
(I

Some machine characterizations of classes close to An

A thesis submitted to the University of Manchester for the degree of Doctor 

of Philosophy in the Faculty of Science.

1986

William G. Handley

Department of Mathematics



ABSTRACT

In _Bel'tyuko\^ a type of machine (the SRM) is defined and certain

classes of recursively defined functions are characterized as complexity

classes of this machine. One of the results in that paper is a 
INcharacterization of Aq (the class of sets of numbers which are def­

ined by arithmetic formulae containing only bounded quantification). This 

thesis begins by going over the proof of this again.

A family of closure properties of classes of sets of numbers is then 

defined. Each closure property is associated with a set X with binary 

operation (closure under counting modulo X). Relations between these 

closure properties are considered and are shown to be linked with 

connections between the associated sets with binary operation. Classes 

at least as large as a J' are defined using the new properties ( X A ^ ) and 

certain of these classes are shown to be complexity classes of Bel'tyukov's 

machines (S A?" = Space.(n,o)).

The Bel'tyukov machines are modified, giving a new family of machine

types. Each type is associated with a finite set of numbers Q. Some 
INothers of the XAq classes are shown to be complexity classes of certain 

types of Q-machines ( Z^Ao' - {1,n+l}-Space^(l^D)).

Classes already characterized are shown also to be complexity classes 

of the Q-machines.
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Chapter I PRELIMINARIES

1.1 De:inition: The first order language of arithmetic (LA) is defined 

to be the first order predicate calculus with the following non-logical 

symbols:

2-place relation symbols = and C,

O-place function symbols 0 and 1,

2-place function symbols ♦ and •.

1.2 Remark: We shall at all times be concerned with a particular 

LA-structure, namely IN : the set of natural numbers; the standard model of 

arithmetic, in which our symbols have the usual interpretations.

1.3 Definition: If a set of numbers A (our idea of a set of numbers will

generally embrace the subsets of INm for all m i l )  can be expressed as

{(x ,— ,x ) : 4}
1 «

where $ is an LA-formula whose free variables are drawn from

(x ,...,x ), then A is said to be defined by the formula 4. (Strictly 
1 m -------

speaking we require that all free variables be chosen from x ,x ,x .)
1 2 3

Functions are defined by LA-terms in the obvious, corresponding way. 

Notice that this means that each formula (term) defines an infinite 

number of sets (functions). However, for each arity, at most one set or 

function will be defined and if the arity is less than the largest free 

variable index in the formula or term then no set or function of that arity 

will be defined at all.

1.4 Definition: For t an LA-formula and t an LA-term we have the 

following abbreviations.

w (w£T -* ♦) is abbreviated by V w i t  t

and J w (wft a  ♦) is abbreviated by wiT

Such formulae are said to be obtained from 4> by bounded universal and

bounded existential quantification respectively.
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1.5 Definition: is defined to be the largest class of LA-formulae

whose members never contain or 3 except as part of some bounded

quantification.
IN1.6 Definition: Ap is defined to be the class of sets of numbers that 

are defined by elements of Ap.

1.7 Definitions: We will mainly be concerned with sets of numbers and

also with functions from numbers to numbers. There are obvious ways of

connecting functions with sets and vice versa.

Firstly from A C  K ™1 (some m >. 1) we derive y, > the characteristic — A ---------------
function of A. y. : IN --------  A

X,(x .... . )A 1 m

IN and is such that

0 if (x ,. . . ,x ) 6 A 
1 m

1 otherwise.

Secondly, for f : IN™ -*■ IN , we have graph(f) , the graph of f.

graph(f) c  K ™+1 and is such that

(x ,...,x _ ) €  graph(f) iff f(x ,...,x ) - x .1 m+1 1 m m+ 1
1.8 Definition: A function f 

if

-*■ U  is said to be a Ap-function

(i) graph(f) € A0IN

and (ii) there is a p ( x ...x ) €• H  fx ,. . . ,x i such that for alll m 1 m
x .... x e H  , f(x ,...,x ) f p(x , —  ,x ).I in 1 m \ m

(Notice that the polynomials with natural number coefficients are, in fact, 

exactly the functions defined by LA-terms.)

1.9 Definition: A set B C  IN™ is said to be obtained from a set

A C  K "  by explicit transformation if

B = {(x ,...,x ) : (u .... u ) 6 A}1 m 1 n
where, for 1 f i f n, u. € or u. « x. for some 1 $ j $ m.1 1 j
1.10 Definition: For given m i l ,  the boolean operations on subsets of 

!>'™ are union, intersection and complementation in IN™.

1.11 Definitions: We define the set operations bounded quantification (I) 

and bounded quantification (II) as follows:
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n”! mIf A C  K  , then B C  IN is derived fror, A by bounded 

quantification (I) when

B = { ( x .... x )  : Q y i x  (y,x ,. . . ,x ) €• A) where Q = V  or - ,] m 2 m
and by bounded quantification (II) when

B = {(x ,...,x ) : Q yip(x  x ) (y,x ,...,x ) e A}} in } m 2 m
where Q = or H and p 6 IN i x ,.. . ,x j .] in

IN . >-1.12 Theorem: Aq is smallest class C of sets of numbers such that

(i) =, i, graph(+), graph(•) f C

(ii) C is closed under explicit transformations

(iii) t is closed under boolean operations

(iv) C  is closed under bounded quantification (II).

Proof: Easy.

1.13 Definition: [^Bel' tyukov

A Stack Register Machine (SRM) is as follows:

(A) For some m i 0, it has input registers (whose contents are labelled)

x .....x .
1 i”

(B) For some k i 0, it has stack registers (whose contents are labelled)

(C) It has a work-register (containing)

r .

(D) It has a program L L ...L L ,, where L , is halt and forH B 1 2 P P+1 p+1 ----
1 i j C p, Lj is one of three types of instruction:

Type (i): t^ := t^ + 1; (for some 0 f i i k)

Type (ii): r := z: (for some z e (t ,...,t, , x .... x ))“ ----- 0 K 1 m
Type (iii): If z * z = z then L„ else L ; (where * is

------- 1 2  3 £ 1
♦ or •, 1 i £,n s p+1 and z ,z ,z £ {r,t ,...,t.,x ,...,x }).1 2 3 0 k 1 01

A type (i) instruction affecting t. has the subsidiary effect that 

tj :• 0 for all j < i. Furthermore, for each 0 i i £ k, only one type 

(i) instruction affecting t. is allowed in a given program.



1.14 Definition: A function f : IN IN is said to be computed by anIT.

SRM M with m input registers when, for all x € IN , M is suchl m
that if we start M's program off (at instruction L ) with values

x .... x in its input registers and zero in all its stack registers and
1 »>

in its work-register then

(i) M will halt eventually (i.e. reach instruction L )p+1
and (ii) when M halts, the top stack register t^ will have the value

1.15 Definition: For u,v : K  -*■ K  , non-decreasing and such that 

u(l),v(l) i 1, Space(u,v) is defined to be the class of functions as 

follows.

A function f is in Space(u,v) just if there is an SRM M which 

computes f and satisfies this condition: that there are j.fc i 1 such

that, for all x ,...,x f IN , if M starts off at L with r = t -1 o 1 0
... = t, = 0  and values x ,...,x in the input registers then at all k i m
times during M's computation

1

r < u  ̂ (max(x .... x ) + 1)l ®r < u
1

and for all 0 ÿ i £ k
<l>,(max(x ,...,x ) + 1)

1 m
j and i iterates of u and v respectively

t. < v l
where are the
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Chapter II Spaced , a) and ¿cIN

The main result of this chapter (theorem 11.13) connects the class 
INCiQ (or rather the Ap-functions) with a certain complexity class - 

Spaced,0) - of SRM-computable functions.

This result is one of the equivalences in theorem 6 of [^Bel'tyukov j . 

It is, in the notation of that paper, that

Rd = Srm-(Space, p x>) for any i.
2

The proof, and that is to say the whole of this chapter, is taken from 

the proof of theorem 1 of ^Bel'tyukov 3 , particularly the part 

Srm(Space, f 1=>) C  ff.

The SRM^ introduced here is very similar to the Srm^ defined there

(they are not however the same). Snap's do in fact turn up in lemma II.8,

though they're not identified as such. SRM^'s are handy tools, once lemma

II.3 has been proved, for showing that given functions are in Space(u,v).

This approach leads to lemma II.7: all A0-functions are it> Space d,0).

The rest of the chapter simply follows Bel'tyukov's proof. This

provides lemma 11.12, the converse to lemma II.7.

The main result merely combines lemmas II.7 and 11.12.

II.1 Definition: Suppose is a class of functions. We define the

SRM^, a variant of the ordinary SRM (definition 1.14), as follows:

An SRM^ still has registers r,t ,...,t^,x ,...,x^ and its program is

still of the form L L ...L L , where L is halt, but L ,...,L 1 2  P P+1 P+1 ---- 1 P
now take one of the following forms:

Type (i): t . 1 t. ♦ l;

Type (i)': t . 1 .... V x
Type (ii)* : r ~ f(r>t y•

0 k 1
-Type (iii) ': if f (r,t ****»t,yX y • 

1 0  * 1 » • • • I ‘■i » * * •k i m

then Lr else L ;C n
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where f, f , f must be functions in U  . For each 0 £ i i k at most 
1 2

one type (i)/(i)* instruction affecting t̂  appears in the program and 

such an instruction sets t̂  := 0 for all j < i even if the value t. 

does not change.

The initial configuration of such a machine has r = t = .. *k “ °
and the inputs to the machine in x . The first instruction

1
executed is L .

1
The output will generally be the value in a specified stack upon

halting - usually the top stack (t ) or the bottom stack (t ).
k 0

Am SRM^ computes a given function if it always halts with the value 

of the function (given the inputs as arguments) in the top stack.

Notice that we can change a machine with output in the bottom stack 

into one that gives the same output in its top stack (and indeed vice versa). 

Moreover this new machine will run in the same space bounds (defined below) 

as the first.

So to prove a function is in a given space complexity class it is 

enough to show that there is an SRM which halts with the value of the 

function in the bottom stack.

We define space complexity classes exactly as for ordinary SRM's 

(definition 1.15).

11.2 Definition: If u,v : 1J K  are non-decreasing with 

u(l),v(l) i 1, then g : INm K  is in Space (u,v) if there is an SRM
J V

which computes g and throughout any run of this machine:

r < u<J‘ (max(x .... x ) + 1)
1 m

<i>, , .t. < v (max(x ,...,x ) + 1) l ] m
for all 0 £ i £ k, for some j,l > 0.

11.3 Lemma: Suppose that u,v i K  ♦ K  are non-decreasing with 

u(l) ,v(l) i 1 and such that

V  * £ *>'v(x) * X
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V  i, j > 0 > 0 u 1_ (x),u J (x) i u  ̂ (x) V x £ ^

\ / i,j > 0  > 0 u 1 (v  ̂ (x>) i u k (x) \/xf r;

Vi > o 3j > 0 u<x>(x) 6 v'J (x) \/xi K
Then

Proof:

Space,, , ,(u,v) ■ Space(u.v).r Space(u,v)

d: Suppose we have an SRM„ , . M which halts on all inputs and—  Space(u.v) i
runs in bounds (u<  ̂ ,v  ̂ ) - i.e. the work-register is bounded by

u<J>(max(x ....x ) + 1) and the stack registers are all bounded by
1 m

v (max(x ,...,x ) + 1). We show that we can pick any (i)'/(i i) ' / (iii)'
1 m

line of M ' s  program and replace this line with a block of ordinary SRM
1

instructions to create a new program. In addition to M ' s  registers this

new program may refer to new stack registers which we add to M ' s

registers to create appropriate machinery. This new machine will simulate

M in that the net effect of the new block on the original registers will

be the same as the effect of the line it replaces. The new machine will be

bounded by (u J ,v ), for some j',1' > 0 and so the (u,v) space

bounds are preserved. Finally, for each stack register of the new machine,

there will be, in the new program, one type (i) instruction referring to it

or one type (i)' instruction or none at all. So it will be an

SRM. , ..Space(u,v)
We can carry on and replace each (i)'/(ii)'/(iii)' line of M 's 

program with a block of ordinary SRM instructions, adding at the same time 

any new stack registers that are needed, and end up with an ordinary SRM

which computes the same function as M and runs in (u,v) bounds (the
1

top stack of the final machine will originally have been the top stack of

Suppose then that M is an SRM. , . with registers r,t ,.1 Space(u,v) B o
...,t, ,x ,. .. ,x and bounds (u  ̂ ,v i=>). And let's say that the type k j m
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(i)'/(ii)'/(iii)' instruction we wish to replace is L .

Case (i)* : L is t. := f(r,t t ,   .... x );.-------  tu l l+l k i m
f € Space(u,v), so we know that there is an SR>* M computing f

2
. . / <j ’> <jl’>and running in bounds (u ,v ). We can assume (though this is not

the usual labelling) that M has input registers w’s +;,t. + ̂ ,..., t^,x .... 

...,x ; stack registers w .... w ; and work-register r. M halts with

In constructing the new machine M , we first add some stack registers.

These are w ,... ,w ,w , ,w ,t. . ,t. ,. The ordering on the stacks 0 s’ s+1 s+2 l+i i*J
(which is what determines when they are set to zero) is the one that puts 

w's lower than t’s and otherwise works by suffix.

The replacement block is written out on the next page. We omit 

instruction labels when possible - which is not often.

0 s 2
9 ••• 9t. ,x , • • • ,x ) in w . k i ra s
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L u t . 14 ♦ w « w then a else 6;tü 1 + S + 2 s+2 0
a if t + V * w then a else y ;0 0 S + 2 S+2 i
a if t + w « w then a else y ;i 1 s+2 S + 2 2

Ensure that
a . if t . ♦ v . , * V then e else y ;l 1 S + 2 s+2 0 t »•••» t . ,w , . .
e if W + w « w then B else y ; , 0 t o

S + 2 S+2 1 are set to zero

fs + i If w + ws+1 i
Y Ci+i t . 3

If W + Vs+2 i
6 Ci+1

e If w + ws + 1 !
C ws+1 : * ws+1

If V + ws+2

= w then e else v; S+2 S+2

= w then e else e;s+2 s+2

r then n else ç;s+2
+ l;

= w then e else e; s+2 s+2

s+2
Here M 's program (less the final

2
halt instruction L ) is listed. ---- v
We assume the instruction labels 

are different from any others in 

the rest of the new program.

s + 1

(w is always zero. s+1 ’

Set w s + 1

Sets r to zero.

Puts the value

f (w , t . ,... ,t, ,s+i’ x+1 k ’
x .... x )

1 ®
into w .

LV r “•ws+l’ Sets r back

e If t. + w « w then 1 S + 2 s Lti)+l else i ;

\ t.l t. + I;

If w + w - w s+2 s+2 s+2 then c else c;

Sets t. :■ f(r, 

li+l.... tk ,Xi.....
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What is the effect of this block on the registers? Well first of all 

is always zero since there is no type (i)/(i)* instruction to changes + 2
it. It's best to consider t.+ 1 and t .i next.

During an execution of the block at most one of t. ,, t. , will be e i+{ i+l
increased, and only once at that. This is because (without going outside 

the block) there is no way back to line y or line 6 from the later 

parts of the block and no way from y to 6 or vice versa.

Second thing to notice is that during the first execution of the block

after an assignment to C£+1' , tjt_i or t^, or after starts, if

either of t. ,,t. , is increased it will be t. For in these1+1’ i+l i+l
circumstances t. , ■= 0 and so we bypass 6. l+l

When we reach e we will have

w - w = . . . = w  = w = w = t - ... - t. ” 0,
0 1 s s+1 s+2 o i

for the only circumstance in which neither t. , nor t. , is increasedi+l i+l
(thus setting all these other stacks to zero) is that they are all already 

zero.

We can immediately see (since the block from c onwards can do

nothing to alter this) that the overall effect of the block on t ,...,t.0 t~l
is to set them to zero, while t. ,...,t. are unaffected. This is ofl + l k
course what we want.

As to t.: it rises to f(r,t. ,...,t,,x ,...,x ) in increments of l l+l k i m

one, starting from zero. Notice that whenever we reach e , we have

w = .. . - w - 0,0 s+i
for we will just have left the section ending in 6 or will just have

executed i. Thus e,C won't cause a loop and M 's program will run
2

properly with f(w _,t. .... . ........x ) ending up in w .S + l l +1 * 1  m s
r is unchanged by the block as a whole for the last instruction to

affect it is always L . (w is unaffected by runs of M ).J v s+i J 2
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This block, then, does what we want. Does M satisfv the right
3

bounds though?
< l > ,t .... t, satisfy the same bound, v (max(x ,...,x ) + 1), as

0 k 1 m
before, w is always zero. s+2

w has the same bound as the work-register had in runs of M . 
S+1 1

This bound is u J (max(x ,...,x ) + 1). But then, by our conditions on1 m
u,v, there is an ¿i> 0 such that v 1 (max(x .... x ) + 1) is also a

1 ®
bound.

w .... w are bounded by
0 s

v<* >(«nax(ws+i,t.+i.... tk ,Xi.....x j  ♦ 1)

f v<A,>(v<Bax(1'1l)>(«a*(x ....x ) ♦ 1))
1 m

= V ^2 (max(x ,...,x ) + 1) for some ¿2 > 0.
1' ' m

Meanwhile for the work-register we know that outside the execution of

1 max(x .... x ,mthe listing of M 's program r is bounded by u J>(max(x ,...,x ) + 1).
2 1

During the "run" of M r is bounded by 
_ ( 2

U<J ' ( « ( V l ' t i + l .... tk*X1.....V  + 1}
<j '>. <max(i.,i.i )>, , . ,,i u J (v 1 (max(x ) + 1)1 m

5 u J1 (max(x .... x ) + 1)
1 ®

for some jj > 0.

Overall, then, r will be bounded by

u<^2>(max(x .... x ) + 1) for some 12 > 0.
1 m

This leaves t.., and t.., to consider. t. , is clearly bounded i+i i+i l+j
by 2 (since its maximum value is 1). It will certainly be bounded by

v(max(x .... x ) ♦ 1) except in one circumstance: that this bound itself
1 m

has value 1. But in this case w , ,w , t , ...,t., whose bounds we s + ] 0 1
have already established, will have to be zero throughout M 's run and so

t. j won't ever be increased and will thus still be bounded by 1 + 5

v(max(x .... x ) + 1) ,1 m
As to ti+i* go back for a moment to M and assume that at two

different times in a run L is executed on the same values of r,t.u I'M
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On both occasions M will be in the same configuration following 

execution of . This implies a loop and therefore it never happens, for

M halts on all inputs. As far as M is concerned this means that
1 3

between successive encounters with the new block at least one of r.t. ....l+l
...,t^ must change.

If one of the t^ + jl . ,t^ changes then the second encounter will

not change t^ + 1 from the value zero which it thereby acquires, for, as we 

saw earlier, if one of t. t. , rises in these circumstances it will be1+4 1+*
t .i+r

On the other hand, as we have already seen, r is bounded by

v 1 (max(x ,...,x ) + 1) outside executions of the block. Or putting it 1 m
another way r cannot take more than v ll>(max(x ,...,x ) + 1) differ-

1 m
ent values without a change in t. , ,,t . So (since M always halts * 1
implies M always halts) the block cannot be executed more than
cli >v (max(x ,...,x ) + 1) times in succession without a change in t. ,.1 m l+l
...,t, . Now for at least one of these executions t. , will not beK i+4
increased (for there must first be an execution which sets t. , 1).

i + 2
Thus t. , cannot rise more than v 1 (max(x ,...,x ) + 1) - 1 times i + * i m
without being set back to zero. That is to say t^ + j is bounded by

v 4l>(max(x ,...,x ) + 1).1 m
We have now shown that M has bounds (u ^2>,v<t,2>).

