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A b stract

This problem is suggested by B.M.T. Cortec (formerly British M aritime Technol- 

ogy) who are investigating the problem of calculating the hydrodynamic forces and 

moments on a manoeuvring ship, and the variation of the hydrodynamic forces and 

moments over the ship’s hull, moving with forward velocity U through a fluid. These 

are described by the hydrodynamic force derivatives.

We consider the ship held a t a small angle of yaw a  and assume th a t the ship’s 

hull has a plane of symmetry which is vertical and th a t the free surface of the fluid 

can be neglected. Thus we consider uniform flow past a fixed closed body.

Consider the wake flow far behind the ship. The momentum change of the 

retarded fluid velocity in the wake gives rise to the drag force on the body. Thus 

the drag on the body is expressed in terms of a wake traverse.

The fluid flow at large distances from the body is to first order a uniform stream  

of velocity U. This suggests approximating the Navier-Stokes equations to obtain 

the linear Oseen’s equations for fluid flow.

We consider the Lamb-Goldstein velocity representation for Oseen flow. (Lamb, 

Hydrodynamics 1932 art 342 .) Lamb considers two dimensional flow and three 

dimensional axisymmetric flow, and Goldstein extends the theory for general flow 

in three dimensions.(Proc.Royal Soc. 1931 a.)
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The velocity representation is u — V<f> +  w where the potential (j) is defined as 

(/> = — (1/pU)  /"oq {p(^V) +  ^ 2*rT~} two dimensional flow, but this does

not in fact define </> in a shadow region behind the ship.

We find other interesting difficulties associated with this representation; thus, 

from this definition, it is unclear whether <j> is continuous.

We consider the above difficulty and give the complete Fourier expansions for 

the velocity and pressure. We also find expressions for the drag, lift and moment on 

the body.

We consider Oseen’s velocity and pressure representations for Oseen flow given in 

terms of a surface distribution of singularities called Oseenlets, and its equivalence 

in two dimensional flow to the Lamb-Goldstein velocity representation.

We consider the velocity in the far field laminar wake and the solutions for this 

flow given by Lagerstrom and Landau and Lifshitz.
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C hapter 1

R esearch  on ship  
m anoeuvrab ility .

1.1 In trod u ction

We deal with a problem in ship manoeuvrability suggested by Dr. D. Clarke of 

B.M.T. Cortec1, Wallsend, Newcastle. This problem has arisen from research at

B.M.T. into the manoeuvrability of large tankers and of ferry boats. The hull 

design of a ship affects its manoeuvrability; of particular im portance is research into 

the relations between the hull design and the manoeuvring characteristerics of the 

ship. We discuss this research, and its applications at B.M .T., briefly below.

Large oil tankers cause great damage to the environment from spillage after col­

lision, and their poor manoeuvrability causes them problems when docking. B.M.T. 

have recently developed a computer program for simulating the docking procedure. 

The computer screen gives the view as it would appear from the ship’s bridge and 

the C aptain of the ship is given the same manoeuvrability controls as those on the 

ship’s bridge. The computer estimates the ship response to the C aptain’s controls 

from the force derivatives2 data  particular to the ship’s hull design.

The design of ferry boats is increasingly governed by economic considerations;

1formally British Maritime Technology.
2definition given in the Chapter 1 appendix.
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increasing the width of the boat increases its volume capacity. Such designs severely 

limit the manoeuvring ability of the boats. However, within the next few years 

government legislation will be introduced whereby every boat must satisfy certain 

manoeuvring criteria in order to be considered seaworthy. The manoeuvrability 

criteria are expressed in  terms of the force derivatives of the boat.

We see th a t there is a need at B.M.T. to calculate the force derivatives, which 

determine the manoeuvring characteristics, of a ship accurately. There are full scale 

experimental tests which can be undertaken in order to calculate them. However 

these are expensive and difficult to perform. The im portant methods of estimating 

the force derivatives are scale model testing and theoretical approaches.

Model test results at B.M.T. are obtained either from experiments using a tow 

path  or a rotating arm. In both cases the model is held in a fixed position. In 

the first case the model is moved at a constant velocity and its axis is held a t a 

fixed angle to the forward velocity. In the second case the model is placed at the 

end of a large rotating arm with its axis held a t a fixed angle to  the velocity of 

the model. The results are obtained during the period of m otion when the model’s 

angular velocity is constant. The model is divided into sections and the force and 

moment on each section is calculated. There has been difficulty though in extracting 

accurate data from the experiments. The experiments are also time-consuming and 

costly.

The theoretical approach to ship manoeuvring is discussed next.
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1.2 O u tlin e o f  th e  research

We first consider the ship to be at a fixed angle of yaw a  and the following assumptions3 

to be applicable for the motion:

•  The ship’s hull has a plane of symmetry and this plane is vertical.

• The fluid surface lies in the horizontal plane. This implies th a t the waves are 

short and th a t the height of the fluid raised at the bow is of order lower than 

the length and beam dimensions of the ship.

This means th a t the solution of the fluid flow is thus equivalent to the solution 

for fluid flow past the hull surface reflected about the mean free surface, and tha t 

the mean free surface is now composed of streamlines of the flow. (We may define 

the mean free surface as follows: Far from the ship disturbance, we expect the fluid 

to lie in a horizontal plane. We take the extension of this horizontal plane in the 

fluid region to be the mean free surface of the fluid. In two-dimensional flow, we 

expect the fluid to  lie on a horizontal line far from the ship disturbance and we take 

the extension of this horizontal line in the fluid to be the m ean free surface of the 

fluid. Thus if we consider the waves to be very short, the fluid surface approximates 

to the mean free surface of the fluid.)

We now formulate the problem mathematically below:

We consider a fluid infinite in extent with uniform velocity U flowing past a fixed 

closed body. This body is considered to have two planes of symmetry, perpendicular 

to each other, one plane parallel to the flow and the other plane at an angle a  to 

the flow.

3discussed in the Chapter 1 appendix.
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We usually consider the ship to be slender. This means th a t the length dimension of 

the body in the plane perpendicular to the two planes of symmetry is considered to 

be of lower order than  the length dimension of the body in the planes of symmetry. 

We define the body length as the length I along the line of intersection of the two 

planes of symmetry of the body from the body bow to the body stern.

We would like to  calculate the hydrodynamic drag force, the lift force and the 

moment on the body and the changes in these forces and moment along the body 

length.
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We now consider my theoretical approach to the problem:

Consider the steady wake flow far behind the ship. The m omentum change of 

the retarded fluid velocity in the wake gives rise to the drag force on the body. Thus 

the drag on the body is expressed in terms of a wake traverse.

The fluid flow at large distances from the body is to  first order a uniform stream 

of velocity U. This suggests approximating the Navier-Stokes equations to obtain 

the linear Oseen’s equations for fluid flow.

Oseen replaced the Navier-Stokes equations for a body fixed in a uniform stream

I  d u i \  d p  , / d 2 U i (

by the linearised equations in which

dui du{ dui
U l   1_  U 2 ~.  1_  U 3 ~.—

O X i  O X 2  O X 3

is replaced by
j jduj

d x t

The inertial cartesian coordinate system (®i, x 2, X 3 )  is used above where the uniform 

stream  velocity U is taken to act in the direction.

This is expected to be correct near infinity, but causes difficulties near the body 

where boundary conditions need to be applied. (In principle this later difficulty 

might be overcome by matched asymptotic expansions, see Rosenhead p. 187, Proud- 

man and Pearson (1959), and Kaplun and Lagerstrom (1959) but we shall be mainly 

concerned with expansions at a great distance.)

We shall consider the Lamb-Goldstein velocity representation for Oseen flow. 

(Lamb, Hydrodynamics 1932 art 342.) Lamb uses this velocity representation in two

17



dimensional flow and three dimensional axisymmetric flow, and Goldstein extends 

the theory for general flow in three dimensions. (Proc. Roy. Soc. 1931a.)

We shall consider the Lamb-Goldstein velocity representation for Oseen flow in 

two dimensions only, and in the discussion sections (7.0.3) and (7.0.4) we shall review 

Lamb’s and Goldstein’s treatm ents of steady Oseen flow in three dimensional flow.

The velocity representation is u =  -f w where the potential (j) is defined as 

(j) =  f  — (1 / pu) / f o o lp ^ )  +  D2nr?' }dx‘, but does n° t  i*1 define (j) in the

shadow region behind the ship.

We find other interesting difficulties associated with this representation; thus, 

from this definition, it is unclear whether (j> is continuous.

We shall consider the above difficulty and give the complete Fourier expansions 

for the velocity and pressure for two dimensional flow. We shall also find expressions 

for the drag, lift and moment on the body. The velocity and pressure in the far field 

wake and the expressions for the drag, lift and moment agree with those given 

by Lagerstrom, Imai (1951) and Goldstein (1933) in their respcetive treatm ents of 

Oseen flow.

We consider Oseen’s velocity and pressure representations for Oseen flow given in 

terms of a surface distribution of singularities called Oseenlets, and its equivalence 

to the Lamb-Goldstein velocity representation.
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1.3 B r ie f  rev iew  o f papers w r itten  on  ship  m a­
noeu vrab ility .

In aerodynamics, calculations for the drag and lift forces on an aerofoil in two di­

mensions, and a streamlined wing in three dimensions, in a uniform stream  are well 

known. However there are many more difficulties associated with the calculations 

of forces on a ship. In aerodynamics, we deal with streamlined wings and using 

the Kutta-Joukowsld condition we can determine the forces on the wing from the 

calculation of shed vorticity. However in ship motion we deal with bluff bodies. 

Separation occurs and vorticity is shed from unknown positions on the hull. This 

vorticity diffuses in a region behind the ship called the wake and is associated with 

the drag and the lift on the body. We see tha t in comparison with aerodynamic the­

ory, the problem of ship manoeuvrability is complex and difficult to solve. However 

attem pts at theoretical models have been made and some papers on manoeuvrabil­

ity theory are listed below.

1.Clarke, D: (1972) A two-dimensional strip method for surface ship hull derivatives: 

comparison of theory with experiment on a segmented tanker model. (Journal of 

Mechanical Engineering Sciences, pp 53-61, paper 8)

2 .Newman, J N: (1972) Some theories on ship manoeuvring. (J.M.E.S. pp 34-42, 

paper 6 .)

3.Gadd, G E: (1984) A calculation method for forces on ships a t small angles of 

yaw. (Royal Institution of Naval Architects, pp 257-267)

We shall review the work by Lamb and by Goldstein on Oseen flow which provides 

the stimulus for my approach to the ship manoeuvrability problem in the discussion 

sections (7.0.3) and (7.0.4) respectively. We next review the three papers listed 

above.
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1.3.1 Papers using slender body inviscid theory.

Clarke’s paper and Newman’s paper use results derived in Lamb; Lamb considers 

a body moving in an infinite inviscid fluid. (Lamb, Hydrodynamics 1932 art 117 .) 

Lamb gives the equations of motion for the body (art 124) which involve the hydro- 

dynamic forces, and moments, on the body and also term s including the velocity, 

and angular velocity, derivatives of the kinetic energy of the body.

Slender body theory is then used by both Clarke and Newman so th a t the forces 

and moments on the ship are found in terms of integrals along the body length.

However Clarke’s method differs from Newman’s:

Clarke first calculates the side force on a curve lying in an arbitrary  plane perpen­

dicular to the ship’s principal axis. The total force on the body can then be found 

by summing this value over all the perpendicular ‘strips’ along the body length. 

This gives the to ta l force as an integral over the body length.

Newman calculates the to tal side force from Lamb’s relation. He then invokes 

the slender body assumption in order to find the force and moment as an integral 

over the body length.

Clarke’s method agrees well with experimental results, which suggests the validty 

of his approach using an irrotational fluid strip theory m ethod. However, the theory 

does not produce accurate results near the stern of the ship. A ttem pts to overcome 

this difficulty have been made and are discussed in the following subsections.
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1.3.2 The equations o f m otion for a body  m oving in an 
infinite inviscid fluid.

(Lamb Hydrodynamics, 1932 ed, chapter 6.)

Lamb gives the equations of motion of the body in the coordinate reference 

frame moving with the body. The equations of motion for the fluid and body 

system m ust first be found. However, the fluid momentum cannot be determined; 

we cannot determine the fluid momentum as a Green’s surface integral over the body 

boundary since this integral over a closed surface enclosing the body and tending 

to infinity is indeterm inate. Lamb overcomes this problem by finding the equations 

of motion of the system in terms of the impulse of the system. Lamb finds tha t 

the impulse change of the system is the same as the momentum change of the body. 

Lamb defines the impulse of the system, after Lord Kelvin, as ‘the properly adjusted 

impulsive wrench which when applied instantaneously to the body,when the system 

is at rest, counteracts the impulsive pressures due to the fluid on the surface of the 

body and generates the momentum of the body’. By considering the form of the 

energy of the system and the change in the energy and the impulse of the system 

over an infinitesimal time, the equations of motion of the system, and thus the body, 

are found.
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1.3.3 Inviscid flow m odels incorporating shed vortex sheets.

We deal specifically here with the method described by Gadd. Uniform flow past a 

fixed ship a t a fixed angle of yaw a  in inviscid irrotational theory can be repesented 

by a Green’s surface source and dipole distribution. Another representation would 

be a vortex distribution on the body surface, We find th a t for a slender ship the 

vortex distribution takes the form of longitudinal bound vortices which stop abruptly 

at the stern of the ship.

One m ethod of representing the flow past the body in a more realistic way than 

tha t in slender body inviscid irrotational flow is proposed to  be by continuing these 

longitudinal vortices into the fluid region behind the stern of the ship. This creates 

a region of vorticity, a wake, behind the ship. This is the proposition which Gadd 

uses for his inviscid flow model which incorporates shed vortex sheets. There is 

theoretical motivation for doing this since it is argued th a t this method is similar 

to applying a K utta  condition on a trailing edge, which is done in aerodynamics.

Gadd considers the wake to lie in the plane of symmetry of the hull and to  have 

depth d, the ship depth. Longitudinal trailing vortex filaments are distributed over 

the wake. The strength of the trailing vortex filaments is equivalent to the strength 

of the bound vortex filaments at the stern of the ship a t the same depth.

Gadd divides the hull and wake into panels and distributes sources and normal 

dipoles over the panels to satisfy the above conditions.
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Hence GadcPs calculation for the side force on the ship considers also the effect 

of trailing vorticity in a wake region whose strength is obtained from the strength 

of the bound vorticity at the stern of the ship a t the same depth.

This method is similar to the calculation of the lift L  on a streamlined wing in 

aerodynamics where a trailing vortex sheet emanates from the  trailing edge of the 

streamlined wing in uniform flow. Gadd’s method is an a ttem pt to apply a condition 

for the wake vorticity similar to the K u tta  condition for aerodynamics streamline 

wing flow, although a ship is a bluff body.

(Gadd extends the method for the case of a ship moving through restricted 

water by using an iterative procedure: He distributes panels in this case over the 

bottom  surface of the fluid as well as the hull surface and wake. He then distributes 

sources over the surface panels to counteract the normal velocity from the solution 

in unrestricted water on the fluid bottom  surface. The affect of this distribution is 

to modify the flow at the hull, so a new solution is obtained for the distribution of 

singularities over the hull surface. The method is then repeated.

Gadd also considers allowing for the viscous effects of the fluid by considering 

the displacement thickness of the boundary layer. He does this by considering the 

iterative boundary layer calculation.
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1.4 C h i A ppendix: T h e force d erivatives defini­
tion .

We consider a ship moving with a perturbed velocity u to  a forward velocity U in 

the x  direction . We also consider the rate of turn  of the ship a. The hydrodynamic 

forces and moments are then assumed to be directly proportional to the perturba­

tions u , v, a , and their derivatives is, u, a. (Clarke, The application of manoeuvring 

criteria in hull design using linear theory. R.I.N.A. trans. 1983 pp 45-68.)

We consider the drag, the lift, and the moment acting on the ship. The force 

derivatives are defined as the ra te  of change of the drag, lift and moment, with 

respect to the perturbations u, i?, a , u, n, and a. Hence by the Taylor expansion 

they are the constants of proportionality in the linearised equation relating the 

hydrodynamic force with the perturbations. We note th a t in the experimental model 

tests the model was held in a fixed position. This means th a t the perturbations is, 

u, and a , are zero. In the theoretical model we will use we will assume th a t the 

mean position of the model is fixed and a uniform stream  U flows past it.
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1.5 C h i A ppendix: T h e basic a ssu m p tion s m ade  
in  ship  m anoeuvrability .

We consider the motion of the ship through the free surface of the sea; the ship is 

considered to he a rigid body and thus to have six degrees of freedom. However, the 

motion associated with some of the degrees of freedom is considered to be negligible. 

We now consider Naval Architecture terminology, the terminology used in describing 

ship motion.

1.5.0.1 Naval Architecture Terminology.

We assume th a t the ship’s hull has a plane of symmetry and we consider the re­

stricted motion where the plane of symmetry is kept vertical. We also assume tha t 

the fluid free surface lies in a horizontal plane. (This assumption is discussed later.) 

We consider the cartesian coordinate system ( x , y , z )  which is fixed in the ship and 

moves with the ship; we let the x  axis lie along the intersection of the two planes 

and its direction to be from stern to bow. We let the z  axis point vertically upwards. 

The following terminology is used for the forces and moments acting on the ship:

X  is the force in the * direction called the surge force.

Y  is the force in the y direction called the sway force.

Z  is the force in the £ direction called the heave force.

N  is the moment in the z  direction called the yaw moment.

The moment in the y direction is called the pitch moment.

The moment in the x direction is called the roll moment.

25



Diagram showing the forces and moments acting on a ship.

Z

Y

Diagram naming the positions on a ship.

3C

Thus we assume the ship moves with surge, sway and yaw only. This is the usual 

assumption is made in the literature on ship manoeuvrability.

We will now make an assumption about the free surface of the fluid through 

which the ship moves.
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1.5.0.2 The free surface assum ption

We assume th a t the free surface acts as an undisturbed solid plane. However, the 

fluid surface will actually be raised at the bow. We estim ate the height of the raised 

bow by considering Bernoulli’s equation along a free surface streamline.

Bernoulli’s equation gives:

1 2—u -f qz = constant 
2 ”

where u is the fluid velocity, g is the gravitational constant and z is the upwards

vertical displacement. So near the bow we expect an increase in the height of the

fluid of the order of 7? .
2 g

We also consider the length scale of waves generated by this motion. We find 

below th a t the horizontal length scale is of order U2/ g. Therefore near the bow, the 

slope is not small. Thus we need an inner expansion for this region. However, for 

the moment we shall ignore this difficulty.

We consider the equation for the time independent surface waves around a body 

travelling with forward velocity U.

The wave equation is obtained by the appropriate linearisation for the kinematic 

surface boundary condition and the dynamic surface boundary condition.

27
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If we consider the 2 displacement of the free surface to be £(#,?/), then the 

kinematic boundary condition gives — z) =  0 

The linearisation of this condition gives

■ £ - 3 -
where u' = u — (£/,0, 0) =  V<̂

Hence u' is the perturbed velocity of the motion.

The dynamic boundary equation is obtained from Bernoulli’s equation of motion 

for the fluid. On the free surface, this gives the condition

kpu2 -  pg( = 0

The linearisation of this condition gives 

Hence the appropriate wave condition is

w
U d ^ ~ 9 T z - °

If we assume the fluid surface acts as a solid plane, then the vertical velocity of 

the surface is negligible, o r |^  -+ 0

Hence we expect waves to  be short, of order U2 /g.  This is the short wave 

approximation.
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C hapter 2

T he derivation  o f  th e  O seen  
eq u ation s.
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2,1 T h e d erivation  o f  O seen’s eq u ation s.

Since we are dealing with steady flow, we obtain the Navier-Stokes equations for 

steady incompressible flow:

We can now obtain Oseen’s equations from the Navier-Stokes equations for steady 

flow. (The Navier-Stokes equation derivation is given in the appendix.)

Oseen’s approximation to the fluid flow is th a t the velocity perturbation u to 

the uniform stream  U is small compared to the stream velocity U.

We let the uniform stream  U be parallel to the axis. Thus the velocity uf is 

given by

(«!, u j, i4) =  (U +  « i, u 2 , u 3) 

where the Oseen approximation is |w, | <C U.

Considering the Navier-Stokes equation, the term  wjglj is

( d u id  u2d u3d .
[d x ! U dxx +  U 0x 2 U dx3}

Applying Oseen’s approximation th a t ^  <  1, we obtain

t 8 - T T 9 
Uidx j  dxx

Thus:

F in
u ^  = - ( i / p ) y p  + v v \

U X  i

Since the flow is incompressible, taking the divergence of the above equation, we 

obtain

V 2p =  0 
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The equations

F in
=  - ( 1  / p ) V p  +  u V \  (2.2)

Ox i

V .m =  0 (2.3)

are the Oseen equations for steady flow.

C h an g e  o f c a r te s ia n  c o o rd in a te  n o ta tio n . In the vector analysis consid­

ered to obtain the Navier-Stokes equations for steady incompressible flow, it was 

convenient to label the cartesian coordinate variables aq, x<i and x 3.

However, the preferred notation for this subject is to denote the cartesian coor­

dinate variables by x, y  and £. We therefore change the coordinate variables to x, 

y  and 0 where x = aq, y  = and £ =  £3.

We do not change the vector description. Hence we still describe u} and u as 

( t4 ,i4 ,?4 ) and (u i ,u 2,«3) respectively. The suffix 1 denotes the x  direction, the 

suffix 2 the y  direction and 3 the £ direction.
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2.2 Ch2 A ppendix: T h e d erivation  o f  O seen ’s
eq u ation s.

Oseen’s equations are an approximation to the Navier-Stokes equations. The Navier- 

Stokes equations describe the Newtonian fluid. They are found by considering the 

constitutive relations of the fluid.

Oseen flow deals with a certain type of fluid flow; we consider uniform fluid flow 

past a body of velocity U. Oseen flow is applicable in this case far from the body 

surface.

We first apply Oseen theory to the problem of uniform steady two dimensional 

fluid flow of velocity U past a body.

Oseen’s approximation assumes th a t the velocity perturbations to the uniform 

stream  are small. We denote the vector td for the fluid velocity field, u for the pertur­

bation velocity, and U for the uniform stream velocity. Thus Oseen’s approximation 

depends upon the condition th a t | u |<C U.

In the region far from the body, the fluid velocity approaches the velocity of 

the uniform stream  U. Hence | u |<C U and Oseen’s approximation is valid in this 

region. On the body surface, however, the condition vf.n  — 0 must be satisfied, 

where n  is the unit normal to the surface. If the unit normal vector direction is 

close to being parallel to the uniform stream direction, then | u | is of order U and 

Oseen’s approximation is not applicable. Thus in the region near to  the body we do 

not expect the approximation to be valid.

It is noted, however, tha t for a slender body whose axis is close to being parallel to 

the uniform stream, the unit normal vector direction is close to being perpendicular 

to the uniform stream  direction. Hence Oseen flow is applicable in regions close to
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a slender body orientated in this way.
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We will now obtain Oseen’s equations from the Navier-Stokes equations for fluid 

flow. Navier-Stokes equations are found by considering the equations of motion for 

an element of fluid and by considering the stress and ra te  of strain relations of the 

fluid. We give a preliminary derivation of the equations of motion for an element 

of fluid and a preliminary discussion of the stress and ra te  of strain relations of the 

fluid.

C o o rd in a te  n o ta tio n . We use suffix notation to label the axes and to rep­

resent vectors; thus the cartesian coordinate axes are labelled (a?i, #2} ^3)5 and the 

vector u is represented by Uj where j  — 1, 2 or 3. The uniform stream  U is taken 

to be in the direction.

T h e  e q u a tio n s  o f m o tio n  o f an  e lem en t o f flu id . A Newtonian fluid is as­

sumed to  have continuous density and thus the motion to obey continuum mechanics. 

We consider an element of fluid of volume 8 V , density p and velocity td. A force /  

is exerted on the fluid element. Thus, from Newton’s equations of motion, the force 

equals the rate  of momentum change:

/.• =  ^ ( p S V u t )

The operator is the rate of change with time of the function calculated in the 

fluid element. (Since the fluid element is not stationary, this operator is different 

from the partial derivative operator Jp)

We now find the force /,• in terms of the stress tensor ry

S tre ss . We invoke Cauchy’s stress principle th a t the fluid has finite stress 

which is a function both of position within the fluid and of time. We consider the 

force on a region of fluid over part of the bounding surface A S .  We let the unit
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vector n  be normal to the surface and pointing away from the fluid. Then if /  is the 

force on the fluid over the  elemental area S S , we have from Cauchy th a t the vector 

t such that:

n  y  f  
T = Inn —

A5-+0 AS
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T h e  s tre ss  te n so r . We now find the stress tensor of the fluid.

Let us consider a region of fluid enclosed by the surface S.  The force on the 

fluid, / ,  is such th a t

f i  -  f  "ids (2.4)
J s

We consider this surface as its area tends to zero. Using Cauchy’s stress principle,

| lim fi\ <  max) r,- | lim S  — 0 (2*5)S—>0 S—>-0

We use this result in considering the surface, S, of a tetrahedron. The tetrahedron 

has four corners positioned at (0, 0, 0) (et,0, 0) 0, 6, 0) and (0, 0, c).

