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Abstract

Current Maximum Likelihood and Bayesian phylogenetic methods are based on 
highly simplified probabilistic models of sequence evolution. To improve the ac­
curacy of the reconstructed evolutionary trees and to increase our understanding 
of the evolutionary processes at the molecular level, it is important to intro­
duce more biological realism into the underlying evolutionary models. Indeed, 
wrong evolutionary assumptions often introduce a significant bias which might 
lead to incorrect reconstructions and inconsistent results. The aim of the research 
presented in this thesis is to provide improved methods for RNA-based phyloge­
netics. To that end, the P H A S E  software package, which allows evolutionary 
tree reconstruction with specific models accounting for the conserved secondary 
structure of RNA genes, is extensively rewritten. New features and models are 
implemented.

Current methods that model the nucleotide substitution process assume ho­
mogeneity of nucleotide composition among different lineages. Yet there is strong 
evidence that nucleotide frequencies are varying along different lineages in nuclear 
and mitochondrial RNA genes. Failure to account for the heterogeneity of the 
evolutionary process over time can lead to the recovery of spurious phylogenies. 
Homogeneous methods tend to group together species which are related in terms 
of nucleotide composition rather than in terms of evolutionary history. Following 
earlier work from other researchers, a time-inhomogeneous substitution model 
using different evolutionary parameters on different branches of the tree is devel­
oped. Using a reversible jump Markov chain Monte Carlo technique, the model 
can statistically detect the amount of heterogeneity exhibited by the data without 
overfitting. The method is tested on both synthetic and empirical datasets.

A second strand of this research is concerned with the variation of nucleotide



frequencies among sequence sites. Compositional variation in time has already 
been extensively studied but fewer studies have focused on the effects of com­
positional heterogeneity within genes. It is shown here that different sites in an 
alignment do not always share a unique compositional pattern. Examples are 
provided where nucleotide frequency trends are correlated with the site-specific 
rate of evolution in RNA genes. Spatial compositional heterogeneity is shown 
to affect the estimation of evolutionary parameters and a new model to account 
for compositional variation across sites is developed. A Gaussian process prior is 
used to allow for a smooth change in composition with evolutionary rate. The 
results suggest that this model can accurately capture the observed trends in 
present-day RNA sequences.
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Chapter

Introduction

1.1 T he research context

The theory of evolution states that all organisms are related through a history 
of common descent. It is widely accepted that life on Earth diversified in a tree­
like pattern and that all living species can ultimately be traced back to a single 
common ancestor at the root of the tree. The idea that species could change and 
evolve over time is more than one hundred years old (Lamarck, 1809; Darwin, 
1859) but the Tree of Life is still not completely resolved today. Admittedly, huge 
progress has been made since the first published phylogenies (e.g., Figure 1.1) but 
the current picture (Figure 1.2) is not yet set in stone and many branches and 
deep bifurcations are still unknown (Science, 300, special issue). Accordingly, 
one aim of this thesis is to improve on the methods currently available to recon­
struct phylogenetic trees. Another related aim is to study the differences between 
genes in an evolutionary perspective in order to improve our understanding of the 
processes of DNA sequence evolution.

In the field of Systematics, phylogenetic trees are naturally used to classify 
species according to their evolutionary relationships. Reconstructing evolutionary 
trees for the sake of knowledge alone is certainly a worthwhile endeavour. How­
ever, phylogenies also have more practical use and a wide range of applications in 
biology (Harvey et al., 1996). The evolutionary paradigm has been central to bi­
ology for over a century and Life Sciences acquire a whole new dimension from an

13



CHAPTER 1. INTRODUCTION

evolutionary perspective. For instance, recovering the evolutionary history of ge­
netic systems and metabolic pathways can help to understand their current roles 
and mechanisms of action. Phylogenies also have a notable impact in the field of 
epidemiology. They have been used to study HIV transmission (Ou et al., 1992; 
Sharp et al., 1995) and to identify sites under positive selection (Yang, 2001). Re­
cently, they have also been used to characterise the SARS-associated virus as a 
new type of coronavirus (Marra et al., 2003). Evolutionary trees have also been 
proposed as strategic tools to measure biodiversity and draw up conservation 
priorities (Mace et al., 2003).

1.2 The research problem

The main research problem is easily stated: given a set of homologous character­
istics (i.e., having the same unique evolutionary origin) from a group of species or 
viruses, infer the tree that represents their evolutionary relationships. The first 
concern to reconstruct phylogenies is consequently the choice of data to perform 
the task. Some phylogenetic markers perform well for closely related species but 
their phylogenetic signal is quickly eroded by the passage of time. Others evolve 
too slowly to be of any use except to resolve deep bifurcations in early history 
inference.

Molecular markers have proven very useful to resolve phylogenetic trees in 
recent years and a second research problem appeared. DNA sequences can be 
used to reconstruct phylogenies but knowledge of the evolutionary history can, in 
turn, help us to understand how these DNA sequences are evolving. Methods de­
veloped in this thesis are designed to infer the evolutionary processes that shaped 
contemporary molecules simultaneously to the pattern of branching. Although 
the reconstruction of accurate phylogenies is an important issue, some emphasis 
is placed on the understanding of evolutionary mechanisms at the molecular level 
in this thesis.

Since the Earth preserved few traces of its past, these two related tasks are 
usually complicated by the fact that data from long-dead ancestral species are 
missing. The tree has to be reconstructed from contemporary data only. Defining 
a criterion to evaluate how good a phylogeny is, gauging how well it explains 
the contemporary observed characteristics and their relatedness, comparing the

14
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Figure 1.1: Monophyletischer Stammbaum der Organismen (Haeckel, 1866, II: 
plate I).

relative merits of alternative phylogenies, assessing the reliability of the results 
and complementing them with confidence values, are all underlying issues that 
have to be addressed in the process,
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Figure 1.2: The phylogenetic Tree of Life — current view based on phylogenetic 
inference with the SSU rRNA gene (Woese and Fox, 1977).

of organisms, were traditionally used before DNA sequences became widely avail­
able. However, the phylogenetic signal is often distorted when using such data 
because evolutionary unrelated species often evolve similar characteristics inde­
pendently when living in similar environments and confronted with the same 
evolutionary challenges. For instance, there is evidence that wings and eyes 
have been developed more than once because of this phenomenon of convergent 
evolution (Harvey and Pagel, 1991). The genetic information is the most basic 
data subject to evolutionary change. The rapid accumulation and distribution of 
macromolecular data — mainly DNA and protein sequences — greatly reduced 
the contribution of phenotypic data in this field of research and biomolecules be­
came the most popular form of data in phylogenetic inference over the past 20 
years.

The DNA molecules of an individual contain the genetic information that 
determines its growth and development. DNA chains are linear sequences of 
nucleotides (Adenine, Cytosine, Guanine or Thymine) and specific regions of 
the DNA, called the genes, encode the information necessary to produce func­
tional proteins. Over evolutionary time-spans, these genes change and the genetic 
sequences are altered. The aim of molecular phylogenetics is to infer the evolu­
tionary relationships of a group of species using the similarities and differences 
between their genetic information. Genes evolve by accumulating changes. In­
tuitively, the number of differences between homologous genes taken from two

16



CHAPTER 1. INTRODUCTION

different species should be correlated to the age of their common ancestor. The 
higher the number of differences, the larger the evolutionary distance between the 
two species. Opposedly, genes of closely related species, belonging to the same 
group, are expected to be more similar.

Most well characterised genes are protein-coding genes and are first transcribed 
into messenger RNAs (mRNAs) before being translated into functional proteins. 
Not all genes are protein-coding sequences. Some RNA molecules are not trans­
porters of information but have a functional role in the organism. These specific 
RNAs are directly transcribed from the non-coding RNA genes (ncRNA genes). 
In this thesis the focus is on these functional RNA molecules. ncRNA genes from 
contemporary species are the data used to perform phylogenetic inference. The 
ncRNA genes investigated in this work are the genes coding for ribosomal RNAs 
(rRNAs) and transfer RNAs (tRNAs), These RNA molecules play a crucial role 
during the translation of mRNA into proteins and are consequently ubiquitous 
in all known life forms.

The shape of an RNA structure often determines its function. The evolu­
tionary forces acting to change RNA-coding sequences naturally have to thread 
around the structure of these molecules. In this thesis, the importance of bonding 
interactions between nucleotides during the evolutionary process is recognized and 
the phylogenetic inferences are based on methods that account for the secondary 
structure of the RNA products.

The Large Subunit (LSU) and Small Subunit (SSU) nuclear rRNA genes are 
slow-evolving genes that are traditionally used to reconstruct phylogenies. Since 
these rRNA genes have been sequenced for a large number of species, they are 
traditionally used as a reference to compare with alternative phylogenies based 
on different data. By far, nuclear rRNA genes have been the most widely used 
to reconstruct the deep branching patterns of the Tree of Life and they will be 
used for that purpose in this thesis.

Most eukaryotic cells contains mitochondria. Mitochondria are distinct iso­
lated organelles which are involved in the respiration process and provide the cell 
with energy. These “cells within the cell” also have a genetic material which con­
tains ncRNA genes. Although mitochondrial rRNAs have the same evolutionary 
origin as nuclear rRNAs, they are evolving much faster and are consequently use­
ful to resolve close evolutionary relationships. Mitochondrial RNAs, ie ., rRNAs

17



CHAPTER 1. INTRODUCTION

and tRNAs, are used to produce mammalian phylogenies in this thesis.

Although the emphasis is on rRNAs and tRNAs, the methods developed in 
this thesis are by no mean not limited to these specific RNA molecules. They 
could also be used with RNA viruses or other small RNAs as long as a reasonably 
sized dataset can be built. Moreover, most techniques introduced in this thesis 
can easily be modified to be used in “traditional” molecular phylogenetics with 
DNA or protein sequences.

1.2.2 Inference m eth od s and su b stitu tion  m odels

A bewildering variety of inference methods are now available to reconstruct phy­
logenetic trees from molecular data. Modern approaches to phylogeny, pioneered 
by Felsenstein (1981), are based on probabilistic foundations and use the likeli­
hood as their optimality criterion. Although other inference methods are briefly 
outlined at the beginning of chapter 2, likelihood-based methods are the main 
subject of this thesis.

Likelihood-based methods require the specification of an explicit substitution 
model. Simply put, this substitution model gives the probability that a nucleotide 
is substituted with another one between two time-points. This substitution model 
is ultimately used to compute the likelihood function, i.e., the probability that a 
given evolutionary model (tree +  substitution model) has generated the observed 
sequences. Likelihood-based methods have many advantages over the more tradi­
tional approaches. They permit the inference of phylogenetic trees using complex 
and realistic models of sequence evolution. Moreover, uncertainty about the pro­
cess of substitution can be introduced in the model using “free” parameters (e.g., 
the substitution rate from one nucleotide to another, the frequency of a specific 
nucleotide, etc) which can be estimated along with the pattern of descent during 
the inference process.

So far, the Maximum Likelihood (ML) method has been the main statistical 
approach in this field of research. The tree that yields the highest likelihood, over 
all possible patterns of branching, associated branch lengths and evolutionary 
model parameters, is considered to be the “best” tree. Standard optimization 
algorithms can be used to recover ML estimates for the branch lengths and the 
free parameters of the substitution model since these are continuous parameters.

18



CHAPTER 1. INTRODUCTION

However, finding the best phylogeny in the discreet topology space is much harder. 
Only an exhaustive search, possibly associated with branch and bound methods, 
is guaranteed to recover the optimal tree. The number of possible phylogenies 
rises as the factorial of the number of species. For as few as twelve species more 
than ten billion trees are possible (Felsenstein, 2004). Due to the intractable size 
of the tree topology space, various heuristic methods are currently used in order 
to drastically cut down the time needed to optimize each candidate tree (see, 
e.y., Guindon and Gascuel, 2003) and to direct the search towards the optimal 
topology. As a result, these heuristic algorithms often find a near-optimal tree 
topology rather than the correct one.

Another issue with the ML method is that it singles out a specific tree and 
a unique set of ML estimates for the evolutionary parameters. This would not 
be such an issue if the assumed model of sequence evolution was correct and if 
sequences were long enough. Indeed, ML estimators are known to be consistent 
and efficient (Chang, 1996b; Rogers, 1997; Yang, 1997a), which means that the 
correct evolutionary tree will always be reconstructed given enough data (never­
theless, see Farris, 1999, for a contrary viewpoint). However, these two conditions 
are not met in practice and some uncertainty remains after an analysis. Methods 
have been developed to address these concerns. For example, the nonparamet- 
ric bootstrap is often used to measure confidence in a reconstructed tree and to 
evaluate how reliable a ML estimate is (Felsenstein, 1985). The statistical founda­
tions of the likelihood also allow the rigorous comparison of different substitution 
models (Goldman, 1993) and the evaluation of the relative merits of different 
phylogenies (Kishino and Hasegawa, 1989; Shimodaira and Hasegawa, 1999).

In this thesis, the emphasis is not on the ML approach but on the related 
Bayesian approach, which was introduced in this field of research by Mau (1996) 
and Li (1996) in their PhD thesis,Yang and Rannala (1997) and Larget and Simon 
(1999). The Bayesian approach combines the information contained in the data 
(using the likelihood function) with some prior information or belief to generate 
the posterior probability distribution of the parameters of interest. In the Bayesian 
framework, results are not point-estimates but probability distributions. Inferred 
evolutionary parameters and phylogenies automatically come with a measure of 
uncertainty. Results presented in this thesis, phylogenies and/or model parameter 
estimates, are consequently accompanied with posterior probabilities, descriptive 
statistics (usually mean posterior estimates) or 95% credibility intervals derived

19



CHAPTER 1. INTRODUCTION

from these. These posteriors have the important advantage of being based on the 
integrated likelihood. The posterior probability of a topology is averaged over 
branch lengths and substitution parameters (sometimes called nuisance parame­
ters) and, reciprocally, the credibility interval of a specific substitution parameter 
is integrated over the uncertainty in the topology.

In phylogenetic inference, the computation of posterior probabilities cannot 
be derived analytically but numerical Monte Carlo methods can be used to sam­
ple from the probability distribution. Markov chain Monte Carlo (MCMC) al­
gorithms (Metropolis et al., 1953; Hastings, 1970) are the major computational 
methods used to approximate the posterior probability distribution. The com­
putational efficiency of MCMC methods is responsible for the current popularity 
of the Bayesian approach in phylogenetic inference. Indeed, the surge of interest 
over Bayesian techniques is not really related to the philosophical debate opposing 
frequentists and Bayesians but is rather a practical choice. MCMC methods are 
fast and the Bayesian approach makes it possible to handle and evaluate complex 
evolutionary models. The Bayesian framework is consequently very attractive for 
researchers with a focus on the sequence evolution process rather than on the 
tree.

1.3 A im  of th e thesis

In order to make substitution models both computationally and mathematically 
tractable, many simplifying assumptions are made. Most of the research pre­
sented in this thesis is actually concerned with relaxing the most unrealistic re­
strictions and proposing better substitution models for the evolution of RNA 
genes. The aim of the research is at least twofold. First, it is believed that more 
realistic models can recover evolutionary relationships more faithfully. Much ef­
fort is currently being put into the development of better evolutionary models for 
protein-coding genes (Thorne et al., 1996; Lio and Goldman, 2002). Since RNA- 
based phylogenetics also has a huge influence in the field of evolutionary history, 
it is only natural to design substitution models better suited to the evolution 
of RNA genes. Second, likelihood-based methods are not limited to the recon­
struction of phylogenetic trees and can be used to infer the process of evolution 
simultaneously to the tree topology. A second aim of this research is consequently
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to improve our understanding of RNA evolution mechanisms by finding out which 
features of the models are the most important to explain the observed sequences 
and fit the data accurately.

In the early days of likelihood-based phylogenetic methods, it was traditionally 
assumed that:

1. the substitution process is Markovian and the future substitutions at a specific 
nucleotide position do not depend on past substitutions (i . e., the process has 
no memory);

2. each site is independent and a substitution at a site does not affect the process 
at other sites;

3. the process is shared across sites and the same Markov model is used at each 
position;

4. the substitution process is homogeneous over time and over lineages and free 
parameters of the substitution process are constant;

5. the Markov process is at equilibrium and expected nucleotide frequencies are 
stationary over the tree, including the root (common ancestor) and the leaves 
(contemporary species).

As shall be shown in this thesis, these assumptions are unfortunately not 
very realistic for the considered RNA genes. Methods to relax all but the first 
constraint are reviewed and proposed. The substitution models considered in 
this work are all Markovian but note that this limitation was also discussed and 
addressed by other researchers (Benner et al., 1994; Crooks and Brenner, 2005).

New methods are based on base-pair substitution models that relax the sec­
ond assumption and account for the evolutionary correlation between the two 
nucleotides of paired-sites in RNA helices (described in chapter 2). Jow (2003), 
implemented some of these models in a software package called PH A SE . This 
phylogenetic inference package was rewritten and extended to implement the 
new methods presented in this thesis. Although some standard ML methods are 
implemented in the P H A S E  package, the emphasis here is on Bayesian tech­
niques as in B A M B E  (Simon and Larget, 2001) or the widely used M rB ayes 
(Ronquist and Huelsenbeck, 2003).

One can observe strong compositional differences when comparing the G+C 
content between the rRNA genes of different species. For reasons that are detailed
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in chapter 4, RNA molecules of thermophilic species are G+C rich compared to 
mesophilic species. This is not compatible with the fourth and fifth assump­
tions and it has been noticed that this compositional bias can mislead traditional 
phylogenetic reconstruction techniques. Species can appear grouped according 
to their nucleotide composition rather than their evolutionary relationships. In 
chapter 4, new methods and models are proposed to relax these assumptions in 
the Bayesian framework. The variability of the substitution process over time 
is accounted for using different substitution models on different branches of the 
tree. Reversible jump MCMC techniques are used to determine the number of 
models (and consequently the amount of heterogeneity) needed to fit the data 
properly.

Based on the analysis of real mitochondrial RNA sequences, it is suggested 
in chapter 5 that the evolutionary process can be different at sites under strong 
and weak selection pressure. This is in violation with the third assumption. A 
substitution model that can account for the fact that the observed nucleotide 
composition is not the same at slow and fast evolving sites is introduced. This 
substitution model allows for the variation of the evolutionary process across 
sites.

1.4 Thesis structure

The structure of the thesis is as follows:

• In chapter one the concept of phylogenetic trees that show evolutionary rela­
tionships between organisms was introduced. The RNA sequence data used in 
this thesis were also presented. It is proposed to develop complex evolutionary 
models to improve our understanding of RNA evolution and to produce more 
accurate estimates of phylogeny.

• In chapter two the main components of current evolutionary models are in­
troduced. Probabilistic substitution models used to describe the evolution of 
molecular sequences along the branches of the phylogenetic tree are described 
first. The likelihood function, which is the basis of the inference technique, and 
its calculation are then explained.
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• In ch ap te r th re e  the Bayesian approach to phylogenetic inference is intro­
duced along with the Markov chain Monte Carlo technique implemented in the 
PH ASE software.

• In ch ap te r four a time-heterogenous substitution model is proposed to ac­
count for base composition variation over evolutionary time. The reversible 
jump technique used to perform phylogenetic inferences with this model is 
described and illustrated with synthetic and real datasets.

• In ch ap te r five it is shown that the equilibrium base frequencies of the sub­
stitution process also vary across sites. It is shown that it can adversely affect 
the estimation of parameters when standard substitution models are used. A 
new method is introduced to account for variation of the evolutionary process 
across sites.

• In ch ap te r six this work is concluded and the contributions are summarized. 
The weaknesses of the proposed methods and evolutionary models are iden­
tified. Future work that could be conducted to bring this research further is 
proposed.
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Chapter

Substitution models and the likelihood 
function

The approach followed to reconstruct evolutionary histories re­
quires a stochastic model of the processes that govern sequence 
evolution. The two main model components, used by virtu­
ally all likelihood-based methods, are described here. First the 
phylogenetic tree, which depicts the evolutionary relationship 
for the set of studied species, then the probabilistic substitu­
tion model, which describes the nucleotide replacement process.
Specific base-pair models, which are appropriate to describe the 
evolutionary process in RNA helices, are also introduced in this 
chapter. The pruning algorithm that is used to compute the like­
lihood of the data and is the basis of all model-based phylogenetic 
methods mentioned in this thesis is then described. This chapter 
is concluded with the introduction of more complex evolutionary 
models and methods that relax the assumptions presented in the 
introduction and are used in the remainder of this thesis.

2.1 Introduction

As mentioned in section 1.2, any evolving character shared among the set of 
studied species can be used as a basis for phylogenetic inference. As a result 
of ongoing sequencing projects, macromolecular data are accumulating fast and
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new techniques are needed to benefit from increasing computational resources 
and to mine this useful information. In this thesis, the focus is on molecular 
data and more specifically on RNA genes. The inferences presented here are 
consequently based on evolving DNA and RNA sequences but it should be noted 
that the methods introduced in this chapter, and in this thesis in general, may 
be extended and applied to amino-acid sequences and discrete morphological 
characters (Lewis, 2001).

DNA and RNA molecules are nucleotide chains. The replacement of one 
nucleotide by another (or mutation) in the genetic material of an individual is a 
common event and different individuals within a population usually have differing 
genetic information (which is known as polymorphism). This appears to be a 
potential issue when attempting to build species trees from individual sequences. 
In theory, phylogenetic inference should be carried out using consensus sequences. 
Consensus sequences are chimeric sequences created from the entire population 
using the nucleotide carried by the majority of individuals at each position. In 
other words, they are “average” sequences. Hopefully, variation within a species 
is limited and can safely be discarded. In practice the sequence of one individual 
is considered to be representative for the sequence of the population.

Species phylogenies are not directly inferred from mutations in individual 
sequences but from nucleotide replacements in the global consensus sequence. 
Indeed, mutations arise regularly and spontaneously in individuals but they do 
not necessarily persist for more than a few generations. Depending on the relative 
fitness of the mutant and on chance, a mutation can drift to high frequency and 
fixation in a population. The replacement of the most common nucleotide in 
the population by another one is called a nucleotide substitution. The stochastic 
models used to describe this replacement process are naturally called substitution 
models.

Over time, a consensus sequence may also lose some of its elements (deletion) 
or have elements inserted (insertion). Although these indels also contain a strong 
phylogenetic signal (see, e.g., Baldauf and Palmer, 1993), the methods developed 
in this thesis cannot handle them and, consequently, sequence data need to be 
aligned before analysis (see Figure 2.1). Nucleotides at each column position have 
to be homologous and gaps are inserted to replace the missing nucleotides in some 
sequences. Extra nucleotides can also be removed for the purpose of phylogenetic 
inference.
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Baboon AGTAACAAIM ^  

Barbary Ape GAAT AACAATT

Gorilla GAACGACAAGGXTT  

Human G AACCACAAGGTT  

Chimpanzee GAATCACGGGTT
EGGEGEEG

Figure 2.1: Nucleotide alignment procedure.

Alignment is a difficult and important step preceding a phylogenetic analysis. 
A review of automatic alignment techniques is beyond the scope of this thesis (see, 
e.g., Wallace et ah, 2005; Gardner et ah, 2005). For the purpose of this thesis, 
alignments were refined by eye with reference to the RNA secondary structure 
and are assumed to be accurate.

2.2 P hylogenetic inference from aligned  

sequences

2.2.1 P hylogen ies

The phylogenetic tree represents the hierarchical relationships arising through 
evolution among a set of selected species. The species, also called taxa, are at the 
leaves of the tree and have all evolved from a unique common ancestor which is at 
the root. Leaves are connected to the root by a set of internal nodes linked with 
branches of different lengths. The internal nodes are bifurcation points between 
genetically isolated groups or monophyletic clades (see Figure 2.2).

Until recently, almost all phylogenetic methods accepted the appropriateness 
of a tree-like model to describe the evolutionary process but this may be an 
unwarranted assumption in some cases due to horizontal gene transfer events 
(HGT) or, perhaps, genome fusions (Rivera and Lake, 2004; Creevey et ah, 2004; 
Kunin et al., 2005). Although one ought to remain cautious, it is relatively safe 
to assume that nuclear rRNA is free of horizontal transfer because it cannot be 
functional if it is not transferred with the various ribosomal proteins tightly cou­
pled with it (Woese, 2000). There is growing evidence for HGT of mitochondrial 
genes in plants (Bergthorsson et al., 2003), but mammalian mitochondrial genes
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have been extensively studied and HGT is unlikely for most datasets studied in 
thesis.

branch (edge)

baboon

 human

chimpanzee

gorilla

root

internal
node

monophyletic
clades

terminal leaves
(contemporary taxa)

Figure 2.2: A phylogenetic tree: the information conveyed by the tree can be 
understood by locating the monophyletic clades.

Biologists can choose among a wide range of methods to reconstruct phy- 
logenies and selecting an appropriate method is actually a complex issue. The 
recent burst of techniques came with an extensive literature but the occasional 
phylogeneticist will find it rather difficult to penetrate. Three major inference 
techniques dominate the field: parsimony, distance methods and likelihood meth­
ods. Likelihood methods, succinctly introduced in the first chapter, are central 
to this thesis and are discussed at length later on. Meanwhile, parsimony and 
distance methods are briefly introduced.

2.2.2 Parsim ony m ethod s

Maximum Parsimony methods are based on a different optimality criterion than 
Maximum Likelihood (ML) methods. Rather than trying to find the tree that 
yields the highest likelihood, parsimony methods favour the trees that require the 
fewest number of character changes and rely on a principle widely used in science: 
simpler explanations are usually preferable to more complex ones. Although there 
have been many variants (reviewed by Felsenstein, 2004, chap. 7), the simplest 
parsimony method assumes that all nucleotide changes have equal evolutionary 
cost and trees are consequently scored according to the minimum number of 
substitutions necessary to produce the observed sequences. The optimal tree is 
defined as the tree with the lowest score.

Maximum parsimony has a long history in phylogenetic inference (see, e.g., 
Camin and Sokal, 1965; Eck and Dayhoff, 1966) and has been, by far, the most
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widely used method in molecular phylogenetics since Fitch (1971) described an 
algorithm to compute the minimum number of changes per site for a given tree. 
PA U P* (Swofford, 2003) is an important software that incorporates parsimony 
methods and which produced a significant share of all the published phylogenies.

Although not clearly stated, parsimony methods are implicitly assuming that 
changes are rare. This may be a justified assumption over short evolutionary 
time-scales when the branches of the tree are short, but multiple substitutions 
will occur at some sites as molecular sequences diverge. Since parsimony cannot 
correct for superimposed changes, it usually underestimates evolutionary dis­
tances. Long-branch attraction is a specific consequence of this issue that was 
noticed and explained early on (Felsenstein, 1978). Long-branch attraction is a 
reconstruction artifact where long branches cluster together and share common 
ancestors regardless of the true underlying evolutionary relationships. This prob­
lem cannot be alleviated by increasing the amount of characters studied because 
the artifact gets more pronounced as the sequence lengths increase.

Parsimony methods are not mentioned in the remainder of this thesis but 
they are introduced here because they are widely used and are, arguably, the 
most natural attempt to solve the phylogenetic problem. Even though parsimony 
can easily be described, the algorithms used to compute the minimum number 
of changes on a tree and to search for the most parsimonious tree are not so 
straightforward. In spite of their apparent simplicity, parsimony methods are still 
computationally expensive. As with the ML optimality criterion, vast numbers 
of candidate phylogenies have to be evaluated to select the best one(s).

2.2.3 D istan ce m ethods

Introduced shortly after parsimony, distance methods are based on a matrix 
of pairwise evolutionary distances (see, e.g., Cavalli-Sforza and Edwards, 1967; 
Fitch and Margoliash, 1967). In the first step, available data are converted into 
a symmetric square matrix D of dimension N  (N  being the number of species) 
where Dij is the evolutionary distance between the species i and j.  The pair­
wise distances are then used to reconstruct the evolutionary tree. Any reasonable 
transformation can be used to convert the initial data into a distance measure. 
Nevertheless, distance methods are known to be better behaved when the dis­
tance used is additive, i.e., when the distance between two species is equal to the
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total sum of the branch lengths that separate them. Markov models of nucleotide 
substitutions presented later in this chapter can be used to compute a ML esti­
mate of the distance between two species and this functionality has actually been 
added to P H A S E  in order to be used with any of the RNA substitution models 
implemented during this project. Since they are relevant to the subject of this 
thesis, the paralinear/LogDet distances (Lake, 1994; Lockhart et al., 1994) and 
the distance proposed by Galtier and Gouy (1995) are worth mentionning and 
will be discussed in chapter 4 because they can successfully account for inequali­
ties of base composition across species.

In the second step, distance measures are used to construct a tree. Many 
methods are available to construct phylogenies from pairwise distances. The sim­
plest, and fastest, methods are the algorithmic methods that follow a clustering 
scheme. In these algorithms, closely related taxa are iteratively selected, linked 
and replaced by their common ancestor until the tree is complete. These clus­
tering algorithms, e.g., Unweighted Pair Group Method with Arithmetic mean 
(UPGMA, Sokal and Michener, 1958) or Neighbour Joining (NJ, Saitou and Nei, 
1987), have a long history and are still widely used today, due to their ability to 
deal with very large datasets. They have recently been improved by accounting 
for the noise in the evolutionary distances (Gascuel, 1997; Bruno et al., 2000).

Distance reconstruction methods described above apply their algorithm to 
produce a tree from a distance matrix and the phylogeny is completely de­
fined by the algorithm. Other distance methods exist which are more firmly 
grounded in a statistical framework. These alternatives make use of an optimal­
ity criterion, which implies that many topologies have to be evaluated in order 
to find the best one. The least squares method and its weighted and general­
ized variants attempt to minimize the differences between the observed measures 
in the pairwise distance matrix and the corresponding branches of a candidate 
tree (Cavalli-Sforza and Edwards, 1967; Fitch and Margoliash, 1967). The phy­
logeny, with associated branch lengths, that fits the matrix with the least residual 
error is considered the best. The minimum evolution criterion (Rzhetsky and Nei, 
1992) is another related, but slightly different, optimality criterion. Once branches 
have been fitted with least squares on candidate phylogenies, minimum evolution 
chooses the shortest phylogeny (e.g., with the smallest sum of branch length) 
rather than the phylogeny that best fits the distance data.

Obviously, there is an inevitable and massive loss of information when the
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original dataset, molecular sequences in our case, is squashed into a N  x N  
matrix. However, contrarily to intuition, experience and computer simulations 
have shown that pairwise distance methods preserve most of the information and 
often behave remarkably well in practice. Nevertheless, these methods do not 
provide great insight into the process of evolution.