3
Cases (ii)' /(iii) ' : The replacement blocks for the other two instruction 

types are similar.

Q: The second part of the proof is trivial since to calculate

f 6 Space(u,v) we simply use the SRM_ , . which has stack t ,v J Space(u,v) o’
inputs x^,. , x^ and program

1. f (x .... x ) ;
1 m

2. halt.

Since f ( Space(u,v) it must itself be bounded by v
JOHN RYL AND

UNIVERSITY 
LIBRARY Of 

M A N CH ESIEP

< i > for some
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£ > 0, and so this machine runs in the right bounds.

End of proof of lemma 11.3.

II.4 Proposition: For u,v satisfying the conditions of lemma 11.3

Space(u,v) is closed under composition.

Proof: Suppose f(x .... x ), g (x ,... ,x ), ..., g ( x .....x ) are all----- 1 m n l m

in Space(u,v). Then f(g (x .... x )...... (x ,...,x )) is in1 1  m n i m
Space,, , .(u,v) and is the bottom stack output of the followingr Space(u,v)
machine:

The machine has registers t ,t , ...,tn , x .... x^ and program

1. t :*= n 8n (V •••» x :m
2. ln-l : 8n-l (x ...

1

n. t : *
1 Rn (X!* • • •xm)

n+1. t
0

f(t ,.
1

n+2. halt.

Because f,
V  •

• •,gn C  Space(u, v) they must be b o u n d e d  by iterates

of v. That is there are j 0 ..... jn such that

f (x ,. ••» O < v <^ 0 > (max(x ,. . . , x ) ♦ 1) V  x ..... x €  IN
1 ID 1 m 1 ®

g. (x , ) < v (max(x
1
..... X ) + 1)ID m 1 ®

for all 1 < i f n.

And n o w  i f ■3 max - raax(ji,...,jn ) our machine will be bounded by

(l_,V<Jo + Jmax>) thus proving that f (g^,.. • ,gn> € Spacespace(u v)*u,v^

And so, by lemma 11.3, f(g ,...,gn) 6 Space(u,v).

11.5 Definition: For u,v : K  -*• IN , non-decreasing with u(l),v(l) i 1 

Space^(u.v) is defined to be the class of sets whose characteristic 

functions are in Space(u,v).

11. 6 Proposition: C  Space^O.D) where □  (x ♦ l) 2 and

Hx) » x 

any A0

for all x c . That is to say the characteristic function of 

set is computable by a workregisterless SRM with polynomially
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bounded stack registers.

Proof: All the machines in this proof will have output in the bottom stack,

(i) Functions defined by LA-terms are in Space (JL ,a) .

LA-terms are built up from variables and the constants 0 and 1 

using addition and multiplication.

Projection: For any m i i 5 1, the function defined by x. is in

Space(1,0). It is computed by the machine with stacks t ,t , inputs
— 0 1

x ,...,x and program 1 ™
1. If t +

0
t - X.
1 i

then A. else 2.1

2. t :* t
0 0 ♦ l;

3. If t +
1

t = t
1 1

then 1. else l.;

A. halt.

The bounds are obviously satisfied.

Constants: For any m z 0, the function defined by 0 is computed by the

machine with stack t , inputs x ,...,x and program
0 1 m

1. halt.

For any m >. 0, the function defined by 1 is computed by the machine

with stack t , inputs x ,...fx and program
0 1 m

1. t := t + 1;
0 0

2. halt.

Again the bounds are satisfied in both these cases.

To conclude part (i) of this proof it suffices now, because of 

proposition II.A (whose conditions l_tO  satisfy), to show that addition 

and multiplication are in Space(^_,D).

Addition/multiplication: The machine has stack t , inputs x ,x and
0 1 2

program

1. If x * x “ t then A. else 2.;1 2 0
2. t :« t ♦ 1;

0 0
If t ♦ t - t

0 0 0
3. then 1. else 1. ;
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4. halt.

(where * is + 

Although it

or • as appropriate). The bounds are satisfied, 

is not necessary for the current proof, we remark here

that :

(ii) Space^O.D) is closed under explicit transformations. This is 

because all elements of IN are represented by LA-terms (either 0 or

1 + 1 + ... +1) and Spaced ,D) contains the projection functions and is 

closed under composition.

(iii) Sets defined by basic LA-formulae are in SpaceAQ.O) .

Given (i) all we require to show here is that the characteristic 

functions of equality and inequality are in Spaced,Q).

For equality we have the SRM with stacks t ,t , inputs x ,x and0 1 1 2
program

1.

2 .

3.

If x + t
1 1

x then 3. else 2. ;
2

0
halt.

t + 1;0

For inequality (i.e. x £ x ) we have the SRM with stacks t ,t ,
0 1

inputs x ,x and
1 2

program

1 . if t ♦
1

t = x then
0 1

6. else 2.;

2. if t ♦
1

t = x then
0 2

5. else 3.;

3. t : 
1

- t
1 + is

4. if t +
0

t = t then
0 0

1. else 1.;

5. t :
0

» t
0 ♦ l;

6. halt •
Clearly the bounds are satisfied in both cases.

Again, though it is not needed at present, we remark

of (iii) that:

(iv) Space^d.O) contains i. graph(■*■) and graph(•).

(v) Space. (1,D) is closed under boolean operations.
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For this it suffices to know that f,g £ Spaced,O) where

j  1f(x) * 1
l o

and

if x

otherwise.

if x

(This corresponds to negation.)

g(x ,x )
1 2

x = 0
2 (Conj unction.)

0

1 otherwise.

This is easily shown.

(vi) Finally we show that Space^ (1_,D) is closed under bounded quantific­

ation (II) .

Since we have negation it suffices to show closure under bounded 

existential quantification.

Suppose then that f(x^.... x j  € Spaced,0) and Range(f) C. {0,1}

and let t (x .... x ) be an LA-term. We wish to show that the character-1 ™
istic function of

IV f i(x
1

is in Space(1,0).
.... Xi-l*W ’Xi+l.....xm} ’ °)

We have already seen in (i) that t(x^.... x^) e Spaced,O) and we

have the following SRM- n  to calculate Spaced ,D) the desired

stacks are t , t
0 1

and the inputs x ,...,x .
1 m The program

1. If £(x,.... xi-i’V xi+i"* ., x ) = 0 in
2. If t = t (x ,...,x ) then 

1 1 m
5. else

3. t
1

t ♦ 1; 
1

4. If 0 = 0  then 1. else 1• »

5. t
0

s- t + 1;
0

6. halt.

The stacks are bounded by tnax(2,T(x ,...,x ) ♦ 1)1 m
i O  J (max(x .... x ) ♦ 1)

1 m
The work-register is not used. Therefore the function is in Spaced,Q) by

for some j > 0 .

lemma II.3.



17.

End of proof of proposition II.6.

II.7 Lemma : All ¿(¡-functions are in Space(^,U).
INProof: Suppose then that the function f(x ,...,x ) has A- graph A----- 1 m

and is polynomially bounded in its arguments. From proposition II. 6 we

know that the characteristic function of A, x. » is in Spaced, O) (as isA —
0). So we can compute f using the following SRM„ .. : the stack isSpaced,a)

inputs are x ,
1 "*‘* Xm and the program is

1. If XA (V ...,x ,t ) = 0 then 4. else 2.; m o
2. t

0
:- t ♦

0 i;

3. If oo then 1. else 1 .;

4. halt.

The machine always halts because it just increases t until t
0 C

f(x ,...,x ). f is bounded by O  1 for some j and thus t is 1 m 0
bounded by D  J (max(x ,...,x ) + 1). Therefore f fe Spaced,D) by lemma1 m —
II.3.

End of proof of lemma II.7.

We now move towards proving the converse of lemma II.7.

II. 8 Proposition:

If M is an SRM with work-register r, stack registers t ,...,t, and—  o k
input registers x ,...,x and M halts on all inputs 

1 m
then M's program can be replaced by an equivalent one of the form

L: (if (r,t,x) fc A then fr := f (r,t,x); t :- t ♦ 1; l ) ;0 0 0 0
If (r,t,x) g A then (r :« f^Cr.t.x); t̂  t̂  ♦ 1; l ) ;

If (r ,t ,x) g A^ then (r :- f^ir.t.x); tk :■ 

r :* fk+1(r,t,J))

t. ♦ 1; L);

where A ,Ak g AQ and f

x abbreviate t , ...,t, and x ,
0 k 1

are An -functions while t and k+1
,.,x respectively. This new program

has exactly the same effects upon the registers as the old one.
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Proof : We observe of M that, at any time , its future actions are 

entirely determined by the values r,t,x and the (number of the) instruct­

ion about to be executed (the configuration). So e.g. at the beginning 

M's whole run is determined by the values 0,0,x and the fact that L
1

is about to be executed (the initial configuration).

Such decisions as M makes depend upon the basic LA-formulae embodied 

within its type (iii) instructions.

Now in the absence of type (i) executions only the value of r and 

the number of the instruction about to be executed can change. r only

changes by application of a type (ii) instruction assigning to it one of
-> m • • • the values t,x. Therefore, since r can only assume this finite number

of values, the actions of M up to the next type (i) execution (or up to 

the execution of are always determined by the number of the instr­

uction about to be executed and the truth or falsity of a finite number of 

basic formulae in the variables r,t,x (where r is the current value in

the work-register). It is similarly determined which of the values r,t,x 
will be in the work-register just before this next type (i) execution (or

halt). That value is therefore a A0-function °f r,t,x.

Observe finally that if a type (i) instruction has just been executed

then we know which configuration we are in from the lowest non-zero stack

register. For this must have been the last to have been increased and

there is a unique type (i) instruction which does this.

End of proof of proposition II.8.

Proposition II. 8 has introduced a new type of machine with registers 

like an SRM but a different kind of program. Lemmas II.10 and II.11 will 

reveal more about these machines. First however we have a fact to be used 

in the proof of lemma It.10.

II.9 Fact: If A C  U  n is in An* and f (x),...,f (x) are An”---- — 1 n
functions then
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{(*) : (f (x).... f (>0) £ A) £ A* .
1 n

Proof: For 1 f q i n (by the definition of a Ac-function) there is

0 € An and an LA-term t such that G defines eraph(f ) and t 9 q q q q
defines the polynomial bound for f . But now let T ; T + ... + t s o Tq l n
is an LA-term and define S' £ Ag by

V i H W ,...,W f T(0 A-..AG Ai)
1 n 1 n

Clearly f will define the new set as required.

II. 10 Lemma: (The "looping lemma")

where 4> defines A.

M is a machine with registers t »... * t, , o k x ,.
1

program

L: (if (t.x) £ A then (t := t + 1 ; l);0 0 0
If (t,x) £ A then (t :*= t + 1; l);1 1 1

If (t,x) £ then Ck + l! l ))
Kwhere A^.... A^ £ A0

And during any run of M the registers t are bounded by 

p(x) € k [|x 3

Then there is a machine M' , with registers t , ...,t, ,x and program
1 ^

L': (if (t ,...,t, ,x) £  A' then (t := t + 1; L');1 k j 1 1
If (t .... t ,x) £ A' then (t := t + 1; L'J;

If (tj.... tk .x) 6 A( then (tR tR + 1; L ’))

(A'.... A.' £  Aq ), which simulates M in that if, at some point in a
0 k

run of M, t ,...,t. (and x) have the same values as at some point in 
1 K

a run of M' then the next register out of t ,...,t that M
1 k

increases is also the next register increased by M' (or if M halts

without changing t , ..,. ,t. then k M' just halts). Thus, if we

ignore the increases in t that
C

M can execute but M' cannot, M

and M' are equivalent machines. In particular the final value of
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(i.e. the function computed) will be the same in both cases and 

furthermore M' is bounded by p(x).

Proof: (i.e. derivation of the sets A',...,A^)

,t ,x) € A K 0

Let f be defined by f(t .... t ,x) =
1 R/ —►the least number y s p(x) such that (y,t ,,

[ 0 if no such number exists.

f is clearly a Ag-function. And f has this meaning. Suppose M has

just increased one of t , ...,t, (or has just started). This will be
1

followed by a (possibly empty) sequence of increases in t . The first of
0

these increases is from t « 0 to t ■ 1 for t must have just been
0 0 0

set to zero. The last increase will be to the least y such that

(y,t .... . ,x) A and when (t,x) ^ A either M is about to halt or
1 k 0 0

(t,x) is in at least one of A ,...,A . This least y must be less than
1 k

p(x) for otherwise M would increase t past its bound. There may
0-> ->■ # however be values of t,x, not occurring in any actual run of M, for which

the bound does not hold. It is for this reason that f was defined as it

was. The next of t ..... t^ to be increased is thus determined by which

of A ,...,A. the tuple (f(t ..t. ,x),t .....t ,x) lies in. But now,1 k 1 x 1 k
by fact II.9, we can define, for 1 i j i k,

A! = {(x , J 1 • W  : (f(Y » x ),x ,m+k i ,x , ) € A. } . m+k j
(The projection functions are of course Ag-functions.)

End of proof of lemma II.10.

Lemma II.10 provides the inductive step in the proof of proposition

II.11.

II.11 Proposition; All machines satisfying the conditions in lemma 11.10 

calculate Ag-functions.

Proof; By induction on the number (k+1) of stack registers.

If k = 0 : The program must be of the form

L: (if (t ,x) €  A then (t :» t ♦ 1; Li 1 .
0 0 0 0
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The function calculated is

v y i p(x) ((y,x) ^  A )
o

and this is clearly a Ao~function.

If true for k: Suppose that M has registers t ,...,t, ,x ,...,x .-------------  0 H.+ L i in
Then by lemma II.10 there is a machine M ’, satisfying the required condit­

ions and with k + 1 stack registers t , ...,t which calculates the0 k+1
same function as M. By the inductive hypothesis M' calculates a Aq- 

function and therefore so does M.

End of proof of proposition II.11.

11.12 Lemma: All the functions in SpaceO.O) are A0-functions.

Proof: By lemma II. 8 (we omit all mention of r for it is always zero) we

may replace any SRM running in bounds (_1,D) (o-bounds r polynomial bounds) 

by an equivalent machine which satisfies the conditions of lemma II.10.

And then by proposition II.11 the function calculated must be a Ag-function. 

End of proof of lemma I1.8.

11.13 Theorem: [̂ Bel * tyukov J

Space(l_,Q) is precisely the class of Ao~functions.

Proof: Lemma II.7 and lemma 11.12.

End of proof of theorem 11.13.

The ensuing chapters are mostly devoted to extending this result but 

the basic methods used will not really change from the ones used in this

chapter.



Chapter III COUNTING

INIn the previous chapter we were mostly concerned with the class A^ 

(and the closely related class of the Ag-functions). This class of sets 

of numbers underlies most of the classes under consideration here; nearly 

all the others we are interested in contain it and possess its closure 

properties.

This chapter introduces a new type of closure property, instances of

which can be used in defining set-classes, usually by combining one or more 
. Kof them with the A q closure properties.

Whether or not these new definitions actually give rise to new classes 

seems hard to show. But settling this question positively, in other words 

showing that certain of these classes are larger than Ao (or indeed 

showing that any two of them are different from each other), would show 

separation of some existing classes from Aq .

Summation

Start with a set A C  IN ” (some m i l ) .  We have a characteristic 

function x^i such that

0 otherwise.

» • • • *

(Note: this is really the characteristic function of i< vsA.)

We can use this function to define others:

For 1 i i f m

Alternatively

(Recall jtj * (0,1,... ,x.-l) .)

If A is recursive so will be. Moving down below the classes of

recursive sets and functions we can ask, for a given class of sets G : If
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A € is there a limit to how complicated o* can be?

In fact, since we start with a set (i.e. A), it seems more convenient 

to consider graphic^) rather than itself. This leads to:

111.1 Definition: A class of sets £  is closed under counting if, for 

all i e  K  , for all 1 £ i £ m, for all A C  IN™, At C implies

graphic*) € C.

Now it seems that C has to be pretty weak before we can hope to find

an A (and an i) such that A €  C and graphic^) ^  C. For instance

A C linear space implies graph(o^) € linear space

and A €. implies graph(oA> €: £ £.
. INHowever it is not known whether the same can be said for Aq . Thus 

closure under counting or the lack of it presents itself as a possible 

means of separating Ao from these two larger classes. (linear space is 

the class of sets accepted by Turing machines running in linear space 

bounds and £  ® is the Grzegorczyk class of that name. Both these classes 

contain aJ* ; they can, for instance, be expressed as complexity classes of 

Bel'tyukov SRM's, which are clearly larger than Space^.O) [_Bel' tyukov ̂  .) 

Counting modulo k

From the function o* we can derive other, weaker notions of counting 
A

which may also prove to be means of showing this same separation (if it 

exists).

In the first place we can consider, instead of o^, c* mod k for 

given k (recall x mod k is the number j such that 0 f j i k-1 and 

x = j mod k).

111.2 Definition: We say a class C  is closed under counting modulo k 

if for all m € IN , for all 1 g i i m, for all A C  lNm ,

A € C  implies graphic^ mod k)£ C.

Graphic* mod k) is of course Ag-derivable from graphic*). (That 

is to say: the latter can be derived from the former using «, f, graph(*),
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graph(>), explicit transformations, boolean operations and bounded quanti-
. . INfication (II).) So, in any class containing A q and closed under the A q

set operations, closure under counting implies closure under counting

modulo k, for all k 6 IN . Therefore linear space and are closed

under counting modulo k for all values of k.

Here we can note that in ^Paris-Wilkie it is shown that there are 
. . INtwo classes very similar to A q and such that

(i) The first class is not enlarged by closing under counting modulo k for 

any k €  IN (this is closure under the whole family of these new closure 

properties) .

(ii) The second class is enlarged by closing under counting modulo 2 (just 

one of this family of closure properties, and the simplest).

Because of the close similarity of these two classes to aJ' (they 

are obtained from it by relativization) these results suggest it will be 

hard to prove a result analogous to either one when we go on to consider

To date it is not known that A0 is closed under counting modulo 

k for any k € IN . Nor is it known that Aq' is not closed under counting 

modulo k for any k € 1« .

So this idea has not yet produced separation of A f r o m  linear 

space and ¿9, although it may eventually do so.

Nonetheless there are some interesting machine characterizations of 

classes, close to A* and defined with the aid of closure under various 

kinds of counting. Not all these kinds of counting have been introduced 

yet and so we continue with some more definitions.

Counting modulo X

Let's return to the notion of characteristic function and extend it. 

Suppose that X is a finite set on which is defined a binary operation. 

Then we consider functions from numbers to X.
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Any <chi> : INm -» X will be a kind of characteristic function for it

will define a partition of IN 1,1 into |x| subsets.

Again we can "sum" this function <chi> to get new functions

Sigma1 . . for each 1 s i f m.6 <chi>
Sigma1 , . is defined to be B <chi>

<chi>(x!.... xi-i»xi"1,Xi+l.....Xm) +

H <chi>(xi.... xi-i'xi_2'xi + i.....xm) +

* ( ............................................................................................

+ (<chi>(Xi.... xi-l *xi-H * ’ • ’ •xln) +
f<chi>(x ̂ .... xi_ 1,0,xi + 1>...,xm))...))

where + is the binary operation on X. If this operation is associative

we need not worry about bracketing. This defines Sigma.1^ ^  unless

x^ = 0. For given X we shall simply define Sigma1ch^>(x .... x._,»0,

x. ,...,x ) to be some arbitrary element of X. If X possesses a i+l m
right identity, i.e. an element e such that x + e = x for all x e X, 

then it is convenient to select e as this arbitrary element and we will 

do this where possible.

Now we want to use this "summation" of elements of a set - which is 

not necessarily a set of numbers - to define a closure property applic­

able to classes of sets of numbers.

As you will see if you refer to the eventual definition of this clos­

ure property (definition III.7), it seems sensible to require a certain 

strength of a class t  before we can think of whether or not it is closed 

under counting modulo X.