We let the area of triangle Oab be Ai, 

the area of triangle Oac be A2,

the area of triangle 06c be A3,

and the area of triangle abc be A„.

From equation (2.4), we have that:

„ n  . . —̂’2 . „
f i -  T i  A +  Ti  A i +  Ti A 2 +  T{ A 3 =  0  

Applying equation (2.5), and using the fact th a t ^  =  rc,-, we obtain

nr, =  Ti rtj

where the repeated suffix implies a summation over j ,

— X j

For ease of notation we let f f  =  r/y. We see tha t ry  is independent of the normal 

vector n. Once the components are known, any vector r ;  may be calculated. 

is a tensor operator on the normal vector n and is called the stress tensor. In this 

notation,

T i =  TijUj (2.6)
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E q u a tio n  o f m o tio n  o f th e  flu id  e lem en t in  te rm s  o f th e  s tre ss  te n so r . 

The equation of motion of the fluid element is found by considering equation (2.4):

f i  =  Js ”i ds

Using equation (2.6) and applying the divergence theorem, we obtain

f i  =  f  ?, ds = f  TijTljds = Jy  | f-dV

Hence fi  — 8 V ^ r  and so the equation of motion becomes:

D(pu\ ) _ c h y  , .

D t  d x j  '

We now find the constitutive relations, the relations between the components of the

stress tensor r y  and the rate of strain tensor e y , in order to obtain the Navier-Stokes

equations of motion.

T h e  c o n s ti tu tiv e  re la tio n s  fo r th e  flu id . Applying stresses on the surface of 

the fluid element makes the fluid element distort. Thus we expect a relation between

the stress tensor field Ty and the ra te  of strain tensor field ey.

From Taylors expansion we express the change in velocity 8 u\ for a displacement

8 xi as

6u{ =  ( l / 2 )(e118 x 1 +  61263:2 +  61363:3) +  (1 / 2 )(uj2 8 x 3 -  lj3 8 x 2)

Sul = ( l /2 ) (e 216xt  +  e2263:2 +  e23Sx3) +  (X/2)(uj3 8x1 -  u)X8 x 3)

8 ul  =  ( l / 2)(e3i 63?i +  e3263:2 +  e338 x3) +  (1/ 2)(u;i63:2 — u>263:i)

where ey =  and =  V x u}, w =  (uu u 2 , u 3)

The terms in ey give the distortion of the fluid element, whereas the velocity 

change due to the terms in a;* is (1/ 2)(a; x 6r) which represents a rotation of the 

fluid element. [The term  6r  equals (63:1, 63:2, 63:3).]
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The tensor components e(J- give the different ra te  of strains of the fluid element.

The simplest relation between the stress tensor field and the ra te  of strain 

tensor field ê - is linear:

Tij — A-ij T jBij,mp@mp (^'^)

In deriving Navier-Stokes equations we assume the relation takes the above linear 

form. Since the Navier-Stokes equations give accurate fluid flow descriptions, the 

above linear relation must be a property of the fluid.

We assume the fluid is isotropic. Thus if we rotate the coordinate axes we expect 

the form of the stress-rate of strain relations to remain the same. This implies tha t 

the tensors Aij and Bij>mp are isotropic. Therefore

Aij ~  p&ij

B%j,mp — ^&ij,mp A  (/i/ 2 ) Sjp T ) T  &ip&jm )

Substituting these relations into equation (2.8) gives:

T{j = P^ij T  XSijCmm A  P&ij

Since the fluid is incompressible, we expect the rate of increase of a fluid element 

emm to be zero. This means th a t the dilatation of the ra te  of strain tensor is zero.

Hence we obtain the constitutive relation

T%j =  P^ij H“ p Gij  (2 '^)

where p is defined as p — —( 1 / 2 ) ^  and may be called the pressure of the fluid.

We now substitute the constitutive relation into the equation of motion for a 

fluid element in order to obtain Navier-Stokes equations.
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2.2.1 T he Navier-Stokes equations.

The equation of motion of the fluid is given by equation (2.7) as

D(pu}) _  d i y  
Dt dxj

The constitutive relations for the fluid is given by equation (2.9) as

2.2.2 O seen’s equations

Oseen’s approximation to the fluid flow is tha t the velocity perturbation u to the 

uniform stream  U is small compared to the stream velocity U.

Thus
D {pu\)

Dt

cJtdSince we are dealing with an incompressible fluid, =  0

by considering the infinitesimal changes in the function / ( x i ,  ®2, *3, t) operated 

on by the operator §-t , we find tha t

d_ _  a_ ,_a_
Dt ~  d t +W‘ dxt

Since we are dealing with steady flow, we obtain the Navier-Stokes equations for 

steady incompressible flow:

(2 .10)

We can now obtain Oseen’s equations from the Navier-Stokes equations for steady 

flow.
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We let the uniform stream  U be parallel to the Xi axis. Thus the velocity u} is 

given by

(u{, u |)  -  (U +  Ui, u2, u3)

where the Oseen approximation is |«;| <C U.

Considering the Navier-Stokes equation, the term  -  is

m l  .
udxi udx2 u d x j

Applying Oseen’s approximation th a t ^  <  1, we obtain

t d rr d
u l - r -  =  V-

3 dx j  dxi  

Thus:

u d =  +  " v 2 a

Since the flow is incompressible, taking the divergence of the above equation, we 

obtain

V 2p =  0

The equations

fin
U i= -  = - ( 1 / p W p  + v V  u (2.11)

O X  1

V 2p -  0 (2.12)

are the Oseen equations for steady flow.

C h an g e  o f c a r te s ia n  c o o rd in a te  n o ta tio n . In the vector analysis consid­

ered to obtain the Navier-Stokes equations for steady incompressible flow, it was 

convenient to label the cartesian coordinate variables Xi, x 2 and X3 .
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However, it is sometimes preferable to denote the cartesian coordinate variables 

by rc, y and 2 where x  =  a?i, y — x<i and 2 =  #3.

We do not change the vector description, Hence we still describe u} and u as 

(^{ ,^2,^ 3) and (n i,« 2jW3) respectively. The suffix 1 denotes the x  direction, the 

suffix 2 the y direction and 3 the z  direction.
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C hapter 3 

T h e L am b-G oldstein  v e lo c ity  
rep resen tation  in tw o d im en sions.

We consider the steady two dimensional Oseen flow of an infinite fluid of uniform 

velocity U past a closed body. Thus we expect a wake region of rotational flow and 

outside this a region of nearly irrotational potential flow.

We shall find the complete expansions for the fluid velocity and pressure and 

verify th a t these expansions are compatible with the known theory. The complete 

expansion of the velocity and pressure is necessary for use in  asymptotic matching 

of near field and far field flows. The complete expansions are found by extending 

the theory first given by Lamb and Goldstein. (See sections (7.0.3) and (7.0.4) 

respectively.) Some of the coefficients in the expansions can be expressed in terms 

of the drag, the lift, and the moment on the body due to the action of the fluid. 

These expansions are shown to be compatible with the far-field Laminar-wake theory 

given by Lagerstrom and the Oseen velocity representation of Oseen flow in two 

dimensions.

We first extend the theory given by Lamb and Goldstein. The Lamb-Goldstein 

method involves a decomposition of the fluid velocity.
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In this chapter we obtain the complete expansions for the perturbation Oseen 

velocity u and the pressure p. We do this by considering the Lamb-Goldstein ve­

locity representation of Oseen flow; the perturbation velocity u is represented as a 

summation of a velocity potential V<ft and a rotational velocity w. Lamb and Gold­

stein define the potential <j> as ^  (In section (3.1.3) we shall see th a t this

implies th a t outside the wake region the perturbation velocity is nearly u =  V<ft.) 

Both Lamb and Goldstein do not properly define (j)\ we investigate this difficulty 

within this section.

We consider the rotational velocity w such tha t w — u — V</>, and the stream- 

function of the velocity w. (Hence w =  ( |^ ,  —12.) since V.w  =  V .u  =  0.)

Hence the Lamb-Goldstein velocity representation is a decomposition of the per­

turbation velocity u into a potential velocity V<  ̂and a rotational velocity w.

u =  V<j) +  w

We first find the Fourier expansions for (j> and 'k; we equate some of the coeffi­

cients in the expansion with the lift, drag and moment on the body. We next finally 

give the complete expansions for the perturbation Oseen velocity u and pressure p. 

Therefore we divide the chapter into the following subsections:

3.1 The definition of the potential <f>.

3.2 The streamfunction of the velocity w.

3.3 Symmetric flow.

3.4 Antisymmetric flow.

3.5 The complete expansions for the velocity and pressure.
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3.1 T h e p o ten tia l fu n ction  (j).

We now give Oseen’s uniform steady flow in two dimensions past a body boundary. 

(See section 2.1 equations (2.2) and (2.3 ).) In terms of the perturbed velocity «, 

we have

U -£ r  =  - ( U p )'Vp + v V 2u (3.1)
O X

We follow the method first used by Lamb and Goldstein of decomposing the 

perturbation velocity potential in the form

u = +  w

where

^  = _ _L  (3.2)
dx pU y }

There are good reasons for using this decomposition especially when considering 

steady uniform flow past fixed bodies; for this type of flow, we expect regions of 

almost no vorticity within the fluid (and therefore potential flow), and we also 

expect regions of vorticity within the fluid (and therefore rotational flow). We call 

the region of rotational flow the wake. Thus outside the wake we expect potential 

flow, this decomposition is useful because we find th a t outside the wake the potential 

flow is given very nearly by u = V<ft; the velocity is satisfied very nearly by the 

velocity potential V</> of equation (3.2). Therefore outside the wake the function w 

is effectively zero.

We will see in section (3.2.2) th a t substituting the velocity u — V<£ +  w into the 

Oseen equations we obtain a differential equation in w only such tha t

dw v  2
= (3'3)
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and V.w =  0

It is not clear, however, th a t the decomposition given by Lamb and Goldstein is 

complete. This is because the potential <j) is not defined uniquely in equation (3.2): 

In order to obtain a complete expansion for the potential we must define <j> 

uniquely. We must also make sure the definition of <f> isn’t a divergent intergral. 

Thus I define the potential <j> as

, D  In r 1 f x ( / / \ D  cos O' 1 , ,
* = w ~ i v L { p^ + - ^ \ dx

where r 'c o s# ' =  x ', r 's in # ' =  y and — D̂ l 6 is the leading order term  in the 

expansion of the pressure.

Hence
dcf) _  p 
dx  pU

However, this doesn’t define the potential (j) everywhere in the fluid; there is 

a shadow region where <j> is undefined. We shall continue <j> analytically into this 

region. However, this means th a t we obtain a discontinuity line.

We must define <j> uniquely in order to obtain a complete expansion for u. It is 

especially im portant for our problem to know tha t we have the complete expansion 

and not a partial expansion since the solution for u may be used in an asymptotic 

matching. (Oseen flow is applicable in the region far from the body.)

The subsection subdivides into the following parts:

3.1.1 Definition of the potential </>.

3.1 .2  The analytic continuation of <j> into the shadow region showing the existence 

of a discontinuity line in (j).

3.1 .3  The fluid motion outside the wake region.
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3.1*1 T he definition o f the potential

We now consider the Lamb-Goldstein velocity decomposition given by equations 

(3.2) in Oseen flow. The potential <}> is first given which satisfies equation (3.2).

<j> is defined as :

* = - { l / p u )  L  y ) + d x '  ( 3 - 4 )

Hence =  —(IfpU)p  as given in equation (3.2).

The term  — ̂ p u l  *s included in the integrand so th a t the integral is not divergent. 

The prsssure p satisfies the differential equation V 2p =  0 and since p is every­

where continuous and tends to zero at infinity, it has the form given by equation 

(3.23).

From section (3.5.2), we see th a t the leading order term  of p is — ^ p u t  > ^

term  was the integrand in equation (3.4), the resulting integral would be divergent.

However, all other terms in the expansion of the pressure give convergent inte­

grals and so

f x \ , Z)cos0'1 , .
L \ p { x ’y ) + - ^ ? - \ dx

is a convergent integral.
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3.1.2 T he analytic continuation o f 0 into th e shadow region  
giving a discontinuity line.

The definition of (/> in equation (3.4) does not give </> everywhere in the fluid region 

where Oseen flow is valid. In this subsection we find the region where 0 is undefined 

(called the shadow region ) and give a method to continue <j> analytically into this 

region. In order to  do this, we must find the region of fluid where Oseen flow is 

valid.

Oseen flow is valid in the region where the Oseen approximation holds. This is 

the region where the magnitude of the perturbation velocity, |w|, is much less than 

the uniform stream  velocity ?7, so |u| <C U.

Far from the body the fluid tends to flow as the uniform stream  and so Oseen 

flow is valid . Near the body the fluid velocity it* must tend to zero since the fluid is 

assumed viscous, and so Oseen flow is invalid. (However, there are some Reynolds 

number flows where Oseen flow is a good approximation almost everywhere within 

the fluid. Also Oseen flow is valid in regions close to a slender body whose length 

axis is closely aligned to the uniform stream direction.)

For the problem of concern to us, we expect Oseen flow only in the region a 

distance a t least R  from body where R  is much greater than  the body dimension 

/, R  /. We now consider the position of the coordinates in order to define the 

shadow region of the fluid.

We position the coordinates such th a t the a>axis is parallel to the uniform stream 

direction and the body is located at (—R y 0). Thus Oseen flow is valid in the region 

(cc +  R ) 2 -f- y 2 > R 2, and the shadow region is where (a; +  R ) 2 y 2 > R 2, x > —R  

and y 2 < R 2 are all satisfied. We draw the shadow region next.
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ReorcwoF R-vro

Figure 3.1: The shadow region of the fluid.

However, in the following analysis we consider a general closed curve C  rather 

than the specific curve (x  -f R )2 + y 2 = R 2 as the boundary for Oseen flow validity in 

the fluid region. This has the added advantage for application to those flows where 

Oseen flow is a good approximation very close to the body. In these cases it may 

be a good approximation to take the closed curve C  to be the body boundary.

We next consider the position of the boundary curve C  in the coordinate frame. 

The boundary curve C  intersects the x-axis at more than  one point. The origin of 

the coordinate frame is placed at the point where the body curve crosses the z-axis 

for the greatest value of x. Thus the origin is located at the rear of the body. (When 

the axes are chosen in this way, the discontinuity line will lie along the line y — 0, 

x > 0.)

The position of the coordinate system in relation to the body is shown diagra- 

matically below:

oc
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In order to describe the region of the fluid where is undefined by equation (3.2) 

we first define a region D. We represent the boundary curve C  by [*(?), y (« )]for 

some param eter q. We let the maximum value of y(q) be a and the minimum value 

of y(q) be b.

We consider the two points on the curve at y =  a and at y = b. (If y(q) equals a 

a t more than one point on the boundary curve, we consider the point whose x  value 

is the least, and similarly when y(q) equals b.) These two points split the curve C

into two parts, the curve C+ which passes around the front of the body and the

curve C-  which passes around the rear of the body.

We define the region D  as tha t bounded by the curve C_ and the two semi­

infinite lines parallel to the z-axis starting from the points on the curve a t y =  a 

and at y = b and finishing at x =  oo.

The potential (f) defined by equation (3.4) is an integration of the pressure over 

a horizontal integral path  to the x-axis.

We show the region D in the diagram below:

c  -
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We consider continuing analytically (f) into the domain D. We divide the region 

D  into two parts, the region D+, where y >  0, and the region Z?_, where y < 0.

We first consider the continuation of (f) into the region D+.

Outside the region D, we see that:

%r- = — — <r-( r  p(x'>y)dx') =  — — r  i r -p (x'> y W  d y 2 pU d y 2 J-oo ,y> ’ pU J-oo dy*n

Since V 2p =  0 from equation (), then

d 2 (f> 1 f x
~  ~oU J-«dy 2 pU 

and so V 2</> =  0 and

9 2  I 'W  ' 1 9 p
w p ( x ' y)  = ^U d~x=

d 2 (f> 1 dp
pU dx

d 2(f> 
d x 2

dy
(3.5)

Since the pressure p is defined everywhere in the fluid, equation (3.5) will be 

used to continue (f> into the region Z)+ . We consider a point (jto? V o )  within the fluid 

region D + .The potential (f) is known at the point (#0, 2/1), where y\ > a. Equation 

(3.5) gives us the change in the second partial derivative with respect to y of (f> in 

the region outside the domain D. However by letting equation (3.5) hold within the 

region D+ we can continue <f> from the point (#0,2/i) to the point #o,2/o- Hence by 

letting equation (3.5) hold within the region D+ we have a continuation of 4> within 

this region and we are thus able to find a value for (f) a t the point (#o,2/o)- 

We show the continuation used diagrammatieally below:
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We next give the definition of the potential (j> in the region D+ using this con­

tinuation. Using equation (3.5):

d 2<)> _  1 dp 
dy2 pU dx

we can express (/>(xo,yo) in  terms of <j>(xo,yi) and |^(a;o,f/i):

d2(f> _  1 dp 
d y2 pU dx

implies th a t, for y >  0:

Hence
d(j)
dy

and so

=  (»i “  y o ) ^ ( x o ,y ^  -  -~jj J ”' ,y ')dy'dy  (3.7)

Equation (3.7) gives the potential (f>(xo,Vo), since we know (f>(xo,yi), |^ ( xo ,y i ) 

and the fluid pressure p and thus we have defined <f> in the fluid domain Z?+ . We 

now show th a t V V  =  0 in the fluid domain D+.

Hence, we have found <j>(x,y) within the fluid domain D +. The potential $ 

satisfies
d 2(j> _  1 dp 
dy 2 pU dx

within the domain D+ and also outside the domain D. W ithin this fluid region, 

£ ( 0 )  =  ^ 7 0  =  ~ 3 7 0  since V V  =  0 from equation (2.3).

H ence 0 ( f£  +  jfc) =  0

This gives us §£ +  ( l /pU)p  =  A y f ( x )  -fi Bg(x)
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This equation holds for <f)(x,y) in the region y > 0. However, we know th a t for 

y > a , equation (3.2) holds which implies th a t 4- (1 / pU)p — 0.

Hence A  — B  — 0 and +  ( l /pU)p  — 0 in the region y >  0.

Thus substituting the above equation into equation (3.5), we obtain V 2<̂> =  0 in 

the region y >  0.

Hence we have found th a t in the region -0+, <f) may be continued so th a t $ is 

single valued and

t o  +  ( i M O p  =  o

v V  = o

(3.8)

(3.9)

Simiarly, </> can be defined in the region I>_ by following the same method and we 

find th a t the equations (3.8) and (3.9) also hold in this region. Hence the equations 

(3.8) and (3.9) hold everywhere within the fluid.

Since the pressure is defined everywhere within the fluid and is assumed to be 

continuous and single valued, then the function is continuous across y =  0, and 

z > 0 ,  the boundary line between the domain D + and the domain D _ .

However, it may be tha t <f> and are discontinuous across y — 0 and x > 0 and 

this will be investigated in the next subsection.
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3.1.3 The fluid m otion outside the wake region.

We consider the fluid motion past the body. We expect a region of vorticity (the 

wake region) to occur at the rear of the body.

We draw a diagram of the flow:

region
ujqJc^

Applying Bernoulli’s equation to the region of irrotational flow, we obtain 

p +  (1 /2 )pu.u = p\x=-oo 4  (1 /2 )pU2 

along a streamline, where we take p |x=_oo =  0, (see equation (2.4)).

Outside the wake region, since we are dealing with a region of nearly irrotational 

flow, we may consider the perturbation velocity given by u =  V4>, where $ (x ,y ) is 

some velocity potential.

Hence Bernoulli’s equation becomes

p 4  P^§~  =  0 to first order. (We consider the perturbation flow such that



From equation (2.2), we have

P + p U ^  = 0

Hence $  -  <f> = f ( y )  and so § |  =  f£ +  f i v ) -

However, from equation (3.4), we have —i► 0 as x -> —oo.

Since u — V4> is the perturbation velocity to the uniform stream  at x  =  — oo, 

we also expect th a t 0 as .t —> — oo.

Hence

u =  =  V(j> in the irrotational flow domain of the fluid.

This gives us the boundary condition tha t w —> 0 outside the wake. We now 

finish this subsection by looking at the form of the function w.
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3.2 T h e stream  fu n ction  ty.

The streamfunction is a measure of the flux across a line joining two points in the 

fluid (see Lamb Hydrodynamics art 59 and chapter 2 appendix 2.3.1). Thus if extra 

fluid is not injected into the fluid stream, (if there are no sources of fluid), then the 

streamfunction is defined at every point within the fluid.

Therefore we may define a streamfunction \&u of the velocity perturbation u 

within the whole fluid. (Fluid does not flow across the body boundary and so there 

is no net flux out of the body boundary.)

However, if we consider the potential flow V< ,̂ there is a discontinuity line along 

y = 0, x  >  0, and a region where Oseen flow is invalid within (x  +  R )2 -f y2 < R 2-

The discontinuity line is equivalent to a line of multipoles, some of which may 

be sources, and there may be a net flux out (outflow of fluid ) from the region 

(x + R )2 + y2 < R 2.

Thus the streamfunction of the potential flow V<̂ , is ill defined due to the 

presence of sources within the fluid. However, if we define a  cut along y =  0, x > 0 

then is defined uniquely everywhere, with the possibility of discontinuities in 

and its derivatives on the infinite half line y =  0, x > 0.

Hence there are possibly discontinuities in $  — ^  and its derivatives along

the infinite half line y = 0, x > 0. We now investigate the discontinuities in ^  and 

its derivatives.
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3.2.1 T he discontinuities in and its derivatives.

We find which derivatives of \Er are continuous and which may have discontinuities 

on the infinite half line x > 0, y =  0.

Since the pressure p equals —pU |^ ,  and the potential satisfies Laplace’s equation 

0  =  — , it is possible to have discontinuities in <j) and along the infinite half

line x  >  0, y — 0, but all other derivatives of (j> are continuous; this follows from 

the assumption th a t the pressure and all its derivatives are continuous everywhere 

in the fluid.

We also assume th a t the velocity and its derivatives are continuous , and since

“  \  dx  ’ dy )  ^  \  dy  ’ dx

then it is only possible tha t there are discontinuities in $  and all other 

derivatives of ^  are continuous.

The discontinuity in on the infinite half line x >  0, y ~  0 gives a discontinuity 

term  \fr0 in ^  which is obtained by integration with respect to x.

However, we also obtain a term  \Pi giving a discontinuity in ’F on the infinite 

half line giving a velocity field which is continuous within the fluid;

this is obtained from the discontinuity in the streamfunction tj)  ̂ due to  the outflux 

of the velocity potential Vtft from the circular contour (x — R )2 -{■ y2 =  R 2. In 

section (3.3.2), we see th a t this outflux is related to the term  A log r  in the Fourier 

expansion of <f) from the origin. (The velocity obtained from the source potential 

A lo g r is continuous and so the discontinuity term  m ust also have continuous 

derivatives.)

Thus the discontinuity in ’F is and the discontinuity in is We

next find the functions and \I/i and so we first obtain the differential equation 

satisfied by 1F.
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3.2.2 T he differential equation satisfied by th e stream  func­
tion  *F.

W hen we substitute the equations (3.2) into the Oseen equation (2.2) we obtain a 

differential equation in w:

Equations (3.2) are:

Equation (2.2) is:

Hence we obtain

d

d<j)
dx

u = V<j> + w 

= - ( 1  /pU)p

U ^  = - ( l / p ) V p  + u ( V 2)u

+ m) = —(1 / p ) Y p  +  W (V £  +  w)

From equations (3.8) and (3.9) =  —(l/pU)p  and V 2 »̂ =  0 hold everywhere

within the fluid.

Therefore we obtain the equation

rTdwU ~  _
dx

with the boundary condition th a t w — 0 outside the wake.

hv2. 
dyWe introduce a stream  function ’F since =  0.

We write

Letting ^  =  2k, we obtain the equation

w
d®
dy  ’ dx

(3.10)

4 ' 4 ) ( v’ - 0 * - °
Thus (V 2 — =  const =  E  and letting ’F# — $  +  we obtain
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f v 2 -  2k - ^ \  =  0 (3.11)

We now let #  — ekxF.

Substituting into equation (3.11) we thus find th a t F  satisfies the modified 

Helmholtz equation

(V 2 -  k2)F  =  0 (3.12)

with separation of variable solutions K n(kr ) sin(n0 +  7nic) and I n(kr) sin(n0 +  7„j) 

(We will find the expansion for F  in symmetric flow in section (3.3.4) and in anti­

symmetric flow in section (3.4.4) using Fourier’s theorem given in appendix A.)  The 

terms I n(kr ) are not suitable since we must satisfy the condition th a t ( ^ ,  —1~) —> 0 

in the far field.

From appendix (3.8.1) a function (J) satisfying Laplace’s equation obtained from a 

line distribution of normal dipoles of strength S(p)  along the line l(p) parameterized 

by p has a discontinuity across the line a t p of value 27vS(p).