2.3 N ucleotide substitu tion  m odels

2.3.1 M arkov m odels o f nucleotide su b stitu tio n

DNA substitution models are designed to model nucleotide substitution in ho­
mologous DNA strands. Replacements within these sequences are described and 
modelled by a 4-state Markov process, each state represents one of the base found 
in DNA molecules: Adenine, Guanine, Cytosine and Thymine (see Figure 2.3).

Figure 2.3: A Markov model of nucleotide substitution.

Phylogenetic inference is usually done from the mRNA complementary tran­
scripts rather than the original genes. In RNA molecules, Thymine is replaced by 
Uracil. This is of little consequence for our substitution models and it is assumed 
that T  and U are equivalent and interchangeable from now on.

This 4-state Markov process is completely specified by its rate matrix, which 
contains the rates of substitution between the four bases. Following the notation
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of Swofford et al. (1996),

Q =

A C G T
A ^ rAA tac Tag ^a t ^
C tca Tec tcg tqt

G tga Tac tgg tgt

T \  tta rTC ttg ttt J

(2.1)

Each element represents the instantaneous rate of substitution from nucleotide i 
to nucleotide j  if i ^  j. i\j x dt is the probability of change from i to j  in an 
infinitesimal amount of time dt. The probability of i no t changing into another 
nucleotide in time dt is consequently 1 — rijdt but the diagonal of Q is 
defined by

Vi, = > (2.2)

for convenience so that
dP(t) = P(t) x Qdt , (2-3)

where P(t) is the matrix of substitution probability, which gives, for each couple 
of nucleotides i j  the probability that state i is replaced by state j  in time t (or 
probability that state i is still state i in the case i =  j). Solving differential 
equation (2.3) with P(0) =  I  gives:

P(t) = eQt . (2.4)

The exponentiation in (2.4) is done by diagonalising Q with its eigenvectors and 
eigenvalues. PH ASE uses the BLAS/LAPACK  FORTRAN libraries to per­
form this computation.

As mentioned in the introduction, it is traditionally assumed that the sub­
stitution process is stationary or at equilibrium. In such a case, a vector of 
equilibrium frequency parameters, constant over time, can be defined. These fre­
quency parameters ( n  =  {t̂ a ^ c ^ G i ^ t }) add up to one. Notice that for any 
column vector X representing an initial marginal distribution over the nucleotides, 
limt„>+0oATT x P(t) — n  (see Figure 2.4). After an infinite amount of time, the 
composition, averaged over the complete sequence, converges towards the equi­
librium frequencies. Based on the stationary assumption, it is also supposed that 
the process was already at equilibrium at t — 0 (the root of the tree).
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Figure 2.4: Evolution of a nucleotide over time: this graph returns the probability 
of a nucleotide being one of the four bases at different time-points, given that the 
initial nucleotide at t = 0 was an A. Probabilities converge to the equilibrium 
frequencies The substitution model used is the HKY model
(described in 2.3.2) with the transition/transversion ratio set to 10.

Most substitution models also assume that, averaged over the whole sequence, 
the flux from base i to base j  is equal to the flux from j  to i. This assumption is 
enforced using the detailed balance equation:

TTiTij = TTjrji . (2.5)

The substitution models considered in this thesis belong to this class of models 
and are said to be time-reversible. Reversibility is first and foremost a mathe­
matical convenience but it is probably not far from the reality. One consequence 
of time-reversibility is that the substitution model cannot be used to determine 
the direction of evolution. With two sequences at opposite ends of a branch, it 
cannot be decided which is the ancestral sequence and wrhich is the derived se­
quence. For our problem, the important consequence of time-reversibility is that 
substitution models can be used to infer phylogenies but cannot be used to decide 
where to root them. Extra knowledge is needed to position the root when such 
substitution models are used.
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By introducing a set of parameter R  =  {pr/} and defining:

V(i, j ) / i  % j, Tij = PijTTj , (2.6)

then the detailed balance equation (2.5) can automatically be satisfied for a sym­
metric choice of R. The elements of R  are called exchangeability parameters in 
this thesis.

2.3.2 S tandard nucleotide m odels

Building on the previous equations, the most general time-reversible nucleotide 
substitution model, known as GTR or REV, can be expressed by the following 
rate matrix:

A C G T

A (  - pAC^C PAG^G P a t^ t^
G Pac^ a _ PCG^G PCT^T
G Pag^ a PCG^C — Pgt^ t

T \  Pat a  a PCT^C PGT^G ~  /

This model was introduced by Lanave et al. (1984) but was not extensively 
used until recently. Other nucleotide models commonly used are biologically 
motivated simplifications of this general model. Even though these alternative 
models are presented here as constrained versions of the GTR model, history 
proceeded in the opposite direction and models became increasingly complex as 
assumptions were relaxed and computational resources improved.

JC69 is the simplest 4-state model of DNA sequence evolution which was 
proposed by Jukes and Cantor (1969). In this model, all nucleotides are assumed 
to be interchangeable and the transitions of the Markov model are all equal. This 
corresponds to all pij being equal in (2.7) and tt^ — ttc — kg =  Tr =  25%.

From a biochemical point of view, the four nucleotides present some obvious 
differences and one can distinguish the purines (A and G) and the pyrimidines (C 
and T /U ) by their number of heterocyclic compounds. The K80 model (Kimura, 
1980) accounts for these two families and improves on the JC69 model by using 
two different substitution rates. The transition rate (in the biological sense,
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purine—»purine and pyrimidine—̂ pyrimidine) is no longer assumed to be the same 
as the tra n sv e r s io n  rate (purine—̂ pyrimidine and pyrimidine—̂ purine) and two 
independent exchangeability parameters are used in (2.7) (ptransition — P a g  — P e r  

and ptransversion = P a c  =  P a t  =  P c g  =  P g t , see Figure 2.5). In the K80 model, 
nucleotide frequencies are still assumed to be equal to 25% and this assumption 
was relaxed by Hasegawa et al. (1985) in the HKY85 model.

fast fastslow

purines

Figure 2.5: The K80 and HKY85 substitution models: all transversion rates 
are equal p AC =  P a t  =  P c g  =  P g t  =  Ptransversion and all transition rates are 
equal p Ac  — P c t  — Ptransition• The A and G nucleotides are chemically simi­
lar and fall into the group known as the purines while C and T are known as 
the pyrimidines. Nucleotide substitutions within groups (transitions) are much 
more frequent than substitutions between groups (transversions) and typically 
Ptransition/Ptransversion > 1- Unlike the HKY85 model, the K80 model assumes 
that nucleotide frequencies are equal.

Clearly, one could still come up with a different set constraints on R  and n  
and propose a “new” substitution model. Few of the 203 possible time-reversible 
variations of R  have been named so far (Huelsenbeck et ah, 2004). Since biolog­
ical arguments have already been exploited, the real challenge lies now on the 
statistical justification of any particular choice. Consequently, only one last sub­
stitution model is introduced here because it is used later on. This model was 
proposed by Tamura and Nei (1993) and is a special case of the GTR model (see
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matrix (2.7)) where all transversion rates are equal:

A C G T

A (  - Ptrans'KC Pag^ g Ptrans^T
C Ptrans'KA — Ptrans^G PCT^T
G PAG^A Ptrans'KC — Ptrans^T
T \^Ptrans'RA PCT^C Ptrans ̂  G /

(2 .8)

In other words, the TN93 model can also be defined as a generalisation of the 
HKY85 model, where the two transition rates Pag and per  are not constrained 
to be equal.

2.4 R N A  genes and base-pair substitu tion  
m odels

2.4.1 R N A  m olecules and com pensatory  su b stitu tion s

In 1953, Watson and Crick described the structure of the DNA molecule and 
suggested that it is composed of two intertwined nucleotide chains. The two 
strands are held together by hydrogen bonds between the Watson-Crick pairs 
A -T and C-G  and their nucleotide sequences are perfectly complementary.

Unlike DNA molecules, RNA molecules are single stranded and they natu­
rally fold into a compact and complex structure when left in their environment. 
Although numerous interactions are known to play a critical role in the final three- 
dimensional shape or tertiary structure of these ribozymes, the configuration of 
the molecule is mainly determined by the Watson-Crick bonding interactions be­
tween distant nucleotides (secondary structure). In RNA molecules, helices are 
formed intramolecularly and the folding process produces regions of paired nu­
cleotides or stems, interspersed with unpaired strands loosely called loops in this 
thesis (see Figure 2.6 and Figure 2.7).

In RNA stems, the helical structure is maintained by traditional Watson- 
Crick pairs but one can also notice non-canonical base-pairs. Purine-purine and 
pyrimidine-pyrimidine hydrogen bondings are unlikely but the two other purine- 
pyrimidine interactions (predominantly G -U pairs and, to a lesser degree, A-C
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Watson-Crick pairs Mismatch

U-G  pairs

G A

LoopStem

Figure 2.6: Schematic representation of the RNA secondary structure.

pairs) can, in some cases, be almost as stable as the standard Watson-Crick pairs.

Ribosomal RNAs and transfer RNAs have an important role and their struc­
ture cannot easily be disrupted without impact on their function and potentially 
lethal consequences. Therefore, selection pressure is acting to maintain the sec­
ondary structure and the stems. Yet, the primary structure (the unidimensional 
nucleotide sequence) can still vary and, in fact, we observe that RNA helical re­
gions are quite variable in sequence. The bases used are usually not as important 
and substitutions are possible as long as the secondary structure is preserved.

The secondary structure is unchanged when complementary substitutions oc­
cur in the DNA gene coding for the RNA molecule. From an individual sequence 
viewpoint, this mechanism is a two-step process. A mutation 011 one side of a 
pair (say G-C to G-U) slightly disturbs the helicoidal structure because the G- 
U bond is the least stable thermodynamically. However, a second mutation on 
the opposite site (G-U to A-U) can fully restore the pairing ability. Recall that 
phylogenetic inference is based on substitutions and not on individual mutations. 
From the population viewpoint, evolution in stems can occur either by two suc­
cessive substitutions or by a simultaneous compensatory substitution (Stephan, 
1996; Higgs, 1998). In the first case, the slightly deleterious G -U  pair drifts to 
fixation in the population and is replaced by the A-U pair later on. In the second 
case the selection against intermediate mutants is too strong and the G-U pair 
is kept at low frequency in the population until a second mutation takes place in 
one of the sporadic mutant (see Figure 2.8).
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Figure 2.7: The secondary and tertiary structure of common RNAs;
top: tRNA-Phe (Yeast), bottom: rRNA Small SubUnit (E.Coli); sec­
ondary structures on the left are from the Comparative RNA Web Site 
(http://www.rna.icmb.utexas.edu/), tertiary structure on the right were realised 
with rasmol, pdb structure files 1EVV and 1PNS.
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a ) Two single 
substitutions b) One double 

substitution
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time time

Figure 2.8: The compensatory substitution mechanism: a) the intermediate G-U 
pair reaches fixation before a second substitution occurs, b) the deleterious G-U 
pair is kept at a low frequency until a second mutation restores the pairing ability 
and the new A-U pair gets fixed. Figure courtesy of Paul Higgs.

2.4.2 R N A  su b stitu tion  m odels

To model the evolution of nucleotides in stems, and to use RNA genes in phy­
logenetic inference, one could simply use a standard DNA substitution model as 
described previously. However, non-canonical pairs are not common (approxi­
mately 10% to 15% of the base-paired sites), and one side of the double helix 
can almost be deduced from the other side. Using a DNA model with RNA 
stems is consequently almost equivalent to accounting for the same data twice 
and usually leads to overconfidence in the results. In the worst case, one can find 
strong support for an incorrect phylogeny (Tillier and Collins, 1995; Jow et al., 
2002; Galtier, 2004). In practice, most RNA phylogenies are done with standard 
four-state DNA substitution models even though the violation of the assumption 
of independence among sites is known to bias the results. In this thesis, substitu­
tion models that properly account for the secondary structure of RNA molecules 
are favoured.

Since the evolutionary pressure is acting on the structure rather than on the 
nucleotides themselves, RNA stems are quite variable in their sequences but the 
stems are relatively well conserved over evolutionary time. In an alignment of 
homologous RNA genes, most columns can consequently be unambiguously char­
acterised as either being independent of being part of a pair. The assumption of 
independence can then partially be alleviated by simultaneously considering the 
two co-evolving nucleotide positions constituting a pair. Independent positions
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in RNA loops can be handled with one of the standard 4-state models described 
in section 2.3 and new probabilistic substitution models have to be proposed for 
the stems.

A variety of substitution models have been proposed to model RNA sequence 
evolution (Savill et al., 2001). These base-pair models differ from the previous 
nucleotide models in that the pair is now considered as the elementary unit of evo­
lution. Since there are sixteen possible base-pairs (A-U and U -A  are considered 
as different states), the most general base-pair substitution models presented here 
naturally have sixteen states even though the six stable base-pairs (four Watson- 
Crick pairs plus the U -G /G -U  wobble base-pairs) constitute the majority of 
sites in RNA helices. In a typical alignment, 5% of the pairs belong to the class 
grouping the ten other possible combinations (mismatch pairs). Mismatch pairs 
can be caused by unconventional pairing interactions but they are generally re­
lated to modifications of the secondary structure over evolutionary time, which 
is not accounted for by current models.

A general sixteen state time-reversible model of base-pair substitutions can 
easily be constructed by analogy to the most general DNA substitution model 
presented above. However, this parameter-rich model, with sixteen frequency pa­
rameters and 120 exchangeability parameters, would be of little use in practice. 
This is not as much a computational issue as a data issue. Indeed, a reason­
ably sized RNA dataset hardly provides enough information to estimate all these 
parameters properly, especially those associated with rare pairs and rare substi­
tution events. Since data concerning mismatches is scarce, one straightforward 
solution is simply to remove them from the alignment and use a six-state model 
(WC pairs 4- UG/GU) with the paired sites that are conserved across species and 
over evolutionary time (Tillier, 1994). To avoid wasting information, one can also 
consider the two columns of the unstable pair as independent, and treat them as 
such, rather than removing them.

When large alignments (in terms of number of species) are studied, the prob­
ability of a pair being conserved in all species is getting lower. Another solution 
is consequently not to disregard mismatches completely but to lump them into a 
single state (Tillier and Collins, 1998). The original dataset is recoded and the 
ten mismatch pairs are lumped into a seventh state M -M . Note that a simi­
lar technique (RY-coding) can be used with standard DNA models. Reducing 
the four nucleotides (A, C, G and T) to purines (R) and pyrimidines (Y) was
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found to reduce the biasing effects of saturation and compositional differences 
with standard phylogenetic methods (Harrison et al., 2004).

RNA models implemented in P H A S E  have consequently six, seven or sixteen 
states. Within their family, these different sets of models have been compared 
against real data by Savill et al. (2001) using likelihood-ratio tests, Akaike’s Infor­
mation criterion (1974) and Cox’s statistical test (1962). See Posada and Crandall 
(2001) and Goldman (1993) for the application of these tests to the phylogenetic 
problem. At this point, it might be better to classify these RNA models into two 
classes, which are not related to their number of states.

The first class contains RNA substitution models that are heavily inspired by 
their DNA counterparts. In these substitution models, transitions (in the prob­
abilistic sense) that require the simultaneous change of the two nucleotides of a 
pair are not allowed. Indeed, according to the DNA Markov models presented 
previously, the probability of two nucleotides simultaneously changing in an in­
finitesimal amount of time dt is a negligible term in dt2. The models proposed 
by Schoniger and von Haeseler (1994), and Rzhetsky (1995) belong to this class 
where exchangeability parameters for double substitutions are null. These two 
models account for the difference in the selective fitness of the sixteen pairs by 
using different equilibrium frequencies and the six common pairs naturally have 
higher equilibrium frequencies. Muse (1995) used a different parameterisation for 
his RNA substitution model and incorporated a selective term A for the preferen­
tial attachment to the Watson-Crick base-pairs. With A =  1, this model reduces 
to the standard HKY85 4-state model.

The second class of RNA models, introduced by Tillier (1994), does not as­
sume that the instantaneous rate of double substitutions is null. While this 
would make little sense for a mutation model used at the individual sequence 
level, this can easily be justified at a population level, as pointed out earlier 
(see Figure 2.8). More importantly, models that allow for double substitutions 
have been shown to be superior when applied to the evolution of real RNA se­
quences (Tillier and Collins, 1998; Savill et al., 2001).

Many RNA models have been implemented recently in P H A S E  and are de­
scribed in the manual of the software. For the purpose of this thesis, introducing 
the 7A and the 7D models suffice. As indicated by their name, these two models 
are seven-state models (with the ten mismatches lumped into a single MM state).
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The 7A model is the most general time-reversible model with seven states and can 
be constructed analogously to the 4-state GTR model of nucleotide evolution in­
troduced in section 2.3. It has seven frequency parameters and 21 exchangeability 
parameters (and consequently allows for double substitutions). The 7D model, 
also known as the OTRNA model (Tillier and Collins, 1998), is a biologically 
motivated simplification of the 7A model where some exchangeability parameters 
that were independent in 7A are constrained to be equal (see Figure 2.9). The 
7D model is completely specified by the following rate matrix:

AU GU GC UA UG CG M M

AU ( * Ois7VGU Ô d̂ GC P^UA P^UG pTTcG MM ^
GU OLŝ AJJ * Ois^GC P^ua P^UG PWCG 7 ̂ Mtf
GC OidAAU Ô ŝ GU * P^ua pftUG PKCG i n  mm

UA P^AU P^GU P^GG * OisnuG O-d̂ CG MM
UG (3n AU (3kgu P^gc ^s^UA * OtsKCG l^MM
CG P^au P^gu P^GC Ô d̂ UA a s7TuG * T̂ JV/M
M M \  l^AU 'JTTgU l^GC JKua JITUG l^CG * /

2.5 P hylogenetic trees and branch lengths in  

the likelihood framework

Throughout this thesis rooted and unrooted trees are mentioned. It turns out 
that the analytical techniques used for tree reconstruction do not always allow 
for an unambiguous placement of the root. This is related to the fact that some 
evolutionary models are time-reversible as already mentioned. It is therefore not 
always possible to infer the position of the earliest point in time, the common 
ancestor of all species, in a phylogenetic network (see Figure 2.10).

Typically, the most important result of a phylogenetic analysis is the pattern 
of branching, or tree topology. Nevertheless, when pairwise evolutionary distances 
have been described at the beginning of this chapter, the notion of branch lengths 
has also been introduced. A link is now established between the lengths of the 
branches and the substitution models described in sections 2.3 and 2.4.

Intuitively, branch lengths should be a measure of time but they are actually 
a measure of evolutionary distance. The elongation between two nodes is the
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U - Gslow
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C - GG - C

Figure 2.9: The 7D (OTRNA) substitution model (Tillier and Collins, 1998): 
rapid interchange occurs within the two groups of states (single transitions and 
double transitions), whereas interchange between the two groups is rare (double 
transversions).

chimpanzee

outgroup ■
human

gorilla

outgroup 
— human
chimpanzee
gorilla

Figure 2.10: Two equivalent representations of the same unrooted trees. When 
the phylogenetic method used cannot locate the root, an outgroup species, known 
to be genetically isolated from the others, is traditionally used to restore the tree­
like shape.

expected number of substitutions per site along the branch. A large branch 
indicates that a large number of substitutions separate the two sequences at its 
incident nodes. The evolutionary distance is related to physical time by a simple 
relation:

dL = r(t)dt , (2.9)

where r(t) is the rate of evolution at time t. Since r(t) is unknown, it is not 
possible to deduce time from branch lengths without further assumptions. Most 
phylogenetic methods do not tease apart the evolutionary rate and the time since
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one can only infer their product, which is an evolutionary distance, from the 
available data.

Recall that in equation (2.4), the probability of a change P(t) was given as 
a function of Q x t. The evolutionary distance between two sequences can be 
large because they are separated by a long period of time or, indistinguishably, 
because the rates of substitution (i.e., the terms in the matrix Q) are high. To 
resolve the identifiability issue, the matrix Q is scaled by a factor p, so that the 
average substitution rate of the substitution model:

is equal to one. This makes the length of a branch equal to the expected num­
ber of substitutions per site along that branch. Since Q is scaled before being 
used, proportional sets of transition rates are equivalent. The identifiability 
issue is now inside the matrix and it is necessary to add an extra constraint on 
the exchangeability parameters. One of the exchangeability parameters can be 
fixed to 1 and used as a reference. Alternatively, one can enforce the constraint 

Pi —  ̂ where nbexch is the number of free exchangeability parameters in 
the substitution model. Both methods are used in this thesis because this con­
straint was recently changed in the P H A S E  software. As will be explained in 
chapter 3, this particular choice of parameterization is of no consequence in the 
ML framework but can have an effect in Bayesian inference.

In general, no assumption is made about r(t) in equation (2.9) and refer­
ence to physical time is dropped out. Nevertheless, it might be reasonable to 
assume that r(t) is constant over time (global molecular clock) or smoothly vary­
ing (relaxed molecular clock). In practice, these two assumptions are used with 
ultrametric trees. In an ultrametric tree, branch lengths are directly proportional 
to time span and not necessarily to the amount of change. Consequently, the 
terminal branches leading to contemporary species stop simultaneously at time 
t — 0 (see Figure 2.11). The root is uniquely defined as the point being at equal 
distance from all leaves and traditional methods can consequently position the 
root without ambiguity when the (relaxed) molecular clock is assumed.

Some methods implemented in P H A S E  have been adapted to handle ultra­
metric trees when a global molecular clock is assumed. Since this assumption

T lb s ta t e s

(2 .10)
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human
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gorilla

Figure 2.11: An ultrametric tree: contemporary species are on the same timeline 
t — 0. With an appropriate calibration point, for instance the human/chimpanzee 
split approximately 6 million years ago, it becomes possible to date other speci- 
ation events.

is not appropriate for the genes and datasets used in this thesis, these algo­
rithms and molecular clocks in general are not described further in this thesis. 
However, note that these methods are drawing considerable interest. Time in­
formation is crucial to discover the connections between Earth's history and bi­
ological evolution, for instance the rise of oxygen levels 2.2 billion years ago and 
the origin of photosynthetic Cyanobacteria. A reliable dating of some specific 
speciation events is probably more useful than the overall pattern of branch­
ing in some research. The global clock hypothesis is incompatible with most 
datasets (Tajima, 1993) and local clock methods have been devised in the ML and 
Bayesian frameworks (Sanderson, 1997; Thorne et al., 1998; Kishino et al., 2001; 
Huelsenbeck et al., 2000). These methods are popular because they can estimate 
divergence times without assuming rate constancy. Recovering the evolution­
ary timescale of life using phylogenetic methods is an active, and controversial, 
research area (Hedges and Kumar, 2003; Graur and Martin, 2004).

2.6 The likelihood function and the pruning al­
gorithm

2.6.1 T he pruning algorithm : sim ple case

Substitution models that are used to compute probabilities that nucleotides and 
paired-sites change over time have been defined. It is described here how these
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substitution models can be used in practice to “score” candidate phylogenies with 
a likelihood value.

Given a phylogenetic tree topology r  and its associated set of branch lengths 
y, one can compute the likelihood of a set of aligned sequences X . Depending 
on the sequences studied, one (or more) of the substitution models described 
above is naturally a part of this evolutionary model and the likelihood is also a 
function of 9, the set of free parameters of this substitution model (e.g., the fre­
quency and exchangeability parameters that are allowed to vary). The likelihood 
is the probability of the sequence data given the generative evolutionary model: 
P (X \t , v, 9). In other words, the likelihood can be understood as the probability 
that a specific phylogeny and set of substitution parameters have generated the 
observed sequences. This probability is obviously very low because a given evo­
lutionary model (phylogeny -f substitution model) can generate many datasets 
with almost equal probabilities. Nevertheless, this probability should not be con­
fused with the more intelligible probability that the model is correct given the 
observed dataset P (r,v ,9 \X ).

Felsenstein (1981) described a practical algorithm to compute the likelihood 
function. For the sake of clarity, this algorithm is described here in its simplest 
form with a set of aligned DNA sequences. Since it is assumed that different sites 
are evolving independently, it turns out that the probability of the data given the 
evolutionary model can be computed site by site because the overall likelihood is 
a product of these terms:

L = P (X \r , y, 9)
nhues /2. n )

=  n  n X j \ r , V,0) ,
i=i

where X j is the data at the j th  site. It is recalled that when an RNA gene is used, 
the two elements of a pair are considered as a single site and the independence 
assumption is thus not an issue in this specific case. Felsenstein’s algorithm will 
consequently be explained with the computation of the likelihood at a single site.

It is known that interactions between neighbouring sites influence the evolu­
tion of molecular sequences and some substitutions are known to be favored be­
cause of the context. For instance, there is an excess of C —>T transitions in CpG 
dinucleotides. It is also known that adjacent pairs in RNA stems are stabilized by

45



CHAPTER 2. SUBSTITUTION MODELS AND THE LIKELIHOOD
FUNCTION

stacking interactions and influence each other. Thus, independence is a simplify­
ing assumption which is (slightly) violated with real data. Nevertheless, practical 
computation does not appear feasible without it (but see Siepel and Haussler, 
2004; Jojic et al., 2004).

The pruning algorithm is explained with a rooted tree (Figure 2.12) and it is 
actually necessary to choose a root to apply this recursive algorithm. However, 
it can be shown that this particular choice does not affect the likelihood value 
when the model used is time-reversible (pulley principle, Felsenstein, 1981) and, 
as previously noted, the likelihood function cannot be used to position the root 
in general.

Figure 2.12: The phylogenetic tree that is used in the discussion. Numbers 
identify internal nodes and leaves, Vi are the branch lengths.

If we assume that the nucleotides at ancestral nodes {s*} are known, the 
likelihood at a site can easily be written according to the states observed for a 
given site at the leaves of the tree. For the tree represented in Figure 2.12, this 
likelihood would be:

L'j =  P(so, s6, s7, s8, A, C, U, G, G|t, v ,  6) . (2.12)
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The Markov substitution models described previously can be used to decom­
pose this expression using the probabilities of change in each tree segment:

Aj 7Ts0 X PSQ̂ gQ(vo) X PSQ̂ S8(ug)

X PS6̂ a (^ i)  X P s ^ c M  
x PS8̂ u(z/3) x PS8̂ S7(v7) 

x PS7̂ g 0 4) x PS7̂ g (i/5) ,

where 7rSo is the prior probability of having nucleotide s0 at the root and is also 
the equilibrium frequency of the state s0 given by the substitution model since the 
process is assumed to be stationary. Py->z(0 is the probability that nucleotide 
Y  is substituted by nucleotide Z along a branch of length I.

Of course, ancestral states are not known and they are not a part of the 
dataset. The likelihood of the data is actually P(A , C, U, G, G |r, z/, 9) which is 
computed by summing over all the possible assignments for the internal nodes:

LJ = P( A ,C ,U ,G ,G |r ,^ ) = ] T E E E Li • (2.14)
s o  So S 7 S 8

Without further simplifications, the likelihood would not be tractable. Moving 
the summation signs inwards in equation 2.13 leads to considerable economy in 
terms of computation:

Li = H 7r«ox { E  [ Pso—>sq(Pq) X Ps6->a(Ai) X PS6̂ c(^ /2)j X ^   ̂ ĵ PSo_j.S8(z/8) 
so so ss

X PS8_u(z/3) X ^ 2  (PS8̂ S7(l/7) X PS7̂ G(vA) X Ps7—s-G(^5 )) |  • (2.15)
S7

As Felsenstein (1981) pointed out, the pattern of parenthesis in equation 2.15 
bears an interesting relationship to the pattern of branching in the tree

|  [l, 2], [3, (4,5)] It turns out that the likelihood can be computed efficiently 
by starting at the leaves of the tree and moving towards the arbitrarily chosen 
root. For each site j  and each internal node fc, one can define the conditional 
probability of a subtree L j^S k), which is the likelihood of the data under this 
internal node k assuming that the ancestral nucleotide at this node is S&-
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The conditional likelihood at a node is defined recursively from the conditional 
likelihoods of its descendants (see 2.15). If I and m are the immediate descendants 
of k then:

The overall likelihood at a site is defined from the conditional probability at 
the root:

so

The conditional likelihoods at the tips, which initialise the recursion, are nat­
urally:

One does not always observe a nucleotide at a tip. Recall from Figure 2.1 that 
some gaps have been inserted to produce the final alignment. Also, sequencing 
techniques are not perfect and some ambiguities can remain in the final alignment. 
For instance, if a purine R  was detected but could not be resolved into an A or a 
G, one might be tempted to use Lj^(A) — Lj)t(G) — |  and Lj>t(C) = L j>t(T) =  0 
for the conditional likelihoods at a tip. This would not be correct because the 
probability of the observation R  given that the nucleotide is an A  is 1.0 (Ljft(A) =  
P(R\A) =  P (A  U C?|A) — 1) and similarly if the nucleotide is a G. Gaps are 
treated as ambiguous nucleotides in the substitution models presented here, but 
see McGuire et al. (2001); Smith et al. (2004) for an alternative treatment.

2.6.2 C om bined m odels, m ixture m odels and  

tim e-h eterogen eou s m odels

The pruning algorithm has been described here in its simplest form, with a unique 
substitution model shared at each site and constant throughout the tree. In later 
chapters, methods that relax this assumption of homogeneity are introduced. The

(2.16)

(2.17)

1 if st is the observed nucleotide for the species, 
0 otherwise.
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pruning algorithm has to be adapted for that purpose.

Relaxing the constraint of homogeneity in time and across the tree is quite 
straightforward. One can simply define a specific substitution model for each edge 
and use those to compute the substitution probabilities in equation 2.15. The 
pruning algorithm is also easily adapted to change-point models and the process 
can be made to change inside branches rather than at bifurcation points. In both 
cases, the process is not stationary anymore and the position of the root has to 
be properly specified. Ancestral state frequencies at the root should be defined 
as well since the nucleotide composition is not at equilibrium anymore. From a 
computational point of view, calculating the likelihood with a time-heterogeneous 
model is not more expensive but the global evolutionary model usually becomes 
parameter-rich and fitting the free parameters to the data requires more process­
ing time. Time-heterogeneous methods are discussed in chapter 4.