The conditions on C  are that it include - and that it be closed 

under explicit transformations and boolean operations.

The useful properties that this condition ensures are proved in the 

next two propositions.

III.3 Propositioni If C  includes ■ and is closed under explicit
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transformations and boolean operations then

C. includes all finite sets of (tuples of) numbers.

Proof: Let A C  INr (we do require that all tuples in a set be of the 

same arity). If A is finite we can list A as

{(n1,.•..*n*) >(n2,.. . ,n£) ,...,(i
1 m 1 m

appropriate
■ i «

IN , 1 f q f 1 x |, l

For 1 f q f |x|, 1 Î j f m define

Y? « 1[ (x ,.. . ,x ) : x. * n?}.
J 1 m J J

Y*j £• C since it is defined from - using an

Now define Y^ ■ Y? for 1 f q f
lijiro J

because they are derived from the Y? using 

To finish we have

))

f m.

explicit transformation.

I X {. These sets are in 

repeated boolean operations.

A -  U  Y«
liqi|X|

and so A € £  by closure under boolean operations.

III.I* Proposition: Let t  include = and be closed under explicit 

transformations and boolean operations.

Let f be a function whose domain is a finite set (of q-tuples) of 

numbers.

Let g ,...,g^ : INm ■* IN be functions taking values in the domain of

f and let graph(g ).... graph(gq)€. C .

Then

graph(f(g^....gq)) £  £•
Proof : For 1 s i f q define Y1 € tT to be
H x .... x ,x _,x .... x ) s (x, € graph (g. ) ) .

1 m id-*- 1 m+2 m+q + 1 \  id m +i + 1 i
Then define Z £ £  to be

U x .... x ) : (x .... »x .x ) £  graph(f)). (grapli(f) must be
1 m+q+l m+2 m+q+l m+l

finite and so in £  by proposition III.3.)

Next is U e C  which is given by

U - Z n Q  Y1.
If ifq
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And for all n , . . . ,n € Di , V(n , . . . ,n ) £  f  where
1 <1 1 q

V(n .... n )
i q
Finally

(x ....,x ,x ) : (x ,m in*1 »n .... *» ) € U).in m+ l i  q

graph(f(g.... g )) u(n.,...,n ) dom(f)
V(n ,...,n )

and so is in ÌT , since dom(f) is'finite?

This proves 111.4. We could have abbreviated the process above by

(x .... x ,x ) £  graph(f(g...... )) if and only ifm m+1 i q
V  ((x ,...,x ,n )€graph(g ) a  . . . A (x .... x ,n )£graph(g )

(nj.... n ) dom(f) 1 * * 1 n
A  (n ,...,n ,x )€graph(f)}. q nr* 1

Propositions III.3 and III.4 provide a background for the following 

idea of defining, as a set of tuples of numbers, the graph of a function, 

which, like <chi>, has numbers as arguments but takes values in some 

finite set which may not always be a subset of IN .

The idea is to code this finite set by a set of numbers.

III.5 Definition: If <chi> : X, then for $ : X K  (i.e. $

is one-one)

graph^(<chi>) =dgf graph(#»<chi>).

The point is now that

III. 6 Proposition: For all finite sets X, for all m e JJ, for all

<chi> : m •» 1« , for all 0 ,<f : X it* IN ,1 2
for all classes t  containing « and closed under explicit transformat­

ions and boolean operations:

graph, (<chi>) iff graph (<chi>)9 91 2
Proof:

There will be a function f : Range(9 ) -* K  such that 

f»t * ♦ .
1 2

And so graph, (<chi>) - graph($ • <chi>)£C implies, by proposition III.4
*1 1 

since f has a finite domain, that

graph(f#9 • <chi>)é" C- ,
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and this is just

graph($ o<chi>) = graph (<chi>).
2 *2

By symmetry we also have

graph (<chi>) 6 C implies graph (<chi>) 6 C_.? »
2 1 

Proposition III. 6 tells us that we can forget about specific codings,

for if graph (<chi>)£ C for any one suitable function if, then the same

will be true for any other such suitable function. In the main therefore

it is possible to drop the $ part and speak of graph(<chi>) tout court.

And now we can define our closure property.

111.7 Definition: For X a finite set with binary operation, a class of 

sets C- which includes - and is closed under explicit transformations 

and boolean operations is said to be closed under counting modulo X if, for 

all <chi> : *  “ -*• X,

graph(<chi>)£ C implies graphfSigma1^ ^ )  €. t.
111. 8 Example: X is the group ¡Z ̂  = {0,1.... (k-1)} under addition

(k { 1), If C  includes = and is closed under explicit transformations 

and boolean operations then,

£  is closed under counting modulo 71 ̂  

if and only if

C is closed under counting modulo (the number) k.
Proof: (i) Closure under counting modulo ¡Z ̂  implies closure under

counting modulo k.

Recall definition III.2 and suppose Ae C. Define <chi> : K  m -* 7L

by 5 if (x ,...,x ) C  A
<chi>(x , ...,x ) * ' _

* 1 otherwise.

Clearly A£ C implies graph(<chi>)€ C .

And then closure under counting modulo 27.̂  implies that, for all 

1 i i i m, graph(Sigma‘chi>)e

But it is easily seen that Sigma1 . . (x ,...,x ) is the equivalence class 
1 * <chi> i m
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containing o^(x .... x ) and henceA i in

graphiĉ  nod k)€ C-
(Bear in mind our convention that Sigma1 . (x ,...,x. »0,x. ,...,x )=0.)<chi ; i-l l + l m
(ii) Counting modulo k implies counting modulo

Suppose that <chi> : INnî— and that graph(<chi>)e t". We want
• ito show that graphiSigma^^. >) C  C  for all 1 i i f m. By the properties 

of £  we have

A 1.... A (k-1 ) €  ^
where (x .... x ) £  A. iff <chi>(x ,...,x )1 m J i m for some j s l ( k-1.

If ,0o -( k - l ) are the summation functions derived from A

for given i then graphic1 mod k).... graphic1^ ,  ̂ mod k) C XL

and furthermore Sigma1 , . (x ,...,x ) is the equivalence class containing<cni> \ m

((oX( x .... x ) mod k) + ... + (o 1 (x .....x ) mod k)) .1 i m (k-1) i m
Therefore since there are only finitely many possible values of

oX(x ,...,x ) mod k, ..., a1,. , . (x ,...,x ) mod k,1 m lK"lj i ie
igraph(Sigma<c^.>)£ C  by proposition III.4.

Because we have example III.8 we shall, from now on, usually talk 

about closure under counting modulo 2Z rather than modulo k.

III.9 Theorem: If C  is a class including « and closed under explicit

transformations and boolean operations. And if X and Y are finite sets 

with binary operations. Then:

(i) X = Y implies that

£* is closed under counting modulo X 

if and only if

C  is closed under counting modulo Y.

(ii) Y C  X (so the operation on Y is just the operation on X restrict­

ed to elements of Y) implies that

if t  is closed under counting modulo X

then t  is closed under counting modulo Y.

JOHN RYLANUs 
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(iii) C is closed under counting modulo X and £  is closed under 

counting modulo Y

if and only if

C  is closed under counting modulo X * Y .

Proof :

(i) If 6 : X = Y and <chi> : INm -* Y, then $ = 6”‘»<chi> : INm -* X

and Sigma1 . (x ,...,x ) = 6«Sigma1(x ,...,x ) for all 1 i i < m, for<chi> i m j m
all (x ,...,x ) € IN m . And so by proposition III.4, since 6 (for anv 

1 m
coding functions for X and Y) has a finite domain, closure under count­

ing modulo X implies closure under counting modulo Y. The result follows 

by symmetry.

(ii) This part is equally trivial since a function <chi>: K m -» Y may 

also be thought of as a function <chi'> : V m * X and

Sigma<chi> * Sigmaîchi’> for a11 1 f 1 i m -
(iii) This part has slightly more substance.

If it : X*Y -*• X, ir : X»Y -*• Y are the projection functions then1 2
they have finite domains.

And now if <chi> : m -*• X><Y is such that graph(<chi>) € , then by

proposition III.4

graph(r »<chi>), graph(ir *<chi>) €. C.
1 2

Also (suppressing the variables x , ...,x. .......... )i“l l^l ra

Sign,a'chi>(xi) ■ (Sigma'1.<chi>(xi)*Sigmai2.<chi>(xi))
for all 1 f i f m, for all (x ,...,x ) 6 m .1 ®

Thus by proposition III.4, closure under counting modulo X and modulo 

Y implies closure under counting modulo X * Y .

For the implication in the other direction, suppose C  is closed 

under counting modulo X * Y and pick some element y € Y.

If we define f : X ■* X*Y by f(x) « (x,y) then by proposition III.3,

<chi> : H X and graph(<chi>)£ t  together imply that
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graph(f•<chi>)£ C 

and therefore

graph(Sigma^<ch^>) € 'C for all 1 s i s m.

Thus, again using proposition III.3,

graph(Sigma^chi> ) € £

because Signa1 , . “ it «Sigma1 ....6 <chi> i f«<chi>
This shows counting modulo X. Counting modulo Y is obtained likewise. 

Theorem III.9 enables us to see other closure properties of a class 

which we know to be closed under counting modulo some set X (with binary 

operation) by looking at X as a set.

If we restrict ourselves to the case that X is a group, as we do for 

most of the rest of this chapter, we can obtain stronger results of this 

sort.

III.10 Theorem: Let C  be a class of sets of numbers including = and 

closed under explicit transformations and boolean operations.

Let H and J be finite groups with J < H.

Then :

X  is closed both under counting modulo J and under counting modulo H/J 

if and only if

X  is closed under counting modulo H.
Proof :

(i) Assume closure under counting modulos J and H/J.

We want to show that for all <chi> : H m -* H, graph(<chi>)c X

implies that graphCSigma1^ ^ ) ^  £  for all 1 f i i m.

Now, suppressing the variables x ,...,x. ,,x. ,...,x , we can write
\ i“ l i*i m

Sigma1 . . (x.) as <chi>(x.-1) *<chi> (x.-2) •.. . *<chi> ( 1) • <chi> (0) , where <chi> l i t
is the group operation on H. So we're involved in multiplying a sequence 

of elements of H. If we're dealing with the multiplication of say three

elements a , a , a of H then there is no problem for graph(a *a *a )
1 2  3 1 2  3
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is a finite set and we can apply proposition 111.3.

Sigma1^.,, does not of course reduce to multiplication of any fixed 

finite number of elements of H. It requires multiplication of x^ such 

elements. But we do know that we can perform these arbitrarily long multi­

plications for sequences of elements of J and of H/J. And here's how we 

use this ability to do the same for H itself.

Notice first of all that it is possible, in C  , to tell which element

of H/J (i.e. which coset of J) Sigma1 . . (x.) lies in. For we can define<cni> 1
X : INm -*• H/J by x(x , ...,x ) “ <chi>(x ,...,x ) *J (the coset containing1 m i m
<chi>(x^)) and by proposition III.4 graph(<chi>)€ "C- implies graph(x)f C. 

By closure under counting modulo H/J graphfSigma1)€ C  and clearly

Sigma<chi>(xi) € ‘

So t  can tell us which element of H/J Sigma1 , . (x.) lies in. The<chi> l
problem comes in narrowing Sigma1(x^) to the single element

Sigma1 , . (x.). We achieve this as follows.B <chi> l
First we choose a fixed element r from each coset x of J. (Itx

is convenient that the element chosen from J itself is id,,.) Every

element of H can be expressed as the product of an element of {r } ,x xcH/J
and an element of J. In fact for all h £ H there is a unique j £ J 

such that h = r^#j • j. Thus, given <chi>, there is a function

j : * J such that

<chi>(x.) - rx(x_} • j(x.) for all .......x1 ™ V  .

graph(j)£ £  because j is the composition of <chi> with a function

whose domain is finite.

Now we can rewrite Sigma1 . . (x.) as* <chi> i

rx(xi- 1)*j(xi-1)*rx(x.-2),j(Xi'2)*-'-*rx(l)'j(1)‘rx(0),j(O)*
Our aim is to work on this product until we make it into something we

know we can calculate in t  i.e. something involving finite products of

elements of H and arbitrarily long products of elements of J and of
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H/J. To do this we use the fact that:

For all x,y fc H/J, for all j ( J, there is a j'€ J such that

r • j *r « r • i'. x y xy
This is because r • j *r £ xvj.x y

In fact we can think of this as defining a function 

; : (H/J)*Jx (h /J) - j

where for x,yf H/J, j £ J r *j *r = r *C(x,j,y).x y xy
Using C we can, very loosely speaking, jump elements of J over 

elements of ^rx^xcH/J' For ^nstance take a product of three elements of 

H. As we have already seen, the graph of such a product must in any case 

be in t  but the idea we use now can be extended to arbitrarily long 

products. Starting with our three elements of H in the form r ^tj"j(t) 

for t = 0,1,2, we have

rx(2),j(2)-rx(l)*j(1)'rx(0)-j(O)

* rx(2)'j(2)‘rx(l)x(0)'-’,(1)'-*(O) f°r j ’(1) = C(x(l),j(l) ,x(0))

= rx(2)x(l)x(0)'j,(2)-j,(1)-j(O)
for j '(2) = c(x(2),j(2),(x(l)x(0)))

and we have reduced the problem to multiplying a product of elements of J 

by an element of H easily obtained from a product of elements of H/J.

We can now see that in general

rx(xi-1)*j(xi-1)-rx(xi-2)-j(Xi-2)*'--'rx(l)-j(1)-rx(0)-j(O)

* rx(xi-1)x(xi-2)...x(l)x(0)'j,(Xi"I)-j,(Xi-2)-*--*j,(1)-j,(O)
where for all x. € i>' (,for all x ,...,x. .......... €.*«')i i i"*l i**,l m

j'(xi) - CixiXj),j(x.),Sigma^(xi>).

(Notice that j'(0) * j(0) because Sigma^(O) - J by our convention.) 

graph(j')eC by proposition III.4 because t has a finite domain.

And so, since
iSigma . . (x.) - r„. .- S i g m a ( x .)B <chi> i Sigmal(x.) j xX 1

graph(Sigma^ch. >) £. C (also by proposition III.4),
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(ii) The implication in the other direction is very much simpler.

Assume closure under counting modulo H.

That we have closure under counting modulo J is a direct application 

of theorem III.9 (ii).

Suppose then that <chi> : IN ̂  -*■ H/J and graph(<chi>)£ £. Define 

X: K m + H by

X(x ,...i*B) r<chi>(x.... x )
1 m

where {r } , is as in part (i).X X€n/J

graph(x)eC and if C  is closed under counting modulo H then 

graph(Sigma*)£ t! for all 1 j i f m.

But then since

Sigma*(x.) €  Sigma^chi>(x.) 

it is easy to see that

graph(Sigma^c .̂ ) €. f  for all 1 i i i m.

End of proof of theorem III.10.

Some consequences of theorem III.10 * l

Recall that a group is simple if it has no proper normal subgroups. 

Recall that H is a composition series for G if

H] = U_dG}, ^  - G. H 1 * H 2 <3 ... « . H ^  <3Hk 

and for all 1 f i i k-1 H. /H. is simple.l + l l
Every finite group has a composition series (since it must have a 

maximal normal subgroup and this will produce a factor group which is 

simple).

Therefore

III.11 Corollary: If £  includes - and is closed under explicit trans­

formations and boolean operations then closure under counting modulo G, G 

a finite group, is equivalent to closure under counting modulo each of some 

(finite collection) of finite simple groups. (Notice that counting modulo 

(id) is always possible.)
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Recall also that G is so 1vab1e if it has a composition series such 

that, for 1 f i i k—1, H.+^/H. is abelian (and simple).

Now the finite abelian simple groups are (up to isomorphism) just the 

72 p , p a prime.

Thus

HI-12 Corollary: If t  includes • and is closed under explicit trans­

formations and boolean operations then closure under counting modulo G, for 

G a finite solvable group, is equivalent to closure under counting modulo

72 , m square-free,m
Proof: Clearly, by theorems III.9 and III.10, counting modulo G is equi­

valent to counting modulo each of some collection of finite abelian simple

groups. That is: modulo 72 ,...,72 for some primes p ,...,p , which
P 1 Pn 1 n

we may assume to be all different.

But then it can be shown that

72 PlP2...I
and so, since p p .

1 2
XA*

72 x72 x. . . xJZ
Pi P2 Pn

is square-free, the corollary follows.

Let us now use counting to define new - or rather possibly new 

classes of sets based on aJ* .

If X is a set with a binary operation then 

III.13 Definition: Xa J'' is defined to be the smallest class C  of sets 

of numbers such that

(i) £• includes -, i, graph(+)> graph(*)

(ii) £. is closed under explicit transformations

(iii) C  is closed under boolean operations

(iv) C is closed under bounded quantification (II)

(v) £• is closed under counting modulo X.

Because XAC always satisfies the conditions of theorems III.9 and 

III.10 we have the following:
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1X1.14 Examples:
(i) 2  4A *  = 2  ,4* .

This is because

{5} « {6,2} o 2  ^ a {5,1,2,3}

and {0 ,2 } 6 2  4 / { 0 ,2 } ■

(ii) ' 52 6 A ^

since {id} «3 A 3 <3 S 3

and a 2  3 , S 3 /A

(iii) V * - 22 6 A *

since

{id} <3 {id, (12) (34) } <i {id,(12)(34),(13)(24),(14)(23)} « A. <i S, 

and {id,(12)(34)} = 2  2>

{id,(12)(34),(13)(24),(14) 23)}/{id,(12)(34)} a 2,, 

A4/{id,(12)(34) ,(13)(24),(14)(23)} a 2 3> 

and S4/AA a 2Z 2.

In the chapters following we use these examples to obtain some perhaps 

rather surprising results for space complexity classes of SRM's and

similar machines.
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Chapter IV Counting nodulo nn and nodulo S

Having brought out certain equivalences by concerning ourselves with 

counting modulo some group, we turn our attention to the monoid (see foot­

note) nn of functions with domain and codomain n «(0,1,... ,n-l} under 

the binary operation of composition.

The following theorem connects counting modulo nn and counting

modulo S .n
IV.1 Theorem: Suppose C  is a class of sets of numbers which includes 

=, < and graph(suc) and is closed under explicit transformations, 

boolean operations and bounded quantification (I). Then, for n j 1:

C is closed under counting modulo nn 

if and only if

¿T is closed under counting modulo S .n
Proof:

(i) Closure under counting modulo °n implies closure under counting

modulo S .n
This is trivial by theorem III.9 for is a submonoid of nn.

(ii) Closure under counting modulo implies closure under counting

modulo nn.

This part proceeds by induction on n. The inductive step requires 

the following lemmas IV.2 and IV.3:

IV.2 Lemma: If £  includes » and graph(suc) and is closed under 

explicit transformations, boolean operations and bounded quantification 

(I), then, for n i l :

Closure under counting modulo nn implies closure under count­

ing modulo fn 'n * l \  Sn+j).

Footnote: A monoid is a semigroup with identity.
A semigroup is a set with a binary associative operation.
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(N.B. Wc can count modulo in* ‘n+l N. S because this set of functionsn+1
is closed with respect to composition.)

Proof: Suppose f : (n+1) - (n + 1) but f * S . Then f cannot be one-^ 'u n+i
one because the only one-one functions in n ‘n+1 are the permutations.

