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Abstract

This problem is suggested by B.M.T. Cortec (formerly British Maritime Technol-
ogy) who are investigating the problem of calculating the hydrodynamic forces and
moments on a manoeuvring ship, and the variation of the hydrodynamic forces and
moments over the ship’s hull, moving with forward velocity U through a fluid. These

are described by the hydrodynamic force derivatives.

We consider the ship held at a small angle of yaw o and assume that the ship’s
hull has a plane of symmetry which is vertical and that the free surface of the fluid

can be neglected. Thus we consider uniform flow past a fixed closed body.

Consider the wake flow far behind the ship. The momentum change of the
retarded fluid velocity in the wake gives rise to the drag force on the body. Thus

the drag on the body is expressed in terms of a wake traverse.

The fluid flow at large distances from the body is to first order a uniform stream
of velocity U. This suggests approximating the Navier-Stokes equations to obtain

the linear Oseen’s equations for fluid flow.

We consider the Lamb-Goldstein velocity representation for Oseen flow. (Lamb,
Hydrodynamics 1932 art 342 .) Lamb considers two dimensional flow and three
dimensional axisymmetric flow, and Goldstein extends the theory for general flow

in three dimensions.(Proc.Royal Soc. 1931 a.)
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The velocity representation is u = V¢ + w where the potential ¢ is defined as
¢ =2nr _(1/pU) [°, {p(m’y) + M} dz’ in two dimensional flow, but this does

2xpU 270!

not in fact define ¢ in a shadow region behind the ship.

We find other interesting difficulties associated with this representation; thus,

from this definition, it is unclear whether ¢ is continuous.

We consider the above difficulty and give the complete Fourier expansions for

the velocity and pressure. We also find expressions for the drag, lift and moment on

the body.

We consider Oseen’s velocity and pressure representations for Oseen flow given in
terms of a surface distribution of singularities called Oseenlets, and its equivalence

in two dimensional flow to the Lamb-Goldstein velocity representation.

We consider the velocity in the far field laminar wake and the solutions for this

flow given by Lagerstrom and Landau and Lifshitz.
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Chapter 1

Research on ship
manoeuvrability.

1.1 Introduction

We deal with a problem in ship manoeuvrability suggested by Dr. D. Clarke of
B.M.T. Cortec!, Wallsend, Newcastle. This problem has arisen from research at
B.M.T. into the manoeuvrability of large tankers and of ferry boats. The hull
design of a ship affects its manoeuvrability; of particular importance is research into
the relations between the hull design and the manoeuvring characteristerics of the

ship. We discuss this research, and its applications at B.M.T'., briefly below.

Large oil tankers cause great damage to the environment from spillage after col-
lision, and their poor manoeuvrability causes them problems when docking. B.M.T.
have recently developed a computer program for simulating the docking procedure.
The computer screen gives the view as it would appear from the ship’s bridge and
the Captain of the ship is given the same manoeuvrability controls as those on the
ship’s bridge. The computer estimates the ship response to the Captain’s controls

from the force derivatives? data particular to the ship’s hull design.

The design of ferry boats is increasingly governed by economic considerations;

lformally British Maritime Technology.
2definition given in the Chapter 1 appendix.
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increasing the width of the boat increases its volume capacity. Such designs severely
limit the manoeuvring ability of the boats. However, within the next few years
government legislation will be introduced whereby every boat must satisfy certain
manoeuvring criteria in order to be considered seaworthy. The manoecuvrability

criteria are expressed in terms of the force derivatives of the boat.

We see that there is a need at B.M.T. to calculate the force derivatives, which
determine the manoeuvring characteristics, of a ship accurately. There are full scale
experimental tests which can be undertaken in order to calculate them. However
these are expensive and difficult to perform. The important methods of estimating

the force derivatives are scale model testing and theoretical approaches.

Model test results at B.M.T. are obtained either from experiments using a tow
path or a rotating arm. In both cases the model is held in a fixed position. In
the first case the model is moved at a constant velocity and its axis is held at a
fixed angle to the forward velocity. In the second case the model is placed at the
end of a large rotating arm with its axis held at a fixed angle to the velocity of
the model. The results are obtained during the period of motion when the model’s
angular velocity is constant. The model is divided into sections and the force and
moment on each section is calculated. There has been difficulty though in extracting
accurate data from the experiments. The experiments are also time-consuming and

costly.

The theoretical approach to ship manoeuvring is discussed next.




1.2 Outline of the research

We first consider the ship to be at a fixed angle of yaw o and the following assumptions®

to be applicable for the motion:

o The ship’s hull has a plane of symmetry and this plane is vertical.

e The fluid surface lies in the horizontal plane. This implies that the waves are
short and that the height of the fluid raised at the bow is of order lower than

the length and beam dimensions of the ship.

This means that the solution of the fluid flow is thus equivalent to the solution
for fluid flow past the hull surface reflected about the mean free surface, and that
the mean free surface is now composed of streamlines of the flow. (We may define
the mean free surface as follows: Far from the shiI; disturbance, we expect the fluid
to lie in a horizontal plane. We take the extension of this horizontal plane in the
fluid region to be the mean free surface of the fluid. In two-dimensional flow, we
expect the fluid to lie on a horizontal line far from the ship disturbance and we take
the extension of this horizontal line in the fluid to be the mean free surface of the
fluid. Thus if we consider the waves to be very short, the fluid surface approximates

to the mean free surface of the fluid.)
We now formulate the problem mathematically below:

We consider a fluid infinite in extent with uniform velocity U flowing past a fixed
closed body. This body is considered to have two planes of symmetry, perpendicular
to each other, one plane parallel to the flow and the other plane at an angle a to

the flow.
3discussed in the Chapter 1 appendix.
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We usually consider the ship to be slender. This means that the length dimension of
the body in the plane perpendicular to the two planes of symmetry is considered to
be of lower order than the length dimension of the body in the planes of symmetry.
We define the body length as the length ! along the line of intersection of the two

planes of symmetry of the body from the body bow to the body stern.

We would like to calculate the hydrodynamic drag force, the lift force and the
moment on the body and the changes in these forces and moment along the body

length.

16




We now consider my theoretical approach to the problem:

Consider the steady wake flow far behind the ship. The momentum change of
the retarded fluid velocity in the wake gives rise to the drag force on the body. Thus

the drag on the body is expressed in terms of a wake traverse.

The fluid flow at large distances from the body is to first order a uniform stream
of velocity U. This suggests approximating the Navier-Stokes equations to obtain

the linear Oseen’s equations for fluid flow.

Oseen replaced the Navier-Stokes equations for a body fixed in a uniform stream

du; 0 0%y,
J i i

by the linearised equations in which

u Bu,- + " Bu; + au.'
Yoz, T 0w, T B,

is replaced by
Bu.-

651‘11
The inertial cartesian coordinate system (21, z2, z3) is used above where the uniform

stream velocity U is taken to act in the z; direction.

This is expected to be correct near infinity, but causes difficulties near the body
where boundary conditions need to be applied. (In principle this later difficulty
might be overcome by matched asymptotic expansions, see Rosenhead p.187, Proud-
man and Pearson (1959), and Kaplun and Lagerstrom (1959) but we shall be mainly

concerned with expansions at a great distance.)

We shall consider the Lamb-Goldstein velocity representation for Oseen flow.

(Lamb, Hydrodynamics 1932 art 342.) Lamb uses this velocity representation in two

17




dimensional flow and three dimensional axisymmetric flow, and Goldstein extends

the theory for general flow in three dimensions. (Proc. Roy. Soc. 1931a.)

We shall consider the Lamb-Goldstein velocity representation for Oseen flow in
two dimensions only, and in the discussion sections (7.0.3) and (7.0.4) we shall review

Lamb’s and Goldstein’s treatments of steady Oseen flow in three dimensional flow.

The velocity representation is u = V¢ + w where the potential ¢ is defined as
= —2—7—1—%%1 —(1/pu) J= {p(=') + 228 dz!, but this does not in fact define ¢ in the

2nr!

shadow region behind the ship.

We find other interesting difficulties associated with this representation; thus,

from this definition, it is unclear whether ¢ is continuous.

We shall consider the above difficulty and give the complete Fourier expansions
for the velocity and pressure for two dimensional flow. We shall also find expressions
for the drag, lift and moment on the body. The velocity and pressure in the far field
wake and the expressions for the drag, lift and moment agree with those given
by Lagerstrom, Imai (1951) and Goldstein (1933) in their respcetive treatments of

Oseen flow.

We consider Oseen’s velocity and pressure representations for Oseen flow given in
terms of a surface distribution of singularities called Oseenlets, and its equivalence

to the Lamb-Goldstein velocity representation.
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1.3 Brief review of papers written on ship ma-
noeuvrability.

In aerodynamics, calculations for the drag and lift forces on an aerofoil in two di-
mensions, and a streamlined wing in three dimensions, in a uniform stream are well
known. However there are many more difficulties associated with the calculations
of forces on a ship. In aerodynamics, we deal with streamlined wings and using
the Kutta-Joukowski condition we can determine the forces on the wing from the
calculation of shed vorticity. However in ship motion we deal with bluff bodies.
Separation occurs and vorticity is shed from unknown positions on the hull. This
vorticity diffuses in a region behind the ship called the wake and is associated with
the drag and the lift on the body. We see that in comparison with aerodynamic the-
ory, the problem of ship manoeuvrability is complex and difficult to solve. However
attempts at theoretical models have been made and some papers on manoeuvrabil-
ity theory are listed below.

1.Clarke, D: (1972) A two-dimensional strip method for surface ship hull derivatives:
comparison of theory with experiment on a segmented tanker model. (Journal of
Mechanical Engineering Sciences, pp 53-61, paper 8)

2.Newman, J N: (1972) Some theories on ship manoeuvring. (J.M.E.S. pp 34-42,
paper 6.)

3.Gadd, G E: (1984) A calculation method for forces on ships at small angles of
yaw. (Royal Institution of Naval Architects. pp 257-267)

We shall review the work by Lamb and by Goldstein on Oseen flow which provides
the stimulus for my approach to the ship manoeuvrability problem in the discussion

sections (7.0.3) and (7.0.4) respectively. We next review the three papers listed

above.
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1.3.1 Papers using slender body inviscid theory.

Clarke’s paper and Newman’s paper use results derived in Lamb; Lamb considers
a body moving in an infinite inviscid fluid. (Lamb, Hydrodynamics 1932 art 117 .)
Lamb gives the equations of motion for the body (art 124) which involve the hydro-
dynamic forces, and moments, on the body and also terms including the velocity,
and angular velocity, derivatives of the kinetic energy of the body.

Slender body theory is then used by both Clarke and Newman so that the forces

and moments on the ship are found in terms of integrals along the body length.

However Clarke’s method differs from Newman’s:
Clarke first calculates the side force on a curve lying in an arbitrary plane perpen-
dicular to the ship’s principal axis. The total force on the body can then be found
by summing this value over all the perpendicular ‘strips’ along the body length.
This gives the total force as an integral over the body length.

Newman calculates the total side force from Lamb’s relation. He then invokes
the slender body assumption in order to find the force and moment as an integral

over the body length.

Clarke’s method agrees well with experimental results, which suggests the validty
of his approach using an irrotational fluid strip theory method. However, the theory
does not produce accurate results near the stern of the ship. Attempts to overcome

this difficulty have been made and are discussed in the following subsections.
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1.3.2 The equations of motion for a body moving in an
infinite inviscid fluid.

(Lamb Hydrodynamics, 1932 ed, chapter 6.)

Lamb gives the equations of motion of the body in the coordinate reference
frame moving with the body. The equations of motion for the fluid and body
system must first be found. However, the fluid momentum cannot be determined,;
we cannot determine the fluid momentum as a Green’s surface integral over the body
boundary since this integral over a closed surface enclosing the body and tending
to infinity is indeterminate. Lamb overcomes this problem by finding the equations
of motion of the system in terms of the impulse of the system. Lamb finds that
the impulse change of the system is the same as the momentum change of the body.
Lamb defines the impulse of the system, after Lord Kelvin, as ‘the properly adjusted
impulsive wrench which when applied instantaneously to the body,when the system
is at rest, counteracts the impulsive pressures due to the fluid on the surface of the
body and generates the momentum of the body’. By considering the form of the
energy of the system and the change in the energy and the impulse of the system
over an infinitesimal time, the equations of motion of the system, and thus the body,

are found.
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1.3.3 Inviscid flow models incorporating shed vortex sheets.

We deal specifically here with the method described by Gadd. Uniform flow past a
fixed ship at a fixed angle of yaw « in inviscid irrotational theory can be repesented
by a Green’s surface source and dipole distribution. Another representation would
be a vortex distribution on the body surface. We find that for a slender ship the
vortex distribution takes the form of longitudinal bound vortices which stop abruptly
at the stern of the ship.

One method of representing the flow past the body in a more realistic way than
that in slender body inviscid irrotational flow is proposed to be by continuing these
longitudinal vortices into the fluid region behind the stern of the ship. This creates
a region of vorticity, a wake, behind the ship. This is the proposition which Gadd
uses for his inviscid flow model which incorporates shed vortex sheets. There is
theoretical motivation for doing this since it is argued that this method is similar
to applying a Kutta condition on a trailing edge, which is done in aerodynamics.

Gadd considers the wake to lie in the plane of symmetry of the hull and to have
depth d, the ship depth. Longitudinal trailing vortex filaments are distributed over
the wake. The strength of the trailing vortex filaments is equivalent to the strength
of the bound vortex filaments at the stern of the ship at the same depth.

Gadd divides the hull and wake into panels and distributes sources and normal

dipoles over the panels to satisfy the above conditions.
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Hence Gadd’s calculation for the side force on the ship considers also the effect
of trailing vorticity in a wake region whose strength is obtained from the strength
of the bound vorticity at the stern of the ship at the same depth.

This method is similar to the calculation of the lift L on a streamlined wing in
aerodynamics where a trailing vortex sheet emanates from the trailing edge of the
streamlined wing in uniform flow. Gadd’s method is an attempt to apply a condition
for the wake vorticity similar to the Kutta condition for aerodynamics streamline

wing flow, although a ship is a bluff body.

(Gadd extends the method for the case of a ship moving through restricted
water by using an iterative procedure: He distributes panels in this case over the
bottom surface of the fluid as well as the hull surface and wake. He then distributes
sources over the surface panels to counteract the normal velocity from the solution
in unrestricted water on the fluid bottom surface. The affect of this distribution is
to modify the flow at the hull, so a new solution is obtained for the distribution of
singularities over the hull surface. The method is then repeated.

Gadd also considers allowing for the viscous eflects of the fluid by considering
the displacement thickness of the boundary layer. He does this by considering the

iterative boundary layer calculation.
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1.4 Chl Appendix: The force derivatives defini-
tion.

We consider a ship moving with a perturbed velocity u to a forward velocity U in
the = direction . We also consider the rate of turn of the ship &. The hydrodynamic
forces and moments are then assumed to be directly proportional to the perturba-

tions u, v, &, and their derivatives 4, ¥, &. (Clarke, The application of manoeuvring

criteria in hull design using linear theory. R.LN.A. trans. 1983 pp 45-68.)

‘We consider the drag, the lift, and the moment acting on the ship. The force
derivatives are defined as the rate of change of the drag, lift and moment, with
respect to the perturbations u, v, &, %, v, and & Hence by the Taylor expansion
they are the constants of proportionality in the linearised equation relating the
hydrodynamic force with the perturbations. We note that in the experimental model
tests the model was held in a fixed position. This means that the perturbations u,
v, and &, are zero. In the theoretical model we will use we will assume that the

mean position of the model is fixed and a uniform stream U flows past it.
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1.5 Chl Appendix: The basic assumptions made
in ship manoeuvrability.

We consider the motion of the ship through the free surface of the sea; the ship is
considered to be a rigid body and thus to have six degrees of freedom. However, the
motion associated with some of the degrees of freedom is considered to be negligible.
We now consider Naval Architecture terminology, the terminology used in describing

ship motion.
1.5.0.1 Naval Architecture Terminology.

We assume that the ship’s hull has a plane of symmetry and we consider the re-
stricted motion where the plane of symmetry is kept vertical. We also assume that
the fluid free surface lies in a horizontal plane. (This assumption is discussed later.)
We consider the cartesian coordinate system (z,y, 2z) which is fixed in the ship and
moves with the ship; we let the z axis lie along the intersection of the two planes
and its direction to be from stern to bow. We let the z axis point vertically upwards.

The following terminology is used for the forces and moments acting on the ship:

X is the force in the 2 direction called the surge force.

Y is the force in the y direction called the sway force.

Z is the force in the z direction called the heave force.

N is the moment in the 2 direction called the yaw moment.
The moment in the y direction is called the pitch moment.

The moment in the z direction is called the roll moment.




Diagram showing the forces and moments acting on a ship.

Diagram naming the positions on a ship.

Thus we assume the ship moves with surge, sway and yaw only. This is the usual

assumption is made in the literature on ship manoeuvrability.

We will now make an assumption about the free surface of the fluid through

which the ship moves.
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1.5.0.2 The free surface assumption

We assume that the free surface acts as an undisturbed solid plane. However, the
fluid surface will actually be raised at the bow. We estimate the height of the raised

bow by considering Bernoulli’s equation along a free surface streamline.

v vi>htp boiO

Bernoulli’s equation gives:

2lu2 -f gz = constant

where u is the fluid velocity, g is the gravitational constant and z is the upwards
vertical displacement. So near the bow we expect an increase in the height of the

fluid of the order of '212.

We also consider the length scale of waves generated by this motion. We find
below that the horizontal length scale is of order U2/ g. Therefore near the bow, the
slope is not small. Thus we need an inner expansion for this region. However, for

the moment we shall ignore this difficulty.

We consider the equation for the time independent surface waves around a body
travelling with forward velocity U.
The wave equation is obtained by the appropriate linearisation for the kinematic

surface boundary condition and the dynamic surface boundary condition.

27



If we consider the z displacement of the free surface to be {(z,y), then the
kinematic boundary condition gives 5:(¢ —z) =0

The linearisation of this condition gives

a¢ _9¢ _
Uz —7-=0

where ¥’ = u — (U,0,0) = V¢
Hence v’ is the perturbed velocity of the motion.
The dynamic boundary equation is obtained from Bernoulli’s equation of motion

for the fluid. On the free surface, this gives the condition
spu’ — pg¢ =0

The linearisation of this condition gives

a¢ _
PU—S, — P96 =0

Hence the appropriate wave condition is

U282¢ _ ?_q_b. —

aa2 95, 0

If we assume the fluid surface acts as a solid plane, then the vertical velocity of
the surface is negligible, or%f — 0
Hence we expect waves to be short, of order U%/g. This is the short wave

approximation.
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Chapter 2

The derivation of the Oseen
equations.
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2.1 The derivation of Oseen’s equations.

