
DIGITAL ADAPTIVE POLE SHIFTING REGULATORS

A thesis presented to 

THE VICTORIA UNIVERSITY OF MANCHESTER 

for the degree of

DOCTOR OF PHILOSOPHY

by

John Meirion Edmunds

Control Systems Centre July
The University of Manchester 
Institute of Science and Technology

1976



u r n  H B H n r

TIGHTLY
BOUND
COPY



ABSTRACT

This thesis is a study of a self-tuning regulator which has been 

formed by combining a recursive least squares estimator with a general pole 

shifting control law. The least squares estimator is used to estimate the 

system parameters at the same time as the control law is used to control 

the system. The combination will give stable control for most linear 

systems.

The stability and conditional stability which may occur with this 

regulator are investigated with the aid of root locus diagrams.

Two ways of introducing setpoint variations and so turning the 

regulator into a controller are suggested. The initial properties of the 

self-tuning regulator are investigated with simple illustrations. It is 

shown that the bias in the parameter estimates, caused by certain types of 

coloured noise on the system, does not effect the asymptotic behaviour of 

the resulting control. It is also shown that the lack of uniqueness of 

the parameter estimates, due to the closed-loop identification, does not 

effect the control law chosen. «

A brief theoretical extension to multivariable systems is included. 

This multivariable approach reduces to the pole shifting control given in 

the rest of this thesis for single input systems.
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CHAPTER 1 INTRODUCTION

For many years there have been attempts to make control systems 

which tune themselves. The resulting adaptive controllers have been 

used in controlling systems which have slowly varying parameters and 

systems with constant parameters. The time varying systems are the 

most obvious candidates for adaptive control since it might be 

expected that the best performance would be obtained if the controller 

changed with the system. However, the analysis of time varying systems 

is complicated and has not progressed as far as the analysis of systems 

with constant parameters, so at present it may be better to try to 

analyse self tuning controllers on unchanging systems. It would then 

be hoped that if the controller could adapt well to constant systems, 

it may be able to deal with slowly changing systems. The analysis for 

constant systems is also worthwhile because a self tuning controller 

would eliminate or reduce the sometimes lengthy process of identifying 

the system and calculating the required controller parameters. Hence 

a good self tuning controller may decrease the work involved in tuning 

the control loop, and reduce the time for which the system has to be 

run before good control is achieved. The self tuning controller should 

not need as long to achieve good control because as the control tunes 

itself the data it is using for the tuning becomes more like the normal 

operating record. This contrasts with the more usual techniques of 

identifying systems which do not necessarily produce an accurate 

description under conditions of normal operation.
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There are two main objectives in designing self tuning controllers.

The first is to design a scheme which is easy and quick to implement, 

the second is to design a scheme which is stable, at least for a well 

defined class of systems, and which gives good control for many systems.

Many different approaches have been used to design self tuning
fck»-

control schemes. One of the simplest ways is to assume that system is l

known approximately, use this to estimate the required control,and then 

use some hill climbing method on the control parameters to produce an 

optimal output. One example of this is a method proposed by P Alien 1

A second approach is to estimate the system parameters, and then 

use a table of best standard controllers to decide the required control 

parameters.

There have also been analogue computer methods proposed for 

tuning controllers.

Another approach was proposed by C. McGreavy and P.J. Gill.^

They used a Kalman filter .to estimate the system's parameters, combined 

with a P.I.D. control law. This approach of using Kalman Filters 

could be extended to general linear systems but was not in that paper.

Since many systems can be approximated by a set of linear differen­

tial equations the two main objectives of adaptive control would be 

satisfied by a self tuning controller which could deal with most such 

linear systems.

In recent years there have been several adaptive control schemes 

proposed for general linear systems. In 1973 Astrom and Wittenmark
9

suggested a self tuning regulator which asymptotically approaches a 
minimum variance regulator for linear systems whose z-transforms have 

no zeros with magnitude greater than one. This consists of a recursive
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Figure 1.1

Diagram of self tuning controller studied in this thesis. 
The notation for the models and control is introduced 
in Chapter 2.
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least squares estimator to identify the system coupled with a very simple 

control law. One problem with this regulator is that one of the system's 

parameters has to be estimated prior to the start of the controlt and 

completely wrong estimates of this parameter can lead to instability. 

However, they demonstrated that these stability conditions are not too 

restrictive, by successfully controlling at least two industrial systems.

In 1974 Astrom and Wittenmark suggested a regulator which 

asymptotically gives minimum variance control for any linear system, 

if the system estimates settle. This consists of a recursive least 

squares identifier followed by a polynomial factorization to find the 

zeros of the system which are outside the unit circle; the whole being 

combined with a complicated control law.

In 1975 D. Clarke4produced a self tuning controller which minimizes 

a function of the input and output variances.® This is an interesting 

scheme because it estimates the required control parameters directly, 

rather than estimating the system parameters and then calculating the 

control law.

The approach to self tuning controllers studied in this thesis is 

to use a recursive least squares estimator to obtain an estimate of 

the system's parameter values. Then at each sample time to calculate 

the control law which would move the closed loop poles to specified 

positions, assuming that the current parameter estimates for the system 

are correct. This control law is then used to calculate the next 

control signal. Figure 1.1 gives a diagram corresponding with this 

self tuning regulator. Both of the self tuning regulators which were 

suggested by Astrom and Wittenmark and mentioned above are special cases 

of this approach. 
t a~J P 3
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The analysis of this control scheme begins in Chapter 2 with an 

introduction to z-transform models to show the likely positions for the 

poles and the zeros of the system.

In Chapter 3t the stable and conditionally stable regions are 

then investigated, assuming that the system has known fixed parameters. 

This case is investigated since it is unlikely that the asymptotic 

properties of a self tuning controller will be better than those if the 

control was calculated for and applied to a known fixed system. In 

Chapter 4 the least squares estimator is introduced, and the problem of 

non-unique estimates due to feedback are dealt with.

In Chapter 5 it is shown that the asymptotic properties of the 

self tuning regulator described are the same as would be obtained with 

the general pole shifting control law applied to a known system even 

if the disturbance is a coloured noise. Some simulated examples are 

given to demonstrate the initial behaviour of this regulator. In 

Chapter 6 several methods of computing this controller are then given 

together with their computational requirements. Chapter 7 gives a 

theoretical extension of this regulator to multivariable systems, 

although it is unlikely that it could be used on systems with more than 

two inputs and two outputs.
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CHAPTER 2 SYSTEM MODELS

In this chapter several forms of linear dynamic system models 

are introduced and the relationships between Laplace and z-transforms 

investigated.

2.1 Dynamic Models for Linear Systems

The subject of dynamic models of systems is covered in detail 

by A.G.J. MacFarlane in "Dynamic System Models".* He deals mainly 

with continuous system models, but includes sections on sampled 

systems. A more extensive introduction to sampled systems is given 

by K.J. Astrom in "Introduction to Stochastic Control Theory". This 

book, investigates linear models which have a random unknown disturbance.

A more simple approach to sampled systems is given by K. Steiglitz in 

"An Introduction to Discrete Systems". This book is written as a 

textbook for an introductory course on circuit theory, and does not 

use differential equations or 6-functions. The author claims because 

it uses only simple mathematics that it can be used before the more 

difficult theory for continuous systems.

Dynamic System models can be divided into those which have a finite 

number of parameters, and those with an infinite number of parameters.

Two consnonly used models with an infinite number of parameters are 

impulse responses and frequency responses. These can describe all the 

systems which can be described by the finite models however the larger 

number of parameters makes them harder to handle, and means that more



7

data is usually required to fit them to a system.

Therefore for control the finite models are usually used. For

systems described by linear differential equations two common forms
4for the models are Laplace Transfer functions and state space repre­

sentations.^ The Laplace Transfer function can be very easily obtained 

from the differential equations by substituting the 's' for the dif­

ferential operator. A state space representation can also be obtained 

from the differential equation. For systems described by linear
3difference equations the corresponding models are z-Transfer functions 

and discrete state space forms.® The z-Transfer function can be obtained 

from the difference equation by substituting z * for the delay operator. 

The difference equation models are useful for sampled systems since 

they provide an accurate description of the behaviour at the sample 

times of a system described by linear differential equation, provided 

that the input to the system remains constant between sample times.

When using a digital computer to control a Linear system the 

z transforms and discrete state space forms usually hold because the 

control input to the system will normally be constant between the 

sample times. For this thesis the z-Transfer function has been used 

rather than the discrete state space because many of the simpler 

recent identification methods produce z transfer function models 

rather than state space ones. However, if some of the states of the 

system were accessible it may be better to approach the problem of 

self-tuning controllers by using the discrete state space models.
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2.2 Approaches to z Transfer functions

One of the oldest and most common ways of introducing z-transforms 

is to start with a continuous system described by a Laplace trans­

form and then use an impulse train to sample the input.^ This 

approach is not very satisfactory since it implies that the z-trans­

forms only apply when impulses are put into the system, whereas 

they can apply when no impulses are used. However, it does show a 

relationship between the Laplace and z-transforms mapping the 's' 

plane to the 'z' plane by z ■ esAt where At is the sample period.

MacFarlane describes a different approach to z-transforms in 

"Dynamic System Models".6 He considers the sampled systems using 

discrete data sequences instead of continuous functions. He asso­

ciates a weighting sequence with each dynamic system; this sequence 

is very similar to the system's unit impulse response. The system 

output can then be obtained by convolution of the weighting sequence 

and the input sequence. This approach is more satisfactory than the 

previous one since it does not involve the use of impulses. Here, 

z is associated with a member of a set of standard basis sequences; 

it corresponds with a data sequence which is zero for all except the 

kth sample, when it is unity.

The approach to z-transforms which shall be used in this thesis

is to start from difference equations or recurrence relationships
"~1 8 and use z as a delay operator. This is suggested by P. Eykhoff,

and is also used by K. Steiglitz. This approach has been used in

this thesis because it does not use the impulse samplers, and it

can be seen that the z-transforms apply to any system that can be
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A sampled system.



since many of the recent identification methods for dynamic systems

just fit coefficients to difference equations, or identify a recur­

rence relationship between the sampled input to a system, and the

sampled output

2.3 Difference equation models

If a continuous system has its input and output observed

simultaneously at discrete sample times (Fig. 2.1) then a difference

equation describing the system at the sample times would be a rela­

tionship between the input and output sequences in the form

Y(mit) ♦ Y(fm-lMt) ♦ a Y((m^2;At) ♦

b U (mût ) + b U(fm-l;At) ♦ ... + b U(/m-nk./At)

Where na and nb are constants, At is the sample period, and this

relationship holds for any m. There is not bound to be such a rela­

tionship for a given system but it is shown in section 2.3.1 that

there will be such a difference equation if the system can be des

cribed by a linear differential equation, and the input is constant 

between sample times. Introducing z * as a time delay operator.

equation 2.1 can be rewritten

)U(mt) (2.2)

(1 ♦ A(z 1))Y<mt) - B(z L) U(mt)

Y(mt) U(mt)
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In most cases b will be zero since a nonzero value implies that o
a change on the input of the system immediately produces a change on 

the output. This would imply that the system is improper, i.e. its 

Laplace transform has as many zeros as poles. When bQ is zero the 

next output can be very easily calculated given the past inputs and 

outputs by substituting in the difference equation 2.1.

2.3.1 Systems described by difference equations

Theorem If a system which is proper and which can be described by 

a linear differential equation, is sampled at regular intervals then 

there is a difference equation which relates the observed inputs and 

outputs if the input is constant between samples. A difference 

equation can also be found if there is a time delay in the system. 

Similarly if difference equation 2.1 holds for the sampled inputs 

and outputs of a system, and a^ is not zero and nb $ na, and the input 

to the system is constant between the sample times, and the (1+A(z *)) 

polynomial does not have roots with negative real part and zero com­

plex part, then a linear differential equation can be found which will 

describe the system output at the sample times.

These conditions will usually be satisfied by a linear system 

controlled by a digital computer, since the control signal would 

commonly be constant between the sample times.

Proof. If the system (Fig. 2.2a) has distinct poles a partial 

fraction expansion can be used to split it into a sum of simple 

poles (Fig. 2.2b). Each single pole in this representation can then 

be converted to a z-transform which gives the same output at the 

sample intervals. These separate z-transforms can then be recombined
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because of the linearity of the z operator. The same method can be 

used if there is a time delay present. The converse can also be 

handled the same way by using a partial fraction expansion of the z- 

transform and converting each term separately. The condition nb $ na 

ensures that there is a partial fraction expansion. When the poles 

are not distinct the result can be obtained by taking the limit of a 

sequence of transfer functions with distinct poles.

Note that the conversion from the z-transform to Laplace trans­

form is not unique since it involves taking logarithims. A digital 

computer program was written to convert between Laplace and z-transfer 

functions by using the method adopted for proving this theorem,

a) Conversion of a single pole without time delay

Since the input to the system is constant between sample 

intervals, and the system is linear, the output can be considered as 

a sum of step responses. Therefore if the z-transfer function and 

the Laplace Transfer function both give the same result for a step 

response they are equivalent for any allowed input.

The unit step response of a system described by a Laplace 

Transfer function (2.5).

Y
U

1
1 ♦ Ts (2.5)

is

Tf(t) - 0 t f 0

Y(t) - l-et/T t * 0 ( 2 . 6 )
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Suppose the sample period is At

. . , -nAt/T ^Y (nAt) - 1 - e n i 0

. ! _ e-At/T + e -At/T _e-nAt/T

- l-e“At/T + e"At/T (1 - e-<"-l>A'/T)

- 1 - e_At/T ♦ e“At/T Y ((n-1)At) n i l

Y (nAt) - (l-e_At/T) U((n-l)At) + e_At/T Y((n-l)At) n i l  (2.7)

But if n t 1 Y(nAt) “ 0.

Therefore equation 2.7 holds for any n. Introducing z * as a 

delay operator gives the z-transform

Y(nAt) - z-1 (l-e-At/T) U(nAt) 

+ z-1 e_At/T Y(nAt) ( 2 . 8 )

z-1 (l-e“At/T) U
x - , - V At'T

So the Laplace transfer function 2.5 and the z-transfer function 2.9 

correspond to the same system.

The same relationship can be obtained using standard tables 

of z-transforras,^ but the approach used here illustrates the close 

connection between time responses and z-transfer function.

b) Conversion of a single pole with a time delay from Laplace to 

z-transform

Consider a system described by a Laplace transform.
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Y e~Ts (2.10)
U “ 1+Ts

Where X is a time delay which is less Chan Che sample period AC. 

The seep response is

Y(C) - 0 t S t

Y(c) - l-e"(t" X)/T t i X (2.11)

following Che same argumenc as in Che case wich no Cime delay 

Y(nAC) - 1 _e-nAt/T n > 1

- (l-e“At/T) «• e~At/T Y((n-1)AC) (2.12)

Also subscicucing in 2.11 gives

Y (0) - 0
and Y (AC) - 1 - e"i4t_T)/T

Therefore Che same sCep response can be obcained ac Che sample 

period by a difference equacion, when Che consCanCs b^ and b^ have been 

choaen Co give Che same inicial response

Y(nAc) - bx U ((n-1)AC) + b2 U((n-2)At) ♦

♦ at Y ((n-1)AC)

where at - .-At/T

bt - 1 - ,-<«-X)/T

and b. ♦ b, - (1 - e“At/T)

b2 - .-<At-t)/T _#-AC/T

(2.13)

(2.14)

(2.15)

Therefore (2.16)
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Since this difference equation has the same step response as 

the Laplace transfer function it will have the same response as 

the Laplace transfer function with any input signal which is constant 

between the sample times, due to the linearity of the z-transfonn, 

and Laplace transform.

c) Conversion of a single pole from z-transform to Laplace transform

In part a) of this proof the equivalence between the Laplace 

transfer function

and the z-transfer function

was demonstrated. This equivalence can be used to convert from the 

Laplace transfer function to the z-transfer function or from the z- 

transfer function to the Laplace transfer function. The only diffi­

culty is that the conversion from the z-transfer function requires 

the evaluation of Log(-a^) since

Evaluating Log(-a^) is difficult since the logarithm is not a uniquely 

defined number, it is only defined to within the addition of a multiple 

of 2wj. However, usually this ambiguity can be removed by adding or 

subtracting multiples of 2irj to the -At/T obtained in order to mini­

mize the modulus of the imaginary part of the number.

Y
U

1
1 ♦ Ts

which implies (2.17)
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The approach which has been used in this section in converting

Laplace transfer functions to z-transfer functions can be considered
9as a special case of that proposed by Edwards. He obtained a state 

space representation for the continuous system, and then converts 

to a sampled state space, and thus obtains the z-transfer function.

Time delays can be added to this more general method in a similar way 

to that used for a simple pole, since he does the conversion from 

the continuous state space using the time response.