It follows that there are functions g : (n+1) ■+ p and
1 ^ ^

g : p -* (n+1) such that2 s. -v
g .g .f - f,

for since f is not one-one there is some w < n such that

w # Range(f)

and we can define gj by

f 2 if z < w
g, (z) - 1

l 2-i if V < z £ n

while g can be
2

f z if z < V
g (z) *
2 { z+l if V * z < n

These functions depend upon our choice of w 

there are only a finite number of functions f to 

functions a and 6 with finite domains where

a rn+l , . „ \ n+i 
: n + 1 X S n + l ^  n

and e : [°+1n+l \  Sn+1) + nn+l

and for all

B(f)oa(f)»f « f.

of course, but since 

consider, there are

Now if, rather than a single function, we have a sequence

f .f ,f ....0 1 2
of elements of (n+1n + l V  Sn ) , then for y € U  we can calculate

f of • .. .of • fy-l y-2 i o
as follows:

For z i 1 define g^ by

gz - . ( f ^ . B i f , . , ) .
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Then

6y - i  ’ i

“ (£y - i ) *f y - i *6<fy - 2)*o(£y - 2)*f y - 2‘

a(fy-i)#fy-iofy-:°*'-ofi’e(fo)
and so

8(f )«g «y-r y~l • g o a(f ) f1 0 0

>3(f )*f og(f )
1 1 0

f »...»f of .
y - i  i o

But g ,g ,g ,
1 2 3 is only a sequence of elements of n. So compos­

ing sequences of elements of nn enables us to compose sequences of elem­

ents of (n+‘n+l \ S  1.1 n+i-
The foregoing presents the idea of the proof proper which proceeds as 

follows:

Suppose then that C  is a class including = , graph(suc) and closed 

under explicit transformations, boolean operations, bounded quantification 

(I) and counting modulo nn.

Suppose also that we have a function <chi> : INm ■» in+‘n+l'\ S )1 n+K
and that graph(<chi>)€ C-

If we suppress the variables x ,...,x. ^.x^,, ,x we can write m
Sigma^^^(x^) “ <chi>(x.-l)*<chi>(x^-2)» . . .°<chi>( 1 )o<chi>(0) 

and we want to show that

graph(Sigma^chi>)e £  .

For this we define three other functions y, 6. and x-<l i
m n+1Y : n and, suppressing x ,... ,x^_] 1 ,. .. ,x^,

Y(x.) o(<chi>(x.)).i dei• i
graph(y)C C  by proposition III,4.

If c is some arbitrary element of nn-»l then, for 1 { i £ m,

6^ : m •» nn+l is defined by

6.<x.) “ y iff (3zix.(z+l • x ^ A  6(<chi>(z)) ■ y)]vix^ « 0 A y  « c).

As we saw likewise in the proof of lemma III.4 this formula tells us that
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graph(i.)£ C ,  for it is built up iron praph(r»'chi ), « and graph(suc), 

all of which are in IT, by steps corresponding to closure properties of ¿T. 

For x. £ 1,

6.(x.) *= 6(<chi>(xi~l)).

Finally x^ : E.'171 -► nn is defined, for 1 i i < m, by

f y ( x . ) • < c h i > ( x . ) • 6 . ( x . )  i f  x.  i 1
w  -  1 1l Id if x. = 0.— 1

Clearly graphiXj)€  'C .

Now for x. t 1,l
Xjix.) *= a(<chi>(xi))»<chi>(xi)»8(<chi>(xi~l))

and thus, as above with f ,f ,... and g ,g0 1 1 2
Sigma^ch.>(xj) = <chi>(x.-l)®...»<chi>(0)

- 6(<chi>(x^-l))»x^(x^-l)“...•Xj(l)*a(<chi>(0))®<chi>(0)

“ 6(<chi>(x.-l))*x.(x.-l)*...•xi(l)»Xi(0)®a(<chi>(0))»<chi>(0)

= 6(<chi>(x^-l)l^Sigma1 (x.)®a(<chi>(0))*<chi>(0). 
n *i 1

X^ : IN -*■ n and grapMx^)^ together imply that

graph(Sigma* ) e C >
xi

and therefore, since we are composing functions drawn from finite sets, 

graph(SigtnaXchi>) e. £.

End of proof of lemma IV.2.

IV.3 Lemma: Given «, <, explicit transformations, boolean operations

and bounded quantification (I), for n i 2,

Closure under counting modulo S and closure under countingn e
modulo (nn X  Sn) together imply

Closure under counting modulo nn.

Proof: This lemma might at first seem trivially true, but being able to

compose sequences of elements of and sequences of elements of

n X  S ) does not imply directly that we can compose mixed sequences of 
nn.elements of
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Suppose therefore that we have a class C, which includes - and i

and is closed under explicit transformations, boolean operations, bounded

quantification (I), counting modulo S and counting modulo inn X  S .n v n;
Suppose also that <chi> : INr ■» nn and graph(<chi>)£ f. Suppress­

ing the variables x . ,x. ,...,x , we can write1 i“ l l ■♦'i in
Sigma^ch . >(x.) « <chi>(x.-l)«<chi>(xj-2)»...• <chi>(1)»<chi>(0) 

and we want to show that graphfSigma1 . . ) € C .<Cnl>

In general the sequence

<chi>(0), <chi>(l), <chi>(2), ...

will consist of blocks of elements of S^ alternating with blocks of

elements of (nn s  s  ].n*
The idea of the proof is to turn each block of elements of S inton

a block of elements of |nn N  S ].1 n'
To do this we use the fact that if h € fnn v. S ) and i €■ S then:1 nJ n

(a) j * h € (nn S S  ).1 n;
This is because composition of a one-one function with a function 

that isn't must always produce a function that is not one-one.

(b) There is a j' € inn N  S ] such thatv n'
j ' o h - j » h.

Indeed we can define a function £ : (S * fnn X  S )) ■» fnn N  S )n v n v n
such that, for all i i S , for all h €- ("n S ) ,J n v nJ

C(j,h) • h - j • h.

C has finite domain. As does composition of two elements of nn.

If we go on to consider a block j , of elements of S1 k n
composed with a single element h of fnn S^), we see, by (a), that for 

all 1 i i f k,

ji-i* •* e  V  SJ
and so if, for 1 f i s k,

j- “ • *j ̂ )»h)
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then

..... V h ‘ — j r h -
which will «Iso mean that

j'o . .. »j '»h = j » . . .• j oh.R. 1 K ]
Thus do we replace a block of elements of by a block of elements

of inn v  S 1 .n'
The important point to make about the derivation of i! is that itx

does not depend on but only on j., (j . ) and h.

Furthermore (j. ) is a composition of elements of S .1 * 1 n

We proceed more formally and systematically as follows:

For all x^ € K  the sequence

<chi>(0), <chi>(l)..... <chi>(x^-1)

contains a (possibly empty) cofinal block of elements of S .n
We alter this block using two functions: f. and e..l 6x

Define f. : K m ■* K  by

f.(x i•.■|x ) i j m
the largest y < x. such that <chi>(y) ?  S l n
x .l if <chi>(z) €. S for all z < x..n i

Then graph(f.)£ £  for f.(x .... x ) = y if and only if1 i i m
(y<x^ a <chi>(y) G  A ^z^x^(y<z -*• <chi>(z) £ sn ))

V  (y-x. AVz<x.(<chi>(z) £  S )) i ¥ i n '
(Note: Since S is finite, {z : <chi>(z) £  S }£ £*.)n n

Observe that f.(x ,...,x ) f x..l 1 m l
Now define g : H m+1 -► S by g ( x .... . , x _ )  ■=1 n l i m m+1

<£hl>(x ,...,x. |X ,x. ,...,x ) if f.(x ) < x < x.1 i-i m* l i*j m x j m m + l x
_ id otherwise.

Clearly graph(g. )£ £  . (f. (x .... x ) < x _  < x. if and only ifi i ] m 1 i

Vz'x.(zix ■* <chi> (z) € S ).) i m* 1 n
Now, suppressing variables other than x. and xm+1 ’

gjix^O), g.(x.,l), g.(x.,2), ..
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ij»jj.... id,'chi>(f.(x.)+l) ,<chi>(fi (x.)f2).... <chi - (x.-l) ,id, id,...
f . (x . ) + l id's 1 1  — Block of elements of S

And Sigma™ ‘(x.,x.)
Ri 1 1
- <chi>(x.-l)*...•<chi>(fi(x.)+2)*<chi>(fi(xi)*l) 

which is the product of the block of elements of S cofinal with

<chi>(0),<chi>(l).... <chi>(x.-l)

unless <chi>(z)€ for all z < x., in which case we just get id.

Also : k ” ' •* and graph(g.)€ C together imply that

graph(Sigma™*1)Q  C.
Ri

The two functions and f^ are used to obtain a further function

Suppose that <chi>(xi>C S^ and f^Xj) ^ xi (i.e. there is a

y < x. such that <chi>(y) C  S ). i n
If we define x^ix^) to

C(<chi>(x^),(Sigma™*1(x^.x^)*<chi>(f.( x ^ ))) 

then as with the j's and h above

Xi<*i> * Xj(*i“ l)# ••-"X.(f.(x.)«-l)®<chi>(f.(x.))

- <chi>(xi)*<chi>Cxi-l)o...®<chi>(fi(x.)^l)«<chi>(fi(xi)).

If we further define that, for x. such that <chi>(x.) < S or suchi i n
that <chi>(y) € S^ for all y < x.,

XfiXf) - <chi>(x.), 

we can see that

Sigma^ “ SiRraa<chi>-
Now x^ is very nearly a function taking values only in (nn "'s S ).

There is an initial segment of values of x^ (those such that

<chi>(y) € S for all y f x .) for which x-(x.) « S , but for all other n i l i n
values of x. , x,-(x.)£ ( " n \ S  ).i i i v n'

Before moving on to elimination of this initial segment, we had better 

be satisfied that graph(x^)t C-
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Wc know that t and • (composition oi elements of nn) have finite

domains and that graph(Sigma™*‘), graph(f) and
®i

(x .... x ) : <chi>(x.) S } are in C.I it. i n
Furthermore f.(x.) f x. for all x. fc E; .i l l  x

And so x^(x^) “ y if and only if

(( <chi>(x.) * S V Vz-x. (<chi>(z) £ S ; A  <chi>(x.) « yi n  i n i. J J

V <chi>(x )£ S A t z <x . (<chi>(z) * S ) i n  1 n J
A  3zix.(f.(x.) * z A c(<chi>(x^),(Sigma10*1(x.,x.)»<chi>(z))) - y)j.f?i 1 i

Thus, by the closure properties of C, graph(xi)€ fc*.

O.K. then. How can we get rid of this initial segment of elements of 

in the sequence

X^O), XiU). XjO), ... ?

Well observe first of all that if <chi>(0)£ '"n \  S 1, there is non-
such initial segment and the problem goes awav.

We cannot in general change <chi>(0) into an element of fnn \  Sn'
and still preserve Sigma1 . . .<chi>

But what we can do is this:

Select some strict subset A of )j ■ {0,1.... n-1}. Then for any

j € nn there is an h e  i"n N. S 1 such thatn̂
j r a - h f a .

(If j € we take some a £ \  A and define h to be exactly as j

except that h(a) “ j(b) some b € A.)

So we can change <chi>(0) into an element <chi.>(0) of fnn N  S 1i v n'
which has the same effect when applied to A.

If for x. i 0 we define <chi.>(x.) - <chi>(x^), then we have a 

function <chi.> : K  m -► nn with graph(<chi. >) £  f  and for all x ,...

*x i - l * x i - l ......... x < c h i . > (0) (nn ^ S  1. 
m l  1 n '

F u rth e rm o re , f o r  a l l ,x_ *  .

Sigma* . .  . (x  ......... x ) *“ A -  S igm a1 , . (x  , .  . .  ,x ) ^ A.«chi.> i m <chi’ i m
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So if x* is derived from <chi.> as X. was from <chi', we have
for al 1 x ,. .. ,x £ IN ,

1 ®
(i) Sigma^ (x^.... xb) r a = SiL gma .. (x <chi> J,...,x ) f Am
(ii) graphfSigma1.) e "C.YV (Because A T», mXo : IN - (nn \ s n).>

Select also some B p such that A U  B * )j. We can derive
such that graph(Sigma'n) €. C and for all x ,... ,x É  IN

Xi 1 m
Sigma^gix.... x )

xi 1 m .
r » ■■ Sipna<chi>(x1*... ,x ) f B. m

Finally we have Sigma*chi>( x .... x^) - y if and only if

(sigma.\(x .... ,xœ) f A * y f a ) A  (sigma^Cx.... . ) f B - y T B] .
a £ I X * 1 Tn

Therefore, since nn, A and B are finite, 

graph(Sigma^chi>)é £ .

End of proof of lemma IV.3.

We can now conclude our proof that, under the given conditions, clos­

ure under counting modulo implies closure under counting modulo nn.

The proof is by induction on n. 

n * 1 : S — 11 and the proposition is trivially true.

If true for n: Then, since S is isomomhic to a subprmm of S -----------  n & r n+1’
closure under counting modulo sn+1 implies closure under counting modulo 

Sn and therefore, by the inductive hypothesis, closure under counting 

modulo "n.

But now, by lemma IV.2, we have closure under counting modulo

And this implies, by lenma IV.3, that there is closure under counting 

modulo n+‘n*l since we have started by assuming closure under counting

modulo S .n+1
End of proof of theorem IV.1.

Theorem IV.1 has the direct corollary that: 

IV.4 Corollary:

SnA" - n . Uni0
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Chapter \ Space(n,D) and counting modulo S— G------- —  n

This chapter extends the results of chapter II connecting A* and

Space(^.O) to all other values of n.

Recall the definition of a ¿(j-function and define

Definition: The S^Aq —functions are the functions with graph in 
K

SnAo and values bounded by a polynomial in the arguments.

The nAg-functions are defined similarly.

As another simple corollary to theorem IV.1 we have:

V.2 Corollary: The class of S^Ag-functions is identical with the class 

of nnAg-functions.

And we can prove a result analogous to fact II.9:

V. 3 Facts:

(i) If A C  K  q, A € S A* and f ( x .... x ),...,f (x ,...,x ) aren l l m q i m
S An-functions n w

then {(x .... x ) : (f (x .... ,x ),... ,f ( x .....x )) € A} fe S A?*’ .1 m 1 1  di q 1 m n u
(ii) The S^Ag-functions are closed under composition.

Proof: Similar to the proof of fact II.9.

Now we can go on to link these classes of functions with the space 

complexity classes of SRM's.

V. A Theorem:

Space(n.D) is exactly the class of S Ag-functions .n
Proof: The proof is very much on the lines of chapter II, which proved

the case n « 1.

(i) All S^Ag-functions are in Space(n,0).

We restrict our attention at first to functions taking values in 

<0,1).

Recall definition II.5 defining Space^(u.v) as the class of sets 

whose characteristic functions are in Space(u,v).
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Observing that n,D satisfy the conditions of lemma II.3 and applying

the arguments used in the proof of proposition II.6 we can show that

explicit transformations, boolean operations and bounded quantification 

(II). In order to show that

it merely remains to show that Space<((n,a, is closed under counting
modulo S .n

Suppose then that we have <chi> : X E ->■ S and thatn
graph(<chi>) £ Space^in^)

where $, the function encoding S takes S to the set (a } o
n n it n s, nnatural numbers.

We show first of all that for all 1 < i j m and j ,k < n the set

We know that x. the characteristic function of graph(<chi>) is in 

Space(n.D) and so we have the following SRM„ , :° Cnioo I »-i n  i

Space(rr.O) such that f » »s (such functions can easily be found).

The constant functions 0,j,k are also easily shown to be in Space(n.Q).

Space^in.o. includes =, i, graph(+) and graph(-) and is closed under

(Remember

It has registers r,t ,t
0 1 m

Space(n,O) 
and program

begin r j;

» • • • »

» • • • »x ,a ) = 0 then r :« r (r);D ir, i
_ 0 then r : « f (r);

2

n:

If t i x. then goto i.;0 l0
If r i k then t :» t «• 1; halt

1 1 ----
where { t t , . . . , t t , }  ■ S andforall 1 i  s i  n! W i s a  f une t ion in 1 n. n s
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M has program L m

(if (r , t , x )  € Y
0

the n (r :» * ( r . t . J ) ;  t
0 0

:* t ♦
0

1 ; l );

If ( r , t , x ) € Y
1

t h e n (r :■ v ( r , t , x ) ;  t
1 1

:« t ♦
1

1 ; L ) ;

If (r,t , x ) e
Y k th e n (r :« ^ ( r . t . J ) ;  tR S  + l; l );

r ! '

where Y0,,-*,Yk ^  an^ ^ ’’■"’ '̂k+l are S^Ag-functions. (And t
stands for t ,...,t. while x stands for x ,...,x .)0 K i m
There is p(5t) € n[f] such that if M starts with inputs x then

throughout M's run

t ..... t < p(5t).0 K
Also, throughout any run, 

r < n.

then

There is a machine M ’ with registers r,t .... t. ,x ,...,x and program1 1 10
L' =

(If (r.t ....tk'X)^  Y! then (r:-*'(r,t .... t ,5t);t :-t +1;l1;1 K 1 1 1 k 1 1
If (r ,t ,... ,t ,*) € Y' then (r:-i*-'(r,t ,...,t ,x);t :-t ♦l;Ll;1 K 2 2 1 k 2 2

If .... £k ’*)e Yk then (r:“*k(r,ti.....tk ,x) ;tk:-tk*l;Lj ;

r S“ *k+l(r’ £].... ^.*>3
where Y|,...,Yk 6 S^Aq* an^ ♦ j * • • • j are S^Ag-functions, such that

M' is equivalent to M in the following sense.

For a given input x ,...,x , the (finite) sequence of increases in 1 “
t ,...,tk executed by M' and the sequence of increases in these regist­

ers executed by M will be one and the same. M of course can also exec­

ute increases in t̂  but these are ignored in this comparison.

Furthermore if we take an element of this sequence, which is an exec­

ution performed by both machines at some point in their respective runs.
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then at the time of this execution the value of r will be the same in 

both machines. Also upon halting the value of r will be the same for 

both.

Proof: (i.e. derivation of V' ,Y' )

As in the proof of lemma II.10 we first find a function f (an

snAC-function) such that, for all r,t .... t. ,x ,...,x occurring in a1 k i m
computation, t , t »• • • »t. ,x

1 k 1 ,x ) is the least value of t such

that (r,t .... t , x .....x ) t Y .0 K 1 m o
However this is not so straightforward as before for we really mean

the least value of t reached by repeated executions of0
t • “ ^ (t,t i • * * 11, ,x , • • .,x ) i t0 0 R 1 m o t ♦ 1;o

starting with t = 0"
0

and so we must take the changes in r into account as well.

Observe firstly that because, in computations, r is bounded by n

we can, in practice, think of ^ as defining a function
0

m+k+1 ng : IN -► n

where for 0 S i < n

(g(t ,...,t.,x ,•••,x ))(i) 0 K i m
(i,t ,...,t, , x .... x ) if this is < n0 0 k l m

0 otherwise.

and it is easy to see that, because ^ is an S^ig-function, g has an 

S A0 graph.

Suppress the variables t .... t. ........x for the time being.
1 R 1 m

For all t^f- , g(t ) : jj -* j\ and tells us the effect of

r (r,t ).0 0
Therefore, for all y e * ; ,

Sigma^(y) - g(y-l) g(y-2) ... g(l) g(0) 

tells us the effect on r of executing 

r

y times starting with

* (r,t ); t0 0 0 t ♦ 1;o
t “ 0, whatever the value of r we start with mav0
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be, as long as v (r,t ) < n for all t < y.
G O  o

If r = w when we start, then the value in the work-register as 

is increased to y will be 

(Sigma^(y))(w).

Thus if we start from r = w and t =0, the lowest value of
0

for which (r.t ) 4 Y will be the least y such that0 0
((Sigma-(y))(w),y) <  Y .

tC

t
0

That is to say we can define f by

f(r,t ,...,t ,x ,...,x ) = y if and only if 1 * j m 1

((((Sigma1(y))(r),y) € Y /\ \/z < y (( (Sigma1 (z)) (r) ,z) £  Y ))8 0 R o
a  (y < p(*1, - - - , x B)J)

V  [\/z < p(x j.... xm) (((Sigma^(z)) (r) ,z) € Y A  y - 0)) .