Relaxing the constraint of homogeneity across sites is not necessarily challeng­
ing either but at least two different methods can be used. There are cases where 
evolutionary patterns are known to be different and sites can simply be parti­
tioned into different categories before the analysis. It is now quite common to 
concatenate genes to perform a phylogenetic analysis and using a different substi­
tution model for each gene is usually justified. There are also known cases of het­
erogeneity within a gene. For instance, when protein-coding DNA sequences are 
studied, one can define a partition in three sets corresponding to the three codon 
positions. It is also possible to use multiple substitution models to accommodate 
differences in the protein secondary structure (e.g., alpha-helix, beta-sheet). Ob­
viously, when RNA genes are studied with the base-pair models implemented in 
PH A SE , loop and stem regions also have to be partitioned beforehand so that a 
standard 4-state substitution model can be assigned to unpaired nucleotides and 
a doublet substitution model can be used with pairs. Combined models that use 
different substitution models for different blocks of a partition have been studied 
and are commonly used (Yang, 1996b; Pupko et ah, 2002). The overall likelihood 
is still the product of the likelihood at each site (equation 2.11) and one just has 
to use the appropriate model for each site depending on the partitioning. Larger 
partitions will naturally dominate the final likelihood score (Seo et al., 2005), but 
this is not necessarily an issue.

Substitution models used in different blocks of a partition do not need to 
be completely independent and P H A S E  has been modified recently towards a
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more flexible modelling freedom and allows these different substitution models 
to share some parameters (Yang, 1996b). Different blocks can also use different 
sets of branch lengths but this functionality is not yet implemented in PH A SE. 
Instead, the proportional branch lengths model is used: it is assumed that branch 
lengths for different classes are the same, up to a scaling factor. This is admit­
tedly a limitation but one has to concede that previous studies did not always 
confirm the superiority of the complex substitution models that use separate 
branch lengths (Yang, 1996b; Pupko et al., 2002).

Heterogeneity across sites can also be accounted for using latent class models, 
also known as mixture models (Pagel and Meade, 2004). Partitioning of the data 
is not always an option and there are cases where intragenic variability cannot 
be related to specific DNA segments or a correct partitioning scheme cannot be 
established with certainty. These models assume that sites evolve according to 
an unobserved process chosen among a finite set of substitution models and the 
likelihood is computed by integrating over all the possible substitution processes. 
As Felsenstein (1981) already pointed out, the expression of the likelihood at a 
site becomes:

subset of parameters in 0 that completely defines the evolutionary process for the

category. Mixture models are discussed again in chapter 5 and are not described 
further here. Note that modelling heterogeneity across sites with latent class 
models introduces more parameters and also increases the computational burden 
of the likelihood computation (which is proportional to C ) .

L, = P (X i \T ,v ,0 )
c (2.18)

where C is the number of substitution process (or number of categories), 0C the

category c and p(c) the proportion of sites that are assumed to belong to that
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B a y e s i a n  P h y l o g e n e t i c s

In this chapter, the Bayesian approach to phylogenetic inference 
is discussed as an alternative to the standard Maximum Likeli­
hood (ML) approach. The results o f the ML method are solely 
based on the likelihood, which is the probability o f observing the 
data given the hypothesis (an evolutionary model in our case).
The Bayesian method combines the likelihood with the prior for 
parameters, which is the uncertainty about their true values be­
fore the data are known, to generate posterior distribution of 
parameters upon which the inference is based. Markov chain 
Monte Carlo methods are discussed at length. These allow for 
the estimation of species phylogenies with complex models o f se­
quence evolution and are responsible for the current popularity 
of the Bayesian method in this held of research.

3.1 Introduction

In the previous chapter, an evolutionary model A4, with a set of parameters 
(topology r , branch lengths v, substitution parameters 9), has been constructed to 
model some data X . The Maximum Likelihood (ML) approach considers that the 
parameter values (f,u,9) that maximize the likelihood function P(X\r ,  v, 9, AT) 
are the best estimates for the parameters of the model. A different approach is 
followed in Bayesian inference. The problem is still resolved by the formulation
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of an adequate model that can explain the observed data but the parameters of 
this model are considered as random variables throughout the analysis.

At the first level of inference, the model M. is assumed to be correct and we 
aim at inferring the parameters of this model. Bayesian inference starts with 
a probability distribution that expresses our prior knowledge/belief about the 
uncertain quantities before the data has arrived. This prior belief is then altered 
in light of the data using Bayes’ rule:

l i k e l i h o o d  p r i o r
p o s t e r i o r  s  ^  \

( U 1

 ̂ v
evidence

The prior is combined with the likelihood function to incorporate the new infor­
mation provided by the data. This gives the conditional probability distribution 
of the random variables given the data, or posterior, upon which Bayesian infer­
ence is based. The likelihood is the probability of the data assuming that the 
model parameters are true. This quantity is not as easily interpretable as the 
posterior distribution, which is the intuitive quantity a biologist is interested in. 
Indeed, the posterior probability distribution is the probability of the parameters 
(tree topology included) given the data. Many important evolutionary questions 
can easily be answered by marginalization of this quantity (monophyly of a set of 
species, estimation of ancestral sequences, estimation of divergence times, etc).

Although Bayes’ theorem provides us with a rational method to update our 
beliefs with the arrival of new observations, the choice of a particular prior is prob­
lematic and the Bayesian framework is still controversial in statistics. The first 
issue is that universality is required for a prior to be objective. Two researchers 
could reach opposite conclusions with the same data if their initial prior is differ­
ent. Perhaps more importantly, it is expected that equivalent beliefs are always 
translated into equivalent mathematical expressions. An important philosophical 
issue is whether numbers can truly be used to reflect beliefs (e.g., can we assign 
a probability to the existence of extraterrestrial life and, assuming such a num­
ber exists, how can we decide its value?). These problems are largely beyond 
the scope of this thesis since they are epistemological controversies centered on 
the scientific method. To summarize the problem, Likelihoodists argue that the 
whole Bayesian framework is subjective because the prior used is subjective in
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the first place.

In practice, posterior distributions are influenced less and less by the prior 
and more and more by the likelihood as new data are taken into account. The 
particular choice of a prior is consequently of limited consequence with enough 
data. The main advantage of the Bayesian framework over the ML framework 
is that results incorporate uncertainty over the parameters of the model whereas 
ML estimates are only point estimates (typically accompanied with a measure of 
error). Considered altogether with the ability of the Bayesian framework to deal 
with much more complex models, the inconvenience associated with the use of a 
prior is not such a big price to pay.

The evidence in equation (3.1) is seen as a convenient normalizing constant 
for the moment but it will be discussed in chapter 4, when the issue of model 
selection arises. The evidence is the marginal probability of the data and it can 
be calculated by integrating over all possible parameter values. In the phyloge­
netic case, the topology is a part of the evolutionary model and computing the 
evidence also involves summing over all Nj> possible topologies. For our purpose, 
equation (3.1) can consequently be written as:

P ( X \ r ) v) 6) M )  X p(r, v,9\M)
£ 5 .  L  L  P(x \n, Vi, 8, M )p(n ,  Vi, e\M)

P{ t , v , 8 \ x , m ) = ' j y i> y y y : K , (3.2)

where t* is the ith topology, and z/; an associated set of branch lengths. The 
denominator of equation (3.2) is analytically intractable, and, even for small­
sized problems, it is usually quite difficult to compute the evidence. Fortunately, 
numerical methods can be used to approximate the posterior distribution without 
computation of the evidence. Such a method is discussed in the next section.

3,2 M arkov chain M onte Carlo m ethods

Markov chain Monte Carlo (MCMC) methods are powerful numerical integration 
methods. Although they cannot be used to compute the posterior probability 
in a straightforward manner, they can generate large samples from this distribu­
tion without explicit integration over all possible topologies and continuous pa­
rameters. The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 
1970), which generates a Markov chain whose states are the parameters of the
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complete evolutionary model <j> =  {r, z/, #}, is described here.

Algorithm  3.1: The Metropolis-Hastings algorithm 
/* Initialization * / 
n <— 1 ;
Choose a random initial state =  {ti, zq,> 0i} J

/* Sampling*/ 
repeat

Propose a new state <fi' =  {r/, z/, 9f} from the current state <f>n using a 
proposal mechanism <j)n) ;

Compute A  =  min ( l ,  $ $ $ $ $ /)  i
p <— random(W(0 , 1 )) ; /*draw a random number from 11(0,1 ) * /
if (p  < A ) /* accept new state with probability A  */
then
I <f>n+1 <- <f> ';

else
I <?Wi 4Jn ; /*  or repeat the current state*/

end
Add the state <pn+i — {rn+i, z/n+i, 6L+1 } to the sample; 
n <— n  +  1 ; 

until enough samples have been collected;

The Metropolis-Hastings algorithm (3.1) is a two stage procedure. In the 
first stage, a new state <f>' is proposed by modification of the current state 4>n. 
In the second stage, the new state is either accepted or rejected depending on 
the posterior probabilities p(cf)n\X) and p((f)f\X). The acceptance and rejection 
probabilities at step n  are

P((j)n + 1 =  = min ^1,

P((j)n+ 1 ~  <j>n\<fin) =  1 -  mill 1 ,
(3.3)

and these define the Markov chain completely. The Hastings ratio de­
pends on the proposal mechanisms used and can intuitively be understood as a 
correction term for when the proposals are not well balanced, e.g., if the proposal 
mechanism is biased and tends to propose </> —> <f>' more often than $  —> <j>. One 
can see from equation (3.3) that the next state is the same as tire current state if 
the proposal is rejected, in which case the state is repeated in the sample. One 
can also note that a step in the “correct” direction, with p(cf)'\X) > p(4>njA), is
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always accepted if proposals are well balanced and the Hastings ratio is 1.0.

This Markov chain converges to an equilibrium under quite weak conditions 
and, once the convergence is reached, states are distributed according to the 
posterior probability density p((f>\X). A necessary and sufficient condition for the 
MCMC algorithm to work is that the chain is ergodic: for any couple of states, 
there must exist a finite number of proposals to travel from one to the other. In 
other words, all states must be reachable from any initial conditions. Figure 3.1 
shows an example of the Metropolis-Hastings algorithm applied to a simple two 
dimensional density.

a) The target density

- 2  - 1.5 -1  - 0  5 0  0.5 1 1.5 2

X

d) The target density (estimated from 400,000 sampled states)

b) The trajectory o f the MCMC sampler (first 200 sampled states
21   1 . 1 .     .-------

c) Sampled points (10,000 sampled states)

- 2  - 1.5 -1  - 0  5  0  0.5 1 1.5 2

X

Figure 3.1: Integration with MCMC methods, the Metropolis-Hastings algorithm 
that samples from a target distribution is illustrated: a mixture of two Gaussians, 
shown in a), which is known in this example, b) Each iteration, the MCMC 
sampler chooses a direction at random and attempts a step in that direction. 
The step size is chosen from a normal distribution (// =  0, a = .25) and it can be 
negative. Steps are small and the chain moves slowly with a high acceptance rate, 
c) The MCMC sampler is run to produce a large sample, d) The sampled states 
can be used to reconstruct the initial distribution (a histogram was produced 
here).
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At first glance, there is no clear reason why the transition probabilities in 
equation (3.3) should be easier to compute than the posterior probability in 
equation (3.2). However, the denominator in equation (3.2) cancels out when 
computing the ratio of posterior probabilities in equation (3.3) and one can by­
pass the need to compute the evidence term when building the Markov chain. 
The acceptance ratio can be expressed in terms of a ratio of likelihoods, com­
puted with the pruning algorithm presented in chapter 2, a ratio of user-specified 
priors and the Hastings term:

(3.4)

Once the sample is generated, one'can compute the posterior probability of any 
identifiable phylogenetic feature of interest by marginalization. For instance, the 
posterior probability of a specific topology, integrated over the other parameters, 
is simply given by the fraction of time this topology appears in the sample. 
Similarly, the posterior probability of a clade being monophyletic is given by 
the fraction of time this clade appears in the sampled topologies. One can also 
compute mean posterior estimates for the parameters of the substitution model 
that accommodate for the uncertainty over tree topologies (see Figure 3.2 for an 
example of marginalization with the mixture of Gaussian distributions shown in 
Figure 3.1).

The Metropolis scheme is not the only one available for high dimensional in­
tegration. The Gibbs sampler (Geman and Geman, 1984) is a single-component 
proposal mechanism that modifies a specified parameter using its conditional 
probability given the other parameters. It is actually a special case of the 
Metropolis-Hastings algorithm where the ratio of the target density and the Hast­
ings ratio cancel each other out and the proposal is always accepted. The Gibbs 
sampler is widely used in other fields of research but it did not find a place in 
phylogenetic inference since there is no analytical form of the required conditional 
probabilities in most cases.

Dynamic sampling methods have been developed in the field of Physics to 
study real physical systems. In these methods, particles are associated with their 
potential energy (which is function of their position) and their kinetic energy.
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histogram of sam pled values 
true marginal density

Figure 3.2: Marginalization with MCMC. A high-dimensional model usually has 
many parameters which are not necessarily of great interest (the so-called “nui­
sance” parameters). They can be integrated out leading to probability distri­
butions of parameters that are of interest. Using the example previously shown 
in Figure 3.1, it is assumed here that the y parameter is not as important as the 
x parameter and a histogram of the x coordinates is produced from the sampled 
states to approximate p(x) = Jyp(x,y)dy. The histogram is compared with the 
real density p(x) which is known in this simulated example.

Moves in the phase space are designed to keep the total energy constant. These 
methods avoid the “random walk” behavior of the Metropolis algorithm and 
can be faster for some problems. Based on these dynamical methods which can 
potentially perform large steps while maintaining a high acceptance rate, Hybrid 
Monte Carlo methods (Duane et al., 1987) were consequently developed in an 
attempt to improve the mixing of the standard Metropolis algorithm. However, 
to the best of our knowledge, these hybrid methods have surprisingly not been 
adapted to the phylogenetic problem. These methods could potentially be used to 
improve dramatically the mixing of branch lengths for instance. However, since 
they require the computation of many partial derivatives ({Sp̂ X)}), it is possible 
that the increased computational cost outweighs the benefits. Obviously, these 
methods are restricted to continuous-valued parameters and are not appropriate 
for discrete parameters such as tree topologies.

57



CHAPTER 3. BAYESIAN PHYLOGENETICS

3.3 Priors

As mentioned in the introduction of this chapter, the concept of prior is not 
easy to grasp and is the cause of many controversies. The prior can be based 
on solid information, easily expressed into mathematical terms, in which case 
the application of Bayes theorem is uncontroversial. However, in most problems, 
the prior is of a subjective or arbitrary nature. Indeed, it is rarely possible to 
translate properly a priori beliefs into a mathematical prior. For these reasons, 
some people remain uncomfortable with Bayesian methods and, most of the time, 
an “uninformative” prior is chosen in an attempt to remain objective. The prior 
can also be chosen for mathematical convenience when opportunities to lighten 
the computational load arise (e.g., conjugate priors). However, note that a real 
Bayesian would probably describe these attempts as misguided. All priors contain 
some information and their mathematical expressions should ideally be the best 
representation of what a researcher thinks before he/she gathers the data.

Phylogeneticists can probably ignore this debate because results are usually 
not much influenced by the prior when enough data are provided (see Figure 3.3 
and Huelsenbeck et al,, 2002). Nevertheless, recent works have clearly demon­
strated that one should remain cautious, and practical issues encountered with 
problematic priors are highlighted in this section.

There is generally no strong evidence for a particular prior distribution for the 
parameters of our evolutionary model. Like most Bayesian phylogenetic inference 
software, PH A SE uses a simple factorized prior:

p(4>) =  p(0) x p(v\r) x P(r)  . (3.5)

P ( t ) is the prior for a given tree topology. By default, PH A SE uses a simple 
uniform prior and each topology is given equal prior probability, i.e., Vr, P(r) = 
1/AY* However, note that complex priors derived from a birth-death generative 
model for the speciation process, could have been implemented and used with 
ultrametric trees (see Yang and Rannala, 1997). It is difficult for the biologist to 
specify an a priori knowledge on the space of topologies using probabilities but 
he might be able to say with complete certainty whether a clade is monophyletic 
or not. Such knowledge can be inserted before an analysis and it is possible to 
enforce topological constraints with the PH ASE software. When performing
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a) 5 throws, 1 head b) 50 throws, 13 heads
0.45 0.14

likelihood: p(13.37[hj
0.4
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0.35

0.3
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0.05 MLF.: h = 1/3

0.2 0.4
h: probability for head

0.8 0.80.6 1 0.2 0.4
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0.6 
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prior: p(h) = Beta(8,8) 
—  posterior: p(h| 1,4)

0.2 0.4
h: probability for head

0.6 0.8
for head

prior: p(h) = Beta(8,8) 
posterior: p(h| 13,37)

-o 4

0.4
h: probability for head

0.80.2 0.6
for head

Figure 3.3: The coin tossing problem in a Bayesian perspective. In this prob­
lem one is interested in estimating the parameter h of a binomial law, h is the 
probability for head. The two datasets — a) 5 tosses, b) 50 tosses — have been 
generated with h = .3. The likelihood (top) is combined with a weakly infor­
mative Beta(8,8) prior on h (bottom), which reflects our a priori belief that the 
coin is approximately fair before seeing the experiment results. This prior belief is 
updated with the arrival of data — a) 1 head /  5 throws, b) 13 heads /  50 throws 
— to produce the posterior (bottom). Note that ML estimates are exactly the 
observed fraction of heads. Note also that the likelihood dominates the posterior 
with the larger dataset.

a Bayesian analysis, the user can specify a list of monophyletic clades or even 
assume that the complete branching pattern is known1.

p(v\r) is the prior for the set of branch lengths associated with the topology. 
Originally, PH ASE used a uniform “uninformative” prior and all possible sets 
of branch lengths were assumed to be equally probable provided that all lengths

1 This functionality is also available with ML heuristic methods that search for the best tree.
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were positive values bounded by a user defined upper limit. Unfortunately, there 
is really no such thing as an uninformative prior and it has long been appreciated 
that using flat priors on different parameterizations would produce different pos­
terior probabilities. Unlike the ML method, Bayesian inference does not have the 
convenient property of being scale-invariant (Felsenstein, 2004). As previously 
pointed out, the particular choice of a prior is of little importance when enough 
data are used, unless the prior is unreasonable. It turns out that a uniform prior 
on branch lengths is far from being even a “vague” prior because this prior at­
taches a high probability to long branches which, in turn, biases the Bayesian 
posterior probability of monophyletic clades upwards (Yang and Rannala, 2005). 
Other priors were consequently made available to the user (exponential as in 
M rBayes, gamma, etc). The default Exp(10) prior is used for most of the in­
ferences presented in this thesis. 10 is the scaling parameter of the exponential 
law which makes the mean branch length equal to 0.1. This prior seems to be 
biased towards smaller values and one might reasonably argue that this prior is 
too arbitrary. A simple solution is to try multiple values for the scaling parameter 
to check that it does not affect the results. Alternatively, a better solution is to 
create a hierarchical Bayesian model. Under this scheme, the scaling parameter 
of the exponential distribution becomes a “hyper-parameter” of the model. The 
hyper-parameter must be given a “hyper-prior” distribution (e.g., X ~  Exp(l) or 
A ^  £/(0, 50)) and is estimated like a standard parameter during the MCMC run. 
It is possible to create such hierarchical models with PH A SE . This functionality 
was only used when enough computational power was available since it was not 
found to have a significant impact on the results.

Such priors on branch lengths cannot be used with an ultrametric tree. In 
such a case, the prior on branch lengths is replaced with a prior on the height h 
of the tree:

p(v\r) = p(v\h,r)p(h\T) , (3.6)

The user can choose the prior on the height p(h\r) (uniform, exponential, etc) 
and all valid sets of branch lengths that match the given height have equal prob­
abilities.

Finally, p(6) is the prior on the parameters of the substitution model described 
in the previous chapter. Once again, a factorized prior was chosen and p(9) is 
the product of the priors on each parameter. A Dirichlet distribution is used for
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the state frequency vector n  =  {tti, 7T2,. . . ,  7r̂ ,}:

m = t p S j  n i  w r' 1<5(Ei _  1} ■ (3-7)

where 5 is the Kronecker function and {pi} are the parameters of the Dirichlet 
distribution. The user can specify these parameters and, in this thesis, the default 
flat Dirichlet prior, Vz,pi =  1, is used. This prior attaches a uniform probability 
density to all sets of frequency parameters that sum up to one. If this prior is 
judged arbitrary, a hierarchical scheme can also be used where po =  JT  Pi becomes 
a hyper-parameter of the model that controls the variance of the Dirichlet prior. 
In such a case, the user still has to specify the center of the Dirichlet distribution 
{ ^ }  and to decide on a hyper-prior on p0.

The situation is slightly more complex for the exchangeability parameters. 
As mentioned in section 2.5, it is necessary to impose an extra constraint on 
the exchangeability parameters since they can only be identified up to a scaling 
factor. Most ML phylogenetic programs use one of these parameters as a ref­
erence and set its value to 1.0. The other exchangeability parameters are then 
given relatively to this reference. Hence exchangeability parameters are often 
called rate ratios. In chapter 5, this older parameterization is used and a uniform 
prior, between 0.0 and an arbitrary upper-bound of 200.0, is used on individ­
ual rate ratios. The reference rate is pa*->g when a DNA model is used and is 
usually Pau^ gc with base-pair models (but Pau^ gu is used as a reference when 
double-substitutions are not allowed). However, experience accumulated over 
the last three years has shown that this prior was problematic when performing 
a Bayesian inference with RNA substitution models. With a limited amount of 
data, e.g., small sequences or few species, rate ratios were seen to reach the upper- 
bound imposed by the prior. As was recently pointed out, the uniform prior on 
rate ratios produces biased parameter estimates because it puts more weights on 
higher values (Zwickl and Holder, 2004). The problem gets worse when using a 
high upper boundary or an unbounded uniform prior in a misguided desire of 
objectivity. In chapter 5, this issue is of no consequence since the likelihood dom­
inates the prior in determining the posterior distribution of the exchangeability 
parameters. Nevertheless, a parameter-rich model is used in chapter 4 and this 
issue would have been a more significant concern. A newer parameterization was 
consequently used and the constraint on exchangeability parameters was changed
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to be Pi = 1’ The vector of exchangeability parameters is now similar to
the state frequency vector and the various Dirichlet priors described above can be 
used. As suggested in Zwickl and Holder (2004), the default Dirichlet parameters, 
Vi,Pi =  0.5, are used in this thesis.

In chapter 5, mixture models that allow for rate heterogeneity across sites are 
described. Default uniform priors are used on the extra parameters introduced by 
these techniques, e.g., U (0.0,1.0) for the proportion of invariant sites, U (0.0,50.0) 
for the gamma shape parameter that controls the extent of rate heterogeneity. 
However, P H A S E  allows for flexible modelling and different priors could have 
been chosen for these parameters.

Finally, some MCMC runs presented in this thesis are performed with a com- 
bined substitution model. Real RNA sequences are partitioned before an analysis 
and the average substitution rate in loops and stems is not assumed to be the 
same. As mentioned in section 2.6, P H A S E  is using the proportional branch 
lengths model. In practice, this translates into each substitution model having 
a different average substitution rate that remains constant over the whole tree, 
plus one constraint that gives a meaning to the branch lengths (see section 2.5). 
In chapter 5, the average substitution rate of the loop partition is fixed to 1.0 
substitution per site and per unit of branch length. The average substitution 
rate of the stem partition is a free parameter (c) of the evolutionary model and 
a uniform prior U(0.0,200.0) is attached to it. This prior is not symmetric and 
implies a higher probability for the stems to evolve faster. As was the case with 
the uniform prior on rate ratios, this can potentially lead to biasing effects during 
real inference (PG Higgs, personal communication). For the complex substitu­
tion model presented in chapter 4, the constraint was changed and the sum of 
the average substitution rates is fixed to be equal to the number of substitution 
models, e.g., C\ +  c-i — 2.0 when different Markov processes are used for loops 
and stems. For the MCMC runs presented in this thesis, a flat Dirichlet prior is 
attached to { q / c*}.

3.4 Proposal d istributions

The transition proposals used to move through the state space are of crucial 
importance for the effectiveness of the MCMC sampler. One has to balance
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the desire to move globally and efficiently through the parameter space with 
the need to make computationally feasible and reversible moves with a known 
Hastings ratio /(^ n l^ V /M ^ n )-  Distant moves in the space of parameters may 
allow us to traverse the space of parameters quickly but such moves will usually 
be associated with low acceptance rates that deteriorate the performance of the 
sampler. On the other hand, timid steps with a high acceptance rate do not allow 
for a complete exploration of the highly probable areas. Proposal algorithms have 
consequently to be designed with great care to ensure proper mixing.

It would be computationally difficult, and useless, to update all the param­
eters at once when complex models are used. The state space can hopefully 
be divided, a technique known as blocking, and its components can be updated 
separately. This is not always a good strategy and components that are highly 
correlated should ideally be grouped together in blocks to be updated simulta­
neously by a proposal distribution that takes the correlation into account (Yang, 
2005). Nevertheless, the parameters of the phylogenetic model are usually weakly 
correlated2 and the different components can be considered independently. To 
make a new proposal, one of the blocks is randomly selected for update at each 
step and the user can tune the different update probabilities to improve the mix­
ing behavior. For example, it is advisable to increase the probability of updating 
the topology when lots of species are used and the number of possible phylogenies 
grows.

It is worth pointing out at this point that any proposal distribution can (and 
will) give valid results if it is run for an appropriate amount of time. The only 
requirement being, as was previously mentioned, that a path exists between any 
two points of the state space. Consequently, the choice of a particular proposal is 
ultimately of limited consequence but might have a huge impact on the simulation 
time. It has been said that the choice of good proposal distributions involves 
“the burning of incense, casting of chicken bones, use of magical incantations, 
and invoking the opinions of more prestigious colleagues” (Felsenstein, 2004). 
Indeed, various proposal mechanisms have already been proposed and used for 
the phylogenetic problem but their efficiency has not been extensively studied yet 
and the particular choice of a proposal is a matter of experience at the moment. 
However, such a statement will probably spur phylogeneticists to close this gap

2The proportion of invariant sites and the gamma shape parameter described in chapter 5 
are a notable exception.
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with solid scientific studies in the near future.

3.4.1 P roposals for continuous param eters

For the purpose of MCMC proposals, the parameters of the substitution model 
can be organized into two classes: independent scalars and vectors of dependant 
values. Independent values are updated independently but the parameters of a 
vector are updated together in a single MCMC step. To update the parameters 
of a vector, the proposal scheme of Larget and Simon (1999) is adopted. This 
proposal mechanism is used with the state frequency vectors but also with the 
vector of exchangeability parameters and the vector of average substitution rates 
when the constraint used is that they sum up to 1.0. A new set of values is 
proposed using a Dirichlet distribution centered at the current values:

/ ( n ' |n ) =  ILT& )  - 1} > (3-8)

where n  =  {7^} is the current vector, n ' =  {77•} is the proposed vector and po 
is a value that controls the variance of this distribution. For large values of po 
the distribution is tight and the new vector is more likely to be closer to the 
current set of values. For implementation purpose, one should mention that one 
can sample from this Dirichlet distribution by combining samples from gamma 
distributions with parameters {pott*}, and normalizing those. One should also 
note that the Hastings ratio of this proposal mechanism is not trivial and is 
equal to /(n in 'J / '/ fn 'ln ) .  The choice of po is crucial for the mixing behaviour. 
In the earliest version of PH A SE , p0 was user-specified, but this value is now 
automatically tuned during the burn-in period to reach a reasonable acceptance 
rate (between 20% and 25% by default). The acceptance rate is computed every 
200 iterations and po is respectively multiplied/divided by a tuning factor if the 
acceptance rate is found to be lower/higher than the chosen boundaries so that 
the step size is reduced/increased. When the acceptance rate starts oscillating 
and switches between values higher than 25% and lower than 20% this tuning 
factor is gradually reduced so that changes of p0 become smaller. This complex 
mechanism is naturally turned off when the sampling begins because it would 
contravene the MCMC principles.

A sliding window mechanism is used to update independent parameters. This
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proposal is used, for instance, with the proportion of invariant sites and the 
gamma shape parameter described in chapter 5. It is also used with exchange­
ability parameters and average substitution rates when the “rate ratios parame­
terization” is used and one of these parameters is constrained to be equal to 1.0. 
For independent parameters, the new value is drawn from a Gaussian distribution 
centered on the current value:

1 (a Z - ic )2

 -== x e . (3.9)
oqV27r

Each independent parameter of the substitution model has a corresponding stan­
dard deviation ax which is modified during the burn-in to reach a reasonable 
acceptance rate. A similar tuning mechanism has been described above for vec­
tors of parameters and its principles are the same. The main difference is that the 
standard deviation has to be lowered to reduce the step size when the acceptance 
rate is not large enough. Since f{x'\x) = f(x\x'),  the Hastings ratio for such 
proposals is 1.0.

One issue arising with the use of a normal distribution is that it is possi­
ble to propose values outside the allowed interval whenever a parameter has an 
upper and/or lower bound. Theorically, the issue is not critical because such 
moves would fall outside the area of the state space allowed by the prior distri­
bution and would be automatically rejected. Practically, such doomed proposals 
are wasting computational resources and should be avoided whenever possible. 
Reflecting boundaries are consequently used to ensure that the proposed values 
remain within the allowed range. Quite conveniently, the Hastings ratio is still 
equal to 1.0 when a reflected Gaussian distribution is used because each reflection 
from x  to x1 has a corresponding reflection from x1 to x.

[20%, 25%] was suggested as an optimal acceptance rate in this section but 
this is merely an educated guess and any acceptance rate between [10%, 60%] 
would probably be as efficient. Experience has shown that the marginal posterior 
probability densities of phylogenetic parameters is usually unimodal and one can 
consult Gelman et al. (1996) for experimental determination of the optimal step 
size for multivariate normal problems.
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3.4.2 P roposals in th e  space o f phylogenies

To search the parameter space, one also has to define moves in the discrete topol­
ogy space and the associated continuous branch lengths space. Jow et al. (2 0 0 2 ) 
designed the proposals used with unrooted topologies in P H A S E  and these pro­
posals have been reimplemented to optimize the likelihood computation and to 
cope with new functionalities, e.g., the definition of monophyletic clades that con­
strain the space of possible topologies. Algorithms developed for unrooted trees 
are not compatible with ultrametric or rooted trees and therefore two additional 
sets of moves have also been designed.