The function — K 0(kr) satisfies the Helmholtz equation and as r  —> 0 then 

—Ko(kr)  —>• ln r ,  the Laplace source. Hence using the argument in appendix (3.8.1), 

we can show th a t a function F  satisfying the modified Helmholtz equation obtained 

from a line distribution of (Helmholtz) dipoles of strength S(p)  along the line /(/?) 

has a discontinuity across the line at p of value 2/xS(p).  The (Helmholtz) dipole is 

derived from the (Helmholtz) source —Ko(kr).

Since F  =  e~kx4/, there is a discontinuity line in F  along y — 0, x  > 0 and so 

for the function

F(x)  =  -  j H  S ( 0 - ^ K 0[k{(x -  0 2 +  y2}1/2] ^

which satisfies the modified Helmholtz equation , then
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=  «-*■ [ * ] £ £  =  2 *S( x )

We use this equation to find the functions ^o(x )  and \Pi(a;) which give the 

discontinuities in #  and §~. These discontinuities both  occur in symmetric flow 

which is discussed next.
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3.3 S ym m etric  flow .

We define two particular flows Us an<i  Vla which we call the perturbation velocity to 

symmetric flow and antisymmetric flow respectively, and we show th a t the general 

perturbation velocity u is given by u =  us  +  uA

The perturbation velocity components u,- are split into two parts symmetric Uis 

and antisymmetric U{A about y =  0:

Ui  -  uiS +  uiA , Uis(x , y ) -  u iS(x , - y )  , u iA(x, y) = - u iA(x,  - y ) , i =  1,2 

The incompressibility condition gives

s(x, y) +  y) +  v) +  § z u*a(x, v) = 0

Substituting in the above equations we obtain

J L Wl5(z, - y )  -  ~ }~u1A(x , - 2/) +  ~ u 2S(x, ~y )  -  ~ jU 2A(x, - y )  =  0 

Making the variable change from y to -~j/, gives

^ « 1  s(a , </) -  y) -  -jLu is (x ,  y)  +  ] L uia (x ,  y ) =  o
Thus if we define Ms +  (^is? ^ 2a) and U.A =  (^14?«2s ) then V .«s =  0, V.Ma =  0.

Since the boundary condition u} .n is linear, where td is the fluid velocity, we 

solve for the two flows Ms and uA separately and the perturbation velocity is given 

by m =  Ms +  Ma -

Ug and uA are defined as the perturbation velocities for symmetric flow and anti­

symmetric flow respectively. Thus in symmetric flow the axis y =  0 is a streamline, 

and the flow for y <  0 is a reflection of the flow for y >  0 about the line y =  0. We 

now consider the properties of the pressure p, potential </> and the streamfunction ^  

of w which is in symmetric flow and \£a in antisymmetric flow.
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The pressure p, potential (f> and stream function if) in sym m etric flow and 

antisym m etric flow. From Oseen’s equations (3.2) and (3.3), we have

j7 ^  =  - i v p + ( j / V 2)« ,  V 2p =  0
ox p----

In symmetric flow, we see th a t p{x , y ) — p(x, —y ) =  constant =  0 since p is as­

sumed continuous everywhere. Similarly in antisymmetric flow p(x , y) =  —p(x, —y). 

The potential <f> is defined as

/ X

p(x f, y)dx'
■oo

Hence in symmetric flow the potential (j> is symmetric about the line y — 0 and 

in antisymmetric flow the potential (f> is antisymmetric.

The streamfunction is defined as where

( d $ u d y u\  J r 7 , d ^ A
U r ’~& rJ a n d Y ± =  )

In symmetric flow and ^  are antisymmetric and so is antisymmetric about 

the line y =  0 .

Similarly, in antisymmetric flow Vl/ is symmetric about the line y — 0.

We now consider the discontinuities in (f>, #  and their derivatives for symmetric 

flow.

In this section, we find the discontinuities in (f> and for symmetric Oseen flow, 

and thus find the complete Fourier expansions of </> and 

This section is divided into the following parts:

3.3.1 The discontinuity in symmetric flow in <f>.

3.3.2 The expansion for <f> in symmetric flow.

3.3.3 The discontinuity in ^  for symmetric flow.

3.3.4 The expansion of 4/ in symmetric flow.
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3 .3 .1  T h e  d isco n tin u ity  in  <j) for sy m m e tr ic  flow .

In symmetric flow, <j> must be symmetric about y =  0 and so <j> must be continuous 

across y =  0.

Since =  —(l/pU)p,  it is continuous everywhere within the fluid.

However, we may expect a discontinuity in across the line y = 0, x  >  0. 

Across y =  0, we know th a t =  —( l i s  continuous and thus must

therefore also be continuous. So:

This implies that:

and therefore

JL ? £
dx dy

d_ ( d i  
dx  | dy

y = o +

y=o+

d ^ d l
dx  dy y = 0 _

d(j)
dy y=0_

d(j)
dy y=o+

d l
dy

constant =  B
y=o.

(3.13)

We find the potential <j>o which gives the required discontinuity. Consider first 

the potential of a line of sources from x  =  0 to x =  A.  This potential is Re[(j>A] 

where:

f A(/>A = log ( z - ( ) d (
Jo

=  [ - (z  -  C) log(^ -  C) +  (z -  C ) ] £  +  F (A )

= {z  log z  — z  — (z — A)log(^ — A)  +  z  — A}  +  F(A)

We want the potential <j>A to be finite as A —» oo. Thus we choose F(A)  such

th a t as A  —> oo then ^a(^) -f*oo for all z.

We let 4>oa =  liniA^oo <f>A

Choosing /a (^ )  =  A  -f (z — A)log(Ae,7r) +  2 we obtain
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</>oa (z ) =  2 log z — z — (z — A)  log(2 — A) z  — A  + A

+(z  — A.) log(Ae,7r) -f z 

=  zlog £ — (z — A)  log(l — z /A )  +  2:

As A  —» 00,

z lo g (l — z /A )  —> 0 and

A log(l — z /A )  —¥ A[—z / A  — ( l / 2 ) ( z /A ) 2 — ( l / 3 ) ( z / A ) 3

—z

Thus ]xsila->oo{<I>oa(z )} =  2 log 2.

We have found a potential Re{(j>oA{z)} which has the correct discontinuity of 

equation (3.13) and satisfies Laplaces equation.

However, this function isn’t symmetric about y — 0. Hence the symmetric 

potential 4>o which satisfies the correct discontinuity is given by

(j>o = ~ ^~ R e {z lo g (ze ~ t7r)} (3-14)
Air

for 0 <  9 < 2ir.

We now verify th a t the potential Re{<j>o(z)} gives the correct type of discontinu­

ity.

We consider the complex potential $ 0 =  ^ z \ o g  ze~%1T. Taking the derivative,

^  =  _ s ( 1 + l o g r + ^ _ x)) =  ^ _ ^ 2

So we have th a t /̂/~ — B0~'Kay  2;r

W hen 9 — 0, ^  =  0 and when 9 =  2ir, ^  =  B.

The potential (j>o =  i2e{$0} has the discontinuity given by equation (3.13).
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Al*>ffc =  - £ ( 1 + I n r ) .

However, from equation (3.2), po =  —pU ^~ ,  where po is the pressure term  

associated to  the potential term  (j>o.

Therefore p0 =  |^ (1  -j- In r).

However, the pressure tends to zero as r —► 0, and so B  =  0.

64



3 .3 .2  T h e  ex p a n sio n  o f  0 in sy m m etr ic  flow .

The potential (f) is represented by <j> =  (j>o +  <j>\, where <f>\ is continuous everywhere.

We now consider a new origin at ( - R , 0) with new cartesian coordinates (x *, y*). 

Thus (x *, y*) =  (a: +  i2, y) and we let the polar coordinates from this new origin be 

(r*,0*) and so r*2 =  (a: +  R )2 +  y2. Hence from section (3.1.2) we see tha t Oseen 

flow holds in the region r* > R.

R.£OIDi\) Of  
O6S0V F/jcW 
r* >R

Figure 3.2: Diagram showing the region of Oseen flow with origin centered at the 
body.
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We now consider Fourier’s theorem . Although it would seem natural to  apply 

Fourier’s theorem for the variables (r*, 0*) we find tha t because the discontinuity line 

is along x  >  0, y =  0 it is more useful to apply Fourier’s theorem for the variables 

(r, 0). Fourier’s theorem for Laplace’s equation is given in appendix (A). Since <j> is 

symmetric, we expect the potential <f> to be of the form

71=00 J-J

<(> =  00 +  (A'nr n +  Anr~ n) cos nO +  - — — log r 
„=1 V 7 2wPU

where A'ni A n and D  are constants.

However, applying the condition tha t =  —(I fpU )p} where the pressure p  is 

bounded at infinity, the above equation is considerably simplified.

For n >  2, the terms A'n in the potential expansion give pressure terms of order 

at least

p = - p v i t = o ( r )

Thus A'n = 0 for n > 2.

Therefore, as r  oo, we obtain

d</> , 1 >. A,
d x ~  {PU ) p ~  1

However, from section (3.1.1) we take the pressure p(x  =  —oo,?/) — 0. Thus 

A\  =  0 and

n=oo A TJ
<i> = <f>0 +  —  cos nQ-\r - — — log r (3.15)

n = l  r "  2 w p U
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3 .3 .3  T h e  d isco n tin u ity  in for sy m m e tr ic  flow .

There is a discontinuity term  'I'p in which is calculated from the discontinuity in 

the velocity V<ftp and also a discontinuity term  in \Ef due to  the application of the 

conservation of momentum law.

Therefore the discontinuity in =  \l/p +  ^ 1*

The discontinuity in the velocity along the infinite half line x > 0, y ~  0 is given 

by equation (3.13)

d<i> 0
dy

d<t>Q

y=o+ y = 0 -

where

<t>o =  ~ 7 ^ R e { z l o g ( z e t i r ) }

From section (3.3.1), we show th a t the constant B  =  0 and so ^p =  0 and \&p =  0. 

We may also show this result by following the calculation described below. The 

full details of the method is given in the apppendix section (3.9).

The calculation is divided into four main parts:

1. The evaluation of the discontinuity term  ^0 in the stream  function

2. The integral representation of the function Fq = e~kx'&o.

3. The evaluation of the integral in the far wake, particularly as r —> 00, 0 —» 0.

4. The evaluation of the velocity term  u0 =  Vffip +  V ^p  as r —» 00, 9 —► 0. 

Thus the above method calculates the velocity term  Uq in the far wake close to

the discontinuity line y ~  0, x > 0.

We find th a t for B  ^  0 we obtain the result Uq —> 00 in this region, which implies 

th a t u —» 00. Thus the condition of a uniform stream at infinity is violated and so 

we must have B  =  0.
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The first part of this section is to find the discontinuity in the stream function
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3 .3 .3 .1  T h e d iscontin u ity  \&i.

We now consider the discontinuity term  \&i. There is a discontinuity term  \&i in 

^  which is related to the term  —■[/ log r  in the expansion of <j) given by equation 

(3.15). We will find this relation below. We introduce a cut along the infinite half 

line y = 0, x > 0, and thus the discontinuity in is given by

r2ir Q q f
^ i ( x  >  0 , y  =  0+)  -  >  0 , y  =  0„ )  =  -

We consider the streamfunction \&u of the velocity u

= %  + $

where is the streamfunction of w and is the streamfunction of V ^ .(See section 

(3.1.2).)

Since there is no flux out of any closed contour around the body, then

f 4 =  0Jo

Therefore we obtain the relation

d ^ u 
~d0

r ^ M -  i 2"
I  l e d 9 - ~ J 0 ~ W de

However,

1 8 ^ 4, d®# d(j> d<j> .— —-  =  Vffig.ng =  _ cos 9    sin 0 =  —  cos 9 +  —  sin 0 =  V< .̂rer =
d<j>

r d9 dy dx dx  d y --------------------dr

where n$_ is the unit normal in the 9 direction and nL is the unit normal in the 

r direction.

Thus
QS

^i(®  >  0,2/ =  0+) -  >  0,y  =  0_) =  — r d0
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We refer to the expansion of <f> given in section (3.3.2) equation (3.15).All the 

terms in the expansion except for the term  -2̂ pU log r give no contribution to the 

integral / 027r %rdO.

Therefore

Hence the discontinuity in ^  is

^i(®  > 0yy ~  0+) -  $i(a? >  0, y  =  0_) =
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3.3.3.2 The integral representation of the function \&i.

Refering to appendix (3.3.1), the potential F(x)  due to a Helmholtz dipole line along 

y =  0, x  >  0 of strength S{x)  is

/•oo f )  .

F{x, y) = ~  JQ S ( t ) - ^ K 0[k{(x -  ( ) 2 +  y2}1/2]d( 

and has a discontinuity across the half line y =  0, x > 0 such tha t

= 2 *S(z)

(For small r, Ko(kr) —> — lo g r and J^(logr) is a dipole orientated along the 

y-axis.)

We consider the equation =  ekxF\. Then F±(x,y)  satisfies the modified 

Helmholtz equation and has a discontinuity across y =  0, x >  0 such tha t

[fi (*)]£& = ^uCe~kx

Therefore

y*00 /I /)
Fi(x,  y) = -  jf  — e- k*— K 0[k{{x _  £)2 +  y2}1/2]d£ (3.16)

We now consider the expansion of for symmetric flow.
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3 .3 .4  T h e  ex p a n sio n  o f  for sy m m etr ic  flow .

We first find the differential equation satisfied by the velocity w of the Lamb- 

Goldstein velocity decomposition u =  V<ft +  ML where the potential (j> is defined 

as ^  ^ f  “  / - o o W ^ y )  +  ^ iSr-dx '} .  This is found by substituting the ve­

locity decomposition into Oseen’s equations for steady two dimensional flow given 

by

u?p = -ivp +  (i/V2)u
O X  p -----

Substituting u — V</> +  M into the above equation gives

TTdw o 
U -r— =  i/V w 

ox

since

(V2)W  = f i r )  = 4 r  ( = v (v V) = 0dxidxi \ d x j  I dxj  \ d x

and %  = ~WP-

The streamfunction of the velocity w gives

*&= a n d s o

( v 1 - ~ ) ^  = e  -> (V2 - <*E = 0\  V OX)  y V ox  J

where ^  and E  is a constant.

Splitting the function e  into an antisymmetric part ^Es  and a symmetric part 

Ea-, we thus obtain

^Es  and -f* ^Ea where \I/fl and are the streamfunctions in

symmetric and antisymmetric flow respectively.

In symmetric flow, the streamfunction is antisymmetric about the line

y =  0 and so the term  — mus t  be zero which implies th a t E  =  0 in symmetric
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flow. Hence in symmetric flow

U d
r -

In antisymmetric flow,

-  - 7 T  I =  0v ox I

( v 2 -  * Ea =  0 and <6a =  +  $ E„ (3.17)

We now give the expansion for \Er in symmetric flow. Following the method in 

section (3.2.2), we consider the function Fs ~  e~kx^ 8 which gives

(V 2 -  fc2)F , = 0 where 2fc =  —
v

Applying Fourier’s theorem from appendix B.2, since Fs — Fq — Fi is continuous 

everywhere and is an antisymmetric function about y =  0, then

f 8 - f 0 - f 1 =  '22  / « ( r ) sin
n = l

where

fn{r) =  -  F [ F ,  -  F„ -  Fi] sinBd9
7T JO

Applying the operator Hite)}
to the above equation, and since (V 2 — k2)F8 — 0, (V 2 — k 2)Fo = 0 and 

(V 2 — k2)F\ =  0, then we obtain the equation

r2f n(r) +  r / '  (r) -  [k2r2 +  n2]fn(r) =  0

which has solutions I n(kr) and / f n(&r), of the modified Bessel equation. Thus 

Fs — Fo — F\ is expressed in the form
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oo

F. -  F0 -  f i  =  Y J{bnI{n(kr)  +  b'nI„(kr)}  s in n9
n = 1

where bn and b'n are constants.

The streamfunction in symmetric flow is

=  ek*F,
n=oo

=  $0 +  *1 + e‘(’'“ s9) £  {b„Kn(kr) +  b'„In(kr)} sin nB
n— 1

However, we must satisfy the boundary condition at infinity th a t

f a * .  d * 8\
uk =  ——, — -— —> 0 as r —> oo 

\ d y  dx j

This is satisfied by the terms K n{kr) —> yjjj^e~kr as r —* oo. (From Abramowitz 

and Stegun pg 378 9.7.2. )

But,

— )  +  . . . I 1

ekr f 4 n 2 —

Thus b'n — 0. (From Abramowitz and Stegun pg 378 9.7.1.)

Thus the streamfunction in symmetric flow is

oo
+  eM*-co.«) £  b„K„(kr) sin nB (3.18)

n - 1
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3.4 A n tisy m m etr ic  flow.

In antisymmetric flow, the potential (j> and the pressure p  are antisymmetric about 

y — 0 and the streamfunction is symmetric about y =  0.

Thus in antisymmetric flow we have a discontinuity in <j> along y — 0, x  >  0. 

This is considered next.

3.4.1 The discontinuity in </> for antisym m etric flow.

In antisymmetric flow, there is a discontinuity in <j> along y = 0, x > 0. Thus

“  « * . - » ) ]  =

However, we know th a t the pressure p — — is continuous along y =  0, x > 0.

Thus

j u i L{x) = =
=  Hm p{x,y) - p ( x , - y ) }  = 0

Thus is a constant

From appendix section (3.3.1) the potential due to  a line of dipoles of strength 

along the line y =  0, x > 0 has a discontinuity along this line.

Thus we express the term  <f>i giving a discontinuity in (f> as

*  =  xp-So / ;  j ^ los k *  -  c>2 + y *? nd( +

where A(ari) is chosen so th a t as x% —> oo, <j)\ tends to a limit.
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This integral is solved more easily by using the complex variable z  — x -f iy. 

Thus (f>i has the same discontinuity as jRe{$i} where

** =  (3-i9) 

=  2vpU  { "  j f i#og(z “ ° ] +  A("0}
since ^ lo g ( z  — — —id(z — f). Therefore

$1 =  -7T~FT lim {ilog(« -a?i )  -  z'log* +  A(®i)}2i7TpU *1“‘■oo v

and if we choose A(arj) =  —ilog(a!ie”r), then

r

#1 =

=  i 2 ^ U loSZ

In polar coordinates, i \a g z  =  i{logr +  i6} — zlogr — 9. 

Thus

2irpU

The function </>i is antisymmetric about y =  0 and therefore

[We now check th a t (f>i and its derivatives have the correct discontinuity along 

y — 0, x >  0:
L L

Mo=o -  =  - 5 ^ 7 ( 0  -  2 *-) =  ^ 7
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and
d fa _  L 06 _  L  
dx  2irpU dx  2trpU

which is continuous along y — 0, x > 0.]

sin#
r
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3 .4 .2  T h e  ex p a n sio n  o f  cj) in  a n tisy m m etr ic  flow .

In antisymmetric flow, <f>a — <f>i is continuous and we give an expansion for this

at least of order r as r  —* oo:

B'n gives p = — = 0 ( r n_1). Thus B'n = 0 for n > 2 for the pressure

condition at infinity to be satisfied.

The potential term  involving the coefficient B[ is B[r sin 9 = B[y.  However, 

since <j> =  —pU f ^ 00p(xf,y )dx ,1 then -7̂ (f>(—oo,y)  =  0. Thus B[ = 0.

Therefore the expansion for the potential <f) in antisymmetric flow is

function by applying Fourier’s theorem. The potential (j> satisfies Laplace’s equation 

and from appendix (A) we see th a t

n+ oo /

But the term s in the expansion for B'n where n > 2 give terms in the pressure

(3.21)
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3.4.3 T he discontinuity in ^  for antisym m etric flow.

In antisymmetric flow, the streamfunction ij) is symmetric. Thus we may expect 

a discontinuity in the streamfunction derivative but no discontinuity in the 

streamfunction ifi.

However,

u = V(f> 4- w.

and so
d(j> dij) 

W l ~ d i + &y

Since p  =  — and p, u, and their derivatives are assumed everywhere con­

tinuous, then is continuous everywhere.

Thus in antisymmetric flow, we expect no discontinuities in the streamfunction 

\Er and its derivatives.
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3 .4 .4  T h e  ex p a n sio n  o f  ^  for a n tisy m m etr ic  flow .

In antisymmetric flow ^  and from equation (3.11) we see th a t

where =  $ Ea ~  ^ r -

Letting ^  =  2k, and by following the method in section (3.2.2) this gives

(V 2 — k2)Fa =  0 where Fa =  e~kx^Ea

Applying Fourier’s theorem from appendix (A), since Fa is continuous everywhere 

and symmetric about y =  0, then

oo
Fa =  J 2 g n{r) cos n0

n = l

where
1 f 2v

gn{r) = — Fa(r, 0) cos n0d6 
7T Jo

Applying the operator

H U ' S ) }

to  the above equation, and using the operator (V 2 -  k2)Fa =  0, gives

r2gn(r) +  rg'„(r) -  [k2r2 + n2]ff„(r) =  0

which has solutions I n(kr ) and K n(kr ), of the modified Bessel equation.

Thus Fa is expressed in the form

OO

Fa =  J 2 { anK n(kr ) +  aU n(^r )} COS n0
n = 0

where an and a'n are constants. The streamfunction in antisymmetric flow is
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— e r a
£itv

n” oo p
=  efc(rcos0) ^  (a niirn(A:r) -f an/ /n(fcr)} cos n0} -  — (r cos 8)

n~Q

However, we must satisfy the boundary condition a t infinity tha t

( d V a d V a \u, — __— — - — —> 0 a s  r —>■ oo
\ d y  dx  J

This is satisfied by the terms K n(kr) since K n(kr) —> y ^ f” e_fcr as r —> oo. (From 

Abramowitz and Stegun pg 378 9.7.2. )

But,

I (hr) » ^  f l  t4”2" 1) !  1
1 V2irkr\ 8 kr > f

Thus a'„ =  0. (Prom Abramowitz and Stegun pg 378 9.7.1.)

This gives at infinity

Therefore, E  =  0 in order th a t the boundary condition a t infinity is satisfied. 

Thus the streamfunction in antisymmetric flow is

OO
■So = e',(rco,<l) Y ,  a j< n ( k r )  cos n9 (3.22)

n = 1

81



3.5 T h e com p lete  expansions for <f>, 'I', v e lo c ity  
and pressure.

3.5.1 T he expansion o f th e pressure p.

We consider the Fourier expansion for p. The pressure satisfies Laplace’s equation 

and we apply Fourier’s theorem (see appendix (A) ) to give an expansion for the 

pressure p. The pressure is taken to tend to zero at infinity, (see section (3.1.1) ) 

and so we obtain p  as an expansion in the form

oo

p(r , 0) — ^ 2  { {Cnv~n cos nB -f Dnr~n) sinn#} (3.23)

82



3 .5 .2  E x p a n sio n  o f  th e  p o te n tia l </>.

We combine the expansions for the potential in symmetric flow, <f>81 equation (3.15) 

and antisymmetric flow, <j>ai (equation (3.21) ) to obtain the general expansion for 

the potential <j>.

~  o D tt log r ~~ L ^! rrT ? + E ( ^ r  ") cos n9 +  (Bnr " ) s in nO (3.24) 
ZirpU Z'KpU i

From equation (3.2), the pressure p and potential (f> are related by

TM
p =  ~ p U d i

Differentiating the above expansion with respect to x  term  by term  we equate 

the coefficients in the pressure and potential expansions.

D cos& L  sin# TT f . cos(n +  1)# „  s in (n -f 1)#
p = - - -------------   + P ^ Y A  A nn  \  A  J +  B nn —2i: r 2w r \  r («+i) r(n+1)

D  cos 0 L  sin 9 , cos n9 , .sin
+  p u  £  | ( "  -  ~27r r  27r r

Therefore Ci = — Di  =  and for n > 2 Cn =  pU(n — l ) An_i,  D„ 

pU(n  -  l)i?„_i.
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3 .5 .3  T h e  ex p a n sio n  o f  th e  fu n ction

We combine the expansions for the function in symmetric flow, 

metric flow, ^ a, to obtain the expansion for $  in general flow

{ oo oo 'I
anK n(kr) cos nB -f- bnK„(kr)  sin nO ,

n=l n=l J
where

=  - e"  f  2^ l y 1̂  -  f)2 +  y2)1/2]dC

and antisym-

(3.25)
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3 .5 .4  T h e  ex p a n sio n  for th e  v e lo c ity .

The perturbation velocity is given by

u =  V(j> +  w

We first consider the expansion of V<f>, From equation (3.24), we differentiate 

term  by term  to obtain

where E n, Fni Gn and Hn are constants related to the constants D,  L, A n and

differentiating w.r.t. y eveny term  in the expansion of 4/ from equation (3.25). 

We first consider the term  (K„(kr ) cos nB).

By differentiating we obtain

(3.26)

We next consider the expansion of w. We find the expansion of wi =  by

Tl
kK'n(kr) sin 0 cos n B  K n(kr) sin nB cos B

= ( l / 2 ) k K n+i(kr)  sin(n +  1)0 — ( l / 2 ) k K n- i  (kr)  sin(n — 1)0

since from Abramowitz and Stegun equation (9.6.28), (pg 376) 

kK'n(kr) -  * K n{kr) = k K n+1(kr) and kK'n(kr) +  * K n{kr) = k K ^ k r ) .  