Remember that the stacks of M, in particular t , are bounded by
0

p(x ,...,x ). Also we may assume that Sigma1(0) = id.1 m g —
Now graph(g) C- S A® implies graphfSigma1) £ S A?* because S A o'" n g n n u

is the same thing as "nA* by corollary IV.A. Therefore, since the 

values of Sigma^ are drawn from a finite set with n! elements, 

^(f,t,...,t,,x ,••«, x ) ! ((Si gma1 (t )) (r) ,t ) £ Y } € S An •
0 k 1 “ g 0 0 0 n
Thus, by the closure properties of snAo • 

graph(f) fe S ^ f  .

And so, because f is bounded by p(x ,...,x ), f is an S An-1 m n u
function.

To conclude we can, by facts V.3, find an S^A*' set Y!, for
1 f j i k, such that (r.t ... t. ........x ) € Y! if and only if1 k 1 m j
((Sigma'(f(r,t ,...,t ,*)))(r),f(r,t .... t.,x),t ,...,t ,i)C Y.
and Yj will be the set required for M ’.

Meanwhile, resuming suppression of t .... t ,x »•••#* . define1 k i m

♦j H-j ( (Sigraa^(f (r) ) ) (r) ,f (r) )
and for 1 i j { k+1, will be the S AQ-functions we want.
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End of proof of lemma V.5.

Using lemma V.5 we can go on to prove the counterpart of proposition 

11.11, that is that:

All machines with work-register r bounded by n, stack registers

c,.... tv bounded by p(x ,...,x ), where x .....x are the input regis-C j m  i m  r e »
ters, and program which is of the form given in lemma V.6 and has S Ar,n u
conditions and assignments, compute S An-functions.n

Finally we know, by lemma II.8, that for any SRM running in bounds 

(n,0) there is an equivalent machine of the type required for lemma V.6.

And so we conclude that all functions in Space(njl) are S A0-functions. 

End of proof of theorem V.4.

Also, because (as is easily shown) all SnA0-functions taking values 

in (0,1) are characteristic functions of S Ac sets, we have the simple 

V. 6 Corollary:
INSpace.(njD) = S An .* _  n “

Finally, because of examples III.14 (ii) and (iii) , we have 

V .7 Corollary:

Space(4^0) - Space(3,P) .

This is somewhat surprising since we have no reason to suppose e.g. 

that Space(2J3) « Space0,0) or that Space (4^0) * Space(_5,D).

'JOHN RYLANP
UNIVERSITY 
LIBRAKY . 
MANCHESTER



52.

End of proof of lemma V.5.

Using lemma V.5 we can go on to prove the counterpart of proposition 

11.11, that is that:

All machines with work-register r bounded by n, stack registers 

tC," ' ,tk bounded by P(x^ ----»xm »̂ where x .....x^ are the input regis­

ters, and program which is of the form given in lemma V.6 and has S Lr
n 0

conditions and assignments, compute S An-functions.n
Finally we know, by lemma II.8, that for any SRX running in bounds

(n.O) there is an equivalent machine of the type required for lemma V.6.

And so we conclude that all functions in Space(nJO) are S Ar-functions~ n u
End of proof of theorem V.4.

Also, because (as is easily shown) all S^-functions taking values

in (0.1) are characteristic functions of S A* sets, we have the simple

V.6 Corollary:

Space (n,D) = S A?' .— n
Finally, because of examples III.14 (ii) and (iii), we have 

V . 7 Corollary:

Space(i>,D) « SpaceO.D).

This is somewhat surprising since we have no reason to suppose e.g. 

that Space(2^JD) « SpaceO.O) or that Space(^.O) - Space(_5,D).

¡JOHN RYLANI 
UNIVERSITY 
LIBRARY ; 
MANCHESTER
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Chapter VI MORi NATURAL IDLAS OF COVNT INC

In chapter V we have succeeded in linking certain, quite natural 

complexity classes of Bel'tyukov stack register machines with certain 

classes of sets of numbers. But we could now be forgiven for asking 

ourselves how* natural these latter classes are. There are two aspects to 

this.
INFirstly the notation XAq which we have used does appear to have 

some meaning to it. There does seem to be a connection between X and 

XA0' . The relationship between two classes Xif' and YA* seems to 

depend closely on the relationship between X and Y (Theorems III.9 and 

111.10). This is particularly true where X and Y are groups: all

inclusions G a J1' CZ 0 a J" (G ,G groups) which are at present known1 2 1 2

can be reduced to applications of theorems III.9 and III. 10. That we have 

a family of classes which appears to tie in so closely with existing 

mathematical objects suggests that the members of this family do indeed 

possess some mathematical substance.

On the other hand, the crucial notion - that of "closure under 

counting modulo X" (definition III.7) - is perhaps rather strained. The

terminology suggests closure under some set operation and indeed clearly 

that operation must be the derivation of graph(Sigma*^^ _ ) from 

graph(<chi>). However the connection between these two sets, considered 

simply as sets rather than in terms of the functions whose graphs they are, 

is so oblique that it wasn't deemed worthwhile to define "counting modulo 

X" in its own right. Furthermore the operation is not one that can be 

applied to all sets of numbers. It only works for graphs of particular 

kinds of function. (We could extend the operations so as to work for all 

sets but this would be highly artificial.) Finally for "counting modulo X" 

to be well defined we would need to tie ourselves down to a particular



function $ vith which to code X. One of the more important aspects of 

"closure under counting modulo X" was that the actual coding used was 

irrelevant.

Now it may be that for all appropriate sets X (or perhaps at least 

for all groups) there is a set operation which applies naturally and simply 

to all sets and is such that the closure of Aq' with respect to it brings 

us back to XAq* * . But until we know more we may consider the most interes­

ting classes XA?' to be those for which such an operation is already 

known.

This is in fact the case for X = 72. (nil).n
Counting modulo

VI. 1 De f ini t ion : Let A C  I' and suppose that 

A {a ,a ,a ,...}0 1 2
Then we define A 

A(n)

(n)
where a < a < a < . .. .0 1 2

by

{a ,a ,a ,...}0 n
• .(n) • th , _ , .i.e. A contains every n element of A.

Before generalising VI.1 we make

VI.2 Def inition: For any m i l ,  B C  1 f i f m, x ,..., x . , x . +1,...

...,x € , B*(x .... x. ,,x.^ ,...,x ) is defined to be the setm i l— l l+l m
(x : (x .... x. ,,x,x. ,...,x ) f B).I 1— 1 i+l m

We combine definitions VI.1 and VI.2 to produce:

VI.3 Definition: For n,m i 1, A C  *<' m , 1 f i f m, A*’^n  ̂C  K m is

defined to be the set such that for all x ,...,x. , ,x. x €■ K1 i“ l l+l m
(Al.<n ))i(x x ,x. .... x ) - (AJ(x .... . , *x. ....... ))(n).1 i—l i+l m i 1“1 l+l m
Certainly VI.1 gives a natural set operation and I believe that VI.3 

provides the obvious generalisation of it.

VI.A Def inition: A class C  of sets of numbers is said to be closed 

under *-countinp modulo n if for all m i l ,  for all A C  for all

1 i i i m
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A t C  implies Ai*(n)c t".

We can’t call this "closure under counting modulo n" for we have used 

up that terminology already in definition III.2. However we now go on to 

show that in most cases the two ideas are the same and therefore also, by 

example III.8, the same as "closure under counting modulo .

VI. 5 Theorem: If

C is a class of sets of numbers and is closed under explicit

transformations and boolean operations and contains ■ 

then, for n i l ,

is closed under *-counting modulo n (definition VI.A) 

if and only if

"C is closed under counting modulo n (definition III.2).

Proof:

(i) Counting modulo n implies ‘-counting modulo n.

Suppose C  is closed under counting modulo n. Let A C  for some

m i l .  Then for all 1 i i £ m, tZ for if is the summationA
function defined near the beginning of chapter III, it is easy to see that

(x ,...,x ) € A*’^  iff .... . ) = 0  mod n,m a i m
that is to say

Ai,(n) _ {(x x ; (x ,...,x ,0) e graphic* mod n)}1 m j m A
(ii) ‘-counting modulo n implies counting modulo n.

First we prove two lemmas.

VI.6 Lemma: Let C  be closed under explicit transformations and boolean 

operations and contain «. Let m,n i 1. Let A C  INm . Then for all 

0 i j ( n, 1 i i f m,

A f t  implies there exists B « C  such that for all x ,...,x, , ,1 l-l
x. ,...,x € U  , for all x. i n-1,1+ i m 1

c*t.x ,...,x ) = 0 mod n iff o*(x ,...,x ) : j mod n.d 1 in a  j m
Proof:
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The case j « 0 holds trivially.

For j > 0 the idea of the proof is best seen by first looking at the 

case that m * 1, i.e. A is a 1-ary set. Necessarily i ■ 1.

For x i n-1, B is identical to A, that is

B n (x : x i n-1) = A n (x : x i n-1).1 1  1 1
The set {x : x 5 n-l}£ £  because it is the complement of a finite set.

1 1
For B f) {x : x < n-1} we replace A n {x : x < n-1} by a subset1 1  1 1

of {x^ : x^ < n-1} of appropriate size.

In the current case o'(n-1) is a constant since A is 1-ary and nowA
(x : x < (o'(n-1) - i) mod n} C t  will be a set of the size required.1 1 A
(Recall that for x £ 7L , x mod n is the number 0 f y i n such that 

x = y mod n .)

If we now define

B = (x : x < (o' (n-1) - j) mod n} U (a  o  (x : x >. n-1}) C  £  1 1 A 1 1
then for all x i n-1,1

o'(x ) = o'(x ) - j modulo n,B 1 A j
and B is the set we want.

We can now move on to the general case m i l .

As in the 1-ary case, from A we derive a set B which is identical

for x^ i n-1 but such that

°b (Xj.... xi-i *n“l »xi+1.....XD1) - °A<x1,” *,xi-i,n-1,xi ♦ l’’ ,x ) - j mod n .

In the general case we have the extra problem that we must be able to

do this uniformly - i.e. for all (possible) values of x^,....x._j>x^+1,

...,x simultaneously, m
First we define Qm>1 by

((* ,x ) : x. = O v x .  = l v. ..  Vx. “ u-1}. m i  i i
Qm,1£ iT because it is derived from “ using explicit transformations and 

boolean operations.

If we now look at the set
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A n l IN 1,1 f C  ,
we see that we have isolated the part of A which we wish to leave 

unchanged, i.e. for which x. >. n-1.

Observe also that

cQTna i  <xi .......
Thus if we can replace

A n c i

.... \ )

by
m, l

where s - (oj^x^.... *i-l,n-1,xi+i’‘‘',xm^ ” ^  mod n>
we will have what we need for the rest of B.

However we cannot construct B directly but must proceed by cases

according to the value of oHx , ,n-l ,x. , ,... ,x ).A i i—1 l+l m
If for given 0 f y < n we can isolate the set

RA>1 = {(x .... x ) : oHx .... x. ,n-l,x. . .,x ) = y}y i m A i i“ l l + l m
then for these values of x . ...,x. .......... . such thatl i~l l + l in

(x .... X. ,n-l,x. .... X ) - y,A j l“l l+l m
the part of B we still need is 

RA, i n  Q?** a -y (y-j)modn
We obtain RA, i

For 0 f w f n-2 define P

as follows.
A.i by

PA,i- {(x , w 1
* x ) • (x i' • • »x* . »^»x. | ,x ) C A } •m i i l  i+l m

PA^* £ C  by closure under explicit transformations.

You will see that (as for RA ’*) membership of PAfl does noty w
depend on the value of x.; so 3 x •((x *•••»x ) ^ P *1 ) if and only if1 1 j ID W

v xi((xj.... xm> e pC > •
Now for each of the 2n 1 sets Z C  {0,1,... ,n~l} define

pA i  .  ( n p A; i ) n ( n
wcZ win-2

vil

n
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Apiiin ” x^((x^ ,x ) k rA ’*) iff \/x.((x
JT. Z  v 1 • v *  PV > -

Furthermore for all x ,...,x. . ,x. ,...,x f IN1 i - 1 i ♦ 1 m
- Z C  •> 0,1 .... ,n-l \/x. ((x , . . . ,x ) £ P ’ ))~ —  w i ] in l

and (x ,...,x )£ PA11 implies 
1 ”> z

c H x  .... x. ,n-l,x. ,...,x ) - \Z .A t 1 “  1 1 ♦  1 IT.
It should be clear that we can now define

ra>1 - u  pA;xv  i z
3 Iz|-y

Finally

)} £ CB - (A n i * “ ' ^ ) )  U ( U  <RV  «  Q^-j) mod n
Oiy<n

End of proof of lemma VI.6.

VI.7 Lemma: For n i 1, if tT is closed under explicit transformations, 

boolean operations and *—counting modulo n and contains =, then for all 

i>, l . A C » ® ,  l s i  £ m, 0 s j { n 

A € C implies

Proof:

{(x ,..•,x ) : oj(x ,...,x ) H j mod n} €  C. j m A i m

i , (n)

. . .X ) : (xi i n-1) A ( o j(x ,. . mod n) )
nr A 1 ’ * m

m
: (xi >. n-1) A (oi(X ... 

B 1

out^
0X mod n) }

z m
n  ( * -  c ; >

i- i where Q u is as in the proof of VI.6

Again the case j c 0 is trivial since

{(x .... x ) : cj(x ,...,x ) = 0  mod n} = A1 m A i m
For j i 1 we first derive the set B as in lemma VI.6 and then

U x  ,.1
- { (x I
-  Bi > ( n )

€ C.
It remains to supply the part

{(x ,...,x ) : (x. < n-1) A (oHx ,...,x ) = j mod n)}j m l A i m
Now for each Z £1 (0# 1 f... tn-2 } and P ^ 1 as in VI. 6,

(x .... x )( P*’1 implies that for w i n-2,} tn L

oifx^.... xi_1,w,xi4 .... .x^) - ] Z n  {0,1,... ,w-l} |.

Therefore, if for Z C  '0,1.... n-2) we define
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Charter VII Q-VACHINES

Chapter VI has established that closure under counting modulo is.

in most circumstances, the same as closure under a quite natural set
, INoperation. Now we ask: Is there a machine characterisation of 2Z^ ?

The answer is YES - well, at least sometimes. The proof of this forms 

the substance of chapters VII and VIII. In chapter VII we concentrate on 

the machines themselves.

To begin we must define our new machines. They are variants of the 

Bel'tyukov Stack Register Machines and were devised by Jeff Paris.

VII.1 Definition: Suppose Q = (a ,a ,...,a } C. IN .----------  1 2  s —
Q-SRM's are defined in exactly the same way as ordinary SRM's 

(definition 1.13) except that type (i) instructions are replaced by 

instructions of the form:

If ix(r,t ,...,t,,x ,. •., x )
1 0  k 1 m

then t . 1 : = t. l ♦ a ;
1

type (i) ■
If $ (r, t » > • • » t, »x » • • • »x )2 0 K 1 m

then t . 1 t.l * a ;2

If $ (r, t » • • • » t, »x »••• *x ) s o  k i m then t . 1 : = t. l + V
where G1 .t1,..., 4»1 are open LA-formulae defining s subsets of IN

1 2 s
which are mutually disjoint but whose union is the whole of IN .

k+m+2

So a Q-SRM has a work-register r, stack registers t .... t0 K
input registers x ,...,x . Programs are of the form L L ...L L r 6 i m 1 2  p p*l

and

where

L is stop! and L , L .... L each take one of the forms (i) (intned-P+1 ---^ 1 2  P
iately above), (ii) or (iii) (definition 1.13).

There is at most one type (i) instruction for each stack register 

t. and a type (Ï) instruction increasing t^ also has the effect of 

setting tj :- 0 for all j < i.

The initial configuration has the work-register and the stack regis­

ters all zero and the values of the inputs in the input registers. The
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first instruction executed is L .
1

The notion of an m-ary function being calculated by a Q-SRM with m

input registers is exactly as for an ordinary SR>! (definition 1.14). The

value of the function always ends up in the top stack t̂ .

VII.2 Definition: Again for u,v : IN ■* K , non-decreasing with

u(l),v(l) > 1, we can define Q-Space(u,v) by:

g : INm ■» IN is in Q-Space(u,v) just if there is a Q-SRM

which computes g such that throughout any run of the machine,
r < <J>U (max(x ,.1 •••V + i) for some j > 0,

and t. < l
<£> l !v (max(x ,1 ... x )m ♦ i) for all 0 ( i ( k, for some £>0

VII.3 Example : Let Q - (1,2,3}. Consider the {1,2,3 J-SRM with stack
registers t ,0 t ,ti 2 , input registers x .X1 2 and program

if 0 4 0 then t := t3 3 ♦ i;
i. if r £ X2 then t :- t3 3 ♦ 2;

if r > X2 then t :« t3 ♦ 3;3
if 0 ■=0 then t :- t2 2 ♦ l;

2. if 0 4 0 then t :* t2 2 ♦ 2;

if o 4 0 then t := t2 2 ♦ 3;
3. if r ♦ t1 * X 1 then 8. else

if 0 - 0 then t :- t0 0 + l;
4. if o 4 0 then t :- t0 0 ♦ 2;

if 0 4 0 then t :* t0 0 ♦ 3;
5. If r ♦ t ■= t

2 0
then 6. else 4.;

6. r :- t ;
0

7. If t *  t - t
1 1 1

then 1. else 1.;

8. Stop!

Here is what the machine does on input (2,1):
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r t0 t t t
3

X1 X

Initial contents of stacks. 0 0 0 0 0 2 1

Apply 1. 0 0 0 0 2 2 1

App 1 y 2. 0 0 0 1 2 2 1

Apply 3. Ko effect on stacks. Goto 4. 0 0 0 1 2 2 1

Apply 4. 0 1 0 1 2 2 1

Apply 5. Goto 6. 0 1 0 1 2 2 1

Apply 6. 1 1 0 1 2 2 1

Apply 7. Goto 1. 1 1 0 1 2 2 1

Apply 1. (t ,t ,t :« 0)0 1 2
1 0 0 0 4 2 1

Apply 2. 1 0 0 1 4 2 1

Apply 3. Goto 4. 1 0 0 1 4 2 1

Apply 4. 1 1 0 1 4 2 1

Apply 5. Goto 4. 1 1 0 1 4 2 1

Apply 4. 1 2 0 1 4 2 1

Apply 5. Goto 6. 1 2 0 1 4 2 1

Apply 6. 2 2 0 1 4 2 1

Apply 7. Goto 1. 2 2 0 1 4 2 1

Apply 1. 2 0 0 0 7 2 1

Apply 2. 2 0 0 1 7 2 1

Apply 3. Goto 8. 2 0 0 1 7 2 1

Stop! 2 0 0 1 7 2 1

The output of the machine, i.e. the final contents of stack

register t is 7.
3

In fact this machine calculates the function f where

f 2x ♦ 2 if x r x
f(x ,x ) - < 1 1 2

1 2 I 3x - x ♦ 2 if x > x .1 2  1 2
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(This is not a function of any particular significance.)

Furthermore, whatever the values of the imputs, this machine will 

always have

r f x < (max(x ,x ) ♦ 1)
1 1 2

and t ,t ,t ,t < 3(max(x ,x ) ■*■ 1)
0 1 2  3 1 2

which means that

f fr {1,2,3}-Space(id,lin)

where id is the identity function and 1 in : x i* 2x ♦ 1.

We can also prove a theorem, very similar to lemma II.3, which 

simplifies the task of showing a given function to be in Q-Space(u.v).