Since we are dealing with steady flow, we obtain the Navier-Stokes equations for
steady incompressible flow:
tauf dp

= & 2yt :
Puaawj Da; +uV 7y (2.1)

We can now obtain Oseen’s equations from the Navier-Stokes equations for steady
q

flow. (The Navier-Stokes equation derivation is given in the appendix.)
Oseen’s approximation to the fluid flow is that the velocity perturbation u to

the uniform stream U is small compared to the stream velocity U.

We let the uniform stream U be parallel to the 2, axis. Thus the velocity u! is
given by

(uL u;a u;) = (U + 1, Uz, u3)
where the Oseen approximation is |u;| < U.

Considering the Navier-Stokes equation, the term u}b—% is

e] n u10 n ug0 us0d

U( 63;1 anl anz ana)

Applying Oseen’s approximation that ]13[ < 1, we obtain

) )
t 9 _py 9
%, ~ U ga;
Thus:
v% _ _(1)p)Vp + v
61171 - P __P -

Since the flow is incompressible, taking the divergence of the above equation, we

obtain
Vip=0
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The equations

v 2% - _(1/p)Vp+ vV (2.2)
6:81 I

Vu=0 (2.3)

are the Oseen equations for steady flow.

Change of cartesian coordinate notation. In the vector analysis consid-
ered to obtain the Navier-Stokes equations for steady incompressible flow, it was
convenient to label the cartesian coordinate variables z;, z; and z3.

However, the preferred notation for this subject is to denote the cartesian coor-
dinate variables by z, y and z. We therefore change the coordinate variables to z,
y and z where x = ¢, y = x2 and z = x3.

We do not change the vector description. Hence we still describe u! and u as
(u{,ug,u;ﬂ,) and (uq,u2,us) respectively. The suflix 1 denotes the z direction, the

suffix 2 the y direction and 3 the z direction.
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2.2 Ch2 Appendix: The derivation of Oseen’s
equations.

Oseen’s equations are an approximation to the Navier-Stokes equations. The Navier-
Stokes equations describe the Newtonian fluid. They are found by considering the

constitutive relations of the fluid.

Oseen flow deals with a certain type of fluid flow; we consider uniform fluid flow
past a body of velocity U. Oseen flow is applicable in this case far from the body

surface.

We first apply Oseen theory to the problem of uniform steady two dimensional

fluid flow of velocity U past a body.

Oseen’s approximation assumes that the velocity perturbations to the uniform
stream are small. We denote the vector u! for the fluid velocity field, u for the pertur-
bation velocity, and U for the uniform stream velocity. Thus Oseen’s approximation

depends upon the condition that | u |« U.

In the region far from the body, the fluid velocity approaches the velocity of
the uniform stream U. Hence | u |« U and Oseen’s approximation is valid in this
region. On the body surface, however, the condition u'.n = 0 must be satisfied,
where n is the unit normal to the surface. If the unit normal vector direction is
close to being parallel to the uniform stream direction, then | u | is of order U and
Oseen’s approximation is not applicable. Thus in the region near to the body we do

not expect the approximation to be valid.

It is noted, however, that for a slender body whose axis is close to being parallel to
the uniform stream, the unit normal vector direction is close to being perpendicular

to the uniform stream direction. Hence Oseen flow is applicable in regions close to
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a slender body orientated in this way.
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We will now obtain Oseen’s equations from the Navier-Stokes equations for fluid
flow. Navier-Stokes equations are found by considering the equations of motion for
an element of fluid and by considering the stress and rate of strain relations of the
fluid. We give a preliminary derivation of the equations of motion for an element

of fluid and a preliminary discussion of the stress and rate of strain relations of the

fluid.

Coordinate notation.  We use suffix notation to label the axes and to rep-
resent vectors; thus the cartesian coordinate axes are labelled (zy,2,3), and the
vector u is represented by u; where j = 1, 2 or 3. The uniform stream U is taken

to be in the z; direction.

The equations of motion of an element of fluid. A Newtonian fluid is as-
sumed to have continuous density and thus the motion to obey continuum mechanics.
We consider an element of fluid of volume §V, density p and velocity u!. A force f
is exerted on the fluid element. Thus, from Newton’s equations of motion, the force

equals the rate of momentum change:

_D i

The operator g; is the rate of change with time of the function calculated in the
fluid element. (Since the fluid element is not stationary, this operator is different
from the partial derivative operator —6%.)

We now find the force f; in terms of the stress tensor 7;;

Stress. We invoke Cauchy’s stress principle that the fluid has finite stress
which is a function both of position within the fluid and of time. We consider the

force on a region of fluid over part of the bounding surface AS. We let the unit
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vector n be normal to the surface and pointing away from the fluid. Then if f is the
force on the fluid over the elemental area 65, we have from Cauchy that the vector

T such that:

=k i

im —
AS—0 AS

9=
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The stress tensor. We now find the stress tensor of the fluid.

Let us consider a region of fluid enclosed by the surface S. The force on the

fluid, f, is such that

f;=L%d3 (2‘4)

We consider this surface as its area tends to zero. Using Cauchy’s stress principle,
. n .
| lim fi| < max|7i |£‘%S—0 (2.5)

We use this result in considering the surface, S, of a tetrahedron. The tetrahedron

has four corners positioned at (0,0,0) («,0,0) 0,5,0) and (0,0, ¢).

We let the area of triangle 0ab be Ay,
the area of triangle Oac be A,
the area of triangle 0bc be A,

and the area of triangle abe be A,.

From equation (2.4), we have that:
fim Bi At 7 At T Mgt R As =0

Applying equation (2.5), and using the fact that ﬁ- = n;, we obtain

where the repeated suffix implies a summation over j.

—&;
For ease of notation we let ﬁi' = 7j;. We see that 7;; is independent of the normal

vector n. Once the components are known, any vector 7; may be calculated. ;
is a tensor operator on the normal vector n and is called the stress tensor. In this

notation,

Ti= Ting (2.6)
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Equation of motion of the fluid element in terms of the stress tensor.

The equation of motion of the fluid element is found by considering equation (2.4):

.fi=/s¥id3

Using equation (2.6) and applying the divergence theorem, we obtain

fi =/.5'7’3'. ds =/ST,-jnjd3 =_/Vg7;3:dV

J

Hence f; = SV% and so the equation of motion becomes:

D(pul) _ 0
Dt Bm,-

(2.7)

We now find the constitutive relations, the relations between the components of the
stress tensor 7;; and the rate of strain tensor e;;, in order to obtain the Navier-Stokes

equations of motion.

The constitutive relations for the fluid. Applying stresses on the surface of
the fluid element makes the fluid element distort. Thus we expect a relation between

the stress tensor field 7;; and the rate of strain tensor field e;;.

From Taylors expansion we express the change in velocity 6u}T for a displacement
éx; as
Sul = (1/2)(e116z1 + 1262 + e136x3) + (1/2)(webzs — wsbza)
Sug = (1/2)(e216z1 + €226 + ea3bz3) + (1/2)(wsdz1 — wibzs)
Sub = (1/2)(es1621 + eszbzz + essbis) + (1/2)(wr b2z — wrbas)
where e;; = Z—:f} + g—:}l% and w =V x ul, w = (w;,ws,ws)
The terms in e;; give the distortion of the fluid element, whereas the velocity

change due to the terms in w; is (1/2)(w x ér) which represents a rotation of the

fluid element. [The term ér equals (621, 82, 6a3).]
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The tensor components e;; give the different rate of strains of the fluid element.

The simplest relation between the stress tensor field 7;; and the rate of strain

tensor field e;; is linear:
Tij = Aij + Bijmpemp (2.8)

In deriving Navier-Stokes equations we assume the relation takes the above linear
form. Since the Navier-Stokes equations give accurate fluid flow descriptions, the

above linear relation must be a property of the fluid.

We assume the fluid is isotropic. Thus if we rotate the coordinate axes we expect
the form of the stress-rate of strain relations to remain the same. This implies that

the tensors A;; and Bjjnp are isotropic. Therefore
Aij = —pbi;
Bijmp = Migmp + (1/2)(8im8sp + Sipbim) + v(8imbip — bip8jm)
Substituting these relations into equation (2.8) gives:
Tij = —pbi; + )\6£j;3nam + peis

Since the fluid is incompressible, we expect the rate of increase of a fluid element
emm t0 be zero. This means that the dilatation of the rate of strain tensor is zero.

Hence we obtain the constitutive relation
Ty = —pbij + peij (2.9)
where p is defined as p = —(1/2)m, and may be called the pressure of the fluid.

We now substitute the constitutive relation into the equation of motion for a

fluid element in order to obtain Navier-Stokes equations.
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2.2.1 The Navier-Stokes equations.

The equation of motion of the fluid is given by equation (2.7) as

D(pu}) _ 9
Dt Oz 7

The constitutive relations for the fluid is given by equation (2.9) as

oul  ut
= b 4 (S T
TJ p ’+'u(6:v,-+6w.-
Thus
D(pu}) _ _p 2t 0%
Dt Oz; t Ill(v i+ 3$;a$j)

. . . . . . dul
Since we are dealing with an incompressible fluid, 522 =0
J

by considering the infinitesimal changes in the function f(z1,zs,z3,t) operated

on by the operator i%v we find that

DLD_0, 42
Dt ot "o

Since we are dealing with steady flow, we obtain the Navier-Stokes equations for

steady incompressible flow:

dul 0
19 _ 9P gyt
pu iy B, + uVu] (2.10)

We can now obtain Oseen’s equations from the Navier-Stokes equations for steady

flow.

2.2.2 Oseen’s equations

Oseen’s approximation to the fluid flow is that the velocity perturbation u to the

uniform stream U is small compared to the stream velocity U.
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We let the uniform stream U be parallel to the x; axis. Thus the velocity u! is
given by

(u{,ug’ u.'ti) = (U + u1, ug, 'U'B)
where the Oseen approximation is |u;| < U.

Considering the Navier-Stokes equation, the term u;--éi—j is

'U,la u20 ’u:;a )
Uailfl anz ang,

g
U( 6:1,‘1 +

Applying Oseen’s approximation that ]%1 < 1, we obtain

0 g
| S
U_, a.'lfj U6m1
Thus:
v _ _(1/p)Vp + vV
3:1;1 - P __P_ -
Since the flow is incompressible, taking the divergence of the above equation, we
obtain
Vip=0
The equations
Ju 9
Uz—=—(1/p)Vp+ vViu (2.11)
6:171 e
Vip=0 (2.12)

are the Oseen equations for steady flow.

Change of cartesian coordinate notation. In the vector analysis consid-
ered to obtain the Navier-Stokes equations for steady incompressible flow, it was

convenient to label the cartesian coordinate variables z,, 5 and x3.
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However, it is sometimes preferable to denote the cartesian coordinate variables
by z, y and z where 2 = 2, y = z; and z = a3.

We do not change the vector description, Hence we still describe u! and u as
(ul,ul,u}) and (uy,us,us) respectively. The suffix 1 denotes the z direction, the

suffix 2 the y direction and 3 the z direction.
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Chapter 3

The Lamb-Goldstein velocity
representation in two dimensions.

We consider the steady two dimensional Oseen flow of an infinite fluid of uniform
velocity U past a closed body. Thus we expect a wake region of rotational flow and

outside this a region of nearly irrotational potential flow.

We shall find the complete expansions for the fluid velocity and pressure and
verify that these expansions are compatible with the known theory. The complete
expansion of the velocity and pressure is necessary for use in asymptotic matching
of near field and far field flows. The complete expansions are found by extending
the theory first given by Lamb and Goldstein. (See sections (7.0.3) and (7.0.4)
respectively.) Some of the coefficients in the expansions can be expressed in terms
of the drag, the lift, and the moment on the body due to the action of the fluid.
These expansions are shown to be compatible with the far-field Laminar-wake theory
given by Lagerstrom and the Oseen velocity representation of Oseen flow in two

dimensions.

We first extend the theory given by Lamb and Goldstein. The Lamb-Goldstein

method involves a decomposition of the fluid velocity.
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In this chapter we obtain the complete expansions for the perturbation Oseen
velocity u and the pressure p. We do this by considering the Lamb-Goldstein ve-
locity representation of Oseen flow; the perturbation velocity u is represented as a
summation of a velocity potential V¢ and a rotational velocity w. Lamb and Gold-
stein define the potential ¢ as 2¢ = —-&. (In section (3.1.3) we shall see that this
implies that outside the wake region the perturbation velocity is nearly u = V4.)
Both Lamb and Goldstein do not properly define ¢; we investigate this difficulty
within this section.

We consider the rotational velocity w such that w = u — V¢, and the stream-
function ¥ of the velocity w. (Hence w = (%, —‘%) since V.w = V.u = 0.)

Hence the Lamb-Goldstein velocity representation is a decomposition of the per-

turbation velocity u into a potential velocity V¢ and a rotational velocity w.

L=Vé+uw

We first find the Fourier expansions for ¢ and ¥; we equa,\te some of the coeffi-
cients in the expansion with the lift, drag and moment on the body. We next finally
give the complete expansions for the perturbation Oseen velocity ¥ and pressure p.

Therefore we divide the chapter into the following subsections:

3.1 The definition of the potential ¢.

3.2 The streamfunction ¥ of the velocity w.
3.3 Symmetric flow.

3.4 Antisymmetric flow.

3.5 The complete expansions for the velocity and pressure.
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3.1 The potential function ¢.

We now give Oseen’s uniform steady flow in two dimensions past a body boundary.
(See section 2.1 equations (2.2) and (2.3 ).) In terms of the perturbed velocity wu,
we have

du

Ut = —(1/p)Vp + vV (3.1)

We follow the method first used by Lamb and Goldstein of decomposing the

perturbation velocity potential in the form

v=Vé+uw
where
il P
9o~ U (3.2)

There are good reasons for using this decomposition especially when considering
steady uniform flow past fixed bodies; for this type of flow, we expect regions of
almost no vorticity within the fluid (and therefore potential flow), and we also
expect regions of vorticity within the fluid (and therefore rotational flow). We call
the region of rotational flow the wake. Thus outside the wake we expect potential
flow, this decomposition is useful because we find that outside the wake the potential
flow is given very nearly by u = V¢; the velocity is satisfied very nearly by the
velocity potential V¢ of equation (3.2). Therefore outside the wake the function w
is effectively zero.

We will see in section (3.2.2) that substituting the velocity u = V¢ + w into the

Oseen equations we obtain a differential equation in w only such that

ow v
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and V.w =20

It is not clear, however, that the decomposition given by Lamb and Goldstein is
complete. This is because the potential ¢ is not defined uniquely in equation (3.2):
In order to obtain a complete expansion for the potential ¢, we must define ¢

uniquely. We must also make sure the definition of ¢ isn’t a divergent intergral.

Thus I define the potential ¢ as

_Dlnr 1 ¢= , D cos ¢ ,
¢~27er pU *w{p(w,y)—i— r }dw

where ' cos ¢ = z', r'sinf’ = y and —% is the leading order term in the
expansion of the pressure.
Hence

a9 p

oz pU
However, this doesn’t define the potential ¢ everywhere in the fluid; there is
a shadow region where ¢ is undefined. We shall continue ¢ analytically into this

region. However, this means that we obtain a discontinuity line.

We must define ¢ uniquely in order to obtain a complete expansion for u. It is
especially important for our problem to know that we have the complete expansion
and not a partial expansion since the solution for u may be used in an asymptotic

matching. (Oseen flow is applicable in the region far from the body.)

The subsection subdivides into the following parts:
3.1.1 Definition of the potential ¢.

3.1.2 The analytic continuation of ¢ into the shadow region showing the existence
of a discontinuity line in ¢.

3.1.3 The fluid motion outside the wake region.
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3.1.1 The definition of the potential ¢.

We now consider the Lamb-Goldstein velocity decomposition given by equations

(3.2) in Oseen flow. The potential ¢ is first given which satisfies equation (3.2).

¢ is defined as :

Dlnr

¢ = (3.4)

27r!

7 - o) [ {ptet + G2t aw

Hence 42 = —(1/pU)p as given in equation (3.2).

The term — 2ot “}jrf is included in the integrand so that the integral is not divergent.

The prsssure p satisfies the differential equation VZp = 0 and since p is every-
where continuous and tends to zero at infinity, it has the form given by equation
(3.23).

From section (3.5.2), we see that the leading order term of p is —?L"gﬁ, but if this
term was the integrand in equation (3.4), the resulting integral would be divergent.

However, all other terms in the expansion of the pressure give convergent inte-

grals and so

z Dcos®
f_ N {p(w',y)+ 5 }d:c'

is a convergent integral.
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3.1.2 The analytic continuation of ¢ into the shadow region
giving a discontinuity line.

The definition of ¢ in equation (3.4) does not give ¢ everywhere in the fluid region

where Oseen flow is valid. In this subsection we find the region where ¢ is undefined

(called the shadow region ) and give a method to continue ¢ analytically into this

region. In order to do this, we must find the region of fluid where Oseen flow is

valid.

Oseen flow is valid in the region where the Oseen approximation holds. This is
the region where the magnitude of the perturbation velocity, |u|, is much less than
the uniform stream velocity U, so |u| < U.

Far from the body the fluid tends to flow as the uniform stream and so Oseen
flow is valid . Near the body the fluid velocity ut must tend to zero since the fluid is
assumed viscous, and so Oseen flow is invalid. (However, there are some Reynolds
number flows where Oseen flow is a good approximation almost everywhere within
the fluid. Also Oseen flow is valid in regions close to a slender body whose length
axis is closely aligned to the uniform stream direction.)

For the problem of concern to us, we expect Oseen flow only in the region a
distance at least R from body where R is much greater than the body dimension
[, R > . We now consider the position of the coordinates in order to define the
shadow region of the fluid.

We position the coordinates such that the z-axis is parallel to the uniform stream
direction and the body is located at (—R,0). Thus Oseen flow is valid in the region
(z + R)? + y* > R?, and the shadow region is where (z + R)?2 +y% > R%, z > —R

and y? < R? are all satisfied. We draw the shadow region next.
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Figure 3.1: The shadow region of the fluid.