Similarly,

r\
—  (K n(kr) sinn0) =  ( l / 2 ) k K n- i ( k r )  cos(n — 1)0 — ( l / 2 ) k K n+i(kr)  cos(n +  1)0
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Thus u;i has the form

f)\D ( 00 00
+  ekx \ ^ 2  c'nK n(kr) cos nO +  d'nI<n(kr) sin 

^  ln=0 m=1
where c'n and d'n are constants. We now consider the function 

From equation (3.16),

where =  [(rr — £)2 +  y2]1̂ -

We change the variable of integration to p =  £ — a; to  obtain

* ' — 3

where rp =  [p2 +  j/2]1/2.

Differentiating w.r.t. y, we obtain

d D  r  . a2
C e~krw Ko(kr,)dpdy 2k  pU J-x d y ‘

Using the condition th a t (V 2 — k2 )Ko(kr) =  0, then

d ^ i  _  D f°°
dy 2irpU

We now consider the integral

/ “  e - k" { k 2 Ko{krt>) -  ^ K 0 (krp) J  dp

/ OO f j p

e- kPW K °{kr’’)dp

Integrating by parts, we obtain

e~kp^ K o { k r p) / OO

-X

00 - k p d
dp

R 0 (krp)dp
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= ehx- ^ K 0(kr) +  fc |  [e-^/CoCfcrp)]”  +  k j T  e~kp K a(krp)dpj

=  ekx— Ko(kr) -  kekxI<0(kr) +  P  j  erkp K 0(krp)dp 

Therefore

and u;i has the expansion

( OO oo "1
wi =  efcx < coKo(kr) +  cnKn(kr) cos n<9 -f- dnK n(kr) sin nO >

I n = l  r»=l J

where c„ and dn are constants.

(3.27)

(3.28)
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We now consider the expansion of W2 . Following the same method for finding the 

expansion of nq, we differentiate term  by term  w.r.t. x the terms in the expansion 

for and similarly we obtain

W 2  _  =  e'nK n(kr)coan6  +  ^  f n K n(kr) sin 0
o x  Ox n=1 n=1

where e' and f '  are constants.n v ti

We now evaluate 

From equation (3.16),

where rxi =  [(# — £)2 -f y 2]1̂ 2- Differentiating w.r.t. x 

d y  1 , ,T. D  t ,  r  _ut d  d
dx  2 ,irpU Jo dy dx

We consider the function

where = [(z — £)2 +  y2]1̂ 2- We change from the variable x  to the variable 

p = i  — x, and so

where rp =  [p2 -j- y2]1/2. 

Therefore

dx

The variable £(p) =  p  +  x, and so changing the variable of integration and then 

differentiating by parts we obtain
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d . T D
-zr1  =  ^ !  +  -----

O X 2irpU

e' kPT y K ^ + k j  e hp-^ -K 0 (krp)dp

D t* d
2wpU dy  

Thus W2 has the expansion

K 0 (kr) (3.29)

u,2 =  e H $ >  nK n(kr) cos nO -f ^  f nK n(kr) sin nO
. n = l n=l } (3.30)

We expected the expansions for ttq and w2 to be of the form given by equations 

(3.28) and (3.30) respectively since W\ and w 2 are continuous functions which tend 

to zero as r —*■ 00 and which satisfy the modified Helmholtz equation.

(V 2 — 2 k ~ ) (w i ,W 2 )  = (0,0)

The coefficients e„ and /„  of equation (3.30) are related to the coeffidnts cn 

and dn of equation (3.28) since the continuity equation V.«> =  0 is satisfied by the 

velocity w.
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3.6 T h e form  o f  th e  so lu tion  in th e  far field  w ake.

In the far field,

^ - g - i o g  r - ^ L z i )
* 2ttPU 8 27T pU

and

$  ~  +  s , n ^ e kl-x- r'>
V 2 kr

since from Abramowitz and Stegun equation (9.7.2) (pg 378),the asymptotic 

expansion of K n(kr ) is

«.(*■> ~  v ^ * - *  ( 1 + f w i + -

and s = 3 where the coefficients an are given in section (3.4.3).

Thus in the far field wake,

T T , 7T —fel/2
~  ^1 +  s \/-2 ^ e 2*

From equation (3.27), we have tha t

dWi D d D
dy  2irpU W <o(kr) ~  kKa{kr ) \  =  2%pU { ~ k K ' {kr)  C° S '  -  kKo(kr)]

and so in the far field wake

d V t D
:k<

dy  7rpU V 2 Jcx

From equation (3.2.9), we have th a t

7T - ky2
e 2x (3.31)

d

dx  2itpU dy
Ko(kr)

D
2ir pU

kekxK \ (k r )  sin#
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and so in the far field wake

d $ i  _  D  [ fa t  y  / q q o ^

“ " V ? V T ^  ( }

The second order terms for the far field wake velocity are due to the stream 

function term  in antisymmetric flow

V 2k r  V 2k x

This gives

d ^ a  d  f  j 7r ky* 1 I 7r (  1 k y 2
w*° = “ a r  =  -  &  r f e e 2'  / =  - s v  2 ^ e 2* r  &  +  2^

and

v ^ a  d  f  I It I 7r |  &7/1
“’lo =  ^  =  % r f e e !* / =  5v 2 k x \  e 2'

9  f  I  7 T  „ / y d l  /  7 T  f  & 7 / ^

d y

Thus in the far field wake,

/ D  . I 7T 57/ Ttk _ky l  D  j k l t  y  fc;;2 , / 7T J 1 k

V 2 t e e 2‘ _ T V 2 ^ e 2" ’ 2ttPU \ Y l ^ e 2‘ + S \ 2 k ^ e \ 2 x  ~  2

(3.33)

This is an im portant result; we note th a t the order of the function 7n2 is 2*

in the far field, we shall see later tha t this implies th a t there is no contribution to 

the lift on the body due to a wake traverse.
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3,7  Ch3 A ppendix: T he stream  fu n ction  xj).

We can define a streamfunction ip if the integral

® u .n d l  — I 'S/.uds =  0
Jc Js

where C  is a closed curve and S  is the area within the closed curve C .

For our problem, taking a closed contour enclosing the body , §c  u .n d l  is non 

zero. Thus in order to define the streamfunction ip we consider a simply connected 

region of fluid by introducing the half line cut along y — 0, x > 0.

Thus in the region defined in this way,

f  'V.uds =  0 
Js

due to mass conservation and so

f  V_.uds =  u .n d l  =  0 
Js Jc

Thus we may define the single valued function ij? such th a t

Jf pi (uint +  u2n 2)dl
Po

where n is the unit normal from left to right for increasing positive dl and po is 

a reference point and p is a general point.

Thus
dib dib

dip = ——dx -f —- d y  =  u\dy — u2dx 
ox  dy

and so
dtp dip
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3.8 C h3 A ppendix: T he d iscon tin u ities  due to  
source and  d ipole  lines.

In this section, we look at the discontinuities in the potential function and its deriva­

tives which satisfies Laplace’s equation due to source and dipole lines.

We first consider the discontinuity in the potential due to  a dipole line.

3.8.1 T he discontinuity due to a dipole line.

We next consider the discontinuity due to a particular line of dipoles; we consider 

the dipole line along the axis y = 0, the dipoles orientated in the positive y direction 

and having strength y(x).

Thus the potential due to such a line of dipoles is given by

To find the discontinuity, we consider this integral for y =  e -> 0.

We break the integral into three parts:

/■*-« ri(()y r*+t f°° q(Q  y
j-oo (x — C ) 2 +  y2 Jv-s (x — f ) 2 +  y2 Jm+s (x “  C ) 2 +  y2

where y = e —> 0 and S > 0 is small, but 6  e. 

Thus

[*-" v(()e  ,  r ~ 6 'i(C) J,  _  n ( ,
J-oo ( ® - C )2 +  C2 J-oo ( x - 0 2

Therefore,

i  =  j ^ ( x +  c )

Jx-s (x — c) +  v-s (x - ( ) 2 + y 2

where |f  — a:| <  8  —> 0
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and so y(x  -f £ — x) = 77(a) +  (C ~  *)*/(x ) +  ••• 

Hence
rx+8

ri(x) /
J x —o

y
•8 { x - C Y  + y 2

d{ + 0(6)

where \( — a | =  0 (6 ). 

Thus,

I  =  77(a)

As y = e —>• 0, >00

and so for 7/ —► 0_|_,

tan
x

+ 0(£)
x —8

1  -> <?(*){|- -  ( ~ | ) }  =  *»?(*)

For y —> 0_ ,

I  -> r / ( x ) { ~  -  | }  =  — 7r»/(a:) 

Thus the discontinuity in /  across the dipole line is

I(x,y)\y^o+ -  I(x,y)\y->0 -  =  2 tt 77(a) 

We now consider the discontinuity due to a source line.
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3 .8 .2  T h e  d isco n tin u ity  d u e to  a sou rce lin e .

We consider the discontinuty due to a particular line of sources; we consider the 

source line along y — 0 and having strength r](x).

The potential due to such a line of sources is given by

/oo .

* ? ( C ) l ° g  { 0 » - C ) 2 +  2/2 } ^ C
-oo

Thus ^ J ( x , y ) -  I ( x , y )  where

I ( x , y )  = f
J — C

v(C)y - d c-o° {(X- 0 2  +  2/2J 2

Following the method for finding the discontinuity due to a dipole line, we thus

find

d
I ( x , y )  |y_>0+ ~ I ( x , y )  ly-,0-  =  ^ J ( x , y )

V->0+
=  2 7 T 7 } ( x )

y-+0-
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3.9 Ch3 A ppendix: C alcu lation  to  show  B =  0 
and th u s th e  d iscon tin u ity  in  th e  p o ten tia l 
in  th e  sym m etric  flow case is zero.

A brief description of the calculation is given below.

The calculation is divided into four main parts:

1. The evaluation of the discontinuity term  $0 in the stream  function \&.

2. The integral representation of the function Fq =  e-fc:ĉ o-

3. The evaluation of the integral in the far wake, particularly as r —> oo, 9 —> 0.

4. The evaluation of the velocity term  Up ~  V $ 0 +  V\frp as r —> oo, 6  —► 0.

Thus the above method calculates the velocity term  Up in the far wake close to

the discontinuity line y — 0, x > 0.

We find th a t for B  0 we obtain the result —* oo in this region, which implies 

th a t u —¥ oo. Thus the condition of a uniform stream  at infinity is violated and so 

we must have B  — 0.

The first part of this section is to find the discontinuity in  the stream  function

If B  7̂  0 then and its derivatives cannot all be continuous. We consider the 

possibility of discontinuities in ’L and its derivatives.

Since u is the fluid velocity, it is continuous everywhere. Across y — 0, is 

continuous, but §* has a discontinuity of value B .

Across y — 0, ^  is continuous and w2 =  — has a discontinuity of value — B.  

Thus the discontinuity in ^  is Bx .  We next construct a potential \&0 having this 

discontinuity and satisfying (V 2 — 2&J^)\I/ =  0 

T h e  fu n c tio n  F0 =  e~ k x ^ 0 

Letting \i/p =  ekxFo( x , y), we obtain
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ekx( V 2 -  k2)F0 =  0

where Fq has a discontinuity across y — 0, x  >  0 of value B xe~ kx. 

In polar coordinates, Fq satisfies the equation

An im portant solution to  this equation is the source solution Ko(kr ), a solution of 

the modified Bessel’s equation of order zero. This solution occurs for F0 independant 

of 0  and so the equation reduces to

This solution is im portant because it behaves like a source of fluid: As r — 0

we find th a t Ko(kr)  —> — log r, so the flux out from a singularity is

/•27T ^
J  log r)rd& — —2 tc

Thus the solution K 0 (kr) gives a constant flux out of value —2tt.

T h e  d is c o n tin u ity  d u e  to  a  d ip o le  line: We next consider the discontinuity 

due to a particular line of dipoles; we consider the dipole line along the axis y =  0, 

the dipoles orientated in the positive y direction and having strength r)(x). Thus 

the potential due to such a line of dipoles is given by

From the previous appendix section, we see th a t the discontinuity in I  across the 

dipole line is

I(x ,y ) \y^o+ -  !/)!„-,0_ =  2vr/(x)
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3.9.1 The integral representation o f th e function Fo*

As r —» 0, the function Ko(kr) —> — log r,

n  dr_

Thus the function F0( x , y )  satisfies the modified Helmholtz equation and has a 

discontinuity across y  = 0 of r)(x), where

The line of dipoles along y  =  0, x  >  0 of strength B x e  kx gives Fq as

The integral representation of Ko(kr).

From Abramowitz and Stegun p376, 9.6.24 , we represent K o ( k r )  by the integral

Ko(kr) =  j°° e -kTQmhu'dn* =  H  e- ^ (3.34)
Jo 0 0  2

where r 2 =  (x — y, * ) 2 -f y2.

We put the variables x and y in a combination easier to m anipulate than  in the 

variable r. We do this by raising the line of integration in the y* plane by i9, since 

the function e~kr coshbi*-‘0) is analytic everywhere and so there are no poles of this 

integral in the region

0 <  7ra{(//*)} < 9  — 00 <  Re{y*} < oo

in the y* plane.

This procedure is valid only in the case for x > 0, otherwise the integral is 

divergent.
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Thus the variable of integration is changed in equation (3.34) to ft* =  fi — i0 and 

we obtain

K 0 (kr) =  e~kr cosh(fi-i0) ^  _  f°° e~kr cosh(/i-i‘0)
J  —00+10 2  J —oo 2

However, since re*9 — x + iy, we obtain

/OO

exp(—kx  cosh// +  iky  sinh//) —
-OO 2t

for x  >  0.

Similarly, we may lower the line of integration by iO, which gives a convergent 

integral only in the case x <  0, to obtain

dft
T

/ OO j
exj>(kx cosh // -f iky  sinh ft)-

-OO

Hence we can represent Ko(kr)  by an integral valid for all x  by

dfjt__/ °° 1 exp(—fc|a;| cosh// +  iky  sinh //)•
-O O

where r 2 =  x 2 +  y2.

We now consider x < 0 only. Then |a? — =  |£ — a;| =  |f  +  |®|| =  f  +  H  for

f  > 0 .

Thus,

R  s )  f  OO 1-00 r j  [ I

F °  =  2/jr~dy Jo ^ exP ( - fc(W +  £ )cosh^ +  ifcysinh//) —

=  ~ ^ exv ( ~ H \ x \ cosh//-H & t/sinh//) fe “fce(1+cosh/i)d£j

Integrating by parts gives

Jo k2\ 1 +  ck2( 1 -f cosh ft) 2
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So

Fo =  i y i r xp(- t|i|cosll',+l% sint',)p ( i + ^

=  — -j—r  /  dnexp(—fc|a?| cosh n +  iky  sinh / / W— ——
Airk J-oo v 1 1 (1 4 - cosh/i)2

We make the substitution |x| =  —a; =  r cos /?, y =  r  sin /?.

This is valid in the range \/3\ <

Thus,

—A:|ar| cosh/i -f ikysinh.fi =  — &r (cosh //cos /? — is in h // sin (3)

=  -~fcrcosh(^ — i/3)

Thus

=  - S / I ^ eXp(“ *rC0Sll(/‘ "  ?/?))(l +  c ° s h ^  Where l/J| -
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There is a pole when cosh// =  — 1, and // =  dtitt.

i
oo *~icX-

i
Lk oo -hi oC

A*

-lTC

Figure 3.3: The //-plane.

^  region of 
cv\cxlybic

Figure 3.4: The (r,/?)-plane.

Now, we consider an analytic continuation into the region x > 0. For this 

purpose, we move the contour of integration in the //-plane.

By Cauchy, if there is no pole of a function f ( x , y) in the region considered, then 

§c f ( x , y ) d l  =  0, where C is a closed curve surrounding the region considered.

Thus, for

/( r ,/? )  =  e x p { -* rc o s h ( ,,  -  (1 }

we have th a t

r roo roo+ia
<P f { r , P W  =  I f(r,(3)dfi — f  / ( r , /?)<*//
J C J — oo J — oo+iat
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f rX-\-ia r —Jf+ict 1

+ } ^ { L  L x  /(r’'9)̂ }
W here the closed curve C  is the rectangle with corners positioned in the fj, plane 

a t —X , —X  +  i a , X  and X  +  ia,  We move along the curve C  in  the anticlockwise 

direction.

But

lim
X -yoo

rX-j-ia e ^
Jx  f(r,P)dii =  ton {a 2 \f(r, /?) |2} — » 0

Thus we write

^  p ) = ~ S k  a d , i exp  { ~ k r c ° sMji  ~ m  (x 3 6 )

where we must have \a\ <  7r in order to avoid the poles at jj, =  rbix.
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C hecking th e  integral has th e  right d iscontin u ity  across y  =  0, x  >  0.

This is an analytic continuation of Fo(r, /3) since by making the variable change 

/ /  -f- ia  = fi, we have

exp{ —kr  cosh(/u — i/3)} =  exp{ —kr  cosh(// — i((3 — or))}

and thus the integrand is valid in the new region \/3 — a\ <  Thus the integrand 

gives an expression for Fo(r, (3) in the range —~ + a < { 3 <  § +  «•

Using this analytic continuation, we can thus find Fo(r, (3) everywhere by raising 

the line of integration except along the line y =  0, x > 0 .

To find the value of Fq(t ,(3), for /? =  7r, we integrate along the line from fi =  

—oo -f i7r to /* =  oo +  iV and just under the pole at fi — iir.

Thus we have, for ^  =  7r,

F° ( r j j ) = S k  C l dfi e x p ( k r cosh
since when /3 — 7r, then cosh (fi — i/3) =  cosh(// — iw) =  — cosh fi.

Similarly for (3 — —7r,

F0 (r,/3) =  ' f  dfi exp (kr  cosh fi) --?1—  ...
A.'KK J—oo—itt (1 +  cosh/u)2

Raising the line of integration by 2iir by making the variable substitution fi1 =

fi -j- 2 iiv, we obtain

p ( a\ t / n  -t t\ sinh ft'
Fo{r' "9) =  ~ i 7rk T-oo+i* dlt eXp(fo' C0SU "  ^(1 +  cosh'/j')2

The discontinuity across y =  0, x  > 0, is .Fo(r, /? =  x) — J7o(7', f3 = —w) and from 

the above equations, we see th a t

F{ r, /9 =  - * )  -  F ( r ,  fi =  ») =  -  J l  £  dp exp(fcr cosh
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=  2 ivi x ( the residue at fi =  iw)

where p  =  ir — 0

and the closed curve C  includes the pole a t fi — iw.

T h e  re s id u e  a t  fi — iir.

We find the residue at fi =  iw by making the transform ation fi — rj + iw. 

Thus
sinh fi sinh rj ( . cosh |

(1 +  cosh fi) 2 (cosh 7? — l )2 sinh3 §

and also

*n
exp(&r cosh fi) =  exp(—kr cosily) =  exp(—fcr) exp(—2 kr  sinh2 —)

jL

Thus

sinh fi
exp(&rcosh fi)-

(1 +  cosh//)2

— exP(~fcr )( l ~  sinh2 rj/2 +  1/2)(1 -f (l/2)?/2/4  +  •••)
7/3/8 ( l  +  (l/6 )r/2/4  +  ...)3

=  ~ ^ (l  +  (1 /2 )W 4  + 1 ) ~  2fcrsinh271/2 +  - )

=  - ^ j ( 1  +  ° ( ’/ 4 ) ) e x P ( - * , ' ) ( 1  ~  ^ j ~ )

Thus we see th a t the residue is 2kr e xp ( -k r )

Thus

B?
Fo(r,/3 =  —7r) — Fo(r, (3 = w) = —-—-27r«2A:re“ fcr =  ~ B r e ~ kr = —B xe~ kx

4lW k

Hence F0 (r, P = t t )  — P = — tt) =  B x e ~kx.

Thus the discontinuity in from y =  0+ to t/ =  0_ rc >  0 is B x ,  which gives a 

discontinuity in W2 of — B  where w =  (u?i,w/2).
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Since u — V<ft +  w and u is continuous everywhere, then there must be a discon­

tinuity in of B ,  across y = 0, x  >  0 which is consistent w ith equation (3.13).
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3 .9 .1 .1  T he evaluation  of th e  integral in th e  far w ake.

We evaluate the integral function Fo(r, (3) for large r and for (3 —> n. The method of 

steepest descents cannot be used since the saddle point of the integral and the pole 

of the integral coalesce as /? —> 7r.

We find th a t the leading term  in the uniform asymptotic expansion is a Fresnel 

integral.The value of the Fresnel integral is then given for r —> oo, (3 —> n.

From equation (3.36),

Fo(r' fj) =  - ^ k C l dfie^ { - krcosHft  -  +

In order to find the value of Fo(r, (3) at (3 — 7r, we must choose cx — n. However, 

there is a pole a t cosh /j, =  — 1 which is \i =  in.

The analytic continuation for Fo(r, (3) in the range ~ < (3 <  7r, where F ( r , /?) is 

in the integral form above, is made by raising the line of integration , thus increasing 

the value of a  from a  =  0 .

Thus the integral path  moves under the pole at y. =  in.  Hence we consider the 

integral

F o (r J F )= - S i  £L + L ^ exp{- fcrcosĥ  -  ^ } (1+T X p
We change the variable of integration so tha t the integral pa th  is along the real 

axis. We let fj, =  u +  Z7r, which gives

F0 ( r , j )  = — 7^7- dv exp {—kr cosh(u + i~f)}-— 1’ _dv (3.37)
Ank J-oo (cosh v — l )2

where 7 =  7r — /?. Thus as (3 —» 7r, then 7 —> 0.

We find the stationary point of the above equation. This is where



is the stationary point.

We change the variable of integration from v to v and also the path  of integration 

so th a t the stationary point is a t v — 0 and the path  of integration is along the real 

v axis, going through the stationary point.

We let
+ h )v — 2  sinh

and so cosh(z/ +  iy) — 1 =  ( l / 2)v2. 

Thus

(3.38)

*o(r,7 )
iBe~kr f°° , krv2 f sinh^ di/1

“ 57 T  L  exP ( - ^ - ^  \ ( c o s h , - i ) ^ | dv

Thus the pole in the integrand is now at the point Vo, where

(3.39)

cosh(ii/) — 1 =  2 sinh2( l / 2)(^7 ) =  (1/ 2)vq

From equation (3.38), when u =  0, v =  2 s in h (^ ) =  2zsin J .

In the v plane we have the integral path  going through the stationary point at 

v = 0 and along the real axis, with the pole of the integral at v =  Vo =  2 i sin J.

a

V -O
pCrivvXr-

Figure 3.5: The integral path  in the u-plane

We would like to apply the method of steepest descents to the integral. However, 

we are given u0 is small so the stationary point and the pole are close together.
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However, we can expand the non-exponential function inside the integral in pow­

ers of (v — v0). We obtain terms of negative order, giving Fresnel integrals to leading 

order in the expansion. The pole is of order 3 and the leading order term  is of order 

(v — v0)~3.

We consider the bracketed function inside the integral of equation (3.39). This

is

{ sinh v dv 1 
(cosh v — l )2 dv J

We consider what happens to this function as v —> 0.

Hence,

As u —► 0, sinh v —» v +  +  ...

cosht' —► 1 +  +  ...

Si" h "  "  1 (3.40)
(cosh v — l )2 [v2]2 vz

From equation (3.38), we have th a t v =  2 sinh and so differentiating w.r.t

v, we obtain

, . 2 « . h ( L ± i I ) (1 /a )J

so as v —> 0, and so5 dv COS7/2

V  -+ ^ ^  (3.41)
COS 7/2

and

f sinh 1/ 1   1 /  1 \  .
\  (cosh^ — l )2 dv J c o s ^ V ^ 3/

Since % is analytic everywhere except v — 0, we expand this function

in a Laurent series. From equation (3.40), the lowest power of v in the series must

be —3.
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Therefore,

I  s*n^ v  _  ^ - 3(7 ) - ^ - 2(7 ) . AtA.!?_?_. - j. n  ('3 43')
\  (cosh v — l )2 d v )  (v — Vo)3 (v — Vo) 2 (v “  vo) 0 m

We can find the first term  in the expansion since, from equation (3.42) and the 

first term  on the right hand side of equation (3.43), we have that:

— L _  ( ! )  =  ^ _ 3____(C° S 7 /2 )3__ =  , ^ - 3 (7 ) „ (3 44)
cos7 /2  \ v 3/  (cos7 / 2)(v — v0)3 (v — v0)3

Thus ^ - 3(7 ) =  cos2 7 /2  in order th a t equation (3.40) holds as v  —» 0.

We can find ^ .-1(7 ) by integrating the function 5̂ } roun<l  a closed

contour enclosing Vo.

Also A - 2 may be calculated by letting v =  0 on both sides of equation (3.43).