2.A Expected regions for the Poles and Zeros of z-transfer functions

Since the most commonly used system representation for control 

systems is the (s) transfer function the expected regions for the 

poles and zeros of the z-transfer functions have been investigated 

by considering Laplace transfer functions and finding the corresponding 

z-transfer functions.

2.A.1 Poles

There is a one to one correspondence between the Laplace transfer 

function poles and the z-transfer function poles, which can be seen 

from the method of conversion suggested in section 2.3. A pole 

with a time constant T, i.e. a Laplace transfer function pole at 

- /T,corresponds to a z-transfer function pole at e ' using 

equation 2.9.

Therefore poles in the left half plane in the Laplace transfer 

function correspond with poles inside the unit circle in the z-transfer 

function. So a system will be stable if all its poles are within the 

unit circle. Real poles in the Laplace transfer function become



t o

positive real poles in the z-transfer function. however complex 

pairs of poles in the Laplace transfer function can become a pair of 

real poles in the z-transfer function, although they usually become 

a pair of complex poles. They can become real poles due to the 

periodic nature of e for complex T.

2.A.2 Poles with short sampling periods

As the sample period approaches zero the z-transfer function 

poles will all approach +1. This implies that if the sample period 

becomes too short the rounding errors in the z-transfer function will 

become significant, particularly if there are several poles.

2.4.3 Zeros

Generally the zeros of the Laplace and z-transfer functions are 

not in one to one correspondence, since the number of zeros in the 

z-transfer function is usually one less than the number of poles, 

and hence independent of the number of Laplace transfer function 

zeros. The mapping of the zeros is not defined in a simple manner 

like the mapping of poles, but depends on the pole values as well as 

the zeros and the sample interval.

2.4.4 Zeros of a z-transform of a system consisting only of integrators 

Suppose a system has a Laplace transfer function

* . U
sn <2.18)

The systems step response is

tnY(t) - —
n ! (2.19)
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N NUMERATOR POLYNOMIAL ZEROS

*
-1z 0.00

2 (z_1 ♦ z“2)/2l -1.00

3
_ .

(z ' + 4z 2 + z 3)/3l -3.73,-0.27

4 (z-1 ♦ H z -2 ♦ llz-3 ♦ z_A)/4! -9.90,-1.00,-0.10

5 (z-1 + 26z"2 ♦ 66z-3 ♦ 2 6 z “ A ♦ z“5)/5l -23.20,-2.32,-0.43
-0.04

6
.

( z - , + 5 7 z “ 2 + 3 0 2 z _ 3 + 3 0 2 z - 4 + 5 7 z - 5 + z “ 6 ) / 6 ! -51.29,-4.54,-1.00
-0.22,-0.02

7 ( z “ , + 1 2 0 z “ 2 + 1 1 9 1 z - 3 + 2 4 1 6 z _A

♦1191z“5+ 120z-6+z-7)n t

-107.78,-8.17,-1.87 
-0.54,-0.12,-0.01

TABLE 2.1

NUMERATORS OF THE 2 TRANSFER FUNCTIONS OF SYSTEMS OF JUST N INTEGRATORS



as can be found in a standard table of Laplace transform pairs.

The z-transform of these functions Y « tn are given in 

one of the appendices of a book by E.I. Jury.^ The z-transfer 

function of the system can then be obtained by dividing by to

take account of the step input. The corresponding z-transform 

numerators are given in Table 2.1. This table also gives the 

zero values found by factorizing the numerator polynomials.

It will be noticed that in each case half of the zeros 

are outside the unit circle. This occurs because the coefficients 

of the polynomials are symmetrical about the largest values, and 

so if there is a zero with a value 'a' there is also a zero with 

value ^/a.

2.A.5 Zero positions as sample period approaches zero

Suppose that the Laplace transform of a system has np poles 

and nz zeros. Then as the sample period is made small the system 

looks more like np-nz integrators for the first few samples.

However the z-transform is very closely linked with the time 

response for a few consecutive samples so it could be expected 

that the z-transform will be similar to that for np-nz integrators. 

This implies that nz of the z-transform zeros will nearly cancel 

poles. So it could be expected that nz of the z-transform zeros 

will approach >1 since all the poles approach +1, and the other 

np-nz-1 zeros will approach the position of the z-transform zeros 

of a system described by np-nz integrators.

Two cases were examined to confirm the above reasoning. Figure 

2.3 shows the zeros of the z-transfer function corresponding with 

the Laplace transfer function
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Y " (1 + 10s)(1 + lls)(l+12s) (2.20)

It can be seen that the zeros seem to approach the zeros of 

a system of just three integrators, as the sample time becomes 

small. However there were problems with the conversion becoming 

ill conditioned for short sample periods.

The second example uses a more complicated Laplace transform 

to test that some of the zeros move towards >1. The Laplace 

transfer function used was

Y _ _____________(l + 2s)(l ♦ (l+j)s)(l+ (l-j)s)___________
U (l+s)(1+1.5s)(l+25s)(l+3s)(1+0.7(1+j)s)(1+0.7(1-j)s) (2.21)

The expected zero positions for small sample times are three at 

unity, one at -0.27 and one at -3.7S.

With a sample period of 0.5 the zeros were

.754 * 0.192 j, .778, -0.200 and -2.79

With a sample period of 0.1 the zeros were

.953 - 0.047 j, 0.943, -0.25 and -3.51

Shorter sample periods were tried but the conversion had become 

too ill conditioned for the reverse procedure of converting the z- 

transform back to the Laplace transform, and so the results could 

not be checked. However it can be seen that the zeros are approach­

ing the expected values.



Delay

Figure 2 .1»

Z”transform zero caused by the introduction of a delay, as a function 

of the delay for various pole time constants.
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2.A.6 Zeros due to a time delay of less than one sample period 

When a system is described by

section 2.3 shows that the sampled system is described by

Figure 2.A shows the zero value as a function of the time delay 

for various values of the pole time constant T. As the delay X 

approaches the sample interval the zero approaches - It can be 

seen from the graph that the zero can be outside the unit circle 

if the delay is more than half the sample period. It may be expected 

that the zero created by a time delay on a more complicated system 

would behave in a similar manner to that created on this very simple 

system of a single pole.

2.5 Z-transfer functions with delays of more than one sample 

interval.

If a system has a time delay T where

Y(t)
[ d —e-CAt-T)/1),-! „ (e-(At-t)/g_e-t/T

So the zero created by the time delay is

-At/T -(At-U/T (2.23)
l - e-(At-T)/T

T - kAt ♦ X

with 0 < T < At
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T h e n  t h e  d e l a y  o f  kA t  c a n  b e  d e a l t  w i t h  by m u l t i p l y i n g  th e  
**1 —k —1B(z ) polynomial by z since z is a time delay of one sample 

interval. The remainder of the time delay T can be dealt with by 

the method suggested in section 2.3.

Therefore if a system has a Laplace transfer function 

(e_kAt8 .e~ *) G(s) and the z-transfer function of a system 

e ^ 8 G(s) is

y . »(z"1) U
1*A(e-1)

Then the z-transfer function of the system with time delay is

y . * *  U (2.24)
(1+A(z-1))

However the self tuning regulator suggested by Astrom for minimum 

phase systems requires a model of the form

(1 ♦ z-k a '(z-1)) Y - z"k b '(z_1) U (2.25)

This form can be obtained by multiplying the top and bottom 

of the transfer function in 2.24 by a suitable polynomial P(s *)

Where (l+ACz"1)) P(z-1) - 1 ♦ z"k a ' (s~l) (2.26)

and B(s_1) Pis"1) - B' (a-1) (2.27)

and P(s l) ■ 1 ♦ PjZ 1 ♦ ♦ pk* k

The condition that the coefficients of z 4 for t ■ 1, ... k 

in the polynomial (1 + A(z *JP(z *) are all zero uniquely define 

the required polynomial P(s *).
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Introduction of a coloured random noise
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Figure 2.5 a, b, c, d show the positions of the roots of the 

polynomial P(z *) for systems with two z-transfer function poles 

at 0.6, 0.7, 0.8, and 0.9 respectively. On each plot the positions 

of the roots are shown for time delays k of 1, 2, 3, 4, 5 and 6 .

It will be noticed that the roots of P(z *) can frequently be outside 

the unit circle.

This same method of changing the form of the model can be used 

when there are random disturbances in the model, such as those intro­

duced in the next section. In that case the disturbance polynomial, 

the B(z *) polynomial and the (1 + A(z 1)) polynomial all have to 

be multiplied by the P(z *) polynomial.

The required P(z *) polynomial can be easily constructed from 

the A(z *) polynomial and the time delay k using the conditions 

which was mentioned above. More detail of the computation is given 

in Chapter 6 .

2.6 Random disturbances

Many systems have random disturbances which effect their out­

puts. These can be included in the z-transfer function models by 

adding a noise model to the system. Equation 2.3 becomes

<1 ♦ A(*-1)) Y - B(z_l) U ♦ C(z~l) e (2.28)

Where e is a white noise sequence and C(z *) is a polynomial in z * 

which colours the noise. Most forms of noise can be described in 

this way, heeever the €  po lynom ial may have te be very long. Fig. 2.6 

gives a diagrammatic representation of this model of a disturbed



system. For the least squares method of fitting parameter values 

to the A and B polynomials to give unbiased results the C(z *) 

polynomial should just be a constant. The residuals in the least 

squares fitting are then uncorrelated. This situation of having 

uncorrelated residuals should not be confused with the case which 

occurs more frequently of having white measurement noise on the 

observations of the system.

2.7 Constant offsets

Many systems give a non zero output for a zero input. This 

can be included in the equation (2.28) by adding a constant offset 

term d

(1 ♦ A(z_1))Y - B(z_l) U ♦ C(z~l)e ♦ d (2.29)

This form of model can also deal with the case of a non 

zero input being required for the system to give a zero output.
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CHAPTER 3 CONTROL LAWS

3.1 Regulators

When a system has no setpoint changes, the control scheme 

usually aims to counteract the effects of disturbances on the 

system. In this case the controller is called a regulator. The 

general form of a linear regulator is very similar to the form for 

a dynamic model of a linear system. There are two main differences. 

The first is that a change in the system output usually produces 

an immediate change in the control input, while on most systems a 

change on the input does not produce an immediate change on the 

output. The second main difference is that there is usually no 

random disturbance in the calculation of the control signal.

The general linear model for a sampled data regulator becomes

(1 ♦ F(s-1)) U - - G(*_1) Y (3.1)

Where F(* • t, s  ̂♦ •. ■ ■*■£,*
1 nf

C(*"l> - g0 ♦ * _ 1 ♦ • ♦ 8ng * " " 8

c.f. equation 2.3.

(The minus sign has been introduced on the right of equation 3.1 

since it is usual to have negative feedback rather than positive 

feedback.)

The general closed loop equation (3.2) can be obtained by 

substituting for U in the open loop equation 2.28, using the feedback 

law in equation 3.1.
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(1 ♦ A(z-1))Y -z~k B(z-1) C(z-1) Y + Ce 
1 ♦ F(z_1) (3.2)

r e a r r a n g i n g  g i v e s

[(1 ♦ A(Z~X))(1 ♦ F(z-1)) ♦ z~k B(z_1) G(z-1)] Y _ Ce ( 3 3) 
1 ♦ F(z_1)

or

[a+A(z-1 ))(l+F(z-1)) ♦ z“kB(z_1) G(Z- 1 ) ]  Y - (1+F(z-1)) C(z-1)e
(3.4)

T h e r e f o r e  Che c l o s e d  l o o p  s y s t e m  p o l e s  a r e  Che r o o t s  o f  Che p o l y ­
n o m i a l  T ( z  ^ )  w h ere

T(z *) - 1 ♦ tjZ 1 ♦ ♦ tntz n* (3.5)

T(z_1) - (1 ♦ A(z-1))(l ♦ F(z_1)) ♦ z"k B(z_1) G(z_1) (3.6)

T ( z  * )  i s  c a l l e d  Che c h a r a c t e r i s c i c  p o l y n o m i a l  o f  Che c l o s e d  
l o o p  s y s t e m .  The c l o s e d  l o o p  s y s t e m  i s  s t a b l e  i f  a l l  Che r o o t s  o f  
T ( z  *)  a r e  w i t h i n  t h e  u n i t  c i r c l e .

3.2 Pole shifting regulators

Suppose that the required closed loop characteristic poly­

nomial is t ' ( z  *). The system can be made to have this characteristic 

polynomial by choosing F and G in the control law such that

T'(z-1) - (1 ♦ A(z"l))(l ♦ F(z_1)) ♦ z“k B(z_ 1 )C(z_1) (3.7)

since then T(z 1) will equal t '(z *),

The orders of F and G will then usually satisfy 3.8.



nt ( na + nf » k ♦ nb ♦ ng (3.8a)

nf - nb + k- 1 (3.8b)

ng ■ na - 1 (3.8c)

The orders of F and G can be smaller in special cases, but 

generally they are defined by 3.8b and c, ensuring that there are 

parameter values giving the required characteristic polynomial.

These orders can be obtained by considering equation 3.7 which gives 

a set of linear simultaneous equations defining F and G. The 

coefficients of each power of z * define one of the linear simul­

taneous equations. For example the coefficients of z give

This would clearly be the minimum variance feedback controller since 

the output is equal to the random disturbance which is driving the 

system. To decrease the output any more would mean that the random

if k  -  0

The closed loop equation then becomes

T ,(s“1)Y - T(z_1)Y - (1 + F(z_1)) C(z_l) e (3.9)

3.3 Minimum variance regulators

3.3.1 No Time delays

If T (z *) is chosen to be equal to (1 ♦ F(z *))C(z *) the

closed loop equation would become

Y - e

* For sim plicity  the case with coloured noise hss not been included since the re su lt for coloured noise is  not used elewhere in th is  th e s is .
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disturbance on the system would have to be known before it affected 

the output. In the simple case of a white noise disturbance where 

C(z_*) is unity the control is chosen such that

t '(z-1) - (1 + F(z_1)) - (1 ♦ A(r_1)) (1 ♦ F ( z _ 1 ) ) ♦ B ( z _ 1 ) G ( z " 1)

rewriting gives A(z )̂ (1 ♦ F(z *)) ♦ B(z *)G(z *) " 0 (3.10)

The solution of 3.10 can be seen to be

G(z~l) - - tz A(z_1) (3.11)

and (1 + F(z-1)) - iz B(z_l) (3.12)

where l is any scalar and the orders of A, B, G and F are as in
1 ,section 3.2. This very simple control law was used by Astrom in a 

self tuning regulator for minimum phase systems.

Substitution in 3.10 for T (z *) gives

T'(z_1) - t z  B(z'1) (3.13)

for minimum variance control.

3.3.2 With time delay»

If the closed loop equation 3.4 is multiplied by the 

polynomial P(z 1) defined in section 2.S it becomes

((1+A)(1+F)P ♦ z“k BGP) Y - P(1*F)C e (3.14)

In the simple case with white noise C is unity and 3.14 becomes 

( ( U F ) ( U z " V )  ♦ z~k3CP)Y - P(l*F)e (3.15)
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Dividing by (1+F) gives

-1 . -kP(z ) e - z , - 1 .  A PBGl A (z ) + 1+F

Writing the variance of Y as Var [y ]

Var [y ] - Var |p(z_1) e - z"k ( a ' ( z _ 1 )  «• 2|£) yj

(3.16)

Var Pq e ♦ PjZ- 1  e ♦ + Ptz‘k e k

<*'e~i> * m >  A (3.17)

However, the sequence of e ’s is a sequence of independent 

random variables which are also independent of the last term in the 

expression for the variance, since this last term depends only on 

previous output values. Therefore

Var[Y] - Pq Var[e] ♦ PjVar [z- 1  e] ♦ ♦ Pfc Var [z k e]

f -z"k (A'(z-X) ♦ P ( r l ? B^z“1) G(z,-,1)) T 1 
l 1 ♦ F(z_i) 1

♦ Var

(3.18)

Therefore the output variance will be minimized if the control is 

chosen to remove this last term, i.e.

/ (,-i) + P(z-1) B(z-1) Gjz"1) _ 
(1 ♦ F(z"l>

(3.19)

(1 ♦ F)A' ♦ PBC - 0 (3.20)

c.f. 3.10 without time delays.