The first set of moves is used with rooted ultrametric trees, when a global 
molecular clock is assumed. Proposals that preserve the distance from the root 
to the tips were required and are described along with the standard proposals for 
unrooted trees in this section. The second set of moves is used with the time- 
heterogeneous substitution models developed in chapter 4. With non-reversible 
models, the likelihood depends on the position of the root and it is consequently 
natural to use rooted topologies with them. Standard proposals for unrooted 
trees have been slightly modified to account for this peculiarity but they are not 
introduced until the next chapter, where their use can be properly described.

MCMC algorithms are rejection-based techniques and, for computational rea­
sons, one should not discard past computations too quickly. If the new state 
is rejected, partial likelihood arrays (see section 2 .6 ) of the old phylogeny are 
still valid and might still be useful to compute the likelihood of the next new 
state. When describing proposals in the space of topology, some nodes are said 
to be “invalidated” , meaning that the partial likelihoods of these nodes has to 
be computed when calculating the likelihood of the new state whereas the com­
putations previously performed at other nodes are still valid and can be reused. 
The partial likelihoods of invalidated nodes are safely kept until the end of the 
iteration. They are discarded if the proposal is accepted but, if it is not, they 
are restored when backtracking to the old state3. Similar optimizations are also 
used when proposing new values for the substitution model parameters. With 
standard substitution models, all nodes have to be invalidated when such a pro­
posal is attempted. Nevertheless, when multiple substitution models are used in

3Howsun Jow’s implementation recognized that fact but his backtrack mechanism involved 
the copy of large chunks of memory. The new implementation is more elegant and swifter since 
it is only permuting pointers to some allocated memory space.
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a combined analysis of partitioned data, some proposals might only affect the 
limited number of sites belonging to the affected block. In such a case, one only 
has to invalidate the columns of the alignments that were affected by the change.

Topology proposals

Local and global moves are used to propose new topologies. Candidate trees 
proposed by local moves are “closer” to the initial tree and consequently have 
a better acceptance rate. Nevertheless, it was found that these local moves are 
insufficient for proper exploration of the space since the chain of “local intermedi­
ates” between two distant and highly probable topologies can sometimes contain 
very unlikely trees. Additional proposals, which allow for larger changes in the 
topology, have consequently been developed and are used conjointly with the 
local proposal mechanisms.

The Nearest Neighbor Interchange (NNI) is our local proposal and is shown 
in Figure 3.4 for unrooted trees. A random internal branch is chosen and two 
subtrees or leaves linked to opposite sides of that branch are swapped. If one side 
of the branch was defined as a monophyletic cluster (e.g., (A,B) in the figure), 
the NNI is not allowed and another branch is chosen.

t ra n s it io n  p ro b a b ility  = 1/2 tra n s itio n  p ro b a b ility  = 1/2

A

D

Figure 3.4: Nearest Neighbor Interchange for unrooted trees. Lowercase letters 
represent branch lengths.

The NNI proposal for ultrametric trees is slightly different. An internal node 
is chosen at random among those which are not directly linked to two leaves and 
the branch leading to its closest child is chosen to define the four subtrees A,
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B, C and D (see Figure 3.5). Another branch has to be chosen if (C,D) is a 
monophyletic clade. To maintain ultrametricity, the heights of the nodes are not 
modified and branch lengths are updated to match this constraint.

The Hastings ratio of the NNI proposal for unrooted and ultrametric trees is 
1.0 because the probability of the reverse move is the same. In both cases, the 
two nodes connected to the internal branch and the nodes between the branch 
and the root (root included) are invalidated4.
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- C -

Figure 3.5: Nearest Neighbor Interchange for ultrametric trees. Lowercase letters 
represent branch lengths.

The Subtree Pruning and Regrafting (SPR) is our long-range move in the 
space of topologies. The Tree Bisection and Reconnection (TBR) is another well 
known global move but it is not implemented in PH A SE . The SPR proposal for 
unrooted trees, shown in Figure 3.6, can propose a wide range of topologies from 
the initial state but is characterized by a very low acceptance rate. A branch is 
chosen at random and is reattached at a random point along a randomly selected 
branch. The two selected branches cannot be adjacent and two other branches are

4It is recalled that a root is arbitrarily chosen to compute the likelihood of unrooted trees 
with the pruning algorithm.
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chosen if the proposal is not compatible with the set of user-defined monophyletic 
clades. The Hastings ratio for this proposal is not trivial and is related to the 
particular choice of an attachment point along the selected branch. When a SPR 
move is attempted, one needs to invalidate the nodes above the detached branch 
before it is detached as well as the nodes above its insertion point (including the 
insertion point itself).

a+bH astin gs ratio = x /(a+b)--------------------

Figure 3.6: Subtree Pruning and Regrafting for unrooted trees. Lowercase letters 
represent branch lengths.

The SPR proposal for ultrametric tree is quite different and is described in 
Figure 3.7. For this proposal, a subtree is chosen at random, removed, and then 
reinserted at a random point above its height. Clade constraints are taken into 
account and only valid attachment points can be selected. Note that this proposal 
does not necessarily change the topology because the subtree can be reattached on 
the original branch. The Hastings ratio for this proposal is 1.0 because all possible 
attachment points have equal probability and this probability would be the same 
for the reverse move. One has to invalidate the nodes above the detachment and 
the reattachement points.

Branch lengths proposals and “continuous” topology change

Branch length proposals are designed to change the branch lengths of a phylogeny. 
As a side effect in PHASE, such proposals might also trigger a change in the 
topology. For unrooted trees, a branch is randomly selected and its new length is 
drawn from a Gaussian distribution centered at the current value. This proposal 
mechanism is similar to the sliding window mechanism described previously for 
the parameters of the substitution model. The standard deviation of this normal
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RootRoot heightheight
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Figure 3.7: Subtree Pruning and Regrafting for ultrametric trees. Lowercase 
letters represent branch lengths.

distribution is common to all branches and is tuned during the burnin period to 
reach a reasonable acceptance rate. When a uniform prior is used, proposals above 
the upper limit are reflected back. Negative values are also reflected back but, 
if possible, a NNI is simultaneously attempted in such a case. Negative branch 
lengths are taken as a sign that the topology might not be strongly supported and 
this proposal may be more likely to be accepted (Jow et al., 2002). This result 
in a “smooth” change between topologies. The Hasting ratio for this proposal is 
not affected by this peculiarity and is equal to 1 .0 .

This proposal method is not compatible with ultrametric trees and a different 
mechanism was designed for this specific case. This proposal, shown in Figure 3.8, 
can also prompt a change in the topology. A random internal node is chosen and 
a new height will be proposed for it. First, a random value /3 is drawn from a 
normal distribution centered at 0 and reflected back into [—D; D], where D is 
the distance between the parent of the chosen node and its closest child. The 
standard deviation of this distribution is D x 7  where 7  is a tuning parameter 
common for all branches and modified during the burnin for optimal mixing. The 
new height is equal to the old height plus (3 and the value is reflected to ensure 
that the node remains below its parent and above its closest child. The proposal 
triggers an NNI when the height is reflected against the closest child height if it 
is not a leaf node and if the topological constraints allow it. The Hastings ratio 
for this proposal is 1 .0 .
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Figure 3.8: Branch proposal for ultrametric trees. Lowercase letters represent 
branch lengths.
/3 is drawn from a normal distribution A/r(0, ^D ) and reflected in [—D , D\.
If /3 >  a, h3' =  h4 — (/3 — a), 
if a >  (3 >  0, h3' =  h3 +  /?, 
if 0 >  (3 >  —c, h3' =  h3 +  (3,
if — c >  (3, h3' =  h2 +  (—c — /3) and a local NNI is proposed (see Figure 3.5).

3.5 Practical considerations and issues

Bayesian MCMC programs are typically easy to implement and hard to debug. 
Bayesian MCMC programs for phylogenetic inference are difficult on both counts. 
The implementation is difficult and error-prone because a consequent amount of 
code is devoted to various optimizations and the original algorithms quickly be­
come complex. The temptation to offer many sophisticated evolutionary models 
in a single software package further adds to the difficulty of the task.

Program validation is even harder. ML programs can be tested with synthetic 
data because they return a single point estimate. Branch lengths and substitution 
parameters are supposed to converge to the values that were used to generate the 
data in the first place. With MCMC methods, the convergence is to a posterior 
distribution that cannot be computed easily, even with generated data. It is 
not possible to prove completely the correctness of the algorithms. Nevertheless, 
the software has successfully passed a wide range of tests and can certainly be 
considered usable for scientific research.

PH A S E  can perform both ML and Bayesian inference. Consequently, the
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pruning algorithm used to compute the likelihood function has been tested in the 
ML framework and results have been compared with the results of other ML soft­
ware like PA M L (Yang, 1997b). Substitution models implemented in PH A SE  
were also tested in the process. MCMC algorithms were tested and found to work 
properly with empty sequences. Indeed, when no data are provided, the poste­
rior distribution is theorically equal to the prior distribution and it was checked 
that clade posterior probabilities and sampled substitution parameters followed 
their respective prior distributions. Last but not least, a recovery mechanism 
was implemented to restore MCMC runs that abort before completion. Since 
this mechanism is working perfectly, it implies indirectely that all the error-prone 
optimization techniques that save partial likelihood values between successive 
iterations are working properly.

Programmers have to be cautious but the user cannot afford to be care­
less either. Bayesian inference programs for phylogenetic inference cannot be 
treated as black boxes that output a valid phylogeny when fed with molecu­
lar sequences. Outputs of the software have to be processed and checked care­
fully (Huelsenbeck et al., 2002). The first immediate problem is to determine 
whether the chain has been run long enough. The likelihood of the visited states 
should have converged to a stationary distribution but this is not a sufficient 
condition. The convergence of all the evolutionary parameters should also be 
checked to spot possible mixing problems.

Since there is also an additional risk of being trapped in a local maximum, 
a safer approach that can address both problems is used in this thesis. The 
results presented here are always produced by several MCMC chains started from 
random initial trees. Convergence is more likely to be assured if four chains, or 
more, produce similar posterior probabilities for the clades of the phylogeny and 
the parameters of the substitution model. Moreover, the problem of slow mixing 
can be detected more easily when multiple chains are run. With multiple chains, 
it is also possible to attach an estimate of error — the so called Monte Carlo error 
— to the posterior probabilities produced by the software.

A second issue, which should be appreciated by the user of Bayesian methods, 
is the sensivity of the results to the chosen prior. As already mentioned, results are 
usually not affected by a particular prior choice in a typical Bayesian analysis and 
this problem is not as important as the previous one. Nevertheless, a prior chosen 
carelessly can become problematic if it is not corrected by providing enough data.
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It is consequently good practice to analyse a dataset using different priors to see 
how robust the results are.
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Chapter

H e t e r o g e n e i t y  i n  t i m e

There is strong evidence that nucleotide frequencies in nuclear 
and mitochondrial RNA genes are varying along different lin­
eages. It is thought that this can lead to the recovery of spu­
rious phytogenies because traditional phylogenetic methods as­
suming homogeneity tend to group together species with similar 
nucleotide frequencies, regardless of their actual evolutionary re­
lationships. In this chapter, we introduce a nonhomogeneous 
evolutionary model that accounts for variation of nucleotide and 
base-pair frequencies over time. This nonhomogeneous and non- 
reversible model is built with locally homogeneous models by 
using different substitution matrices on different branches of 
the tree. The homogeneous base-pair substitution models in­
troduced in previous chapters are already parameter-rich and 
the available sequence data cannot support the use of an inde­
pendent substitution matrix on each branch of the phylogeny. 
A reversible jump Markov chain Monte Carlo technique is con­
sequently used to limit the size of the parameter space while 
still accommodating for the extent of compositional heterogene­
ity observed in contemporary sequences.
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4.1 Introduction

The nucleotide and base-pair substitution models introduced in chapter 2 are 
admittedly too simple to model the complex mechanisms involved in the evolu­
tion of DNA and RNA sequences adequately. Fortunately, perfect models are not 
necessarily required for reliable phylogenetic inference, as confirmed by the sub­
stantial congruence between phylogenies recovered from different datasets (Hillis, 
1995; Sullivan and Swofford, 2001). Nevertheless, it is known that violations of 
the assumptions of the evolutionary model generally introduce a limited bias in 
the results of an inference and have an impact on the accuracy of a phylogenetic 
method.

All existing phylogenetic methods have some shortcomings. For instance, the 
UPGMA reconstruction algorithm (see section 2.2.3) does not behave well when 
given distances from a non-clocklike tree, parsimony methods are sensitive to 
unequal rate variation across sites and model-based ML and Bayesian methods 
can give very misleading results when some assumptions of the evolutionary model 
are violated. When evaluating the performance of phylogenetic methods, one is 
generally interested in three different factors (Huelsenbeck, 1995; Hillis, 1995).

1. Consistency: does the method converge to the correct result (phylogeny and/or 
substitution parameters) as more data are applied to the problem? This cri­
terion is often advocated to justify the use of model-based ML methods over 
parsimony-based methods since ML estimators are known to be consistent if 
certain conditions are met (Felsenstein, 1973, 1978). Nevertheless, note that 
proof of consistency depends on the generating model and it has repeatedly 
been shown that the ML method can become statistically inconsistent and 
converge towards a wrong answer if the evolutionary model used to perform 
the inference differs from the mechanisms that generated the sequences in the 
first place (Chang, 1996a; Kolaczkowski and Thornton, 2004)b Consequently, 
convergence cannot be guaranteed when real sequences are analyzed.

2. Efficiency: how fast is the convergence? In standard statistical problems, ML 
estimators are the most efficient asymptotically but this property is not ver­
ified in phylogenetic inference because the tree topology is not a continuous

1The issue can also arise when the parameters of the evolutionary model are not identifiable 
(Steel et al., 1994)
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parameter and each tree defines a separate parameter space (Yang, 1997a). Al­
though this should not be considered as the norm, it has been found that simple 
and wrong evolutionary models can sometimes outperform complex but cor­
rect ones. Since wrong models are usually biased towards specific tree shapes, 
they are naturally advantaged when the bias is coincidentally towards the true 
topology (Bruno and Halpern, 1999). In a Bayesian setting, the problem would 
manifest itself by a higher than desirable support for the correct topology and 
overconfidence in the results, which is undesirable too (Sullivan and Swofford, 
2001).

3. Robustness: how does the method perform when its assumptions are not met? 
This is perhaps the most important criterion for practicing systematists since 
assumptions of phylogenetic methods are inevitably violated to an extent with 
real data. The traditional approach to evaluate robustness is to use simu­
lations to evaluate the behaviour of a method when a limited number of its 
assumptions are violated in controlled computer experiments.

Standard time-homogeneous substitution models are parameterized with a 
single composition vector that defines the equilibrium distribution of the substitu­
tion process. These models assume that the substitution process is homogeneous 
and stationary and it is consequently expected that the actual nucleotide compo­
sition matches this equilibrium distribution throughout the phylogeny, within an 
acceptable range of stochastic variation. As a corollary, since it has often been 
observed that the sequences of the studied taxa can have widely different compo­
sition, we have clear evidence that these assumptions are regularly violated with 
real data sets.

With traditional phylogenetic methods, sequences of similar composition tend 
to be grouped together irrespective of their real evolutionary relationships. Conse­
quently, the biasing effect of compositional heterogeneity on distance, parsimony 
and model-based reconstruction methods has long been recognized as a potential 
issue in the literature (see, e.g., Loomis and Smith, 1990; Olsen and Woese, 1993; 
Foster and Hickey, 1997; Tarrfo et al., 2000; Chang and Campbell, 2000). How­
ever, its practical effect on the topological accuracy of reconstructed trees has 
been downplayed and recent simulations have shown that an extreme amount of 
heterogeneity is necessary for the compositional bias to have a substantial effect
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on the reconstructed phylogeny and for traditional methods to become inconsis­
tent (Conant and Lewis, 2001; Rosenberg and Kumar, 2003).

Nevertheless, a contrary viewpoint was expressed by Jermiin et al. (2004) who 
showed that the biasing effect is strongly dependent on the length of the short 
internal edges. In practice, and as illustrated in Figure 4.1 with a nuclear LSU 
RNA dataset containing five bacterial species, the compositional bias can some­
times have visible effects on the reconstructed phylogeny. Although convincing 
external evidence supports the grouping of the genus Thermus with the genus 
Deinococcus (Embley et al., 1993; Foster, 2004), the thermophilic species Ther­
mus thermophilus is attracted to the two other thermophilic species when stan­
dard homogeneous methods are used with this dataset. As explained later on 
in this chapter, the G+C content of the SSU and LSU rRNA genes of prokary­
ote species is correlated to their optimal growth temperature and homogeneous 
methods presumably failed to recover the correct tree because of the important 
G+C compositional bias present in the sequences.

b )
-Therm otoga maritima (64.3%) 

- - - - - - - - - - - Aquifex aeolicus (64.3%)

78.6

-Thermus thermophilus (63.3%)

—  — — D einococcus radiodurans (55.8%)

-A quifex aeolicus (64.3%)

Thermotoga maritima (64.3%)

 Bacillus sublilis (54.8%)

- - - - - - - - - - - - - D einococcus radiodurans (55.8%)

-Bacillus subtilis (54.8%) -Therm us thermophilus (63.3%)

Figure 4.1: The compositional bias illustrated with a nuclear LSU dataset: The 
LSU RNA gene of five bacteria is studied (a) with a standard homogeneous model 
(TN93) and (b) with the time-heterogeneous method developed in this chapter 
(TN93+hF: the same model but with heterogeneous frequency parameters). Cor­
relation between opposite sites in RNA stems was not taken into account in this 
example 3. The G+C content of each sequence is given after the species name. 
The number in red in (a) is the Bayesian posterior probability (BPP) for the 
clade Deinococcus+Bacillus. The wrong tree was supported with BPP 78.6% and 
the correct tree was supported with BPP 21.4%. With the time-heterogeneous 
model, the correct tree (b) is recovered with BPP 100%. This tree is rooted 
for reasons that are explained below. Note that other studies have illustrated 
a similar compositional bias with the same set of species using the SSU RNA 
gene (Galtier and Gouy, 1995; Foster, 2004).

3It turns out that the correct tree would be recovered in both cases if the dataset was 
partitioned and a base-pair model was used with helices (results not shown).
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The development of more realistic models is a necessary step towards a better 
understanding of the nucleotide substitution process and RNA sequence evolu­
tion. In this chapter, a method that accounts for the variation in composition 
in different lineages is consequently introduced. Since it models the data more 
accurately, the method is also expected to reduce the systematic error and re­
turn more accurate posterior probabilities for the substitution parameters and 
topology estimates. The method was implemented in P H A S E  and operates in 
a Bayesian framework using MCMC techniques.

In section 4.2, previous works are reviewed and the basis of the time hetero­
geneous model is laid out. In section 4.3, the MCMC proposals that modify the 
placement of composition parameters on the tree are presented. Proposals in the 
space of topology that are used for unrooted trees (see section 3.4.2) are adapted 
to handle rooted trees and the presence of extra, discrete, parameters that assign 
a frequency vector to each branch. The dimension of the parameter space, i.e., 
the number of composition parameters, is kept constant during these moves. In 
section 4.4, a reversible jump method is introduced with split and merge moves 
that are used to increase or decrease the number of composition parameters in 
the model and to jump between parameter spaces of differing dimensions. In 
section 4.5, an issue with the prior distributions on new model parameters is 
highlighted and a hierarchical Bayesian approach that uses a slightly more com­
plex prior with hyperparameters is adopted. These hyperparameters are assigned 
a hyperprior distribution and are estimated along with other parameters of the 
model during the inference. In section 4.6, Bayesian simulations are used to 
evaluate the impact of compositional variation over time, as defined by the time 
heterogeneous model presented in this chapter, on the corresponding standard 
homogeneous model. In section 4.7, the time heterogeneous method is applied 
to real data with a dataset of 40 species spanning the entire tree of life. Results 
with homogeneous and time-heterogeneous methods are compared.

4.2 A  su bstitu tion  process for com positional 
heterogeneity

In an attempt to overcome the problem posed by the compositional bias, distance 
methods that allow for compositional variations over time have been developed

78



CHAPTER 4. HETEROGENEITY IN TIME

(Lake, 1994; Lockhart et al., 1994; Galtier and Gouy, 1995; Tamura and Kumar,
2002). Alternative model-based ML methods were researched in parallel. Follow­
ing an early work of Barry and Hartigan (1987), Yang and Roberts (1995) and 
Galtier and Gouy (1998) proposed some substitution models that assign different 
frequency parameters to the branches of the phylogeny. Such processes are not 
at equilibrium and the average nucleotide composition varies along the branches 
of the tree. Felsenstein’s pulley principle (1981) does not apply with these pro­
cesses that are not time-reversible and the likelihood of such evolutionary models 
depends on the placement of the root. Consequently, rooted trees have to be 
considered and it is also necessary to specify the initial state frequencies at the 
root which can also be considered as a parameter of the substitution model 4.

In Yang and Roberts (1995), the most general time-heterogeneous substitu­
tion model, called N2, assigns four nucleotide frequency parameters, i.e., three 
free parameters, to each branch of the phylogeny. Four extra parameters are 
used for the ancestral composition at the root of the tree. This model is com­
putationally hardly tractable and Yang and Roberts also proposed a N1 model 
which uses a common set of frequency parameters for all the internal branches. 
Yang and Roberts’ time-heterogeneous models are based on the homogeneous 
HKY85 nucleotide substitution model (see chapter 2). Galtier and Gouy (1998) 
proposed a simplified version of HKY85+N2 by replacing the HKY85 model with 
the T92 model (Tamura, 1992). In the T92 model, the nucleotide composition is 
only described by the G + C  content and is obtained by imposing ttc — — 0/2
on the frequencies of the HKY85 model. The GG98 model consequently uses a 
single composition parameter for each branch and for the root, instead of three. 
Nevertheless, this model is still hardly tractable when a large number of species 
is used and the user usually has to provide a set of candidate topologies to speed 
up the computation.

The time heterogeneous model presented here is based on these early works. 
Using an independent set of composition parameters for each branch, as was done 
in the model N2 of Yang and Roberts (1995) and in Galtier and Gouy (1998), 
would certainly be more realistic but a typical RNA alignment does not contain 
enough variable sites to estimate the frequency parameters of a complex base-pair

4Another issue, mentioned by Yang and Roberts (1995), is that branch lengths do not corre­
spond exactly to the expected number of substitutions per site anymore but this is overlooked 
here.
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model on each branch of a phylogeny. A parameter-rich model is not necessar­
ily a better model if there is not enough data to estimate its extra parameters 
accurately (Steel, 2005) and restricting the number of composition vectors seems 
a good and necessary trade-off to model compositional heterogeneity. Foster
(2004) has shown, on specific examples, that compositional heterogeneity can be 
accounted for with a limited number of frequency parameters and the same ap­
proach is followed here. The composition parameters for each branch are chosen 
from a pool of available composition vectors. The frequency parameters in the 
pool and their placement on the phylogeny are both parameters of the model that 
are estimated during the inference process.

The approach developed here is quite similar to Foster’s approach (2004) but 
the work is carried further. First, rooted trees are considered and the root po­
sition is not constrained to internal trifurcating nodes. New MCMC proposals 
were devised to cope with the presence of the root and to account for the repar­
tition parameter that allocates the composition vectors to the branches. A priori 
knowledge can be used to constrain the location of the root during the inference 
process and this functionality is used in sections 4.5 and 4.6 to reduce the com­
plexity of the simulations on synthetic datasets generated from known trees. It 
is also used in section 4.7 because the method had some difficulties to recover 
the root position with certainty when applied to the Tree of Life rRNA dataset 
analyzed in this section. Nevertheless, note that it has been suggested that there 
might be enough information in present-day sequences to successfully recover the 
location of the root with nonhomogeneous methods (Yang and Roberts, 1995; 
Yap and Speed, 2005), even though the exact location of the root on its branch 
is often poorly resolved (Galtier and Gouy, 1998).

Second, the number of composition vectors is a parameter of the model which 
is allowed to vary during the MCMC run. Reversible jump MCMC methods 
(rjMCMC) are used to add or remove frequency parameters during the inference 
and to determine the amount of heterogeneity evidenced by the data (Green, 
1995), bypassing the need for complex model selection procedures. Another in­
teresting advantage of using rjMCMC methods is that they account for, i.e., 
integrate out, the uncertainty in the amount of heterogeneity while other phylo­
genetic parameters of interest are estimated. rjMCMC techniques have already 
been applied in Bayesian phylogenetics to model the variations of the evolutionary 
process across sites (Suchard et al., 2003), for model selection (Huelsenbeck et al.,
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2004), and to allow for polytomous tree topologies (Lewis et al., 2005).

Third, it is shown that using a uniform prior for the repartition of the com- 
position vectors on the branches has some unexpected, and probably unwanted, 
side-effects. A hierarchical model that defines a more flexible prior on this repar­
tition parameter is presented.

4.3 M CM C proposals

In this section, the new MCMC proposals that were implemented to cope with 
the particularities of the nonhomogeneous model are described. Most notably, 
the proposals to move between different unrooted tree topologies, introduced 
in chapter 3, had to be adapted to handle rooted trees. Other proposals that 
preserve the dimension of the parameters space are also re-introduced in this 
section. The “standard” MCMC algorithm and the acceptance rates described 
in chapter 3 are still valid and can be applied for these moves. Proposals that 
modify the size of the pool of frequency vectors are described later in section 4.4.

4.3 .1  P roposals for continuous param eters

The proposals that were previously used to change the parameters of the substi­
tution model, e.g., frequency and exchangeability parameters, are still applicable 
and were used without modification here. Each frequency vector in the pool is 
considered independently. A uniform Dirichlet prior is put on each of them and 
new values are proposed by drawing from a Dirichlet distribution centered at the 
current values. The same prior and proposal are used for the extra frequency vec­
tor that represents the ancestral composition at the root of the tree. Note that a 
proposal affecting a single composition vector does not necessarily invalidate all 
the partial likelihoods computed in the previous iteration and that some economy 
can be achieved by only reevaluating the nodes between the branches concerned 
and the root.

It is recalled that we are not using the “rate ratios” parameterization for the 
exchangeability parameters in this chapter. A Dirichlet prior is put on the unique 
set of exchangeability parameters and a Dirichlet proposal mechanism is used to 
propose new values (see section 3.3). When the data are partitioned, a uniform
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Dirichlet prior is used for the vector that contains the average substitution rates 
of each data block. Once again, new values are proposed by drawing from a 
Dirichlet distribution centred at the current values (see section 3.3).

Proposals to change branch lengths were not modified either but the “contin­
uous topology change” , which is triggered by proposing a negative branch length, 
is slightly different because the NNI proposal itself had to be modified (see below).

4.3 .2  P rop osa ls in  th e  space o f topologies

The NNI and SPR proposals were slightly modified to account for the presence of 
the root, which is not a trifurcating node anymore. Since these proposals have a 
disruptive effect on the allocation of composition parameters to the branches, it is 
also necessary to describe how the repartition parameter is handled when a new 
topology is proposed. In the following figures, red numbers are used to identify 
the composition vector associated with each branch. For illustrative purposes, 
different branches are assigned different composition parameters but these could 
be the same in practice.

The NNI proposal is described in Figure 4.2. An internal branch is chosen 
at random, let it be R —»E where R  is the parent. The second sibling branch 
emanating from R  is then swapped with one of the child branches of E chosen 
randomly. The subtree containing the root (A in the figure) is kept unchanged. 
The proposal is unaffected if the chosen internal branch is directly linked to the 
root, i.e., if R  is the root and A does not exist. The Hastings ratio for such a 
proposal is 1.0. Note that all possible rooted topologies are theoretically accessible 
from any starting point using only this proposal.

The SPR proposal is described in Figure 4.3. Two branches are chosen ran­
domly and the first branch is detached and reattached on the second one. Note 
that the two branches linked to the root are considered as a single branch for 
this proposal. When the first branch is removed, the two adjacent branches have 
to be merged into a single one. Their two lengths are summed but it would be 
difficult to design a proposal that would merge their two composition vectors 
while remaining reversible. Consequently, the pruned branch “carries” one of the 
composition vectors and inserts it on the destination branch. The Hastings ratio 
for such a move is not trivial and depends on the lengths of the branches involved
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A

transition probability = 1/2 transition probability = 1/2

Figure 4.2: Nearest Neighbor Interchange (NNI) with the nonhomogeneous sub­
stitution model. Branch lengths are represented with lowercase letters and com­
position vectors with numbers.

in the move. It is the ratio of the length of the insertion branch to the sum of the 
lengths of the two branches adjacent to the displaced branch, which is actually 
the same as for the SPR proposal for unrooted trees.

4.3 .3  Sw apping com p osition  vectors

This proposal changes the composition vectors assigned to a subset of branches 
of the tree. First, a limited number of branches is selected for the proposal. Each 
branch is added to the subset with probability p. Since this proposal would not 
modify the current state when this subset is empty, it is applied to one branch 
randomly chosen if no branch is selected in the first step. The composition vector 
of each selected branch is then replaced by another vector drawn from the pool.
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Hastings ratio = x/(a+b)

G a+b
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Hastings ratio = x/(a+b)
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Figure 4.3: Subtree Pruning and Regrafting (SPR) with the nonhomogeneous 
substitution model. Branch lengths are represented with lowercase letters and 
composition vectors with numbers. Top)st,andard case: the moved subtree does 
not contain the root. Bottom) special case: the subtree contains the root.

Note that the current vector is excluded from the draw and this proposal is 
consequently not allowed when there is just one vector in the pool, p is tuned 
during the burnin period to reach an acceptance rate between 20% and 25%. 
The Hastings ratio of this proposal is 1.0. Some partial likelihoods used in the 
previous iteration are still valid when attempting such a proposal and partial 
likelihoods at an internal node do not have to be computed if the subtree below 
this node was not modified.

Birth and death proposals were not implemented and it is quite possible for 
one or more composition vectors of the pool to end up being unused with this 
proposal. Such superfluous parameters have no influence on the likelihood and 
are barely penalized by the prior with the hierarchical Bayesian model presented 
in section 4.5. This inflates the amount of compositional heterogeneity without 
real justification from the data but this is not considered as a crucial issue. The 
problem can easily be corrected with a prior that penalizes substitution models
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using a larger number of composition vectors.