First for TJ. some class of functions we make:

VII.4 Definition: A Q-SRfl^ is a machine with work-register r, stack

registers t .... t, and input registers x .... x . Its program is
° o k i m

L L ...L L where L is Stop! and L .... L are each one of the
1 2  P p+1 P+i ---  1 P

following types:

Type (i)':

[ If
f1(r,t,x)
1

» g1(r,t,x)
1

then t . 1 :■ t . ♦ a ; 
i 1

! l f
'

f1(r,t,x)
2

«= g (r,t,x)
2

then t . 1 : • t . ♦ a ; 1 2

l if fi(r,t,x)s - g^(r,t,x) then t . 1 t. ♦ a ; 1 s
where f1,....f1.g1,....g1^ 3" and the conditi0"5 50 defined are at all 1 5 1 5
times of application mutually exclusive and also exhaustive.

Type (i)':

ti f(r'ti+i**,,,tk ,xi 
where f € p.

Type (ii) ’ :

, •. ., x ) 1Cl

where
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Type < i i i) ' :

If f(r,t,x) ■ g(r,t,x) then Lj else L^; 

where f.ge-'J, 1 i j,£ f p+1.

For each stack register t^, 0 i i i k, there is either one type (i)' 

instruction or one type (i)' instruction or none at all. Type (i)'/(i)* 

instructions set t̂  :• 0 for all j < i even if the value of t^ is not 

itself altered.

VII.5 Definition: For appropriate functions u and v, we define 

Q-Space^ (u,v) in the obvious way following definitions 1.14, II.2 and 

VII.2.

And now, following lemma II.3, we have 

VII.6 Theorem: Let Q be a finite set of numbers and u,v be non 

decreasing functions from numbers to numbers with u(l),v(l) i 1.

If

v(x) i x for all x e

v i.j > 0, 3k > 0. u<i>(x),u<^>(x) i u<k (x) for all x C *

Vi.j >0, 0k > 0, u<^>(v ^(x)) « u k (x) for all x é K

\f i > 0, 3k > 0, u<^>(x) 4 v k (x) for all x f K

1 € Q

then

Q-Space_ _ . . (u M K Q-Space(u,v) ,v) = Q-Space(u,v).

Proof : Similar to that of lemma II.3. Showing inclusion from right to 

left is trivial; the hard part is to show the opposite inclusion.

First observe that U  Q implies that Q-SRM's are at least as power­

ful as ordinary SRM's for type (ii)/(iii) instructions are the same in both 

cases and we can change a type (i) instruction

t. :« t . ♦ 1 ;i l
into the type (i) instruction
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1. I f f !  •  g l t h e n  2.  e l s e 3 . ;
t : * t  ♦  1;-1 - i  *

3. I f f 1 * e 1 t he n  4.  e l s e2 2 5.  ;
4. t  ^“ £. t _ 2 ♦  1;

2 s - 3 . I f f 1 , = g 1 t he n  2 s - 2  s-1 ' s — 1 . e l s e  2 s - l . ;
2 s - 2 . C- ( s - 1) ‘ - ( s - l )  + 1;

! I£ t  , 4 0 t h e n  t .  :* t .  -1 i i + V

2 s - l . I f« ( t  , -  0)  A ( t  ,  i 0) t h e n  t .  : « t .  ♦  a , ;  1 1 2

1l i f ( t - l  * 0 ) A . . . A ( t _ ( s _ l ) * 0)  t hen  t .  :* t .i i
The effect of all this will be as required and:

(i) As we have seen lines 2.,4..... 2s-2. are equivalent to type (i)

Q-SRM instructions.
(ii) Since 2s-l. sets t_( s ) ^,...,t_. 0, whenever we encounter the

block afresh t ,  t , <= 0. Therefore these registers never hold-(s-1) -1
a value greater than 1. Sow since the block only comes into play if the 

old machine would definitely have been about to execute the line that has 

been replaced, and this means that t^ must become non-zero. Therefore 

since a non-zero t. does so, these new stack registers must satisfy 

whatever space bounds are in force.

Thus we have the right kind of machine running in the right space 

bounds.

If 0 (  Q then there is in fact no problem for we can assume without

loss of generality that ag * 0. It is easy to see that when the

"t. :« t. ♦ a " comes to be executed then all the new stack registers arei i s
still 0, so there is no trouble in satisfying any bounds.

End of proof of theorem VI1.6.

Notice that having 0 € Q makes very little difference at all and
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therefore the Q’s that wt encounter will not include 0. The various 

theorems would still hold if we added it in.

VII.7 Corollary : For appropriate Q 3  1,

Q"SPaceQ-Space(i,0)(i ’0) ‘ Q-Space(l,0)
where 1 : x •* 1 and O  : x -*2x*l as before.

Proof : (1 ,DI satisfy the conditions of theorem VII.6.
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Chapter VIII •l,n*l -Space ( 1 .O an.-1 countinr n- Julo Z  ,----- ----i— ----- --------------- ------------ r..

In this chapter we Rive a machine characterization of 2 for

certain numbers n, namely

Our main result (theorem VII1.16) is that the class of Z.^,L:-functions 

is precisely {1,n*l -Space(1^0).

for any m having the same prime factors as n!. In other words we 

characterize 2  A^ for any m such thatIT:

Vlil.l Definition: For all n C U  , the 2  Ar-functions are the functions

arguments.

VIII.2 Definition: For Q a finite subset of K  and non-decreasing 

functions u,v : -* 1>' with u(l),v(l) i 1,

Q-Space^(u.v) is defined to be the class of sets whose characteristic 

functions lie in Q-Space(u.v).

VIII.3 Facts: For all n £ ,

(i) If A C   ̂ some q € V  , A t  , and f ,f ,...,fqSl< * *

are 2 Ar-functions n u

This means however that 2 Ar (and the 2 Ar-functions) are charact-n u n
erized for other values of n as well. For by theorem III.10

( p prime and pm) implies (q m for all primes q i p).

with graph in 2 Aq and with values bounded by some polynomial in the

then

x ) sm x ) )  t  A) e  2  A?* .it. n
(ii) The Z^AQ-functions are closed under composition.

Proof: Very easy.

Now we present a resu It analogous to the first part of theorem V.4.
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VI II. U Proposit ion : For all n t T- ,

Z C. { 1 ,n+l '-Space .( 1 JJ] ■n . — * —
Proof: Given corollary Vil.7 it is easy to shov, in the manner of propos­

itions II.4 and II.6, that {1,n+1}-Space(1_,D> is closed under composition 

and that {1 ,n+l J-Space* ( 1_,D ) includes = , i, graph(+) and graph(-) 

and is closed under explicit transformations, boolean operations and 

bounded quantification (II).

It remains to show that {1 ,n+l}-SpaceA U,D) is closed under counting

modulo Z  ,.n .
By theorem III.10 this is equivalent to closure under counting modulo

all of Z  , Z , , Z .1 2 n
This in turn, as we have seen in theorem VI.5, is equivalent to closure 

under ‘-counting modulo all of 2,3,...,n.

We show first closure under ‘-counting modulo n. The method used 

can be extended, as we shall see later, to ‘-counting modulos 2,...,n-l.

VIII.5 Lemma:

using more powerful machines than Q—SRM's. The obvious way is this: we

time. The second (T ) counts up until it reaches the value n-1; at the
2

next time T would ordinarily have increased, it falls back to zero and
2

{l.n+li-Space^O.O) is closed under ‘-counting modulo n.

Proof: Suppose that a set A C  is in {1 ,n+l }-Space4 U_,D). It is

best to think first how we might approach the problem of calculating A*’^

keep two running totals. The first (T^) simply counts upwards one at a

starts again. Given inputs x^,...,*^ w< 

each time we increase T , we increase T

we work in the following fashion:

T just if
1 2

. . ,x  ) €  A.m
is increased to x.

chance to increase T on that step): we accept if
2

( x .... x ) € A A  T ■ 0,1 ■ 2

(so before we have a
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otherwise we reject.

A machine that worked in this fashion would accept just if 

<x ) e A1,(n),

for at the time T is increased to a given value y it may easily be
1

seen that T stores
4L

|{z < y : (x ̂ .... x^_, ,z,x.+. £ A modulo n.

Unfortunately, so far as Q-SRM's are concerned, it is not possible to 

store these totals as separate stacks. Either increasing T^ would set

T to zero or vice versa.
2

But perhaps we can get round this difficulty by coding and T

into a single number. After all T is always less than n. How about
2

coding <T ,T > by 1 2
nT ♦ T ?1 2

Then maybe we can make a i1 »n+1 ;-SRM{ j tn+i }-Space( i , 0 )  w hlch  

calculates the characteristic function of A* ’ ̂ 3 by holding to the 

specification that:

if, at any stage of the computation, the top stack holds value T

then

¡{z < [T/n] : (x;.... *i-i A)| 1

The machine accepts just in case (x^.... x^) f A and the top stack at

some time holds the value nx..

A moment's thought will show that during a run of the machine we will 

want to be able to choose between increasing T by 

1, n or n+1

depending on whether (x ,... , x j  ,T,x . + J, •. • »xm) ^ A an<̂  on va^ue °* 

T mod n.
We could obviously accomplish this with a 4 1,n,n*l}~SRM but with a 

{1 ,n*l }-SR>i however it does not seem possible.

And so we abandon this particular coding but not the idea itself. It
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is possible to find a somewhat more complicated coding which can be made to

First there is a number N > n.

Secondly a set D of numbers all distinct modulo N.

Within that set D a subset E = <e ,...,e } (it is usually0 n-1
convenient that e =0).0

Lastly a function q : (D\E) ■» (l,n+l).

These must all fit together in such a way that

(i) If we start from e^ (0 i j f n-1) and to start with add 1. but from 

then onward add successively q(e^ + 1), qie^ ♦ 1 ♦ q(e^ ♦ 1)) and so on, 

so that we hop from number to number by adding q(x) when we reach x D, 

then the first number we reach outside D will be N ♦ e ..

(ii) If at the first step we add n+1 to e^ rather than 1, and then 

carry on as before according to q, then the first number we reach outside

D is N + e . J♦ 1 (°r N ♦ e if0
j - n - 1) •

For instance: Suppose n ■ 5. Let N - 50 and list D as

0 1 7 13 19 25 26 32 38 44

5 6 12 18 24 30 31 37 43 49

10 11 17 23 29 35 36 42 48 54

15 16 22 28 34 40 41 47 53 59

20 21 27 33 39 45 46 52 58 64.

Def ine e . * J 5j for 0 f j f n-1 • So E - (0,5, 10,15, 20).

q is the function that takes us along rows, e-g- q ( 1 ) - 6,

Also q(44) - q(49) - q(54) - q(59) - q(64) - 6.

Do N, D, E and q fit together in the right way?

Well, if we start from e.g. e - 10, then adding 1 takes us to 11.2
q(11) = 6, which brings us to 17 and thence to 23, 29, 35, 36, 42, 48, 54

and finally to 60 €  D. 60 - 50 ♦ 10 - N ♦ e as desired.

If on the other hand we start from e - 10 and make our first jump
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t rather than 1 then we will follow the sequence

16, 22, 28, 34, 40, 41, 47, 53, 59, 65.

Note also the case for e = 2 0  where if we make our first jump 6 we 

follow the sequence 26, 32, 38, 44, 50 = N ♦ eQ.

It isn't hard to see that N, D, E and q do indeed work in the way 

we specified.

What now will be the coding we derive from such a set up and how will 

it help us construct machines?

We begin by coding pairs of elements of IN and of D. <x,d> is 

coded by Nx ♦ d. This coding is well defined because all elements of D 

are distinct modulo N.

For y C IN we define y^ to be that d c D such that

start from y = 0, and move through the natural numbers by adding q(y) to

Given the collective properties of N, D, E and q it should be

clear that if, for given w € and 0 f j f n—1, we ever reach

wN ♦ e .J
then the least number z encountered such that a(z) “ w ♦ 1 is

y : d modulo N

and we define a(y) to be

if y i yD

[ 0 otherwise.

So y codes <a(y), y°> for all but a few values of y such that
Dy < y .

Fix x , • . . , X i-1,xi*l , ■ • • , X
for the moment. Imagine now that we

1 m

y if y*5 €■ D\E, and if yD € E adding 1 if (x^,...,x._j,a(y),x. + | 

.. •, x ) 4 A or n*l if ( x .... x. ,a(y),x. ,...,x )€ A.m x a. uj

,...,x. 1 • • •

and

(w ♦ 1 )N ♦ ê  

(w ♦ 1)N ♦ e.(j* )m
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This fact provides us in turn with an inductive proof that if we start

iron y * 0 * 0*N + e, and proceed as specified, then for all w t K  , if

- is the first number encountered such that z • w then in fact z * *w,e >

where s - oj(x ,...,x. ,w,x...... x ) mod n.A j i-l i+l m
v f A*’ just if this first number encountered is wN « wN + eJ 0

and (Xt i • * - »x^_ j + l , • • • * ^

Let's now use this to construct a machine.

Since D is a finite set, yD and a(y) are both ¿(¡-functions and 

therefore, by theorem 11.13, both in Space(_l_,D) * *. 1 .’—Space (_1_,D , which is 

clearly a subset of {1,n+l}-SpaceO , D ) . Also, because {1,n+l}-SpaceO f3) 

is closed under composition, the set A defined by

A * { ( x .... xffi) : (x ,....Xi_1,a(xi),xi+1,...,xin) € A

is in {l,n+l}-Space<kO,D). Also the set S C  D E defined by 

d e S iff q(d) » n+1

is a finite set and therefore in {1,n+lJ-Space^U.O).

Consider now the following set:

K - {(x .... . ) : i(x € A a  V < d s xi mod N)) V  { V  <d = ximod N)) }*1 m 1 m d£E _ d£S
K (1,n+lj-Space^O ,0) for it is obtained from A and the equivalence 

relation modulo N (which is in L? ) by explicit transformations and 

boolean operations. So the characteristic function (xR) of this set is in 

{1,n+l}-SpaceU JO). As are the constant functions 0,1 and N, multiplic­

ation and > , the characteristic function of A.

The following is therefore an SRM{j>n+i}-SpaceO..*0’ 11 haS inpUt reglst'
ers x .... x and stack registers t ,t . The program is:

1 m 0 1
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1. If a (t ) = then 4. else 4. ;

•y
1 If Xv (x K ].... xi-l,tc,xif:’" ‘,Xr.) " 1 then t :» t ♦ 1;0 0
l If Xv (xK 1.... Xi-!,t0,Xifl” " ,Xm ) ' ° then t := t ♦ n+10 0

3. If 0 - 0 then 1. else 1. ;

A. If t *= N-C
x. then 5. else 6. ;l

5. If xA (xit...,x ) = 0  then 7. else 6. m >

6. t 1;1
7. Stop!

This machine also happens to compute the characteristic function of

Ai’(n).

First observe that if tD e DxE then line 2. will always gi>

t :« t0 0
♦ q(tD): for we add 1 if ■•, X. ,,t ,x. »...,x ) * i~l o i+l m

i.e. if tD *  S . D.and so q(t ) = l; and we add n+1 if t € S, i.e

q(tD) - n*l.

If tD * E then we add 1 if (x ,.1 ■ ■ ,Xi-l ,*(tjj) ,Xi+l.... xm}

and n+1 if (x ,.1 '■,xi-!,a(t0) ,Xi+ l* *”",Xm )

K,

Therefore if we keep repeating line 2. we will find, as we saw above, 

:hat (x ...,x ) i  just if the first value of t encountered

such that aU^) “ xj is in fact N ‘xi and (Xj.... Xm) € A ‘ ThlS 1S
precisely the circumstance in which our machine accepts (i.e. produces

output t » 0).
Thus A i,(n) € {l,n-H}-Space<[a,D) by corollary VII.7.

However before we declare this proof at an end it remains of course 

to show that we can always find suitable number N, suitable sets D and 

E and suitable function q. We have shown this is possible for n - 5, we 

must now extend this. We proceed in exactly the same way for any n i l .  

First for given n define a. - (i-l)(n*l) * 1 for 1 i i i n-1

ind define a “0 n-l0. So a ■ a • ••••0 1
is the same as
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that is to say
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For O f  x i 2n-l

q(rn_ i(x)) “ n+1

which will take r ,(x) to r (n ♦ x). n-1
It is left to the reader to convince themselves that N, D, E and q 

will work together in the desired way.

End of proof of lemma VIII.5.

VI11.6 Lemma:

{1,n+lJ-Space^i1,Q) is closed under ‘-counting modulo m for all

1 f m < n.

Proof: An examination of the proof of lemma VIII.5 should convince the

reader that in order to show closure for a given m it suffices to find a

number N' > n, a set D ’ C IN such that |d '| - n ’ and all the elements

of D' are distinct modulo N', a subset E' - {e\0
... ,e' ,} of D' andID- 1

a function q ’ : (D'^-E') - {l,n+l}, which four work together in such a 

way that
(i) If, for 0 f j f m-1, we start from e^ and first add 1 and there­

after add q'(x) whenever we reach x ( D' then the first number reached 

outside D ’ is N' ♦ e^.

(ii) If we do the same but add n+1 at the beginning instead of 1, we

eventually reach N' ♦ e(j+1) ^  m -

Well in fact given N, D, E and q which work for n it is not too

difficult to derive N', D', E', q' working for m.

For j f K  define

D. - (x : (x - jN) € D).
J

(In this proof N, D, E and q will be as in the proof of lemma VIII.5.)

For m < n define

N' m (n-m+l)N

D' m D u D u ... u D
0 1 n

and E' by e' - e ..... e'0 0 m
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Finally define q' as follows:

On D = D it is exactly
P

the same as q.

For Dj, 1 ! j i n-m.

| q(d -jN) if (d - jN)« D\E

q'(d) = | 1 if (d - jN)f E ̂  {em+j.

[ n+1 if (d - jN) - e ^ .

And now

(i) Consider what happens if we start at ej =

and then move through D' according to q '.

On D q' is the same as q, so the first number we reach outside
0

D will be N + e.. Since j £ m-1, q'(N+e.) = 1 and we now move through
0 J J

D exactly as we did through D , eventually reaching 2N + e.. Proceed-
1 0 J

ing in this way we eventually reach (n-m+l)N ♦ “ N' ♦ ej as desired,

(ii) So what happens when we add n+1 rather than 1 when we start from 

e' = e 9 Take the case 0 s j i m-2 first. Again, because q' is the
j j ‘
same as q for D we eventually reach N + e. and now as we have 

0 J
already seen this will lead in the end to N' + e^+1 - N ’ + e^+j as desir­

ed.
This leaves the case j * m — 1 to deal with. This time after leav

ing D we arrive at N + e . 
0 “

Now then N ♦ e - N * e m m e and so
ra+ 1 - 1

q ' (N ♦ e ) * n+1.1 m
Thereafter in D , q' behaves like q behaves on D. Therefore we will 

eventually reach 2N + e . Once again 

q'(2N ♦ e^,) - "+1

and the process continues through ..... eventually leading to

(n-m+l)N + e(m+n-m) mod n
(n-ro+l)N + e - N' ♦ e' as desired.

0 0
End of proof of lemma VIII.6.

Lemmas VIII. 5 and VIII.6 are all that remained to be shown to prove
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proposition VII.A.

End of proof of proposition VII.4.

Proposition VII.4 corresponds to the first part of theoreir. Y.4. Now 

we have results akin to those in, or used in, the second part of that 

theorem.

We first consider some subaonoids of nn and derive some results like 

those of chapter IV.

VIII.7 Definition: R is defined to be the subset of nn comprising----------  n
those functions f : n ■* jj such that for all 0 i i S n

f(i*l) z f(i) ♦ 1 modulo n

and f(0) = f(n-l) ♦ 1 modulo n.

We can think of such functions as rotations of an n-pon, so in fact

R a Z . n n
VIII.8 Definition: T is defined to be the smallest subnonoid of nn----------  n
containing the non-decreasing functions (i.e. functions f : Ji •* JJ such

that for all 0 f i,j f n, i i j implies f(i) i f(j)) and Rn>

The functions in T can be thought of as cyclically increasing, n
That is: if we start from f(0) and move to f(l), f(2) etc. by moving 

clockwise around the circle

n-1
n-2

78

then although we may in time come back to f(0) we never go beyond it for 

a second time.