However, in the following analysis we consider a general closed curve C rather
than the specific curve (x -fR)2+ y2 = R2 as the boundary for Oseen flow validity in
the fluid region. This has the added advantage for application to those flows where
Oseen flow is a good approximation very close to the body. In these cases it may
be a good approximation to take the closed curve C to be the body boundary.

We next consider the position of the boundary curve C in the coordinate frame.
The boundary curve C intersects the x-axis at more than one point. The origin of
the coordinate frame is placed at the point where the body curve crosses the z-axis
for the greatest value of x. Thus the origin is located at the rear of the body. (When
the axes are chosen in this way, the discontinuity line will lie along the line y —O0,
x >0)

The position of the coordinate system in relation to the body is shown diagra-

matically below:
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In order to describe the region of the fluid where is undefined by equation (3.2)
we first define a region D. We represent the boundary curve C by [*(?), y(«)]for
some parameter ¢ We let the maximum value of y(g) be a and the minimum value
of y(q) be b

We consider the two points on the curve at y = a and at y = b (If y(g) equals a
at more than one point on the boundary curve, we consider the point whose x value
is the least, and similarly when y(g) equals b.) Thesetwo points split the curve C
into two parts, the curve C+ which passes aroundthe front of thebody and the

curve C- which passes around the rear of the body.

We define the region D as that bounded by the curve C_ and the two semi-
infinite lines parallel to the z-axis starting from the points on the curve at y = «a
and at y = b and finishing at x = oo.

The potential ¢ defined by equation (3.4) is an integration of the pressure over
a horizontal integral path to the x-axis.

We show the region D in the diagram below:

49



We consider continuing analytically ¢Jinto the domain D. We divide the region
D into two parts, the region D+, where y > 0, and the region Z? , where y < 0.
We first consider the continuation of (J into the region D+.

Outside the region D, we see that:

8 = U ab (JooPXZRAX) = —517 Joo W (X"> YW
Since V2p = 0 from equation (), then
d2 L fx 92 Iw 1 9p d2f>
dy2 ~ pdlJ-« w p(x'y) = "d~x= dx?2

and so V2¢#= 0 and

d2f 1 dp

3.5
dy pUdx (3-3)

Since the pressure p is defined everywhere in the fluid, equation (3.5) will be
used to continue ¢ into the region Z)+. We consider a point (jto? o) within the fluid
region D+.The potential (f is known at the point (#0,21), where y\ > a. Equation
(3.5) gives us the change in the second partial derivative with respect to y of £in
the region outside the domain D. However by letting equation (3.5) hold within the
region D+ we can continue $from the point (#0,2/i) to the point #0,2/o- Hence by
letting equation (3.5) hold within the region D+ we have a continuation of £within
this region and we are thus able to find a value for (f at the point (#0,2/0)-

We show the continuation used diagrammatieally below:
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We next give the definition of the potential ¢ in the region D, using this con-
tinuation. Using equation (3.5):

o¢ _ 1 0p

1
dy?  pU Oz

we can express ¢(To, Yo) in terms of ¢(zo,y;) and %‘5(1‘0, Y1):

¢ _ 1 0p
dy? ~ pU Oz
implies that, for y > 0:
op 1w _ L f1OP.  na
[ 8y ]y pU./; aw(w,y)dy (36)
Hence
¢ _9¢ w Op Ngot
6y (mo,y) - 33/ (370,3/1) PUL oz (man )dy
and so

[$(zo, )i = (y1 — yo)a (zo, 1) — plU/ fym gp(mo, "\dy'dy (3.7)

Equation (3.7) gives the potential ¢(zo, o), since we know ¢(zo,y1), %‘g(mg,yl)
and the fluid pressure p and thus we have defined ¢ in the fluid domain D,. We

now show that V2¢ = 0 in the fluid domain D,.

Hence, we have found ¢(z,y) within the fluid domain D,. The potential ¢

satisfies

0% 1 0p

By pU oz
within the domain D, and also outside the domain D. Within this fluid region,
—8-6;(327‘3) = —%5—3 —;ﬁa—g since V2Zp = 0 from equation (2.3).

D2 (8 4 p Y _
Hence ay2( 5 T ) = 0

This gives us 3¢ - (1/pU)p = Ay f(z) -+ By(x)
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This equation holds for ¢(z,y) in the region y > 0. However, we know that for
y > a , equation (3.2) holds which implies that 52 -+ (1/pU)p = 0.

Hence A = B =0 and 32 + (1/pU)p = 0 in the region y > 0.

Thus substituting the above equation into equation (3.5), we obtain VZ¢ = 0 in

the region y > 0.

Hence we have found that in the region D, , ¢ may be continued so that ¢ is

single valued and

9¢

3—w+(1/pU)pz[) (3.8)

V2$ =0 (3.9)

Simiarly, ¢ can be defined in the region D_ by following the same method and we
find that the equations (3.8) and (3.9) also hold in this region. Hence the equations
(3.8) and (3.9) hold everywhere within the fluid.

Since the pressure is defined everywhere within the fluid and is assumed to be
continuous and single valued, then the function g—‘g is continuous across y = 0, and
x > 0, the boundary line between the domain D, and the domain D_.

However, it may be that ¢ and %ﬁ are discontinuous across y = (0 and z > 0 and

this will be investigated in the next subsection.
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3.1.3 The fluid motion outside the wake region.

We consider the fluid motion past the body. We expect a region of vorticity (the
wake region) to occur at the rear of the body.

We draw a diagram of the flow:

ujgle”
region

Applying Bernoulli’s equation to the region of irrotational flow, we obtain
p+ (1/2)pu.u = p\x=-00 4 (1/2)pU2
along a streamline, where we take p|x= 0o = 0, (see equation (2.4)).

Outside the wake region, since we are dealing with a region of nearly irrotational
flow, we may consider the perturbation velocity given by u = V4>, where $(x,y) is
some velocity potential.

Hence Bernoulli’s equation becomes

p 4 P*"§~ = 0 to first order. (We consider the perturbation flow such that



From equation (2.2), we have

il
p+pUb-n—:—-0

Hence & — ¢ = f(y) and so %;; = _g% + f'(y).
However, from equation (3.4), we have gﬁ —0as T — —o0.

Since u = V@ is the perturbation velocity to the uniform stream at 2 = —oo,

we also expect that % — 0 as z — —o0.

Hence

u = ¥V® = V¢ in the irrotational flow domain of the fluid.

This gives us the boundary condition that w — ( outside the wake. We now

finish this subsection by looking at the form of the function w.
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3.2 The stream function V.

The streamfunction is a measure of the flux across a line joining two points in the
fluid (see Lamb Hydrodynamics art 59 and chapter 2 appendix 2.3.1). Thus if extra
fluid is not injected into the fluid stream, (if there are no sources of fluid), then the
streamfunction is defined at every point within the fluid.

Therefore we may define a streamfunction ¥, of the velocity perturbation u
within the whole fluid. (Fluid does not flow across the body boundary and so there
is no net flux out of the body boundary.)

However, if we consider the potential flow V¢, there is a discontinuity line along
y = 0, z > 0, and a region where Oseen flow is invalid within (z + R)? + y% < R2.

The discontinuity line is equivalent to a line of multipoles, some of which may
be sources, and there may be a net flux out (outflow of fluid ) from the region
(z+ R)* 4y < R%.

Thus the streamfunction of the potential flow V¢, ¥4, is ill defined due to the
presence of sources within the fluid. However, if we define a cut alongy =0, 2 > 0
then ¥y is defined uniquely everywhere, with the possibility of discontinuities in ¥y
and its derivatives on the infinite half line y = 0, z > 0.

Hence there are possibly discontinuities in ¥ = ¥, — ¥, and its derivatives along
the infinite half line y = 0, z > 0. We now investigate the discontinuities in ¥ and

its derivatives.
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3.2.1 The discontinuities in ¥ and its derivatives.

We find which derivatives of ¥ are continuous and which may have discontinuities
on the infinite half line > 0, y = 0.

Since the pressure p equals —pU g—ﬁ—, and the potential satisfies Laplace’s equation

g%? = —%?2”, it is possible to have discontinuities in ¢ and %% along the infinite half

line z > 0, y = 0, but all other derivatives of ¢ are continuous; this follows from
the assumption that the pressure and all its derivatives are continuous everywhere

in the fluid.

We also assume that the velocity and its derivatives are continuous , and since

L (06 08\, (0% _ou
=\ 0z’ Oy oy’ O

then it is only possible that there are discontinuities in ¥ and %‘g—; all other
derivatives of ¥ are continuous.

The discontinuity in % on the infinite half line > 0, y = 0 gives a discontinuity
term Wy in ¥ which is obtained by integration with respect to z.

However, we also obtain a term ¥, giving a discontinuity in ¥ on the infinite
half line giving a velocity field (%1-, —201) which is continuous within the fluid;
this is obtained from the discontinuity in the streamfunction 34 due to the outflux
of the velocity potential V¢ from the circular contour (z — R)2 + y? = R®. In
section (3.3.2), we see that this outflux is related to the term Alogr in the Fourier
expansion of ¢ from the origin. (The velocity obtained from the source potential
Alogr is continuous and so the discontinuity term ¥; must also have continuous
derivatives.)

Thus the discontinuity in ¥ is ¥y + ¥, and the discontinuity in %‘g- is %%Q. We
next find the functions ¥y and ¥; and so we first obtain the differential equation

satisfied by W¥.
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3.2.2 The differential equation satisfied by the stream func-
tion V.

When we substitute the equations (3.2) into the Oseen equation (2.2) we obtain a

differential equation in w:

Equations (3.2) are:

u=Vo+w
d¢
2, = ~(/pU)p
Equation (2.2) is:
ou 2
U2 = /)Tt (VP

Hence we obtain
U2 (Vg +w) = ~(1/p)Vp + vV (Y + )

From equations (3.8) and (3.9) gg = —(1/pU)p and VZ¢ = 0 hold everywhere
within the fluid.

with the boundary condition that w = 0 outside the wake.

We introduce a stream function ¥ since %;l -+ %3;,1 = (.

G
— \dy' Oz

Letting % = 2k, we obtain the equation

& 0 . AV
(7 2%) (7 - 2hgg ) ¥ =0

Thus (V2 — 2kZ)¥ = const = E and letting ¥z = ¥ + £Z, we obtain

We write
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(v2 - %a—i) Up =0 (3.11)

We now let ¥ = e*F.
Substituting into equation (3.11) we thus find that F' satisfies the modified

Helmholtz equation

(V2—k)F =0 (3.12)

with separation of variable solutions K, (kr)sin(n + ynx) and I,(kr)sin(nf + vur)
(We will find the expansion for F' in symmetric flow in section (3.3.4) and in anti-
symmetric flow in section (3.4.4) using Fourier’s theorem given in appendix A.) The
terms I,(kr) are not suitable since we must satisfy the condition that (%—3’-, -2y 0
in the far field.

From appendix (3.8.1) a function ¢ satisfying Laplace’s equation obtained from a
line distribution of normal dipoles of strength S(p) along the line I(p) parameterized
by p has a discontinuity across the line at p of value 27 S(p).

The function —Ko(kr) satisfies the Helmholtz equation and as r — 0 then
—Ko(kr) — Inr, the Laplace source. Hence using the argument in appendix (3.8.1),
we can show that a function F satisfying the modified Helmholtz equation obtained
from a line distribution of (Helmholtz) dipoles of strength S(p) along the line I(p)
has a discontinuity across the line at p of value 27 S(p). The (Helmholtz) dipole is
derived from the (Helmholtz) source —Ko(kr).

Since F' = e~**¥, there is a discontinuity line in F' along y = 0, x > 0 and so

for the function

F(o)= = [ S5 Kalk{(a - 7 + v}

which satisfies the modified Helmholtz equation , then
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[F(2)j2o! = e™* [¥])20F = 275 (x)

y—0-. y—0- =
We use this equation to find the functions ¥o(z) and ¥;(z) which give the

discontinuities in ¥ and %%. These discontinuities both occur in symmetric flow

which is discussed next.
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3.3 Symmetric flow.

We define two particular flows ug and u, which we call the perturbation velocity to
symmetric flow and antisymmetric flow respectively, and we show that the general
perturbation velocity v is given by u = ug + uy

The perturbation velocity components u; are split into two parts symmetric u;g

and antisymmetric u;4 about y = 0:

ui = uis +uia , wis(e,y) = uis(z, —y), wia(e,y) = —via(z,~y), 1=1,2
The incompressibility condition gives

0 g ij 0

550s(@ ) + gouale ) + 3 uzs( W+ 3 uzA(w,y) =0

Substituting in the above equations we obtain
Fouss(z,=9) = 5runa(e,—y) + gas(e, =) = 5ousa(e, —y) =0

Making the variable change from y to -y, gives

Fo1s(,9) = gruale,y) = gouas(a,0) + govan(z,n) =0

Thus if we define ug + (u15,u24) and uy = (14, ua2s) then V.us =0, V.uy = 0.

Since the boundary condition u'.n is linear, where u' is the fluid velocity, we
solve for the two flows ug and u, separately and the perturbation velocity is given
by u = us -+ uy

ug and u, are defined as the perturbation velocities for symmetric flow and anti-
symmetric flow respectively. Thus in symmetric flow the axis y = 0 is a streamline,
and the flow for y < 0 is a reflection of the flow for y > 0 about the line y = 0. We
now consider the properties of the pressure p, potential ¢ and the streamfunction ¥

of w which is ¥, in symmetric flow and ¥, in antisymmetric flow.
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The pressure p, potential ¢ and streamfunction ¢ in symmetric flow and
antisymmetric flow. From Oseen’s equations (3.2) and (3.3), we have
Ou

__l 2 2. _
Ugs ==Y+ (W, V?p=0

In symmetric flow, we see that p(z,y) — p(z, —y) = constant = 0 since p is as-
sumed continuous everywhere. Similarly in antisymmetric flow p(z,y) = —p(z, —y).

The potential ¢ is defined as

#a,y) = [ _pla’,y)d

Hence in symmetric flow the potential ¢ is symmetric about the line y = 0 and
in antisymmetric flow the potential ¢ is antisymmetric.

The streamfunction is defined as ¥ = ¥, — ¥, where

(O aw) o (on, o9,
ﬁ__(ay’ Bw)andy-?"m(ay’ 6m)

In symmetric flow ¥, and ¥, are antisymmetric and so ¥ is antisymmetric about

the line y = 0.

Similarly, in antisymmetric flow ¥ is symmetric about the line y = 0.

We now consider the discontinuities in ¢, ¥ and their derivatives for symmetric
flow.

In this section, we find the discontinuities in ¢ and ¥ for symmetric Oseen flow,
and thus find the complete Fourier expansions of ¢ and W.

This section is divided into the following parts:
3.3.1 The discontinuity in symmetric flow in ¢.
3.3.2 The expansion for ¢ in symmetric flow.
3.3.3 The discontinuity in ¥ for symmetric flow.

3.3.4 The expansion of ¥ in symmetric flow.
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3.3.1 The discontinuity in ¢ for symmetric flow.

In symmetric flow, ¢ must be symmetric about ¥y = 0 and so ¢ must be continuous
across y = 0.
Since g% = —(1/pU)p, it is continuous everywhere within the fluid.
However, we may expect a discontinuity in %‘5 across the liney =0, z > 0.
Across y = 0, we know that 8%%% = —( /pv)gf; is continuous and thus %gg must

therefore also be continuous. So:

908 _ 20
Oz Oy y=o4 Oz Oy y=0
This implies that:
9 )9 9 —
(932 ay y=04 6y y=0_
and therefore
% - Qfé = constant = B (3.13)
ay y=04 ay y=0.

We find the potential ¢p which gives the required discontinuity. Consider first
the potential of a line of sources from z = 0 to 2 = A. This potential is Re[¢4]

where:

ba = [ logle—O)de
= [—(z—{)log(z = ) + (2 — {)]§ + F(A)
= {zlogz—2z—(2z—A)log(z — A)+ z— A} + F(A)

We want the potential ¢4 to be finite as A — oco. Thus we choose F(A) such
that as A — oo then ¢4(z) 4oo for all z.
Welet ¢os = limy_,o P4

Choosing fa(z) = A+ (z — A)log(Ae'™) + z we obtain
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b04(z) = zlogz—z—(2—A)log(z—A)+2z—A+ A
+(z — A)log(Ae'™) + 2

= zlogz — (2 — A)log(l — z/A) + =z
As A — oo,

zlog(l —z/A) — 0and
Alog(l —z/A) — A[—z/A—(1/2)(z/A)* — (1/3)(z/A)® — .....]

- —z

Thus lim a0 {doa(2)} = zlog 2.

We have found a potential Re{doa(z)} which has the correct discontinuity of
equation (3.13) and satisfies Laplaces equation.

However, this function isn’t symmetric about ¥y = 0. Hence the symmetric

potential ¢o which satisfies the correct discontinuity is given by
B —iT
do = H%Re{zlog(ze )} (3.14)

for 0 < 6 < 2~.
We now verify that the potential Re{#o(2)} gives the correct type of discontinu-
ity.

We consider the complex potential &y = %zlog ze~'", Taking the derivative,

d®, B .
- = —%(1 +logr +i(8 — 7))

_ 0400
T Oz Jy

So we have that %@Q = Bl-m
Y 2w

When 6 = 0, %’;—"-=0andwhen0=29r, %‘f;—":B.
The potential ¢o = Re{®o} has the discontinuity given by equation (3.13).
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Also 9% = — B (1 +1Invr).

However, from equation (3.2), po = —pU Qg’;"-, where py is the pressure term
associated to the potential term ¢o. |

Therefore py = %(1 +Inr).

However, the pressure tends to zero as r — 0, and so B = 0.
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3.3.2 The expansion of 0 in symmetric flow.

The potential (fis represented by = o+ #\ where $*is continuous everywhere.

We now consider a new origin at (- R, 0) with new cartesian coordinates (x*, y*).
Thus (x* y* = (a+ i2,y) and we let the polar coordinates from this new origin be
(r*,0*) and so r*2 = (a: + R)2+ y2 Hence from section (3.1.2) we see that Oseen

flow holds in the region r* > R.