The solution of 3.20 can be seen to be



o
IMF1JT TO ft SYSTEM < 1-0.5Z''>Y«=<Z"-1 .  IZ 'N j WITH ft MINUTICI 
UARIftHCE CONTROLLER

FIO.FE 3.1
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G(z_1) - -lz a ' ( z _ 1 )  (3.21)

1 ♦ F(z_1) - z P(z_1) B(z_1) - iz b '(z_1) (3.22)

This corresponds to choosing T*(z *) in 3.7 as

t '(z~1) - (1+A(z“ 1 ))(l+F(z"1)) + z"k B(z_1) G(z_1)

- ( P(z"1)(l+A(z“1))(l+F(z'1))+z"kP(Z~1)B(z_1)G(z‘1))P(Z 1)

* 1 « ( a + z -kA'(z_1 ))(l+F(z-1 ))+z_k b '(z- 1 )G(z-1))
P(* )

using 3.2t gives

T'(z_l) ----*^5-  ( 1 ♦ F(z-1) )
P(z *)

using 3.22 gives

t '(z_1) - t  z B ( z - 1 )

where t ■ (3.23)

3.3.3 Stability of minimum variance regulators

It will be noticed that if the polynomial B(z 1) has any 

roots outside the unit circle in the z plane the minimum variance 

regulator will produce an unstable system, since the closed loop

poles are at the roots of B(z ^) (Equations 3.13 and 3.23). A

simple example of this is shown in Figure 3.1. This figure shows the 

input to a system described by

(1 - 0.5 z"1) Y - (z_ 1 - 1.1 z-2) U (3.24)
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with Y(o) set to -1 to act as an initial disturbance. The minimum 

variance control used is

U -0.5Y
1 -1 .Is- 1

The output is zero after the first sample, however, the 

input grows exponentially. This control is clearly unacceptable.

3.3.A Stable minimum variance control

The minimum variance control subject to the closed loop system 

being stable has been found by V. Peterka .2 He found the minimum 

variance control strategy for several different forms of the system 

model.
3Astrom and Wittenmark expressed the control in polynomial form 

using a slightly different notation from that used in this thesis.

In appendix B the closed loop characteristic polynomial is found 

starting from Astrom and Wittenmark's work. It is deduced there 

that the values of z which make the t '(z *) zero for this control are 

all the zeros of the system which have modulus less than unity, and 

the reciprocals of the zeros with modulus greater than or equal to 

unity.

3.A A Stable Regulator

The stable regulator in section 3.3.A requires a polynomial 

factorization which can be time consuming. However, if the control 

is chosen by setting T'(z *) in equation 3.7 to a constant poly­

nomial with all its roots inside the unit circle in the z plane, the 

system will be stable if it is linear. The simplest such polynomial
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is t ^ z-*) « 1, but it will be shown in section 3.6 that this

c a n  e a s i l y  r e s u l t  i n  c o n d i t i o n a l l y  s t a b l e  s y s t e m s .  The c o n d i t i o n a l
stability can frequently be removed by a suitable choice of T (z *) .

3.5 Variance of the output

With the regulator specified by equation 3.7 the closed loop 

output can be obtained from equation 3.9.

Y - (I * FCz'1)) C(z-1) e 
T'(* ) (3.25)

The output variance can be easily calculated using a method 

described by Astrom. He gives a short Fortran program for a 

digital computer, which will calculate the output variance if the 

variance of the disturbance e is unity. This program uses a pair 

of tables one of which is very similar to the table used in Routh's 

stability test for linear dynamic systems.

3.6 Stability and Conditional Stability

In linear systems the stability depends only on the positions 

of the roots of T'(z *) since the characteristic polynomial T(z S  

is equal to T'(z *). However, if the system is nonlinear, for 

example if there are limits on the allowed control signal, then 

other methods of determining stability have to be used. One case 

where instability could be expected is when the system is only 

conditionally stable, since then a limit on the control signal could 

effectively decrease the loop gain and so cause instability.

A closed loop system is called conditionally stable if a 

decrease in the feedback gain can produce instability. Conditional 

stability can be discovered by introducing a variable gain X into the
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feedback law, and looking for values of X between 0 and 1 which 

make some of the roots of the characteristic polynomial go outside 

the unit circle. Putting this X in equation 3.6 gives

T(z_1) - (1+A(*~1 ))(1+F(*“1)) ♦ X z"k B(z_1) G(z_1) (3.26)

A root locus diagram can then be used to track the roots of T(z *) 

for varying values of X. The root locus diagram required is the one 

for a system

Y , s~k B(z_1) G(z-1) U
(H-A(z_1 ))(l+F(z"1)) (3.27)

Similarly the Nyquist diagram of this system 3.27 can be used to 

check for conditional stability.

Root locus diagrams are described by Jury in reference 5.

3.6.1 Minimum variance regulator with no time delays

Substituting for 1 + F(z *) in characteristic equation 3.26 

using the control equation 3.12 gives

T(z-1) - tz(l+A(z-1)) B(z_1) ♦ A B(z-1 )C(z“1)

- B(z-1)( l z(l+A) ♦XG(z-1)) (3.28)

Substituting for G(z 1) in 3.28 using the other control equation 

3.11 gives

T(z~l) - B(z~l)(tz(l+A(z-l))-tzXA(z-1))

T(z_1) - tz B(z_1)(l ♦ A(z_1) - XA(z"1)) (3.29)
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Therefore the system is conditionally stable if any of the roots 

of B(z ^)(1+A(z *) - XA(z *)) are outside the unit circle for X less 

than unity. However, roots of B(z outside the unit circle make 

the system unstable, so the conditional stability can only be caused 

by the roots of ,(1+A(z *) - XA(z *)). If the system is open loop 

unstable a value of X « 0 makes this polynomial have an unstable root, 

and so the system would be conditionally stable. However, this is 

not an important case of conditional stability because it cannot be 

avoided by choosing a different controller. The more important 

cases are when the system is open loop stable but closed loop 

conditionally stable, since these can be avoided by suitable choice 

of regulator.

In the rest of this section an example will be given of 

conditional stability occurring with a system having three poles, 

and a proof will be presented that conditional stability with this 

regulator requires that the system has at least three poles.

Proof that conditional stability cannot occur with just two poles

Suppose the denominator of the systen/s transfer function is
_ 1 —i _91 ♦ A(z ) - 1 + a^z ♦ a2z . The characteristic polynomial of 

the closed loop system with the minimum variance regulator is

T(z_1) - z B(z~l) (1 ♦ A(e-1) - XA(z_1))

- z B(z_1) (1 ♦ (l-A)als" 1 ♦ <1-X)a2 z~2) (3.30)

The polynomial 1 * A(z *) - XA(z *) can either have two complex 

roots or two real roots. If there are two real roots for X - 0 then



x= 0 .003

O I -

0 0
0 8

„ X = 0 002 If >■■
0 9

X = 0 0009

— i
1 1

Fi rii re 1 .3
Root locus of 1 ♦ A(z_l) -*A(z_l) with



1 0

Root locus of 1 ♦ A(z ') -XA(z *) for varying X with
1 ♦ A(z_1) - (1 - 0.9z_,)(l - 0.5z"*).



the rules for constructing root locus diagrams imply that the one 

with larger magnitude will initially move along the real axis 

towards the origin as A increases. This larger root will decrease 

until it reaches the smaller root, which has also been moving; the 

two roots will then become complex as X is increased. Figure 3.2 

shows the root locus when

1 ♦ A(z-1) - (1 - 0.9*_1)(1 - 0.5*"1) •

While the roots of 1 ♦ A(z *) - AA(z *) are complex, they are

conplex conjugates and their product is equal to the coefficient of 
-2z in the polynomial. Hence the magnitude of each of the roots is 

equal to ((l-Ajla^l)^ and so decreases with increasing X while X is 

between 0 and 1. Therefore the larger of the two roots of 1 ♦ A(z  ̂

AA(z 1) decreases for increasing X, and so the roots must stay 

within the unit circle if they start within it.

Example of conditional stability with three poles

Figure 3.3 shows the root locus diagram for (1 ♦ A) -
_ |  4

(1 - 0.95z ) . It can be seen from this diagram that there are 

values of X between 0 and 1 for which the polynomial 1 ♦ (l-A)A(z 1) 

has roots outside the unit circle. Therefore this system would be 

conditionally stable if the minimum variance regulator was used.

The initial behaviour of the roots in figure 3.3 is fairly 

typical of the behaviour with a group of poles near to each other, 

in that they tend to set off away from each other as soon as they 

become complex. Hence conditional stability would be expected if 

the system being controlled by the minimum variance regulator has 

a group of poles near to the unit circle in the z domain. It was
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Root locus with 1 ♦ A(z-1) - (1 - 0.865z-1)3
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shown in Chapter 2 that this is likely to happen if the system has 

several poles in its Laplace transfer function and the sample 

interval is short compared with the pole time constants. For the case 

of three equal poles the system will be conditionally stable 

if the time constants are more than 7 sample intervals. Figure 3.4 

gives the root locus diagram for the controlled system when the open 

loop system has 3 poles in its z-transfer function each at 0.865 which 

corresponds to a time constant of 6.9 sample intervals. It can be 

seen that this is just on the limit between stability and conditional 

stability.

3.6.2 Minimum variance control with time delays

Substituting for the control polynomials 1 ♦ F(z *) and G(z *) 

in characteristic equation 3.26 using the control equations 3.21 

and 3.22 gives that the characteristic polynomial of the closed 

loop system with extra gain X added is

T(z_1) - <1+A<z“l))(l+F(z-1)) ♦ Az~k B(z_1) C(z'1)

T(z_1) - (1+A(z-1)) Iz P(z~l) B(z_l)-Xz_k B(z-1) t z a '(z -1)

T(z~l) - iz B(z~l) ((1+A(z-1)) P(z_l) -z~k Xa '(z~1))

T(z_l) - Iz Biz*1) (l>z“k A'(z-1 )(l-X)) (3.31)

This has the same form as the equation for the case without 

time delays (Equation 3.29). The only difference is that 1 +A(z l) 

has been replaced by (l*A(z ^))P(z S  or (l*z kA (z *)). Hence the 

roots of P(z *) have been added to the roots of (1+A(z *)) as starting 

points for branches in the root locus diagrams which have been used
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to investigate conditional stability. This increase in the number 

of roots will increase the chances of one of the paths going outside 

the unit circle, so the time delay will increase the likelihood 

of the closed loop system being conditionally stable. In particular 

it was shown in section 2.5 that P(z 1) can frequently have roots 

outside the unit circle, and this would automatically result in a 

conditionally stable 8ystem.

3.6.3 Removal of conditional stability by tailoring the response

The conditional stability can be removed by reducing the 

demands on the control system. For instance, if instead of aiming 

for the minimum variance control the control was chosen such that 

T*(z *) “ (1+F)(T*). This would move the system poles to the roots 

of T*. The characteristic equation with a gain X introduced then 

becomes

T(z_1) - (1+A)(1+F)+ABG

- <1+A)(1+F)+A(T'-(1+A)(1+F)) using 3.7

- (1+F) [l+A+A(T*-l-A)]

Clearly if T* approaches 1+A the possibility of conditional 

stability is removed. The proof in section 3.6.1 implies that if 

the polynomial 1+A has m roots and T* has just ra-2 roots which all 

are equal to roots of 1+A then the possibility of conditional sta­

bility is removed. The m-2 roots can be taken out as factors of 

l+A+A(T+-1-A) and then the polynomial reduces to 1+A+-AA* where

A* ■ a *z_l ♦ a **~2. In section 3.6.1 it was shown that in this
1 2

case the system is stable. Figure 3.5 shows the effect of adding 

a T* ■ l - 0.8z_ 1 to a system with 1+A - (l - .95z“lj3 (p£gt 3 .3),
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Figure 3.6

a function of in the equation 3.33.
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It can be seen that the conditional stability has been removed.

3.6 .A Conditional stability with the stable controller of section 3.4

A simple control law which obtains a stable system is obtained 

by using T*(z *) « 1 in 3.7.

The characteristic polynomial with a variable gain introduced 

becomes

T(z_1) - (1+A)(l+F) ♦ ABG

Using 3.7 to substitute for BG gives

T(z_1) - (1+A) (l+F) + A(T'(z-1) - (1+A) (l+F))

For the simple case with T*(z )̂ - 1

X(z_1) - (1+A)(l+F) - A((1+A)(l+F)-l) (3.32)

This has the same form as 3.24, so again the root locus 

diagrams can be used to indicate conditional stability. It will be 

noticed that this control law will be more prone to conditional 

stability than the simple minimum variance control since the 1+A 

polynomial has been replaced by (1+A) (l+F), and so there are more 

branches on the root locus diagrams.

A frequent cause of conditional stability with this control law 

is for (l+F) to have roots outside the unit circle. Examples can 

easily be found since if the system has a pole near to one of its 

zeros the control polynomial l+F usually has a root outside the unit 

circle. Figure 3.6 shows the position of the root of l+F as a 
function of the system zero with a system given by equation 3.33.

(I - .9z“l)(l - .5z"1) Y - («"l ♦ t>2s_1) U (3.33)
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In this case the control will produce a conditionally stable system 

for a large range of values for b^.

The general conclusion that the control will be conditionally 

stable if the system has a pole near to a zero can be reached by 

considering the equation 3.7 defining the control. Suppose the 

system has a zero at 'x' and a pole near to this point where x 

is not near the origin. Substituting for z 1 in 3.7 with */x gives

(1+A(i))(l+F<i)) ♦ B(i) G(i) - T'(i) (3.34)

but x is a zero of the system, hence B(^)=0 (3.35)

(l+A(i))(l+F(J)) - t '(±) (3.35)

However, the system has a pole near to x, therefore 1+A(^) will 

be small and so (1+F(^)) must be large to satisfy equation 3.35.

This implies that the coefficients of the polynomial F must be large, 

hence 1+F has zeros outside the unit circle.

This source of conditional stability can be eliminated by 

choosing T '(z *) to have factors similar to the roots of B(z *) 

which have a modulus less than 1. The minimum variance control for 

non-minimum phase systems suggested by Astrom and mentioned in 

section 2.3.3 chooses these roots to be roots of t ' ( z  S , and so 

will not have this extra source of conditional stability. However, 

it will still have the same conditional stability problems as the 

minimum variance control for minimum phase systems.

3.7 Lower order regulators

The control laws used in the previous sections are all complex 

control laws in the sense that there are almost ns many variables in
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the control as there are parameters in the model of the system.

Simpler control laws can be constructed using the closed loop

equation 3.4-, since this holds for any order of controller.

((1+A)(1+F) ♦ z_kBG)Y - (1+F) e (3.35)

For example, F and G could be chosen so as to make ((1+A)(1+F)

+ z BG)Y as close as possible to (1+F)Y by using a least squares fitting

procedure. The control would then approximate to the minimum 

variance control.^ However, since these control laws are only approxi­

mations it is difficult to predict their stability regions.

3.8 Systems with offsets

In this report the offset on a system is considered to be the 

steady state output of a system with zero input.

Suppose the system is described by equation 2 .21 as described 

in section 2.7.

This offset in the system can be compensated for by adding 

an offset to the control law:

The closed loop equation becomes

(1+A(z-1))Y - z_k B(z_1)U ♦ Ce ♦ d (3.36)

(l*F(i *)
-k B(z_1) d

b (1 ) (3.38)

But d is a constant, hence B(z *)d is equal to d.B(l), so

the closed loop equation reduces to

(l*A(z-1))Y ♦ B(«~1 )C(z~1)Y . Ce (3.39)
l-*F(z )
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This is Che same as equation 3.3 for Che case with no constant 

offsets. Therefore if the regulator is modified to that described 

by equation 3.37 the results of the previous sections hold for linear 

systems which have constant offsets.

This modification to the control can also be used to improve 

the regulator when there is a constant non zero setpoint for the 

system.

3.9 Setpoints and setpoint changes

Setpoints can be introduced into the control by subtracting 

the setpoint from the measured output, and then using this modified 

output in the identification and control (Figure 3.7). This 

treats the setpoint changes as extra disturbances on the system, 

and so usually interferes with the identification algorithm. However, 

it does retain the proper feedback structure in the regulator. In 

the special case of there being no setpoint changes the setpoint 

acts like a constant offset, as described in section 3.8.

An alternative method of introducing setpoint changes is 

shown in Figure 3.8. Here the identification is done with the actual 

inputs and outputs and the control law is modified to include the 

setpoint.

(l+F(z“l))U - - G(z_1)Y ♦ R(z“1) setpoint (3.40)

Combining this with the open loop equation 2.28 gives the closed 

loop equation 3.41.

(1+A(z~1 ))(l+F(z“l))Y+z”ka(z-k)B(z"l)Y-z-kB.R(z“l)setpoint+(l«-F(z“l))Ce

(3.41)
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r e w r i t i n g  g i v e s
- I t  - 1  - 1z B (z  ) R ( z  ) s e t p o i n t (lfF(z~1))C(z 1)e

( l + A ( z ~ 1) ) ( l +F ( z “ 1 ) ) + z _ k G ( z ~ 1 ) B ( z “ 1 )

(3.42)

If the regulator is chosen as in section 3.2 by using equation 

3.7, the closed loop equation becomes

T h e r e f o r e  t h e  t r a n s f e r  f u n c t i o n  b e t w e e n  t h e  s e t p o i n t  and t h e  o u t p u t  
i s  d e f i n e d  b y :

such that the gain of the transfer function 3.43 is unity, i.e.