For instance if n * 5 then the function f such that 

f(0) - 3, f(l) - 4, f(2) ■ 4, f(3) ■ o, f(4) - 3

is in T t.
We now have a result very similar to lenma IV.3 but with Tn rather
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than nn and R instead of S .n n
VIII.9 Lemma: Given = , <, explicit transformations, boolean operations

and bounded quantification (I), for n l 2 closure under counting modulo

R and closure under counting modulo (T \  R ) together imply closure n n n
under counting modulo T .

Proof: After observing that (T ''■* R^) is indeed closed under composition

and that R is precisely the submonoid of one-one functions of T , the n *>
proof of lemma IV.3 carries over directly to the present theorem.

This is followed, not surprisingly, by an analogue of lemma IV.2.

VIII.10 Lemma: Given =, graph(sue), explicit transformations, boolean 

operations and bounded quantification (I), for n i l  closure under 

counting modulo implies closure under counting modulo (Tn+, \ R n+i>.

Proof: Again very much the same as for lemma IV.2. If we observe that the 

functions g : (n+1) -*■ jj and g : JJ ■* (n+1) defined in that earlier 

proof are non-decreasing then all we need to know for that proof to carry 

over is that for any such ĝ  and g and any f €. Tn+1>

* V
It suffices to know that this holds in two special cases:

(i) For non-decreasing functions f of ‘n+1 (this is easy to see).

(ii) For any element f of Rn+. (and again a moment’s consideration 

should convince the reader that this is so).

The proof of lemna IV.2 can now be applied with Tn substituted for

nn and R for S throughout, n n
We can now prove that:

VIII.11 Lemma: Given -, <, graph(suc), explicit transformations, 

boolean operations and bounded quantification (I), for n i l  closure 

under counting modulo Z^, implies closure under counting modulo Tn>

Proof: By induction on n.

n « 1 is trivial.
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If true for n then closure under counting modulo implies closure

under counting modulo 2^, and under counting modulo From the

first ve deduce, via the inductive hypothesis, closure under counting 

modulo T and from the second, since ^n+- “ 2 n+.,closure under count­

ing modulo , •n+1
Then by lemma VIII.10 ve deduce closure under counting modulo

(T \  R ) and from there, using lemma VIII.9 we deduce closure under 
n+1 n+i

counting modulo T . Q.E.D.n* 1
This is vhat we need to show:

VIII.12 Proposition:

All elements of {1 ,n+l}-Space(1̂ ,D) are Z n ,A^-functions.

Proof: (Which is like that of lemma II.8.)

Step 1. If f £ {l,n+l}-SpaceU,0) then there is a {1 ,n+l}-SRM, 

computing f whose work register is always zero and whose stack registers 

are strictly bounded by

p(max(x , ...,x ) ♦ 1)r 1 m
where p £  *  Lxj and x ,...,xm are the input values (f is an m-ary 

function).
In exactly the same way as with lemma II.8 we can find a machine with 

the same registers and still calculating f but with program L of the

form

where

(if (t ,x)£ ev 0
then

If (t,x)€ G then

If (t,x)€Ok then

e ....,©. « a?0 K

(

(

(

If (t,x)£ « 

If (t,i)

If (t ,x)£ 4 

If (t,x)4i

If (t ,x)£ « 

If (t ,x) 4-

then t J s t ♦ 1
; l) ;0 0 0

then t : * t ♦ n+1
0 0 0

then t • s t ♦ i
* l) ;1 1 1

then t • S t •f n+1
1 1 1

then t, ; b t. ♦ i
f ; l))k k k

k then ck 2 B rk ■f n*l

£ Ac* are the originalwhile
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conditions in the type (i) instructions of the •1,n+l)-SRM computing f.

(And t represents t ,...,t, while y. represents x .) There is0 k 1 B
effectively no work-register to worry about.

Step 2. (Which is like lemma V.6 or lemma 11.10.)

Programs of the form just given, with G ,...,G. ,4 £ 2  ,K 0 K n *
can be replaced by similar prop.rans which calculate the same function in 

the same bounds and still have conditions but ones where t is

not mentioned.

Because setting t^ :■ t. ♦ 1 or t^ + n+1 means setting t̂  := 0 

for all j < i, this again comes down to showing that a function f

defined in a certain way is a Z  , ¿(¡-function. To define f we first

need a set F C  IN.k+m+1

For given t ,.. • ’ Ck ,X i.... Xm
(i) (0,t 1 *.•,Ck ,Xi ** • • » O  £  rr *td o
(ii) (y,t

1 * 1
,...,x ) € F implies m o

(y+l,t,. ••*tk * V ' ” Xm) e Fo lf (y»t ....
l * i

,x ) e
ID

(y+n+1 ,t ̂ .... tk ,xi.....Xm) e F0 otherwise.

(iii) Fn
contains no elements other than those given by (i) and (ii) .

Clearly F is
0

the set of values which appear in t if we
0

simply

keep on repeating the operation

f If (t,i) e t then t t ♦ 1I o 0 0
! If (t.x) 4  4 then t t ♦ n+1o o o

It can be shown that * € 2L ,Ac implies F £ Z n ,A00 n • u
To see this

we make:
m+k+1 , e•VIII.13 Definition: For * C  *>' detine

Gn+1 . j.m+k+1 „ n+ln4l by;
♦

If q.t..... tk ,x......xro£  V  and O s j f n  then

(C"^<q.t,.... tk,xi.... xB1>>(j)
is the element of (0,1.... n) equivalent modulo n+1 to the first number
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18 * 4, 19 £ 4, 20 * «, 21 +  i, 22 £ 4, 23 f 4.

Then G^(3) i6 as follows (from here on we won't usually bother to 

write in the sub- and superscripts):

For (G(3)) (0) we start at 3(n+l) 0 - 18. We must then add

n*l « 6 since 18 4 4. This brings us to 24. 24 >, 6*4 and now 

24 r 0 mod 6 implies (G(3))(0) “ 0.

For (G(3))(1) we start at 19. We then add 1 since 19c 4. This 

brings us to 20 to which we add 6 bringing us to 26 >, 6-4. 26 H 2 mod 6 

and so (G(3))(l) - 2. This also shows that (G(3))(2) « 2.

Continuing in this fashion we find that

(G(3))(3) - 3
and (G(3))(4) - (C(3))(5) - 0.

Diagrammatically G(3) is the function

As we shall see later, not all elements of n+1n+l can be obtained
n+1 . _

in such a way. However for the moment let us connect Gt ana

(a) 4 «  2  ,&? i m p l i e s  g r a p h ( G)C 2  ,A 0 •o n .
T h i s  is e a s y  t o  see s i n c e  ( s u p p r e s s i n g  t h e  v a r i a b l e s  t ^ , . . . , tfc,X j ,...

. . . , x ) m e m b e r s h i p  of g r a p h ( G )  c a n  be d e d u c e d  f r o m  the t r u t h  or f a l s i t y  of 
m

the p r o p o s i t i o n s
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(n+l)q t f , ((n+1 )q ♦ 1) ( i ((n+l)q ♦ n) f < .
0 0 0

(b) graph(Sipma*.) C z n *fir implies F € Z^.Ar '.

This follows because (suppressing t , ...,t,x , ...,x ) , for1 K 1 ®
q f r> , for all 0 i j i n + 1, 

(n+l)q ♦ j € F implies (n+1)(q+1) + (C(q))(j) €

or in other words, for all t € IN , t € F implies0 0 0
(n+l)(Pt /n+1 I ♦ 1) ♦ (G(Pt /n+1 ))(t mod n+1) € F .

* - o ~  w 0 0 o
This means, since O f  F , that0

n+1 + (G(O))(0) €  F

all

F ,0

and hence

2(n+l) + (G(1)*G(0))(0) € F ,0
and in fact for all q € Is

q(n+l) ♦ (G(q-l)»...»C(0))(0) € F ,

i. e .

q(n+l) + (Signag(q))(0) € F .

But now we can tell whether t € F from the value of0 0
x - Tt /n+ll (n+1) ♦ (Sigma^(Pt /n+lj))(0) w Q — <+ 0

and the truth or falsity of

x «  « , (x+i) e  t  r, .... <t c~1) C
(If t = x then of course t fe F and if t < x then it should beo o o o
clear that t € F .)0 0

Thus membership of F is ¿0-derivable from graph(Sigma^). There­

fore graph(Sigma^.) € z n '^c" implies F^ € z n ;A '- .

We would now like to show that

graph(G) € implies grapb(Sigma^) € 2 n ,A0 •

To do this we consider the set Tn of all elements of n+‘n+l that 

can ever be values of a function defined as in definition VIII.13. By our 

example earlier we know for instance that the function f defined by

- f(5) - 0, f(1) - f(2) - 2, f(3) ■ 3f(0) - f(4)
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is an element of T^.

If we can show, for all n 6 K  , that closure under counting modulo

Z. , implies closure under counting modulo T then we will have proved n. n
that graph(G) € implies graph(Sigma^) € as desired.

Sow, for n 1 1, T is always a strict subset of n+*n+l. In partic- n
ular the only one-one function in is the identity function id. Why

is this? Well suppose, for some 0 { j in, that 

((n-»l)q ♦ j,t ,...,tk ,x ,•••,xm) € i .

(i) If j < n this means that (if the other registers hold t t ^ . x  ,

*.a,x ) t would jump from (n+l)q + j to (n+l)q + j+1, and then, since
' it. o

i + 1 $ n we will have (suppressing t »• • • »t, ,x ,. . . tx )
j j i u*

(G(q))(j) - (G(q))(j+1)

and so G(q) is not one-one.

(ii) On the other hand if j = n then t0
j umps from (n+l)q ♦ n to

(n*l)(q+1). This forces (n+l)q t C for
0

(n+1)q *  t0
implies that

(G(q))(0) = O - (G(q))(n).

But now since 0 < n having (n*l)q f *c brings us back to case (i)

and G(q) can't have been one-one after all.

Sow let r *  * { y  e r  : y is not one-one} = r  ^ { i d } .n n
Then we have a rather simpler version of lemmas IV.3 and VIII.9 which 

says that:
VIII.1« Lemma: Given explicit transformations, boolean operations

and bounded quantification (I)*
Closure under counting modulo f* implies closure under counting

modulo T • n
Proof: Let G : *  “ ♦ Tn and assume,

Case one: For all xj+)<

C(x ''xm̂

Next observe that for all Y £ •*

for given i

...,x £ Kro
4 id • 

there is a

that:

Y € r*n such that
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because y f T* implies there is a least 0 < j { n such that j t Range(y). 

Now define i to be the function C(O) that would be produced by

0 * «, 1 * 5..... j-lf «, j f  *, j + U « ...... n C i .

Tnis pives a function that is the same as the identity function except that

>(j) * j*
But now if y* = G(x ,...,x. ,y,x. ,...,x ) where u is1”1 l + i IE

the greatest number less than x. such that G(x^,...,x._j,p,x.+^,....x^)
m

is not id then we can define G : IN ' -*• T* by

G'(x 1
x )m

f G(x ,...,x )
J 1 «
1 Y’

if G(x , • • •,x ) ^ id 1 m —
otherwise

and we will have

Sigma* « Sigma*,.

Clearly also graph(G') is derivable from graph(G) using explicit 

transformations, boolean operations and bounded quantification (I) and we 

have our result. Notice we don't need to assume any counting properties. 

Case two: For some x ,..••x^_1,xl^i’***,Xm € ^

.... xi-i,0,xi + i’" "  ,Xm ) “
This case may be reduced to case one in the same way that we dealt with 

initial segments of elements of Sn in the proof of lema It.3.

End of proof of lemma VIII.14.

We also have:
VIII.15 Lemma: Given graph(suc), explicit transformations, boolean

operations and bounded quantification (I), closure under counting modulo 

Tp implies closure under counting modulo F*.

Proof: (Similar to the proofs of lemmas IV.2 and VIII.10.)

We define

o : (n+1n * l ^  S j  - "+1n

e : (n* 1n * l \ s  1 ■* nn*l>■ n
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,'T"5 4in lenn IV.2, not * c  n«l > i  . Nov. for all f inn — n
ln*l ̂  S . ' an: • a: r - • functions. If WI>

show that for all non-decrcasing functions p : (n*l) - p and

g : p -» (n-»l) and for all > C 7* ,n
F • >• C € TT1

then the proof of leroa IV.2 can be applied to prove the current leroa.

We prove this as follows:

Cast one: > is non-decreasing.

Then g .->.g is non-decreasing and thus in by definition VIII.8.

Case two: % is not non-decreasing.

The only tine this happens is when ((n*l)q ♦ n) £ 4 giving rise to a 

function > such that y(n) - 0. In this case it will be seen that if w 

is the least 0 < j £ n such that, for all j f i £ n ((n+l)q ♦ t) £ i 

then

(i) y *■ •' l : 0 f L < u} is a non-decreasing function and

(ii) for _ i l t n, y (I) * 0.

Recall now the interpretation following definition VIII.8 and think

what g . ■•g does to the circle
2 2

n - l  0  1

n-2 2

We see that when we apply g (i.e. replace each value around the
2

circle by g applied to that value) it changes to.
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non-decreasing values 

fror iO,...,n along 

the arrow.

And sc .applyinr

nor—decreasing along the 

arrow, elsewhere zero.

And now:

non-decreasing along 

the arrow.

we can now move on to define f



present no reason to suppose



class

just

E

of functions computed (fror when Q - 1 ). But for Q * 1,2 we

pet back to the ¿'-functions.



90.

Charter IX •l.j.n*! -Space (1.0 and count, inr module ?

To conclude our dealings with Q-SR-M's we show that as well as charact­

erizing classes for which a complexity characterization had not previously 

been provided, they can also be used for classes we have already dealt 

with. Namely the classes.

Our main result (IX.4) follows in much the same way as, or rather 

builds on the methods of, the results of chapter VIII.

We make use of corollary V.2 that the class of SnA0-functions is the 

same as the class of nnAj-functions.

IX.1 Lemma: For n i 2

S b™ C  {l,2,n*l}-Space (1,0). n —
Proof: After all we have done before it is easy to see that 

{1,2,n+l}-SpaceA (1 ,D)

contains *, £, graph(♦)» graph(*) and is closed under explicit transform­

ations, boolean operations and bounded quantification (II).

It remains to show that it is closed under counting modulo S^. We 

have a somewhat circuitous route to follow before we achieve this.

Think back to the proof of lenma VIII.5 and our block of numbers D.

We described two ways of moving through D, that is: two sets of paths 

through D, and these can be represented by the two diagrams:

i.

e — ------- N +
0

e — ------- S ♦
i

• •
• •
• *
e ------- N +n-1

As before define

stack t of the machine
0

n-1n-1
. <x : (x - N-i) « D). Think now of the value in 

in lemma VIII.5 and imagine the blocks

D , D » D t a«*
0 1 2
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stretching off to infinity.

As t enters each new block the machine, in effect, decides, depcnd-0
inp on a(t )'s being in A, whether we follow diapram 1. or diapram 2.0

If a(t ) A
0

If a(t ) C A0

we follow diapram 1. 

we follow diapram 2.

(As before a(t ) is the number i such that t £ D..)0 0 J
The decision is effected by adding either 1 or n+1 to the value of

t when it hanpens that t is congruent to an element of E. The rest of
0 0

the time the amount to be added (i.e. q(t )) is determined purely by the
0

value of t mod N.
0

Clearly we can think of diagrams 1. and 2. as elements of n, 

that is: functions with domain and codomain n.

Diagram 1. is the identity function id.

Diagram 2. is a particular rotation of an n-gon, call it twist. So 

twist(0) ■= 1, twist(l) ■= 2, .... twist(n-1) - 0.

At the beginning of a calculation we start off at t “ 0 = e^ and an

alternative view is that as t moves through D it calculates twist(O)0 0
or id(0) according as (x^ ,. .. .*£_j •0,xi + 1 • • • • e A or not*

As t moves through D it again applies twist or id according 
0 1

as .... xi-i,1,xi*l.....Xm) e A or not-
And so on.

In fact if we define a function F : •n.. mIS

id if (x̂  f.
F(x • • 1 ) *1 m twist if (x^,.

then the effect of t starting from e - 0
0 u

V " ,D(X.-1)
is (suppressing X ,... ,X

1 i - r xi.i.... V to c

(F(x.-l))((F(x.-2))(... (f (1))((f (0))(0))))

(s i gmajLix .... .x^)) (0) .i.e.
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It should be clear that Sipma*(x ) ( nn rust be a rotationr i m
and that therefore Sigmai(x , ...,x ) is determined bvr ] m
(Sipna^.(x .... .x̂ )) (0). In a sense then, the major task of the machine 

constructed in lemma VIII.5 is to calculate the "summation" of a particular 

function taking values in nn.

Indeed we can start from any function F : IKn -*• {id .twist) such that 

graph(F) € {1 ,n+l J-Space^Cl ,a) . By the properties of {1 ,n+l J-Space^(1̂ ,0) 

given at the beginning of lemma VIII.5 (properties that hold indeed for 

nearly any sensible complexity class) we have A € {1 ,n+lJ-Space^Q^Q) 

where

(x ,.. . ,x ) €■ A 
1 m

iff F(x ,...,x ) = twist. 1 m ----
The machine constructed in lemma VIII.5 around this particular set A

can easily be modified so as to output Sigmal(x ,...,x ). (Recall thatr j m
nn can be coded by a finite set of numbers.)

Now F is rather restricted above but we can extend our result. F

need not take values only in {id,twist} but can be any function with

domain INm and codomain R (recall definition VIII.7: R is the groupn n
of rotations of an n-gon). This is hardly surprising since R^ £ 2^ and

closure under counting modulo 2^ is precisely what lemma VIII.5 proved,

but let's see how the machines themselves can cope with this.

Observe that any element of R is equal to the composition of exactlyn
n-1 elements of {id.twist). That is: 

...n-l . ,n-2„ . n-1 . n-2 . . . n-2  ̂ . .u— i\R = {id . id «twist..... id«twist , twist }.n —  —  ----

and

Now define

5 
5

, , D u D c * . . . o D  .def. o 1 n 2

def. {x : (x - y(n-l)N)€ 5).

And we have two ¿0-functions a and b defined by

a(x) ■ y iff x € D
y

(- 0 if no such y exists)

b(x) - y iff x C Dy (- 0 if no such y exists)
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id^ twist11 ' -1 for some j i n-1.

For G : INr ■* F ve can calculate Sigma*(x ) (0) if wt c*n v G ] m.
find a machine with stack t whose values move through blocks

0
5 , 5 , 5 , . . .
1 2 3

as follows:

For x ,...,x £ , G(x ,...,x )1 m 1 ™

The correct path through 5 is then produced by n-l-j twist 's in
i

blocks D , D . (where X « (n-l)x.), followed by j id'sx x^l x+n-z—j i

in blocks D„ , D _X+n-l-j X+n-2
Where there is a difference between the value that has to be added to

t in order to produce an id and that which produces a twist, the 
0 —

decision as to which to add rests in the first place on the value of b(t ),0
or rather of G ( x  ,...,x. ,,b(t ) ,x. x ). This will tell us the2 l — l o l^l in
general strategy for F. ,, i.e. how many id's and how many twist' s .

'*0 '
When we know what 5, . , should be, a(t ), or rather a(t ) rood n-1 willb(tQ) o 0
tell us whether we should currently be following an id path or a twist

path. In other cases the choice of the amount to be added to t depends0
purely on t mod N.0

If graph(G) € {1,n+lJ-Space^(1 ,o) this decision - which is a choice

between adding 1 to the value of t or adding n+1 - can be expressed0
as a type (i) ’ instruction of an SRM{; fn+i }-Space(1 ,□) * In this way WC
can define a machine with a register t which, as it increases, (almost)0
codes the pair

<b(t^), (Sigma*(x^.... x._j,b(t^),x.+1,....x^)!(0)>.