R£OIDi\) OF
060V FjjcW
r* >R

Figure 3.2: Diagram showing the region of Oseen flow with origin centered at the
body.
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We now consider Fourier’s theorem . Although it would seem natural to apply
Fourier’s theorem for the variables (r*, 6*) we find that because the discontinuity line
is along ¢ > 0, y = 0 it is more useful to apply Fourier’s theorem for the variables
(r,6). Fourier’s theorem for Laplace’s equation is given in appendix (A). Since ¢ is
symmetric, we expect the potential ¢ to be of the form

n=0o0c

p=ddot+ > (A;T" + A,,r'") cosnf +
n=1

D logr
2wpU
where A, A, and D are constants.
However, applying the condition that %fg = —(1/pU)p, where the pressure p is
bounded at infinity, the above equation is considerably simplified.

For n > 2, the terms A/, in the potential expansion give pressure terms of order

at least

d¢

p=—pUz=0(r)
Thus A, =0 forn > 2.
Therefore, as r — 0o, we obtain

d¢ 1

e —(p—U)P = Ay
However, from section (3.1.1) we take the pressure p(z = —o0,y) = 0. Thus

Al =0 and
® = do + n_;l ij—ﬂ'—‘- cos nd + QWI;U logr (3.15)
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3.3.3 The discontinuity in ¥ for symmetric flow.

There is a discontinuity term ¥y in ¥ which is calculated from the discontinuity in
the velocity V¢ and also a discontinuity term ¥; in ¥ due to the application of the
conservation of momentum law.

Therefore the discontinuity in ¥ = ¥y + Uy,

The discontinuity in the velocity along the infinite half line > 0, y = 0 is given
by equation (3.13)

9¢o
Oy

_ 9¢o
dy

y=0+ y=0-

where

B ir
o = —%Re{zlog(ze )}

From section (3.3.1), we show that the constant B = 0 and so ¢p = 0 and ¥, = 0.

We may also show this result by following the calculation described below. The
full details of the method is given in the apppendix section (3.9).

The calculation is divided into four main parts:

1. The evaluation of the discontinuity term ¥y in the stream function .

2. The integral representation of the function Fy = e **¥,.

3. The evaluation of the integral in the far wake, particularly as r — oo, § — 0.

4. The evaluation of the velocity term uy = V& + V¥, as r — o0, § — 0.

Thus the above method calculates the velocity term u, in the far wake close to
the discontinuity line y =0, z > 0.

We find that for B # 0 we obtain the result 1, — oo in this region, which implies
that u — co. Thus the condition of a uniform stream at infinity is violated and so

we must have B = 0.
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The first part of this section is to find the discontinuity in the stream function
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3.3.3.1 The discontinuity ¥,.

We now consider the discontinuity term ¥;. There is a discontinuity term ¥, in
¥ which is related to the term %logr in the expansion of ¢ given by equation
(3.15). We will find this relation below. We introduce a cut along the infinite half
line y = 0, z > 0, and thus the discontinuity in ¥, is given by

ot —_Ldg

Ui(z >0,y =04) — ¥ (z>0,y=0-) = — | S

We consider the streamfunction ¥, of the velocity u
U, =T+ T

where ¥ is the streamfunction of w and ¥, is the streamfunction of V¢.(See section

(3.1.2).)

Since there is no flux out of any closed contour around the body, then

2 3\11“
o J0 =0
Therefore we obtain the relation
27 n
6—‘1' =-[" B‘I'd’do
0
However,
1 3\11,,5 0¥, 0¥, a¢ 0 . d¢
(I) . = e— [ —- [r— e = Ny = —
TR = V®q.ng Ty cos 8 50 sinf = arccose-l-ay sind = Vo.n, "

where ny is the unit normal in the 8 direction and n, is the unit normal in the
r direction.

Thus
27
Uiz >0,y =04) = ¥y(z >0,y =0_) = /0 ‘g%‘d”
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We refer to the expansion of ¢ given in section (3.3.2) equation (3.15).All the
terms in the expansion except for the term i;rpp—ﬁlogr give no contribution to the
integral f7™ %‘frd«‘).

Therefore
2n 6¢ 2r 9 D D
L gt = [ 5oy losmirde =

Hence the discontinuity in ¥, is

D
U(e >0,y =0,) ~W(@>0y=0-)= 7
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3.3.3.2 The integral representation of the function ¥,.

Refering to appendix (3.3.1), the potential F(z) due to a Helmholtz dipole line along

y =0, z > 0 of strength S(z) is

Flag) == |7 S(€)gKolb{(z = € + v}/l

and has a discontinuity across the half line y = 0, z > 0 such that

[F ()20t = 278(2)

(For small », Ko(kr) — —logr and a%(log r) is a dipole orientated along the
y-axis.)
We consider the equation ¥; = e**F;. Then Fi(z,y) satisfies the modified

Helmholtz equation and has a discontinuity across y = 0, x > 0 such that

D

[Fi(2)]y=ot = pUCe"“"
Therefore
== [ et Folk{ (e — €+ 9Pl (3.16)

We now consider the expansion of ¥ for symmetric flow.
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3.3.4 The expansion of ¥ for symmetric flow.

We first find the differential equation satisfied by the velocity w of the Lamb-
Goldstein velocity decomposition u = V¢ + w where the potential ¢ is defined

as ¢ = %%9';%’1 - ,'olﬁ S (e y) + Q;%ﬂ’idm' }. This is found by substituting the ve-

locity decomposition into Oseen’s equations for steady two dimensional flow given
by
Ou

__1 )
Uge = —Yp+ (V")

Substituting u = V¢ + w into the above equation gives

ow
UT?; = vV
since
0? a¢ ad 9%
2 _ _ _ 24\ _
(V )Z‘é - 6:85551),‘ (am_,) - afl:j (6&2,6.’1).) - V(V ¢') =0
and g—‘iﬁ = —pLUp.

The streamfunction ¥ of the velocity w gives

_ (on _sw
’L_U_-—-(ay, 8w) and so

(Vz—g—?—)\II=E —t <V2—-—q—6—-)\IfE=O

v Oz

where ¥ = —-‘—’-g—"?- 4+ ¥x and F is a constant.

Splitting the function ¥g into an antisymmetric part ¥, and a symmetric part
¥4, we thus obtain

U, = Ug, and ¥, = _.y..g_ga 4 U g, where ¥, and ¥, are the streamfunctions in
symmetric and antisymmetric flow respectively.

In symmetric flow, the streamfunction ¥ = ¥, is antisymmetric about the line

y = 0 and so the term —1‘3—” must be zero which implies that F = 0 in symmetric
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flow. Hence in symmetric flow

v Oz

In antisymmetric flow,

v - Y9 gp =0 and 0, = "% 4wy, (3.17)
v Oz U
We now give the expansion for ¥ in symmetric flow. Following the method in

section (3.2.2), we consider the function F, = ¢~**¥, which gives

(V2 - k2)Fa =0 Where 2k = —?/:
Applying Fourier’s theorem from appendix B.2, since F, — Fy — F} is continuous

everywhere and is an antisymmetric function about y = 0, then

F,—Fy—-F = E fu(r) sinnd

n=1

where

1 2T .
ﬂm=;L[E—m-ﬂmww

ataen)

to the above equation, and since (V2 — k?)F, = 0, (V% — k?)Fy = 0 and

Applying the operator

(V2 — k*)F, = 0, then we obtain the equation

r2fa(r) +rfi(r) — [K2r? 4+ n?fa(r) =0

which has solutions I,,(kr) and K,(kr), of the modified Bessel equation. Thus

F, — Fy — F) is expressed in the form




F,— Fy— Fy =) _{baKpu(kr) + b, Io(kr)} sinnd

n=1

where b, and b, are constants.

The streamfunction in symmetric flow is

U, = €*F,
= T+ Ty + 000 S (4K, (kr) + b, I (kr)} sin nd
n=1

However, we must satisfy the boundary condition at infinity that

_ (9%, 0¥,
T\ 8y’ Oz
This is satisfied by the terms K, (kr) — (/55e7*" as r — oco. (From Abramowitz

)-—>0 as r — 00

and Stegun pg 378 9.7.2. )
But,

ekr 4n? — 1
(i) o= {1 (4.
Thus 8], = 0. (From Abramowitz and Stegun pg 378 9.7.1.)

Thus the streamfunction in symmetric flow is

U, = U+ Ty + 2D 5™ b K, (kr) sin nf (3.18)

n=1
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3.4 Antisymmetric flow.

In antisymmetric flow, the potential ¢ and the pressure p are antisymmetric about
y = 0 and the streamfunction ¥ is symmetric about y = 0.
Thus in antisymmetric flow we have a discontinuity in ¢ along y = 0, z > 0.

This is considered next.

3.4.1 The discontinuity in ¢ for antisymmetric flow.

In antisymmetric flow, there is a discontinuity ,I_;%l in ¢ along y = 0, 2 > 0. Thus

_ L(2)
y_)(l)i_mx>0 [QS(:L‘, y) - ¢(’E’ —y)] - pU
However, we know that the pressure p = -—;%%g is continuous along y = 0, z > 0.
Thus
1 d 0 .. . 0 0
) = 2l 6(e) — dor—0)} = Jim { mb(e) - o)

= —pU{lim p(z,y) - p(z,~y)} =0

Thus 2%)_ is a constant —!—‘[7
P )
From appendix section (3.3.1) the potential due to a line of dipoles of strength

2%’% along the line y = 0, z > 0 has a discontinnity %%l along this line.

Thus we express the term ¢, giving a discontinuity in ¢ as

b= tim [ 2D g (o - 0 47104 + Alw)}

where A(zy) is chosen so that as 21 — 00, ¢ tends to a limit.
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This integral is solved more easily by using the complex variable z = z + ¢y.

Thus ¢; has the same discontinuity as Re{®,;} where

& = m}iglm{ﬁ—,; f‘%log(z—s)dsm(xl)} (3.19)

L

= 2mpU LHm {— /:1 id[log(z — £)] + A(ml)}

since :%log(z — &)t = z';‘l'_% = —id(z — ¢). Therefore

L . ) _
‘I’l = "27er x}gnw{z log(z — $1) - Zlogz -+ A(“"l)}
and if we choose A(zy) = —ilog(z,€'™), then
& = — 27:; 77 lim {ilog(1 — =) — ilog 2}
= 1 log z
2wpU

In polar coordinates, log z = i{logr + if} = ilogr — 6.
Thus

Lo
Re{@l} = —-———-—21er

The function ¢, is antisymmetric about y = 0 and therefore

L6 —7)
- — 1 2
1 i (3.20)
[We now check that ¢; and its derivatives have the correct discontinuity along
y=0,z>0:

L L
—0 — b1lpmgn = ———e(0 — 27) = —
$1lo=0 — H1lo=2 27er( ) oU
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and
Od1 _ L gﬁ _ L sind
oz~ 2mpUdxz ~  2mpU r

which is continuous along y = 0, > 0.]
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3.4.2 The expansion of ¢ in antisymmetric flow.

In antisymmetric flow, ¢, — ¢; is continuous and we give an expansion for this
function by applying Fourier’s theorem. The potential ¢ satisfies Laplace’s equation

and from appendix (A) we see that

n--co B
ba— 1=, (75- + B:,r") sin né
n=1

But the terms in the expansion for B where n > 2 give terms in the pressure

at least of order r as r — oo:

B, gives p = —;%—-g% = O(r*~!). Thus B, = 0 for n > 2 for the pressure
condition at infinity to be satisfied.

The potential term involving the coefficient Bj is B{rsinf = Bjy. However,

since ¢ = —pU [T, p(2',y)dz’, then %gb(—-oo,y) = (. Thus Bj = 0.

Therefore the expansion for the potential ¢ in antisymmetric flow is

L@ —-7m) &, sinnd
Pa = T TorU + > B,

n=1

(3.21)

rﬂ
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3.4.3 The discontinuity in ¥ for antisymmetric flow.

In antisymmetric flow, the streamfunction ¢ is symmetric. Thus we may expect
a discontinuity in the streamfunction derivative %'g, but no discontinuity in the

streamfunction .

However,
v=Vo+uw
and so
0 d
wy = 53 + 6—15
Since p = —p%%‘g, and p, u, and their derivatives are assumed everywhere con-

tinuous, then %‘5 is continuous everywhere,
Thus in antisymmetric flow, we expect no discontinuities in the streamfunction

U and its derivatives.
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3.4.4 The expansion of ¥ for antisymmetric flow.

In antisymmetric low ¥ = ¥, and from equation (3.11) we see that

Ud

ve. . _
— S U =B~ (V- o) =0

v 8z

(v

where ¥, = ¥p, — E—I}“i

Letting Z = 2k, and by following the method in section (3.2.2) this gives

(V2 — k*)F, = 0 where F, = e g,

Applying Fourier’s theorem from appendix (A), since Fy is continuous everywhere

and symmetric about y = 0, then

Fa =) ga(r)cosnf

n=1

where

2m
gn(r) = ;1‘_-_/0 Fu(r,0) cosnfdf

Hor (a1))

to the above equation, and using the operator (V% — k?)F, = 0, gives

Applying the operator

r2ga(r) + rgn(r) — [K?r? + n®lga(r) =0

which has solutions I,(kr) and K,(kr), of the modified Bessel equation.

Thus F, is expressed in the form

Fo =) {anKn(kr) + a,I,(kr)} cosnb

n=0

where a,, and @, are constants. The streamfunction in antisymmetric flow is
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Ex

— kx il
¥, = &"F, %
k(r cos8) ~ E
e Y {anKn(kr) + antl,(kr)} cosnd} — ﬂ(r cos )
n=0

However, we must satisfy the boundary condition at infinity that

w, = 0¥, 0¥ — 0 as r — oo
T\ 0y’ Oz
This is satisfied by the terms K, (kr) since K,(kr) — /55e~* asr — oco. (From

Abramowitz and Stegun pg 378 9.7.2. )

But,
ekr 4n? -1
I.(k === g 1 —
(kr) = 27rkr{ ( 8’97'.)+ }
Thus a/, = 0. (From Abramowitz and Stegun pg 378 9.7.1.)

This gives at infinity

E
w, = (0, —576‘)

Therefore, E = 0 in order that the boundary condition at infinity is satisfied.

Thus the streamfunction in antisymmetric flow is

T, = ekreos0) > an K, (kr) cos nb (3.22)

n=1




3.5 The complete expansions for ¢, ¥, velocity
and pressure.

3.5.1 The expansion of the pressure p.

We consider the Fourier expansion for p. The pressure satisfies Laplace’s equation
and we apply Fourier’s theorem (see appendix (A) ) to give an expansion for the
pressure p. The pressure is taken to tend to zero at infinity, (see section (3.1.1) )

and so we obtain p as an expansion in the form

p(r,8) =Y {(C,,r_" cosnf + D,r~")sin nﬂ} (3.23)
1

82




3.5.2 Expansion of the potential ¢.

We combine the expansions for the potential in symmetric flow, ¢,, equation (3.15)
and antisymmetric flow, ¢4, (equation (3.21) ) to obtain the general expansion for

the potential ¢.

L(6 — =) + Z(A r-")cosnf + (Bar~")sinnd  (3.24)

é(r,0) = logr — 2l

27 pU
From equation (3.2), the pressure p and potential ¢ are related by

_ 9¢
p=-—pUs"

Differentiating the above expansion with respect to z term by term we equate

the coefficients in the pressure and potential expansions.

_ Dcosf Lsind cos(n + 1)8 sin(n + 1)6
p= —% T 21r T +oU Z{ p{n+1) + Ban r(n+1)

n=1

_ __1_)_(:059 L sin 6 PUZ{ (n—1) "—lcorsnnﬂ + Baoy(n — 1)sinn0}

2T T o rn

Therefore C; = D, = 2—[‘7;, and forn > 2 C, = pU(n — 1)Aus_q, Dp =

211"

pU(n — 1)B,_;.
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3.5.3 The expansion of the function V.

We combine the expansions for the function ¥ in symmetric flow, ¥,, and antisym-

metric flow, ¥,, to obtain the expansion for ¥ in general flow

U(r,0) = ¥, 4 {z anKn(kr) cos nd + Y by Ka(kr)sin m9} (3.25)

n=1 n=1

where

© D a
— pk=® ~k¢ . M2 211/2
Uy =—e fo 27 pU° ayKo[k{(:u ¢)* +y*}/*d¢

34




3.5.4 The expansion for the velocity.

The perturbation velocity is given by

u=Vé+uw
We first consider the expansion of V4. From equation (3.24), we differentiate

term by term to obtain

Vé= (Zl ;IE{E,, cos nf + F, sinnf}, 2_:1 ;IX{G,, cosnf + H, sin nﬁ}) (3.26)

where E,, F,, G, and H, are constants related to the constants D, L, A, and
B,.
We next consider the expansion of w. We find the expansion of wy = %‘5 by
differentiating w.r.t. y every term in the expansion of ¥ from equation (3.25).
We first comsider the term 3% (Kn(kr) cos nd).
By differentiating we obtain
9 (Kn(kr) cosnd)
gy "
= kK, (kr)sinfcosnf — EKn(kr) sinné cos ¢
r

= 1/2 {kK,"(kr) - -’;K,.(kr)} sin(n + 1)
- 1/2 {kI{,'l(kr) + —gKn(kr)} sin(n — 1)
= (1/2)kKu41(kr)sin(n + 1)8 — (1/2)kK,—1 (kr)sin(n — 1)8

since from Abramowitz and Stegun equation (9.6.28), (pg 376)
kK (kr) — 2K, (kr) = kKup1(kr) and kK (kr) + 2K (kr) = kKnoq(kr).
Similarly,

_6% (Kn(kr)sinnb) = (1/2)kKn-1(kr) cos(n — 1)8 — (1/2)kK 4.1 (kr) cos(n + 1)8
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Thus w; has the form

wy = %\];l + et {Z ¢ Kn(kr) cos nb + E di K (kr) smna}
n=0
where ¢/, and d’, are constants. We now consider the function 27+,

Oy

From equation (3.16),

© D 0
kz ) _ —ke
Uy =e { /0 27er Ko(kre)df}
where r¢ = [(z — €)% + y?]V/2.

We change the variable of integration to p = £ — ¢ to obtain

D _kp O
S pl s e ayKo(krp)dp

1=-
where r, = [p? + y2]'/2.