Examples are given in Chapter 5 of setpoint following using this 

approach. It was usually satisfactory if the noise was white; 

unfortunately the results were not always satisfactory if the dis­

turbance on the system was coloured noise.

Poor results could be expected in some cases since, when the

Y
-k - 1  - 1z B ( z  ) R (z  ) s e t p o i n t

T '(z_1)

Y
-k - 1  - 1m z B (z  ) R (z ) s e t p o i n t

(3.43)

This leaves the R(z *) polynomial to be chosen to give suitable setpoint 

following. In particular, the polynomial R(z 1) should be chosen

B (1) (3.44)

For example, R(z *) may be chosen as a constant at this value.

disturbance is coloured, the self tuning algorithm depends on the 

least squares parameter estimates having exactly the right bias, but 

this bias will be changed by the setpoint changes.



3.10 Behaviour between sample times

With some of the control schemes suggested in this chapter 

the system will tend to be very oscillatory between the sample 

times. This subject has been studied by Dr. D. Clarke (University 

of Oxford).
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O'*
CHAPTER 4 LEAST SQUARES ESTIMATION

The theory of least squares estimation has been published many
1 2times and so has not been included in this chapter. *

Two of the forms given in Chapter 2 for a dynamic model of a 

system, are suitable for use with a least squares estimator. These 

are the two models with white noise disturbances given in equations

4.1 and 4.2.

(l+A(a_1 ))Y(t) - z_kB(z_1) U(t) + e(t) (4.1)

and for cases with constant offsets

(l+A(s“l))Y(t) - z~k B(z_l) U ♦ e(t) + d (4.2)

The least squares estimator chooses the parameter values which 

minimize the variance of the estimated disturbance e(t). There have 

been two main approaches to the calculations involved in obtaining 

these parameter estimates. The first is to collect all the experi­

mental data, and process it all at the same time. The methods pro­

duced by this approach are suitable for off line identification.

The second main approach to the calculation is to use recursive 

formulations of the problem. These methods use each set of observa­

tions separately and give continually improving parameter estimates 

throughout the experiment, making them suitable for on line parameter 

estimation. The recursive methods are not too suitable for off line 

estimation because they only give the proper estimates asymtotically 

and they generally require more computation than the methods which 

process all the data at once. P.C. Young1 described several recursive

* Unions Py •  •
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methods of calculating the least square estimates. V. Peterka 

presented an interesting approach to the calculations, which is more 

difficult to understand but considerably reduces any rounding errors 

which occur with short word length computers. Both of these papers 

include methods of exponentially weighting the past data so that more 

emphasis is placed on recent data. This enables slowly varying 

parameters to be tracked.

In several of the examples in Chapters 5 and 6 an exponential 

weighting factor '4 ' has been used. is a number between 0 and 1

and when each new sample is used the weight given to the past data 

is decreased by this factor.

4.1 Bias in Estimates

The parameter values found by the least squares estimator will 

only be the same as the system’s parameters if the system is governed 

by an equation of the same form as the model. Hence if the model 

being used is that given in equation 4.1 the parameter estimates 

will only avoid bias if the system is described by equation 4.3.

(l+A#(«"l))Y(t) - Ba («_1) U(t) ♦ e#(t) (4.3)

Where the polynomials A and A^ have the same order, the poly­

nomials B and Bg have the same order, and e#(t) is an uncorrelated 

or white noise sequence. If all these conditions are satisfied the 

polynomial A will approach Ag and the polynomial B will approach B^. 

However if one of these conditions is not satisfied the estimates 

will not approach the true values. For example, if the disturbance 

is not white noise, the parameter estimates will be biased, i.e.

45
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if the system is described by 4.4.

(l+A8 (*- 1 ))Y(t) - z~k Bs(r_1) U(t) + C(r_1) es (t) (4.4)

The estimated polynomials A and B will no longer approach the poly­

nomials Ag and Bg describing the system. Proper estimates of the 

polynomials Ag and Bs can be obtained by using an identification 

method which identifies the parameters in a model with the same 

form as the system. One such method is the maximum likelihood
3method. Unfortunately these better methods are more complicated 

and require more computation.

However, one of the surprising properties of a self tuning 

regulator made by combining a least squares estimator with the 

general pole shifting control law (equation 3.7) is that the final 

control obtained will be the same as that obtained by using unbiased 

estimates of the parameters in the pole shifting control law. The 

proof of this together with the conditions which must be satisfied 

are given in Chapter 5.2.

4.2 Bias and non-uniqueness due to feedback 5

When there is feedback on the system the input U and the 

feedback Y are related by the feedback as well as the dynamics of 

the system (Figure 4.1). Therefore the estimates of the parameters 

of the system may be affected by the feedback since the estimator 

just discovers a relationship between the observed inputs and outputs. 

It has been shown that if the feedback does not stop the estimates 

obtained by a least squares estimator from being unique, then the
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feedback will not cause the estimates to be biased. It was also

feedback polynomials F or G is sufficiently large, or if there are 

sufficient setpoint variations to stop the input and output being 

simply related by the feedback law. In the notation introduced in 

Chapters 2 and 3 the estimates will be unique if nf > nb-1 or 

ng > na-1 .

Consideration of the error function minimized by the least 

squares estimator shows that the estimates will not be unique when 

neither polynomial has high enough order. The function minimized 

by the least squares estimator is the variance of e from equation 4.1.

Rewriting 4.1 gives

4shown that the estimates will be unique if the order of one of the

e(t) - (H-A(z_1)) Y(t) - B(z_1) U(t) (4.5)

The feedback law ist

(1 +F(z-1)) U(t) - -G(z-1) Y(t) (4.6)

Multiplying 4.6 by any constant l, and the delay operator z and 

then adding to 4.5 gives

e(t) - (1*A(e-1) ♦ tz"1G(z"1 ))Y(t) - (B(z_1) - tz_1 (l+F(*‘1))) Uft)

(4.7)

Therefore if nf $ nb-1 and ng < na-1 the error function e(t) 

will have the same value with parameter estimates tA(z *) + tz *G(z *) 

and B(s *) - tz *,(l«'F(a *)) as with the proper values A(z *) and B(z 1).

Hence the estimates are not unique.
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If there is a delay of k sample periods, equation 4.5 

becomes

e(t) - (1+A(z_1)) Y - z_k B(z_1) U(t) 4.8
_k—1Now equation 4.6 must be multiplied by l z before adding it to 

equation 4 .8 , to ensure that no extra powers of z 1 are introduced 

before the U(t). This gives

e(t) - (HA(z_1) ♦ G(z“l))Y(t) -z-k(B(z_1) - lz_1 U+F(z_1))|Ut

So the condition for uniqueness becomes that either

nf > nb-1 (4.9)

ng > na-l-k (4.10)

It will be noticed that the control laws given in Chapter 3 

have orders which imply that the estimates will not be unique if 

there is no delay.
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Figure 5-2

Introduction of setpoints as extra disturbances.
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CHAPTER 5

5.1 Some Self tuning Controllers and Regulators

Self tuning regulators can be constructed by combining one of 

the regulators from Chapter 3 with the least squares estimator of 

Chapter 4. The recursive least squares estimator is used to obtain 

a model of the system, and regulator parameters are then calculated 

by assuming that the model of the system is correct (Figure 5.1).

The use of a recursive least squares estimator means that the model 

of the system is continuously changing, and so the control law also 

changes at every sample period. Section 5.2 gives the asymptotic 

properties of these self tuning regulators, and section 5.3 

describes their initial behaviour.

There are several ways of introducing setpoints for these 

regulators, turning them into self tuning controllers. The simplest 

way is to use the error in the output instead of the output for the 

self tuning regulator (Figure 5.2). This way treats any setpoint 

changes as disturbances on the system, and so setpoint changes will 

make the model found by the estimator less accurate. However, if 

setpoint changes are very infrequent, so that the main problem is 

just one of regulation, this approach can be used so long as pro­

vision is made in the estimator for D.C. offsets or bias. A second 

way of introducing setpoints is to leave the estimator to estimate 

the system parameters, and to change the control law to add in a 

function of the setpoint (Figure 5.3). This function is calculated
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from the model to give the correct D.C. gain. This method is 

satisfactory if there is only a white noise disturbance on the system. 

However, when there is coloured noise on the system the model para­

meters will be biased leading to poor setpoint following, and large 

errors with constant setpoints, since there is no direct feedback 

to compensate for errors due to non zero setpoints.

5.1.1 Using a minimum variance control law in a self tuning 

regulator

The minimum variance control law was given by

(1+F(z-1 ))U(t) - G(z-1) Y(t) (3.1)

where (1+F(*-1)) - iz b ' ( z _ 1 ) - iz P(z"1 )B(z~1) (3.22)

and

if the system is described by

(l+A(z_l))Y- z“k B(z_1) U ♦ e (2.24)

A self tuning regulator which asymptotically approaches this 

regulator can be made by using a least squares estimator to estimât« 

the coefficients of A and B in equation (2.24) above, calculating 

the polynomial P(z *) using equation (2.26) and using the resulting 

4 and B polynomials to define the control law. This is very 

similar to the self tuning regulator described by Astrom in which 

he directly estimated the coefficients of the polynomials A and B* 

by forming a model of the form (5.1).
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(l+z_k A'(z_1 ))y- z“ 1 b '(z_1) U ♦ e (5.1)

and then using the same control law. The main difference is that

that any lack of uniqueness due to the feedback was removed. In 

order to add setpoint changes by method indicated by Figure 5.3 the 

control law is changed to that given by equation 3.40.

(1+F(z_1)) U(t) - -G(z_1) Y(t) + R(z-1)setpoint (t) (3.40)

The transfer function is then given by equation 3.43.

unbiased estimates of the system parameters. The effects of non 

zero means can be overcome by changing the estimated model to:

he fixed the first estimated coefficient of the B ' polynomial so

z k B(z 1) R(z 1) setpoint 
T '(z~l)

(3.43)

substituting for T'(z *) using 3.23

giving

" b^z R(z ) setpoint

Therefore the compensator polynomial R(z *) should just be 

*/b^ to give the correct setpoint following when the estimator gives

k k(z *) setpoint

(1+A(z-1)) Y(t) - z"k B (z_1) U(t) ♦ d ♦ c(t) (5.2)
(c.f. 3.36)

and then making the control law

—A*(z_1) d (5.3)
(c.f. 3.37)

U - -A'(z_l) Y(t) - dor
B ^ z -1)

(5.4)



The main constraints on the self tuning regulator made in this 

way is that the system must have all its zeros within the unit 

circle (see section 3.3). It was also shown in section 3.6 that 

this regulator can be conditionally stable if the system has many 

poles near the unit circle, or if there is a time delay.

5.1.2 Using the tailored control law suggested in 3.6.3 in a self 

tuning regulator

For this control the characteristic polynomial T*(z *) is 

(1+F(z *))T* and F and G are chosen so that

Hence the control law can be very easily calculated from the 

parameter estimates. When setpoints are added as in section 5.1.1 

the transfer function is given by

T ,(z_1) - (1+A)(1+F) ♦ BG (5.5)

(1+F)T* - (1«-A)(1+F) ♦ BG (5.6)

(1+F) - t z B (5.7)

and izT* - l z(l+A) ♦ G

G - iz(T*-l—A) (5.8)

y . Bfe *) Rfe * ) setpoint 
(l*F(*_l))T*

If the order of R(z *) is chosen as zero then the required

gain for the setpoint * r “ . '
° bl
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When the output has a non zero mean the model for the system

becomes

(1 ♦ A(z_1)) Y(t) - B(z_1) U(t) ♦ d + e(t) (5.9)

The required response is given by

T*(z_1) Y(t).- e(t) (5.10)

.*. The control for this response is obtained by combining the

two equations (5.9 and 5.10) above

e(t) - (1 +A(z_1)) Y (t) - B(z_1) U(t) - d - T*(z"1) Y(t)

U(t) - (l+Ajz"1) -T*) Y(t) - d
B(z_1)

5.1.3 Using the general pole shifting law

A self tuning regulator can be constructed by combining a 

least squares estimator with the general pole shifting law of 

section 3.4. For this the desired closed loop pole positions are 

chosen, and the denominator of closed loop transfer function con­

structed. The chosen control law is found by substituting the 

required T /(z )̂ in equation 3.7 and solving for the polynomials 

F and G. The current estimates of the system polynomials A(z *) 

and B(z *) are used in the calculation of the control law. There 

are several approaches which can be used to construct the required 

control law. One simple approach is to consider equation 3.7 as 

a set of linear simultaneous equations and solve these with the 

least squares estimator which has to be programmed to obtain the 

system estimates. However this approach is rather inefficient since 

the recursive least squares estimator has to be applied once for each

l



of the simultaneous equations. One of the best ways of solving for 

F and G is to use one of the standard methods for solving sets of 

linear equations such as that proposed by

D 3

This approach decreases the computation being done, and improves 

the accuracy of the solution at the expense of using more core 

storage and using a more complicated program.

Another interesting approach is to notice that closed loop 

equation 3.4 implies that F and G should satisfy equation 5.12 below, 

which is the same as equation 3.7 with both sides multiplied by Y(t).

((1*A(b"1 ))(1+F(«"1)) ♦ z"k B(z-1) G(z-1)) Y(t) - T*(z-1)Y(t)

(5.12)

The Y(t) can be introduced since if this equation is satisfied 

for all the Y(t) which occur the closed loop equation 3.4 is the 

same as would be obtained by solving the equation 3.7. The control 

estimates can then be updated using the recursive least squares 

estimator just once at each sample time. To do this equation 5.12 

is rewritten as

F(*_l)((1+A(*-1)) Y(t)) ♦ G<z- 1 )<jfk B(z_1) Y(t))

- (T'(z~l) - 1 - A(z-1)) Y(t) (5.13)

or F(z_1) Xt(t) ♦ G(z_1) X2 (t) - X3 (t) (5.14)

The functions X^(t), Xg(t) and X^(t) can all be calculated from the 

observed outputs Y(t), the required polynomial T*(z S  and the estimated 

polynomials A(z_l) and B(z~l). Equation 5.14 is of the correct form 

for the least squares estimator. This method has the advantage that 

it does not require a special part of the program to solve for G and F
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but instead can use the recursive least squares estimator used for 

the system estimates. A second advantage of this method is that a 

lower order regulator may be used as suggested in section 3.7.

However this approach will fail if there are limits imposed on the 

allowed control signal, and the control signal frequently reaches 

these limits since then the X ^ t ) ,  X^(t) and X^(t) do not vary suffi­

ciently to calculate the correct control.

Another similar approach to calculating the control is to use 

a noise sequence instead of Y(t) in 5.12. This avoids the problem 

of saturation but retains the same simple calculation. The equation 

for the calculation of F and G then is:

((1+A<*“l»(l+F(«_1)> + z“k B(r“ 1 )G(s~1)) e^t) - T'(z-1) e^t) (5.15)

or
F(z-1 )((1+A(z_1 ))e1 (t))+G(z"1 )(■"kB(z“1 )el(t))-(T ,(z"l)-l-A(z“l))e1 (t)

(5.16)
or
F(z~l) X*(t) ♦ G(z“1) X2 (t) - X 3 (t) (5.17)

Non zero datum levels can be dealt with, for the general pole 

shifting law, in a similar way to that used in the previous section. 
Suppose the model of the system is given by 5.9

(l*A(z-1)) Y(t) - B(z_1) U(t) ♦ d ♦ e(t) (5.9)

and the control law is altered to

-Gjz"1) Y (t) ♦ d ‘
1 ♦ F(z"1)

U -
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Then in order to remove the effects of the offset d, d' should 

be chosen so that

- d
1+F(*_1)

since then the closed loop equation will be the same as if there was 

no offset.

d ' _ * F(l))d
d B ( l )

It will be noticed that in the two previous sections the formula given 

above reduces to d ' - d.

Setpoints can be added by the two methods suggested in the pre­

vious sections. It was shown in section 3.9 that the required gain

r - T -.ai
° B(l)

In the examples in section 5.3 using the general pole shifting 

self tuning regulator the method of calculating the F(s *) and G(s ) 

polynomials was to consider equation 3.7 as a set of linear simul­

taneous equations and solve them using a standard method. The sub­

routine used for the solution of the equations was subroutine SIMQ 

from the Control System Centre's Library of Fortran subroutines.



5.2 Asymptotic properties of self tuning regulators

There are three possible types of behaviour self tuning regulators 

can have after they have been applied for a long time. They can settle 

to a constant stable controller, or they can give reasonable control 

but not settle to a constant controller, or they can produce an un­

stable closed loop system. Simulations of the self tuning regulators 

combining least squares estimation with pole shifting demonstrated all 

three of these types of behaviour.