However, it is more convenient to use a different m ethod in order to express 

Fo(r,/3) in term s of an integral of lowest order —1; we express the integral in a 

different way so th a t the pole inside the integral is of order one. This is done by 

considering the following:

Consider the function
sinh v

We have

and

(coshi/ — l )2

sinh v d /  1 \
(coshz/ — l )2 dv Vcoshi^ — 1/

1 _ =  * = . ! ( cot h ! )
1 2 sinh v 2  dv V 2 /

Thus

cosh v — 1 2 sinh2 v / 2

sinh v _  d2 ( cosh v +  1 
(cosh v — l )2 dv2 y sinh v

Considering equation (3.37) we have
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^o(r, 7) =
iB

S J - o c
dv exp[—kr  cosh(y +  *7 )] 7—~ r ~ ~ ~ r \ ^ p(cosh^ — 1)

Thus

iB  f°°
F0 (r, 7) =  — -—-  4" dvexp (—kr cosh(*/ +  i7))

47rfc «/—00

j 2
C?I/2 sinh v

Since [exp(—-fcr cosh(i/ +  *7 ))]i/=±oo =  0, integration by parts gives:

7-,/ \ iB  f°° , d2 , y . / coshzz +  l^
Fo(r, 7 ) =  - —  ^  {exp(—i r  cosl.(„ +  -/))}  J

If we consider a function /(^ -H ’7 ), then =  / //(i>' +  «7 ) and =  *2/ w(^ +  »7 ), 

which gives =  — | ^ .  Thus we write

i B  d2 , . . . c o s h i ' - f l
■̂0(^ ,7 ) =  ~a—T~7~o T  dv exp(—At cosh(i/ -f-1^ ) ) ----— -----4nk d'y2 J - 00 sinhi/

Following the same variable and integration path  changes used in obtaining equa­

tion (3.39), we now obtain

— , . iB  ,u_ d2 f°° , —krv2S f cosh n u - \ - l d v \  .
Fo(r’ 7 ) =  ^Tke ex p (— :11 ...... sinhT' d v j

where cosh(*/ +  *7 ) — 1 =

Thus the pole of the integrand is a t Vq =  2i sin I / 27, and the saddle point is at 

v =  0.
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3 .9 .1 .2  T h e order o f th e  pole.

We find the order of the pole by looking a t the way in which

( cosh v -j- 1 \  dv 
sinhi/ )  dv

behaves as v —> 0.

We use the same method th a t was used to find the way in which

sinh v dv 
(coshz/ — l )2 dv

behaved as v  —> 0.

As v —► 0,

coshi' +  l  1 +  {1 +  v 2 / 2  +  ...} 2
sinhz/ v -f i/*/3 -f ... v

From equation (3.41) we have ^  as ^ 0-

Thus as v —» 0,

cosh v +  1 \  dv
6)\  sinhr/ J dv cos 7 /2  

From equation (3.41), we see tha t as v —> 0, v — r>o —► v cos 7 / 2. 

Thus as v —► 0, v —> v0,

cosh v -f 1 \  dv 2 cos 7 /2
sinhi/ J dv cos 7 /2  v — Vo v — vq 

Since the function is analytic except a t v =  0, it may be expressed as a Laurent 

expansion. However, all the coefficients of terms of lower order than  —1 must be 

zero. Hence this function has the expansion

/ c o s h i / - |- l \  dv j4_i (7 ) a / \ ^  x
^  =  7 ^ 5  + +  E > U ( 7 K  (3.45)
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where A_ 1  =  2.

Substituting this expression back into the integral, we obtain an asymptotic 

expansion for the integral, with the first term  being a Fresnel integral.

/ oo
exp { —k r  cosh(^ +  *7 )}

-00

cosh v  +  1 
sinh v

dv
sM -oo (3.46)

-Jfcr f°°  (  krv2, A - 1  ,  _ k r  ^  A f°°  t n  {  krv 2~ e kr exp{---- — } dv + e Am / -----vmexp(----—  )dv
J —oo 2  V — Vo u= 0  00

where M  is chosen according to  the degree of approximation wanted. 

We find the first two terms in the series, A - 1  and A q.

T h e  te rm s  A_i and A0 .

To find A_i, we integrate round v =  0, v =  v0 for the function .

Hence,
cosh v +  1 , . f  dv/ cosh v  A  1 , . f  d v
— — ----- d v  =  A _! /  ------

smh v  J v  — v0 

T hus

/  s r i L ' + l t o  =  I f t  +  r f t !  =  4iri
J sm hi/ /  (*/ +  v3/3! + . . . )

Therefore 47rz =  A_i.27rz and A_i =  2.

To find Ao, we put v  =  0, which implies tha t v  — —«7 , and substituting into the 

expansion of equation (3.45), we obtain

cosh *7 +  1 d v  

sinh 27 d v

A_ 1 .
+  A q

From equation (3.38) v  =  2 s in h { l/2(i/ -f 77)} =>• ^  =  1 for 1/ =  —*7 . 

Thus,

A0 -  2 +  cos7 +  l
2i sin 7 /2  «sin7

B u t
1 +  cos 7 _  1 +  (2 cos2 7 /2  — 1) _  co sj 

sin 7 2 sin 7 /2  cos 7 /2  s in^
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and so

- 1  +  (1 -  2 sin2 7 / 4) u
Ao =  2is in  7 / 4 COS7 /4  =

Hence

A_i =  2, Ao =  « ta n 7 /4 (3.47)
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Approxim ations to the integral for certain fluid regions.

From equations (3.46) and (3.47) we therefore have, taking the first two terms 

in the expansion:

? B p ~ kr d 2 ( 2  1
Fo(r, Q) ~  —:—j--- 777̂ - s /  exp(—1/2krv2) ---------- dv +  /  z tan (0 /4 )ex p (—l / 2 k r v 2)dv j-

47TK d o 2 ( J - o c  v  — " —°° J

We consider the first integral in the above equation which is of the form:

-  e x p ( = ^ )/ °° expl 
-00 v vo

where v0 = 2* s in 0/2 from equation (3.38).

Changing the variable of integration to t =  y j l /2k r  u gives

/ OO p  l

dt
-oo t — to

where t 0 — \ J \ / 2 kr  Uo =  iy/2 kr  sin 0/2

We find the approximations to this integral, and the corresponding fluid regions, 

for to —► zoo and t 0 0.

For large r, if to is constant y/rO is constant. If y/rtheta is of order one then 

we are in the wake flow and as y/rO —► 0, we move outside the wake to the fluid 

region of no vorticity. Thus the wake boundary is param eterised by a curve y/rO = 

constant.

As y/rO —*■ 0, we approach the line y =  0, x  >  0 which is the discontinuity line. 

We now consider the integral
too e-t

J— 00 t  —

2

dt
0̂

We first consider the integral for to —* We expect the main contributions to 

this integral will come near t — 0 and t — to. However, for large to the integrand is 

exponentially small.
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Thus,
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We now give the first term  in the expansion of Fo(r, 0) for to ioo

F  ( 0) ~  ^  ^  \
’ 27rfc d0 2 \ i y / 2 kr  sin 0 /2 /  fQ/iQ\

Be~kr d? f  1 \
2 k V 2 irkr dO2 y sin 0 /2 /

But

d2 f  1 \  _  d ( —( l /2 )c o s 0 /2 \  _  1 /4 sin2 0 / 2  -j- 1 /2 cos2 0 / 2

0dO2 ^ sin 0 /2 /  d0  ^ sin2 0/2 /  sin3 0/2

and so

f t ( r , „  _  S £ L ,  ,3.49)
2 k \ / 2 irkr \  sin 0 / 2  )

We now consider the integral I  for t0 —► 0. We consider the summation represen­

tation of the integral given in Abramowitz and Stegun (p297 eq 7.1.4, 7.1.8 ) The 

function w(z)  is defined as

« fOO
w(z) =  — /   dt

7T J-oo z — t

which is represented by the summation

»(«) = E  J ? "
„=o r (? + 1)

where F is the gamma or factorial function.

Therefore, by comparison,

fj — <

■dt

has the summation

r ■ («o)"/  = n=o r ( n /2  +  1) 
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Considering small to, the first term  in the expansion will be of highest order. 

Thus, for small to, we obtain the approximation

,r(i) r(3/2) #(2)

This gives

$ ) ~  { " • ' + S  “  *! + ■ " ) }  l 3 M )

where to =  iy /2 kr sin 0 / 2  

The expansion of sin 0/2 is

sin 0/2 =  0/2 — +  ^ f “ +  ... and so to =  i \ /2kr (9 /2  — | |  +  ...).

Therefore, the second derivative of with respect to 0 gives the term:

<p __ i V u / e  2.
d & i o -  8— +  O ( 0 )

The second derivative of t§ gives a term  independant of 0 to first order:

<p 2 <p (9 93 \ 2 cP { e2 e4
m  a = ~ 2krdet (2 “ i s + -  j = ~ 2krlm  ( t  “ i s + 0 ( 6 })  = kr + 10{ e  >

The second derivative of t^ f°r n > 2 will have a first order term  0n_2, and so all 

these term s will be a t the greatest of order 0.

Hence we have

--(1 _}. — t j  +  ••Or =  {~ n i} { —kr}  -f 0 (0 ) =  iirkr +  0 (0)7̂T«(
dO2 [ yfH

Thus substituting this expression into equation (3.50) we obtain

( . iB e  k r. , B  _kr
F0 (r,9) ~  ~ 2 n k ~ l7r =  ~~2 &
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For t 0 —> 0 and 0 —► 27T, for small c* where —a  +  9 — 2ir, then sin 0/2 =  

sinl/2(27r +  a ) =  —sin a /2

Since t 0 =  iV ^ k r  sin 0/2, then following the same m ethod we obtain for 0 —* 2w,

iBe~kr B  ,
Fo(.r,8 ) ~ — ^ r i* k r =  - e ~  '

This result is also evident from the fact tha t in symmetric flow the function 

and thus JFo( ,̂ 0) must be antisymmetric about y — 0

We now find the vector w for the fluid regions considered above. From section

(3.2.2)

(d* d®\ T kx  171 /  \u =  V ^  + m , w = =  e F0 (x, y)

Therefore, for f0 —► oo

_  Be~k’’('•-*) / 1/4 sin2 0/2 +  1/2 cos2 0 /2 \
2 ky/2 'jrkr \  sin3 0/2 /

Thus,

_  B e-fcr(1-col,<?> 
d9 2 ky/2 kr

and

f  Q / l / 4 s i n 2 0 /2 + l /2 c o s 2 0 /2 ^  / 5 /8 s in 3 0 /2  c o s0 /2 + 3 /4 c o s3 0 / 2 \  1
I  R r S m P r  sina 0 /2  /  W  sin4 0 /2  / J

d'So - B e ~ hr I1-™”6)
" a T  ~  2 f a / 2 kr

Where

(‘4 )

^ 0  0^0  a 1 ^ 0  . .cos0  —  sin 0
c/a; c/a; r  o9

and
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a $ 0 a $ 0 . a , i 3 $ 0 a
~ a~  =  “a-  Sin 9 +  — a T cosS o y  o r  r  dv

Thus
-k r

and so as tQ —> ioo, r —» oo and so

d^p
dx 0,

d® o 
dy
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Next we consider the case for to —► 0.

Following the same method, we obtain for 0 - ^ 0

Thus

and

As to —> 0,

Thus

$ 0 — _ : ? re “M i-cos0) 
2

M o  _  B_ 
dr  2

M o  B  
~ d ¥  ~  "“ 2

e-tr(l-coB0)(_£r s £n g)

dr dr dB d9 1 > 1 5 —------—----------- > I), —---- >~
ox dy ox dy r

d $ 0 _ £  d^o
dx  2 ’ dy

Similarly, for to —* 0, 0 —> 2 w we have

d® o B  d^o  n- —i   -----------  —k 11
5a; 2 ’ dy

Therefore there is a discontinuity in across y — 0, x  >  0 of value — B:

d<& o
dx

d$o
dx

■B
y —+0_

Since we are dealing with symmetric flow, we find th a t for u — («i, u2), we have 

^2 — 0 along y =  0.

The velocity is

~    V 5 t/’ d x )
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and so we have
d<j)0 _  W o  n 
dy dx

Therefore we have a discontinuity across the line y — 0, x > 0 of

d(j> o
dy y-*-o+

d(f> o
dy

B
y-0.

Referring to  equation (3.13), we see tha t this is the correct discontinuity in <j>a.
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3 .9 .1 .3  T h e v e lo c ity  far from  th e  body.

As r  —» oo, to ioo,

d $ 0  ,  a$ o  n
~dx"~* W ^ °

Letting w0  be the term  in w corresponding to ^oj we thus have th a t Wq —* 0. 

As r  —> oo and to —> 0, 

w 0 —> (0, l? /2 ) for 0 —> 0 and 

ujq —> (0, —B f 2) for 0 —► 27r.

In order to calculate u we must also find Vtftp for large r.

From equation (3.14), we have

Thus,

Bfa  =  —— ./^{zlog £ — zi'K} 
27T

_  =  - _ ( l  +  lo g r ) ,  _  =  _ ( « _ , )

Thus we see th a t as r  —> oo and t —► too then

u —> ^oo, “ (0 — 7r)^

and as r  —► oo, to —* 0 then

u —̂ (oo, 0)

Hence the condition tha t the velocity is a uniform stream  of velocity ((7,0,0) at 

infinity is violated. Thus the constant B  in the discontinuity potential (j>o must be 

zero. This means th a t there is no discontinuity in the potential (j> in the symmetric 

flow case.
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C hapter 4

T h e drag, lift and m om en t on  th e  
body.
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4.1 T h e drag force, lift force and  m om en t on  th e  
b o d y  in  tw o d im ensional flow .

In this chapter, we express the force and moment on the body as integrals over a 

closed contour far away from the body in the far field but enclosing the body. We 

substitute for the functions <f> and ^  in the far field into the closed contour integrals 

and thus find coefficients in the Fourier expansions of the functions (f> and related 

to the drag, lift and moment on the body.

We find th a t the coefficient L  in the expansion of (f> is the lift on the body and 

the coefficient D  in the expansion of ^  is the drag on the body. Thus the drag is 

expressed in terms of a wake traverse but the lift is not. It is im portant here to 

note the result given in Landau and Lifshitz for three dimensional steady far field 

flow past a body where both the lift and the drag are expressed in terms of wake 

traverses.

We first find the force on the body as an integral over a closed contour enclosing 

the body. We consider the force F_ on the body due to the fluid. We express the 

force as an integral expression over a closed contour C  enclosing the body. The force 

is

Fi =  I PijUjdl
J Cj

where C  is the body contour and n is the outward pointing normal to the body 

surface.
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We consider the closed contour C' within the fluid and enclosing the body contour

C.

CioSQC# COaJtOulT

Figure 4.1: The closed contours C' and C.

The vector n is the outward pointing normal to the contour C' and so by the 

divergence theorem

L  p 'i n >d l + Sc p^ ~ n >) d l = I J A j ^ d A

where A  is the fluid area between the closed contours C  and C '. 

Therefore

F' = Jc Pii n’dl = j  ~ £ r dA

From the momentum equation,

D ( t\ dPij

(For an elemental volume of fluid, ^  f  f6A pujdA  =  SF{ = fgc pijUjdl.) 

Thus

/ L d~BdA =JIa n*dA =JJa £-,{f,u'u’)dA
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since V.n* =  0.

By the divergence theorem,

/  JA far.(PuM)dA = jc, puWjtijdl -  f>u]u)njdl

However, the fluid velocity on the body contour is zero and so we obtain the 

force equation

Fi =  f  (Pij ”  pu\u\)rijdl (4.1)
J C '

where pij = —p 8ij +  Me*j- (See equation (2.9).)

We consider the contribution to the force F, from the tensor ey. We thus first 

consider the integral

We decompose the fluid velocity in the form u — S7(j> +  w and first consider the 

contribution to  the integral

L 2/i n j d l

From equation (3.26), the velocity potential is given in  the form

^  / cos nO sinn# cos n 8  s in n # \

We consider the contour C* to be the circumference of a circle centred at the 

origin and of radius r. Thus the function J^,qx , will be of highest order ^  in the far 

field.

Since the contour length is of order r, then the contribution to the integral from 

V 0  is of order -  and tends to zero as r —► oo.
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We next consider the contribution to the integral

I A

dwi d w j )  ^  
3

From equation (3.33), it is seen th a t the velocity w is exponentially small outside 

the wake region. Therefore the integral approximates to

*°° ( dwi , Out)i \  .
-f -5—  I a x 2

f°° f  dwi
dxi

for large r.

The velocity component W{ and its derivatives with respect to X\ and X2 are of
kXy,

the form f ( x i , x 2)e_2“I\

In order th a t an integral of the form

2/oo
f ( x 1 , x 2)e~*ndx2

-OO

is non zero as —» oo, then f ( x i , x 2) must be at least of order — =, since

kxi

/OO g  2xi f c
—J=~dx 2 =

-oo J—

00 2 12 
e~p dp\j — =

ooy/x^ J— oo V h

From equation (3.33), in the far field w is of order

w —
/  kx 2

e 2®i x 2 fcc2 
e 2*i

«a?2
Thus is of greatest order -—^ = and soaxj °  xi-Jxi

L
as r  —y oo.
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We now refer to equation (4.1) and consider the other term s in the integrand of 

the integral for the force Fi.

u\ is the fluid velocity and uj =  Ui +  w, where «,* is the perturbed fluid velocity 

and Ui — U for i — 1 and 0 for i =  2.

We substitute uj =  Ui +  w* into equation (4.1). From equation (3.24) in the 

far field |V< |̂2 =  0 ( l / r 2) and from equations (3.28) and (3.30) in the far field 

|u>|2 — 0 ( e~2̂ “J)). Thus using the method in section (5.3.1) we see th a t

/*2ir 1 roo _

/  \w\2rde =  0 ( - p =  /  e~‘ dt) - t  0
Jo y h r  J —oo

Therefore / 02ir UiUjfijrdO —> 0 as r —* oo.

T ie  pressure p  =  - PU %  and so

F i  =  J  —  p (u > iU j  4 -  U j d 7 i ) n j |  r d d

The velocity flux out of a closed contour is zero and so jjf* UjnjrdO =  0. Therefore

Fi = {pU ~~rn  -  pUutm  |  r d 9  (4.2)

We now calculate the drag and the lift on the body.
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4 .1 .1  T h e  drag on  th e  b ody.

We substitute expressions for (j> and ^  into the integral exprression for the drag, and 

find coefficients in the expansion of \I/ related to the drag.

From equation (4.2), the drag on the body is given by

Drag =  F! =  £ *  l - p U ^ n A r d O

The function is zero outside the wake region due to the exponential factor 

e-fcr(i-cos0) wj1jci1 tends to zero rapidly except in the wake region where 9 is small 

such tha t

r ( l  — cos 9) =  —  is of order one.

Thus W\ contributes to the drag integral only in the wake region where n i =  

cos 9 ~  1, and rd9 — dy.

W ithin the wake region, from equation (3.33),

D  /  7T ky2 
w\ ~ -----— few ——e 2x

7rpU V 2kx

and so

Drag=? V £ /I e~ ^
We change the variable of integration to q = and so

Drag e q dq

This result is expected since

D  7r

~ k T  % k
D
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/*2tt f $ijr 1
D r a g = / 0 \ - p U & ; n i \ rd0

where Si! ~  \$1 -\- SyJ ^ |-e -fcr(1_cos0) in the far field from section (3.6). Therefore

2* d y 1rzw
Drag =  /  —pU

Jo
cos OrdO

dy

f rv=°o ry—o  ̂ fi® .
\ \ pU— dy
U x - ^ o o ,  y = 0  • / # —+ 0 0 , j /—*—o o  J  C /J /

rs-/
/•2ff 1
/./o r du

■p U  ( - £

Drag =  D  (4.3)

Thus we see th a t the drag is expressed as a wake traverse.
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4 .1 .2  T h e  lift on th e  b od y .

We substitute expressions for <j> and into the integral expression for the lift and 

find the coefficient in the expansion of <f> related to the lift. From equation (4.2), 

the lift on the body is given by

Lift =  F2 =  £ "  l p U ^ n 2 -  pUum ! j  rde 

We consider first the integral 

f 2” [p V ^ r  sin SrdS -  p U ^  cos rd$
Jo ( OX OIJ J

However, =  f f  +  f f  =  “  §^r  sin 0 +  |^ r  cos 0, and so the integral becomes 

The discontinuity term  in <f) is and so the integral has value

We consider next the integral

r2w Qty
/  pU^r-cosOrdB  

Jo ox

From equation (3.33), in the far field wake

and so using the same method for evaluating the drag in the previous section

(4.1.1), we find th a t this integral will be of order 1, and so tends to  zero as r —> oo. 

Therefore the expression for the lift is

Lift =  L 
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Thus we see th a t the lift is not expressed as a wake traverse; the lift is associated 

with the velocity potential V<jb and not the wake velocity w.

It is im portant to compare this result with tha t obtained in the Landau and 

Lifshitz book Fluid Mechanics for three dimensional steady flow past a body in the 

far field. They express both the drag and the lift in term s of wake traverses. Thus 

the approach given by Landau and Lifshitz cannot be used for far field flow past a 

body in two dimensional flow since the premise th a t the lift is expressed in terms of 

a wake traverse is invalid. We shall consider the Landau and Lifshitz approach in 

section (6.1.2).

We next consider the integral expression for the moment on the body.
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4 ,1 .3  T h e  m o m en t on  th e  b ody.

We similarly express the moment on the body about axes through the origin as an 

integral over a closed contour enclosing the body.

We substitute into this integral expression the functions <j) and in the far field 

and evaluate the resulting integral. We split the integral and evaluate each part. 

There are many resulting integrals to be evaluated and the procedure although 

straightforward is long.

We evaluate the integral expression for the contribution M ^  to  the moment M  

such th a t the integral is evaluated using expressions for the Oseen velocity u and 

Oseen pressure p. We see th a t M M does not give all the term s in the moment 

expression because higher order pressure and velocity terms are involved in its eval­

uation. In order to  find these extra terms in the moment, it is necessary to consider 

the second and third approximations to the Oseen equations. (See Filon (1928) and 

Imai (1951).)

We consider M W only, and find tha t it depends upon coefficients in the expansion 

of both (j) and such th a t

P 1 2irpU2 k U

where B \  and s are constants given in equations (3.24) and (3.33) respectively. 

These term s are also obtained by Filon and Imai.

We first express the moment on the body as an integral over the closed contour 

enclosing the body.

The vector cross product r x F ,  where r  =  (a?i, #2) and £  =  (F i, F2) is expressed 

in tensor notation as

[l!. X —]i — t i j k'VjFfc
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where £, j ,  k =  1, 2, 3 and x3 =  F3 — 0. 

The moment on the body M  is

■iWf — j ^ i jk ^ jP k q Y lq d l as SFk ”  P k q f^ q d l  J G
By the divergence theorem,

( X -  / c )  ei* x>P*nidl -  J  lAdx„ (ê jP k q)dA.{Jc> J c )  ei>kX^ k"ni d l -  J  JA ~i
Hence

dM i  — t i j k X j P k q T i q d l  J  J ^  (^ i j k X j P k q )d A

We consider the vector e ^ P k j• Since the pressure tensor pkj is symmetric, this 

vector is (0,0).

Therefore,

l  I a  d x  ^ k q )d A  = f  Ja {  ̂ ^^jqPkq ^ijkXj  ̂d A

=  j  j . w &Pkq
dxq

dA

using €yjfe/>uiu}- =  0,-. 

Therefore

M (  — € i j k X j P k q t l q d l  J  j ^  ( e i j k X j p U k U*q ) d A

Applying the divergence theorem,
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I  Ia dx ~  Jq) eijkXjPukuqnqdl
However, the fluid velocity is zero on the body contour C  and so

— Mi = J  t eijkxj(pkq -  pu\.u\)nqdl (4.5)
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E v a lu a tin g  th e  c o n tr ib u tio n  to  th e  m o m e n t on  th e  b o d y  fro m  th e  ve­

lo c ity  p o te n tia l  We next substitute the functions (j) and in the far field into 

the integral over the closed contour enclosing the body. We evaluate the resulting 

integrals. Although this procedure is straightforward, it is long. We first consider 

the equation (4.4)

The velocity u\.u*q is

^ f c ^ g  =  'k +  ^ g )  =  UfcUq T  UfaMq T  U kU q  T  UkUq

where U k = U  for k = 1 and U k  =  0 for k =  2.