Differentiating w.r.t. y, we obtain

ov, —kp a?
oy 27er/ Ko(krp)dp

Using the condition that (V? — k?)Ko(kr) = 0, then

v, = D e~ kp L 12 Vil
dy  2rpU J—s kKo(’vT‘p)—b—p;Ko(krp) dp

We now consider the integral

oo o?
/;m e‘k-"-(;)—;,;Kg(krp)dp

Integrating by parts, we obtain

—kp O °° 0
[e k"gz;Ko(krp)] +k - " e kpé—l—)lfo(krp)dp
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— ek“’%Kg(kr) + k& { [e_kao(kTp)]i: + k/"" e—kao(krp)dp}

a
ke O ko 3 [ -k
= ek Ko(kr) — ke Ko(kr) + & f e~ Ko(kr,)dp
Therefore
d D 4, i _

and wy has the expansion

wy = e {cng(kr) + Z enKpn(kr) cosn + Z dn K, (kr)sin n9} (3.28)

n=1 n=1

where ¢,, and d,, are constants.
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We now consider the expansion of w;. Following the same method for finding the
expansion of w;, we differentiate term by term w.r.t. x the terms in the expansion

for ¥, and similarly we obtain

or ol &

el + Zl K, (kr) cosné + nz_:lf,,K n(kr)sin @

Wy = —
where e/, and f] are constants.
We now evaluate 22

From equation (3.16),

D kx -—k£i
27ere e ayKo(k'r,g)d.f

where r4; = [(z — £)? + y?]'/% Differentiating w.r.t. x

T, = —

6\1’1 — D kx e —k¢ a 0
- kT, 27ere /0 e 3y 8:1:K0(kr'f)d€
We consider the function
0
'5;:-.[(0(’(?7"5)

where re = [(z — £)? + y?]'/2. We change from the variable z to the variable

p=£&—x,and so

a d a
—a——I{o(ka) a

where r, = [p? + y?]V/2.

i)
I{Q(k ) —%Ko(k‘f‘p)

Therefore

i 2 [ { Ko(krp)}df( )

The variable {(p) = p + z, and so changing the variable of integration and then

differentiating by parts we obtain




0w _ D [* 00
9 k‘I!1+2 i L€ ap 6yKo(krp) dp
D 0
= kQH_+-§;;ﬁ?'{[ Eﬁ;ﬁo krp] 4—kl/. '——Iﬂ)kﬂb)dp}
- D 48 -
= 27'ere ayKo(kT) k‘I’]_
= oL gy (3.29)
2rpU Oy

Thus wy has the expansion

wy = eF® {Z enIu(kr) cosn + Y fuKn(kr)sin na} (3.30)

n=1 n=1

We expected the expansions for w; and w; to be of the form given by equations
(3.28) and (3.30) respectively since w; and w, are continuous functions which tend

to zero as r — oo and which satisfy the modified Helmholtz equation.

(V2 — 2k-(,%~ (w1, wq) = (0,0)

The coefficients e, and f, of equation (3.30) are related to the coefficints ¢,
and d, of equation (3.28) since the continuity equation V.w = 0 is satisfied by the

velocity w.
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3.6 The form of the solution in the far field wake.

In the far field,

_ L(6 —m)

U 8" 2npU

and

~ [T hw—r)
lI’ ‘I’] + S Qk?"e

since from Abramowitz and Stegun equation (9.7.2) (pg 378),the asymptotic

expansion of K, (kr) is

T ke 4n2 —1
K, (kr) 1/2kre (1+ Y- +)

and s = %%, a, , where the coefficients a,, are given in section (3.4.3).

Thus in the far field wake,

T —ky?
U ~ ‘I’] + s %e 2@
From equation (3.27), we have that
5y 27ere {amKo(kr) ng(kr)} = 21ere {—kK1(kr)cos @ — kKo(kr)}
and so in the far field wake
0 D [T (3.31)

dy xpU ¥ 2kz
From equation (3.2.9), we have that
oY, D

0 D
—— = ke — Ko(kr) = —
Oz 27ere Oy o(kr) 2w pU

ke*® K,y (kr) sin 8
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and so in the far field wake

6‘1’1 D kw Y k2
—  — —_— z . 2
Oz 2rpU \ 2 w\/?z;_e ’ (3:32)

The second order terms for the far field wake velocity are due to the streamn

function term in antisymmetric flow

¥~ s‘/———-ek("’_') == 8‘/———6 w

This gives

w .,_3‘I’a__i{ L—%ﬁ}m_s e .l
T 0 T Bz 8 2k:ce - 2kx 2z 2z?

w —_ 6@‘“ — __Q_ {3‘/—_7?_—6'"%&} = 8 _.E._ _.@ e_ﬁz%:i
ta ™ 0y Oy 2kx TV 2k z

Thus in the far field wake,

1er V 2k:v V 2w 27er 2 z\/x 2kz - |22z

This 1s an important result; we note that the order of the function ws is vl
in the far field. we shall see later that this implies that there is no contribution to

the lift on the body due to a wake traverse.
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3.7 Ch3 Appendix: The stream function 1.

We can define a streamfunction 1 if the integral

i‘y_._n_dl = Ly.yds =0

where C is a closed curve and S is the area within the closed curve C.

For our problem, taking a closed contour enclosing the body , §,u.ndl is non
zero. Thus in order to define the streamfunction ¢ we consider a simply connected
region of fluid by introducing the half line cut along y =0, z > 0.

Thus in the region defined in this way,

/;_V_.gds =0

due to mass conservation and so

L_Y_.uds = fcy_@dl =0

Thus we may define the single valued function ¥ such that

¥Y(p) = /p(‘uml + ugna)dl

Po

where n is the unit normal from left to right for increasing positive dl and po is
a reference point and p is a general point.

Thus

6 = %dw + %dy = uydy — updz
Oz dy

O 0
(u17 uz) = (5’5", “'5%)

and so




3.8 Ch3 Appendix: The discontinuities due to
source and dipole lines.

In this section, we look at the discontinuities in the potential function and its deriva-
tives which satisfies Laplace’s equation due to source and dipole lines.

We first consider the discontinuity in the potential due to a dipole line.

3.8.1 The discontinuity due to a dipole line.

We next consider the discontinuity due to a particular line of dipoles; we consider
the dipole line along the axis y = 0, the dipoles orientated in the positive y direction
and having strength n(z).

Thus the potential due to such a line of dipoles is given by

Hew)= [ oo

To find the discontinuity, we consider this integral for y = e — 0.

We break the integral into three parts:

Y N [(9) = 0y © _ n(Q)y
/oo (z—¢)2+y 2dC+L—6 (m—C)2+y2dC+./;+6 (me)2+y2dC

where y = € — 0 and é > 0 is small, but é > e.
Thus

Q. [t _n(0)
L. worra®=e L, amgit =00

Therefore,

(e 4~ a)y
I= [ iy +O0

where |[{ — 2| < § =0




and so p(z + { — ) =n(z) + ({ —2)n'(x) + ...

Hence

I = (=) /:‘-6 (:c——_cy)_ﬁ:_ﬁdc + 0(8)

where |( — z| = O(9).
Thus,

I =n(z) [tan"l (%i)rs +0(6)

Asy=¢—0,{ - 00

and so for y — 04,

I n(@){5 — (-3} = m()

Fory — 0_, .

I n(@){-3 -5} = —m()

Thus the discontinuity in I across the dipole line is

I(z, y)ly-—*0+ — I{(z,y)|y—o_ = 27”7(:”)

We now consider the discontinuity due to a source line.
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3.8.2 The discontinuity due to a source line.

We consider the discontinuty due to a particular line of sources; we consider the
source line along y = 0 and having strength 7(z).

The potential due to such a line of sources is given by

Tey)= [ Q) log{(w — O +y*}rdc

Thus %J(m,y) = I(z,y) where

ey = [ n(Q)y
I(z,y) /—oo{(w—C)2+y2}%d

Following the method for finding the discontinuity due to a dipole line, we thus
find

- (%J(m, Y) = 2mn(z)

y—04 y—0_

0
I(:E, y)ly—>0+ - I(m,y)ly—ro_ = %J(mﬁy)
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3.9 Ch3 Appendix: Calculation to show B = 0
and thus the discontinuity in the potential
in the symmetric flow case is zero.

A brief description of the calculation is given below.

The calculation is divided into four main parts:

1. The evaluation of the discontinuity term ¥y in the stream function ¥.

2. The integral representation of the function Fy = e~**¥,.

3. The evaluation of the integral in the far wake, particularly as r — oo, § — 0.

4. The evaluation of the velocity term uy = V& + V¥4 as r — o0, § — 0.

Thus the above method calculates the velocity term u, in the far wake close to
the discontinuity line y = 0, > 0.

We find that for B # 0 we obtain the result uy — oo in this region, which implies
that ¥ — oo. Thus the condition of a uniform stream at infinity is violated and so
we must have B = 0.

The first part of this section is to find the discontinuity in the stream function

If B # 0 then ¥ and its derivatives cannot all be continuous. We consider the

possibility of discontinuities in ¥ and its derlvatives.

Since u is the fluid velocity, it is continuous everywhere. Across y = 0, g% is
continuous, but %3 has a discontinuity of value B.
Across y =0, ‘%% is continuous and wy; = ——%—f has a discontinuity of value —B.

Thus the discontinuity in ¥ is Bx. We next construct a potential ¥ having this
discontinuity and satisfying (V% — 2kZ)¥ =0

The function F, = e~*=J,,

Letting ¥, = e Fy(z,y), we obtain




(V2 - k) Fy =0

where Fy has a discontinuity across y = 0, = > 0 of value Bze*=,

In polar coordinates, Fy satisfies the equation

1{0, 8, 8,10 N
[;{5;("&‘*‘55:55)}"“]%—0

An important solution to this equation is the source solution Ky (kr), a solution of
the modified Bessel’s equation of order zero. This solution occurs for Fy independant

of # and so the equation reduces to

{k2r2d(cf’:f‘) + krd(zr) — (kr)z} Fy =0

This solution is important because it behaves like a source of fluid: As r — 0,

we find that Ko(kr) — —logr, so the flux out from a singularity is

"9 _logr)rdd
/0 —07(_ ogr)rdd = —2xr

Thus the solution Ky(kr) gives a constant flux out of value —2x.

The discontinuity due to a dipole line: We next consider the discontinuity
due to a particular line of dipoles; we consider the dipole line along the axis y = 0,
the dipoles orientated in the positive y direction and having strength n(z). Thus
the potential due to such a line of dipoles is given by

o0
e =/ &= gler 7
From the previous appendix section, we see that the discontinuity in I across the

dipole line is

I(z,9)yno, — 1(@,9)|ym0_ = 2m0(2)
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3.9.1 The integral representation of the function Fj.

As r — 0, the function Ko(kr) — —logr,

9 b _ Y
= —a—!;{Ko(kr)} - - t=—7
Thus the function Fy(z,y) satisfies the modified Helmholtz equation and has a

discontinuity across y = 0 of (z), where

1 g 4,
Fo(e,y) = —5- _mW(C)gﬁ{Ke(’")}dC
The line of dipoles along y = 0, 2 > 0 of strength Bze™** gives Fy as

Fa(ey) = —p [ €5 Kkl - €7 + D¢

The integral representation of Ky(kr).

From Abramowitz and Stegun p376, 9.6.24 , we represent Ko(kr) by the integral

. 0 Ldu*
e—-krcoshu d'u* :/ e—krcoshu _#___ (3.34)

Ko(kr) = / - ~ :

0

where r? = (z — p*)? + 2.

We put the variables z and y in a combination easier to manipulate than in the
variable r. We do this by raising the line of integration in the u* plane by :0, since
the function e~ cosh(u*~i9) j5 apalytic everywhere and so there are no poles of this

integral in the region

0<Im{(p")} <0 —oco< Re{p'} < o0

in the p* plane.
This procedure is valid only in the case for @ > 0, otherwise the integral is

divergent.
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Thus the variable of integration is changed in equation (3.34) to p* = ¢ —i6 and

we obtain

oo-+if e—kr cosh(u—i0) fl_’i — /oo e’k' cosh(u—if) -q'—l-l-
2 —o0

Kolkr) = / 2

—oo+10

However, since re’ = z + iy, we obtain

Ko(kr) = ./_oo exp(—kz cosh pt + iky sinh p)‘%ﬂ

o0

forz > 0.
Similarly, we may lower the line of integration by 28, which gives a convergent

integral only in the case z < 0, to obtain

Ko(kr) = /oo exp(kz cosh g + tky sinh u)d?#

Hence we can represent Ko(kr) by an integral valid for all z by

Ko(kr) = /oo exp(—k|z|cosh u + iky sinh p)-c-lg

-0
where r? = 22 4 42,

We now consider z < 0 only. Then |z —§¢| = | —z| = |€ + |z|| = € + || for

£>0.
Thus,
B O [*®, - ' A du
Fo = —gan [ €7t [ exp(—k(lal +€) coshp + ikysinh 1)
_Bo

= .Edﬁ. . ! : o —k&(1+cosh ) ]
57 By /_oo 5 exp(-—k(|:v‘| cosh 4 + tky sinh p) [_/0 e dé

Integrating by parts gives

1
k2(1 4 cosh u)?

/0 ée—k£(1+coshp)d“ —
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So -

B 0 [ du o 1
Fy = ~2r 0y /;Oo £ exp(—k|z| cosh g + tky sinh ) F2(1 T cosh p)?
Bi [ o sinh
= —m Lw d[,t exp(-—k|:v| COShﬂ -+ Zky sinh M)m (335)
We make the substitution |z| = —z = rcos 8, y = rsin §.
This is valid in the range |3| < 7.
Thus,
—~k|z| cosh p + tkysinh g = —Fkr(cosh ycos # — isinh ysin §)
= —krcosh(p —:8)
Thus
1B [ . sinh p T
el - i)l <T
Fo(r, B) pys Loo dp exp(—kr cosh(u 2,3))(1 T cosh )7 where || < 5
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There is a pole when cosh// = —, and // = arir=

i
. 1K
00 *cX 0o -HidC

AF

Figure 3.3: The //-plane.

~ region of

cviexlybic

Figure 3.4: The (r,/?)-plane.

Now, we consider an analytic continuation into the region x > 0. For this
purpose, we move the contour of integration in the //-plane.

By Cauchy, if there is no pole of a function f(x,y) in the region considered, then
Sc f(x,y)dl = 0, where C is a closed curve surrounding the region considered.

Thus, for

/(r,/?) =exp{-*rcosh(,, - (1 }

we have that

roo roo+tia

RS PW = [ (3)dfi —f, (5 )]
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+ g {7 s = [ o))

Where the closed curve C is the rectangle with corners positioned in the u plane
at —X, —X + ta, X and X + ic. We move along the curve C in the anticlockwise
direction.

But
2

= lim {o?|f(r, )} — 0

X —oo

i | [ 16 )

Thus we write

y oo+-1o i
B  dpexp {—krcosh(p —if)} sinh 4

4k J-ootia (1 4 cosh )? (3:36)

FO(Ta :6) =-

where we must have |a| < 7 in order to avoid the poles at p = +iw.
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Checking the integral has the right discontinuity across y =0, z > 0.
This is an analytic continuation of Fy(r, §) since by making the variable change

'+ i = p, we have

exp{—kr cosh(y — i8)} = exp{—kr cosh(p’ — i(f — a))}

and thus the integrand is valid in the new region |8 —a| < Z. Thus the integrand
gives an expression for Fy(r, §) in the range ~Z +a < < T +a.

Using this analytic continuation, we can thus find Fy(r, B) everywhere by raising
the line of integration except along the line ¥y = 0, > 0.

To find the value of Fy(r, ), for B = =, we integrate along the line from p =
—00 + t7 to g = 0o + ¢7 and just under the pole at p = 7.

Thus we have, for § = =,

B oo+
m — oo

Fo(r,8)= — w du exp(kr cosh M)(l sinh

+ cosh p)?
since when 8 = 7, then cosh{(y — ¢8) = cosh(y — ¢w) = — cosh p.
Similarly for 8 = —m,

Bi  foo-iw sinh p
- d k hy)——o—

4k J-oco-in wexp(kr cosh ) (1 + cosh p)?
Raising the line of integration by 2¢w by making the variable substitution p’ =

FO("":B) =

u + 2iw, we obtain

B3 coiT ,
Fo(r,B) = 57 Toin dy' exp(kr cosh p

N sinh g/
(1 + cosh u’)?
The discontinuity across y =0, z > 0, is Fo(r, 8 = 7) — Fo(r, = —) and from

the above equations, we see that

B _ ._ _Bi sinh u
F(rf=-m)=F(rf=m)=—1—~ fo dp exp(kr cosh ﬂ)—(l T cosh )2
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= 2mi X ( the residue at p = iw)
where =% — 0

and the closed curve C includes the pole at p = i7.

The residue at y = ir.

We find the residue at g = ir by making the transformation y = 5 + .
Thus

sinh p _ ____sinhp — —(1/2) cosh %
(14 coshpu)?  (coshy—1)2 sinh® 2
and also
exp(kr cosh y) = exp(—kr coshn) = exp(—kr) exp(—2kr sinh? g)

Thus

sinh u

exp(kr cosh ) [ T cosh g)?

exp(—kr)(1 — 2krsinh® /2 +...)(=1/2)(1 + (1/2)n* /4 + ...)
7°/8(L+ (1/6)n?/4 + ...)
_4(+Q/2n*/4+.)

= R @At ) SRR - Zhrsinh®y/2 4.

krn?
5 )

_ _n;‘;u +0(n*)) exp(—kr)(1 -

Thus we see that the residue is 2kr exp(—kr)
Thus

Fo(r,f = —7) — Fo(r,f=m) = —%ZMZkre“k" = —Bre ™" = —Bge™*

Hence Fy(r, 3 = 7) — Fo(r,3 = —7) = Bze~*=.
Thus the discontinunity in ¥ from y = 04 to y = 0_ x > 0 is Bz, which gives a

discontinuity in w; of —B where w = (wy, wq).
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Since u = V¢ + w and u is continuous everywhere, then there must be a discon-

tinuity in %‘3 of B, across y = 0, z > 0 which is consistent with equation (3.13).

105




3.9.1.1 The evaluation of the integral in the far wake.

We evaluate the integral function Fy(r, 3) for large r and for 8 — 7. The method of
steepest descents cannot be used since the saddle point of the integral and the pole
of the integral coalesce as f — «.

We find that the leading term in the uniform asymptotic expansion is a Fresnel
integral. The value of the Fresnel integral is then given for » — oo, g — .