The examples of instability occurred mainly with non linear 

systems; however, even with linear systems, there were some cases 

where a bad choice of initial condition led to rapid growth of the 

output. In particular when using the minimum variance control (section 

5.1.1) if the initial estimate for the first parameter in the B(z 1) 

polynomial is chosen as zero, or chosen such that it becomes exactly 

zero at some early stage the feedback immediately becomes infinite, 

and the system cannot recover. Similar sorts of numerical problems can 

be found for the general pole shifting law.

However, if these numerical problems are avoided, and the system 

being controlled is linear, the self tuning regulator using the general 

pole shifting law should give stable control, since if the parameter 

estimates settle to the correct values the control will be stable, and 

if the output becomes large the estimates will approach the correct 

values and so stabilize the system. (A similar argument was used by 

Astrom in describing the stabilizing properties of his self tuning 

regulator for minimum phase systems.)
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5.2.1 Convergence of parameter estimates

A self tuning regulator using the general pole shifting 

contol law is of the correct form to be analysed by a method proposed 

by L. Ljung and B. Wittenmark. 1 They associate a non linear 

differential equation with the behaviour of the estimates, and 

then assume that the estimates will settle if the equation is stable. 

However, since this method has a non linear differential equation to 

be solved, in any particular case it may be easier to simulate the 

system and regulator, and observe the behaviour of the estimates.

Also the results obtained by using the non linear differential equation 

may be conservative in some cases since the solution of the non linear 

equation corresponds to the expected (in the statistical sense) 

trajectory of the parameters.

In their report1 they show that a self tuning regulator 

which used the minimum variance control law (Chapter 3) can fail to 

converge. In particular the estimates can fail to converge if a 

weighted least squares estimator is used. They give an example 

(number 6.2 in their report) which should fail to converge. In 

this example the system is described by:

(1 - 1.6s“ 1 ♦ 0.75s“2) Y(t) - (x“ 1 ♦ s“ 2 ♦ 0.9s"3) U(t)

♦(1 - 1.5s“ 1 ♦ 0.75s“2) e(t) (5.18)

This is controlled by the regulator proposed by Astrom and 

Wittenmark. 2 Using a weighted least squares they obtained a picture 

similar to Fig. 5.4(a) which was also obtained using a weighted 

least squares. Fig. 5.4(b) shows the variance that would have
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been obtained if the tuning of the control had been obtained if

the tuning of the control had been stopped after any particular

sample. It can be seen that the self tuning controller does sometimes

choose a control which would be unstable. (These variances were
3obtained by a method proposed by Astrom, using a Fortran program 

from his book, "Introduction to Stochastic Systems".) However, 

if an unweighted least squares estimator is used the estimates 

(Fig, 5.5a) do not oscillate in the same way. This implies that the 

theory is conservative in this case since the theory predicts insta­

bility with the unweighted least squares. The very slow convergence 

indicates that the estimate may be near to instability. The correct 

parameter estimates are a^ “ -3.1, -a^ “ 0 , b^ “ 1 , and bj “ 0.9.

Figure 5.5b shows that the control is reasonably good while 

the estimates are still converging. The noise signal was chosen 

such that the minimum variance regulator would give an output variance 

of unity.

During the simulation of the self tuning regulators using an 

unweighted least squares estimator, and the pole shifting control 

law no cases were found of continually wandering control values 

when controlling linear systems. However, there may be systems for 

which the control does not settle down.

5.2.2 Non-Unique Parameter Estimates due to feedback

While the control law is continually changing there is no simple 

relationship between the input and output due to the feedback. However, 

when the control law settles down the input and output will be simply 

related by the regulator, and so the lack of uniqueness in the parameter 

estimates as described in Chapter 4.2 should appear. This would imply
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that the estimates may be prone to wandering. The uncertainty in 

the estimate does not lead to uncertainty in the control law when 

using the pole shifting control, since the variations in the estimates 

which can occur due to feedback do not in this case alter the control 

parameters.

Proof: that the uncertainty in parameter estimates does not lead

to uncertainty in control.

Suppose the control is chosen by

With a fixed control law A* and B* would be equally good estimates 

of the system's parameters as A and B for any constant t. These 

estimates would give a control chosen by:

solution for F* and G*. Therefore F* ■ F and G* ■ G. So all the 

possible estimates A* and B* give the same control law.

(1+A(s_ 1 ))(1+F(s_1)) ♦ B(z_1 )G(z_1) - T(z_1) (5.19)

where A(z S and B(z ')are the estimated parameters.

Let A*(z_1) - A(z_1) ♦ £z_1G 

and B*(z_1) - B(z_1) - £z_ 1 (l+F)

(5.20)

(5.21)

(1+A*(z_ 1 ))(l+F*(z_1)) + B*(z_1 )G*(z_1) - T(z_1) (5.22)(5.22)

using 5.20 and 5.21 gives

(1+A(z- 1 ))(1+F*(z-1)) + B(z"l)G*(z_1) ♦ (l+F*(z-1 ))(£z_1G(z_1))

But for a given A(z_1) and B(z"1) equation 5.24 gives a unique
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This wandering of parameter estimates occurs most readily 

when a weighted least squares estimator is used. Figure 5.6(a) shows 

wandering estimates when a self tuning regulator using a weighted 

least squares estimator and the minimum variance control law was made 

to control a system described by:

(1 - 1.6z-1 + 0.75z-2) Y(t) - (z_1 + 0.9z“2) U(t) ♦ e(t) (5.25) 

The exponential weighting factor $ was equal to 0.95. Figure 5.6(b) 

shows that the control law remained fairly constant despite the large 

variations in the parameter estimates. Figures 5.6(c,d) show the 

corresponding expected variances and actual controlled output. The 

results with an unweighted least squares estimator are shown in Figures 

5.7 (a,b,c). It can be seen that these are much more stable, but they 

still exhibit some wandering together in the initial stages of the 

run.

5.2.3 The Asymptotic effect of coloured noise *

When the disturbance on the system is coloured noise, the parameter 

estimates obtained by a least squares estimator will be biased. 

However, if this estimator is combined with the general pole shifting 

control law 5.28, to form a self tuning regulator, the final control 

will move the poles to the required places. Therefore the final 

control will be the same as would have been obtained using the proper 

system parameters (equation 5.26) together with the pole shifting 

law for systems with coloured noise (equation 5.29).

* Not* that if the noiae ia coloured end there are eat point variatiooe 
this following thaorum do«* not hoide



63

Theoren 5.1

If a system can be described by:

(1+Ag(z_1)) Y - Bs(z_1) U ♦ C(z_1) eg (5.26)

and a least squares estimator is used to fit coefficients of a model:

(1 ♦ A(z_1)) Y - B(z-1) U + e (5.27)

with the order of A equal to the order of Ag and the order of B 

equal to the order of Bg. Then if the control at each stage is 

calculated using the latest estimates of A and B in an equation:

(1 ♦ A(z-1))(l + F(z-1)) ♦ B(z~X) G(z_l) - T(z_1) (5.28)

with nt ( na ♦ nb -1- -n«

and the parameter estimates converge, the final control will be such 

that:

(1 ♦ J^(«“l))(l ♦ F(z-1)) ♦ Bg(z_1) G(z_1) - C(z_1) t '(z _ 1 ) (5.29)

The proof of this theorem is similar to that used by Astrom
2 4and Wittenmark for their self tuning regulators. * The result can 

simply be extended to cover the cases they dealt with.

Outline of proof

1) Use the properties of the estimator to say that the esti­

mated disturbance 'e(t)' is not correlated with the previous 'na' 

outputs or 'nb' inputs.

2) Express Y(t) and U(t) in terms of 'e(t)', and then find 

another sequence 'w(t)' which is simply related to Y, U and a.
3) Show that e(t+T) and w(t) are uncorrelated for na ♦ nb-l*t*l.

* Not« this proof implicitly covsrs ths cos« with lins dslsys sines thsrs 
srs no restrictions on the ssros of or B.
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4) Use the Yule-Walker equations to show that e(t+T) and 

w(t) are uncorrelated for X i  1.

5) Show that e(t+T) and e(t) are uncorrelated for t i l .

6) Deduce that e(t) s e^t), i.e. the residuals from the 

least squares estimator asymptotically are the same as the white 

noise driving the system.

The theorem is then obvious from the equation which relates 

e(t) and e^it).

Proof

1) The least squares estimator chooses the coefficients of the 

polynomials A(z *) and B(z *) so that the residuals 'e(t)' are not 

correlated with any of the previous na outputs or nb inputs, since 

otherwise the variance of the residuals could be reduced.

Therefore E(e(t+t) . Y(t)) - 0 I s  X S na (5.30)

E(e(t*I) . U(t)) - 0 1 t C < «*> (5.31)

2) The control law is:

(1+F(s_l)) U(t) - - G U " 1) Y(t) (5.32)

Combining this control with the model of the system (e.g. 5.27) gives

<(1+A(*"l))(l+F<«“1)) ♦ B(«“l)C(*_1)) Y(t) - (1+F(s_1)) e(t) (5.33) 

Using 5.28 with 5.33 gives

(Tt*"1)) Y(t) - <l*F(*"l))e(t) (5.34)

Therefore
. (l-»F(z~1)) c(t)

T'(s_1)
Y(t) (5.35)
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Substituting for Y in 5.32 using 5.35 gives

(1+F(z-1)) U(t) - -G(Z'1) d +F(Z"1))e(t)
Tt*"1)

(5.36)

• *• U(t) . e(t) 
T'(z_1) (5.37)

Let w(t) - e(!> 
t\z *)

(5.38)

Then Y(t) - (1+F(z_1)) w(t) (5.39)

and U(t) - -Giz“1) w(t) (5.40)

3) Substituting for Y(t) in 5.30 using 5.39 gives:

E(e(t+ T ) . (1+F(z_1)) w(t)) - 0 1 S I i na

E(e(t+T) . w(t)+f1e(t+T).w(t-l)+ ... +fnfe(t+ t ) .w(t-nf))-0

for 1 ( T ( na (5.41)

But expectation is a linear operator, therefore

E(e(t+ T).w(t))+fjE(e(t+ T ).w(t-l))+ ... +fnfE(e(t+ l ) .w(t-nf))-0

for 1 ( 1 ( na (5.42)

Similarly substituting for U(t) in 5.31 using 5.40 gives 

goE(e(t+ l ) ,w(t))+gjE(e(t+ T) .w(t-l)H...♦gngE(e(t* T ) .w(t-ng))-0

for 1 ( t ( nb (5.43)

The sets of equations 5.42 and 5.41 can be conveniently 

expressed as s matrix equation 5.44:
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l f x

p. 1 f,

0

0  \ \ \ \
g. 9j v

0

■~s

0

F f e  f t  + 1)  . w f t ) 1 
F i e f t  + 2 ) . v  f t )  1

F f e  f t + r f ) . w  f t ) 1 
E f e f t + l + n f ) . w ( t ) ]

E[e (t+s).w(t)J

p
0
:

0
0
0

0

(5.44)

Where s ■ nf ♦ na ■ nb ♦ ng ■ na ♦ nb -1 (5.45)

If G and (1+F) have no common factors the only solution of 

equation 5.44 is that

E(e(t+ T).w(t)) “ 0 1 f I f  • (5 .4 6 )

4) To extend to T > s

Substituting for e(t+T) in the expectation of e(t+t ) .w(t) 

using 5.38 gives

E(e(t+T).w(t)) - E(T(s_1) w(t) .w(t))

Let l(w(CtX).w(C» - p ( D  

Then E(e(f*T ).w(t)) - Tt«~l) p(t)

(5 .4 7 )
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Equation 5.46 gives that

t '(z_1> p(T) = 0 1 * I s s (5.50)

Since the sequence eg(t) is known to be a white noise sequence the 

sequence w(t) will now be expressed in terms of eg. Substituting 

for Y and U using 5.39 and 5.40 in equation 5.26 (which governs the 

system) gives:

(l+Ag(z"1 ))(l+F(z"1 ))w(t)+B8 (z"1 )G(z“1 )w(t) - C(z_1) eg(t) (5.51)

So w(t) is a mixed autoregressive moving average process; using 

the notation used by Box and Jenkins^ it is an ARMA(s,nc) process.

In section 3.4.2 of reference 5 it is shown that for such a process 

the autocorrelations p(t) are related by:

p(T) « $^p(T-1)+...♦ $gp(T -s) for r » nc+1 (5.52)

(This is equation 3,4..3 in ref. 5)

Let $(z 1) - z 1 ^  ♦ z"i ^2+...+z % g (5.53)

Equation 5.52 becomes

P( T ) - *(z-1) p(T ) for r * nc ♦ 1 (5.54)

Substituting in 5.49 gives

E(e(t+ I ) .w(t)) - T'(z *) *(z l) p( T ) (5.55)

T  * nc ♦ nt ♦ i

The condition t 4 nc ♦ nt ♦ 1 is required since the multiplying 

by T*(z *) introduces delayed versions of p(T) and the expansion 5.54 

has to be valid for all of them. Equation 5.55 can now be used to
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extend the range of T for which equation 5.49 holds if 

nc ♦ nt f s since 5.55 gives

E(e(t+s+l).w(t)) - T,(z_1 )<K*"1 )p(s+l) (5.56)

E(e(t+s+l),w(t)) - ♦(z“1 )T/(z_1 )p(s+l) (5.57)

But $(z *) only has powers of z 1 between 1 and s

E(e(t+s+l).w(t)) - <Kz *) . 0  ■ o (5.58)

(by using the equation 5.50)

Rewriting gives T(z *)p(s+l) - 0

The range of valid T can now be extended by repeating this 

argument. Hence

E(e(t+ T ).w(t)) - 0 1 $ T  (5.59)

5) Autocorrelation of e(t)

The autocorrelation coefficients of e(t) are given by

E(e(t*I).e(t)) - E(e(t+ T).T(z_1 )w(t)) (5.60)

E(e(t+ T).e(t)) - 0 T * 1  (5.61)

(using 5.59)

6) Therefore e(t) is a white noise sequence but it is a function of 

e((t) since substituting for w(t) in 5.51 gives!

(1*A (*”l))(1+F(z_1 ))e(t) B (z_1 )G(z_l)e(t)
---- !-------- ------------  ♦ -5------- --------  - C(z l) e (t) (5.62)

T(s~l) T(* l)

Therefore e(t) ■ e^it). This can be seen by rewriting Equation 5.62 as: 

((l*A (z- 1 ))(l+F(z-1)) ♦ B (z~^)G(z_1)) e(t)
% < t ) ------- !---------------- t  ----------------C(z l) T U  l)

(5.63)



But C(z 1 )T(z *) has all its zeros inside the unit circle.

e ( t )  - k e ( t )  + k,e( t <- At )  + . . .+k e ( t - n At ) +  . . .  s o l  n

where k “ E(e (t).e(t-nAt)) n s

since e(t) is a white noise sequence.

Similarly

C(z
e(t) - --------

((H-Ag(z

and e(t) is bounded

.'. e(t) - kQ eg(t) ■*•..

substituting for e(t-nAt)

"1 )T(z~1 )es(t)

))(l+F(z_1 ))*Bg(z

• +k e,(t-nAt) + ... n 5

in S.6S using S .6 6 gives 

*
kn - E(eg(t).fkQ eg(t-nAt)+k1 eg(t-(n-l)At) 

- k^ E(eg(t).eg(t-nAt))+k1 E(eg(t).eg (t- 

But eg is a white noise sequence

...;)

(n-l)At)).

k - 0 if n > 0 n

and k - k ' - 1 * o o

eg(t) - e(t)

Therefore 5.62 becomes

((l4Ag(s"l))(l+F(*“1)) ♦ Bg(s"l)G(»_1))eg(t) - C(z-1 )T(z"1)

• k g  can ba aaan to ba 1 by conaidaring tha (irat tana in tha aapanaion.

Therefore

(5.64)

(5.65)

(5.66)

(5.67)

.(t)

(5.68)
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But eg(t) is a white noise sequence so the only solution to 

5.68 is

(1+A (z_1 ))(1+F(z_1))+B (*_1 )G(z_l) - C(z_ 1 )T(z_l) (5.69)s s

Extension of Theorem 5.1 to some cases where T(z is chosen to be 

a function of the parameter estimates.

In the two self tuning regulators presented by Astrom and 

Wittenmark, * the control chosen is equivalent to choosing T(z ) as 

a function of some of the parameter estimates. The proof of Theorem

5.1 can be extended to such self tuning regulators if the parameter 

estimates used in calculating T(z *) are unbiased. There are two 

interesting cases when some of the parameter estimates are unbiased.

These are when one of the factors of t'(z *) is chosen to be equal to a 
factor of the denominator polynomial 1+A(z 1) or the numerator B(z *).