We substitute the above expression for u\,u*q into equation (4.5) for Mi and thus 

find the contribution to the moment satisfying Oseen’s first approximation

(the Oseen equations). We also substitute for pij, pij =  —p$ij +  into equation 

(4.5). Thus we express the M /1̂  as the summation of six integrals over the contour 

C' which we determine individually. Thus we consider six integrals a;, ct, d,-, e,-, 

and fi  over the contour C f such th a t

d i  = I Cijk'VjpbkqTlqdl
J c*

bi = ^-ijk^jpbdkUqTlqdl

Ci = j ^■ijk'^jpbdk'UqTlqdl 
J C 1

d i  = I  ^ i jk^  jP ^ k U q f lq  d l  
J c*

Ci = — 1 j  p U k <llq7T/qdl 
J

f i  = / £ijk'£jP’&kqW'qdl
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We first consider the integral expression for a;:

d{ — jP^kq^qdl

I Gijk%jpnkdl

Since x 3 =  = 0 then «i =  a2 =  0. a3 is such th a t

£*3 =  — y  { e 32 ia ? 2 n iP  +  £ 3 1 2 ^ 1 ^ } ^ /  

=  p(x2ni — x \n 2)dl

We take the contour C' over the circle circumference radius r —► 00 and so

y2ir

JO

However, rn i =  £1 and rn j =  #2* 

Therefore

a3 =  0
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We next consider the integral 6t- such that

=  J" tijkXjpUkUqTlqdl

However b\ =  b2 =  0 because x3 =  n 3 =  0. 63 is such th a t

63 =  ~~p I  { e 32 i® 2 U i ( U \n i  +  U 2TI2 )  +  ^ 312^ 1 ^ 2 ( ^ 1 ^ 1  +  £ £ 2^ 2 ) } ^ /
Jc>

Ui is such th a t U\ — U and t /2 =  0, so

r2it
63 =  pU2 /  X 2X \ d 0 

Jo

The function x 2x^ equals ( l /2 ) r 2 sin20 and is antisym m etric in the variable $ 

and so

63 =  0

[ We consider the single valued function f (9)  antisym m etric in 0. Thus f (0)  =  

—f ( —0) =  — /(27r — 0). Therefore

r2ir r2ir r2ir
/  f(9)d9 =  /  f(9)d9 -  /  /(2 jt -  9)d9
Jo Jo j  7T

=  /  f(0)d0 -  f f (a)[-da]
JO JiT

= 0 ]
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We next consider the integral ct- such tha t

Ci — p J Gijf^XjUffUqTlqdl
*/ c*

ci — c2 — 0 because *3 — n3 =  0 and c3 is such that

C 3  =  — p  {€32i$ 2 U{u\ni +  u 2n 2)dl 
Jc>

since U\ — U and U2 =  0. Hence

c3 =  pU J  x 2(uini  4- u 2n2)dl 

We take the contour C' over the circle circumference radius r —> 00 , and so

/*2tt
c3 =  pU /  x 2 (uin\  4  u2n2)rdS 

Jo

We first consider the contribution to this integral from the velocity term V<ft. We 

name this contribution C3. We shall later consider the contribution to this integral 

from the velocity term w. We substitute the expansion of V<  ̂into the above integral 

equation. (The expansion of is obtained from the expansion of <f> given in section

(3.5.2) .) As r —» 00, all the terms in the expansion of <f> give integral contributions 

for C3 which tend to zero except for the term D\

Therefore, from appendix section (4 .2), we obtain

 ̂ /  71-Bi 7rJ3i\
4  = p u  y— 2---------2 “)  = ~ pU7rBl

The contribution to the integral expression for c3 from the velocity term 

w =  (f ljj- §£) is considered later. (We name this contribution cjf and therefore

c3 =  4  +  C3 •)
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We next consider the integral d{ such tha t

di =  —p j ci €ijkXjUkUqnqdl 

di — d2 =  0 because x 3 =  n 3 =  0 and d3 is such tha t

d3 = —p I { t 32\X2UiUnx +  e3\ 2X\u2 U ni}dl  
J

since T J \= U  and Ui = 0. Therefore

d3 =  pU J  (®2«iWi — x\%i2ni)dl

We take the contour C' over the circle circumference radius r —> oo and so

r2ir
d3 = pU /  ( a ^ in i  — a:iU2n i)rd^

Jo

We consider the contribution to this integral from the velocity term  V<ft. We call 

this contribution df.

We follow the method for calculating C3 and similarly find th a t as r  —> 00 all 

the terms in the expansion of <j> give integral contributions for d$ which tend to zero 

except for the term  </> =  I?!5™ . [See section (3.5.2).]

Therefore, from appendix (4.2), we obtain

4  =  PU{ -  ^ - )  =  -p U w B i
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We next consider the integral et- such tha t

e* — p j  C-ijfaXjtlfcUqTlqdl 
JC*

e1 =  62 =  0 because X3 =  713 — 0 and €3 is such that

63 =  —p I {€312̂ 1̂ 2(^1^1 ^2^ 2) +  €321̂ 2̂ 1(^1^1 d~ ^ 2̂ 2) } ^
J c 1

We take the contour C' along the circle circumference radius r —> 00 and so

e 3  =  p J  { r c 2 w i ( « i n i  +  u 2 n 2 )  —  x i U 2 { u \ n \  - f  U 2 U 2 ) } r d 0

We consider the contribution to this integral from the velocity term V<ft. We 

name this contribution . We substitute the expansion of V 0 into the above integral 

equation. The expansion of V̂ > is obtained from the expansion of (j) given in section

(3.5 .2). We find that as r —> 00, all the terms in the expansion of <j> give integral 

contributions for es which tend to zero except for the first two terms:

*  = ~ 2 ^ U (e ~  ^  +  2 ^ U lU r +  -

__ L (  sin# co s# \ D  /co s#  s in # \
  2irpU \  r ’ r J 2wpU \  r ’ r J

Substituting the velocity term V</> into the integral expression for e3, we obtain:

 ̂ LD  ( LD  ( LD t LD
Cg == ~ 1 *"f" TT t to "f" r ro d~STrpU2 8x pU2 SirpU2 &TrpU2

where
/ 217 LD

p J Q x 2u \ n i rde =  —  e.t.c.

[See appendix section (4 .2).]
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Thus
LD

2 'KpU2
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Therefore the moment on the body due to the velocity V 6  is such tha t

- M p  =  4  + 4  + e f

= - pU ^ B 1 - p U i r B 1 + ^ ~

= - 2 p U x B j  + L D  
p 1 2irpU2

We now consider the contributions to the moment due to the velocity w.

In the far field, the function w exponentially falls to zero outside the wake region. 

Inside the wake region, from equation (3.33), w is

D f~TT D x 2 I k'K _*fl.
 h i  I  p  2xi ----------------- i-I ------ g 2 * 1
7rpJJ y 2kx\ ’ 2'KpU rci V 2x\

The term s in the moment integral which include the functions and w2 will

only give non zero integral contributions to the moment if they are at least of order

k4
e 2iBi

We see this by considering the order of the term  in the drag integral in section

(4.1.1).

By considering c,-, d,-, e; we see th a t the highest order terms in the moment 

integral which include the functions u>i and w2 are

pU(x2win-i), pU (x\w 2ni)  and p(x\w 2w\n\)  where in the far field wake n\ —» 1.

We obtain a non zero integral contribution to the moment from the terms in the 

moment integral pU{x2Win\) and pU(xiW2ni)  which come from the integrals C3 and 

d3 respectively.

The contribution from the integral c3 is
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r£ir
pU  /  x 2w in\rd9  

Jo

which is

rr f°° (  SX2 \  I kft ,
p u L X2 \ ~ ) \ i 2^ e l n d x 2

If we change the variable of integration to q =  2 then the integral becomes

The contributions from the integral d3 are

/"V57T
—pu  /

Jo

and

/*2ir
/ x2W\n\rd9 

Jo

The first integral gives the contribution

__ I 7r _**1 f 1 f
- p U L Xl S\ j 2k ^ e { 2^ 7 - & F J  2

If we change the variable of integration to # =  then the integral becomes

- W J jC S G -  1 / ^
'2®!

V 5 f i 2  * ; v t

The second integral is identical to the itegral contribution c3 and therefore gives the 

contribution

pUs'K
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Thus the contribution to the moment from the integrals c,-, d{ and e; involving 

the velocity w is

3pUm_ .  .

2k ' '
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We finally consider the integral /,• such tha t

f i  -  p j ci eijkXj ( ^  +  ngdl

Therefore / i  =  /2 =  0 and

h  —

■ {'•' ~ ( i s  * I s )  ~ 'i:" ',2i s }

=  - M r  { ^  COS 2 0 - ^  -  2 r2 sin 2 ^ 1  M
[ o x \ d x 2 ox j J

where C ' is the contour circumference of the circle radius r  centred at the origin.

We first consider the contribution to this integral from the velocity potential V</>.

By inspection of the expansion for the velocity potential given in section (3.26), 

we see th a t the term s in the expansion for n > 1 will give integral contributions

to fa a t the greatest of order 1. Thus there is no contribution to the integral from

these terms. Therefore we consider the first two terms in the expansion for <j>

4> = - 7 r ^ 77loS r -  L °2irpU 2irpU

We find S  and
O X f  0X 10X 2

■2npU^~ = D ~  -  L^~  and -  2 i r p U — D ~  +  L 
Ox i r2 r l o x 2 r z r l

and so

■2 wpU%± =  d ( \  - 24 ) + 2L XiX*
d x 2 \ r 2 r4 J r

cos 29 sin 29 
— —D — - h L — -—

4
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and

Therefore

2?r pU f3 =

•2wpU
d 2<f>

dx\dx2
=  - 2 D

X\$2

D

tpH.

sin 29 
r 2

2xo

cos 29

\fi /  {cos 29 ( - D  sin 29 — L  cos 29) — sin 29 ( - D  cos 29 +  L  sin 29)} d9 
Jo
/*2tt
I —L (cos2 29 +  sin2 29)d9 

Jo
■̂ TTflL
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We next consider contributions to the integral / 3 from the velocity w. Since the 

velocity w is exponentially small outside the wake, then

/oo
(^312^1^21 4* £$21®2£\\)d%2

-oo

=  _  r  L ,  ^  dx*
J-oo \  d x 2 )  d x i )

From the symmetry of the above equation, we will only obtain terms contributing 

to the integral which are antisymmetric in x 2 for the function w\  and symmetric in 

x 2 for the function w2.

Refering to section (3.6), the leading order term  in the streamfunction for anti­

symmetric flow in the far field is

T / 7r

which give the leading order terms in the velocity far field for antisymmetric 

flow:

I x 2 /  k'K _k'K s j k ( l  b j l l

given in equation (3.33).

By inspection of the integral / 3, the only term  in the integrand contributing 

to the integral is the other terms give contributions which tend to zero as

Xl —» oo.

Thus

dv)\
j 3  =  - f i  j Xi 

J —oo

and

dw± j
f s  = - H  x i —— dx 2 

J —oo OX o

148



Therefore

f s  = SfX \ dx ,
V  2  J —oo \ J X \  a? i J

•2

= sfi^ f e-p2{l —2jo2}dpc Xi ~ * p 2 
J  — oo

=  0

Thus the contribution to the moment from the term  in the integrand involving 

e,j is zero.

Hence

J^ ^ijkft^-kq^qdl =  0

Alternatively, we obtain this result by expressing w\ and w2 in terms of the 

streamfunction \Er of the velocity w.



by integrating by parts. We then find expressions for and and find tha t

f l l  _  4 +  4k1 f 3 =  0
d x i  d x  i

and so / 3 =  (A +  U a ^ e 2*®1. However, cannot be exponentially large and so 

A  = B  = 0 and therefore / 3 =  0.

We now investigate further approximations to the Oseen solution and the effect 

of these terms on the lift, drag and moment.
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4.1,4 Further approxim ations to  the O seen solution.

We consider further approximations to the Oseen solution for steady two dimensional 

flow. We consider flow such th a t the velocity perturbations to a uniform stream  U 

are small and so represent the fluid velocity id and pressure p* in the forms

2*1= Uo +  +  ^ 3  +  .••• , Pf =  Po + P l  + P 2  +P3 +  ....

where uo = Ui, and ui  = u : the Oseen velocity.

The Navier-Stokes equations are

|(^o 4~ U 2 ~t~ (uo+UiL+n2+..*) — - ~V(po+Pi+P2H~*") =: t/(V2)(np~l-ni~t~n2“f->>0

and the continuity equation V .id — 0 gives V.no =  0, V.ni_ =  0......

Thus we linearise the Navier-Stokes equations for flow perturbation to a uniform 

stream  U.

The term  of highest order in the linearisation gives

(wq.V)ug

which gives Po =  constant.

The first approximation gives

1
(«o-Y)wi 4- (ut.V)uo ~  ——Vpi +  v ( V 2)ui 

which are the Oseen equations

__ $%JL 1 . . f  ̂.O'
U —— =  — Vp +  v ( V 2)u

O X  1 P ----

where u\ = u and pi =  p.

=  — Vp0 +  K V > o  
P —
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The second approximation to the Oseen solution gives

(Ho-V )u2 +  (^ i-V )u i +  (^2-V)Wo =  —- Vp2 4- I^(V2)n2
p

and so

® \ / 1 
— )U 2  4 -  ( B . - Y ) H i  =

Similarly, the th ird  approximation gives

(U — )u2 4- (n i.V )n i =  — V p 2 4- ^ (V 2)n 2
o x \  —  —  —  p ------  —

+ («1-V)H2 +  («2-v)hi =  + " ( v 2)b>

Filon (1928 Phil. Trans. Roy. Soc. 227 93-135 ) considers the possibility of 

contributions to the lift, drag and moment from the second approximation to the 

Oseen solution.

Imai (1951 Proc. Roy. Soc. A 208 487-516) finds the second and th ird approxi­

mations to the Oseen solution in the far field wake and calculates the contribution 

to the lift, drag and moment. He finds these contributions vanish conditionally and 

not because of their order.

In fact, there is a contribution to the moment from the second approximation 

to the Oseen solution which is of order logr, (Filon pg 131 ), bu t Imai shows this 

term  is balanced by an identical contribution but of opposite sign from the third 

approximation to the Oseen solution (see also Lamimar Boundary Layers, Rosenhead 

pg 197 ch4.8 ).

We have therefore not found all the terms in the moment expression, only those 

derived from the Oseen first approximation solution, the Oseen equations. The 

contributions to the moment from the second and third Oseen approximations are 

given by Filon (1928) and Imai (1951).
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Collecting together all the contributions, we obtain

M «  =  —IpUicBi +  2 ^ 7 ?  "  2^ T L ~  I T  ^

Thus we see th a t the moment on the body involves coefficients from the expan­

sions of both  (f> and

We now investigate the moment calculation for three dimensional flow where the 

Oseen approximation is valid.

153



4.2 C h4.1 A ppend ix: E valuation  o f  th e  term s in
th e  m om ent in tegral exp ression .

We evaluate the integral expression

4  = Pu £ \ 2 (!£«, + 1£»,) rde

We split the above integral expression into two parts, and we first consider the 

first part of the integral expression

•2ir d<j)f  0<P/ — cos 0rd8
Jo dxidxi

We substitute the potential expansion of <f> into this integral. The terms in the 

expansion of (j) which are symmetric about y =  0 give no contribution to the integral 

since / 02ff f(0)d0  =  0 for f(9)  ~  — / ( —9). We consider the first term  — L2̂ ~ ^  in the 

expansion of the antisymmetric potential. This gives a contribution to the integral 

of

-  ( L ^e COS6rd6 =  - —^77 / * '  r s in 2 0 cos0d$ =  0Jo d x i \  2 ttp U  J 2 ir p U  Jo

We next consider the second term  in the expansion of the antisymmetric

potential. This gives a contribution to the integral of

f 2lv • n (  sin 9 cos 9 \  _j  r sin 9 ( —2 B \    j cos 6rd6

since ( ^ )  = - 2^ c osjj>.
ox\ \  r /  r*

Thus the term  gives a contribution to the integral of

—  j  sin 29d9 =  — — j  (1 — cos 40)d0 = ---- —
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The other terms in the antisymmetric expansion of <j> are

B n sin nB
tpix

where n > 2. For n > 2, the integral contributions are of order and thus

tend to zero as r  —* oo.
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We next consider the other part of the integral expression for C3 .

/ 2ir d 6
I  #2*5— sin 0rd0 (4*8)

J 0 ox 2

We follow the same method for calculating the first term  in the integral expression 

C  x 2§ ^  cos nOrdB.

We find the symmetric terms in the expansion of (j) give no contribution to the 

integral of equation (4.6).

We therefore only consider the terms in the antisymmetric expansion of <f>, the 

first term  being — . This term  gives a contribution to the integral of

f  L  cos9\ sia0rdgf Z7r j L  
Jo 2 \ 2 ttpU

which gives

2%pU
sin3 0

=  0
03

We now consider the next term  in the antisymmetric expansion of (f> which is 

Bl sin<?. The integral contribution from this term  is

/.2ir ^ BiCos29\ Biir
r2 sin2 0 ( - . ~ ~ ) dB
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We now consider the integral df

>  t t  l 2 l?  (  d < t> d ( f> \  A adl  =  pU jfQ \ X2f a ^ ni ~  X ld x ^ Ul)

We split this integral into two parts and we first consider the part of the integral

(** di* OM / 3?2  COS 6taffJo OX  1

This integral has already been evaluated in this section and has value

7tB\
2~

(See the s tart of this appendix section.)

We next consider the part of the integral

r 2n dd>
I #1 ~— cos 9rd9 

Jo ox  2

>2tt

*2

The symmetric terms in the expansion of (f> give no contribution to this integral. 

Therefore we consider the antisymmetric expansion of </> only.

We first consider the term  — — 7r) the antisymmetric expansion of </>.

This gives a contribution to the integral of

2v L  cos 9r£TT

/ Xi
Jo 2trpU r 

Lr t 2ir

cos 9rd9

2'KpU

Lr  
2 V p U  

0

f l i tI (1 — sin2 9) cos 9d9 
Jo

[— sin 9 — 1/3 sin3
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We next consider the term r

This term  gives a contribution to the integral of

f 2" flBiCos26> j— / rc o s 0 ------------ ati
Jo r

r2n
= —B\  /  {1/2 cos 20(1 -1- cos 2Q}dd 

Jo

B i r2x= —  I |cos 29 +  1/2(1 -f cos 40)}dd 
2 Jo

B \ k___
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We now consider the contribution to the moment from the integral

r2it
e3 = P {x2Ui(uini +  1/2̂ 2) X\U2(u\ni +  U2U2)}rdO 

Jo

We consider the contribution to this integtal from the velocity potential V<ft. As 

r —> 00, only the first two terms in the expansion for <f> give contributions to the 

integral which do not tend to zero. The first two terms in the expansion of <j> are

1 ^  fn  \ i4> = — - — —(# — 7r) - — — m r
2'KpU 2irpU

which give the terms in the velocity potential

? ± = - 2 ^ u { — ’ —  1 +  

We first consider the integral

sin# co s# \ D (cos 6 sin#
2'KpU \  r ’ r J 2KpU \  r ’ r

p j  X2u(nird0

If is a symmetric function in #, then the integral is zero. Hence we look for 

antisymmetric combinations of the function

2   I  L  /  s in # \ D  / c o s # \ l  f L (  s in # \  D  / c o s # \ l
Ul \ 2KpU \  r J  2kpU  \  r )  J \  2kpU  \  r )  2kpU \  r  ) }

The antisymmetric combinations of the above function give

2 /  .L \  /  D \  /  s in # \ /c o s # \  _  L D  sin# cos #
\  2k PU )  \ 2 K p U )  \  r J \  r J 2kp2U2 r2
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Therefore the integral p X2u\n\rd0 becomes

f 2* , A (  LD  s in # co s0p I r sm v  ------ ------
Jo \2 2 tt2p2U2 r2

1 / W J W

s ^ r w — ) -
LD

SitpU2

cos 9rd0
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We next consider the integral

/•2tt
P /  { x 2u i u 2n 2}rd0  

Jo

If the function u \u 2 is antisymmetric, the integral is zero. Hence we consider 

combinations of the function

which are symmetric in 0.

The symmetric combinations give

LD  sin2 0 _  LD  cos2 0 
4x2p2U2 r2 4tTT2p2U2 r 2

_  LD  cos 20 
4x2p2U2 r2

Therefore the integral becomes

LD  f 2* . n cos 29 .
4tr2pU2

r* . _____
I r sin 9 — -— sin OrdO

Jo

LD  r2n
Sir2pU2

LD
SirpU2

rdir
I {cos 20 — 1/2(1 +  cos 40)}d#

Jo
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We next consider the integral

r2ir
—p /  x\U2U\n\rdO 

Jo

We obtain a contribution to this integral from the symmetric part of the function 

U1U2 which is

L D  cos 29
£tt2P2U2 r2

Hence the integral becomes

LD r2* _cos 29 
, ■ / r  cos 0— -
Aw2pU2 Jo r2

I r cos 6 V* cos 9rd9 
Jo

LD  f 2*
87r2pU2

LD
SirpU2

pin
/  {cos 201/2(1 +  cos40)}d0 

Jo
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We finally consider the integral

r'lir
p I XiU2U2ti2rdO 

Jo

If the function u2u2 is symmetric in & then the integral is zero. Thus we look for 

combinations of the function

_  /  L  cos# D  s in # \ /  L  cos# D  s in # \
2 2  \  2*pU r  2wpU r  J \  2TrpU r  2n;pU r  J

which are antisymmetric about \$, which give

LD  sin 2#
4tt2p2U 2 r 2

Therefore the integral becomes

/■2 _____
/ r  cos # — x— sin 6rd$ 

Jo

p2iv
/  sin2 2 Odd 

Jo

LD  f 2v .s in  2# 
r2pU2

LD  
8tt2p U 2

4w2pU2 Jo r2

LD  r2*

LD
SirpW
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4.3 T h e drag force, lift force and m om en t on  th e  
b o d y  in  th ree  d im ensional flow .

From the Oseen representation of Oseen flow, we show th a t we can expand the 

perturbation velocity u and pressure p in terms of the fundam ental solutions 

and where i =  1 ,2 ,3 . We obtain

uk =  AiU$  -f B u ^ ~ ~  +  ....ox i
and

(•\ dpWp = +  B„-j—  +  ....Oxi
where

A i~ I  Is +  ~ PUu$3i|  nidS
and

Bu = J  Js — + pUuiSji) — pUxiUjSn + rijdS
Further, we find these coefficients are related to the force and moment on the 

body.

We expand the force F{ and the moment Af,* on the body in  the form

Ft = F[I] +  F[n)  +  ... Mi = m \ j) +  M \ u)  +  ...

where F[n  ̂ is the force due to the velocity and pressure term s of the N th order.
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We find

Ft = = Ai

and

Mi  =  M < °  +  M<"> + M (i nr) = - e ijkB jk +  M \ !i) + M \ UI)

Thus we obtain expansions for the velocity and pressure, the coefficients of the 

term s in the expansions being related to the force and moment.

However, the nine derivatives of the fundamental solutions are not linearly in­

dependent. We thus consider a different representation of this expansion where the 

terms are linearly independent. We also consider the expansion of the velocity and 

pressure from the Lamb-Goldstein velocity decomposition.

We consider

(4.3.1). The Oseen representation of Oseen flow in three dimensions.

(4.3.2). Obtaining the velocity and pressure expansions in term s of the fundamental 

solutions and their derivatives.

(4.3.3). Showing the relations between the coefficients in this expansion and the 

force and moment on the body.

(4.3.4). Representing the velocity and pressure in an expansion which has linearly 

independant terms.
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4.3.1 T he Oseen representation o f O seen’s equations in 
three dim ensions.

(This m ethod is identical to obtaining the Oseen tepresentation of Oseen flow in two 

dimensions, which is covered in detail in chapter five.)

We consider the Oseen equations with body force —/(# )  per unit volume,

f i i t
pU— - = - V p  +  /iV  u -  /  , V.M =  0

O X  i

Let u(a)(x), p(a\ x )  and p ^ ( x )  be solutions w ith negative body forces

respectively. Then

~  { pU  t 4 a ) ( y ) t 4 6 ) ( ®  -  2 / ) }  =  { p ( a ) ( y ) w i 6 ) t e  -  y)  +  * 4 a ) f e ) p ( 6 ) f e  “  2 / ) }  

- f i a)(y)u\b\ x  - y )  + u\a\ y ) f i b){s. -  y)

Hence we let the integral I  be

= J  Is j pl<,)“? ) +  «4B)P(6) +  /‘ “ !6)j  +  p U u W u ^ S

= J J J M W - f l ' W ) * ,

where nj  is the outward normal to 5 , the boundary surface of V.

• ' u j i  ? r i j d S y
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We take V  to be bounded externally by the large sphere S r  given by \y_—x| — R ,  

internally by the small sphere Sg given by |y — cc| =  8  and by the surface So lying 

between Ss and S r .

Figure 4.2: The surface bounding the volume V.  

The Oseen fundam ental solutions are defined as

^  lwk.fe) > p(fc)fe) =

where

. . d 2E  _ 3_ .  d  (  i  \
Wki{sL) =  d ^ ,  -  v  ESu  > qk =

1 r k ( r - x i )  1  _  e - *  JJ
E(x)  =  - —-  /  at , r = m  , k = —

w  S n k  Jo t  ’  ’  2v

(See Oseen Hydrodynamik.)
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u

First we put z  =  x — y into the integral I  and take

U j { z )  =  1w kj ( £ )  , p{b)(z) -  qk(z) , l {b)(z) =  0

W hen S —> 0 and R  —> oo, we get, for any x  outside So

ia)(®) -  -  J  j s jp(a)(|/)p 1̂ kj(x ~ y )  + ~ y )  + u f \y ) -^~ -w ki(x -  y)

d u ^  f v 1
— w ki(x - y )  +  2 ku\a)(y )w ki(x -  y)6j i  > njdSy

dVj j

+ ^ - 1 /  J  JvJ i a)( y ) w ki( x - y ) d V y

where nj  is now outwards from So and hence inwards to Vo, the space exterior 

to So. In particular, if there is no internal boundary surface *So we have

«io)fe) =  J  J  J  f i a)(y)wki(x -  y)dVy =  f i- 'wki  * f i a)

168



Similarly, we find the pressure p  in terms of an integral distribution over the 

surface S q. We put u f \ z )  =  qj(z), P ^ ( z )  =* —pUqi{z) into the integral J. W hen

8 —> 0 and R  —> oo we get, for any x  outside So,

p(a)(x) = ~  J  JSo ^Pia)(y)qj(x - y ) -  p U u f \ y ) q x(x ~  y) + pu\a\ y ) ^ ( x  -  y)

d u ^  t  ̂ 1
~ P - ^ ~ ( y ) Q i ( x  - y )  +  p U u \ a)( y ) q i ( x  -  y ) 8 j x |  n j d S y

+  / /  JVo f i a)(y)qi(x -  y)dVy

where again r t j  is outwards from So, and if there is no external boundary S q ,  

then

p(a)(x) = J  J  J_ f^a)(y)qi(x ~  y)dVy =  qt * / / a)
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4.3.2 The velocity  and pressure expansions in term s o f fun­
dam ental solutions.