From equation (3.36),

Fo(r,8) = —grB—k _0:::1 dy exp{—kr cosh(p — zﬁ)}m-%

In order to find the value of Fy(r, ) at B = w, we must choose a = w. However,
there is a pole at cosh g = —1 which is p = 7.

The analytic continuation for Fy(r, 3) in the range § < § < w, where F(r, §) is
in the integral form above, is made by raising the line of integration , thus increasing
the value of @ from o = 0.

Thus the integral path moves under the pole at g = iw. Hence we consider the
integral

1B oot

_ B ook _ _ig)}—mhp
Fﬂ(raﬁ)"" Ark ;oo+iwd#exp{ erOSh(Ju ZIB)}(].-I-COSh/l)z

We change the variable of integration so that the integral path is along the real

axis. We let p = v + iw, which gives

tB oo : sinh v
Fo(r,y) = “1 f‘w dv exp{—kr cosh(v + zy)}mdu (3.37)

where v = 7 — 3. Thus as # — =, then vy — 0.

We find the stationary point of the above equation. This is where

d
a—;(cosh(v +iy))=0, = v=—iy

106




is the stationary point.

We change the variable of integration from v to v and also the path of integration
so that the stationary point is at v = 0 and the path of integration is along the real

v axis, going through the stationary point.

We let
v = 2sinh Qi_‘_;__z_j’_)_ (3.38)
and so cosh(v +1y) — 1 = (1/2)v2.
Thus
iBe kr roo krv? sinhy  dv
Fo(ry7) = - drk J-oo exp(= 2 ) { (coshv —1)2 %} d (3:39)

Thus the pole in the integrand is now at the point vy, where
cosh(iv) — 1 = 2sinh*(1/2)(iv) = (1/2)vd
From equation (3.38), when v = 0, v = 2sinh(%) = 2isin 1.

In the v plane we have the integral path going through the stationary point at
v = 0 and along the real axis, with the pole of the integral at v = vo = 2¢sin 7.
B

Vo=2ismifa
pde

patin o?ivg“egmﬁw V 20 Skdionasyy
- point-

i

Figure 3.5: The integral path in the v-plane

We would like to apply the method of steepest descents to the integral. However,

we are given vp is small so the stationary point and the pole are close together.
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However, we can expand the non-exponential function inside the integral in pow-
ers of (v —vg). We obtain terms of negative order, giving Fresnel integrals to leading

order in the expansion. The pole is of order 3 and the leading order term is of order

(v —vo)™3.

We consider the bracketed function inside the integral of equation (3.39). This

__sinhy _dv
(coshv — 1)2 dv

We consider what happens to this function as v — 0.

is

. 3
Asv—0, sichv—v+%5+..

coshz/—»1+ﬂ;;-+...

Hence,

sinh v LA _1_
(coshv —1)2 ~ [12]2 " 48

From equation (3.38), we have that v = 2sinh Qiém, and so differentiating w.r.t

(3.40)

v, we obtain

1 = 2cosh (” t z'7) (1/2)2—:

2
soasv— 0, % — cosl’y/2 and so
(’U - 'Uo)
~ s (3.41)
and
sinhy dv 1 1
{(coshu —1)2 ;l-t-;} — cos 1 (;/—3-) (3.42)

Since (c%i:“'}_"w% is analytic everywhere except » = 0, we expand this function

in a Laurent series. From equation (3.40), the lowest power of v in the series must

be —3.
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Therefore,

_sinhy  dv| _ As(y) | Aa(y) | Aa(y) T T
(s T = G G G S Dal” @80

We can find the first term in the expansion since, from equation (3.42) and the

first term on the right hand side of equation (3.43), we have that:

L (1L, (s An(y)
cosy/2 (u3) B A_S(cos'y/2)(v — )3 (v—wp)?

Thus A_3(y) = cos?4/2 in order that equation (3.40) holds as v — 0.

(3.44)

We can find A_;(y) by integrating the function {%%} round a closed
contour enclosing vy.

Also A_; may be calculated by letting v = 0 on both sides of equation (3.43).

However, it is more convenient to use a different method in order to express
Fy(r,B) in terms of an integral of lowest order —1; we express the integral in a
different way so that the pole inside the integral is of order one. This is done by

considering the following:

Consider the function

sinh v
(coshv —1)2

We have
sinh v _ i ( 1 )
(coshy —1)2 ~  dv \coshv —1
and
1 1 d v
= = —— th —
coshy —1  2sinh? v/2 dv (co 2)
Thus
sinh » _ _ﬁ_ coshv 41
(coshv —1)2  dv? \ sinhv

Considering equation (3.37) we have
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iB oo . sinh v
Fo(r,v) = ik 7[_00 dv exp{—kr cosh(v + 2’)’)](—&)—;1‘1";_—1)(11/

Thus

iB  [o° .\ 42 {coshv+1
Fo(r,y) = rm f_m dv exp(—kr cosh(v + z'y))dl/2 [ - ]

Since [exp(—kr cosh(v + 17))]u=+00 = 0, integration by parts gives:

Fo(r,y) = j[ dv {exp( kr cosh(v + %))} (COSh—VH)

sinh v

If we consider a function f(v +i7), then &5 = f"(v+4v) and -—f- =2 f"(v+iv),

which gives 3 —i = 55; Thus we write

iB d*

B d* coshv + 1
drk dy?

Fo(r,7) = sinh v

foo dv exp(—kr cosh(v + iv))

Following the same variable and integration path changes used in obtaining equa-

tion (3.39), we now obtain

iB ok dt e —krv?, { cosh nu + 1dv
Fo(r,v) = ik’ dy? /—oo exp( 2 ) { sinh v dv} dv

where cosh(v +iy) —1 = L.
Thus the pole of the integrand is at vo = 2isin 1/27, and the saddle point is at
v=0.
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3.9.1.2 The order of the pole.

We find the order of the pole by looking at the way in which

(coshl/ + 1) dv

sinh v dv

behaves as v -~ 0.

We use the same method that was used to find the way in which

sinhvy  dv
(coshv — 1)2 dv

behaved as v — 0.

Asv — 0,
coshvr+1 14+{1+v%/2+..} 2
- — —_ —
sinh v v+13/3 4 .. v
From equation (3.41) we have % = m as v — 0.

Thus as v — 0,

coshv +1Y\ dv . 2 (1)
sinh v dv  cosvy/2 \v
From equation (3.41), we see that as v — 0, v — vg — v cosy/2.

Thus as v — 0, v — vy,

——) =
sinh v dv cosy/2 v — v v — Vg

(coshu+1) dv 2 cosy/2 2
Since the function is analytic except at v = 0, it may be expressed as a Laurent
expansion. However, all the coeflicients of terms of lower order than —1 must be

zero. Hence this function has the expansion

sinh v dv v — g

(coshv + 1) dv _ Ai(y) + Ao(7) + iAm(,y)vm (3.45)
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where A_, = 2.
Substituting this expression back into the integral, we obtain an asymptotic

expansion for the integral, with the first term being a Fresnel integral.

/oo exp{—kr cosh(v + z"y)}g(—)ill-y—_i—:—-l—du
- sinh v v=M krv? (3 46)
oo kro?. A < o TV '
~ —kr _ 1 ~kr m —
e L exp{ }v d +e ‘;) A /_oo v™ exp( 5 Ydv

where M is chosen according to the degree of approximation wanted.

We find the first two terms in the series, A_; and Ag.
The terms A_; and A4 .

To find A_;, we integrate round v = 0, v = vg for the function %i
}g coshv + 1 dy = A /

T sinhy v — Vg

fcoshu + ldl/ o r@+v/20pv/al 4

sinh v B (v+v3/31+..)
Therefore 477 = A_1.27w7 and A_{ = 2.

Hence,

Thus
°)dv = 471

To find Ay, we put v = 0, which implies that » = —¢v, and substituting into the

expansion of equation (3.45), we obtain

hiy+1d AL
_coshiy+ldvl _Aa
sinhiy dv

v=iy Yo

From equation (3.38) v = 2sinh{1/2(v +1iv)} = % =1 for v = —iv.

Thus, .
2 cosy+1

Ag = —
0 2isiny/2 isiny

But
1+cosy 14 (2cos?vy/2—~1) cos3
siny ~ 2siny/2cosy/2  sinZ
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and so

Hence

Ao =

=1+ (1 —2sin?*y/4)
21 sin y/4 cos /4

= ¢tan~y/4

A_1 = 2, Ao = ‘l:t&l’l’)//‘l:
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Approximations to the integral for certain fluid regions.
From equations (3.46) and (3.47) we therefore have, taking the first two terms

in the expansion:

Fo(r,0) ~

iBe kr 2 o0 9 o
“ank doZ {/ eXP(—1/2kru2)v —vodv +/;ooztan(0/4)exp(_1/2krv2)dv}

We consider the first integral in the above equation which is of the form:

- /w exp( -kru

v — U
where vo = 2isin /2 from equation (3.38).
Changing the variable of integration to ¢ = 1/1/2kr u gives
(e 9] e"tz

I= dt
-0t —1p

where to = /1/2kr ug = v/ 2krsin /2

We find the approximations to this integral, and the corresponding fluid regions,

for tg — 200 and t; — 0.
For large r, if ty is constant /r6 is constant. If \/rtheta is of order one then
we are in the wake flow and as 1/rf — 0, we move outside the wake to the fluid

region of no vorticity. Thus the wake boundary is parameterised by a curve 1/rf =

constant.

As £/r8 — 0, we approach the line y = 0, z > 0 which is the discontinuity line.

We now consider the integral

=7
ootwto

We first consider the integral for ¢¢ — i00. We expect the main contributions to

this integral will come near £ = 0 and ¢ = 5. However, for large ¢o the integrand is

exponentially small.
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Thus,

N/ / Pt [~ et = VT
Mt — tO to to J-oo to

(U: ‘3_#‘“]2 = /_ o; L ‘: @) dpdy = /0 o /0°° T da)
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We now give the first term in the expansion of Fy(r,8) for ¢g — ico

iBe Fr d? VT
F(r6) ~ & ( )
2wk df? \i\/2krsin /2
e ( " (3.48)

2k 27 kr 92 \sin 6/2
But

& 1 _ d (—(1/2)cos6/2 1/451n20/2+1/200529/2
do? \sin6/2) — db sin? /2 sin® 0/2

and so

Fo(r,0) ~

—kr $4n 2 2
Be (1/45111 6/2 4+ 1/2cos 9/2) (3.49)

2k 27 kr sin® 6/2

We now consider the integral I for t; — 0. We consider the summation represen-
tation of the integral given in Abramowitz and Stegun (p297 eq 7.1.4, 7.1.8 ) The

function w(z) is defined as

. 00 _t2
w(z) = —Z—/  _dt

i —ooz—t

which is represented by the summation

o (zz"
v = 2 WD)

where T' is the gamma or factorial function.

Therefore, by comparison,

= / ——

has the summation




Considering small to, the first term in the expansion will be of highest order.

Thus, for small ¢, we obtain the approximation

A1 i £
from (r(l)"”r(a/z) 9(2))
This gives

iBe*r d? 2ito

Fg('f‘, 0) ~ W;@E {’R'i(l + "’J—ﬂ_— - t?) + .-..)} (3.50)

where to = iv2krsin 6/2
The expansion of sin §/2 is
sinf/2 =6/2 — Q%B + Qg‘_ + ... and so ¢ = iV2kr(8/2 — % +...).

Therefore, the second derivative of with respect to 8 gives the term:

dzt _ iV 2kr @
ez’ 8

+ 0(6?)

The second derivative of t2 gives a term independant of 8 to first order:

2o, e (6 ¢ ? az (62 6 o) )

The second derivative of £} for n > 2 will have a first order term 62, and so all
these terms will be at the greatest of order 6.

Hence we have

@[ %t P -
7m0+ B2 g4 )b = (criptr) + 00) = inkr + 0(0)

Thus substituting this expression into equation (3.50) we obtain

' RBe—kr
tBe ", B _
inkr = —=e~F"

Fo(r,6) ~ = & 2
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For t¢ — 0 and & — 2w, for small & where —a + 8 = 2x, then sind/2 =
sinl/2(27 + a) = —sina/2
Since to = 1V/2kr sin 6/2, then following the same method we obtain for § — 27,

F()(T, 0) Y —

This result is also evident from the fact that in symmetric flow the function ¥
and thus Fy(r,8) must be antisymmetric about y =0
We now find the vector w for the fluid regions considered above. From section

(3.2.2)

av . 9

u=Vo+tw, w= (a—y,——a—w—

) , Uo= e’”Fo(a:,y)

Therefore, for 5 — 0o

T — Be~kr(r—2) (l/llsin2 0/2 4+ 1/2cos?8/2
Yy sin® 02

Thus,

0¥y  Bekr(1—cost) {__ krsin 0 (1/4 sin? 8/241/2 cos? 0/2) _ (5/8ain3 0/2 cos§/243/4 cos® 0/2)}

80 2k 2kr sin® §/2 sin? 472
and
611;0 B _Be—kr(lucos()) ( 1 )
or  2k\2kr 2r
Where
% = %cosﬂ - —l-gg-o—sinﬂ

Oz oz r 00




%—% 1 0+}_..6...l];’.9.c S
3y or T o8
Thus
e—»kr
lw| = O(—=)

and so as tg — 0o, r — 0o and so

0%, 0%,

w2 0 3 0
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Next we consider the case for t5 — 0.

Following the same method, we obtain for § — 0

B
¥y = __z_renkr(l—cosﬂ)
Thus
9%, — B —kr(1—cosd)
5 = T3¢ {—kr(1 — cosf) + 1}
and
A — B —kr(1—cos0) :
55 = 3¢ (—krsin )
As to — 0,
or or el 00 1
FZAnSlr VRSN rind Al T
Thus

9% B 0% |
Oz 2’ Oy

Similarly, for ¢ — 0, § — 27 we have

0

0% B 0%
Oz 2 Oy

Therefore there is a discontinuity in %‘1 across y = 0, ¢ > 0 of value —B:

0

0%,

oz y0y

Since we are dealing with symmetric flow, we find that for u = (u1, u2), we have

y—+0—

uz = 0 along y = 0.
The velocity is

u=V¢+ ((N Q-\I:)

gy_’-—ax
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and so we have

Therefore we have a discontinuity across the line y =0, z > 0 of

9%
Ay

Referring'to equation (3.13), we see that this is the correct discontinuity in ¢o.

y—04 y—0.
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3.9.1.3 The velocity far from the body.

As r — o0, tg — 200,

0%, d%,
o 0 Ty O

Letting w, be the term in w corresponding to ¥y, we thus have that wy — 0.
As r — o0 and £y — 0,

wy — (0, B/2) for § — 0 and

wy — (0, —B/2) for § — 27,

In order to calculate u we must also find V¢, for large r.

From equation (3.14), we have

B .
¢o = —é-;Re{zlogz — ziw}
Thus,
Ao

B
20— 2 (1+1ogr),

o0 _ B
Oz oy

50— )

Thus we see that as r — oo and ¢ — {00 then

and as r — 00, tg — 0 then

| u — (00,0)

Hence the condition that the velocity is a uniform stream of velocity (U, 0,0) at
infinity is violated. Thus the constant B in the discontinuity potential ¢y must be

zero. This means that there is no discontinuity in the potential ¢ in the symmaetric

flow case.




Chapter 4

The drag, lift and moment on the
body.
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4.1 The drag force, lift force and moment on the
body in two dimensional flow.

In this chapter, we express the force and moment on the body as integrals over a
closed contour far away from the body in the far field but enclosing the body. We
substitute for the functions ¢ and ¥ in the far field into the closed contour integrals
and thus find coefficients in the Fourier expansions of the functions ¢ and ¥ related

to the drag, lift and moment on the body.

We find that the coefficient L in the expansion of ¢ is the lift on the body and
the coefficient D in the expansion of ¥ is the drag on the body. Thus the drag is
expressed in terms of a wake traverse but the lift is not. It is important here to
note the result given in Landau and Lifshitz for three dimensional steady far field
flow past a body where both the lift and the drag are expressed in terms of wake

traverses.

We first find the force on the body as an integral over a closed contour enclosing
the body. We consider the force F on the body due to the fluid. We express the
force as an integral expression over a closed contour C enclosing the body. The force

is

Fi= /C pindl
where C is the body contour and n is the outward pointing normal to the body

surface.
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We consider the closed contour ¢ within the fluid and enclosing the body contour

GioSQG# CONTOUT

Figure 4.1: The closed contours C' and C.

The vector n is the outward pointing normal to the contour C' and so by the

divergence theorem

L piin>dIl+ Scp™~n>dl=1J Aj "~ dA
where A is the fluid area between the closed contours C and C".

Therefore

F’ = Jc Piin’dl= j ~£rdA

From the momentum equation,

D( t\ dPj

(For an elemental volume of fluid, ~ f f6ApujdA = SF{ = fgc pijUjdl.)
Thus

/ LeBH =4 n*dEULE fil)H
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since V.u! = 0.

By the divergence theorem,

ffA ai%(Pu:‘uI)dA = /m pulu n,dl / pul njdl

However, the fluid velocity on the body contour is zero and so we obtain the

force equation

Fi= /C,,(Pw pu,u )n,dl (4.1)

where p;; = —pb;; + pe;;. (See equation (2.9).)
We consider the contribution to the force F; from the tensor e;;. We thus first

consider the integral

Ou; = Ouy
/ (Bm, + Oz .) njdl
We decompose the fluid velocity in the form v = V¢ 4 w and first consider the

contribution to the integral

9%
L' 2# (8x,8a:,) njdl

From equation (3.26), the velocity potential is given in the form

+ F, ,Gn + H,

Vo = Z ( cos n0 31: :Lﬂ co:nne 312 :’LB)
We consider the contour €’ to be the circumference of a circle centred at the
origin and of radius . Thus the function 5—3-:—8%; will be of highest order rl, in the far
field.

Since the contour length is of order r, then the contribution to the integral from

V¢ is of order % and tends to zero as r — 0.




We next consider the contribution to the integral

ow;  Ow,;
/ (3:1;, t oz .) il

From equation (3.33), it is seen that the velocity w is exponentially small outside

the wake region. Therefore the integral approximates to
/ b Ow.- 3w1 da

The velocity component w; and its derivatives with respect to z; and zo are of

ka:
the form f(zq,2z2)e” =

for large 7.