In these cases equation 5.28 implies that this common factor is also 

a factor of G(z *) or 1+F(z *■) respectively. Equation 5.69 then implies 

the common factor is a factor of 1+Ag(z *) or Bg(z *) respectively, and 

so the estimate of such a common factor is unbiased despite any coloured 

noise. This extends the theorem 5.1 to the self tuning regulator using 

the minimum variance control law since this chooses T(z ) to be the 

product of the factors of B(z *), and so the estimates of the zeros of 

the system are unbiased. In reference 4- Astrora and Wittenmark prove 

that the asymptotic result of a self tuning regulator using the con­

strained minimum variance control law will be the proper constrained 

minimum variance control in two cases. The first is when Bq ( x ) ■ 1 which
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means that all the zeros of the system are inside the unit circle.

The polynomial T(z *) is then equal to the product of the factors of

B (z *), which is the same as above. The second case is when thes
C(z *) • 1, when they say that the parameter estimates will be 

unbiased.

5.3 The initial properties of self tuning regulators

The initial properties of a self tuning'regulator composed of 

a least squares estimator, and a linear feedback law depend on thè 

initial estimates of the parameters and inverse covariance matrix. The 

behaviour of the system can also be altered by imposing limits on the 

control signal during these initial steps. In this section several 

digital and analogue simulations have been used to illustrate how the 

initial estimates affect the initial behaviour. Examples have also 

been constructed to illustrate how the settling time for these esti­

mates is related to the type of disturbance on the system.

5.3.1 Initial Parameter Estimates

Usually something will be known about the dynamic properties of 

a system before a self tuning regulator is applied to it. This know­

ledge should be used when choosing the initial estimates for the para­

meters to ensure that estimates have the same order of magnitude as the 

system parameters. Also care should be taken not to start with esti­

mates which immediately upset the control algorithm being used. For 

example with the minimum variance control law (section 5.1.1) the 

initial estimate for b t (the first term in the numerator) should not be 

zero since this will lead to an infinite initial control signal. With



the general pole shifting control law (section 5.1.3) the initial 

estimates of the numerator and denominator of the system's 2-transfer 

function should not have a common factor since it was shown in section 

3.6 .A that this gives a badly defined control law.

5.3.1.1 Estimates of denominator of the z-transfer function

It was shown in section 2 that if the system's Laplace transfer 

function has a pole which has a time constant several times longer 

than the sample period the corresponding pole in the z-transfer function 

is near to 1. Hence if a system has 'm' poles a reasonable initial guess 

for the denominator of the z-transfer function would be (1+A(z *))«(l-z *)".

5.3.1.2 Estimates of the numerator of the z-transfer function

The values for the numerator are much more difficult to estimate, 

since they depend on the system's gain and the time constants as well 

as the sample period. However, the required order of magnitude can be 

estimated in several ways. When an estimate of the system's Laplace 

transfer function is available, an estimate of the system's 'z' transfer 

function can be obtained by converting the estimate of the Laplace 

transfer function (Chapter 2, section 3 ). When a step response has

been obtained for the system, the order of magnitude of the coefficients 

can be calculated from the output at a time equal to the time delay 

plus one sample period after the step was applied. For a system with 

no time delay the output for a unit step input after one sample period 

is equal to the coefficient of z  ̂ in the numerator of the 'z' transfer 

function. The other coefficients would usually have the same order of 

magnitude as this first one.

•

l

72



Regulated system output using three different initial estimates 
for the B polynomial. The system is described by equation 5.70. 
The initial estimates are

B(z_1) - 4.5 z' 1 ♦ 4.5 z' 2 

B(z-1) - 22.5 z" 1 ♦ 22.5 z" 2 

B(z”1) - 100 z” 1 ♦ 100 z~2



Figure 5 8 b

Regulated system output using three different initial estimates 
for the B polynomial. The system is described by equation 5.70. 
The initial estimates are

B(z_1) - 0.5 z"1 ♦ 0.5 z 

B(z_1) - 0.1 z"1 ♦ 0.1 z 

B(z~l) - 0.0225 z z-2♦ 0.0225



Figure 5.8 a

Uncontrolled output of a system described by

(1 - 1.8 z_l ♦ 0.81 z"2) Y(t) - (z- 1  ♦ 2z"2) U(t) ♦ e#(t)

This system with this noise sequence e^it)
5.1, 5.2, 5.3 and 5.6.

was used for examples
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Fortunately the choice of the initial estimate of the numerator 

parameters does not seem to be very critical as long as the initial 

estimates are too large rather than too small. Large initial estimates 

mean that the system's gain has been overestimated, and so result in 

lower control gains initially. Smaller controller gains result in 

smaller control signals, and so less initial disturbance to the system.

Example 5.1 *

To illustrate the effect of different choices of estimates 

for the numerator parameters.

For this example the system being controlled was simulated using 

an equation

(l-1.8z_1+0.81z~2)Y(t) - (*-1 +2s“2)U(t)+ea(t) (5.70)

Where eg(t) was a psuedo random white noise sequence. The output with 

no control applied is shown in Figure 5.8a. This system was then 

controlled by the self tuning regulator using the general pole shifting 

law with T(z 2) ■ 1. Figure 5.8b shows the controlled outputs when the 

initial numerator estimates were too small. It can be seen that the 

disturbance to the system becomes progressively larger as the initial 

parameter estimates are decreased. The initial estimates for the 

three curves shown were

(l-2z~2*z”2)Y(t) - (0.0225z_1*0.0225z“2)U(t) + e(t)

(l-2z_ 1 +z_2)Y(t) - (0.1z_l+0.1z_2)U<t) ♦ e(t) 

and (l-2z_l+z"2)Y(t) - <0.5z-1 +0.5z"2)U(t) ♦ e(t)

Figure 5.8c shows the controlled outputs when the initial estimates 

were too large. It can be seen that in this case the large initial
I a}

* In chn ,u«(Ua in tliis aaction unlaaa atatad otharviaa tha choaan T (a )
polynomial waa 1, an unwalghtad laaat aquaraa aatimator waa uaad and tha |
initial aatinata of tha invaraa covatianca «atria waa 100 I.
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estimates did not produce excessive disturbances on the system.

Comparison with the uncontrolled output (Fig. 5.8a) show that all 

these regulators considerably reduced the noise on the system. However 

the large estimates can be seen to decrease the rate of convergence.

The initial estimates used were:

(l-2z- 1 +z_2)Y(t) - (100.z~1 +100.z_2)U(t) ♦ e(t)

(l-2z- 1 +z”2)Y(t) - (22.5z-1 +22.5z_2)U(t) + e(t) 

and (l-2z_ 1 +z_2)Y(t) - (4.5z_1 +4.5z_ 1 )U(t) + e(t)

5.1.2 Initial choice of Inverse covariance matrix

In theory the recursive least squares estimators will asymptotically 

give the same results as an ordinary least squares estimator if the 

initial estimate for the inverse covariance matrix has large values on 

the diagonal and all other elements zero. Usually large values on the 

diagonal gave good results but occasionally very large values produced 

difficulties. These difficulties may arise because very large values 

in the estimated inverse covariance matrix imply that there is virtually 

nothing known about the system, and so the parameter estimates are 

initially very free. Hence the estimates may wander close to one of the 

situations mentioned in section 5.3.1 where the calculation of the 

control law is badly conditioned. When the initial values are small the 

initial rate of adaptation is slow since the small values imply that 

a lot of information is known about the system.

Example 5.2
To illustrate the effects of choosing very large values on the 

diagonal of the inverse covariance matrix.

e

r



Regulated outputs for example 5.3 for various values k I for the 
initial estimate of the inverse covariance matrix.



V

Figure 5 9 a
Regulated outputs for example 5.2 for various values k I for the 
initial estimate of the inverse covariance matrix.
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For this example the system being controlled was the same as

in example 5.1, and the initial parameter estimates were chosen to be

the same as the system’s parameter values. The system was then

simulated and controlled for initial values in the inverse covariance

matrix of 10, 10^, 10^, 10^, 10^ and 10^. Figure 5.9a shows the

system output for each of the rows. The output was virtually identical
3 5for the three curves using 10, 10 and 10 initially. The output with

an initial value of 1 0  ̂was very disturbed by about the tenth sample.
9 11The curves for initial values of 10 and 10 have a similar magnitude 

of disturbance to the first three. Figure 5.9b shows the value of the 

control parameter for each of the simulations. It can be seen that 

this control parameter was a large peak for the system using an initial 

value of lO^ indicating that the calculation of the control law happened 

to become badly conditioned at about the tenth step.

Example 5.3

To illustrate slow convergence of parameters when using small 

initial values in the inverse covariance matrix.

For this example the system being controlled was the same 

as in the previous two examples.

The system was described by equation 5.70, and the initial 

estimate of the system was

<l-2s-l+s~2)Y - (4z_1 -*-0.0*-2)U ♦ e

Figure 5.10k shows how the estimate of the coefficient b^ changed with 

time for three different initial choices of the inverse covariance 

matrix. It can be seen that the convergence rates decreased as the 

initial choice of the inverse covariance matrix was decreased. Figure 

5.10a shows the corresponding system outputs. As could be expected
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the run with slowly converging estimates disturbed the system output 

considerably.

From the above two examples it can be seen that if the output is 

in the range +5 to -5 fairly good results are obtained if the initial 

values on the diagonal of the inverse covariance matrix were in the 

range 10* - 10^. This range of suitable initial values depends on 

the magnitude of the inputs and outputs. For example, if the noise 

driving a system was multiplied by 10 the inputs and output variances 

would be increased by a factor of 10 0, and so the initial inverse 

covariance matrix would have to be divided by 10 0 to give the same 

initial behaviour for the parameter estimates. Therefore, if the input 

and output are increased by a factor of 10 the suitable range of 

initial values is decreased by a factor of 100. When the inputs and 

outputs have different orders of magnitude it may be best to include 

constant multiplying factors to give them similar magnitudes in order 

to have similar initial rates of adaptation for all the parameters. , If 

multiplying factors are not used, the initial choice of diagonal values 

should be made large enough to allow all of the parameters to adapt, i.e. 

the diagonal values should be chosen by considering the signal which 

is smallest.
Two of the main factors influencing the rate of convergence of 

the parameter estimates can be altered or decided when the self tuning 

regulator is applied to the system. These factors are the initial choice

*#
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Setpoint

Output

Figure 5.11 a

Control output following a sinusoidal setpoint with no noise, 
on the system. Example 5.4.

Parameter estimates for example 5.4.
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of inverse covariance matrix mentioned in the previous section and 

the introduction of limits on the control signals. However, the major 

factor influencing the convergence rates is the nature of any random 

disturbance on the system, and this cannot usually be altered. When 

there is no random disturbance on the system, the convergence of the 

estimates is very rapid. White noise on the system slows the con­

vergence slightly, but still gives rapid convergence if there are any 

large initial disturbances to act as test signals. Coloured noise slows 

the convergence considerably since then the final estimates have to be 

biased in a special way which depends on the noise. With coloured noise 

large initial disturbances do not help the convergence very much 

because these disturbances tend to give unbiased estimates instead of 

the required biased estimates.

Example 5.4

To illustrate rapid convergence when no noise is present.

The system being controlled obeyed an equation 

(l-1.8*“l*.81*“2)Y(t) - (z_1 +2z_2)U(t)

This was controlled using the general pole shifting self tuning regu­

lator with T(z_1) - 1. Figure 5.H a  shows the output using a sinusoidal 

setpoint. The parameter estimates are shown in Figure 5.11. It can 

be seen that the parameters have reached their correct values after 

7 samples. When no noise is present the estimates usually take just 

two or three more samples than there are parameters to reach the 

correct values.

sV
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Parameter estimates for example 5.5 where a noise free analogue 
computer is being controlled by a self tuning regulator.

Setpoint



Figure 5-12

Analogue patching diagram for
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Example 5.5

An analogue example showing rapid convergence with little noise 

present.

For this an analogue simulation was patched on one of the Cil75 

analogue computers in the Control System Centre, U.M.I.S.T. This 

simulation was then controlled by a PDP—10 digital computer using a 

self tuning regulator with a minimum variance control law. The simu­

lation was not run continuously since the PDP-10 has a multiaccess time 

sharing system and the hybrid subroutines do not allow the use of disk 

storage while working at a high enough priority to ensure an immediate 

response at the sample times. The simulation was carried out by 

setting the analogue computer into compute mode for 500 milliseconds, 

and then putting it into hold mode while the digital computer sampled 

the output and calculated the next control input. When the digital com­

puter had sent the new control input,the analogue computer was again 

put into compute mode for 500 milliseconds.

The patching diagram for the analogue simulation for this 

example is shown in Figure 5.12. This corresponds with a system having 

a Laplace transfer function given in equation 5.71.

G(s) ______ 30______  _ 30
(1+28) ( 1 + 2 . 5s) 1+4.5S+5S2"

The z-transfer function is

C(z) 0.6A65(z~1+.8607z~2)
(l-0.81873z_1)(l-0.7788z-1)

(5.71)

t

Figure 5.13a shows the convergence of the parameters when no deliberate 

disturbances were added, and the set point was varying. Figure 5.13b 

shows the output of the system, and the setpoint which is being followed



Figure 5.14 A rapid convergence of estimates with a large initial 
disturbance

Rapid convergence of estimates with large initial disturbances in 
example 5.6.

Slower convergence of parameter estimates with no large initial 
disturbance in example 5.6.



The initial estimates of the numerator polynomial (Figure 5.13a) 

started with the wrong sign, which is equivalent to having the wrong 

sign on the gain of the system.

The final estimated transfer function was

„ - K  _ 0.111863*"1 + 0.0931618*~2GE ' * ' _i _5
1 - 1.66137z A+0.702652*

This corresponds with a Laplace transfer function

ce (s) - ----- -—
e l+3.5s+5s

The two examples just given illustrate how the parameter esti­

mates converge very rapidly if the system is linear, and there are no 

unknown random disturbances present. When there is just white noise 

the convergence is still fairly rapid, particularly if there is a large 

initial disturbance to the system due to incorrect control. The conver­

gence speed is improved by a large initial disturbance because this 

acts as a test signal.

Example 5.6

To show rapid convergence when a large initial disturbance

occurs.

This rapid convergence can be seen in the parameter estimates 

of the runs used in example 5.1. Figure 5.8b showed two simulation 

runs which had an excessive initial disturbance. The parameter esti­

mates for the run with starting estimates given by*

(l-2*- 1 -f*“ 2)Y(t) - (0 .1 *-1 +0 .1 * 2)U(t) ♦ e(t)

are shown in Figure 5.14a. It can be seen that the estimates settle
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very rapidly. Figure 5.14b shows the parameter estimates for the run 

starting with:

(l-2z'1 +r‘2)Y(t) - (4.5z_1 +4.5z“2)U(t) + e(t)

The output for this run is shown in 5.8b and does not have an exces­

sive initial disturbance. It can be seen that the settling time 

for the estimates is longer.

The convergence of parameters in the case with white noise is 

fairly rapid since any initial incorrect control acts as a test 

signal, and this test signal helps the parameters to adjust to those 

which describe the system. This rapidly gives good control since, 

when the noise is white, the estimator gives unbiased estimates of 

system parameters which lead to the control law which is required 

asymptotically by the self tuning regulator. However, when the noise 

is not white the final system estimates have to be biased in the correct 

manner to give the required control. Therefore, in the case with 

coloured noise, any initial poor control will not drive the system 

estimates to the required values. Similarly, setpoint variations will 

also tend to drive the estimates from the required values. An 

extreme example of the resulting slow convergence was given by the 

example given in section 5.2.1 (Figure 5.5).

Example 5.7
To illustrate slower convergence due to coloured noise.

For this example the same system as in example 5.1 was controlled 

in the presence of three different disturbances. The system being 

controlled was described by equation 5.72
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Figure 516

Analogue patching diagram for example 5.8 where a coloured noise is added to the system.
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(l-1.8z- ♦.81*“2)Y(t) - (z_1+2z_1)U(t) + C(z"X)es(t) (5.72)

using an initial estimate (l-2z_1+z-2)Y(t)-(4z-1+O.Oz-2)U(t) + e(t).

Figure 5.15a shows the parameter estimates with C(z~X) » 1, 

i.e. white noise. Here the estimates settle rapidly. Figure 5.15b 

shows the parameter estimates with C(z_X) • l-z_1. It can be seen 

that the estimates this time have not settled within the first 200 

samples. Figure 5.15c shows the estimates with this noise for a 

longer period. It can be seen that the estimates are fairly settled 

after about 2000 samples. Figure 5.15d shows the parameter estimates
—1 —l -9

with C(z ) s 1-1.5z +0.4z . Here the estimates have not settled

after 4000 samples, so it can be seen that with this system colouring 

of the disturbance can considerably increase the settling time for 

the estimates.