4.4 Split and m erge m oves and th e reversible 

jum p M CM C m ethod

4.4.1 R eversib le jum p M C M C  com p utation

The MCMC techniques introduced thus far are restricted to problems where the 
dimensionality of the parameter space is fixed. This would not be an issue if the 
structure of the “true” substitution model was known with certainty but, since 
this is not the case, one would like the MCMC sampler to jump between the 
different substitution models that could reasonably explain the observed data. 
This would allow the inference not only to produce an estimate for the phylogeny 
by integrating over the possible parameter values for a specific model but also 
to integrate over all the possible models. Such a Markov chain would visit the 
different models in proportion to their posterior probability and could also be 
used to approximate Bayes factors used in model selection. The Bayes factor to 
compare model M.l and model M .2 is the ratio of their evidence (see section 3.1) 
and can be expressed with the prior and posterior probabilities of the two models:

P(X\M, )  P ( M 1\ X ) / P ( M 1)
1/2 P(X\Mz)  P{Mz\X)IP{Mv) ' ( ' 1

which is equivalent to the posterior odds when flat priors are assumed.

The MCMC principles introduced in chapter 3 cannot be used to jump be­
tween two states where the joint probability density of the parameters do not 
share the same underlying measure5. Practically, this means that a slightly dif­
ferent framework is needed to move between subspaces of differing dimension­
ality. Green (1995) described such a framework and showed how the standard 
Metropolis-Hastings algorithm is modified to perform reversible jumps between 
different spaces.

Let us assume that the models Afi and A t2 define two parameter spaces

5Since each topology defines a different subspace for its branch lengths. NNI and SPR 
proposals introduced in chapter 3 are actually a special case of reversible jump propos­
als (Suchard et al., 2001).
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of differing dimension d\ and d2, with d\ < d%, and that one is attempting a 
jump from the state {k — to the state {k = 2 ,8 ^ }  where k is a discrete
parameter representing the current model and and are sets of parameters 
valid in their two subspaces. To perform a reversible jump from the first to the 
second parameter space and to cope with their unequal dimensions, a vector of 
continuous random variables u ^  of size mi is drawn from a given probability 
distribution and 8 ^  is determined from 8 ^  and u ^ .  Reciprocally, one jumps 
from the second to the first space by drawing a vector of random variables of 
size m 2 and by determining 8 ^  from 8^  and u^2\  Green (1995) showed that by 
establishing a bijection between (8 l̂\ u ^ )  and (8̂ '2\ u ^ )  and by matching their 
dimension, i.e., d\ +  m\ — d2 +  m 2 , it is possible to perform a reversible jump 
between the two spaces. In practice, it is often easier not to draw any random 
variables when jumping from a higher dimension to a lower dimension but, for 
reasons that are explained below, m 2 is different from 0  in this work.

The acceptance probability for the transition (1) —> (2) is:

P( 4>n+i = {k = 2,0<2)} | <t>„ = {k = 1,6™} ) =
p(fc=2,gP>|X)ug(UM)

’ P(k=i,em\x)Ul{um)
d(ew ,uW ) (4.2)

where U\ and M2 are the probability distribution used to draw it W and u ™ . The 
Jacobian term arises from the change of variables from (0™, u to (8^2\ u ^ ) .

4.4 .2  D im ension  changing proposals for th e  
nonhom ogeneous m odel

In this work, the focus is on the variations of nucleotide and base-pair composi­
tion in time. State frequency parameters are the only parameters that are not 
tree-homogeneous but other parameters could also have been allowed to vary 
across branches. As implemented, the pool of parameters does not contain inde­
pendent composition vectors but complete substitution models. The algorithms 
that would let other parameters change in different lineages (e.g., exchangeability 
parameters, relative substitution rates between the blocks of a partition, gamma 
shape parameter, etc) are already implemented but, for the purpose of this thesis, 
all parameters but the frequencies are constrained to be homogeneous.
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Although more parameters could have been allowed to vary, one important 
limitation of the current implementation is that the various parameters that com­
pose a homogeneous substitution model cannot be chosen independently. Each 
branch is assigned a unique composite vector which contains all the parameters 
that are not tree-homogeneous. This limitation has some consequences for the 
results presented here. When sequences are partitioned before an analysis to 
analyze different blocks with different substitution models, each block is using 
independent composition parameters but they have to be considered as a single 
composite parameter vector when they are chosen from the pool. Practically, 
this means that the frequency parameters of each block are assumed to change 
simultaneously over time.

The split and merge proposals were designed to increase and reduce the di­
mensionality of the model. These proposals are described here assuming that the 
sequence data are not partitioned and that a unique substitution model is used 
at all sites, but the algorithms are easily adapted to the case of partitioned data. 
In what follows, k will designate the number of composition vectors available in 
the pool. With probability ps(k)t a split is attempted and two new composi­
tion vectors, and n^2̂ , are created from an initial composition vector H ^  
randomly chosen from the pool. With probability puik),  a merge is proposed 
and two randomly chosen composition vectors n 1̂  and n^2) are fused to build 
the composition vector n^°h In the case of partitioned data with multiple sets of 
composition parameters, all the frequency vectors are simply split or merged in 
a single proposal.

4.4 .3  Split and m erge m oves for th e phylogeny

One should aim to design proposals with a reasonable acceptance probability. 
Good proposals to jump between different subspaces can be designed by choos­
ing an appropriate bijection function that accounts for the “natural” relations 
between the variables of the two parameter spaces. This can be achieved by 
drawing values close to for and l~h2) during a split proposal and by 
setting n<°) to be a reasonable “average” of and n(2) during a merge move.

Since composition vectors appear and disappear during these moves, the al­
location vector that assigns composition parameters to each branch has to be 
modified when split and merge proposals are attempted. A natural choice for a
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split is to reassign randomly, with equal probability, the branches previously al­
located to n<°> to and n ^ .  Symmetrically, assigning to n (0) all the branches 
previously allocated to n (1) and seems reasonable for a merge.

Figure 4.4: Reallocation during a split/merge proposal.

Ps_(k=d)

pM(k=dVi)

4.4 .4  Split and m erge m oves from th e  p ool p erspective

Split and merge proposals should produce states that are similar enough to have 
comparable likelihood. Let b0 be the number of branches allocated to before 
the split or after the merge. Let bi and b2 be the number of branches allocated 
respectively to n^) and after the split or before the merge. Intuitively, n (()) 
should be a compromise of n (1) and that takes £q and b2 into account.

State frequencies are all greater than zero and must sum to one. The last 
frequency parameter is entirely determined by the others. A proposal that 
would match these constraints without singling out a specific frequency was de­
signed. Dimension-matching is achieved by drawing several random variables 
and establishing a bijection between {7Ti^, tt2̂ °\ . . . ,  7rn_ i^ ,  iq, w2, . . . ,  un, s0} 
and {7rib)5 7r2 b)?. . .  ?7rn_ i(1)?7t̂ 2\ tt2̂ 2\  . . . , 7rn_i^2\ S i,s2} where n is the number 
of frequencies in the substitution model, { tti,. . . ,  ti„, s0} are random variables 
drawn from some probability distributions when a split proposal is attempted 
and {s i,s2} are drawn when a merge is attempted. 7Tn^ ,  7rn^  and 7r„(2) are 
determined from knowledge of the n — 1 other frequencies.

From the three sets of frequencies n (0\  n^) and n (2) and the three random 
variables So, si and s2, three sets of variables { m ^ ° \  . . .  mn^ } ,  ( m / 1) , . . .  mn^ }  
and {m i® ,. . .  mn^ }  are defined such that:

for i = 0,1 or 2, V j  e  l..n, rrij^ =  Si* iXj . (4.3)
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Consequently, i m j® ~  si f°r i =  0,1 or 2. These three sets of variables 
represent the unsealed composition parameters and were introduced to bypass 
the fact that frequency parameters have to sum up to one.

The vector {ra/°)} is then defined as a compromise between the vectors 
{ ra /1)} and ( m /2)} weighted by their relative importance in the phylogeny be­
fore the merge or after the split. Some models in the pool might not be allocated 
and there is no guarantee that bo, b\ and 62 are greater than zero, which would 
be an issue in the mathematical expressions that follows. Therefore, b[ = b\ +  1, 
&2 =  62 +  1 and b'0 — b[ -|- b'2 are introduced to express the relations between the 
three vectors.

V j  G l..n, bg log(jrij^ ) =  b[ l o g ^ / 1)) +  b'2 log{ m / 2̂ ) . (4.4)

rrij^ and are defined using the set of random variables {u i , . . . ,  nn}

V j  € log(TOj-(1)) =  logfrrt/0’) +  ,

, (4-5)
log(mj(2)) = log(m/°>) -  p L f -  .

b W m r ’

Logarithms are used to ensure that the {rrij^} values remain positive.

Admittedly, this is a rather complex choice for the bijection satisfying the 
dimension-matching requirement and this particular choice deserves a brief ex­
planation. When a Dirichlet proposal is used to modify a composition vector (see 
equation (3.8) in chapter 3), one has to balance the desire to perform a long­
distance move while maintaining a reasonable acceptance rate. The tightness 
parameter of the Dirichlet distribution p0 is used to control the step-size. Experi­
ence has shown that for a fixed p 0 , the acceptance rate can vary widely depending 
on the dataset, which is why it is modified during the burnin period to improve 
the mixing. Intuitively, the optimal step size for the split proposal should be 
related to the optimal step size used when modifying composition vectors. The 
bijection chosen to perform split and merge proposals was consequently designed 
to approximate roughly the original Dirichlet proposal. For that purpose, s0) si 
and S2 are drawn from a gamma distribution with parameter pg and each Uj is 
drawn from the standard Normal distribution.
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4.4 .5  C om p u tation  o f th e  acceptance rate

The acceptance probability for the split proposal is considered here.

A = P( 0 n+i =  {fc =  d + l, t ,  i/Ti aT(d+1\  0 , |

<f>n = {k = d1T1vT,aT{d\ Q , I l {'d')} ) , (4.6)

where k represents the size of the pool, i.e., the number of composition vectors 
available in the current state, r  and uT are respectively the current tree topology 
and the associated set of branch lengths as defined in chapter 2 , aT̂  is the 
allocation vector that assigns these composition parameters to the branches, 0 is 
the constant-size vector that groups the substitution parameters that are constant 
across lineages, including the ancestral state distribution, and 1 1 ^  is the set of 
composition vectors available in the pool.

Reformulating equation (4.2) with a product of ratios, the acceptance rate 
can also be written:

A  =  min{l, (likelihood ratio) x (prior ratio) x (proposal ratio) x (Jacobian)} ,

and the three last factors of this product are developed below. The likelihood 
is computed with the standard pruning algorithm (see section 2 .6 ) and the first 
term is not detailed further here. .The only important differences are that the 
appropriate substitution rate matrix has to be used on each branch and that the 
position of the root is now imposed by the evolutionary model.

The prior ratio, proposal ratio and Jacobian for the split move are developed 
below. Although the acceptance probability for the merge move is not explicitly 
given here, it can be deduced in a straightforward manner since it has the same 
form, with the ratio terms and Jacobian inverted, after an appropriate relabeling 
of k.

Prior ratio

The size of the pool, /c, and the allocation vector that assigns composition pa­
rameters to the branches, aT k̂\  are new parameters of the model. They naturally
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appear in the prior:

(prior)^ =  p(r, vT,k  = d, aT̂ , 9, 1 1 ^ )  .

A simple factorized form is chosen for this prior:

(prior) ̂  =  p { U ^ \k  = d)p(aT̂ \ k  = d1 T)p(k = d)p(iyT\r)p(r)p(6) . (4.7)

Note that the prior on the number of substitution models p(k = d) must be 
user-specified. A particular choice of prior on k is without consequences if Bayes 
factors for different values of k are the only expected results but it affects the 
other outputs produced by “model averaging”, where k is integrated out. In this 
thesis, a uniform prior with an arbitrary chosen upper limit is usually used for 
the parameter k but a Poisson prior is sometimes used (see Figure 4.5).
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Figure 4.5: The prior on /c, the number of composition vectors: algorithms de­
scribed in this section were tested here with empty sequences assuming a Poisson 
prior distribution, p(k\  A) =  e fc,j—, with parameter A — 4.0 on the random vari­
able k' =  k — 1 . Without data, the inferred posterior probability of /c, shown as 
a histogram in the picture, should be equal to the prior, shown with crosses.

For a given k, a uniform prior on the space of possible allocation vectors was 
chosen:

p(aT{d)\k = d,r)  =

where b is the total number of branches in the tree. Note that this includes the 
configurations where some substitution models in the pool are not allocated to 
any branch. In the next section, it is suggested that this prior might not be
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appropriate and a new prior is proposed.

A simple factorized form is assumed for the prior on the parameters of the 
substitution model. Since most substitution parameters remain constant during 
a split/merge proposal, the only terms appearing in the ratio of priors are the 
prior probabilities of the split frequency vector n ^ ,  and the two resulting vectors 
nW and n<2>. The complete prior ratio for a split move is consequently:

(prior ratio) -  p(fc =  d+1)  x ( '  x P(n( 1>)P(n<2)) u  8)(prior ratio) _  ?(fc =  d) x ( ^ + l y ) x p (n (o>) ' (4‘8)

Proposal ratio

The proposal ratio is a complex term and it can be further decomposed into a 
product of three ratios. The first term of the product is related to the tree, more 
specifically to the modification of the allocation vector as described in Figure 4.4. 
The second term is related to the composition parameters and the probability 
of switching between and { n ^ , n ^ }  once the parameters to split/merge 
have been selected. The third term is a non-obvious term that arises because no 
ordering constraint in enforced on the parameters of the different subspaces.

The probability of attempting a split and proposing {A; =  d + l ,a r d̂+1̂ } from 
{k = d, aT̂ }  is equal to:

Ps(k = d ) x 11 x ±  ,

which is the probability of attempting a split, multiplied by the probability of 
choosing as the composition vector to split, multiplied by the probability of 
choosing a specific conformation when reallocating the branches of to 
and n (2\  It is recalled that b0 is the number of branches initially associated with 
n(°> and that each branch is reallocated to iff1) and H/2) with equal probability 
p — 1/2. Reciprocally, from the state {ft =  d-Fl, aT̂ +1^}, the probability of coming 
back to {k — d,, ar ^ }  is equal to:

Pm (& =  dT l) x
( T )  ’

which is the probability of attempting a merge times the probability of choosing 
n '1) and n<2> as the substitution model to be merged.
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The first term of the proposal ratio is consequently:

PM( k ~ d + l )  x d x 2bo 
P$(k = d) X f t 1)

Let us define Ps{k)  and the probability of attempting a split or a
merge proposal during each MCMC cycle. Since the value of k introduces some 
constraints on the set of proposals that can be attempted, the expression of Ps(k) 
and Pu(k)  was associated with the definition of Pswap{k)} which is the probability 
of the proposal that swaps the composition vector on the branches of the tree 
introduced in section 4.2. At each iteration, a split, merge or swap proposal 
is attempted with a user-defined probability q: Pm (ft) +  Ps(k) +  PSWap(k) — q. 

Where it makes sense, Pm(&) =  Ps{k) =  PSwaP(k) =  q / 3 can be used, but 
Ps(k = 1) =  q is compulsory since it is not possible to propose a merge nor 
modify the allocation vector when there is just one composition vector available 
in the pool. Similarly, if the prior on k defines a upper limit kmax on the size of 
the pool then Ps(k = kmax) =  0 and pM{k = kmax) — Pswap{k =  kmax) — q/2 can 
be used.

In the second term of the proposal ratio, one is concerned about the probability 
of switching between and { n ^ ,n ^ } .  This proposal ratio is related to the 
probability of drawing the random variables that are necessary to perform the 
merge and split moves:

p M p M

If partitioned datasets are analyzed with different composition parameters for 
each block, this term appears once for each frequency vector.

The third term appears because the composition vectors in the pool are ex­
changeable and a particular ordering was actually assumed when composition 
vectors were randomly chosen before (see Cappe et al., 2003, for more details on 
this issue). There are d\ possible representations for a set of cardinality d. Conse­
quently, the term appears in the acceptance probability of the split proposal 
to account for the ordering of the composition parameters in the pool before and 
after the move. Furthermore, when a split is attempted, two exchangeable com­
position vectors are generated and a coefficient ~ has to appear in the acceptance 
probability for similar reasons.
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Since the first and the third terms are almost canceling each other, the pro­
posal ratio for the split move is simply written:

/ ! 4.- >> PM(k =  d + l )  x 2b° x p ( Sl)p(s2)(proposal ratio) = --- ———  --------  ...-----—----  . (4.9)
Ps {k =  d) x p ( s 0)p({uj }}

Jacobian

For a split proposal, the Jacobian of the “dimension-matching” bijection is: 

5 ( ^ 1 ^ ,  . . . , 7r„_ iW,7Ti (2), . . . ,7Tn_ i ^ , S i , S 2)
J =

. . . ,7Tn_i(°),Ui, .. . , u n,s0)
(4.10)

When two or more composition vectors are used with partitioned data, the Ja­
cobian matrix is bloc-diagonal and the Jacobian is simply the product of these 
independent factors. As demonstrated in Appendix A, for a single frequency 
vector,

o o ' - ^ V I E . i W ’ exp % % £  I X i  -  J t _ )
T =  y / a o ^ ° >  ( A  U \

Sin- 1S2n~1bl1nb,2n ' V ;

4.5 A  hierarchical Bayesian m odel

4.5.1 D ou b ts over th e  uniform  prior on th e  allocation  
vector

The time-heterogeneous model presented in the previous section was tested with 
synthetic sequences and real datasets. Results were, more or less, as expected 
and satisfying to an extent. Nevertheless, the posterior probability of k was 
generally found to be very peaked and the method seemed wary of proposing 
extra composition parameters unless it could impact sufficiently the likelihood 
value. A glance at the results suggested that the prior on the allocation vector, 
p(aT^ \ k  — d, t ) = (1 /d )6, decreases very rapidly as d increases and might be a 
part of the issue.

Presumably, one problem is with the assumption that branches choose models 
independently. In practice, neighbouring branches are likely to be correlated and
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this results in less “entropy” . It turns out that an implicit assumption of using a 
flat prior on the allocation vector is that composition vectors should be equally 
represented in the phylogenetic tree. The issue is somehow visible in the results 
because frequency parameters in the pool are rarely associated with a limited 
number of branches and tend to occupy a large proportion of the tree. When 
a frequency vector is allocated to a large number of branches, a slight variation 
of the composition parameters can have a big impact on the likelihood and can 
make it a worthwhile addition that balances the detrimental effect of increasing 
the dimension of the model on the prior on the allocation vector. However, the 
same slight variation on a single branch would probably go undected even though 
it is intuitively as relevant. This is thought to be an important issue for two 
reasons. First, it implies that the method is currently very sensitive to species 
sampling. An extra set of frequency parameters might not be added when a group 
is represented by a single species but the situation would probably change as more 
species are added. Second, compositional bias issues are, in general, invoked when 
a limited number of species with unusual sequence composition is found in a much 
larger dataset and one would want the extra composition parameters to be used 
to accommodate these species rather than modelling minor variations in the main 
part of the tree.

The problem could be fixed by modelling explicitly the changes in the model 
over time because changes affecting only one branch would become as likely as 
changes affecting large parts of the tree (see Huelsenbeck et al. (2000); Minin et al.
(2005), for examples of change-point approaches in other settings). An easier so­
lution was adopted here, by using a more flexible prior on the allocation vector. 
A hierarchical Bayesian model is built and the prior on aT̂  is parameterized 
using a vector of hyperparameters {ff} of size k. Each f i  represents the prior 
proportion of branches allocated to the iih composition vector and consequently 
p(aT^ \ k  = d,r)  =  n?=i / ( ar ^ ( 0 )> where f ( a T̂ ( l ) )  =  fi if the branch of index I 
is assigned the ith composition vector. Elements of {fi} are all greater than zero 
and must sum to one. In this work, hyperparameters are treated like standard 
parameters and are estimated during the inference process. The split and merge 
proposals were slightly modified to account for the fact the the size of {fi} is not 
constant and to exploit at best this new parameter.
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4.5.2 C hanges in troduced  by th e  hierarchical m odel

The vector {/<}, is handled like other frequency vectors and, keeping the dimen­
sion constant, new values are proposed using a Dirichlet distribution centred at 
the current value. A uniform Dirichlet prior is assumed on these hyperparame­
ters. The prior ratio for split and merge moves, in equation (4.8), is consequently 
modified into:

(nrinr rntin'l =  K ^ + l )  ( I T  / (d+I)(aT(<W)( 0 b  p (n M )p (Il(2>) p ( { f iY d+»)
ip ati°; p(fc=d) y i  /M (OrM(0) )  P(n<°>) ?({/<}«>) '

(4.12)

When a split proposal is performed, one has to increase the dimension of {fi}.  
In what follows, the initial proportion associated with is designated as / 0. 
The two new proportions after the split, / i  and / 2, are associated respectively with 

and n<2>. An obvious choice to establish a bijection that would preserve the 
constraints between the set of proportions before and after the split is naturally 
to design a proposal that would verify:

/o =  / i + / a  • (4.13)

Following Richardson and Green (1997), /o is split into / i  and / 2 by drawing 
a variable u from a Beta distribution Beta(x, 7 ) =  :

jfi =  u x  fo »
(4.14)

h  = ( l - u ) x f 0 ,

where B  is the beta function.

Since f i  and / 2 are now given, it is better to use the probabilities u and 1 — u, 
rather than 1  and 1 , when distributing the branches that were initially allocated 
to n<°> to n^1) and n^2). The proposal ratio in equation (4.9) is consequently 
modified into:

(proposal ratio) =  P̂ = d + 1 )  _  By,,,)
V ’ Ps(k =  d) f1 1f 2 { 1
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This also introduces a supplementary Jacobian term in the acceptance rate:

W i./a )Jj = fo ■ (4.16)d(fo,u)

The parameter of the Beta distribution 7  was chosen equal to 1.0 here.

4.5 .3  C om parison o f th e  two m odels

These two methods were tested with synthetic datasets that clearly reveal the 
differences between their priors. A random ultrametric tree of 100 species was 
generated with a Yule process and the common distance from root to tips was 
set to 0.5. On one side of the root, an outgroup clade of 12 species was found, 
whereas two clades cl and c2, with respectively 18 and 70 species, can be found 
011 the other side of the root. Using a program of the P H A S E  package, 100 
alignments of 1000 nucleotides were generated by Monte-Carlo simulation using 
different nucleotide substitution models for the different clades. The frequency

s
vector {7175, =  25%, ttc — 20%, 7tq — 25%, 7 — 30%} was used to generate 
randomly the ancestral sequence at the root and a TN93 substitution model was 
subsequently used to evolve the sequences along the branches of that tree (see 
section 2.3). A discrete gamma model with four gamma categories was assumed 
to model rate heterogeneity across sites and a constant gamma shape parameter 
equal to 0.4 was used (see section 5.2). Exchangeability parameters were tree- 
homogeneous (ptrans =  0.1, Pag =  0.3, per ~  0.6), but equilibrium frequency 
parameters were different on the three main clades. {iya — 25%, wc — 23%, tyq — 
25%,7Tj- =  27%} was used for the equilibrium distribution on the branches of 
the outgroup clade, {ita ~  25%, 7xc =  17%, 7tq — 25%, 7tt — 33%} was used for 
cl and {7TA =  25%,7tc =  3 5 %,7r<2 =  25%, 7 — 15%} was used for c2. These 
large alignments were then reduced to produce 100 datasets of 24 species that 
were analyzed with the two methods. To reduce each replicate from 100 to 24 
species, the selected sequences were randomly extracted from the original dataset: 
7 species were chosen from the outgroup, 5 species from cl and 12 species from 
c2 .

The sequences were analyzed with both methods using locally homogeneous 
TN93 substitution models with tree-heterogeneous frequency parameters and
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with a pool of variable size. A uniform prior was used for k and its upper- 
bound was arbitrarily set to 10. One can notice that there are comparatively 
few species extracted from cl and that the frequency parameters used for cl and 
the outgroup are quite similar. Both methods are consequently expected to have 
some difficulties to recover two different models for the outgroup and cl.

Results conform with the predictions. On average, the maximum a posteriori 
(MAP) for the number of composition vectors was found to be equal to the correct 
number of vectors more often with the hierarchical Bayesian model than with the 
original method (69% against 53%, see Figure 4.6).

Original model tZ Z Z l 

Hierarchical model
oi)

MAP number o f  composition vectors

Figure 4.6: Comparison over 100 replicates of the MAP estimates for the number 
of composition vectors returned when using the original prior and the hierarchical 
prior

The posterior probability distributions for k were generally found to be peeked 
with the original method whereas the second method is characterized by a long tail 
(see Figure 4.7 for typical results with four replicates). This last issue is related 
to the fact that the composition vectors that are not used on the phylogeny are 
not strongly penalized by the prior anymore.

4.6 Bayesian sim ulations

The meaning of Bayesian posterior probabilities (BPPs) and their reliability as 
an indicator of phylogenetic uncertainty has recently attracted a lot of research 
effort. Bayesian support values have often been criticized on the basis that they 
can lead to overconfidence in incorrect nodes whereas the alternative bootstrap 
method, used in the ML framework, is usually more conservative and less likely to
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Figure 4.7: Comparison of posterior probability distributions found for the num­
ber of composition vectors by the original prior and by the hierarchical prior. 
Results with four selected replicates are presented here. The original model usu­
ally returns a peeked distribution whereas the hierarchical model is always long­
tailed. Top-left) the original prior seems to outperform the hierarchical prior and 
does not introduce extra composition parameters that are not well supported by 
the likelihood. Top-right) the hierarchical prior seems to perform better than 
the original prior and clearly detects the third model. Bottom-left) both meth­
ods fails to detect the third model but the original model is over-confident on 
the wrong result. Bottom-right) the hierarchical prior clearly outperforms the 
uniform prior.

support incorrect clades (Suzuki et al., 2002; Douady et ah, 2003; Erixon et al., 
2003; Taylor and Piel, 2004). It cannot be denied that BPPs are usually overes­
timating nodal supports when the substitution model used to perform the infer­
ence is more simple than the substitution model that generated the sequences in 
the first place (Huelsenbeck and Rannala, 2004). Nevertheless, unlike bootstrap 
support values that are difficult to interpret, the BPP of a tree can readily be un­
derstood as the probability that the tree is correct, in light of the available data, 
if the evolutionary model is correct (Huelsenbeck et ah, 2002). Some simulation 
studies have shown that BPPs are more accurate than bootstrap support values 
as a measure of uncertainty when the analysis is performed with the substitution 
model originally used to evolve the sequences (Erixon et al., 2003; Alfaro et al.,
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2003). However, these simulations have also shown that even if the generating 
model and the inference model are the same, BPPs for different clades do not 
match exactly with the actual probablity that these clades are correct for the 
specific evolutionary model considered during the experiments. This worrying 
result was explained by Huelsenbeck and Rannala (2004), who emphasized that 
the prior of a Bayesian analysis has to be considered as a component of the 
model when giving a frequentist interpretation to BPPs. Violations of the prior 
model can also be expected to return biased BPPs (Zwickl and Holder, 2004; 
Yang and Rannala, 2005).

The meaning of BPPs is not well defined when the assumptions of the model 
are violated. Using Bayesian simulations (Huelsenbeck and Rannala, 2004), the 
robustness of posterior probabilities produced by standard time-homogeneous 
methods is assessed when the equilibrium frequencies of the true substitution 
model are actually unequal in different lineages. 3000 alignments of ten species 
were simulated using the hierarchical time-heterogeneous model introduced in 
section 4.5. For each replicate, the free parameters of this evolutionary model 
were drawn from the prior model as defined below. The position of the root was 
assumed to be known in these simulations, with the first split always separat­
ing an outgroup of two species from the eight other sequences. A uniform prior 
was assumed on the tree topologies that match this particular constraint and 
each tree was randomly drawn from this prior distribution. Branch lengths were 
assigned by drawing values from an exponential distribution with parameter 1 0  

(hence the expected value for each branch length is 0.1). 400 nucleotides long se­
quences were evolved along the branches of this tree using a time-heterogeneous 
TN93 substitution model. The number of composition vectors, k, was drawn 
from a uniform discrete prior bounded by 1 and 8  and composition vectors were 
subsequently drawn from a Dirichlet(2,2,2,2) distribution. A flat Dirichlet prior 
was used to draw {/)}, the hyperparameters associated with the prior on the 
allocation vector, and these values were used to distribute randomly the different 
composition vectors on the branches. Ancestral frequency parameters were drawn 
from a Dirichlet (2,2,2,2) distribution and the unique, tree-homogeneous, set of ex­
changeability parameters {ptrans> Pa g , Pc g }  was drawn from a Dirichlet(5,15,30) 
distribution. Rate heterogeneity across sites was modelled using a gamma model 
with four discrete categories and the gamma shape parameter was drawn from 
a gamma distribution with parameters 4.0 and 0.1. The expected value of this
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distribution is 0.4 and its variance is 0.04.

These alignments were first analyzed with the correct evolutionary model, i.e., 
the substitution model and the prior model used to generate the sequences. In 
such a case, BPPs used to measure the support of different clades are expected 
to match with the “frequentist” probability that these clades are correct. It is 
emphasized that the default priors of the PH A SE  software were not used for 
these simulations and were replaced by the prior model defined above. These 
alignments were then analyzed with the corresponding homogeneous model that 
uses only one homogeneous frequency vector. In both cases, the monophyletic 
clades found during the inference were sorted according to their posterior prob­
ability and collected into twenty bins to be compared to the frequency at which 
the clades in that bin were actually present in the “true” trees. Results are shown 
in Figure 4.8.

a )  i a n a ly s i s  m o d e l  =  s im u la t io n  m o d e l

B a y e s ia n  p o s te r io r  p ro b a b il i ty
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Figure 4.8: Comparison of Bayesian posterior probabilities of clades with the 
actual probabilities that these clades are correct, a) The model used during the 
analysis (likelihood model -I- prior model), is the model that was used to generate 
the data, b) The model used during the analysis is more simple and does not 
account for the variations of the equilibrium nucleotide frequency distribution 
over time.

As expected, BPPs are close to the frequentist probabilities that clades are 
correct when the true model is used. The results seem to suggest that the over­
simplified homogeneous model has a slight tendency to overestimate Bayesian 
support values which is in agreement with the widespread belief that underspeci­
fied models usually overestimate clade support values (Huelsenbeck and Rannala,
2004) and supports the claim that inherited similarities in nucleotide composi­
tion can act to increase the support for correct clades, albeit for wrong rea­
sons (Conant and Lewis, 2001). Nevertheless, this result should be considered 
with caution for two reasons. First, the computing power available did not al­
low us to perform more simulations, which would have been necessary to obtain
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more reliable estimates in Figure 4.8. Second, this result is only valid for a time- 
heterogeneous process as defined by our prior model that spreads uniformly the 
frequency vectors over the tree. This might not be a realistic scenario for the 
variation of evolutionary pressure over time and a change point model (see, e.g., 
Huelsenbeck et al., 2000) might have returned different results.