From Oseen Hydrodynamik, the Oseen representation of Oseen flow in three dimen­

sions is

uk(x) =  -  J  Js |p(y)f^ 1m j ( x  - y )  + Uj(y)qk(x -  y) +  U i(y ) ^ ~ w ki(x -  y)

-wki(x - y ) - \ -  2kui(y)wki(x -  y)6jaJ rijdS (4.9)
du{

dy3

where x  is the position vector of a general point outside the closed surface So 

and |/ is the position vector parameterising the closed surface S q.

and = qk are the fundamental velocity and pressure solutions 

respectively. These are given in Oseen Hydrodynamik as

*=i  ( i )
d 2E

wki =  -  V 2ESki
a x k o x i

where

1 /■*(*■-*i) 1 -  e
E  -  /   dt

Jo8irk Jo t

We consider the point x  far enough from the surface So such th a t |j/| <  |®| for 

all y  on S q .
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Hence we can expand the fundamental solutions as a Taylor series:

W k i ( x - y )  =  wki(x)  -  y i - ^ - W k i ( x )  +  (1/2)y j y t ^  w ki(x)  +  ...

Q 9^
Qk(s. -  y)  =  qk(x) -  y jQ — qk(x) + ( l / 2 ) y j yrQx--g — qk(x)  +  ...

Substituting into equation (4.9), and writing to*.,- = Wki(%), we obtain

, , dwki d2wki \  d  f dwki \
+ “ i ( ^  ( - 5 ^ 7  +  y‘d ^ , -  -  J  -  r - '  ~  Itei +  -  J

+ 2 k u i ( y )  ( t o t , -  -  + ••■•) 6ji J n j d S

Here =  V 2wki — 2 and since there is no fluid outflow from S o , then

f  f s0 uj(u)n3dS — Hence we can write

uk(x) -  wki(x) J  j - / /  1pSij +  -  2 ^ u ,^ i |  rijdS

dwkt(x) j  _  2kujyiSn -f wS# -  rijdS
dxi J Js0 

+. . . .

=  y~x |Ai«7fc; +  +  - •

where



We note th a t in this expansion the nine derivatives of the fundam ental velocity 

are not linearly independent. This will be discussed later in section (4.3.4).
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Similarly, from Oseen’s Hydrodynamik, the Oseen pressure in Oseen flow can be 

expressed as

p (- } =  “  I  L  {p(y) ~  + - )  “ pU,Ji ( 9l - )
/ ^( % , d2qi \ du*( \ (  % ,

+pu ' (y) + ykd ^  -  j  - r  " n s T k +

+pUui(y) (qi -  VkT~ +  ... j  5 j l |  rijdS

This gives

p(x) =  Aiqi(x) +  B ik~ ~ ( x )  + .... (4.12)

where I 2*- =CsCCfc C/OD\

Thus we have found the velocity and pressure expansions in terms of the funda­

m ental solutions and their derivatives. We now consider the relations between the 

coefficients in these expansions and the force and moment on the body.
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4.3.3 Coefficients in the expansion in term s o f th e force 
and m om ent.

From section (4.1.1), following the same argument in three dimensions, the force on 

the body can be expressed as an integral over a closed surface Sq enclosing the body

F< = I  Iso {~p S i i + ~ pu'uty nidS
Considering the Oseen linearisation valid on and outside So,

=  USn -f u P  +  t4/7  ̂ + . . .  p =  +  p^11̂  +  ...

and substituting these expressions into the above integral, gives us a correspond­

ing expansion for the force Ft such tha t

F i  =  F ( l)  +  F [ rr> +  .. .

where

From equation (4.10) we thus see th a t

F t(,) =  A, (4.14)
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The moment is

Mi =  j  Js eijkXjPkinidS

= €iik { /  Is, x>mntdS ~ J J J v {h, (-XjPkl'1 dV\

J  L xj {~A + / i ( £ +£ ) } n,dS - I 1 1  (S m i+Xipu]

J  h x’{-pSu+pi£ ) n ,d s

1 1  Iv{x>pu‘i ^ r pbik+^ dv

— e i jk

e » ifc

duk
dxi

e i jk

dxj  J

j  L x i (_A+/j£f) n , d S

- J  J  Jv (w«W + *.«»«*) ~ W

=  eiik[J  h x i { - pSk,+pi £ ) n,ds
~ ( /  Is ~ I  Is) (pXjÛ 1 +  fXUk̂ 1) UldS +  /  /  Jy Pu ) u k d V

=  3 #  J  j f  jar, +  f i ^  -  pu[u\ j -  j nidS

175



Thus we obtain the expression for the moment

M i =  eijk J  j a i j  -  pukut j  -  fiukSjt |  n{dS

Substituting the velocity and pressure linearisations into the above integral, we 

obtain

Mi = M \ 1] + M<"> +  ...

where

M P  -  eijk J  -  pU  j  -  nidS

(4.15)

M \ n) -  eijk J  | ® j -  +  P ~ ^ i- - - pU

ntdS

Since ey* =  ~^ikj, we can write

M p  = eijk J  jT ~  +  pUxkU^Sjt  -  J  nidS

^ijk^kj ~~ ^ijk^jk (4.16)

Hence the force and the moment are related to the coefficients of the velocity 

and pressure expansions by equations (4.14) and (4.16).
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We can also derive these results by considering the surface S q as a large sphere 

S r ‘, we substitute the expansions for and pW in the integrals for and 

and evaluate the integrals as R  = |a;| •—» oo.

We now consider which terms in the expansion contribute to the respective in­

tegrals:

The order of the fundam ental velocity on the sphere radius R  is ^  inside the 

wake and outside the wake.

In the wake a?2, £3 =  0 ( \ / R )  and the derivative of the velocity w.r.t x 2 or £3 

reduces the order by y/R

Hence inside the wake the order of the fundamental velocity first derivative is 

at greatest Outside the wake , the order of the fundam ental velocity first

derivative is 0 (^ 3).

The order of the fundam ental velocity second derivative is O ( ^ )  inside the wake 

and outside the wake.

Similarly, the order of the fundamental pressure is fundam ental pressure first 

derivative ^  and fundam ental pressure second derivative

The area of the surface S r  outside the wake is 0 (R2) and inside the wake 0(72), 

since x 2, £3, are of order ^  inside the wake.

Thus the contribution to the force from the first derivative terms n) ,* dxm 7 dxm

are 0 (r^ r 'R)  inside the wake and 0 (^ 3-.i22) outside the wake. The contributions 

from higher derivatives are even smaller, so we need only consider the contributions 

to from and p W .
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Similarly, for the contributions from the second derivatives
J  7 * 7 O X m O X q 7 a X m O Z q

are inside the wake and outside the wake. The term  pos­

sibly giving a contribution to the moment is

eilk J  j  x ,( -PU ) - ^ - d x 2dX3
J  J o  0 i s  *V f f i \ J  <1* p

where k , m and p are 2 or 3.
8l|(n)However, integration with respect to xm gives values of ^ -  outside the wake, 

which are of 0 (^g ), and so the contribution to the moment is 0 ( i? .^ . \ / i? ) .

Thus in the case of we have to consider u(n\  p ^  and n), only.
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The force integral is given as an integral over the surface 50, enclosing the body 

S', on and outside which the Oseen approximation is valid, by equation (4.13).

F i{) =  J  Js ~  P u  |  rijdS

and

+  B mn~ ^ — +  ....

pB) =  A mP™  + +  ...
o x n

We consider the integral

f l m) = J  f So | - p (ra)%  +  - Pu

and so — A mf t m\

The functions p(m) and are the three fundam ental pressures and velocities 

respectively. Thus this integral is singular at the origin. We consider the surface 

of a small sphere Sg whose centre is located at the origin. Applying the divergence 

theorem to the above integral, we obtain

f t
(m )

J  Js, "  pU (<5,lU‘m) +  }  njdS

+JJJv i + I I ° £ r - pU  M m ) + ) d v

179



But

£ j  |  - P < " %  + ( S n u ^  +  M l " 0) } dV

dp(™) d 2u\m  ̂ du\m^
dxi  ^  ^  dx jdx j  ^ dx\

=  0

from the Oseen equations.

Thus

^  = I  Ss6 +  -  pU +  $ji«4m))  J  n j d S (4.17)

180



From equation (4.15), we obtain the expression for the moment

M,('> = eilk J  j*,- f-pSK> + -  f>U6h,u \n -  pUSnui1̂  -  p tt?  j n,dS

Substituting in the expansions for and p ^ \  we obtain

M (, I] =  eijkA m j  L j  + 11^ -  -

+ p U x k u \ m ^ 8 j i  — f i u ^ S j t }  n i d S

_ f  f  \  (  dp(™} d 2u ^  s 5i4”̂ \
+ t i j k B m n  J  j*,- q ^ - 6 u  +  1‘ q ^ q ^  ~  p U S n  g X n  j

+ pU xk^ - S ]l -  [ n,dS

+  . . . .

= A m +  Bran£l"""> 

where jJ ,n  ̂ and L-m,n' are given by the two integral expressions above.
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Thus,

j ( m) = €ijk j  Js  p u  ($kiUim) + ̂ /iWfcm)) j -  j w/<?5

e,jfc J  jf |«j- ĵ -p(m)6fc/ + P~Q̂ t PU + ̂ iwlro)) j ” pu^Sji J  nidt-p(m)Ski + P-Q^t pU ( 4 i « / m) +  ^ i wim)) j  “  pu^Sji J  nidS

l l l v l ,  + W 0 +

• « *" % } d v ]

However,

■̂ijk
_d_
dxi

— ^ijk

x 3 | - p (m)4z +  P ~ ^ i p u  ( 4 i ^ / m) +  ^(i^ im))  -  p u ^ S j i

Sj i  { - P (m )Ski  +  -  pU (<w4m) +  }

d
(m) 4- «/ k  I _   nTTS„ — A —  [  -  f l U ^ S j l

+ x>\ \ ~ p' " " + i , - £ r ) ~ puSkl _  puSn a*,

— ^ijk -? (m)̂  + 4 i £ - ~  i f )  -  <*> M m) +

p u i k - p U ! £ r
=  0
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Hence

j \ m) = eijk J  j S' j*, -̂J>(ra,4| + -  p u  { h M m) + «n4m)) j - /™i"% j n ‘d S

(4.18)

183



We now obtain the expansion of the fundamental solutions as r = |̂ .J —+ 0. 

We have

rk ( r~ x  i )  1  — e ~ l
E  =  I ■...., dt

Jo 87vkt

This gives the expansion

1 ~  (~-k)n(r -  .ti)w+1
~  s *f=o  (» +  l)!(«  +  l)

since e - ‘ =  E"=S° ^

Thus for small r,

l  ~  2x d2E  „ aE = _ { r _ Xl )  +  0 ( ^  Wk n  =  _ _ ^ E S k n

and hence

Wk" = ~ i  G4- + ¥ ) +0(1)

9wkn   1 f  'Em
d x m 87r \ r 3

c &km'En *t* &mn'Ek . ^
-------------;3-----------+  — 7 5 — )+°(r )

where =  p, 1wicn and p(k) — qk —
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We now evaluate the integrals j / n  ̂ and L\m,n  ̂ over the surface Sg.

Thus

//,. {& ?+i  ^ +^ }JS+̂  

s / / „ ( ^ +2? ) ' ,s+ 0<s>

| 47r̂ tn + 3.^7r<5>)n j + 0(£)

=  &in

F[I] = A n ^ ^ A n S *  

= Ai
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The moment expression is given by

■Mf > =  A mj \ rn) + B maL\m'n) + ...

where

4 m) =  ««* J  j s ja-j  PU j  ~  nidS

However, the contribution from and is 0 (£) and g* is O (^ ) . Therefore

j / m) =  0.

We now calculate L\m'n\

The contribution to the moment from the term  is
O X m

tijk f f  X j j r — Ski— dS  =  0 J Jss o x m r

since tijkXjXk — 0 from symmetry.
9 u ( n )

The contribution from the term  —p 9J? Sjt is

. 3'k^mn “t”

XfiXniXn
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Hence,

Thus

' » / / s { " £ s ; - , ' f e + 0 " '-)}5 ''s

^ijk f  f  ( x j X j  f  &lm ^ &km&ln &mn&kl
87r J Js# \  r y r3 r5 J " r3

1 ^m n^k)^! . n (^kl^m ^n  4“ ^Im^k^n  4* ^In^'k^'m'} ■* «« (®fc®/®m®n)  1_ 3 -------------------   j_£,-------------------
jiO f

c ^km^n 4" ^mn^k . n &k^tii^n \  1 j  r? , / c\
- 7  7̂ ^*"--------- 7 ------- + 3—7 — j J d5 + ° (5)

/* /* f 2a?m „ ^kmX,i 4" ^mn'^k . n^km^n 4“ ^mn^k . r.^'k'^m^'n
8 7  J Js,Xj \ - ^ S * ------------ =---------+  3--------- =--------- +  9

1 r X f c X m X n  X m  _ ^ k m ^ n  “I” ^mn^fc 0 ^& ^m ® n\ . y^/c\
- 15— 7 -------- 7 " 5tn + --------- 7 -------------3 r e......j  d S  +  ° ( tf)

f  f  f S k n X j X m  “J- <!)& m X j X n  +  b n n X j X k  _  3 g j g fca!roa;n |  ^  +
87r «/ JSg I r® J

8cijfc /" /" (  6kn X j X m  H" 6hrnXjXn \  »r» . y i / c \

I T  J Js. { ------------7 ------------J ^  + 0(5)

^  + 0(6)

2 e*mn 4"  ̂emm 4"

t̂nm
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4.3.4 The velocity  and pressure expansion w ith  linearly 
independent term s.

However, the expansions given for the velocity and pressure are not linearly inde­

pendent, since

=  M l  =  o M l  =  9 2  ( - L \  =  o
d x n d x n ’ d x n d x nd x n \47 rr/

Thus of the nine solutions on^y eight are independent. We now give

eight linearly independent solutions for the velocity and pressure.

The equations =  0 has five independent solutions of the form

W ith Xi — r cos 0, x 2 =  r sin 0 cos *3 ~  r sin 0 sin these may be taken, with 

appropriate velocity fields, to be

m  1 n (  n \  1 m  1 ^ (1)
p =  w P2(cose) =  2 - ^ T ’ “ ( 2 0 ^

v m  -  1 p>(co- e ) - i n 9 c o - t i -  9pil) -  9pW  u m  -  1 f 9 - ^  | d&(2>)P ~  471-r3 sln v cos i[> — ^  ^  , — ~ 2 ^  + 5 s , j

pM -   3:_P'(cos 6)) sin 0 sin t b  _  „(/> =  1 +P -  47rr3 2 '  )  t i s i n t p  ~  g  ^  , u  -  % y  ^  j

p<U =
47rr3 ox  2 a r 3 a # 2

p «  =  —!-jP"(cos 0) sin2 0 sin2t/> =  2 ^  = 2 ^  , a <'> =  ^
4?rr3 ehc3 &c2 5^3 0 x 2

Each of these solutions gives M =  0.
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The remaining three solutions of the Oseen equations have pW  

antisymmetrized to give

p(l) — q y(,i) — cxjrl^1) =  —== — M f ’ =  2dn
OX  3 OX  2

p('> =  0 ,  « «  =  c«rW 2> =  ^  ^  , M«z) =

p(') =  0 ,  u w  =  curlM(3) =  -  -3=— , i W f > = 2 f e
c/a;2 oa?i

duW a^3)
d x 3 d x 2

duW du(l)
Qx i dx3

aM<2)

0  and uW
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C hapter 5 

T h e O seen v e lo c ity  
rep resen ta tion  in tw o d im en sions.

We consider in this section Oseen’s representation in two dimensional steady flow 

of the velocity u and the pressure p satisfying Oseen’s equations.

Oseen expresses both  the fluid velocity and also the pressure a t a point q as an 

integration of a velocity and pressure distribution over a closed contour C  enclosing 

the body but excluding the point q.

CtoS>€d) C&AkouS- 
O

Figure 5.1: The position of the contour C  enclosing the body.
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Oseen obtains the results

Ufc dtjk
dn

-Tkiij I — Uujtjf.ni > dl

and

P =  £ L  { * '  ( " i t -  7 n’)  - Ui ( ' ' i t  ~  7 n j )  ~  U u ^ n ' ) dl

for functions ijk and Tfc and particular solutions of Uj and p all defined later.

This section is concerned with Oseen’s method in two dimensions given in Oseen 

and Lagerstrom to obtain the particular velocity and pressure distributions over the 

closed contour C  which give the velocity and pressure at the point q.

We first consider the Oseen velocity expression and next give a brief description 

of how we obtain it.

We shall define a function /  such th a t the integration of /  over the closed contour 

L  not enclosing the body is zero. The function /  involves the velocity, pressure, 

adjoint velocty u and adjoint pressure p where the adjoin t velocity and pressure 

satisfy Oseen’s adjoint equation. The definition of /  is given later.

The closed contour L  consists of three curves; the closed contour C  enclosing the 

body, the closed contour of a circle circumference centre a t the point q radius 71 —» 0 

and a closed contour of a circle circumference centred on the body and enclosing the 

body and the point q of radius R  —> oo.

We shall first consider two particular solutions of Uj and p, tjk and respectively 

such th a t the fluid velocity at the point q is expressed as an integration of a fluid 

and pressure distribution (the function /  ) over the closed contour C.
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Oseen finds th a t these two particular solutions are

/  aam  d9m  \  / i n
K  =  ( A ,  A  +  2kK0(kK)e«*-*°)  “

\  du dx )  V

r  =  2pvV (log 72)

where #(72) =  log 72- +  Ko(klZ)ek x̂~Xc\  72- =  [ ( a ?  — #c)2 +  (p — S/c)2]1̂ 2 and k = ~ .  

(xc, yc) is a point on the curve.

We now give fully the method to obtain the Oseen velocity representation. We 

first define the function / .

We first consider the function /  given below which contains the perturbation 

velocity u and the pressure p (satisfying Oseen’s equations ), and the adjoint velocity

u and the adjoint pressure p (which satisfying the adjoint to Oseen’s equations).

Hence

r\ *|
=  — \7p +  v V 2u V .u =  0 (5.1)

ox  p---

and

=  i v p  -  u V 2u  V .u  =  0 (5.2)
OX  p -----

Oseen considers the function /  along the closed contour C whose outward point­

ing normal is n  such tha t, in vector notation,

f ( x , y ' ,n )  = uj ~  ~pn^ j -  Uj ~  UujUjnt

The integration I  of the function f ( x , y ; n )  over the closed contour L  is zero. 

This is shown by applying the divergence theorem.
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1 = L ^ Vl t o  ~  ~  ~  7 " ^  ~  U u i 'i i n ^ dl

where dl is a length element of the contour.

Applying the divergence theorem,

I I  =  I J s  { i ;  ~ 7 ^  ~  VUii t 3 + 7 U>) ~  i (U u^ ]} ds (5-3)

where S  is the area enclosed by the contour L  and ds is an element of area.

( The divergence theorem states tha t for a vector function hi(x 1, #2) defined in a 

region S  bounded by a curve L, having outward normal n  to the closed curve, then 

Jc hi(x 1, x 2)riidl = J  Js  §jk(®i, x 2)ds.

We note th a t UujUjrt\ — hiUi where h — (Uujit j , 0,0) )

From equations (5.1) and (5.2), =  0 and =  0. Hence the bracketed

expression inside the surface integral for I I  of equation (5.3) is

„ d 2Ui 1 „ dp dv,i 1 dp TT duj duj
VUid7d7 ~ pUifa~i ~ VUid7d7 + 7 js7 ~ 3a7 ~ 3a7

which is equivalent to

Ui ( v V 2Ui -  - - j r -  -  +  Ui l —v V 2Ui + - j r -  -  (5.4)( p dx{ d x i J [ p dxi dx i  J

From equations (5.1) and (5.2), this expression is zero. Therefore the area inte­

gral I I  is zero, and so

I I  — “  ~Pnj) ~  ~  ^~Pni) ~  UujUjni}dl  =  0 (5.5)
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We now consider the closed contour L not enclosing the body and consisting of 

three curves: the closed contour C  enclosing the body, a closed contour of a circle 

circumference centre at the point q radius 71 —♦ 0, and a closed contour of circle 

circumference centred on the body and enclosing the body and the point q of radius 

R  —> oo. The closed contour L is shown diagrammatically below:

po\At<^
r~0kc*au<j CaVcAc CjDcJt&mS' 

ro cti iv) 00

Figure 5.2: The closed contour L.

We apply Green’s integral theorem for particular values of uj  and p.

We first consider Oseen’s representation in two dimensional steady flow of the 

velocity u.

We consider two particular solutions of uj and p, t jk and Tk respectively and 

which are singular at the point q. (Where k =  1,2.) Thus

Ik = L {tjk { " i f n  ~  ~pPUj)  Uj {"'frn ~  p Tfcnj)  _  Uujtjkni}dl  (5.6)

We consider t jk and Tk such tha t the contribution to I k around the point q is 

some multiple ot the velocity uk. The point q is at position (<71, 92) in the cartesian 

coordinate reference frame.
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Oseen gives the solution (Hydrodynamik, section 4.5 pg. 37)

/  M S  S s M  \  ,, i ) \
2*1=  +  2kK0(kr)e- k^ - * '»> J J  (5.7)

\  dx2 dxi f  ' /
where

(jr(ft) =  lnTJ +  K o ik T V je -^ -^  k =  ^  11 =  [(a* -  ?1)2 +  (*2 -  <fe)2]1/2 (5.8)

and

r('fc) =  - 2 p v V(log 1 / f t )  =  2pvV(log f t)  (5.9)
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We now show the solution satisfies the equation

We first consider the case for j  =  1, k =  1.

Hence

v-t2j. , | 7 ^ U  1 ^ 1  n+  (7 —----------—  =  0
Ox i  p o x  i

Substituting the functions in  and Ti from equations (5.7) and (5.9) into the 

above equation, and using the fact th a t V 2log r =  0, we obtain

f) F)2
u V 2- ^ - ( K 0(k)e-k^ - ^ )  +  ! 7 W l o g f t  +  K o(kK )e -k^ - ^ )

+  u V 2(2hK 0{ h n ) e - k^ - qi'<) +  U ~ { 2 k K M ; ' I l ) e - Hxi- n ) ) -  - ( 2 p v ) - ^ - ( - ^ - \ o g H )
Ox i  p Ox i  Ox i

=  0

The left hand side of the equation is identically zero since

(V 2 +  2fc){Ifo(fcr)e-*1} - 0
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We next consider equation (5.10) for j  =  1, k =  2:

u p 1 = i p L _ v V % 2
Ox1 p O X \

We substitute into this equation expressions for t \2  and r<i from equations (5.7) 

and (5.9). Since V 2lo g r =  0, we obtain

=  U ^ l o g K  -  ^ { V 2 K o ( * f t ) e - * < * ‘ - * > }

The L.H.S and R.H.S of the equation are identically equal since 

(V 2 +  2 k ^ ) K o ( k r ) e - k^  =  0.

We next consider j  = 2, k =  1. This gives the same equation as above since 

i i2 =  t2i and g *  =  | £ .

We finally consider the equation (5.10) for j  =  2, k = 2:

TTdt22 1 9 t2 ^24U -   =  —r------- vV H 22
O X \  p O X 2

We substitute into this equation expressions for t 22 and T2 from equations (5.7) 

and (5.9). Since V 2lo g r =  0, we obtain

- u £ -  ( J - { \ o g 1 l  + K o ( k n ) e - k^ - ^ } \  =  * A  ( V 2{K 0( m ) e - k^ - ^ } )  

and the L.H.S and R.H.S of the above equation are identically equal.
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We must also show th a t the solution satisfies the equation

^  =  0 (5.11)
dx j

We first consider equation (5.11) for k =  1 and substitute into it expressions for 

t n  and t 2i from equation (5.7)

9  |  % (71) + 2kK 0(k1l)e- kl * ' - ^ \  + - S ~ \ M B 1 \  =  o
OXi ( UX i J OX 2 ( OX2 J

which gives

V 2(logK) + (V 2 +  2k)K0( k n ) e - k^ - “̂  =  0 

The L.H.S. of this equation is identically zero.

