi 46, no 3, March 1967, pp497-511.



164
34. A.V. Oppenheia and R.W. Schaffer, "Hoaoaorphic Analysis of 

Speech", IEEE Trans. Audio Electroacoustics, voi. AU-16 1968 
PP221-226.1

35. Texas Instruaents, "Digital Signal Processor: 116320 Product 
Description", 1984.

36. Iann Barron, et al., "Transputer does 5 or aore KIPs even when 
not used in parallel", Electronics aagazine, voi 17, 1983, 
ppl09-115.

37. B. Koneaann, J. Mucha and G. Zwiehoff, "Built-In Logic Block 
Observation technique", Proc. 1979 IEEE Test Conference, no37- 
41.

I

I