The results also indicate that neglecting to account for the variation of equi­
librium frequency over time probably has a limited impact on Bayesian support 
values. Nevertheless, note that the consensus trees reconstructed from the MCMC 
samples produced by both models were different for 871 replicates, i.e., in 29% of 
the cases, suggesting that using a time-heterogeneous model can result in visible 
differences in practice. It was also noticed that the homogeneous model gave 
0% BPPs to correct clades in four cases whereas the correct model was able to 
propose these clades with low, but non-null, supports.

4.7 Tree o f Life

4.7.1 G + C  content and therm ophily

The G+C content of nuclear ribosomal RNA sequences is quite variable among 
prokaryotes and these genes would consequently constitute an interesting dataset 
to which one could apply the Bayesian time-heterogeneous method developed in 
this chapter. The small and large subunit RNA sequences of 40 species, spanning 
the entire biological world, were downloaded from the European ribosomal RNA 
database (Wuyts et al., 2004) and concatenated (see table 4.1). The alignment 
was manually refined to remove the highly variable regions. The secondary struc­
tures, provided individually for each sequence in the European rRNA database, 
were processed to produce a consensus secondary structure that defines the base- 
paired sites conserved in at least 50% of the sequences. The final alignment 
contains 3270 nucleotides separated in two blocks: 1600 unpaired nucleotides in 
the loops and 835 pairs in the stems.
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Species LSU acc. no
BACTERIA
Proteobacteria
Bartonella bacilliformis L39095
Rhodopseudomonas palustris X71839
Rickettsia rickettsii U11022
Bordetella bronchiseptica X70371
Escherichia coli U00006
Haemophilus influenzae U32745
Low GC gram +
Mycobacterium leprae X56657
Streptomyces griseus M76388
High GC gram +
Bacillus subtilis Z99104
Lactobacillus delbrueckii X68426
Leuconostoc mesenteroides S60370
Staphylococcus aureus X68425
Therm us/D einococcus group 
Thermus thermophilus X I2612
Thermotogales
Thermotoga maritima M67498
Chloroplasts
Pla. Chlamydomonas reinhardtii X I6686 
Pla. Zea mays Z00028
Pla. Euglena gracilis X12890

ARCHAE
Crenarchae
Desulfurococcus mobilis 
Sulfolobus acidocaldarius 
Thermofilum pendens 
Thermoproteus sp

X05480
U05018
X14835
M86622

SSU acc. no

M65249
L11664
L36217
X57026
AB035925
M35019

X53999
M76388

Z99104
M58814
M23035
X68417

L09659

M21774

J01395
Z00028
X70810

M36474
D14876
X14835
M35966
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Species LSU acc. no SSU acc. r
Euryarchae
Halobacterium halobium X03407 M11583
Haloarcula marismortui X13738 AF034619
Halococcus morrhuae X05481 X00662
Natronobacterium magadii X72495 X72495
Methanococcus vannielii X02729 M36507
Methanococcus jannaschii U67517 M59126

EUCARYA
M etazoa
Xenopus laevis X59734 X02995
Homo sapiens U13369 X03205
Fungi
Candida albicans L07796 X53497
Saccharomyces cerevisiae K01048 J01353
Schizosaccharomyces pombe Z19578 X54866
Planta
Oryza sativa M16845 X00755
Arabidopsis thaliana X52320 X16077
Eragaria ananassa X15589 X15590
Chlorella ellipsoidea D17810 D 13324
Euglenozoa
Trypanosoma brucei X05682 M l2676
Euglena gracilis X53361 M12677
Diplomonadida
Giardia intestinalis X52949 X52949
Entamoebidae
Entamoeba histolytica X65163 X65163

Table 4.1: Sequences and species in the TOL dataset. Sequences were downloaded 
from the European ribosomal RNA database (Wuyts et ah, 2004) with secondary 
structure information.

The G+C content of nuclear RNA genes is actually correlated with the op­
timal growth temperature in prokaryotes (Galtier and Lobry, 1997). The rRNA
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sequences of thermophilic (50°C < Topt < 80°C) and hyperthermophilic species
(Topt > 80°C) are G+C rich. The correlation is strongest in stem regions, pre­
sumably because G :C base-pairs bond together through three hydrogen bonds 
and are more stable than A:U  pairs that pair with two hydrogen bonds. The 
additional links confer better heat resistance to the G+C rich rRNA molecules 
that can remain operational at higher temperature. This is illustrated in Fig­
ure 4.9 where the optimal growth temperature of the prokaryotes (Bacteria and 
Archaea) is contrasted with the percentage of G:C and C :G  pairs found in the 
stems of their rRNA genes.
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Figure 4.9: Correlation between optimal growth temperature and rRNA G+C 
content in prokaryotes: LSU and SSU genes from 40 species spanning the en­
tire tree of life were aligned and concatenated. RNA stems, as defined by the 
consensus secondary structure that was built during the alignment process, were 
extracted from this alignment. Pairs of columns containing ambiguities and gaps 
were removed to produce a final alignment with 1226 columns (613 pairs). Us­
ing this alignment, the percentage of G:C +  C:G pairs is compared with the 
optimal growth temperature (for prokaryotes only). OGTs can be found in 
Galtier and Lobry (1997) and the PGT database (Huang et al., 2004).

In section 4.1, the GG98 model that allows for varying G+C content over 
evolutionary time was introduced (Galtier and Gouy, 1998). By a daring use of 
this statistical evolutionary model, Galtier et al. (1999) argued against a hyper­
thermophilic last universal common ancestor (LUCA). Indeed, using a dataset 
similar to the dataset described above (same genes and similar species sampling), 
the inferred ancestral G+C composition at the root of the Tree of Life was found 
to be incompatible with a hot living environment. This section consequently has
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two aims: illustrate the time-heterogeneous method on a real example and repeat 
the analysis of Galtier et al. (1999) with Bayesian methods using only the stems. 
The original analysis returned ML estimates for the ancestral G+C composition 
and used complete RNA sequences, RNA loops included.

Although rRNA genes have contributed the most to the reconstruction of the 
Tree of Life so far, it is unlikely that using more complex evolutionary model 
with these genes can further resolve the deep branching relationships of the tree. 
Comparing the results found with time-heterogeneous methods and standard ho­
mogeneous methods can certainly bring some insights on the behaviour and dif­
ferences between these two methods but it is not claimed here that the results 
are necessarily better when the tree topology is all that matters.

4.7 .2  P h y logen etic  reconstruction

The concatenated LSU+SSU dataset was analyzed with the time-heterogeneous 
method developed in this chapter using a combined model: TN93 for loops and 7D 
for stems. Frequency parameters of both substitution models were allowed to vary 
across branches with the restriction described above that frequency parameters 
for both blocks cannot be selected independently and that each branch is allocated 
a composite set of eleven (4 +  7) frequency parameters from the pool. In both 
blocks, rate heterogeneity across sites was accounted for using the discrete gamma 
model, see section 5.2 or Yang (1994), with eight discrete gamma categories.

Sixteen MCMC experiments were run without constraining the position of the 
root but the chains converged towards different results. Eleven chains converged 
towards a distribution where the root was on the bacterial branch with 100% 
BPP and three chains converged toward a distribution where the root was on the 
eukaryal branch with 100% BPP. The two remaining chains were discarded since 
the root, which was initially within the Archaea, switched to the branch leading to 
Bacteria during the sampling. This clearly means that current algorithms cannot 
resolve the position of the root on the rRNA tree and cannot attach a posterior 
probability to the different alternatives. Since the chains were run for 30,000,000 
iterations, plus 9,000,000 iterations for the “burn-in” , we do not believe longer 
runs could have solved the problem.

The rooting of the universal tree is not yet a resolved problem. Since the 
monophyly of Archaea is uncertain and not supported by this dataset, we will
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only consider the bacterial and the eukariotic rootings in what follows. Even 
though the fourteen retained chains converged towards two different posterior 
distributions, results were consistent for a given rooting point. These results are 
summarized in Figure 4.10 for the bacterial rooting and in Figure 4.11 when the 
root is on branch leading to the eukaryotes. These two consensus trees were pro­
duced using the extended majority rule consensus method on the set of sampled 
trees. Numbers in red represent Bayesian posterior probability of the correspond­
ing clades. For a given root, these clade support values were consistent across 
chains. The branch lengths shown are mean posterior estimates computed using 
the sampled states in which the corresponding clade was present. Branches were 
colored with the mean G:C +  C:G content of their allocated set of base-pair fre­
quency parameters, using, once again, the samples in which the corresponding 
clade was present.

Apart from the root position, one can notice that both tree topologies are 
actually identical. This tree is similar to the tree recovered by Galtier et al. 
(1999) and is most probably the same (cf fig. 1 of their paper). The monophyly 
of Archaea is rejected in both cases, albeit with a low support for the clade 
Euryarchaeota-Eubacteria when the root is positioned on the branch leading to 
Eukaryotes. Both trees seem surprisingly well resolved, i.e., not necessarily cor­
rect but with high BPPs for the different clades, most of them being equal to 
100%. Nevertheless, clade posterior probabilities were found to be even higher 
when the corresponding homogeneous model, i.e., TN93-I-7D with uniform fre­
quency parameters, was used (tree not shown) and these results are actually not 
so surprising. The unrooted topology recovered with a time-homogeneous model 
was found to be the same except for one major difference: when frequency param­
eters are assumed to be constant across lineages, Entamoeba histolytica is found to 
branch out after the phylum Euglenozoa (represented here by two species). This 
suggests that the branch leading to the G+C rich Giardia intestinalis and the 
branch leading to the G+C poor Entamoeba histolytica are repulsing each other 
when variation of the substitution process over time is not accounted for (see also 
Hasegawa et al., 1993).
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Figure 4.10: Consensus tree produced from the sampled states of the 11 chains 
that converged towards a bacterial rooting. Numbers in red are the BPPs for the 
corresponding clades, no number means 100%. Colors represent the G:C+C:G 
equilibrium frequencies of the base-pair substitution model, ranging from 13% 
(light green) to 86% (bright red). Branch lengths and equilibrium frequencies 
were averaged over the samples for which the underlying clade was present.
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Figure 4.11: Consensus tree produced from the sampled states of the 3 chains that 
converged towards an eukaryotic rooting. Numbers in red are the BPPs for the 
corresponding clades, no number means 100%. Colors represent the G:C+C:G 
equilibrium frequencies of the base-pair substitution model, ranging from 13% 
(light green) to 86% (bright red). Branch lengths and equilibrium frequencies 
were averaged over the samples for which the underlying clade was present.
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4.7 .3  A ncestra l G + C  content

Using their software EVALJNH, Galtier et al. (1999) recovered a ML estimate 
for the ancestral G+C content of LUCA that falls at the upper end of the range 
of G+C content found in contemporary mesophiles (cf fig. 2 of their paper). 
They consequently concluded that LUCA was probably not a hyperthermophile. 
This result was found to be quite robust to the gene used (i.e., SSU or LSU), 
to the rooting point and to species sampling. We partially repeated their ex­
periment using the Bayesian method developed in this chapter. Since the vari­
ation of the G+C content is related to the variation of the proportion of G:C 
pairs in RNA stems and is only weakly correlated to the G+C content in RNA 
loops (Wang and Hickey, 2002), loops were not used during this analysis. To allow 
for direct comparison between the inferred ancestral G:C+C:G content and the 
G:C+C:G content observed in contemporary species, positions containing pairs 
with gaps and/or ambiguous nucleotides were also removed from the dataset, 
leaving 613 aligned pairs.

We inferred the ancestral G:C+C:G content assuming that the unrooted topol­
ogy found with the complete dataset was correct (see Figure 4.10 and Figure 4.11). 
The position of the root was constrained during these analyses but both rooting 
points were considered. A 7D substitution process with eight discrete gamma rate 
category was used to model the evolution of RNA pairs and four MCMC runs 
were performed for each possible rooting point. Since this dataset is smaller, we 
could afford 60,000,000 sampling iterations for each run. The inferred ancestral 
G:C+C:G contents are given in Figure 4.12 and compared with the G:C+C:G 
contents of extant species.

With the bacterial rooting, the mean posterior estimate for the ancestral 
G:C+C:G content is G:Ci,act — 66.02%. With the eukariotic rooting, G:Ceufc =  
61.42% was inferred. While these results do not drastically differ from the results 
of Galtier et al., one can notice that the Bayesian credibility intervals recovered 
here are not as tight as the confidence intervals proposed in Galtier et al. (1999). 
This increase in variance is not totally unexpected since loops were not used and 
the dataset is smaller. More importantly, results with the eukaryotic and bacterial 
rooting are found to be quite different in these analyses (see Figure 4.13). A 
mesophilic LUCA is not unequivocally supported when the bacterial rooting is 
used and most of the posterior distribution is falling in an area without data
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Figure 4.12: Ancestral G:C content inferred with the Bayesian time-
heterogeneous model applied on concatenated rRNA stems assuming a) a bacte­
rial rooting, b) an eukaryotic rooting. Red lines represent mean posterior esti­
mates, boxes represent 66% credibility intervals and dotted lines are the limit of 
the 95% credibility intervals.

points. The observed difference between the two rootings is consistent with the 
fact that species at the base of the bacterial clade are thermophilic.

bacterial rooting -------
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Figure 4.13: Posterior probability densities for the ancestral G:C contents (bac­
terial and eukariotic rootings) previously shown in Figure 4.12. Results for each 
MCMC run are shown with dotted lines to indicate that the independent chains 
converged to a stable and consistent probability distribution which is different for 
the two possible roots.

Experiments were repeated without fixing the topology in order to account for 
phylogenetic uncertainty when inferring the ancestral G:C-t-C:G contents. The 
bacterial and eukariotic clades were assumed to be monophyletic and the ancestral

111



CHAPTER 4. HETEROGENEITY IN TIME

G:C+C:G content was estimated once again using both possible rootings. The 
two consensus trees, inferred only with the stems, are slightly different and the 
support values are lower than with the complete dataset. Nevertheless, mean 
posterior estimates and credibility intervals for the ancestral G:C-|-C:G content 
are found to be almost identical (G:C&aCt — 65.97% and G:CeuA; =  61.45%) and 
accounting for the phylogenetic uncertainty does not alter the previous results.

These analyses differ from the original experiments of Galtier et al. (1999) 
in many points. Nevertheless, there is no obvious reason that could explain why 
using a base-pair substitution model with only the stems returns different results. 
This problem is approached again in the next chapter and a possible explanation 
for these divergences will be proposed.

4 .7 .4  A m ount o f h eterogeneity

The number of composition vectors is an important parameter of the time- 
heterogeneous substitution model developed here. Previous models developed 
in the ML framework had many free composition vectors, which prevented their 
use with a large number of species unless the user could restrict the number of can­
didate phylogenies before the analysis. Based on the notion that compositional 
variation may be a rare event and that equilibrium frequency parameters might 
be homogeneous on large parts of the tree, Foster (2004) proposed a tractable 
model that could potentially account for compositional heterogeneity with a lim­
ited number of parameters if permitted by the (lack of) heterogeneity evidenced 
in the data.

When analyzing the LSU sequences of 5 bacterial species (see Figure 4.1), 
we found that only 2 composition vectors could explain the data well, which is 
consistent with Foster’s result using the SSU gene. Nevertheless, once a flexible 
prior was implemented for the repartition of composition parameters on the tree 
(see section 4.5) and with a larger number of species, it was found that a relatively 
large number of composition vectors were necessary to fit the Tree of Life dataset 
presented here (see Figure 4.14). This suggests that the method cannot be applied 
easily to large dataset when the data are highly heterogeneous. The chains had 
to run for a long time to produce the results presented here.

As hinted at the beginning of this chapter, the choice of a particular prior 
on the number of frequency parameters can have a substantial impact on the
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Figure 4.14: Posterior probability distribution for the number of composition 
vectors /c, in the time-heterogeneous 7D model used to analyze the stems and 
infer the ancestral G:C+C:G content in the previous section. Results for each 
independent MCMC run are shown with dotted lines. The arbitrary choice of a 
particular rooting has a visible effect on the results. We recall that a uniform 
prior with an arbitrary upper-bound is used by default for k.

posterior distribution. In Figure 4.15, the posterior distributions on the number 
of composition vectors obtained with various initial prior distributions are com­
pared. Using a Poisson prior with a low mean significantly affects the posterior 
distribution on the number of frequency vectors but the impact on the ancestral 
G:C+C:G posterior distribution is once again not detectable. Clade support val­
ues were also largely unaffected by a change of the prior distribution (differences 
were within 6%).

4.8 Conclusion

Current ML methods that allow for compositional variation over evolutionary 
time do not scale well when a large number of species is used because they are 
using independent composition vectors on each branch. Large trees have many 
parameters and this complicates tremendously the search for the ML topology. 
Following Foster’s approach (2004), a time-heterogeneous model using a limited 
number of frequency parameters was proposed in this chapter. The method can 
infer phylogenetic trees with nonhomogeneous substitution models and remains 
computationally tractable. An important aspect of this work is that the amount 
of heterogeneity does not have to be a priori specified by the user or determined 
with complex model selection procedures from the results of multiple chains.
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Figure 4.15: Posterior probability distribution for the number of composition 
vectors in the time-heterogeneous 7D model used to analyze the stems and infer 
the ancestral G:C+C:G content in the previous section. Results are presented 
for the bacterial rooting. The dotted line represents the results with a uniform 
prior previously shown in Figure 4.14. The two other curves were found when 
assuming a Poisson prior distribution (p(k\ A) =  e A.,, ) on k' =  k — 1. In the 
first case, A was fixed to 9 and in the second case A was a hyperparameter of the 
model and was given a uniform prior distribution.

The act of adding and removing frequency parameters is handled during the 
inference process using reversible jump methods and the posterior probability 
for the number of compositon vectors can easily be computed from the outputs 
of the MCMC sampler. More importantly, the uncertainty in the amount of 
heterogeneity is integrated out when estimating other phylogenetic parameters 
of interest. It was also shown in this chapter that using a flat prior on the 
allocation vector that distributes the frequency parameters over the branches of 
the tree may lead to unexpected results and will probably cause the method to 
underestimate the amount of heterogeneity evidenced by the data. Finally, when 
the method was used to replicate Galtier et al.’s (1999) results using RNA stems 
only, it was not possible to completely rule out a thermophilic ancestor, although 
an hyperthermophilic one seems unlikely.

The methods that were previously developed to account for the variation in 
nucleotide frequencies across lineages do not always solve the obvious topolog­
ical errors encountered when compositionally heterogeneous datasets are stud­
ied (Foster and Hickey, 1997; Chang and Campbell, 2000; Tarno et al., 2001). 
Consequently, the method developed here, which is in essence very similar, will 
probably not be the panacea for all composition-related reconstruction artifacts. 
Conant and Lewis (2001) have already argued that compositional heterogeneity
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alone could not completely explain the failure of traditional methods in some 
examples used by Lockhart et al. (1994). This suggests that accounting only 
for the compositional bias cannot prevent all reconstruction artifacts. Frequency 
parameters are probably not the only one changing over evolutionary time. Alter­
native methods that circumvent the bias by recoding the data — e.g., RY-coding 
(Woese et al., 1991; Phillips et al., 2004) or AGY-coding (Gibson et al., 2005) — 
might be a better strategy with some datasets.
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H e t e r o g e n e i t y  a c r o s s  s i t e s

Model-based phylogenetic reconstruction methods traditionally 
assume homogeneity of nucleotide frequencies among lineages 
but they also assume homogeneity across sequence sites. Com­
positional variation in time has already been extensively stud­
ied but few studies have focused on the effects of compositional 
heterogeneity across sites. It is demonstrated here that different 
sites in an alignment do not always share a unique compositional 
pattern. Specific examples where compositional trends are cor­
related with the site-specific rate of evolution in RNA genes are 
provided. Compositional heterogeneity across sites is shown to 
perturb the estimation of evolutionary parameters with standard 
phylogenetic methods and also affects the ancestral composition 
estimate returned by time-heterogeneous methods. The latter 
finding could challenge the results of Galtier et al. ’s study (1999) 
arguing against a hyperthermophilic last universal ancestor and 
could explain the slightly contradictory results found in the pre­
vious chapter. A  new model is proposed to account for compo­
sitional variation across sites. A Gaussian process prior was de­
signed and used to allow for a smooth change in composition with 
evolutionary rate in the Bayesian framework. The results sug­
gest that this model can accurately capture the observed trends 
in present-day RNA sequences.

116



CHAPTER 5. HETEROGENEITY ACROSS SITES

5.1 Introduction

Early phylogenetic methods assumed that all sites in a molecular sequence evolve 
according to the same pattern. Since the selection pressure does not act uni­
formly over the length of a gene, this assumption is likely to be strongly violated 
with real data. In an attempt to capture evolutionary information more accu­
rately, researchers incorporated more complexity, and biological reality, in their 
evolutionary models. The introduction of among-site rate variation (ASRV) in 
substitution models has proved to be an important step towards more realistic 
evolutionary models (Yang, 1996a; Felsenstein, 2001). Indeed, the rate at which a 
mutation is fixed, or filtered out, in a population clearly depends on its position in 
the sequence. Some sites change often over evolutionary time whereas others are 
almost invariant due to strong functional constraints (Kimura and Ohta, 1974).

There are a number of approaches that can be used to accommodate for 
ASRV. Nevertheless, as seen in section 5.2, most of these methods only account 
for the variation of the speed of the nucleotide replacement process whereas other 
evolutionary patterns are still assumed to be shared across sites. In other words, 
the main parameters of the Markov process (namely equilibrium frequencies and 
exchangeabilities) are assumed to be constant for the whole alignment and tra­
ditional ASRV models simply act on the multiplying factor //, used to scale the 
transition matrix Q by letting it vary across sites (see equation (2.10)). An impor­
tant point developed in this chapter is that the combined effects of mutation and 
selection also have an impact on nucleotide frequencies that cannot be captured 
by current ASRV models.

There are cases where evolutionary patterns are known to be different within 
a gene and where variations can easily be associated with specific DNA regions 
(e.g., different codon positions of a protein coding gene or loops and stems of RNA 
genes). As was done in previous chapters, the easiest way to account for this het­
erogeneity is to partition the data beforehand according to a priori knowledge 
and to use combined models that use different substitution processes for differ­
ent partitions. Nevertheless, partitioning of the data is only an option when the 
different blocks can be identified in advance and the problem tackled by this chap­
ter is actually the detection and accommodation of compositional heterogeneity 
within each block of a partition.
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In the past ten years, methods have been proposed to capture spatial het­
erogeneity (and not specifically compositional heterogeneity) when the correct 
partitioning scheme is unknown. Latent class models have been used quite of­
ten in this context. These models assume that each site is evolving according 
to an unobserved process chosen among a finite set of substitution models and, 
as briefly mentioned in section 2.6, the likelihood is computed by integrating 
over all the possible substitution processes at a site (see equation (2.18)). For 
instance, Huelsenbeck and Nielsen (1999) introduced a model where the transi­
tion/transversion rate ratios can vary along a sequence according to a gamma 
distribution. Following Nielsen and Yang’s (1998) work, Yang et al. (2000) pro­
posed a set of codon models with variable synonymous/nonsynonymous ratio 
across sites. The standard discrete gamma rate model for ASRV (Yang, 1994) 
and the invariant sites model (Reeves, 1992), used in previous chapters and intro­
duced in section 5.2 below, are early examples of latent class models that allow 
for rat e-heterogeneity across sites without prior classification.

Closer to the main topic of this chapter, some methods have also been devised 
specifically to account for variation in composition across sites. Most substitu­
tion models ignore this aspect of sequence evolution and assume that the equi­
librium frequencies across sites are constant. Dimmic et al. (2000) incorporated 
site-specific selection effects using different amino-acid fitness functions. More 
recently, Pagel and Meade (2004) introduced a “pattern-heterogeneity” mixture 
model to account for the heterogeneity both in average evolutionary rate and 
exchangeability parameters, and their model can easily be extended to describe 
the spatial variation of frequency parameters. Both models are also latent class 
methods. Models using a specific frequency vector at each site have also been 
designed. Lartillot and Philippe (2004) constructed a model that allows for a vari­
able number of frequency profiles to fit the variation of the amino-acid equilibrium 
distribution and, in effect, classifies sites into distinct categories. A parameter- 
rich model was also attempted by Bruno (1996) and Halpern and Bruno (1998), 
where a single mutation process is shared across sites but a site-specific frequency 
vector is used to model the variation of selection effects across sites.

In this chapter, the focus is on the variation in nucleotide composition across 
RNA genes. Once again, secondary structure constraints and differences between 
paired and unpaired regions are taken into account. By contrasting the compo­
sition observed at slow and fast evolving pairs in RNA stems in section 5.3, it
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is suggested that the differences between their patterns of evolution is not sim­
ply limited to variation of the average substitution rate. The most stable G:C 
pairs are more common in slowly evolving parts of RNA stems and nucleotide fre­
quencies in RNA loops are also found to be quite variable across rate categories. 
In general it appears that base composition is correlated with the site-specific 
evolutionary rate.

To motivate the work, the biasing effects of compositional heterogeneity across 
sites are highlighted in section 5.4. In previous works, it has been noticed 
that frequency estimates were biased towards the frequencies of fast evolving 
sites (Jow et al., 2002; Hudelot et al., 2003) and it is investigated whether com­
positional variations across sites could explain these unexpected results. More 
generally, the behaviour of standard phylogenetic methods in presence of com­
positional variation across sites and the detrimental impact it has on various 
phylogenetic estimates are explored.

In order to account for the observed compositional trends across sites in 
present-day sequences and avoid the forementioned issues, a new latent class 
method for ASRV is introduced in section 5.5. The proposed method extends the 
discrete gamma model (Yang, 1994) to allow for variable equilibrium frequencies 
in each rate category. The main model assumption, supported by empirical ev­
idence, is that these frequencies change in a smooth way across rate categories. 
Gaussian processes are used to control the smoothness and parameters are esti­
mated from the data in the Bayesian framework using MCMC techniques. This 
model is implemented and available in PH A SE.

As documented in chapter 4, more effort has been put into modelling composi­
tional variation over evolutionary time rather than across sites (Yang and Roberts, 
1995; Galtier and Gouy, 1998; Brooks et al., 2004; Foster, 2004), presumably be­
cause lineage-specific base compositional bias has been shown to cause worrisome 
phylogenetic artifacts. Nevertheless, neglecting to account for compositional vari­
ation across sites can also have worrying consequences on models proposed to 
relax the assumption of time-homogeneity, including the model introduced in 
the previous chapter. As an example, it is shown in section 5.6 that under a 
model that wrongly assumes across-site homogeneity of the equilibrium frequen­
cies, part of the observed variation across time will in fact be due to variations 
across sites. Galtier et al. (1999) suggested that the low inferred G+C content 
of the Last Universal Common Ancestor (LUCA) of all extant life forms was
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not compatible with the expected G+C content of a thermophilic species but 
this result has been challenged by several other studies (Di Giulio, 2000, 2003; 
Schwartzman and Lineweaver, 2004). Results presented here suggest that the an­
cestral G+C compositions proposed by Galtier et al. (1999) for the two studied 
rRNA genes were most likely underestimated.

5.2 M odeling rate variation across sites

A simple method to account for ASRV is to assume that there exists a fixed 
number of rates at which a site can possibly evolve. When the assignments 
of sites to the different rate categories is unknown, the marginal likelihood at 
site j  is computed using the weighted sum over all possible assignments as in 
equation (2.18),

Lj =P(Xj\riui 9)
c

= P (X 3 lT’ ^  9’ ro)p(rc) 1
C=1

where C is the number of rate categories, p(rc) is the probability that a site evolves 
at rate rc and P(Xj \ry v, 6, rc) is the likelihood calculation at site j  assuming that 
it evolves at rate rc.

Even though the method is straightforward, there still remains the problem of 
choosing the appropriate number of rate categories and, more importantly, their 
respective rate. The issue is resolved by using parameterized models of ASRV. 
Their extra free parameters can also be determined during the inference process.

5.2.1 Invariant sites m odel

Perhaps the simplest way to account for rate variation across sites is to have 
two categories of sites. The first category contains the sites that are invariant 
whereas the other has a non-zero rate of evolution. A single parameter is added 
and controls the proportion of invariant sites p(rc — 0). The proportion of sites 
in the second category is naturally 1 — p(rc = 0). Recall from section 2.5 that 
the average substitution rate E(r)  for a set of sites is either fixed to 1.0 or is a 
parameter of the model when data are partitioned. Consequently, the average
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rate for the second category is determined by this constraint and is equal to: 
E ( r ) / ( l - p ( r c = 0)).

5.2.2 D iscrete gam m a m odel

Yang (1993) did not use a finite number of categories but modelled ASRV by 
assuming that the evolutionary rate at a site was drawn from a continuous gamma 
distribution:

p(r\a,(3) = e_/3rr a_1 , (5.1)
1 (a)

with mean E (r ) =  a//3 and variance V(r) = a/(32. Since the mean is already 
determined by other constraints, the gamma shape parameter a  is the only pa­
rameter that controls the variance of this distribution. A small a value indicates 
rather large differences between sites with few sites having high rates of evolution 
and most sites being practically invariant (see Figure 5.1). The gamma model 
collapses to the single rate model with a = Too.

4.5

3.5

2.5

<- a = .5

0.5
<- a = 2

0.2 0.4 0.6 0.8 1.4
r

Figure 5.1: The gamma model for ASRV. Probability distributions of several 
gamma distributions with different shape parameters and mean E(r) = 1

The marginal likelihood at a site can be computed by integrating over all 
possible rates:
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but it involves heavy computation. For this reason, Yang (1994) proposed an 
approximate method and the continuous rate distribution is substituted by a 
discrete one. The gamma distribution is split into C equal portions with C — 
1 cutting points and the mean rate for each portion is then used as the rate 
for each discrete gamma category. The rate at a site is then described as a 
random draw with equal probability of being in each category (V c, p(rc) — 1/C). 
This gives the discrete gamma model that is used in this thesis. The discrete 
gamma model can be combined with the invariant sites model described above 
by assuming that the variable sites evolve according to a gamma distribution with 
mean E'(r) ~  E(r) / (  1 — p(rc = 0)). This gives the popular +dG +I model which 
is also implemented in the P H A S E  software.