We finally consider equation (5.11) for k ~  2 and substitute into it expressions 

for t i 2 and from equation (5.7). We thus obtain

d*g{K) 32[-g (ft)]
d x id x 2 d x 2dxi

and the L.H.S of this equation is identically zero.
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5.0.5 Evaluation o f the contour integral around the point
q-

We now evaluate the part of the contour integral L  around the point q. We take the 

contour along the circle circumference radius % centred at the point q and consider 

the value of the integral as —* 0.

Hence we evaluate the integral expression

We consider the function tjk( 1Z) as 1Z —► 0. 

From equation (5.8),

-  E L  _ k r u k V , ) er k^ - " ' i  + x \ - H ^ ) 9 K ^ k n ) aXl ~ TV kK°(kK>e + n on
As 1Z —> 0, K 0(1c7V) —► — log% and —► 1. Therefore

 ► klogTZ
O X  i

Also, from equation (5.8),

i i  _* f i  + 9 K ° ( k n )  k ( n _m)
d x 2 r 2 I t  d1Z 

Therefore as TZ —» 0, > 0.’ 0X2

K d a } (5.12)
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Thus as 71 —> 0,

H -  ( kT  -k\ogTe ) +2fc(-los^) f 1

-> - lo g  f t

Hence

1 °)  0 1 /

J*3 -Sij log f t (5.13)

2 0 0



We evaluate the part of the integral expression of equation (5.12)

lim
r -+ 0

Prom equation (5.9), t& =  2pi/g~-log‘fc =  2 p u ^  =  2 p v ^  

Thus the integral is

As Tt 0, we expand uj in a Taylor series around n  =  0. Expressing the 

function Uj in polar coordinates (11, a ) about an origin a t the point q, then:

d r2 d 2
U j ( R , a )  =  u j ( 0 , a ) + K ^ u j ( 0 , a ) + y - j ^ u j ( 0 , a )  +

=  uA +  7 ^ _ i.3\q^ d n
n 2 d2uj
2! d n 2 4- (5.15)

W here U j \ q is the value of U j  at the point q. Therefore this expansion is inde­

pendant of the variable a, and so the integral approximates to

lim 1 2u [ Uj L +  n
rc -o ] \ 3q o n

+  ... j  j f  n jtn jd aJ

However, J02,r UkUjda =  Sijir since n = (cos a , sin a). 

Therefore the integral of equation (5.14) approximates to

2v'KUk(q1,q2)

as n  —+ 0.
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We next evaluate part of the integral expression of equation (5.12)

lim { —v f  U i ~ ~ - rR ,d a \  (5.16)r c - o  \ Jq 3 d ll  ) v 1

However, from equation (5.13), as TZ •*-> 0, —»

Thus the integral is

Hmji/jf Ukda  ̂ = 2iruuk(qi,q2)

We finally evaluate the other integral contributions to equation (5.12). As 1Z —» 

0, tjk > 6jk log 7?..

Hence

r2ir
/  t j k a jr qd a  =  —a&n'RXog'R, —» 0 

Jo

for some constant aj.  Therefore the other integral contributions to equation 

(5.12) are zero, and so

[ f  { t ]k ( v i k  ~  “pnj) “ a w
17 ujtjkn  i n d a

= 47rz/Mfc

2 0 2



We consider the closed contour L consisting of three curves: the closed contour 

C  enclosing the body, a closed contour over a circle circumference centre at the point 

q radius 7^ —► 0, and a closed contour over the circle circumference enclosing the

body radius R  —»> oo, as shown in figure (5.2).

We consider the integral Ik given by equation (5.6). We will prove later in 

section (5.3.1) th a t this integral over the circle circumference enclosing the body 

radius R  —> oo is zero. Hence

"hMi-Jti) =  -  j h  j c “  jP ni) _  “  y W i )  ~ Uujtjkni j  dl

where x 2\ 31, 92) and Tk( x 1, x i -,q1, q 2).

However, the variables x\  and #2 in the above functions are constrained to lie on 

the curve C. Therefore we rename the variables such th a t 

t jk( x ^ x ^ , q 1,q2) and Tk{xcl , x c2',q1,q2). 

where (arf, x%) are the points tha t lie on the curve C.

The point q is chosen arbitrarily, and so we could choose the point q to be any

point lying outside the closed curve C.

Therefore we rename the point (^1,^2) and consider the general point (# i ,#2). 

Therefore we consider the functions 

t jk(x I,®2;«i,a?2) anc* Tk(x

203



Thus, changing from the cartesian vector notation (a?i, #2) to the usual cartesian 

notation (sc,?/), then

»y ) =  4 b  J c  V\  X C  Vc)  ( v - g ^ u j ( x c> Sfc) “  ^ p ( x c> y c ) n
(5.17)

-  Uj(xc, yc) ( v -^ - t jk(x> y \ x c, yc) -  ~ rfc(scc, yc)nj

(5.18)

«j(®c, yc)tjk(x, 1/; scc, yc)nxdl (5.19)

where x x = x, x 2 = y, x x = x c and x \  — yc. 

Thus, from equation (5.7),

/  dg£R± dg£E± \  , , /  1 n \
H  =  ( 3g K) 3g »  J + 2fcifo(Wi)e*<-— ) ( Q (JJ (5.20)

r  = 2puV (log'll) (5.21)

where g{71) = log 7£-t- K 0(k7l)ek(x~Xc\  71 — [(a? — x c)2 -f (y — yc)2Y^2 and k = ~ .
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We see this is equivalent to the velocity representation of Lagerstrom. Lager- 

strom  considers the superposition of fundamental solutions within the area A  bound­

ing the closed curve C. Applying the divergence theorem to the integral of equation 

(5.6) over the closed curve C  and using the result in equation (5.4), we obtain the 

relation

,C “ - P " j )  _ -  y k ' i j )  -  U u j t j t n ^  dl

-  t,£ f ) + + v ‘*'*+ " " & } 1“

Lagerstrom considers a distribution of points Q within the area A  such tha t

U p  + I Vp -  i/V2« =  (  g Q \  a‘ points Q (5.22)
dx  p—  ( 0 not at Q

tjk and pk are singular a t the general point (x, y ) outside the area A, and so, in 

cartesian vector subscript notation

Therefore

Uk =  i h i  L  t i k f i ( Q ^dQ (5-23)

which is the result obtained in Lagerstrom.
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5.1 T h e in tegral rep resen tation  o f  th e  pressure  
P •

We consider particular solutions of the adjoint Velocity Uj and pressure p such tha t 

the pressure a t the point q is expressed as an integration of a fluid and pressure 

distribution (the function f) over the closed contour C. These solutions are u — 

V(log7?.) and p = pU  ̂  (log 72.) such tha t the pressure p  is

P = 2i Sc { “ '  ( " S f  -  7 n)  -  “ > ( " S f  -  / " ' )  -  U u ^ n ^ d l

We consider equation (5.5) for the integral / :

I  =  -  ^prij) -  -  ^pnj)  -  U u j u j n ^ d l  (5.24)

and we choose uj  and p such th a t

«> =  ^ - ( los  K ) , p = pU^ ( l o g  n )

We now show th a t the above expressions for Uj and p satisfy the Oseen adjoint 

equations

V * k  = l * L -  u V 2Uj and =  0
a x \  p  o x j  o x j

by substituting Uj and p into the Oseen adjoint equations. This gives

' e ^ ' - K s
d 2 d 2 \  d

w  + w  a ^ log7et / O / J  1 / ^ 2  /  l / d / j

and

& d n d d n .
'(log K)  +  -5— -s— (logTJ) =  0dx \  d x ]
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The L.H.S. and the R.H.S. of the above equations are identically equal since 

V 2(log7£) — 0.

The contour L  comprises of the closed contour C  enclosing the body, the circle 

circumference of radius TZ —*■ 0 centred at the point q, and the circle circumference 

radius R  —» oo centred on the body and enclosing the contour C  and the point q. 

(See figure (5.2). )

We first consider the above integral over the part of the contour L  along the 

circle circumference radius TZ —> 0 centred at the point q. This is

I f  27T . 1  , 1

4™ j / 0 -  ~Pni)  ~  ui ( v Q n  ~  ~Pni) ~  U ujU j-n^T lda

Fox the above equation, 7 ^ 7 (log 'R,) — ^  and —-(log 7V] =  ^  sincen =  (cos o, sin a).

We first consider the integral

r r r  dUj 1 \lim < / u-i < v ~~~  pm  > JZda >n->o\Jo 3 \ on py 3j J
This equals

1 (5.25)

f 2ir duj  1
k S o X  v m - ? n i n i i a

duj r2w p f 2*lim z/——• / njdot / rijUjda
n -+0 d f tJ o  3 pJo 3 3

The velocity and pressure and their derivatives are continuous at the point q 

and so we find their Taylor expansion in TZ as TZ —> 0 and bring them  outside the 

integral. (See equation (5.15).) Therefore

i* ( f 2n ~ 1 ] 2ttlim < / uj u ~ ~  prtj IZdcx. > =  p
n-+o (Jo 3 \  dlZ p^  3)  ) p *

We next consider the integral
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Thus this integral is

&  { i t  S o ' n j d a + U u j  L  ’ n i n , d a )

=  Uuxir 

We finally consider the integral

Um j jf —UujUjniTlda^

This equals

Hrn | —Uu, j  J  7~~n\R,da  ̂= —U u j K

Therefore,

jKft,®) = (" M  -  / n') ~ u * -  7 n )  -  U u^ da)

(5.26)

We take the contour L  along the closed contour C  enclosing the body, the circle 

circumference radius TZ —* 0 centred at the point q, and the circle circumference 

radius R  —► oo centred on the body enclosing both the contour C  and the point q.

We show in the next section, (5.3.2 ), tha t there is no contribution to the integral 

I  of equation (5.22) from the circle circumference radius R  —> oo centred on the body 

and enclosing the contour C  and point q.



p(?i,9j) = ^  Jc ^ i ( v ^  ~ -pPni)  ~ ~ ~Pni) ~ UujUjm }dl

where the functions Uj ,  p  and Uj  are evaluated on the curve C.  We let the 

general point on the curve C  be ( x \ , x 2), and so in the above integral equation 

?i» ?2), p(®f, qu  q2) and U j ( x ^  x c2).

The point q at position (qi, q2) was arbitrarily chosen except for the only con­

straint th a t it lied outside the closed curve C . Thus we consider a general point at 

(aii, 3̂ 2) lying outside the closed curve C  and therefore obtain an integral represen­

tation for the pressure p ( x u x 2).

We express the equation in the more familiar cartesian coordinate notation (a;, y ) 

where x = x \  and y =  x 2.

Hence the Oseen integral representation for the pressure is

p(x’y) = h J o {Sj (" S  ~ / ni) - Ui ("£r-  /" * )-l?w ) dl (5-27)
where u =  V(logT^) and p = pU^-(log 71).

7l2 = (x — x c)2 +  (y — yc)2 where (#c, yc) is a point on the curve C.
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5.2 T h e exp an sion  for th e  v e lo c ity  and pressure  
ca lcu la ted  from  th e  O seen v e lo c ity  and pres­
sure rep resen tation s.

5.2.1 The expansion for the velocity  from the Oseen ve­
locity  representation.

We shall now show th a t the expansion for the Oseen velocity representation is equiv­

alent to the expansion for the velocity obtained from the Lamb-Goldstein velocity 

representation. We consider the tensor function tjk- From equation (5.7), we see 

th a t it involves summation of the functions log TZ, Ko(k7Z)ekx and their derivatives.

We also consider the vector function Tfc. From equation (5.21), we see th a t it 

involves derivatives of the function log 7Z.

The function log 7Z satisfies Laplace’s equation and the function Ko(kTl) satisfies 

the modified Helmholtz equation.

Therefore the velocity Uk involves the summation of functions which solve ei­

ther Laplace’s equation or the modified Helmholtz equation. Thus the velocity is 

represented in the form

(This is the Lamb-Goldstein velocity representation of two dimensional steady 

Oseen flow. (See section (3.1).) )

We now find the highest order terms in the potential expansion from Oseen’s

order terms are =  J^(logr), =  J^(logr) and similar equations for 

These term s can only come from either the function lo g r or 6.

Thus the potential expansion for (j) is

where

V V  =  o and (V 2 -  2k)iL/> =  0
OX

integral representation of the velocity. By inspection of equation (5.18), the highest
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D  , L ( 0 - v )  , , A
© =  - — — logj-------^— —r1- +  lower order term s

27T/OtJ 2'KpU

Hence we see th a t we obtain an expansion for u from the Oseen velocity rep­

resentation which is equivalent to the expansion for the velocity obtained from the 

Lamb-Goldstein velocity representation.
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5.2,2 T he expansion for the pressure from th e Oseen pres- 
sure integral representation.

Similarly, by inspection of equation (5.19), we see th t the pressure p satisfies Laplace’s 

equation with terms in the expansion of highest order ^ ( lo g r )  and J^(logr).

Therefore, referring to equation (3.24), we see th a t the expansion derived from 

the Oseen pressure representation and the Lamb-Goldstein pressure expansion are 

equivalent.
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5.3 T h e evalu ation  o f  th e  in tegral I  for th e  v e lo c­
ity  rep resen ta tion  and pressure rep resen ta­
tio n  over th e  circular contour circum ference  
radius R.

5.3.1 T he evaluation o f the integral I  for th e velocity  rep­
resentation over the circular contour circum ference 
radius R .

We represent the velocity as u =  V<ft -f w.

As R  —» oo then |V ^| is of highest order (jpO-

We first consider the contribution to the integral from the velocity potential only. 

Each term  in the integrand is of order and hence this gives no contribution to 

the integral.

We next consider the contribution to the integral from the function w only.

As R  oo, K n(kR) —>

Therefore, the functions w\ and W2 are of the form c°a0) for some func­

tion g(Q).

where the polar coordinates (i?, 0 )  have origin centred on the body.

As R  —> oo, this function is exponentially small and so will give no contribution 

to the integral, except in the region for small 0 .
(jjj 2

For small 0 ,  the function tends to —

Therefore in this region, the highest order terms in the integrand are of the form 

s~~Sf~ ’ the integral contribution from the function w is of order

/*© e~kR(32

L - m ™

where 0  —> 0 as R  —> oo.

Making the variable change /? =  then the integral contribution is of order
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2 rVhT _t, , te 1 dt
R J - V % T  

which tends to  zero as R  —> oo.

Hence the integral tends to  zero as R  —* oo.
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5.3.2 The evaluation o f the integral I  for th e pressure rep­
resentation over the circular contour circum ference 
radius R .

From equation (5.22), the integral I  for the pressure representation over the circular 

contour circumference radius R  is

1 = i i r  f a  -  i/ n ’)  - u j  -  7 n )  -  R M

From equation (5.25), we see tha t uj  and p are of order ( ^  as R  —+ oo.

As jR —> oo, —► 0, p —> 0 and u —> 0.

Therefore as R  —> oo, then the integral I  over the circular contour circumference 

tends to zero.

Therefore as R  —» oo, then the integral I  over the circular contour circumference 

tends to zero.
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C hapter 6

T h e flow  in  th e  far field.

6.1 S olu tion s for far field  Lam inar w ake flow .

6.1.1 The Lagerstrom solution.

Lagerstrom considers solutions for the flow due to a singular drag element and a 

singular lifting element.

The singular drag element is due to a force D  located at the origin in the negative 

#-axis direction. This is equivalent to a flow considering only the terms

D
<f> =  - — — log r , and T =

2‘KpU

This solution satisfies the condition th a t the streamfunction of the flow ^  is 

single valued, and is such th a t there is a force D on the body located at the origin.

The singular lifting element is due to a lift L  located a t the origin in the negative 

?/-direction. This is equivalent to  the flow due to the potential term

2'KpU

However, Lagerstrom considers the force located a t a point rather than  a body 

surface and so an extra condition tha t the velocity does not become singular a t the 

origin must be considered. Therefore we consider the flow due to the terms
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such tha t

L(0 — it)
4> =  -r— r—1 , and W =  me

2 w p U

r “ \ a ® + a j / j

and

* n ( # - S = 0r-*0  ^ 5 *  J
As r  —> 0, me~kxK 0(kr) —» — m lo g r and so m —

k*K0(kr)

D 
2irpU ’

217



6 .1 .2  The Landau and Lifshitz solution.

We follow exactly the method given for obtaining the far field wake flow in Landau 

and Lifshitz, applying it to two dimensional rather than  three dimensional flow.

However, we shall see tha t this method applied to two dimensional flow presumes 

the wrong order for the velocity component u2 in the far field wake. Hence this 

method gives invalid results.

We first consider the function of the form

a  ky2
— ~e  2x
y / X

This function satisfies the diffusion equation

\ d y 2 Ox 

which the modified Helmholtz equation

reduces to in the far field wake.

We presume as in the method given in Landau and Lifshitz th a t the lift and drag 

come from functions of the above form. Therefore to leading order we assume the 

solution

I d k ky2 I / k ky2 \
w ------ \ I  e 2® , -------\ /  e 2® I
-  ^  p U y 2 T T X  ’ p U  V 27TX )

where d and / are the drag and the lift on the body for the Landau and Lifshitz 

solution. However, from section (3.6) equation (3.33) we see th a t the wake velocity 

component w2 does not have this form in the far field and thus we obtain invalid 

results.

218



The condition V.w must be satisfied. Therefore we consider the function G of
y  « 2

lower order than  the function — such tha t

I k _ t£
W2 ~ - p t i ^ e +

We want the function G to give no contribution to the lift and so we consider 

G — f f  where S is a continuous function. (Thus —pU =  0 and so G gives

no contribution to the lift.)

219



Since
d (  _bj£\ ^  d  (

then the equation V.tn =  0  reduces to

d _ \ ± _  / I T  =  d 2E
dy \  pU V 27tx 6 J dy2

where H satisfies the modified Helmholtz equation (V 2 — =  0. In the far

field wake, we expect changes in velocity terms in the ^-direction to be much less 

than  changes in the y-direction. Thus

d2E d2E 
d x 2 ^  dy2

and so the modified Helmholtz equation reduces to the diffusion equation

3 2 —2^ W ody2 dx

Therefore
d2E dE ky I k

-  - 2 k —-  =  -— e~-^r
dy2 dx x pU V 2nx

We consider the function S ; =  Differentiating S ' with respect to  x , we

obtain

dEf_
dx

e 2s
yfx

1 ky 
2x 2x2\x2 )

e 2®
2xy/x

in the far field.
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Thus we choose

I I k

* = w i ^ y *

and the method given in Landau and Lifshitz applied to  steady two dimensional 

far field wake flow gives

( d nr / nr ( o \ i nr _tz}\
^  2' / J

The Landau and Lifshitz method assumes th a t the function w2 is of the form 

e~ 2x in the far field and tha t the potential ^ gives no contribution to the lift. 

From equation (4.1.2), we see tha t there is a contribution to the lift from the po­

tential (ft, and from equation (3.33) we see that the order of w2 in the far field is 

2® and so both these assumptions used in this m ethod are invalid.

Thus the Landau and Lifshitz method cannot be applied to two dimensional 

flow. This raises questions as to the validity of the m ethod in three dimensional flow, 

although the same results are given in Batchelor (Introduction to Fluid Mechanics, 

pg 377).

(The reason given by Landau and Lifshitz for introducing the function H is tha t 

the term  — from Oseen’s equation may be taken as the gradient V S  of some 

scalar function S. However, there is no relation between p and S  since p satisfies 

Laplace’s equation and is of much lower order in the wake than  S which satisfies the 

diffusion equation .)
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C hapter 7 

D iscu ssion .

We have found the complete expansions for the velocity and pressure in the far field 

where Oseen flow is valid for steady two dimensional flow.

Some of the coefficients in the expansion are related to  the drag, lift and moment 

on the body.

The complete velocity and pressure expansions are found to  be equivalent to 

the Oseen representation of velocity and pressure as a distribution of singularities 

(Oseenlets and multipoles ) over a closed contour enclosing the body.

In the far field wake, the velocity components from the complete velocity expan­

sion are the same as the velocity components given in Lagerstrom.

An im portant result for two dimensional flow is th a t although the drag is ex­

pressed in term s of a wake traverse, the lift is calculated from the circulation of the 

velocity potential V< .̂
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7.0.3 Lamb’s treatm ent o f three dim ensional steady Oseen  
flow.

Lamb considers the case of axisymmetric flow. He solves the Oseen flow past a 

sphere and introduces a function x  related to the vorticity tj by a; =  (0, — , | j ) .

(From Lamb Hydrodynamics art. 342 equation 19.)

7.0.4 G oldstein’s treatm ent o f three dim ensional steady  
Oseen flow.

[Goldstein, S. Proceedings of the Royal Society; volume 131 1931a pg 198-208] 

Goldstein considers the singular needle and singular lifting element (defined in 

Lagerstrom, High speed aerodynamics and je t propulsion; volume 6 pg 92-98) which 

give rise to drag and lift forces respectively at the origin.

Hence he considers the equivalent of Oseen flow past an infinitely small body 

which has no shadow region. However, it is possible th a t the potential <f> and the 

potential derivative are discontinuous on the infinite half line £ > 0 , £ /  =  z =  0.

Goldstein locates the terms in the Fourier expansion of the pressure (where 

f ( y , z )  are rational integral harmonics of degree n in the Fourier expansion of the 

pressure and are funcions of y and 2 only) which give rise to the discontinuity in (j>.

Goldstein argues th a t a general solution for the flow past a body is some distri­

bution of singular needle and singular lifting elements. From section (4.3.1), we see 

th a t this is indeed the case.
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7.0.5 Future work.

The aim of the work is to  find the relations between ship manoeuvrability and hull 

design.

We have found the velocity and pressure in the far field. (Some of the coef­

ficients in the expansion are related to the lift, drag and moment.) Thus these 

expansions may be asymptotically matched to near field expansions for the velocity 

and pressure.

We have also considered Oseenlets which are the singular functions valid in Oseen 

flow which cause the lift, drag and moment on the body. We may further consider 

the various body shapes generated by particular distributions of these.
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A p p en d ix  A  

Fourier’s th eorem  for th e  
exp an sion  o f a  function .

We consider an expansion of a certain type of function g(r , 9) for r > R  where the 

radius R  encloses any singularity in /  and the function g(r, 9) is continuous in the 

region r > R. Thus in this region 9 is defined from 0 <  9 <  2tt. We apply Fourier’s 

theorem to give us an expansion of the function g(r, 9).

We state  a form of Fourier’s theorem below:

A certain type of function f ( t )  defined in the region — T  < t < T  can be expressed 

by a Fourier series in the form

.OQ. mrt.
f ( t )  =  ( l /2 )a 0 +  ^ 2 a ncos(— ) +  bns in (— )

where the coefficients an and bn are given by the formulas

a " = ?  Lt > bn==fLT / ( r ) s * n ( ^ ) r f T

Letting t =  9 and T  =  tt, we have an expansion for 9 in the range —7r <  9 < w. 

Noting th a t f (9)  — f ( 9  +  27r), we give the expansion for 9 in the range 0 <  9 < 2ir.

Thus for fixed r, we expand g(i\ 9) in terms of a fourier series. Different values 

of r give different coefficients an, and bn. Thus an and bn are functions of r  and we 

write the expansion of g as:
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g(r,0)  =  ( l /2 )a 0(r) +  ^ ( a ^ c o s n O  +  bn(r) sinnB)
1

where
1 r 1 /*27t

an(r) =  — I g(r,B)cosnOdO, &n(r) =  — I g(r,0)sinn9d0
7T Jo tt Jo

for 0 in the range 0 <  0 <  2ti\

A .0 .6  T he Fourier expansion o f Laplace’s equation.

We consider the case for the function g(r, 8) satisfying Laplaces equation. In polar 

coordinates,

' ' ■ ' - M i l ' ! ) + ! < ; ! > } - "
Applying the operator to the function a„ we obtain

d dan 1 [2* d  dp

1 f 2* d  ,1  dp
i f * ® - —

by Laplace’s equation. 

Thus,

3 F < 'T >  '  - W ” )
cosnQ?P
cos™do

27r />2fr 1
-f n /  sinnOdp >

o 70 J

_  _ (l/7rr) — n2 J  cosnBpdB|

n 2
=  — an r

(Since g(0) =  g(B +  27r), and , the square bracketed terms in the

above equations are zero.)

Thus an satisfies the second order differential equation

r 2a" +  ra'n — n 2an =  0 (A .l)
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This is satisfied by an(r) =  A r ai +  B raa for n > 1, where a \  and 0:2 are different 

constants dependant on n.

Substituting into the above equation an =  r° , we obtain

r 2« (a  — l ) r n“2 +  /’o r" -1 — n2ra =  0

a(o: — 1) a  — n 2 =  0

2  2a  =  n

Thus cki =  n, and 0:2 =  —n.

For the case 72 =  0

’T~(rao) — 0 =  ^dr

Thus a0 =  2k\lnr  +  2&2 where and &2 are constants.

Similarly, 6n(^) =  Cnrn *f D nr~n.

Thus we obtain g as an expansion in the form

00
p(r, 9) ~  k2 +  k-^lnr +  ^  |( A nr n +  B nr~n)cosnQ -f (Cnrn 4- D „ r_")sm72^} (A.2)

1
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