In order that an integral of the form

00 hm
/ f(z1,z2)e” = dxs
—o0

is non zero as z; — oo, then f(1,x,) must be at least of order == r, since

kw2
oo 2z
e % dzs _/ e~P dp\/7 1/

From equation (3.33), in the far field w is of order




We now refer to equation (4.1) and consider the other terms in the integrand of
the integral for the force F;.

u! is the fluid velocity and u} = U; + u; where u; is the perturbed fluid velocity
and U; =U for i =1 and 0 for 7 = 2.

We substitute u! = U; + u; into equation (4.1). From equation (3.24) in the
far field |V¢> = O(1/r?) and from equations (3.28) and (3.30) in the far field

lw|? = O(w) Thus using the method in section (5.3.1) we see that

/2" lw[?rdd = O(— f°° e~ dt) — 0
0 - B \/EF —00

Therefore ™ u;ujn;rdd — 0 as r — oo.

The pressure p = —pU gﬁg and so

2% a
Fi= /0 {pUggnj = p(wU; + UJ'U-')W} rdf

The velocity flux out of a closed contour is zero and so [Z™ u;n;rdf = 0. Therefore

2 a
Fi= /0 {pvggin.- ~ pUu.-m} rdd (4.2)

We now calculate the drag and the lift on the body.
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4.1.1 The drag on the body.

We substitute expressions for ¢ and ¥ into the integral exprression for the drag, and
find coefficients in the expansion of ¥ related to the drag.
From equation (4.2), the drag on the body is given by

2w
Drag = F} = /0 {—pU%\yIinI} rd6

The function w, is zero outside the wake region due to the exponential factor
e~kr(1—cos9) which tends to zero rapidly except in the wake region where 8 is small
such that

r(l — cos ) = ’—gﬁ is of order one.

Thus w; contributes to the drag integral only in the wake region where n; =
cos @ ~ 1, and rdf = dy.

Within the wake region, from equation (3.33),

D T _k?

Wi~ = T ok

and so

D T 00 gy?
Drag = ;k\/%f_me 2¢ dy

We change the variable of integration to ¢ = 4/ —2%3/ and so

D T [2x oo 2
_ ¥ /____ <« —q
Drag = 7rk 2kmv k /—ooe dq

k—=D

3|0
ol |

This result is expected since
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2w
Drag =./0 {—pU%g*m} rdf

where ¥ ~ Wy + 5,/5%-e~kr(1=cos) in the far field from section (3.6). Therefore

2n :
Drag = /(; —pU _3& cos frdf

Oy
-
N L?ﬁ

= —pULE;

y—04

y=00

x—00, y=0

10¥

-—pU;Wrdﬁ

Drag = D

Thus we see that the drag is expressed as a wake traverse.
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4.1.2 The lift on the body.

We substitute expressions for ¢ and ¥ into the integral expression for the lift and
find the coefficient in the éxpansion of ¢ related to the lift. From equation (4.2),

the lift on the body is given by

2
Lift = F, = /

0

" {pUg—ing - pUuznl} rdé

We consider first the integral

w9 ¢
/0 {pU%sm brdd — pU g cos 9} rdd

06 _ 9206 4 Bydp _ _ 9%, p 1 0B :
However, 35 = 55 5L + 5452 = — 557 sin 0+ oT €OS @, and so the integral becomes

2 Q_?_ _ o
—pU /0 5940 = —pUldlo

Lo

The discontinuity term in ¢ is — P and so the integral has value

2w

L 2 __

We consider next the integral

2w ov
/0 pU 25 o brdd

From equation (3.33), in the far field wake

1w l{ _ﬂ-_e—%ﬁ'}
27 2 WV ke

and so using the same method for evaluating the drag in the previous section
(4.1.1), we find that this integral will be of order 1, and so tends to zero as r — oo.

Therefore the expression for the lift is

Lift = L (4.4)
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Thus we see that the lift is not expressed as a wake traverse; the lift is associated
with the velocity potential V¢ and not the wake velocity w.

It is important to compare this result with that obtained in the Landau and
Lifshitz book Fluid Mechanics for three dimensional steady flow past a body in the
far field. They express both the drag and the lift in terms of wake traverses. Thus
the approach given by Landau and Lifshitz cannot be used for far field flow past a
body in two dimensional flow since the premise that the lift is expressed in terms of

a wake traverse is invalid. We shall consider the Landau and Lifshitz approach in

section (6.1.2).

We next consider the integral expression for the moment on the body.
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4.1.3 The moment on the body.

We similarly express the moment on the body about axes through the origin as an
integral over a closed contour enclosing the body.

We substitute into this integral expression the functions ¢ and ¥ in the far field
and evaluate the resulting integral. We split the integral and evaluate each part.
There are many resulting integrals to be evaluated and the procedure although
straightiorward is long,.

We evaluate the integral expression for the contribution M1 to the moment M
such that the integral is evaluated using expressions for the Oseen velocity u and
Oseen pressure p. We see that M) does not give all the terms in the moment
expression because higher order pressure and velocity terms are involved in its eval-
uation. In order to find these extra terms in the moment, it is necessary to consider
the second and third approximations to the Oseen equations. (See Filon (1928) and
Imai (1951).)

We consider M) only, and find that it depends upon coefficients in the expansion
of both ¢ and ¥ such that

LD _~2pU.s7r _ 2vL
wpU? k U

—MW = —2pUr B, + 5
where B, and s are constants given in equations (3.24) and (3.33) respectively.

These terms are also obtained by Filon and Imai.

We first express the moment on the body as an integral over the closed contour

enclosing the body.

The vector cross product ¢ X F, where r = (z1, %) and E = (Fy, F,) is expressed

in tensor notation as

[ X Fli = —€ijix; Fy
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where ?, 7, k=1, 2,3 and z3 = F3 = 0.

The moment on the body M is

—M; =/(.}e,-jka:jpkqnqdl as 8 F} -"'-qunq51

By the divergence theorem,

(/c h /c) €iik?Phaadl = / /A an";(fijkmjpkq)dfl

Hence

i}
_M; = /C' e;jkmjpkqnqdl—-///‘ E(Eijkwjka)dA
We consider the vector €;jxpr;. Since the pressure tensor pg; is symmetric, this
vector is (0, 0).

Therefore,

9 Opx
/ /A Ba, (€ijriprg)dA = / fA {fijkéjqpkq + e,-,-k:c,-—am:}dA
_ Oprq , ,
o Aﬁwk‘”%;“

- 0 (utut
= /_/Ae,,kmj—a-;a(pukuq)dA

0
//A-a-;-(e,-jkwjpu,‘:u;)dA
Tq

using e;jkpu}cu} = 0;.

Therefore

a
-M; = /C’ €5k T jPhkqqdl _/A a_mq(ﬁijkwjpultcu;)dA

Applying the divergence theorem,




ad
/ /A 55(6""“’”?"“;“;)‘1*4 = ( /C, - /C) eijkipululngdl

However, the fluid velocity is zero on the body contour C and so

—M; = ./C‘ es'jkwj(pkq - PU{.U‘E)nqdl (45)
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Evaluating the contribution to the moment on the body from the ve-
locity potential We next substitute the functions ¢ and ¥ in the far field into
the integral over the closed contour enclosing the body. We evaluate the resulting
integrals. Although this procedure is straightforward, it is long. We first consider
the equation (4.4)

_M,‘ = /;” e,-jkwj(pkq - pu}cu;)nqdl

The velocity ulu} is

u;‘cu; = (Ur + w)(Uy + uq) = UpUy + Urug + urUy + urug

where Uy, =U for k=1 and Uy =0 for k = 2.

We substitute the above expression for u};u; into equation (4.5) for M; and thus
find M), the contribution to the moment satisfying Oseen’s first approximation
(the Oseen equations). We also substitute for p;;, pi; = —pb;; + pe;;, into equation
(4.5). Thus we express the M,-(l) as the summation of six integrals over the contour
C' which we determine individually. Thus we consider six integrals a;, b;, ¢, di, €,

and f; over the contour C’ such that

a; = —/Cl €ikT;POkqNqdl
o= - [C e ;pUsUynydl
¢ = _/C/ €k jpUkugngdl
di = —fC' €ikZjpurUgngdl
e = — /C , €ijk T PUKUGNGd]
fi = —/Cl €ijkTjfCrqnqd]
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We first consider the integral expression for a;:

a; = .._./(.}‘ e,-,-km,'pékqnqdl

= —_/;;, e;jka:jpnkdl

Since z3 = ng = 0 then ¢; = a3 = 0. ag is such that

az = __/C'{6321a:2n1p+6312w1n2p}dl

= /C' p(zeny — x1ng)dl

We take the contour C’ over the circle circumference radius » — oo and so

2
az = 2{ p(xany — x1ng)rdl

p(xany — x1ng)rd
However, rn; = z; and rng® u,.

Therefore

(13:0
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We next consider the integral b; such that

b; = —/;” €ijnt;pUrUgngdl

However b; = b, = 0 because 3 = ng = 0. b3 is such that

by = —p L’{eazlszl(Ulnl + Uany) + ezraz1Uz(Urng + Uzng)}dl

U; is such that U; = U and U; = 0, so

2
by = pU? /0 " 2a1df

The function zpzy equals (1/2)r?sin26 and is antisymmetric in the variable §

and so

b3'—'—‘0

[ We consider the single valued function f(#) antisymmetric in §. Thus f(8) =
—f(—8) = —f(27 — 6). Therefore

/0 oL /0 " 1(6)d6 — /1r " f(or — 0)d

= /0“ F(8)do — /of(a)[wda]
0 ]

T
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We next consider the integral ¢; such that

¢ = —p/C, €52 ;Urugngdl

¢ = ¢ = 0 because z3 = n3z = 0 and c3 is such that

Cc3 = —pL'{nglsz(N1n1 + u2n2)dl

since U; = U and U; = 0. Hence

C3 = pU /(;'l wg(uml + ‘U,z'nz)dl

We take the contour C’ over the circle circumference radius r — oo , and so

2w
3 = pU‘/O za(u1ny + ugng)rdod

We first consider the contribution to this integral from the velocity term V¢. We
name this contribution ¢f. We shall later consider the contribution to this integral
from the velocity term w. We substitute the expansion of V¢ into the above integral
equation. (The expansion of V4 is obtained from the expansion of ¢ given in section
(3.5.2) .) As r — oo, all the terms in the expansion of ¢ give integral contributions
for ¢ which tend to zero except for the term Bla—il:—ﬂ.

Therefore, from appendix section (4.2), we obtain

The contribution to the integral expression for ¢3 from the velocity term

w = (%3,-—%;3) is considered later. (We name this contribution ¢§ and therefore

cs=ch +cb.)




We next consider the integral d; such that

d,' = —p L' e;jka:jukanqdl

dy = dy = 0 because z3 = n3 = 0 and dj is such that

dz = —p L’{6321$2U1UH1 + ez1az1u2Un,y }dl

since U; = U and U; = 0. Therefore

dz = pU /C,(a:wlnl — T1ugny )dl

We take the contour C' over the circle circutnference radius » — oo and so

2
ds = pU/ ﬂ(mgulnl — T Uzny )rdl
0

We consider the contribution to this integral from the velocity term V$. We call
this contribution dg.

We follow the method for calculating ¢ and similarly find that as r — oo all
the terms in the expansion of ¢ give integral contributions for df which tend to zero
except for the term ¢ = By #2€, [See section (3.5.2).]

Therefore, from appendix (4.2), we obtain

By B

d¢ = pU(—'—z— - —2—'—) = —pUﬂ'Bl
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We next consider the integral e; such that

€= —p _/0, e,-jkm,'ukuqnqdl

e1 = ey = ( because z3 = n3 = 0 and e3 is such that

€3 = —p /01{6312331142(“1?%1 + ugny) + eannwous(uing + ugng)}dl

We take the contour C’ along the circle circumference radius »r — oo and so

€3 = pL’{mzul(ulnl + ugng) — xyug(uing + ugng)}rdd

We consider the contribution to this integral from the velocity term Vé. We

name this contribution ef. We substitute the expansion of V¢ into the above integral

equation. The expansion of V¢ is obtained from the expansion of ¢ given in section

(3.5.2). We find that as r — oo, all the terms in the expansion of ¢ give integral

contributions for e which tend to zero except for the first two terms:

_27er

L Inr + ...

(0 —7)+

D
27 pU

_ L __sinH cos + D cosf sinf N
27 pU r’or 2epU \ v ' r

Substituting the velocity term V¢ into the integral expression for e3, we obtain:

where

LD LD LD LD

¢ =
© 8w pU? + 8rplU? + 8wpU? + 8wpU?

LD

W e.t.c.

27
p/ a:gufnlrdﬂ =
o

[See appendix section (4.2).]
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Thus
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Therefore the moment on the body due to the velocity V¢ is Mél)‘b such that

-M{" = S +df+ed

LD
= —,OU’IFBI —_ pU7rB1 + —"—“""27er2
LD
= —2pU7l'B1 + —_27er2

We now consider the contributions to the moment due to the velocity w.
In the far field, the function w exponentially falls to zero outside the wake region.

Inside the wake region, from equation (3.33), w is

2 —y | ——e 201

i) _
wpU 2ka:16 T 2mpU x| 224

w—(—-D T ke D =z, [kr _"_“"‘2’.)

The terms in the moment integral which include the functions w; and w, will
only give non zero integral contributions to the moment if they are at least of order

2
kap
e 229

NG

We see this by considering the order of the term in the drag integral in section

(4.1.1).

By considering ¢;, d;, e; we see that the highest order terms in the moment
integral which include the functions w; and w, are

pU(zawiny), pU(z1wany) and p(zywowiny) where in the far field wake ny — 1.

We obtain a non zero integral contribution to the moment from the terms in the
moment integral pU(zwiny) and pU(z1wenq) which come from the integrals ¢z and

d3 respectively,

The contribution from the integral cs is




2T
pU f zowinirdd
0

which is

ka2
pU/ .'L‘g( Sa‘z) kﬂ-e T"%d(liz

2'1}1

If we change the variable of integration to ¢ = 4/ ;‘leg then the integral becomes

The contributions from the mtegral d; are

2T
_pU/ $1w2n.17‘d9
0

and

27
pU /(; Touwynyrdf

The first integral gives the contribution

[ = ._tw_z 1 kz3
de/ 18 2ka:1 {2:1:1 2ml}d 2

If we change the variable of integration to ¢ = 1/-2%1:1:2, then the integral becomes

| T (e e (1, [22: )
a ”US\/'z'z/_mm{a“q}v F -

The second integral is identical to the itegral contribution ¢z and therefore gives the

contribution

_pUsm
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Thus the contribution to the moment from the integrals ¢;, d; and e; involving

the velocity w is

_ 3pUsr
2k
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We finally consider the integral f; such that

fim Ouy | Oug
= “”f ik (ax., ax,,) nadl
Therefore f; = f = 0 and

2m a’Uq Bul 6u1 auz Bug 3u1

- Guz _ Gur} L 49

I.L/ { (3221 6172) 2 (33:3 + 6321) + 2-'131132 (63:2 aml)}
_ 2 3u1 Bug 8
= p‘,/ {(:81 (aw2 + 6:1,'1) 23’13’226&: }d9

2 iy s g*¢
= - 2r? 08— 1 db
M/o { r cos219‘%31(%;2 272 gin 2 8'31}

I
l

fs

where C' is the contour circumference of the circle radius r centred at the origin.
We first consider the contribution to this integral from the velocity potential V¢.
By inspection of the expansion for the velocity potential given in section (3.26),
we see that the terms in the expansion for n > 1 will give integral contributions
to f3 at the greatest of order 1. Thus there is no contribution to the integral from

these terms. Therefore we consider the first two terms in the expansion for ¢

qb—-——-—l—)——lo‘r-— Lo
— 2wpU & 2m pU

We find ——% and 22

Ox1029 °

6¢ T T2 0q5 _ 22 T
-—27er8 D-;E-—L;:,E' and -—27TpUa—w2—DT2 +L7'2

and so

8245 _ 1 2$1 &71232
ZWpUam% = D (;5 - -jr—--) +2L

_ _Dcos?ﬂ +Lsm20




and

¢ &1y 1 2z3
“27er6m18m2 - —-2D"~;r - L 1"2 7‘4
_ __Dsin 20 _ Lcos 20
r? r4

Therefore
27
2rpUfs = 2;4/ {cos 26 (—D sin 26 — L cos 28) — sin 20 (—D cos 26 + Lsin 26)} df
0

27
= 2 [o — L(cos® 26 + sin® 26)dd

= —4mul
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We next consider contributions to the integral f3 from the velocity w. Since the

velocity w is exponentially small outside the wake, then

(s ¢)
fz = —M/ (e31271€21 + €321T2€11)dT2
-0

oo Jw, Ouy %
-I. { (a‘ + 79'“) ~ 2%, } do

From the symmetry of the above equation, we will only obtain terms contributing

to the integral which are antisymmetric in 2, for the function w; and symmetric in
z, for the function ws,.
Refering to section (3.6), the leading order term in the streamfunction for anti-

syminetric flow in the far field is

[m _kd
P— 2o
T, =s 2km16 1

which give the leading order terms in the velocity far field for antisymmetric

flow:

given in equation (3.33).
By inspection of the integral f;, the only term in the integrand contributing

to the integral is pz, %‘ﬁ;-, the other terms give contributions which tend to zero as

Z) — 0.
Thus
o Jw
f3 = —ﬂ/ $16—1d$2
-0 T2
and
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T2 T

awla kx ..""2 (1 k:l)g)
= —s22, [,

oy
6:::2 T 2$1

Y L2 ( _E?i)

2:1)1

Therefore

Thus the contribution to the moment from the term in the integrand involving
e;; 1s zero.

Hence

” oAl =0
/0, €ijkflCrqNyg

Alternatively, we obtain this result by expressing w; and w, in terms of the
streamfunction ¥ of the velocity w.

This gives

o0 v 9?0 %0
ko= —“/_w{”“ ("‘5;?*'3:;3‘)“2“%13@}“2

0o 0*y av
= -uf ('a_ axl) daz
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by integrating by parts. We then find expressions for g% and %’%‘1 and find that

d2f3 dfs 2 _
m-—4km+4k fa=0

and so f3 = (A + Bx;)e?**1. However, f3 cannot be exponentially large and so
A = B = 0 and therefore f3 = 0.
We now investigate further approximations to the Oseen solution and the effect

of these terms on the lift, drag and moment.
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4.1.4 Further approximations to the Oseen solution.