5.2 .3  A llow ing for auto-correlation  b etw een  adjacent s ites

Felsenstein and Churchill (1996) generalized the approach of Yang (1994) by in- 
troducing a dependence between the rates at adjacent sites. A hidden Markov 
model (HMM) is used to model the auto-correlation of sites and the rate category 
at site j  +  1 is supposed to be randomly drawn from a distribution that depends 
on the rate category previously drawn for site j . This is biologically justified 
by the fact that functional constraints usually act on regions containing more 
than one nucleotide and that contiguous nucleotides are usually under similar 
functional constraints.

This approach is further generalized by Thorne et al. (1996) and in subsequent 
works from the Goldman group (e.g., Goldman et al. (1998); Lio and Goldman 
(2002)) where a complex HMM modelling the different structures found in pro­
tein sequences (e.g., alpha-helix and beta-sheet) is trained and used to model 
accurately the variation of the substitution patterns across sites and is not lim­
ited to ASRV. Models of this type were considered for RNA molecules but it was 
not clear how to properly handle the fact that the two nucleotides constituting a 
base-pair are apart from each other in the sequence.

5.3 Variation of equilibrium  frequencies across
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sites: em pirical evidence

The substitution models used in PH A S E  and in other phylogenetic software are 
usually parameterized with the equilibrium state distribution but the treatment 
of these parameters is software-dependent. Since stationarity is assumed, a sen­
sible method, applied by default in most ML phylogenetic programs, is to obtain 
the frequency parameters directly from the empirical composition of the studied 
sequences (Whelan and Goldman, 1999). Since the cost associated with the esti­
mation of additional parameters is not as high with MCMC techniques, Bayesian 
inference programs, P H A S E  included, usually consider frequency parameters as 
parameters to be estimated during the inference process.

In Jow et al. (2002) and Hudelot et al. (2003), it was noticed that the fre­
quency parameters estimated during the inference process were markedly differ­
ent from the empirical composition, suggesting that one or more assumptions of 
the evolutionary model were not met. In both works, a seven-state base-pair 
model was used with the stems of mammalian mitochondrial RNA genes and the 
estimated equilibrium frequency for the MM state was found to be much higher 
than the empirical proportion of mismatches (approximately 10% vs 4%). It was 
argued that these differences were side-effects of using an ASRV model when slow 
and fast evolving sites show different state distribution and this claim is inves­
tigated in the two next sections. Using a subset of the original dataset used in 
Jow et al. (2002) and Hudelot et al. (2003), it is shown here that the empirical 
composition observed at slow and fast evolving sites can indeed be different in 
real datasets. In section 5.4, it is shown that compositional variation across sites 
is responsible for the observed differences between empirical and estimated base 
frequencies.

5.3.1 E stim ating  th e  site-specific  rate o f evo lu tion  and th e  

com p osition  for each rate category

To estimate the composition at fast and slow evolving sites, it is necessary to 
categorize them in the first place. For that purpose, a likelihood-based method 
is designed and used to estimate the site-specific average rate of evolution and 
to investigate possible associations between evolutionary rates and site-specific 
base composition in a set of aligned sequences. The possibility of significant rate
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change at a site over evolutionary time is neglected here (the covarion-hypothesis 
introduced by Fitch and Markowitz (1970)).

It is assumed that the sequences evolved along the branches of a known tree 
topology (r) with a stationary time-homogeneous model. Substitution patterns 
are supposed to be constant across sites but ASRV is accounted for using a discrete 
gamma distribution of rates. Using the given tree topology, one can compute 
ML estimates (MLEs) for the branch lengths (0) and the free parameters of the 
substitution model (9). These values maximize the probability that the assumed 
evolutionary model generated the observed sequences P (X |r , 0, v).

In an empirical Bayesian approach (Carlin and Louis, 2000; Yang and Wang, 
1995), these MLEs can then be used to compute the posterior probabilities of 
each site j  being in a specific rate category c,

P{Xj \rc, r )9,P) x P(rc) 
J2c=i p (x j\rc> r, 0, v) x P(rc)

P(rc\Xjt r, 0, z>) = ^  I Y  ^  , (5-2)

where C  is the number of rate categories and Xj  the data observed at column j  of 
the alignment. As mentioned before, rate categories have equal prior probability 
when the discrete gamma model is used and P(rc) — l / C .

To evaluate the equilibrium composition of each rate category, the distribution 
of frequencies conditional on rate is estimated using the posterior probabilities 
from equation 5.2 as weights. Then the expectation value of the frequency vector 
n  conditional on rate rc is,

™  > £ j  E (n»)P('-.ra
E(n|’'-1 PPT ’ <5-31

where E(U\Xj) is approximated by the observed frequencies at each site.

The method supposes that the phylogeny that generated the sequences is 
known. Although it might have been better to take phylogenetic uncertainty into 
account when estimating the site-specific evolutionary rate, it is very unlikely 
that the arbitrary choice of a particular tree has a significant impact on the 
results (Mayrose et al., 2005). Substitution parameter estimates are generally 
found to be quite robust to the assumed topology.
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5.3.2 R obu stness o f th e  m ethod  and resu lts on artificial 
data

There is somewhat of a contradiction in estimating the variation of compositional 
patterns across sites by using a method which assumes that nucleotide frequencies 
are uniform along the length of the sequences. In order to ascertain whether 
this method is robust, it was tested with simulated datasets. Two evolutionary 
models, SJiomo and SJietero, were used to generate the artificial alignments used 
throughout this chapter and they are now described.

With S-homo, a standard time-homogeneous TN93 substitution model is used 
to generate the sequences (see section 2.3). SJiomo is not strictly homogeneous 
across sites because ASRV is simulated with the discrete gamma model. Nev­
ertheless, S-homo can be considered “pattern-homogeneous” because frequency 
parameters are constant across sites and the base frequency distribution is ex­
pected to remain homogeneous both across sites and lineages. SJietero is similar 
to S-homo in all respects but, by contrast, a different set of frequency parame­
ters are used for each gamma category. SJietero is still a time-homogeneous and 
stationary process but the stationary frequency distribution is no longer shared 
across sites and is correlated to the site-specific rate of evolution.

In both evolutionary models, twenty rate categories are used for the discrete 
gamma model. The gamma shape parameter cv is set to 0.5, which is a reasonable 
value for the RNA genes being studied. This corresponds to an L-shaped distri­
bution with most of the sites evolving slowly (see section 5.2). The homogeneous 
frequency parameters of S-homo are = {0.40,0.25,0.15,0.20}.
Base frequency parameters used for each gamma category in SJietero are given 
in table 5.1 and are shown in Figure 5.3. In SJietero, fast-evolving sites are G-l-C 
rich and A +T poor compared to slow evolving sites. Note that the frequency 
parameters for each gamma category are chosen so that the frequency distribu­
tion, averaged over the whole sequence, is that given for S-homo. Since SJietero 
is still a time-homogeneous and stationary process, this average composition is 
expected to remain constant over time and it is also expected that contemporary 
and ancestral sequences exhibit the pattern of compositional variation across sites 
shown in Figure 5.3. Exchangeabilities are set at the same reasonable values in 
both evolutionary models: per = 2.5 and Ptransmrsion =  0.4. Since the “rate 
ratios” parameterization is used in this chapter, the reference Pag is equal to 1.0.
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Sequences are then evolved along the branches of an arbitrary 10-species tree 
which is common for both models (see Figure 5.2).

rate category substitution rate tta ttc kg tvt kc+g
1 0.0013 0.4509 0.1875 0.0839 0.2778 0.2714
2 0.0092 0.4468 0.1957 0.0901 0.2674 0.2858
3 0.0251 0.4399 0.2035 0.0981 0.2585 0.3016
4 0.0493 0.4327 0.2096 0.1077 0.2500 0.3173
5 0.0821 0.4256 0.2150 0.1171 0.2423 0.3321
6 0.1242 0.4187 0.2198 0.1258 0.2357 0.3456
7 0.1763 0.4135 0.2241 0.1330 0.2294 0.3571
8 0.2394 0.4086 0.2297 0.1395 0.2222 0.3692
9 0.3150 0.4038 0.2349 0.1458 0.2155 0.3807
10 0.4047 0.4003 0.2405 0.1514 0.2077 0.3919
11 0.5111 0.3961 0.2465 0.1573 0.2000 0.4038
12 0.6375 0.3934 0.2524 0.1622 0.1920 0.4146
13 0.7883 0.3893 0.2592 0.1681 0.1835 0.4273
14 0.9704 0.3858 0.2666 0.1733 0.1742 0.4399
15 1.1940 0.3819 0.2751 0.1786 0.1645 0.4537
16 1.4757 0.3772 0.2840 0.1841 0.1547 0.4681
17 1.8455 0.3716 0.2947 0.1894 0.1443 0.4841
18 2.3652 0.3646 0.3057 0.1941 0.1355 0.4998
19 3.2037 0.3564 0.3191 0.1978 0.1266 0.5169
20 5.5820 0.3429 0.3364 0.2027 0.1180 0.5391

Table 5.1: Frequency parameters used to generate replicates with SJietero.

sp3
sp4

sp5
sp6

0.1 substitutions per site

Figure 5.2: The tree that generated the synthetic datasets used in this chapter.

Replicates of SJietero and S-homo were used to test the empirical Bayesian 
method described previously. Ten synthetic alignments (20,000 nucleotides each)
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were generated with SJietero and subsequently analyzed. During the analy­
sis, the true topology, which is known in this case, was assumed. A “pattern- 
heterogeneous” TN93 substitution process modelling rate heterogeneity with twenty 
discrete gamma categories was used. This evolutionary model was consequently 
identical to S-homo but true parameter values were replaced by MLEs during the 
analysis. This model was able to model ASRV, but could not account for the fact 
that the composition was not constant across sites.

Figure 5.3 shows results of the empirical Bayesian method when it was applied 
to the first replicate. Results emphasize the fact that the method can still be used 
to detect compositional variation across sites even if the evolutionary model used 
does not model it. Nevertheless, results also indicates that the method might 
underestimate the extent of variation when it exists. Results with other replicates 
were similar and are not shown.

real process 
estimated frequencies0.5

0.4

a  0.3

average substitution rate

Figure 5.3: Compositional variation across sites: The frequency parameters found 
by the empirical Bayesian methods for each gamma category are contrasted with 
the real frequency parameters, which are known in this case.

Ten replicates of S-homo (only 1,000 nucleotides each) were also generated 
and analyzed with the empirical Bayesian method. The same homogeneous TN93 
substitution model with 20 discrete gamma rate categories was used during the 
analysis. For the ten replicates, frequency parameters estimated for each rate 
category were found to be quite close to the stationary distribution, which is also 
homogeneous across sites. Differences between the estimated composition for each 
category and the real uniform frequencies were in the tight range [-2.48%,+2.56%] 
(95% confidence interval). Moreover, no significant trends related to the substitu­
tion rate were visible. This suggests that the method is not finding heterogeneity

127



CHAPTER 5. HETEROGENEITY ACROSS SITES

when there is none, even with relatively small datasets.

5.3.3 A p p lication  w ith  real R N A  genes o f 13 prim ates

The ability of the empirical Bayesian method to estimate compositional variation 
patterns has then been demonstrated and the method was consequently applied 
to an empirical case. Compositional trends, and their correlation with the site- 
specific rate of evolution, were studied in the mitochondrial RNA genes of 13 
primates (gorilla, human, chimpanzee, pygmy chimpanzee, orangutan, gibbon, 
baboon, barbary ape, capuchin, loris, tarsier, ring-tailed lemur, malayan flying 
lemur). Three species from the grouping Laurasiatheria were used as an outgroup 
(dog, cow and rhinoceros). The genes used are the complete set of mitochondrial 
tRNAs and l’RNAs. This dataset was extracted directly from the dataset used 
for mammalian phylogenetic inference by Hudelot et al. (2003) and sequence ac­
cession numbers can be found in this article.

The consensus secondary structure is a key part of this alignment since nu­
cleotides are treated differently according to their position. A TN93 substitution 
model was used with RNA loops and the 7D model was used with RNA stems. 
The gamma distribution of rates was approximated with eight discrete gamma 
categories in both blocks. The empirical method requires us to assume a specific 
topology and the majority-rule consensus topology found by a Bayesian analysis 
of this dataset was used. The chosen tree contains dubious clades, e.g. ,  the un­
likely gorilla-human sister relationship found in Hudelot et al. (2003), but this is 
of little consequence (other topologies were tried and results were consistent).

Graphs for the estimated composition of RNA loops and RNA helices are 
shown in Figure 5.4. The estimated frequency distribution for each discrete rate 
category is plotted against the average substitution rate of the category. In RNA 
stems, frequencies of symmetrical pairs (e.g. ,  ttq-.u and ttjj-.g) were summed for 
clarity. In loops, tv a  appears to be negatively correlated with the rate of evolution 
and this nucleotide is underrepresented at fast evolving sites. In RNA stems, a 
striking increase in correlated with the site-specific evolutionary rate is observed 
for 7TA‘.u+U:A and 7tM m , whereas 7tq-.c+c-.g  is decreasing.

The high A content observed in unpaired regions of primate mitochondrial 
RNA genes is explained by Gutell et al. (2000) who suggest that unpaired A
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Figure 5.4: Compositional variation across sites with mitochondrial RNA genes, 
(a)loops and (b)helices. Note that the 7D model distinguishes the pairs X:Y and 
Y:X but state frequency parameters were summed to produce the curves in (b).

nucleotides are crucial components for the formation of three-dimensional rRNA 
molecules. The biological processes responsible for other compositional trends 
are hardly understood but it appears that the observed variations can mostly be 
explained by the combined effects of the mutation and selection processes. Fast 
categories are under reduced selection and respond to the mutational pressure 
whereas the frequency distribution observed at sites under purifying selection 
reflects an average of the site-specific selection pressure over all slow evolving 
sites. This fits nicely with the results. In loops, the decreasing trend in G 
content is certainly due to the strong mutational bias away from G in mammalian 
mitochondrial genes. This mutational bias is often invoked to explain the low G 
content at the third codon position for mitochondrial protein-coding genes found 
on the H-strand (Gibson et al., 2005) and the results here are consistent with the 
hypothesis of the deamination of C on the H-strand which results in the decrease 
of G and increase of A in RNA products (Reyes et al., 1998). Indeed, the two 
rRNA genes, which account for two-thirds of the dataset, are on the H-strand. 
Moreover, when the original dataset was split in two, to separate tRNAs and 
rRNAs and to study independently compositional variation across sites in these 
genes, the decreasing trend in G content was much more striking for rRNAs than 
for tRNAs. This result was expected since tRNA genes are found both on the L 
and the H strands (curves not shown). Nevertheless, since a consensus secondary 
structure was used, one cannot exclude the possibility of a “contamination” of the 
loop partition with slow evolving paired sites, more G+C rich than the standard 
composition in RNA loops. However, one would also expect strong compositional
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variations for the C and U  bases in such a case. Since G and A are the only 
impaired nucleotides exhibiting trends, this explanation seems less plausible.

Compositional trends in primate mitochondrial RNA helices are stronger and 
also fit with what could reasonably be expected. The frequency of mismatches 
increases steadily with the evolutionary rate, reflecting a weaker selection pres­
sure to maintain the RNA secondary structure at fast evolving sites. Since G:C 
pairs are thermodynamically stronger than A:U  pairs and have a strong stabi­
lizing effect on the structure of RNA molecules, it seems reasonable that slow 
evolving regions, subject to a stronger selection pressure, are G :C rich compared 
to fast-evolving regions. Nevertheless, the mutation bias away from G mentioned 
previously might also be responsible for the striking decrease in the G:C content 
in favor of the A:U content. More studies are probably needed to assess how 
ubiquitous the decrease in the G :C content is.

5.3 .4  D iscussion

This study is limited to the correlations between site-specific evolutionary rate 
and composition in RNA genes. Nevertheless, similar trends were also found with 
protein-coding genes at the nucleotide/codon level and at the amino-acid level1. 
With these genes, mutational biases are acting at the nucleotide level whereas 
selective constraints are acting at the codon level. This gives rise to unexpected 
patterns of compositional variation across sites.

The empirical Bayesian method proposed for the study of compositional vari­
ations among RNA sites suffers from some drawbacks. Mayrose et al. (2004) 
reported that Bayesian methods perform quite well for the estimation of the site- 
specific substitution rate but the accuracy of this approach is still limited. As 
already emphasized, one important issue is that the method assumes composi­
tional homogeneity across sites to classify sites according to their evolutionary 
rate and that is probably not appropriate when the objective is to study spatial 
frequency variations. Results with SJietero (Figure 5.3) suggest that the use of 
a pattern-homogeneous model and/or the use of rate category posterior proba­
bilities as weights tend to flatten the resulting curves. Consequently, no claim is 
made concerning the accuracy of the curves plotted with this method since they

1A significant part of this work was done by Antoine Buxerolles during his MSc project.
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are most likely underestimating the extent of spatial compositional variation in 
real data. However, in spite of the fact that the method might not be reliable 
enough to quantify compositional variation numerically, put together with the 
negative results obtained with dataset generated by SJiomo, it is concluded here 
that the striking trends exhibited with real sequences are genuine and that spatial 
compositional variation is a common phenomenon that can be correlated with the 
site-specific rate of evolution.

5.4 Effects on standard phylogenetic inference 

m ethods

Since most genes used in phylogenetic inference are subject to selective constraints 
that vary quantitatively along the length of the sequences, variation of nucleotide 
composition across sites is more likely to be the norm than the exception. The bi­
asing effects of compositional heterogeneity across sites on phylogenetic methods 
that do not account for it is investigated here

5.4.1 S im ulations

To assess the impact of compositional heterogeneity across sites on phylogenetic 
estimates, one hundred replicates were generated using the evolutionary model 
SJietero (20,000 sites per alignment) and subsequently analyzed with standard 
homogeneous methods. For each replicate, branch lengths and substitution model 
parameters (i.e., frequencies, exchangeabilities and gamma shape parameter) 
were reestimated by ML optimization assuming the tree topology which is known 
in this case. The inference model was a TN93 substitution model and ASRV was 
accounted for with twenty discrete gamma rate categories. The inference model 
is consequently identical to the generative model S-homo but it cannot account 
for the variation of composition across sites present in replicates generated by 
SJietero.

The following values were recovered for the frequency parameters: ( tt̂  —
38.7 ±  0.5%, ttc =  27.3 ±  0.5%, irG =  16.3 ±  0.4%, ttt  =  17.7 dr 0.4%}. These 
MLEs are clearly biased towards the composition of fast evolving sites (given 
in table 5.1). Even though the site-specific composition depends on the rate
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category in these synthetic datasets, one would have expected the MLEs for 
the frequency parameters to be close to the stationary nucleotide distribution 
when it is averaged over the whole sequence: {it a — 40%, 7rc = 25%, 7tg =  
15%, 7yt = 20%}. The bias also exists when the inference model does not account 
for ASRV but it was less noticeable: {ita — 39.2 ±  0.5%, 7r<7 =  25.4 ±  0.4%, ttq =
15.8 ±  0.4%, trT =  19.6 ±  0.4%}.

Frequencies were not the only parameters affected. Yang et al. (1994) and 
Huelsenbeclc and Nielsen (1999) noticed that branch lengths were underestimated 
when using a simpler evolutionary model that does not accommodate rate het­
erogeneity or transition/transversion rate variation across sites. Similarly, it was 
noticed here that all branch lengths were slightly underestimated (by 3% approx­
imately) when variation of frequencies across sites was not accounted for. The 
estimation of exchangeability parameters was also affected, with per = 2.02±0.15 
and Ptransversion 0.3T i  0.02 instead of P(JT — 2.50 and ptransversion ~  0.40.

These experiments were repeated with replicates generated by S-homo (same 
alignment size, 2 0 , 0 0 0  sites) to confirm that deviations from the expected re­
sult were only due to the compositional variation across sites. When replicates 
of SJiomo were used, MLEs were close to their true values which was expected 
because ML is consistent and asymptotically efficient when the generative model 
and the inference model are the same. The alignment size was large enough 
to grant these results. Since the different biases highlighted above are not ob­
served with replicates generated by S-homo, compositional variation across sites 
in SJietero must be responsible for them.

Above, results are presented in which the frequency distribution is a free pa­
rameter of the model that is inferred with the other evolutionary parameters dur­
ing ML optimization. As already mentioned, frequency parameters can directly 
be approximated by the empirical composition of contemporary sequences since 
stationarity is assumed. Previous experiments were consequently repeated when 
the frequency parameters are fixed to their observed empirical values. Obviously, 
frequency parameters were not biased anymore in this case but it was found that 
the other biases were more pronounced in such a setting. Branch lengths were 
even more underestimated (by 4% approximately) as were the exchangeability 
parameters (per ~  1.85 ±  0.15 and ptransversion — 0.36 ±  0.02).

Effects on topology estimates were studied in the Bayesian framework. One
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hundred alignments were generated using SJietero with 1 , 0 0 0  sites per replicate 
and analyzed with the MCMC sampler of PH A SE . Once again, the substitu­
tion model used during the inference was similar to the generative substitution 
model of S-homo (TN93, twenty gamma rate categories), but branch lengths and 
substitution parameters were treated as unknown variables. The tree topology 
was also considered as a free parameter here and standard priors were used. The 
BPPs that measure clade supports were compared to the BPPs found when com­
positional variation across sites is accounted for by the substitution model. To 
perform such a comparison, experiments were repeated using an inference model 
which is similar to SJietero. The tree topology and the substitution parameters 
were still considered as unknown parameters but the base frequencies used for 
the 2 0  rate categories were not assumed to be homogeneous and were fixed to 
their true values. On top of the biases highlighted above in the ML framework, 
it was found that the BPPs used to measure the support for different clades were 
sensitive to the model used. Focusing on the clades with BPPs between 50% and 
95% when the true model was used (the values that are usually reported on a 
consensus tree), corresponding BPPs obtained with the spatially homogeneous 
model were slightly, but significantly, different (±5% on average, and ±10% to 
2 0 % in some cases).

5.4.2 D iscussion

The bias towards the composition observed at fast evolving sites can easily be 
explained. When a single stationary distribution of frequencies is assumed and 
shared across sites evolving at different rates, an invariant site provides only one 
single independent sample of this distribution whereas, at the other extreme, 
a site with infinite substitution rate would provide N  uncorrelated samples, N  
being the number of taxa in the alignment. Deviations of frequency estimates 
from the empirical composition observed at fast evolving sites consequently have 
a larger detrimental effect on the likelihood and, as confirmed by the results 
with simulated datasets, ML and Bayesian inference methods favor frequency 
parameters that are closer to the composition of the fast evolving sites. This was 
not tested here but one can reasonably expect the divergence between empirical 
and estimated frequencies to grow as taxon sampling increases because N  will 
increase.
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Although the effects of compositional heterogeneity across sites on the esti­
mation of substitution parameters are worrying, the impact on branch lengths 
and topology estimates seems quite limited. Nevertheless, results suggest that it 
is not completely negligible. Disregarding pattern-heterogeneity of the substitu­
tion process has probably little effect on the inferred phylogeny in general but 
differences can appear when using a substitution model that accounts for it.

5.5 M odeling com positional heterogeneity  across 

sites

The evolutionary processes that cause the observed compositional trends with 
respect to the site-specific evolutionary rate are poorly understood and, in any 
case, hard to model explicitly. One simple method would be to use different equi­
librium frequencies for each rate category and to consider each frequency vector 
as a free parameter to be estimated from the data. Nevertheless, this method 
would be parameter-rich which is an issue both statistically and computationally. 
Moreover the number of gamma categories used would have a direct impact on the 
substitution model and the number of parameters, which would also be annoying 
because discretization of the gamma distribution is primarily intended to be a 
mathematical convenience. In spite of these problems, such a substitution model 
was attempted. When tested with synthetic datasets, generated by evolutionary 
models similar to SJietero, it was found that the method was not able to fit the 
real frequency curves of the generative model. Equilibrium frequencies at slow 
evolving sites were poorly recovered and highly variable.

5.5.1 A  G aussian  P rocess m odel

Empirical results suggest that the composition does not vary strongly between 
neighboring rate categories. Consequently, it seems reasonable to solve the issues 
with the previous unconstrained method by assuming that equilibrium frequen­
cies vary smoothly with respect to the site-specific evolutionary rate. Simple 
parametric models that express frequencies as a function of the substitution rate 
were tested but, once again, the fit to the real frequency curves was often found
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to be unsatisfactory. These parametric models failed badly with some datasets 
(work not shown).

Parametric methods failed because they are too rigid. Instead, a Gaussian 
process can be used to incorporate the prior of smoothness into the model of 
compositional variation. Gaussian processes are becoming popular in the machine 
learning community (Rasmussen and Williams, 2006) and they have already been 
applied in various fields, usually for classification (Gibbs and MacKay, 2000) and 
regression problems (Williams and Rasmussen, 1996). See also Chu et al. (2005) 
for a recent application in computational biology. Easy to implement and to 
interpret, Gaussian processes are also appealing because their nonparametric na­
ture does not constrain the model to a specific functional form. In the current 
application, Gaussian processes can simply be considered as useful smoothing de­
vices that return a prior probability of observing a collection of frequency vectors 
without making excessively strong assumptions on the underlying causes of the 
variation across sites. Frequencies at each rate category are treated as free pa­
rameters but strong variations are penalized by the Gaussian process prior. The 
method was implemented in the Bayesian framework using MCMC techniques.

Gaussian processes are fully defined by their mean and covariance function. 
The covariance matrix C specifies how similar the composition is between each 
pair of rate categories. In phylogenetic inference, substitution rates are always 
expressed relative to each other and consequently the problem is reparameterized 
with x c — log(rc), where r c is the average substitution rate of the rate category 
c. The following covariance form is used:

C(xi, Xj) — 6l  exp -  a?j)2|  + 6*2 +  0\xiXj -I- 8ij9\ . (5.4)

The hyperparameter 0o defines the amount of variation expected for a typical 
function, 6\ scales the rate abscissa, 02 and 0s introduce a linear trend in the 
Gaussian process and define the mean expected values of the process as a straight 
line with respect to the evolutionary rates x  while # 4  is a jitter element 011 the 
diagonal of the covariance matrix which prevents it from being ill conditioned. 
A distinct covariance matrix Cj (i.e., a specific vector ©* =  {#0 , $1 , @2, #3 ,#4 }) is 
used for each of the n possible states of the model {e.g., four nucleotides for TN93 
and seven pairs for 7D) defining a set of hyperparameters © =  {©1 , ©2 , . . . ,  0 n}- 
A unique (arbitrary) prior is used on each ©*: 0q ~  Ex{ 10), ~  Ex{ 1 ), 02 ~
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Un(0,10), 03 -  Un{0,10), 04 =  -005.

For each model, the n frequency parameters used at a specific rate category are 
reparameterized with n  “activation” values using a softmax function to remove 
the usual constraints imposed on frequency parameters: 0 < tt* < 1 and JA ir* =  

1,
exp a,i(r)

M r ) =  ^ • (5-5)
E j exP aj(r)

The Oi(x) vectors are not uniquely defined. It would have been possible to 
keep the extra degree of freedom for each gamma category and to let the Gaus­
sian process prior resolve the identifiability issue. Instead, the simple constraint 
V?", E j aj(r) — 0 was added although it has some effects on the prior for the 
variations. This constraint was imposed to limit the correlations between the n 
activation values at each rate category and improve the mixing behaviour.

The probability density of a set of activations ai =  (a i(r i) ,. . . ,  ai(rfc)), where 
{ r i , . . .  ,rc}  are the rates of the discrete gamma categories is:

p (a i ,a2j. .. , a n|©i,©2, . . . ,©„)  =  ^ e x p  j - i  ^ a ^ Q -1^  j  £*;(r c)) ,
 ̂ i=1 '  c=1 i=l

(5.6)
where Ci(a;, y) =  Ci(log(rx), log(ry)), Z is a normalizing factor (see appendix B) 
and 5(x) is the Dirac delta function.

When a standard substitution model is used for Bayesian inference in PH A SE , 
a Dirichlet proposal mechanism is used to propose new equilibrium frequencies 
from the current distribution vector during a MCMC run (see section 3.4.1). Mul­
tiple frequency vectors are used in the substitution model presented here and they 
are updated independently using the same mechanism. Since strong correlations 
between the frequencies of neighboring categories have been introduced, distant 
moves are now regularly refused and the parameters that control the spread of 
the Dirichlet proposals are initially chosen (and also tuned during the MCMC 
“burn in” period) to ensure a reasonable acceptance rate when sampling from 
the chain. Since large moves are not possible, mixing properties are not impres­
sive and a huge number of cycles are necessary to obtain a reliable sample from 
the stationary distribution of each gamma category. A possible solution would 
be to design a suitable move affecting all of the frequencies at once in order to 
preserve the correlations. For instance, it should be possible to design a proposal

136



CHAPTER 5. HETEROGENEITY ACROSS SITES

that would change a set of frequency parameters used at a specific rate category 
by replacing them with random values drawn from the Gaussian process used as 
a prior according to the frequency parameters at other rate categories. Neverthe­
less, this was not attempted here since computational issues are not of greatest 
interest and instead very long runs were used. Two runs were performed for each 
simulation and we checked that the final posterior probability distributions of 
frequency parameters were similar for each gamma category.

5.5.2 T est w ith  sim ulated  datasets

The new model that constrains compositional variations between neighboring rate 
categories with a Gaussian process was tested with datasets generated by SJiomo 
(1,000 nucleotides) and SJietero (20,000 nucleotides), the two evolutionary mod­
els introduced in section 5.3. Rate variation across sites (with S-homo) and 
rate+compositional variations across sites (with SJietero) were simulated using 
twenty discrete categories in both cases but, for computational reasons, the TN93 
substitution model used during the inference accounts for rate+compositional 
variations across sites with only eight discrete categories. In Figure 5.5, the twenty 
sets of frequency parameters of the generating evolutionary model SJietero, given 
in table 5.1 and previously shown in Figure 5.3, are compared with the eight sets 
of frequency parameters inferred when the Gaussian process model is used. Mean 
posterior estimates (MPEs) were used to plot the curves and are accompanied 
with corresponding 95% credibility intervals. The results show excellent agree­
ment between inferred and true frequencies. MPEs for the hyperparameters © 
(see equation (5.4)) are given in table 5.2. In the same figure, a 1,000 nucleotides 
long alignment, generated with S-homo, is used to perform a negative control. 
Although some trends were recovered, the real uniform frequency parameters lies 
within the credibility intervals.