Example 5.8

For this example a pseudo random coloured noise signal was 

added to the analogue simulation used in example 5.5.

The patching diagram for the analogue simulation is shown in 

Figure 5.16. A pseudo random noise sequence was used in order to 

make the experiment repeatable. The uncontrolled system output was 

also simulated on the analogue computer in order to have a direct 

measure of how well the regulator was managing. It was found that the 

results from this experiment were not exactly repeatable, possibly due 

to small variations in the offset voltage on the D.A.C. being used for 

the pseudo random noise. These small variations in offset would be 

considerably magnified by the integrator which was being used to colour 

the noise.

m



Analogue patching diagram for example S.9. This was 
controlled using the general pole shifting self tuning 
regulator.



Figure 5.17a
Parameter estimates for example 5.8 with a minimum variance self tuning 
regulator controlling a disturbed analogue simulation.

-—  regulated output 
------open loop output

Regulated and open loop outputs for example 5.8.
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The Laplace transfer function for the system was given by

5.73.

Y - 30 U k e
(l+2s)(l+2.5s) s(1 +2 .5s) (5 .7 3)

The corresponding z-transfer function is

Y - .6465(z~1+0.8607z~2) + k (0.04682z~1+0.0438z~2) e
(l-0.8187z_1)(1-0.7788z~2) (l-z_1)(1-0.8187z_1)

This system was controlled using a minimum variance self 

tuning regulator using an initial estimate

(l-2z_l+z“2) Y(t) - (-0.2z-1 -0.1z~2) U(t) + e(t)

Figure 5.17a shows the parameter estimates are much slower settling 

than the estimates in example 5.5 (Figure 5.13a & b). The corres­

ponding controlled and uncontrolled outputs are shown in Figure 

5.17b.

Example 5.9
A hybrid example with coloured noise using the general pole 

shifting self tuning regulator.

The analogue patching diagram for this example is shown in 

Figure 5.18. This corresponds to a system with a Laplace transfer 

function:

v 10 „ _ 37.5 e______
Y " ^3 U s(l+3s)(1+2.5sJ

The corresponding z-transfer function is

r



Convergence of the ratios of the elements of an inverse covariance 
matrix in example 5.10.

Open loop a n d  regulated outputs for example 5.10
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Figure 5.19c

Parameter estimates for example 5.9. The initial estimates are 
correct since in all the samples the starting estimates for the 
A polynomial have been obtained by assuming that the system is a 
collection of pure integrators, and in this case it is.



Regulated output 
Open loop output

Regulated and open loop outputs for example 5.9 with an analogue 
simulation with coloured noise being controlled by the pole shifting 
regulator.

Parameter estimates for example 5.9.



Notice that this has a zero outside the unit circle, and so the 

minimum variance controller section 5.11 would be unstable.

Figure 5.19a shows the controlled and uncontrolled outputs with 

the particular noise sequence used.

Figures 5.19b and c show the behaviour of the parameter estimates.

5.3.A Convergence of inverse covariance matrix

The elements of the estimated inverse covariance used by the 

least squares estimation algorithm seem to settle slightly slower than 

the corresponding parameter estimates. However, they rapidly get 

to the correct order of magnitude so probably very little would be 

gained by trying to get the elements in the correct sort of ratios 

before starting the simulation.

Example 5.10

To illustrate the convergence of the inverse covariance matrix. 

Since this matrix continually decreases it is only the ratios of 

the elements which converge.

In order to display the convergence of these ratios the ratios 

have been divided by the corresponding ratio reached after 300 samples, 

so that all the curves should approach 1 as time increases.

Ci i(t)/Ci 1 (t>The displayed curve at (t) - ^ 7 3 5 5 7 7^ - T 30O )
1 » J

Figure 5.20a shows a selection of these ratios for the first system used 

in example 5.7. The convergence of the parameters is shown in 

Figure 5.15a. Figure 5.20b shows the corresponding time response 

together with the uncontrolled time response.
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Figure 5.21 shows a selection of these ratios for the example

5 . 4  which had very rapid settling for the parameter estimates 

(Figure 5.11b).
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CHAPTER 6 COMPUTATION

6.1 Comparison of two methods using a minimum variance control

In section 5.1 two methods of implementing a minimum variance 

self tuning regulator in the presence of time delays were suggested. 

These two methods are compared in this section.

The first method of implementing a minimum variance regulator 

has been called method 1 in this chapter, and the associated computer 

programs.

For this method the model of the system used is 

<1 ♦ z"kA'(z_ 1 ))Y(t) - z“k b '(z_1) U(t) ♦ e(t) (6.1)

The control is then calculated as

U -  A ^ « " 1 > *<-‘-1  ( 6 . 2)
b '(*_1)

In the second method called method 2 in this chapter9 the model used 

for the system is:

(1 «• A(z-1)) Y(t) - s_k B(r_1) U(t) ♦ e(t) (6.3)

The polynomials a ' and b ' are then calculated using the relationships 

(1 ♦ z~k A'(*-1)) - (1 ♦ A(z'1)) P(z_1) (6.A)
and b '(z-1) - P(z_1) B(z_1)

The control is then calculated using equation 6.2.

In the first method the order of the numerator polynomial esti­

mated by the least squares estimator is k greater than that in the 

second method, so it would be expected that the second method should 

converge more rapidly since it has less degrees of freedom.

ra



Table 6.1 Showing parameter estimates after lOO samples in

example 6 . 1  using two different estimators.

True Estimator using Direct Estimator
Values P(x_l)

Method - 2 Method ” 1

»
al -3.281 -3.428 -3.592

>2 +2.362 2.500 2.675

bi 1.999 2.043 2.712

b 2
4.598 4.500 5.039

b3 6.658 6.499 6.901

b4 8.259 8 . 1 0 0 7.834

»5 2.915 2.352 1.596



samples

Figure 6.2

Open loop estimates of the first two terms 
with a disturbance on the system.

b " ( z  ') directly. 
A(z and B(z ')

Method 1 estimates 
Method 2 estimates

ofthe b '(z”1) polynomials

and calculates *B (z



♦ - - ♦ - - ♦ - - d r ’ 1t p ‘/

-e— a---------1—
Number of

10
so mples

0

Q- O  Method 1 

- ♦ - f — Method 2

Figure 6.1

Open Loop Estimates of the A^z) polynomials using the two methods of 
calculation.

Method 1 estimates A /(z *) directly
Method 2 estimates A(z ') and then calculates A /(z
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E xam ple 6.1
In order to illustrate the more rapid convergence with the smaller 

order estimator the two estimators were used on the same open loop 

disturbed system. An open loop system was used to eliminate effects 

of poor feedback control on the system estimates.

A system described by

(1-1.8*"1«-.81s“2) Y(t) - (2z~4+z“5) U(t) + te(t) (6 .6)

was simulated with U(t) being generated by a white noise generator.

An alternative model of the system is

(1 - 3.2805z“4+2.362z“5) Y(t)

- (2.0z“4-f4.6z“5-f6.66z“6+8.262z“7+2.196z_8) U(t) ♦ te(t)

(6.7)

Figure 6.1 shows the estimates of the A polynomials obtained by 

the two methods when there was no unknown disturbance e(t). It can 

be seen that both converge to within machine accuracy within about 

14 steps, with the estimates from the lower order estimator taking 

slightly less time.

Figure 6.2 shows the estimates of the first two terms of the B 

polynomials when a random disturbance e(t) was added. It can be seen 

here that estimates with the lower order estimator settle more rapidly 

and more quickly approach the correct values. Table 6.1 gives the 

parameter estimates after 10 0 samples for the two methods.

In a self tuning regulator this slower convergence of parameters 

could lead to slower convergence of the control law or more disturbance
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to the system. In the examples tried it usually resulted in more 

disturbance to the system. The disturbance to the system due to 

inaccurate estimates was probably magnified by the chosen controllers 

frequently being unstable (see Chapter 2). The situation is also 

probably aggravated by the way that the first method has several extra 

parameters, and so effetively the P(z 7) polynomial which has the 

unstable roots is estimated twice, once in the estimation of A and 

once in the estimation of B', and so different unstable polynomials 

are used in the calculation of the numerator and denominator poly­

nomials of the control law.

Example 6.2

To demonstrate the unsettling effect of using the higher order 

estimator.

In order to compare the two self tuning regulators they were both 

used to control the same system with the same disturbances, and with 

equivalent initial estimates of the system. The system being con­

trolled was similar to that in example 6.1 and was described by 

equation 6.8.

(l-1.8z“l+0.81*_1) Y(t) - (1.0z-4+0.5z"5) u(t) «. e(t) (6.8)

An identical model would be:

(l-l.8z“4+0.81s~5) Y(t)
- (1.0z_4+2.3z“5+3.33z"6-t4.131z-7+1.098z"8) U(t) ♦ e(t) (6.9)

The initial estimate for the first method was:

(l-5t-*«-4*“5)Y(t) - ( z - * + 2 z _ 5 + 3 z  6 * 4 z  7 « -0 .0 z  ®)U(t) ♦ e (t) ( 6 . 10)
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per iterati on

Figure 6.4
C.P.U. time per iteration for Method 2 for various values of delay k.

C.P.U. time per iteration for Method 1 for various values of delay.
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Figure 6.3a
Regulated System Output using Method 1 which estimates A*(z *) and 
B*(z *) directly.

1 0 0  ■

1
1*

. '!

5 0  •
M

- *• « 
M  S

•; ,n
o

* !*i *i
*

- 5 0  . - W  
•;* i

-  1 0 0

•i 
ii
m
•»

- W
\ 7

100
samples

Figure 6.3h
Regulated System Output using Method 2 which estimates A(z and 
B(z ) and then calculates A*(z_l and B*(z~*).
Note different scales have been used for Figures 6.3a and 6.3b.
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If the system had obeyed 6.10 it would also have obeyed 6.11

(l~2z *+z 2)Y(t) - (z *+0.0z 5)U(t) ♦ e /(t) (6.11)

Therefore the starting estimates used for the second method were those 

in equation 6.11. The resulting output using the first method is shown 

in Figure 6.3a, and the output using the second method is shown in 

Figure 6.3b.

It can be seen that in this example the system was considerably 

disturbed by the first self tuning regulator. . Note that in order 

to be able to see both curves different scaling has been used in the 

y direction.

Another advantage of using the second method is that the amount of 

computation required is less than that for the first method. Figure 6.4 

shows the C.P.U. time used at each sample time as a function of the 

number of parameters being estimated, for time delays of 1, 2, 3, 4 and 5 

sample intervals using the second method. It can be seen that the 

computation time was fairly independent of the time delay on the system. 

Some of the variations which occurred could be accounted for by 

variations in the loading of the time sharing computer being used since 

it will be noticed that the curves for different time delays keep 

crossing each other, while the amount of work done slightly increases 

with increases in the time delay. Figure 6.5 shows the C.P.U. time 

used at each sample time using the first method in which the order of 

the estimator is increased to compensate for the time delay. Figure 6.5 

also shows the mean of the times for the second method. It can be seen 

that with tha first method the calculation time increases with the time



delay, and generally takes longer than the second method. The only 

disadvantage of the second method seems to be that it requires a few 

extra lines of computer program to implement it.

6.2 Comparison of general pole shifting self tuning regulators

In section 5.1 the following four different methods were proposed 

for solving the equation 6.12 for the control polynomials F and G

<(l+A(z-1))(l*F(z-1)) + B(z_1) GCz“1)) Y(t) - T(z-1) Y(t) (6.12)

One method, which will be called method 3, was to rearrange 6.12 to 

become 6.13.

F(z_l) f(l+A(z_1))Y(t); ♦ GCz^JfBCz^YCt); - (T'(z_1)-l-A(z_1))Y(t)
(6. 1«)

The coefficients of F and G can then be recursively estimated using 

a least squares estimator, preferably an exponentially weighted esti­

mator to remove the effects of poor initial estimates of A(z and 

B(z S .  It was remarked that this method can have difficulties if 

there are not sufficient variations in the system output Y(t) to 

ensure that the control law converges rapidly.

To overcome this difficulty of insufficient variations in the 

system output it was proposed that a white noise sequence should be' 

used in equation 6.13 instead of the output sequence Y(t). This 

modified method has been called method 4 in this chapter and the asso­

ciated computer programs. It would be expected that this modification 

should make the regulator converge more rapidly and more consistently 

without significantly increasing the amount of computation required. 

However because the control estimates are just updated at each sample 

time using the current system estimates, the control estimates are 

bound to converge more slowly than the estimates of the system parameters.
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One method of ensuring that the control converges as quickly as 

the system estimates is to consider equation 6.12 as a set of linear 

simultaneous equations, and solve them completely at each sample time. 

The control estimates will then correspond directly with the system 

estimates. The set of equations was solved by two different approaches. 

The first was to solve them by repeated calls to a recursive least 

squares estimator, this was called method S. The second approach was 

to use a subroutine specially written to solve a set of simultaneous 

linear equations, this self tuning regulator was called method 100.

The second of these approaches requires less computation, at the expense 

of a more complicated computer program.

Example 6.3

To illustrate the variation of the initial responses of the different 

ways of implementing the general pole shifting self tuning regulator.

For this example a system described by 

(l-1.8z_1+0.81z“2) Y(t) - (z_1+2z“2)U(t) ♦ e(t) 

was controlled by each of the four self tuning regulators, in each 

case trying to follow a unit square wave input. The input to the system 

was limited to be between +0.3 and -0.3, so as to decrease the initial 

transients. The initial estimate used in each case was:

(l-2z“l+z“2)Y(t) - («z_1*0.0z“2)U(t) ♦ e (t)

The required T(z *) polynomial in each case was 

T(z_1) - 1 - 0.606531s“1.
Figures 6.6a, b, c and d show the resulting system outputs together 

with the setpoint. As would be expected the outputs with methods 

5 and 100, which solve the complete set of linear equations at each 

sample time, were both very similar. The output using method 6 was 

similar to the outputs with methods 5 and 100, so the parameter esti­

mates were following fairly closely. However, the output using method 3 

looks different, indicating that in the initial steps the controller
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Figure fe.8
C.P.U. time per iteration as a function of the number of paramet 
in the model, for each of the self tuning regulators.
Note Method 2 will take the same time as Method 1 
and Method 4 will take the same time as Method 3.
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Figure 6.7
Parameter estimates using the four different versions of the gent'» 
pole shifting regulator« The outputs which produced these estimate 
are shown in Figure 6.6.



estimates tend to be further from the proper values obtained by 

methods 5 and 1OO. Figure 6,7 a, b f c and d show the controller

parameters in these four examples. It can be seen that the estimates 

with method 4 do follow the proper estimates more closely than those with 

method 3.

Figure 6.8 shows the computation time required for each of the 

methods 1, 3, 5 and 100 as a function of the number of parameters. The 

computation for method 2 is the same as for 1 and the time for method 

4 is the same as that for 3. It can be seen that the fastest general 

pole shifting method was 100 which used a special program for solving 

the simultaneous equations. The methods 3( 4 and 5 took very similar 

C.P.U. times until there were more than 12 parameters being estimated, 

from then on the method 5 took much longer.

6.3 General Layout of Programs

Figure 6.9 is a flow chart of the basic set of programs used to 

produce the results in this and the previous chapter.

In order to minimize the amount of core storage being used at any 

time the program is split into several smaller programs, and only one 

of these runs at a time. When a particular program finishes it then 

uses a facility available on the Control System Centre PDP~10 to 

start the next program running. All conmunication between the separate 

programs is conducted through data files. The input program INR 

writes two files BEGIN.DAT and CREG.DAT, which are identical and 

contain all the required data for the simulation. This input program



Table 6.2 List of flow charts

Figure Description
No. Name Use

6.11 INR Accept simulation data interactively
6.12 SETUP Reading subroutine for INR
6.13 REC Writing subroutine for INR
6.14 CAREG

CSREG
DTEST

Digital Simulation Program.

6.15 HARE G 
HSREG 
HTEST

Hybrid Simulation Program.