From here an SRM{} >n+1 }.Space(i>0) calculates the character­

istic function of graph(Sigma*) is easily derivable.

We have just shown that { 1 ,n+lJ-Space^(1_<P) is closed under counting

modulo R . i.e. modulo Z  . So we have an alternative proof of lemma n n
VIII.5.

We can now go on to generalise this method, but first there is just
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one point to make.

In the case above it happens that Sigma?;(x ,...,x ) is immediatelyG i m
determined bv ■Sigma?(x ,...,x ) (0). Even had this not been the case it ' G j  m
should however be clear that if the method works to calculate

Sigmai(x ,...,x )1 (0) for a given function G : IN™ ■* nn, then it willG i m '
also work to calculate

fsigmaj(x ,...,x ))(j) for all 0 i j f n-1.v G i m '
Rather than starting from t - e = 0 we can arrange our (i)'0 0

instruction so as to set t « e. before it does anvthing else (this is0 J
easy to do) and the resultant machine will calculate 

(Sigma£(x ,...,x ))(j).
VJ J lu

If we have machines calculating (sigma^Cx ,....x^))(j) for all

0 f j f n-1 then we will usually be able to construct one calculating the 

characteristic function of graph(Si gma*) .

Having made that point, 1 will now say that my aim is to convince the

reader that once those sets of paths, those elements of n, id and twist

had been found, the problem was as good as solved. {1,n+l}-SpaceA O  ,a)

was closed under counting modulo R just because R is the submonoidn n
of nn consisting of products (compositions) of a fixed length (n-1) of 

these two functions. (This is the same as saying that Rfl is the sub­

monoid generated by twist.) This closure did not depend on any further 

properties of R^, such as the fact that for G f Rn> G(0) determines G. 

Indeed so confident am 1 of all this being obvious to the reader that

1 will now state a theorem without any further proof.

We generalise the idea of N, D, E and q a little first.

Let Q be a finite set of numbers.

Let D be a set of numbers distinct modulo N, some N > n, and let

E - ( e .... en . ) Ç  D.0 n-1 —
Let q : D -» Q be such that, for all 0 i j f n-1, if we start at ê
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and jump according to q ve will first move outside D in jumping to 

N * for some 0 i i f n-1. Such a q corresponds to an element of 

nn. q corresponds to f £ nn if the path from e^ leads to N ♦ e»(i)

IX.2 Theorem: For Q 3

If q . •• • .qc : D ■l
fl ’••• s

- n £ n and id € { f ,. . . , f }
“ 1 s

then Q-Space^O ,D) is closed under counting modulo (the

submomoid of nn generated by f .... f ).
1 s

Example :

Returning to Q » {l,n+l} and D as in VIII.5, this means that if we 

could find a third appropriate set of paths through D then we could 

perhaps extend the closure properties of {1 ,n+l}-SpaceJk(l_,D).

For instance, there is the following rule - call it merge. merge 

is defined by:

For d e  E, merge follows the path given by our original q.

For e .... e , merge decrees a jump of size 1 (the same as id).
1 " - 1

For e merge decrees a jump of size n+1 (like twist).
0 —

The merge diagram is

N + e

N ♦ e

-N ♦ e

-N ♦ e"n-1 " n-1
Now the submonoid of nn generated by id, twist and merge is in

fact T (definition VIII.8). Thus {1 ,n«-l J-Space^O .O) is closed under 
n

counting modulo T^.

Also, because under the usual conditions counting modulo T^ implies

counting modulo T (simulate twist on n-1 elements by merge-twist
r> n-1 ----

on n, merge by twist« merge »twist and id by merge), it is not hard
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to show, by induction on n, that under the usual conditions closure under

counting modulo T implies closure under counting modulo Z^ n * n:
This proves lemma Vili.6 for the second time.

Nothing new yet then; but wait a bit. If we allow ourselves j ump s o :

2 as well as 1 and n+1 we can derive a fourth function switch

For d € D \  E, switch follows the path given by 9-

For e .... e ,2 n-1 , switch follows the path of id or merge.

For e , switch
0

decrees a jump of size n+1.

For e , switch decrees a jump of size 2.

This means that switch takes e to e + n+1 = e ♦ 1 according to

our definition of 

goes to e + 2 «

now bring us to N

---- 0 0 1
E and from here q proceeds to N + e

e + n+20
e +1 + n+1
0

e +1 ♦ q(e +1)0 0
e . The diagram for switch is:
0

N + e

N + e

-N + e

Meanwhile e1
, so q will

It is not hard to see that ij, twist and switch together generate

S . For, using the usual notation for permutations, we can write twist

as (12...n) and switch as (12). id of course is the identity. And

now it can be shown that (12) and (12...n) together generate the whole

of S . It is well-known that S is generated by transpositions and that n n
therefore (12), (13), .... (In) generate Sn since, for general i,j,

(ij) “ (li) (lj) di) •

But for all 1 { i ( n-1

(i (i+1)) - (12...n)i_1(12)(12...n)n'1'fl

and so for 2 i  j f  n

(lj) - (12) (23)...(<j-l) j ) ... (23)(12)
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is expressible as a product of (12) and (12...n) and these two there­

fore generate all of S^.

This means by theorem IX.2 that {1,2,n+l}-SpaceA0,0) is closed 

under counting modulo S^.

Observe too that id, twist, merge and switch together generate all
, n of n .

End of proof of lemma IX. 1.

Our next result is that:

IX.3 Lemma: For all n >. 2,

all elements of {1,2,n+l}-Space(l^n) are nnA0-functions.

Proof: (This is much the same as the proof of proposition VIII.12.)

Again at step 1. we show we can calculate our given function using a 

machine whose program is really just a single line which is repeated over 

and over again.

At step 3. we prove that all such machines calculate "nAg-functions. 

Step 3. uses step 2. which depends on the fact that for a function 

G : ]Nm+k+1 -*■ n+1n+l defined in a particular way, graph(Sigma^) € "nA?* .

In the current case G will be defined by:

For 9»t].... tk ,X].....xm C K  ’ ° £  ̂ £ k *
ÎG(q,t .... t, ,x ,. .. , x ))(j) is the element of {0,1.....n-1} whichV ] K. ] ^

is congruent modulo n+1 to the least number ï (n+l)(q+l) reached by 

starting from t = (n+l)q + j and repeating

if (t ,...,t.,x x )0 0 k 1 m
then t0 := t +1;0

if $^(t , » **|t. ,x ,x )0 0 * 1 ®
then t0 :• t +2;0

, if i>̂ (t f • • • » t • • •0 0 k 1 111
then t0

:« t + n+1;0
where $1,0 *2 .0

are open LA-formulae
0

defining subsets of INm+k 1 which

are disjoint and exhaustive.

Call the set of values (the values of G are elements of 

definable in this way L^.

n+1)
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If we can show that for all G : IN™ *' ‘ ■* 1 , graph(C) ( nnAf*

implies

praph(Sipnai.) £ nnÛQ

then the proof of proposition VII.12 carries over more or less directly to 

the present case.

It suffices therefore to show that, under the usual conditions, closure

under counting modulo nn implies closure under counting modulo L^.

Observe then that (suppressing the variables t ,...,t, ,x ,...,x ) the1 K 1 m
only one-one function G(q) derivable in the way given, i.e. the only one-

one element of L , is the identity function. This arises when for all n*
0 f j f k,

$3((n+l)q + j,t .... t. ,x ,...,x ),
0 1 k  1 111

in which case t jumps directly from (n+l)q + j to (n+l)(q+l) + j.
0

In no other circumstances is G(q) one-one, for suppose:

Case one: For some 0 s j s n ♦'((n+Dq ♦ j).
-----------------  0

(i) If j $ n-1, t would jump from (n+l)q + j to (n+l)q + j+1 and
0

since j+1 f n this means that (G(q))(j) = (G(q))(j+1).

(ii) If j = n, we have (G(q>)(n) = 0. Therefore to keep G(q) one-one

we need -»4>3((n+l)q + 0). In this case (G(q)) (0) = (c(q))(l) or
0

(G(q))(2) (recall n i 2 so n+1 i 3), for one of and must hold,

and so G(q) is not one-one after all.

Case two: For some 0 S j i n i‘((n+l)q + j).
-----------------  0

(i) If j f n-2 then (G(q))(j) “ (G(q))(j+2).

(ii) If j - n-1 then (c(q))(n-1) - 0 and so we require

->$3((n+l)q +0 ) ,  which implies as in case one (ii) that G(q) is not one-
0

one.

(iii) If j - n then (C(q))(n) - 1. So we require -»i^((n+l)q ♦ 1).

But ♦1((n+l)q + 1) implies that (G(q))(1) * (G(q))(2). And
0

4>2((n+l)q + 1) implies that (G(q)) (1) *■ (G(q)] (3) if n > 2 and if
0

»
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n ■ 2, it brings us back tc the case two (ii), which has already been dealt 

with.

So, then, the only one-one function in is id.

The proof of lemma VIII.14 can now be pretty directly applied to show

that closure under counting modulo (L 's.{id}| implies closure under' n —  '
counting modulo L .* n

The proof of lemma IV.3 can be applied to show that closure under 

counting modulo °n implies closure under counting modulo (l \  {id}).

And so we prove the soundness of step 2. and conclude the proof of 

lemma IX.3.

IX.4 Theorem: For all n % 2,

{1,2,n+l)-SpaceU,0) is exactly the class of SnA -functions.

Proof:

Lemma IX.3, theorem IV.1 and the obvious corollary to lemma IX.1.

IX.5 Corollary: For all n i 2,

{1,2,n+l}-SpaceO_,a) = {1 }-Space(n,o).

Proof:

Theorem IX.4 and theorem V.4.

IX.6 Corollary: For all n i 2,

S^A? - {l,2,n+l}-Space„0,0).

Proof:

Trivial.

IX.7 Theorem: For all n i 2,

{1,2,3.... n,n*l}-SpaceQ ,□) is exactly the snA0~functions.

Proof:
Clearly {l,2,n*l)-SpaceU,0) C  U . 2 .... n+D-SpaceO ,D) and this

thus contains the class of S^AQ-functions by theorem IX.4.

The proof that all elements of {1,... ,n+l}-Space( 1̂ ,0) are sn60~ 

functions (i.e. nnA0-functions) is much the same as for lemma IX.3. It
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hinges on the fact that if C(q,t ,...,t, ,x ,...,x ) is defined from1 k 1
If f 1 (t ,... ,t, ,x ,. . . , X  ) then t := t 4- 1;

0 0 k  1 m 0 0

If . . *x ) then t : = t 2 ;

'
0 0 k  1 m 0 0

If 4n+‘ (t ,. .. ,t, ,x ) then t t + n+1 ;
0 k  1 m 0 0

have defined G functions in the past , then once again the

possible one-one value of G is in fact id. This is not too hard to 

show.

End of proof of theorem IX.7.

IX.8 Theorem: For all n >, 3, for all 1 < j < n,

{1, j ,n+l }-SpaceO,0) = { 1,2 ,n+l }-Space U_,0)

( = the S^Ao-functions).

Proof:

Clearly {1, j ,n+l }-Space U JO) C  {1,2 ,n+l }-Space (1 ,Q) by theorems

IX. A and IX.7.

For inclusion the other way we use theorem IX.2.

Let N, D, E and q be as in the proof of lemma VIII.5.

Define rotj by:

For d € D \  ie ,0
rotj has the same jumps as id.

For % .... ej-2*
rot. decrees a jump of n+1 (like twist)

For ej - r  r— j decrees a jump of size 1.

Now e . J- j + j - n(j- 1) ♦ j

- (n+1)(j-1) + 1

- ^(0)

(recalling our definition of D as r(0) u ... o r(2n-l)) and from r^(0), 

rot. (or id) will lead to N + e . Therefore the diagram for rotj will

be:
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So in S terms rot. is the permutation (12...j). n — j
Showing closure under counting modulo S^ requires some elementary

facts about S or rather about A the alternating subgroup, n n
It is well-known (see e.g. Fcohnj , vol. 1, section 3.5, theorem 4)

that for all n i 3, A is generated by the permutationsn
(123), (124)..... (12n).

From this the following three lemmas (also presumably well-known 

results) are easily proved.

IX.9 Lemma: For all n > 3, A is a subgroup of the group generated by -----  n
(123) and (12...n).

Proof: Let I - <(123) ,(12...n)>. Then for all n > 3, for all

4 S j £ n,

(12j) t 1.

For given n, this is shown by induction on j.

If j - 4 (and so n >. 4) then

(234) - (12...n)(123)(12...n)-1 £ I

and so (124) - (234)"1(123)"1(234) £ I.

Xf (I2i) € I for all 3 £ i < j > 4 then by the theorem in [Cohn],

Aj , C l .  and so, as 1, 2, j-1, j-2 are distinct, (1 (j-2))(2 (j-1)) 

is in I because it is an even permutation. Also

- (12...n)^_1(123)(12...n)n~^+1 £ I((j-2) (j-1) j)



102.

and so

(2j) = (1 (j-2))(2 (j-l))((j-2) (j-1) j)(1 (j-2))(2 (j-1)) £ 1

(because j > <* implies 1, 2, j-2, j-1, j are distinct numbers).

IX.10 Lemma: For all n i 5, n-2 > j i 3,

(12j) € <(12 (j +2)),(12...n)>.

Proof: Let J = <(12 (j+2)) , (12...n)>.

Then (23 (j+3)) = (12...n)(12 (j*2))(12...n)-1 £  J since j+3 i n.

And thus (3 (j+3) (j+2)) - (12 (j+2))(23 (j+3))(12 (j+2))-1 € J

since j+2 > 3.

And so (2 (j+2) (j+1)) ■= (12...n)"‘(3 (j+3) (j+2))(12...n) £  J

and (1 (j+1) j) - (12...n)_1(2 (j+2) (j+1))(12...n) £ J.

Giving (12j ) = (2 (j+2) (j+1))(1 (j+1) j)(2 (j+2) (j+l))- 1 £ J.

IX. 11 Lemma: For all n i 4, for all 3 i j < n, the group

K = <(12...j),(12...n)>

contains A .n
Proof: If j = n-1 then

(12...(n-1))(12...n)-1 « (In) £  K

and so (12) - (12.. .n) (In) (12.. .n)-1 £  K.

Thus K = by our remarks in the proof of lemma IX. 1.

If j < n-1

then (23...(j + 1)) - (12...n)(12...j)(12...n)~1 £  K.

But then (12 (j + 1)) - (12... j)(23...(j + 1))_1£ K

and (1 (j+1) j) - (12. .. (j + l))_1(12...j) £  K

giving (12j) - (1 (j+1) j)(12 (j+1))£ K-

If j is even then (12 (j+1)) £ K implies, by lemma IX. 10, that 

(123) € K.

If j is odd then (12j)£ K implies that (123) £  K.

Thus, by lemma IX.9, A^ C  K.

End of proof of lemma IX.11.
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To return to the main proof (that of theorem IX.8):

We know we have rot^ = (12...j), and since {l,n+l)C {l,j,n*l},

we also have id and twist « (12...n).

Therefore since j < n, by theorem IX.2 and lemma IX.11,

il,j,n+l}-Space.(1,□) is closed under counting modulo A .—  n
Clearly we also have = and closure under explicit transformations 

and boolean operations.

And because {l,n+l)C {l,j,n+l} we have closure under counting

modulo Z  , which implies closure under counting modulo 7L .n. 2
But now

A S and S /A = Zn n n n 2
and so, by theorem III.10 (i), we must have closure under counting modulo

S . n
And now it must be clear that

C  (l,j .n+lJ-Space^U.CJ)

and that therefore all S An“functions are in {1,j,n+l}-Space(1,0).n —
End of proof of theorem IX.8.

IX.12 Theorem: For all n >, 2,

{l,n,n+l}-SpaceQ,Q) is exactly the class of Z n ,Ao~functions.

Proof:

Since {1 ,n+l} C  {l,n,n+l} all Z n ,A0-functions are in 

{1 ,n ,n+l J-SpaceO.O).

Showing inclusion the other way is much the same as the proof of lemma 

IX.3 or of proposition VIII.12.

The crucial step is step 2., where we consider the nature of a certain 

submonoid of n+1n+l, whose elements are in turn values of certain other 

functions (the G functions).

If for function q : (n+1) - {l,n,n+l} we define H(q) : (n+1) - (n+1)

by:
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For 0 £ j f n,

(H(q)1(j) is the element of (n+1) = {0,1,...,n} congruent

modulo n+1 to the first number > n reached by starting from j and 

making a jump of size q(x) if we meet x.

The set of functions we are currently interested in - call it Mn
can be defined by

“ (H(q) : q £ <'n*1 ̂ { 1 ,n,n+l ) } .

As we remarked more generally in the proof of theorem IX.7, the only

one-one function in M is id.n —
It also turns out (and isn't hard to see) that, arranging the values

of H £ M around a circle as we did before, n

H(n)H(0)H(l)
H(2) zeros

will generally look like:

This means that if g : (n+1) ■+ n and g : p + (n+1) are non-j 'U 'X i £ u u

decreasing then

Y H*R2 ^ Tn '
We can now use the arguments of proposition VIII.12 to show that all 

elements of {1 ,n,n+1 {-Spaced,Q) are ,ÛQ-functions.

End of proof of theorem IX.12.

Given theorem IX.8, theorem IX.12 seems somewhat anomalous. If, as 

may be the case, 21^,Ao î* S^û q ' for n i 5 then, for n % 5,

(l,j ,n+l}-SpaceQ,0) is the same for 2 s j £ n-1, but smaller for j - n. 

It is difficult to pick out anything that makes {l,n,n+l} different,

although if we add 0 to Q (recall this makes no difference to the

Q-Space(u,v)) then {0,l,n,n+l} possesses a symmetry lackingfunctions in
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in {0,l,j,n+l' for 2 i j i n-1.

Notice also that the proof of IX.2 most definitely does not carry 

over for other values of j. If, for instance, we take n = 5, j = 2 we 

can define q : £ ■» {1,2,6} by q(0) « 6, q(l) “ 2, q (2) = 6, q(3) « 6, 

q(A) « 6 and q(5) = 6.

If, now, H : £ -*• £ is derived from q as H(q) was derived from q 

in IX. 12 then

H(0) - 0, H (1) = 3, H(2) = 2, H(3) = 3, H(4) = 4, H(5) =5 

and the non-zero part of the values is not non-decreasing.

We conclude this chapter with the observation that we have now 

characterised, using our XiJ' classes, Q-SpaceO^.CJ) for all sets Q 

such that I C Q .  For any such sets Q not directly referred to above 

can easily be shown to produce complexity classes equal to those produced 

by Q's which have been dealt with.



106.

REFERENCES

_Bel'tyukovj "A machine description and the hierarchy of initial 

Grzegorczyk classes" by A. P. Bel'tyukov 

Journal of Soviet Mathematics vol. 20 (1982) pp. 2280-9. 

^CohnJ "Algebra" (vol. 1) by P. M. Cohn

John Wiley and Sons 1974.

¡_Paris-Wilkie] "Counting problems in bounded arithmetic" 

by Jeffrey Paris and A. Wilkie

Methods in Mathematical Logic (Proceedings of the 6th 

Latin American syposium on mathematical logic, held in 

Caracas, Venezuela 1983)

Lecture Notes in Mathematics 1130 

Springer-Verlag 1985.

Works consulted but not directly referred to in the text.

"Introduction to automata theory, languages, and computation" 

by J. E. Hopcroft and J. D. Ullman 

Addison-Wesley 1979.

"Theory of formal systems" by Raymond M. Smullyan 

(Annals of Mathematics Studies number 47)

Princeton University Press 1961.