5.5.3 A p p lication  to  th e  prim ate dataset

The new model that constrains compositional variations between neighboring rate 
categories with a Gaussian process was also tested with real data. The primate 
dataset studied in the previous section was used. This dataset was analyzed 
using the same two substitution models as previously: TN93 for loops and 7D

137



CHAPTER 5. HETEROGENEITY ACROSS SITES
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Figure 5.5: Results with the GP model that accounts for compositional variation 
across sites. Mean posterior estimates inferred for the frequency parameters of 
each gamma category are compared to the frequency parameters used to generate 
the data, (a) The alignment is 20,000 nucleotides long and was generated with 
S-hetero, equilibrium frequencies vary across sites and depend on the site-specific 
evolutionary rate, (b) The alignment is 1,000 nucleotides long and was generated 
with S.homo, equilibrium frequencies of the generating process are uniform. The 
95% credibility intervals around the mean posterior estimates are shown. Twenty 
discrete gamma categories were used to generate the sequences but only eight were 
used during the inference and therefore the discrete gamma model for the real 
process spans a larger range of rates.

0o 0i 02 03
TN93 - A 0.0569 0.4121 3.0336 1.8897
TN93 - C 0.0693 0.4270 2.3330 2.1618
TN93 - G 0.0570 0.4245 2.7306 2.1654
TN93 - T 0.0741 0.3885 2.7612 2.2992

Table 5.2: Mean posterior estimate for the hyperparameters of the Gaussian pro­
cess prior: inferred values for 60< 0\, 02 and 03 for each state (see equation (5.4)). 
Results are given for a dataset generated with S-hetero (20,000 nucleotides).

for stems. The eight gamma categories assumed in both models were assigned 
different sets of frequencies and Gaussian process priors were used in both models 
to avoid strong variations at neighboring rate categories.

Figure 5.6 shows the MPEs for the frequency parameters at each rate cate­
gory accompanied with 95% credibility intervals. Inferred frequency parameters 
are compared with the frequency parameters found with the Bayesian empirical 
method in the previous section. The fit is less impressive than with simulated
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data (although reasonable) but one must keep in mind that the empirical esti­
mates probably flatten the curves and underestimate the variation of frequencies 
across sites (as previously observed in figure 5.3).

MPEs for the hyperparameters © (see equation (5.4)) are given in table 5.3 
for both substitution models.

a) empirical Bayesian estimates -
0 5 L inferred frequencies -

' ---------------
0.4 - 1 1 0.5

■g 0.4 
c<D
| 0-3

0.2

1 2 3

average substitution rate
0

0  1 2  3 4

average substitution rate

empirical Bayesian estimates-----
inferred frequencies-----

A:U

Figure 5.6: Results with the GP model that accounts for compositional variation 
across sites. The primate dataset used is, once again, partitioned into two blocks: 
(a) loops and (b) stems. Mean posterior estimates inferred for the frequency 
parameters of each gamma category are compared with the results of the empirical 
Bayesian method described in the previous section.

#0 01 02 03
TN93 - A 0.0439 0.4438 3.3272 1.2966
TN93 - C 0.0419 0.4512 1.8451 2.2112
TN93 - G 0.0491 0.4180 3.5620 2.3813
TN93 - T 0.0476 0.3929 2.3093 2.0194
7D - A:U 0.0575 0.4599 3.7055 2.3437
7D - G:U 0.0607 0.5238 4.0645 2.3712
7D - G:C 0.0649 0.4538 3.2261 2.5534
7D - U:A 0.0643 0.4626 3.6084 1.9333
7D - U:G 0.0596 0.4912 4.1492 2.6997
7D - C:G 0.0631 0.4561 3.1251 2.1755
7D- M M 0.0606 0.4663 2.4701 3.2818

Table 5.3: Mean posterior estimate for the hyperparameters of the Gaussian pro­
cess prior: inferred values for 0q, 01 , 02 and 03 for each state (see equation (5.4)).

139



CHAPTER 5. HETEROGENEITY ACROSS SITES

5.5 .4  D iscussion

In Thome et al. (1996) and in subsequent works from the Goldman group (e.g., 
Goldman et al, (1998); Lio and Goldman (2002)), a trained HMM model is used 
to incorporate information on the variation of substitution patterns across sites 
before the inference. On the contrary, in more recent works (Pagel and Meade, 
2004; Lartillot and Philippe, 2004; Soyer et al., 2002), evolutionary models that 
could potentially detect and characterize new patterns of heterogeneity across 
sites with little a priori knowledge were used. Even though different substitu­
tion models are used for each rate category, we have to concede that we did 
not completely relax the “one model fits all” assumption of standard homoge­
neous substitution models in this work. Incorporating strong prior constraints 
to prevent variations at neighboring rate categories clearly prevents the putative 
patterns of evolution to emerge freely but it is recalled that a completely uncon­
strained mixture model is not a practical option. As pointed out at the beginning 
of section 5.5, such a model would over-fit.

The mutational process, which is not to be confounded with the substitution 
process, can be assumed constant across sites and it seems reasonable to suppose 
that frequencies at fast evolving categories are correlated. Nevertheless, one can 
also reasonably argue that slow evolving sites should not be grouped according to 
their average substitution rate but rather according to the site-specific selection 
pressure which drives the process equilibrium frequencies at these sites. While 
that point has some merit, it should be remembered that the new model proposed 
here is primarily designed for RNA helices. Since structural stability is the com­
mon and predominant selection factor, it is hypothesized that slow evolving pairs 
are under similar selection pressure and can be treated with the same process .

Results using a Gaussian process prior on the primate dataset and the syn­
thetic datasets are promising. With the primate dataset, inferred frequencies do 
not seem to fit very well the empirical curves (figure 5.6) but, as previously men­
tioned, results from the empirical Bayesian methods are just a best guess derived 
from a homogeneous model and the actual amount of variation might be seriously 
underestimated. Results with SJietero (figure 5.5) are quite impressive because 
the alignment is of sufficient size and because the frequencies of the SJietero 
process were close to linear in the logged substitution rate scale, which is an im­
portant assumption of the prior. Sensitivity and effect of the prior should always
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be investigated in Bayesian inference. In this case, frequencies inferred at slow 
evolving sites are clearly more influenced by the trend imposed by the prior rather 
than the data. A low value for the hyperparameter Oq is important to prevent 
unrealistically large variations at slow evolving sites similar to the variations that 
would be observed by using the completely unconstrained mixture model that 
does not attempt any smoothing. This approach to choosing the prior might 
seem rather ad-hoc. Although the functionality was not used here, a hierarchical 
scheme could have been used and the user is allowed to define complex param­
eterized prior distributions for <9q, #i, 02 and 03. With some datasets we found 
that the method would not behave properly unless 9q is constrained close to zero 
with an exponential prior. One obvious reason might be that patterns uncorre­
lated to the evolutionary rate were present in these real datasets and negating 
the attempt to smooth variations. However, time-heterogeneity and “difficult” 
species seem a more likely explanation for these occasional failures.

5.6 Effects on tim e-heterogeneous m ethods

In section 5.4, it was shown that compositional heterogeneity across sites has 
significant effects on estimates from standard phylogenetic methods. The time- 
heterogeneous methods introduced in chapter 4 allow for compositional varia­
tion over time but, except for ASRV, they also assume that evolutionary pat­
terns are constant across sites. Similar problems are consequently expected to 
arise. Since the unique stationary equilibrium distribution of standard time- 
homogeneous methods was found to be biased towards the composition observed 
at fast evolving sites, it can be predicted that the collection of equilibrium fre­
quencies used by time-heterogeneous models on the branches of the phylogeny are 
also biased towards the composition at fast evolving sites. This is demonstrated 
here. It is also shown that the estimated ancestral state distribution is, on the 
contrary, biased towards the composition observed at slow-evolving sites. This 
casts some doubts on the reliability of the ancestral frequency estimates returned 
by time-heterogeneous methods and could explain why the results in section 4.7 
are different from the results of the original study by Galtier et al. (1999).
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5.6.1 S im ulations

To analyze the effect of compositional variation across sites on time-heterogeneous 
methods, the program EVAL JNTH, from the N H M L package (Galtier and Gouy, 
1998), was used. This program is designed to optimize the branch lengths 
and substitution parameters of a time-heterogeneous model when the topol­
ogy is known. It was chosen because it implements the GG98 substitution 
model (Galtier and Gouy, 1998) which has few parameters and is consequently 
easily tractable.

Replicates of SJietero (100 alignments of 20, 000 nucleotides) were generated 
and analyzed with EVAL_NH. The true topology was assumed once again. Ex­
periments were performed with and without a discrete gamma model. Eight 
gamma categories were used in the first case. When the time-heterogeneous and 
rate-heterogeneous evolutionary model was used, the inferred ancestral G+C fre­
quency u  was 33.85% (95% Cl:[33%, 34.57%]). The bias was less striking but 
still visible when the inference model did not account for rate-heterogeneity 
(<n=37.3%, 95% Cl:[36.56%, 38.06%]). The evolutionary model SJietero is admit- 
edly heterogeneous across sites but it is still time-homogeneous and stationary. 
Consequently, the ancestral G+C frequency in replicates of SJietero was expected 
to be approximately equal to the average stationary frequency {ttq +  = 40%).
The recovered estimate of u> is clearly biased towards the G+C frequency of slow 
evolving sites (ttq +  ttc =  27.1% for the slowest gamma category).

The GG98 model is a time-heterogeneous version of the T92 model (Tamura, 
1992). Since the T92 substitution model is less complex than the TN93 model 
used to generate synthetic datasets in SJietero, one might object that the viola­
tion of these assumptions is responsible for the observed differences. Nevertheless, 
similar results were reproduced when the generative TN93 substitution model was 
replaced with a T92 model (work not shown). Moreover, when the experiments 
were repeated with replicates generated by S-homo, which is homogeneous across 
sites, results confirmed that using a T92 model instead of a TN93 model had 
only a negligible impact on the results and the ancestral G+C frequency recov­
ered was much closer to its real value: to =  38.8 ±  .7% with rate heterogeneity 
among sites and u  = 39.7 ±  .8% without. As predicted, it was also found that 
the equilibrium G+C frequency distributions estimated on different branches of 
the tree were biased towards the G+C frequency at fast evolving sites and higher
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than the expected 40% (result not shown).

5.6.2 A  m esophilic LU C A ?

It has just been demonstrated that compositional variation across sites could have 
a very detrimental effect on the ancestral frequency estimates returned by time- 
heterogeneous methods. When analyzing replicates of SJietero with EVAL JNH, 
the ancestral G+C content was underestimated by approximately 6%. Although 
such a difference might seem small, this potentially has grim consequences for the 
results presented in section 4.7 and for the study of Galtier et al. (1999). Indeed, 
the difference between the G+C content of mesophilic and thermophilic species 
is of such an order of magnitude (see Figure 4.12).

Di Giulio (2000) reported that Galtier et al. (1999)’s results could not be re­
peated using maximum parsimony and the bias reported here is a likely explana­
tion for this disagreement. Compositional heterogeneity across sites could have 
had a significant impact on the ancestral G+C content proposed by Galtier et al. 
(1999) and this hypothesis is tested here. Since the possible bias of nonhomoge- 
neous methods is related to a directional trend in the composition with respect 
to the site-specific evolutionary rate, variations of the G+C content across sites 
were studied in the Tree of Life dataset introduced in chapter 4,

To this end, the Bayesian empirical method introduced in section 5.3 was used. 
It was assumed that the tree topology shown in figures 4.10 and 4.11 was correct. 
It is recalled that the method used to estimate the correlation between compo­
sition and site-specific evolutionary rate is based on a time-homogeneous model 
and results are consequently not dependent on the root position. To evaluate the 
potential impact of compositional heterogeneity across sites on Galtier et al.’s 
ancestral G+C estimate, the complete Tree of Life dataset (i.e., loops+stems) 
was analyzed with a T92+dG20 model. To evaluate the potential impact on the 
ancestral G:C+C:G estimate proposed in chapter 4, stems were analyzed with 
a 7D+dG20 model. Columns with gaps and ambiguous nucleotides/pairs were 
removed before the analysis in both cases.

Results are presented in Figure 5.7. At the top of the figure, the two ancestral 
compositions, one for each possible rooting, are compared to the empiral com­
position found in present-day rRNA sequences. The analysis on the top-left was
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performed with EVAL JNH and the ancestral G+C contents are consequently 
ML estimates. Naturally, the results presented here are highly consistent with 
the results of in Galtier et al. (1999) since the two analyses were similar. On the 
top-right, results found in chapter 4 are reproduced, the ancestral G:C+G:C con­
tents in stems are mean posterior estimates. At the bottom of the figure, results 
obtained with the empirical Bayesian method are given. The G+C content in 
loops and stems (bottom-left) is positively correlated with the site-specific rate 
of evolution. This suggests that the ancestral G+C content initially proposed 
by Galtier et al, (1999) was an underestimate. The G:C+C:G content in stems 
(bottom-right) seems weakly correlated to the site-specific rate of evolution but 
the trend is not really clear. It is possible that the ancestral G:C+C:G contents 
proposed in this thesis are overestimated, but the relationship is nonmonotonic 
so it is not clear.

5.6.3 D iscussion

When analyzing replicates of SJietero with EVAL JNH, the ancestral G+C es­
timate was found to be strongly biased towards the frequencies observed at slow 
evolving sites. The Bayesian time-heterogenous method developed in chapter 4 
certainly suffers from the same problems. The bias has probably a limited ef­
fect on the accuracy of the phylogenetic reconstruction and the results presented 
in this last section should not be taken as a plea for avoiding the use of time- 
heterogeneous methods. Compositional heterogeneity in time is certainly as ubiq­
uitous as compositional heterogeneity across sites and using a time-heterogeneous 
method is more likely to improve phylogenetic accuracy even when site-specific 
patterns of evolution are highly variable across sites. Nevertheless, impacts on 
the inferred ancestral composition are far from negligible and studies that focus 
on the estimation of the ancestral DNA composition should be complemented by 
a study of the correlation between nucleotide frequencies and site-specific evolu­
tionary rates to confirm whether results can be trusted.

It has been shown that site variations in selection pressure could bias a time 
heterogenous method. One could equally argue that time-heterogeneous evolu­
tion would bias a site-heterogenous model. Although this was not investigated 
here, one could certainly show, with similar simulations, that the equilibrium 
frequencies found by site-heterogeneous methods at slow evolving sites are biased
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Figure 5.7: Frequency variation with respect to the average evolutionary rate in 
the Tree of Life dataset. LSU and SSU genes were concatenated. Top-left) the 
ML estimates for the ancestral G+C content returned by the time-heterogeneous 
GG98 model are compared with the empirical G+C content of present-day se­
quences. Top-right) The mean posterior estimates for the ancestral G:C+C:G 
content in stems returned by the time-heterogeneous 7D model implemented in 
PH A S E  are compared with the G:C+C:G content found in contemporary rRNA 
helices. Two estimates are returned in both cases depending on the rooting point. 
Bottom-left) G+C frequency variation with respect to the average evolutionary 
rate, loops and stems were joined. Bottom-right) G:C+C:G frequency variation 
with respect to the average evolutionary rate in stems.

towards the ancestral composition at the root of the tree and do not reflect the 
actual evolutionary process.

Although the sequences and the alignment used here are not exactly the same, 
the datasets used by Galtier et al. (1999) probably exhibited trends similar to 
what was shown in figure 5.7 and it is quite likely that Galtier et al. (1999) under­
estimated the actual ancestral G+C content of the two rRNA genes. Admittedly, 
results presented in this thesis do not provide strong support for a hyperther- 
mophilic ancestor but this hypothesis could not be completely rejected. LUCA 
might have been a moderately thermophilic species.
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Ancestral composition estimates returned by time-heterogeneous methods are 
certainly biased but it is unfortunately not possible to predict the amplitude of 
the bias. It would be tempting to approximate the amount of the underestimation 
or overestimation from the shapes of the curves that relate the nucleotide com­
position to the site-specific evolutionary rate but the number of species, shape 
of the tree and branch lengths certainly have a big influence on the extent of 
the bias. Moreover, the empirical Bayesian method used to estimate the correla­
tion between composition and site-specific evolutionary rate is probably returning 
slightly innacurate results when the process of evolution is time-heterogeneous. A 
model that would allow simultaneously for variation in time and variation across 
sites seems necessary for a more accurate estimate of the ancestral composition.

5.7 C onclusion

Base composition in nuclear and mitochondrial RNA genes was found to be het­
erogeneous across sites. This is most likely due to variation of the selection 
pressure over the length of these genes and across-site heterogeneities in the sub­
stitution process. The distribution of states observed at a site was found to be 
correlated to the site-specific evolutionary rate and a new method was proposed 
to capture this aspect of sequence evolution. A Gaussian process model was used 
to model the variation of equilibrium frequencies with respect to the evolutionary 
rate and to allow for a smooth variation of the stationary distribution between 
neighbouring rate categories.

Most evolutionary models are pattern-homogeneous and assume that the sub­
stitution process is uniform across-sites. It is known that accounting for ASRV 
can tremendously improve the accuracy of phylogenetic reconstruction and it was 
investigated here whether the effects of compositional variation across sites could 
mislead standard methods. Impact on phylogenetic accuracy was found to be 
limited but it was shown that the equilibrium frequency parameters estimated by 
statistical phylogenetic methods were biased towards the composition of rapidly 
evolving sites. Ancestral frequency estimates returned by time-heterogeneous 
methods were also found to be biased towards frequency distributions of conserved 
sites. Caution is consequently advised when applying these methods to recover
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the composition of ancestral sequences. This suggests that a time-heterogeneous 
and pattern-heterogeneous substitution model would be most useful to recover 
the ancestral G+C content of LUCA’s rRNA sequences accurately. Although it 
would theorically be possible to combine the time-heterogeneous model presented 
in chapter 4 with the pattern-heterogeneous model developed in this chapter, this 
is not (yet) a practical option because both models are computationally taxing. 
Combining the two would seriously worsen the situation.
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C o n c l u s i o n

6.1 Sum m ary of th e thesis

Contemporary phylogenetic methods are no longer limited to the descriptive 
study of species relatedness. Current model-based approaches are as much de­
signed to unravel the mechanisms of sequence evolution as they are to recover 
the evolutionary relationship of organisms. With the advent of fast MCMC tech­
niques and the ever increasing computational power available to researchers, the 
trend in the past few years has been towards complex and parameter-rich models 
that attempt to capture a wider range of evolutionary forces. Although this is 
not guaranteed, it is expected that better evolutionary models increase the accu­
racy of reconstructed phylogeny, reduce bias, and, at the very least, do not lull 
the user into a false sense of overconfidence. In this thesis, complex models were 
built to account for the specificity of RNA genes and were implemented on the 
P H A S E  software package, which is freely available under the GPL license.

• The P H A S E  software, initially written by Jow (2003), was modified to allow 
the use of combined models. This was necessary to use complete RNA genes, 
i.e., loops and stems, with appropriate models for each block of the partition, 
i.e., a nucleotide substitution model for unpaired regions and a base-pair model 
for helices (Hudelot et al., 2003). Combined models in P H A S E  also found 
another use with protein-coding genes where different substitution models are 
used for different codon positions (Gibson et al., 2005).
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• Following Foster’s work (2004), time-heterogeneous substitution models were 
implemented using rjMCMC techniques. The focus in this thesis was on the 
variation of frequency parameters over time since it was known that this could 
mislead traditional phylogenetic methods. Nevertheless, the model imple­
mented is much more general and could be used, for instance, to study the 
evolution of exchangeability parameters over time. The method is computa­
tionally tractable with reasonably sized datasets and automatically detects the 
amount of heterogeneity needed, in a statistically principled manner.

• It has been shown that ignoring variation of the evolutionary process across 
sites could have important consequences, especially with time-heterogeneous 
methods. Models that allow for the variation of equilibrium frequencies and 
exchangeability parameters across sites were therefore built. One important 
feature of these models, supported by empirical evidence, is that these varia­
tions are assumed to be linked to the strength of the evolutionary forces acting 
at a site and are consequently correlated to the variation of the site-specific 
evolutionary rate.

When building a complex evolutionary model, it is often tempting to add 
many parameters to the problem in a misguided attempt to be as realistic as 
possible. This often leads to excessive variance of parameters and overfitting 
when restraint is not exercised on small datasets. Fortunately, statistical infer­
ence techniques are accompanied by powerful model selection techniques that 
can be used to select the model that best explains the data without overfitting. 
Standard methods are traditionally used in phylogenetic inference: likelihood ra­
tio tests (Wilks, 1938), Cox-Goldman test (Cox, 1962; Goldman, 1993), Akaike 
Information Criterion (Akaike, 1973), Bayesian Information Criterion (Schwarz, 
1978) and Bayes’ factors (Kass and Raftery, 1995). The model selection issue was 
bypassed to some extent in this thesis. Under the reversible jump method used 
to design the time-heterogeneous method in chapter 4, the evolutionary model 
is just another phylogenetic parameter and the number of composition vectors 
necessary to fit the data without overfitting is automatically determined during 
the inference process. Overfitting issues were encountered while building a model 
that allows for heterogeneity of the process across sites in chapter 5 but they 
have been resolved by using an appropriate prior model, based on the empirical 
analysis of several datasets.
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Inferences based 011 real and synthetic datasets, have shown that using these 
new evolutionary models can result in visible, albeit limited, differences on in­
ferred tree topology and clade support values. Nevertheless, the work presented 
in this thesis is expected to have more impact on our understanding of RNA 
sequence evolution than on the ability of phylogenetic methods to recover correct 
evolutionary relationships.

6.2 Phylogenom ics and the future o f PH A SE

Over the past three years, it has become increasingly clear that some important 
phylogenetic questions could not be resolved with a single-gene approach alone. 
Although the PH A S E  software allows the user to combine multiple RNA genes, 
e.g., rRNAs and tRNAs, when performing a phylogenetic analysis, the limited 
size of the datasets and the very nature of the evolutionary process might not 
always allow for the resolution of deep phylogenetic relationships with significant 
confidence. Reconstruction methods based on whole-genome datasets have conse­
quently a definite advantage due to the sheer size of the datasets involved1. Using 
larger datasets clearly reduces the sampling error but also offers opportunities to 
detect and resolve inconsistencies between different genes. These inconsistencies 
might arise because of Horizontal Gene Transfer, i.e., non tree-like evolutionary 
histories, or because of incorrect models of sequence evolution.

Obviously, using P H A S E  and using complex RNA models does not preclude 
us from a concatenated sequences approach with combined substitution models. 
If the currently implemented substitution processes are judged unsatisfactory, it 
is certainly possible to add better methods and models that would target the 
specificities of the evolution of protein-coding genes to the software. Moreover, 
the new models proposed here for RNA genes could certainly be adapted to im­
prove phylogenetic methods based on protein-coding sequence data. However, 
dramatic improvements to heuristic tree search under ML have been seen in the 
recent years (Guindon and Gascuel, 2003), and one has to concede that Bayesian 
methods, while still very attractive for small datasets, may be slower when study­
ing large concatenated datasets.

1 Nevertheless, it lias recently been suggested that careless gene concatenation sometimes 
replace weak incongruences with statistically significant ones (Jeffroy et ah, 2006).
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In this thesis, the focus was on the evolution of tRNA and rRNA genes, 
the well-studied genes that are central to the functioning of the translational 
apparatus. Other non-coding RNA genes have attracted lots of attention re­
cently (Ruvkun, 2001), and we are aware of at least three independent research 
groups who have started using PH A S E  to study the evolution of miRNA genes 
recently. Obviously, these works are not aimed at improving our knowledge of 
systematic relationships between species but at understanding how these biolog­
ically important genes are evolving. Micro-RNAs are unfortunately quite small 
and consequently difficult to analyze with P H A S E ’S complex RNA models but 
hopefully this should not prevent interesting results from coming out.

6.3 Possib le extensions and future work

There is scope for future work in the presented area of research. New evolutionary 
models and methods have been introduced and demonstrated on simple datasets 
and it would now be useful to apply them on other challenging phylogenetic 
problems. How ubiquitous are the trends of compositional variation across sites 
encountered while studying mitochondrial mammalian RNA genes? Can time- 
heterogeneous models recover the traces of ancient evolutionary forces?

6.3.1 Im proving th e  M C M C  algorithm s

At the moment, little research has been done to guide in the choice of good pro­
posal distributions. This is not an issue from a theoretical point of view because 
results do not depend on these choices with enough running time. However, the 
matter has probably more importance in practice and a huge amount of compu­
tational power might be wasted on inefficient proposals. It should be noted that, 
of all the optimizations that have been implemented in P H A S E  in the past three 
years, none had as much effect as improving the tuning parameters that control 
the proposal of new states during a MCMC run. A related problem, which was 
not examined in this thesis, is how to diagnose convergence of a chain. Here, 
the results of multiple chains were always compared for congruence but this is a 
rather expensive method.

Finally, one could investigate the potential of hybrid Monte Carlo methods
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in Bayesian phylogenetic inference (Duane et ah, 1987). In chapter 3, their use 
was suggested for estimating branch length parameters because the mixing is 
often problematic with these parameters and because their partial derivatives 
can be computed analytically. Nevertheless, hybrid methods might also show an 
edge over the standard Metropolis-Hastings algorithm with the other evolutionary 
parameters.

6.3.2 E volutionary m odels

In this thesis, P H A S E  is described as a package to perform phylogenetic inference 
with RNA genes because base-pair models that account for the specificity of 
nucleotide interactions in RNA helices have been implemented. Nevertheless, 
different evolutionary models can be, and are, plugged into the software. As 
mentioned before, implementing new models that are adapted for the evolution 
of protein-coding genes can often be done easily and could be useful to handle 
more and larger datasets.

In chapter 5, compositional heterogeneity across sites has been shown to 
affect the performance of time-heterogeneous methods. Combining the time- 
heterogeneous model with a model of compositional variation across sites seems 
therefore like a natural thing to do. A computationally tractable solution would 
first involve better MCMC proposals to solve the mixing issue encountered with 
the frequency parameters when a Gaussian process model is used (chapter 5).

In this thesis, the discrete gamma model was used to model the variation of 
the selection pressure across sites. It has been pointed out that combining a codon 
model with the gamma model was not ideal for phylogenetic analysis based on 
protein-coding DNA sequences. Models that allows for across-sites variation of 
w, the nonsynonymous/synonymous ratio are more realistic (Yang et al., 1998). 
Similarly, one could argue that the gamma model is not appropriate to model 
across-site variations between paired sites in RNA sequences because pairs under 
weak evolutionary constraints not only evolve faster, but also tend to break more 
easily. A model that would allow for variation in the selection pressure for con­
served secondary structure, rather than variation of the average substitution rate, 
seems a more sensible alternative. The 16D model (Savill et al., 2001), originally 
derived from the base-pair models introduced in Muse (1995), could be an inter­
esting starting point for a potential solution. Unlike all the substitution models
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introduced so far, the 16D model is not parameterized with a set of equilibrium 
frequencies and some exchangeability parameters but with four frequency param­
eters (one for each nucleotide) and some extra pairing parameters (A and 6) that 
model the fact that the Watson-Crick pairs and the G:U pairs are preferred to 
the ten other mismatch pairs. If A and 0 were allowed to vary across sites, one 
could simultaneously explain the presence of slow and fast evolving pairs and why 
the G:C+C:G frequency is higher at slow evolving sites. If these pairing parame­
ters were also allowed to vary over lineages, this would give a time-heterogeneous 
model that explains the variation of G:C frequency in different lineages as a conse­
quence of varying selection pressure over time. Finally, since the two elements of 
a pair behave like independent entities for specific values of these pairing param­
eters, one could account for the variation of the secondary structure in different 
lineages by combining this model with a covarion-like model (Galtier, 2001) that 
allows for change of the substitution process at a site over evolutionary time.
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J a c o b i a n  f o r  t h e  s p l i t / m e r g e  p r o p o s a l s  o f  
c o m p o s i t i o n  v e c t o r s

We recall that the Jacobian for the transformation is (4.10):

d ( 7 n ( 1 ) , . . * , 7rn _ i (1>, 7Ti( 2 ) , . . . , 7Tn _ i  <2 ) , S i , S 2 )
J  =

So)

This can be decomposed into:

J  = 5(7Ti W, . . . }7Tn_l^S l jTT i^ , • • • ,7Tn-l(2) 82) X
d ( m ^ , . . , , m f* , • • • ,m i2))

d ( m ^ , . . . , , .
(2)\

d ( m f \ (0) . . yun)
x

(0)

^ ( 7 T i ( ° ) ,  . . . ,7 rn _ i ( 0) , S o , W i , .  . .  , u n )

Since these matrices are bloc-diagonal, this can be simplified further into:

1
x

3 = 1
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COMPOSITION VECTORS

where
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we only have to demonstrate that A ^  =  sA-1 to prove (4.11). We demon­
strate in general that

E(n)

Si 0 0 . . 0 ex

0 Si 0 . . 0 e 2

0 0 Si . 0 e 3

0 0 0 . Si &n—1

Sj “ Si - S i  . Si
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Vn > 2 ,

which proves that A ^  =  s /A 1 XXu — s /4 1 since frequencies sum up to 1.0.
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This can be done by induction.

Si el 
-Si e2

—  Si(e i +  6 2 )

proves the property for n =  2.

Using the expansion by minors along the first line,

E(n + 1) =
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Using the recurrence property for the first term and expanding the second 
determinant further along the first column gives

E(n  +  1) =5* S i

71+1
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/  J 
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which completes the demonstration.
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T h e  n o r m a l i z i n g  f a c t o r  Z  u s e d  f o r  t h e  

G P  p r i o r

In equation (5.6), a factor Z  was introduced to normalize the GP prior on the 
collection of activation values. Since Z  depends on the gamma shape parameter, 
the prior value changes when proposing new values for a  during a MCMC run. 
This affects the prior ratio used during the computation of the acceptance rate. 
The complete expression of Z  is given here.

Let A be the collection of activation values. In the standard case,

Following equation (6) in Neal (1997),

-  log(Z) =  { - %  l°g(2’0  -  1 log det Ci)z z

where C is the number of discrete gamma categories and Ci are the G by C 
covariance matrices of the GP.

However, an extra constraint was added on the activation values, and, in our



APPENDIX B. THE NORMALIZING FACTOR Z USED FOR THE GP 
PRIOR

Using the Fourier transform expression of the delta function,

n 1  ̂ ^ f 00
Z  = dA  e x p { - - ^ a iTC r 1ai} J J  / dy e x p ( -2 ? m /^ a i( r c)) ,

^  A  i = l  c = l  1

which gives:
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We note that:
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Consequently:
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One can recognize here the characteristic function of a multivariate Gaussian
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Finally:
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