6.16 REGUL Self tuning regulator for methods 
1,2,3,4 used by CAREG & HAREG

6.17 STREG Self tuning regulator for methods 5 & 100 
used by CSREG, DTEST, HSREG and HTEST.

6.18 WRCLLS Least squares estimator used by the self
RECLLS tuning regulators.

6.19 SIMUL Simulation subroutine used by the digital 
simulation programs.

6.20 RN01SE White noise generator used for the 
simulations.

6.21 SINP Subroutine to generate setpoint changes
6.22 DECR Subroutines to move data along arrays:

INCR used by many of the programs
6.23 PRODUC Function to take an inner product of two 

vectors: used extensively
6.24 REGPL Program to plot time responses
6.25 SUBPL Subroutine called by REGPL to do the 

actual plotting.
6.26 READI or 

READS
Subroutine used by SUBPL

6.27 NQS Nyquist Diagram Program
6.28 NQST Nyquist Diagram subroutine called by NQS
6.29 RLO Root locus program
6.30 RLOC Root locus subroutine called by RLO
6.31 OREG

stopping program.
_________ __________________ _____________________ 1



also writes a formated data file TEMP.DAT which contains the data 

for the simulation in a more readable form. The input program then 

starts the required simulation program running; this could be 

CAREG, CSREG, DTEST, HAREG, HSREG or HTEST. The simulation continues 

until the specified end time, or until the simulation is aborted. At 

specified intervals during the simulation time the system estimates, 

the control values, the input values, and the output values are recorded 

in a file TH1.DAT. On completion of the simulation the simulation 

program stores the final controller values, system estimates etc. in 

file CREG.DAT and then starts the program REGPL running. Program 

REGPL reads the file CREG.DAT, and then allows the choice of plotting 

the time responses or estimates or drawing Nyquist or root locus 

diagrams or stopping. To draw Nyquist diagrams the program REGPL is 

stopped and the program NQS is run. On completion, program NQS stops 

and runs the program REGPL. Similarly root locus diagrams are plotted 

by program RLO. These programs NQS and RLO read the required data 

from CREG.DAT. If the program REGPL receives a command to stop it 

runs the program OREG which reads CREG.DAT, copies TEMP.DAT into 

CR.DAT, adds a formated version of the final estimates to CR.DAT, 

renames the file BEGIN.DAT to a specified name given as a run 

identifier, and then renames the file CREG.DAT and stops. The file 

BEGIN.DAT or its Tenamed version are used to allow a run to be easily 

repeated by specifying them as the input data file on entry to the 

input program INR. Figures 6.11 - 6.31 give the flow charts for the 

various parts of the program. Table 6.2 gives a list of the flow 

charts with a short description of the function of each part. Flow 

charts have not been included for the following programs*
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9*

Subroutine RUNTIM(I): This is a subroutine which finds the current

total C.P.U. time used in milliseconds and returns it as I. 

Subroutine RPROG('NAME') This subroutine stops the current program 

and runs the named program.

Subroutines LOOK and Intest, which handle files and check for Teletype 

input.

There are also several programs out of the Hybrid computer library 

HYDMUL.REL, and from the Graphics package, GRAPHS.REL. for which no 

flow charts have been included.





F ig u re  6 . 1 2

S u b r o u t i n e  SETUP



F ig u re  6.14

P r o g r a m s  CAKEG, CbKEG a n d  DTEST
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Figure 6.17

Self tuning regulator STFFG us<?̂  by c.c DPG , OTFST , HS RTG , MTFST
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Figure 6-20
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Fig ure  6.21
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PhODUC To f o r m  a  s c a l a r  p r o d u c t  o f  two  v e c t o r s



Fxourc 6.24
Program PFGPLv



Subroutine SUBPL

_____ 1 3 Z ________________
Set the terminal into Graphic» mode
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Figure 6,25 continued
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CHAPTER 7

Multivariable Self Tuning Regulators

There are several problems in extending the theory of the previous 

chapters to multivariable systems. Two of the main problems arise 

from the difficulty of choosing (i) a suitable form for the system 

model and, (ii) an appropriate regulator structure. A third problem 

arises when extending the regulator theory of Chapter 3 which relied 

on the commutivity of the z 1 polynomials. In this chapter a possible 

approach has been suggested. It may be that the theorems for the coloured 

noise situation can be extended to the multivariable case, but this has 

not been attempted in this brief study.

7.1 System model

Assuming that there are the same number of inputs as outputs, 

a suitable model structure for identification with a least squares 

estimator would be:

(I+A(z_1)) Y(t) - B(z_1) U(t) ♦ e(t) (7.1)

Where A(z-*) is a matrix of polynomials in z 1 with no constant terms, 

B(s“*) is a matrix of polynomials in z 1 with no constant terms, I is 

a unit matrix, and Y(t), U(t) and e(t) are vectors of outputs, inputs 

and disturbances.
This form of model has more parameters than required but is

convenient
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With this choice of F matrix, equation 7.5 becomes 

A(z_1) ♦ B(z_1)(z B1“1 B(z_l))_1 G(z_1) - 0

A(z_1)♦ z“1 B(z_l) B(z-1)_1 Bt G(z_1) - 0

A(z_1) ♦ z'1 Bx G(z_1) - 0

G(z_l) - -z Bj"1 A(z_1) (7.8)

If F» G are chosen such that 7.7 and 7.8 are satisfied the 

closed loop equation reduces to:

Y(t) - e(t)

The calculation of this control law would require the inversion 

of the matrix Bt at each stage. This regulator would be similar to one 

constructed by Borisson* which was an extension to the multivariable 

case of the self tuning regulator suggested by Astrom for minimum 
2phase systems.

7.5 Equivalence of the tailored control law of section 3.6.3 

For this control law the control is chosen such that 

T(*-1) Y(t) - e(t) (7.9)

where T(z *) is a matrix of polynomials with no constant terms plus 
the unit matrix. Equation 7.3 implies that F and G must be chosen so 

that
(I*A(s_1)> ♦ B(s“l)(I*F(z"1))"1 C(z_1) - T(z_1) (7.10)

A solution for this in the case where B^ is non singular is

(I*F(s_l)) - s Bj"1 B(x"1) (7.11)

and by substituting

(I*A(t~1)) ♦ s“1 Bt G(s~l) - T(z-1)

<*"1)- z Bl"1 (T(*“l)-I-A(«"1)) (7.12)
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7.6 Equivalence of the pole shifting law of section 3.4

It will be noticed that the control laws of the previous two 

sections will be unstable if B(z X) has any zeros outside the unit 

circle. This instability can be avoided by a similar approach to that 

used in the single input single output case.

In the single input case the closed loop equation was 

<(1+A(«"l))(l+F(«’1)) ♦ B(z_1) G(z_1)) Y - (H-F)t-1 e (7.11) 

Unfortunately to reach the equation 7.13 from the single input 

version of equation 7.3, the (1+F(z X)) ' has to commute with B(z ), 

and so when B and F are matrices the same approach cannot be.used. 

However, the inverse of the polynomial matrix B(z 1) can be written as 

a product of a polynomial matrix b'(z X) and the inverse of a single 

polynomial in z X called B*(z X)

B(*“1)"1 - B*(z-1)-1 B'(r-1) 

1

(7.14)

».(a"1)-1
Polynomial in (z )

For examples for a two input two output system

1
B*(z-1)

B(*~l)

and <B(a ))

b '(«_1)

■ »!!<*“ >

,22 " ' 1>

-1 1
Bi ^ z"1) B22(*_1) ~

B22(s _ l ) -B 12( * " l >

-b21(.-1) b u (.-1)

12 '

and

-1 -1.B22(z ‘) -B,,(z ‘)12 '

Bn (. ‘)

- 1»
B*(z~X) - • ®22(*

-Bi2(«-1). b21(«-x)
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Substituting for B(z ') in (7,3) gives

(I+A(z“ '))Y ♦ <B*(z“ 1) b '(*“')) (I+F) ' c i z ^ Y  = e (7.15)

“I
Multiplying both sides by B(z ) gives

(7.16)

(7.17)

but b" * will commute with the matrix I+F(z ') since it will 

comnute with each term in it, because B (z *) is just a polynomial 

in (z *) .

.*. B*(z_1) ' ( » ( i " 1)) b '(z-,)(1+X(z_,))Y ♦ G(z-,)Y

- B*(z"') 1. (I+F(z_ *)) b ’u “1) e (7.18)

Multiplying both aides by B (z *) gives

(I^F(s"')) b '(z",)(I-»A(«“ ,|Y ♦ B*(z",)G(z",)Y

= (I+F(z-1)) fl’is-1) e (7.19)

Equation (7.19) is the closed-loop equation for the system. Therefore 

the system will be stable if

(I*F(z“ ')) B ,(z",)(I*A(s“ 1)) ♦ B*(z_l) C U -1) - T(z_l) (7.20)

where T(z_l) is a polynomial matrix as in the previous section, with 

all its zeros inside the unit circle. Therefore, if F and C are 

chosen to satisfy (7.20) the regulator will be a general stable pole 

. In the single input case B (z ) " B(z ) and

B*(z-1) b’(z ')(I+A)Y «■ (I+F(z-1)) G(z-,)Y

- B*(z ')B (z-*) e
• . ]

(I+F(z-1)) B*(z-1) b '(z“,)(I+A)Y ♦ G(z_,)Y

- (I+F(z-1)) B^iz"1) b ’(z-1) e

shifting law



B (z ) - 1 and equation (7.20) reduces to the equation for

general single input pole shifting law of Chapter 3.

« .1
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CHAPTER 8 CONCLUSIONS

1) When a system is being identified in a closed loop situation a 

least squares estimator will not produce unique estimates unless the 

order of the controller is greater than the order of the system 

(Chapter 4) .

2) A least squares estimator can be combined with a simple pole 

shifting control law to form a controller which tunes itself to take 

account of the dynamic behaviour of the system (Chapter 5).

3) One particular case of the pole shifting control law is a minimum 

variance control law as used by Astrom to form a self tuning regulator 

(Chapter S) .

4) The special case using the minimum variance control law can be 

unstable, even when the plant Laplace transfer function is minimum 

phase, since the e-transform's zeros depend on the plant poles as well 

as the zeros (Chapter 2).

5) The special case using the minimum variance control law can be 

conditionally stable if the system is of order three or more, or if 

there is a time delay of more than one half of the sample period 

(Chapter 2) .

6) When a plant has time delays and the minimum variance control law 

is being used it is better to estimate the correct order of model, and 

extend for the control law than to use a higher order model as proposed 

by Astrom (Chapter 6).
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7) A self tuning regulator with the general pole shifting law can 

easily be conditionally stable, i.e. if the loop gain is less than a 

lower value or greater than an upper value, instability may occur.

It shall, however, always be possible to establish a stable region 

for a linear system as demonstrated in Chapters 3 or 5.

8) It may be possible to extend these self tuning controllers to a 

multivariable system (Chapter 7).

8.1 Suggestions for further work

There are three main areas for further work.

1) To investigate the effects of nonlinearities other than limiters.

2) To apply these self tuning regulators to real systems. This was 

attempted but problems about the availability of certain pieces of 

machinery prevented success.

3) Multivariable self tuning regulators could be attempted using e 

general pole shifting law.



APPENDIX A

Notation

Polynomials in the delay operator z 

A(z 1) - a^z l'f*,,+anaZ

B(z-1) - b1z“1>...+bnbz_nb

—l —1 -ncC(z l) - 1 ♦ C^z ♦...♦Cncz

-1

- The open loop transfer function 
of the system has a denominator 
equal to 1+A(z S .

- Numerator of the open loop transfer 
function of the system.

- This is filter on the disturbance, 
allowing the modelling of 
coloured noise disturbances.

-1 - 1 , - 2  , -nfF(z L) - fxz +t2* +- - The denominator of the control 
law is 1+F(z *).

G(z_l) - g^gj« l + *’*+®ngZ_n8 

P(z“1) - l+p1z“l^...+prz k

- The numerator of the control law.

- Polynomial introduced in 2.5 
such that:
P(z‘1)<l+A(«‘1))*lu'kA'(z'1)

-1 -1 -nr
R<* > -  W  *’ "*rnrZ

-1 —l —ntT(z 4) - 1+tjZ

a ' < z" 1)  b ' ( z _1)

- Acts on setpoints

- closed loop characteristic 
polynomial.

Similar to the model A(z 1) and 
B(z_l), but with coefficients 
which fit the system exactly.

Similar to A(z l) and B(z l) but 
modified for time delays.



APPENDIX A (contd.)

Polynomial used in the calculation 
of the control law. This is the 
same as T(z if the system is 
linear.

A polynomial used in the 
multivariable case.

Scalars
d A constant offset on the system
e A white noise disturbance.

k Time delay as a multiple of 
sample interval.

A constant in calculation of control 
law.

na, nb, nc, nf, ng, nr, nt highest power of z 1 in the

q

polynomials A,BlC,F,GtR and T 

Forward shift operator

setpoint setpoint for system

t time

U(t) Input to system

a Laplace operator

Y(t) Output of system
-1* Delay operator

At Sample interval

X time delay

Bl zeros of the open loop system.



System equation without time delays

(1 A(z~1)) Y - B(z_l) U ♦ C(z_1) e

System equation with time delays

(1 ♦ A(z_1)) Y - z”k B(z_1) U ♦ C(z_1) e

or (1 ♦ z"k a '<z“1)) Y - z"k b '(z_1) U + P(z_1) C(z_1)

where 11 ♦ A(z h) P(z *) « (1 + z k A/(z S)
and B(z_1) P(z_1) - B'(z_1)

Control equation
(1 + F(z_1)) U - G(z_1) Y ♦ R(z_1) setpoint 

control chosen by

<1 «■ A(z_1) ) a  ♦ F(z_1)) ♦ z_k B(z_1) G(z_1) - X'(z



APPENDIX B

To obtain the minimum variance stable controller

Astrom and Wittenmark in their paper reference 3 from Chapter 3, 
state that the minimum variance control is given by:

U
G*(q_1) y(t)

B.l

where F*(q *) and G*(q 1) satisfy

B_(q_1) - A*(q-1) F*(q_1) ♦ q_k G*(q l) B_*(q_l) B.2

and B~(x)B+ (x) is a factorization of the polynomial B(x) such that 
b* (x) has all its zeros inside the unit circle and B (x) has all its 
zeros outside or on the unit circle, and B (o) “ 1.

In this notation the system is represented by

A*(q-1) y(t) - B*(q_1) U(t-k) ♦ e(t)

The * on the polynomials indicates an operation on the polynomial. 

if A(x) a xn ♦ a.xn * ao 1 n

then A*(x) - a ♦ a.x ♦ a x"o 1 ' ~n

q is the forward shift operator.

Combining equation B.l and B.3 gives the closed loop equation B.4

y<t> .  r < ;  - f r 1  ■ *<■ >F*(q l) B *Cq )

Using the factorization of B gives 

B**(q"l)(A*(q-1) F*<q_1) ♦ca(q_l) B-*(q”1)) y(t)

B.4

- F*(q_1) B**(q_1) B.3



Therefore the characteristic polynomial of the closed loop 

system can be found from equations B.5 and B.2 to be

T(q_1) - B+*(q_1) B_(q_1) B.6

Therefore if the zeros of the system are B^... Bnb_j and Just the 

first j of these are inside the unit circle the roots of T(q ) in

the plane are

B j ( * * * i  Bj i
V I

>Bnb-1



APPENDIX C

Summary of regions of stability and conditional stability

Many systems will fall into several of the following categories 
in which case the least stable result applies.

Open Loop system Control
*

* “ 1 / — 1 T (z S - B  (z  l) 
Min. variance

T '(z) product 
of zeros less 
than 1

T'(z)-1 
simple control

Unstable: (1+A) has Conditionally Conditionally Conditionally
roots outside unit 
circle

stable stable stable

Nonminimum phase 
B(z 1) with roots 
outside the unit 
circle as described 
in Chapter 2

Unstable Stable Stable

3 or more poles near Conditionally Conditionally Conditionally
the unit circle stable stable stable
At least one pole 
near to a zero

Stable Stable Conditionally
stable

2 poles and a time 
delay of more than 
one sample period

Conditionally
stable

con



APPENDIX D
Choice of Closed Loop Pole Positions

There are three factors which compete in the choice of closed 

loop pole positions. The first is the stability and conditional 

stability of the closed loop system, the second is the variances 

of the output and return difference for the closed loop system, 

the third is the complexity of the algorithm for choosing the closed 

loop pole position. The constraint that the closed loop system is 

stable must be satisfied, hence the closed loop poles must be within 

the unit circle. This implies that a very simple strategy such ns 

choosing the positions to be the same as the open loop zeros cannot 

be used for all systems. This implies that for minimum variance 

control a more complicated control algorithm involving polynomial 

factorisation will be required, (e.g. for non minimum phase system). 

Similarly the requirement that the system should not be conditionally 

stable conflicts with low output variance, (section 3.6).

Several different strategies could be tried.

1. For minimum variance systems. The closed loop poles can be 

chosen to be the open loop zeros together with an extra pole 

somewhere around 0.9 to decrease the input variance by relaxing 

the control, i.e. first decide how fast a response can be 

reasonably expected and chose the closed loop poles to give 

such a response. This use of the open loop zeros has the 

advantage of removing most of the computation of the control law.



2. For systems which either are open loop stable or have all 

the open loop zeros within the unit circle some combination 

of the open loop pole polynomial and the open loop zero 

polynomial could be used in a similar manner to that used 

by Dr. Clarke (Chapter 1, reference 5).

3. For systems which are open loop unstable and may have zeros 

outside the unit circle some fixed polynomial could be tried 

with one or more poles near to the +1 point.