We consider further approximations to the Oseen solution for steady two dimensional
flow. We consider flow such that the velocity perturbations to a uniform stream U

are small and so represent the fluid velocity u! and pressure p! in the forms

w=ugtu tug+ug+o. , pt=potp+p2tpst ..

where up = Uz, and u; = u, the Oseen velocity.

The Navier-Stokes equations are

1
{otw +w+.). 9} (otuturt.) = = V(otprtprt.) = (V) (urturtigt ..

and the continuity equation V.u! = 0 gives V.ug = 0, V.us = 0......
Thus we linearise the Navier-Stokes equations for flow perturbation to a uniform
stream U.

The term of highest order in the linearisation gives

1
(uo-V)up = —;SZ_@ + (V?)ug

which gives Py = constant.

The first approximation gives

1
(uo-V)ug + (ur.V)up = —;57_17; + v(Vu

which are the Oseen equations

Ou 1 9
where 4 = v and p; = p.
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The second approximation to the Oseen solution gives

1
(uo-V)ug + (1. M)us + (uz.¥)ug = ~-,;m + v(V)uy

and so

0 1
(Ug—luz + (w-V)u = —=Vpy + 1(V*)uz
1 P
Similarly, the third approximation gives
6'11,3

1
5o+ (s + (we-V)u = —=Vps + #(V)ug
T P

Filon (1928 Phil. Trans. Roy. Soc. 227 93-135 ) considers the possibility of
contributions to the lift, drag and moment from the second approximation to the

Oseen solution.

Imai (1951 Proc. Roy. Soc. A 208 487-516) finds the second and third approxi-
mations to the Oseen solution in the far field wake and calculates the contribution
to the lift, drag and moment. He finds these contributions vanish conditionally and

not because of their order.

In fact, there is a contribution to the moment from the second approximation
to the Oseen solution which is of order logr, (Filon pg 131 ), but Imai shows this
term is balanced by an identical contribution but of opposite sign from the third
approximation to the Oseen solution (see also Lamimar Boundary Layers, Rosenhead

pg 197 ch4.8 ).

We have therefore not found all the terms in the moment expression, only those
derived from the Oseen first approximation solution, the Oseen equations. The
contributions to the moment from the second and third Oseen approximations are

given by Filon (1928) and Imai (1951).
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Collecting together all the contributions, we obtain

LD Usw _ 2vL
mpU k U

Thus we see that the moment on the body involves coefficients from the expan-

p
- —2 (4.7)

MY = —2pUrB; + 5

sions of both ¢ and V.
We now investigate the moment calculation for three dimensional flow where the

Oseen approximation is valid.
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4.2 Ch4.1 Appendix: Evaluation of the terms in
the moment integral expression.

We evaluate the integral expression

We split the above integral expression into two parts, and we first consider the

first part of the integral expression

2
/ .’1729?" cos frdf
0 0z,

We substitute the potential expansion of ¢ into this integral. The terms in the
expansion of ¢ which are symmetric about y = 0 give no contribution to the integral
since [7" f()d8 = 0 for f(8) = —f(—0). We consider the first term ——%(g%’gl in the
expansion of the antisymmetric potential. This gives a contribution to the integral

of

o a L(0 -_ 7!') . L 2 ) _
—/O g . ( o U ) cos frdd = —27er/0 rsin® 8 cos8df =0

We next consider the second term 21819 iy the expansion of the antisymmetric
r

potential. This gives a contribution to the integral of

2T 1
/ rsin 8 (“ZBl iﬁq-ggig) cos Ordf
0 r

: 8 (sin@) _ _ osinfcosé
smce%( . )— 28n508e,

Thus the term Q’# gives a contribution to the integral of

Bl 2 . 2 _ Bl 27 _ 7rB1
........é... sin 29d0 = —--4-‘/0 (]. s COS49)d0 - 3

0
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The other terms in the antisymmetric expansion of ¢ are

B, sinnf
lrﬂ

where n > 2. For n > 2, the integral contributions are of order ;-(;}:n- and thus

tend to zero as r — oo.
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We next consider the other part of the integral expression for cg.

2 a¢ .
_/0 mg-a—;; sin §rdo (4.8)

We follow the same method for calculating the first term in the integral expression
o mggf; cos nfrdd.
We find the symmetric terms in the expansion of ¢ give no contribution to the
integral of equation (4.6).
We therefore only consider the terms in the antisymmetric expansion of ¢, the

first term being —=%- =% This term gives a contribution to the integral of

2zpU 27w
o L cosf\ .
/0 Ty (27er . ) sin Ordd

which gives

=0

Lr [sin0]*"
2zpU | 3 |,

We now consider the next term in the antisymmetric expansion of ¢ which is

By sind iina. The integral contribution from this term is

2%
/ 2 sin 0 (M) do = _Bim .
0

72 2
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‘We now consider the integral d%

2w 0¢ 0¢
b T — oy ——
di = pl)/(; (mg B nm— ngnl) rdf

We split this integral into two parts and we first consider the part of the integral

27
/ a:g-gté— cos 6d6
0 63:1

This integral has already been evaluated in this section and has value

e
2

(See the start of this appendix section.)

We next consider the part of the integral

2w
- / 1 -(2—?-5— cos Ordf
0 8:1:2

The symmetric terms in the expansion of ¢ give no contribution to this integral.
Therefore we consider the antisymmetric expansion of ¢ only.
We first consider the term —ﬁ(é’ — 7) in the antisymmetric expansion of ¢.

This gives a contribution to the integral of

2 L cos#
i 0
/(; x; i cos Ordf

_ Lr g7 . 9

= 5ep /0 (1 — sin? §) cos 6
. _Lr : . 3 12w
= 27er[ sinf — 1/3sin” 85

= 0
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We next consider the term E-L%iﬂﬂ.

This term gives a contribution to the integral of

27
_ / - cos g 2L0828 4
1] 7

2
= -B /0 {1/2cos 26(1 + cos 26}d6

il

2T
_B / {cos 20 + 1/2(1 + cos 46)}d¥
2 Jo

_LBir
2
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We now consider the contribution to the moment from the integral

27
€3 =p A {.‘172%1(’!.6177,1 + Ugnz) - :171'&2(1.‘,1721 + uzng)}rdﬂ

We consider the contribution to this integral from the velocity potential V¢. As
r — 00, only the first two terms in the expansion for ¢ give contributions to the

integral which do not tend to zero. The first two terms in the expansion of ¢ are

L D
= — 0 — 1
¢ 27er( ™) + 2w pU nr
which give the terms in the velocity potential
L sinf cosf D cos§ siné
y*é__%er(_ r’or )+27er( r o )
We first consider the integral
27
o / zauingrdd
0

If u? is a symmetric function in 8, then the integral is zero. Hence we look for

antisymmetric combinations of the function

o | L (_sn8\ . D (coso\\[ L ( sinf), D (cost
te 2w pU T 2rpU \ r 2w pU r 2rpU \ r

The antisymmetric combinations of the above function give

9[- L D _sinB cosf\ LD sinfcosb
2rpU ) \27pU r r ] 2rpU? g2

159




Therefore the integral 27 poungrdd becomes
PlJo 1

L LD sinfcosé
p/o rsin § (22’”_2‘02172 - ) cos Ordé

LD o= 5
= go,p | 1/asin* 2046
LD 2n
= 5o /0 1/2(1 — cos 46)d8
_ LD
T 8wpU?
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We next consider the integral

2r
p /0 {z2urusna }rdd

If the function ujus is antisymmetric, the integral is zero. Hence we consider

combinations of the function

Uit = — L [ sind " D (cosé _ L cos d + D [sind
1 27 pU r 2zpU | r 2rpU | 7 2epU | r

which are symmetric in 6.

The symmetric combinations give

LD sin?é LD cos?@
dr2pU?  p2 Ar2p2U2 g2

_ LD cos20
4n2p2U2 12

Therefore the integral becomes

2
LD / rsinf cos 26 sin Ordf
(

T 4r2pU? r?
27
= —&rlé—fU?/o {cos26 — 1/2(1 + cos 40)}d8
_ LD
T 8xpU?
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We next consider the integral

r
—p/ $1UQU17I1T¢19
0

We obtain a contribution to this integral from the symmetric part of the function

uiuy which is

LD cos2f
4m2p2U2 2

Hence the integral becomes

LD 2m cos 20
Ini 0 /0 rcosf ) cos Ordo

2
= gv%/c; {cos201/2(1 + cos 46)}d8

LD
8w plU?
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We finally consider the integral

2
——p/ TiUgUghardl
0

If the function uuy is symmetric in § then the integral is zero. Thus we look for

combinations of the function

I L cosO+ D sinf L c059+ D sind
e 2rpU 1 2rpU v 2rpU 1 2zpU 1

which are antisymmetric about \@, which give

LD sin2
4m2p2U2 12

Therefore the integral becomes

2n 1
LD fo T COS8 Bsm 20 sin frd@

4r2pU? r2
2w
= sﬁ,l))m/ sin? 2049
0
_ LD
~ 8wpU?
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4.3 The drag force, lift force and moment on the
body in three dimensional flow.

From the Oseen representation of Oseen flow, we show that we can expand the
perturbation velocity u and pressure p in terms of the fundamental solutions u(?)

and p() where ¢ = 1,2,3. We obtain

uk=Au(’+B.:%'f"—’-°-+

and
) op
= Aip® 4 By 22— 4 ..

P Atp + Ia'Ll +

where
A= // { p6,, + [,La pUu,-Sﬂ} n,dS

and

By = j/ { -I- pUuibj1) — pUriu;pn + pu;&,-z} n;dS
Further, we find these coefficients are related to the force and moment on the
body.

We expand the force F; and the moment M; on the body in the form

Fi=FO 4+ 4 . My=MD + M .,

where F,-(N) is the force due to the velocity and pressure terms of the Nth order.
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We find

Fi=F" =4

and

M; = MO + M) 4 MI = _¢ Bk + M’_(II) + M

Thus we obtain expansions for the velocity and pressure, the coefficients of the
terms in the expansions being related to the force and moment.

However, the nine derivatives of the fundamental solutions are not linearly in-
dependent. We thus consider a different representation of this expansion where the
terms are linearly independent. We also consider the expansion of the velocity and
pressure from the Lamb-Goldstein velocity decomposition.

We consider
(4.3.1). The Oseen representation of Oseen flow in three dimensions.

(4.3.2). Obtaining the velocity and pressure expansions in terms of the fundamental
solutions and their derivatives.
(4.3.3). Showing the relations between the coefficients in this expansion and the
force and moment on the body.
(4.3.4). Representing the velocity and pressure in an expansion which has linearly

independant terms.
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4.3.1 The Oseen representation of Oseen’s equations in
three dimensions.

(This method is identical to obtaining the Oseen representation of Oseen flow in two
dimensions, which is covered in detail in chapter five.)
We consider the Oseen equations with body force — f(z) per unit volume,
Ou

pUz==-Vp+pViu—f, Vu=0
1

Let u®(z), p'9(z) and u®(z), p®(z) be solutions with negative body forces
f@(z), f®(z) respectively. Then

a a 8 a a
B {PUu@uP(z~y)} = o {Fr@u® (@ - y) + u®@p?(z - y)}
0 a“a('a) (%) & (a) 3“:@)(2«'— )
“““'55;{ oy ETY T

)Pz - y) + uP W) Oz - )

Hence we let the integral I be

o 0u” _ duf” s
I = //S {P(a)uf,-b) + ug ).p(b) +pu (uf ]—(%—f - —5%/—.'“'(",} + pUul )u,(b)é,-l n;dS,
7 J

= ] o0 ) a

where n; is the outward normal to S, the boundary surface of V.
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We take V to be bounded externally by the large sphere Sg given by |y —z| = R,
internally by the small sphere S5 given by |y — | = § and by the surface So lying

between S5 and Sg.

Figure 4.2: The surface bounding the volume V.
The Oseen fundamental solutions are defined as

u(z) = p wi(z) , PM(2) = a(z)

where

2
9%E _veEs,, . d (1)

wki(.:p_) = awkami qk = %’; m

E(z

1 fhr-=1) 1 — et
)= 52 s pdt r=lals k=g

(See Oseen Hydrodynamik.)

167




First we put z = g — y into the integral I and take

u(2) = pwii(2) , PO(2) = al2), fP2)=0

When § — 0 and R — oo, we get, for any z outside S

uW(z) = — / /so {P(“)(g)#"lwkj(ﬁ — )+ Wz —y) + ug“)(g)%wk.‘(z —y)

au,(-a)
Oy;

wii(z — ) + 2kul® (y)wyi(z — "4)511} n;dSy

+p / / /vo N Y)wm(z — y)dv,

where n; is now outwards from Sy and hence inwards to Vj, the space exterior

to So. In particular, if there is no internal boundary surface Sp we have

uf(z) = p! / / f_ o; Oy wei(e — y)dVy = p™ wgi % f1
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Similarly, we find the pressure p in terms of an integral distribution over the
surface Sp. We put u}b)(g) = g;(2), P (2) = —pUq(2) into the integral I. When

6§ — 0 and R — oo we get, for any z outside Sy,

@) = - [, {pm(m(ww - U War(e ~ 1) + il W5 e - 1)

oul® )
~1, Wz — )+ pUu (Yaile - Yo  nidS,
J

+///VO fi(a)(ﬂ)qa'(_@—g)dvy

where again n; is outwards from Sg, and if there is no external boundary Sp,

then

Pz) = / / /_ o:o @ a(e ~ y)dV, = g+ £
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4.3.2 The velocity and pressure expansions in terms of fun-
damental solutions.

From Oseen Hydrodynamik, the Oseen representation of Oseen flow in three dimen-

wle) = = [ [ {pwntonte =) + a1+ uw gz -1
_%Z_;wk,-(g:_ —y) + 2kui(y)wri(z — 3)6,-1} n;dS (4.9)

where gz is the position vector of a general point outside the closed surface Sp
and y is the position vector parameterising the closed surface So.
ugk) = u~lwy; and p®) = g; are the fundamental velocity and pressure solutions

respectively. These are given in Oseen Hydrodynamik as

_9 (_.1.__)
U = dzp \dnr

0*E

— — U2 .
"~ O 0z; V B

Wiy

where

1 fhlr-=1) ] — et
E= f dt
8=k Jo t

We consider the point 2 far enough from the surface Sy such that |y| < |z| for

all y on Sp.
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Hence we can expand the fundamental solutions as a Taylor series:
wi(z — y) = wii(z) — yi"(?"'wki(w) + (I/Z)y'?}l—g—z——wm(w) + ...
- = - Ba:j - ’ aa:jax, -

ar(2 = 1) = 2(e) — Vi u(e) + (/2 ) +

Substituting into equation (4.9), and writing wy; = wyi(z), we obtain

0 a
u(z) { (Wk, n awk’ + ) + u;(y) (Qk - yz-a—%l:— + )
azwk. 6 8wk.

Owgi
+2kus(y) (wk,- —u a“’" + ) 5,~1} n;ds
T

Here ‘;J;ff = V2w — Zk%';?, and since there is no fluid outflow from Sy, then

[ [s, wi(y)njdS = 0. Hence we can write

Ou;
(@) = wiz) [ /S{ HP+ o = 2, ,l}n,d.S‘

Yi

awkt aui Yy
+ e // {,u Yoy 6i; — 2kujyibn + uibj — 6;,-_) W+ Zkuiyz5j1}njd5
+....
Owg;
= {A Wi + Bgl aw’: + ...}
where
A = // -—p6~+,u%—pUu~6~1 n;dS (4.10)
3 So 17 ayj L ) 7 .

Ou;
By = /-/So {y; (pﬁ;,- 3 >+ pUu; 5,1) — pUyiubn + ,uu,-6j¢} n;dS (4.11)

1




We note that in this expansion the nine derivatives of the fundamental velocity

%‘iﬁi are not linearly independent. This will be discussed later in section (4.3.4).
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Similarly, from Oseen’s Hydrodynamik, the Oseen pressure in Oseen flow can be

expressed as

0
— _// {p(y) ( - yk— + . ) - pqu (ql — ykbg% + )
9qi g Ou; g
+uuiy) ( 9z, -+ Yeg g% - ) —#a;j(_y_) (q; - yk-a;q; + )

9q; :
+pUui(y) (q; — Yk 3qu 4 ) 6]1} n;dS

This gives

p(z) = Aigi(z) + Bik%‘i(ﬂ?_) + s (4.12)

where 2% = 24
Oz — O

Thus we have found the velocity and pressure expansions in terms of the funda-
mental solutions and their derivatives. We now consider the relations between the

coefficients in these expansions and the force and moment on the body.
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4.3.3 Coefficients in the expansion in terms of the force
and moment.

From section (4.1.1), following the same argument in three dimensions, the force on

the body can be expressed as an integral over a closed surface Sy enclosing the body

F; = //(p&,,—}-u Ou} puu)n,ds

Considering the Oseen linearisation valid on and outside Sy,

ul = Uy +u +u{™ 4. p=p®4pIh 4

and substituting these expressions into the above integral, gives us a correspond-

ing expansion for the force F; such that

F = F,-(I) + F,-(”) o

where

I
FO = / f _p\Dg, 4 pau,( ) pU (60u” + 6;1uP) 3 n;dS (4.13)
! So Y 6.'17‘1 v T !

and

0
Fi(U) =/fs { p(II)ﬁ +’ua(9 - pU (6 u( )+6 u(m) pugI)uy)}nde
0 T

From equation (4.10) we thus see that

FD = 4, (4.14)
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The moment is

= [ [ cneipumds
=l [ [zt [ [ [ L @pav]
= ol oo (g s = (s s o
ol e
17/ {x,pu, —p63k+u%—~}va
= an [ / fs 2 (-pak,wg—‘::) ndS
_ / / / { (pzjulul + purdy) — ,;puku,}dV]
— [ / fs 3 (-p6u+ug—’;’:) ndS
(] =] ) G+ s s  f ]
= e / / { ( p5k1+[£-———- puku,) pukSﬂ}mdS
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Thus we obtain the expression for the moment

0
M,- = G;jk/[go {w_,- (_P5kl + [J-a—i::- - pukug) - puk6ﬂ} n;dS

Substituting the velocity and pressure linearisations into the above integral, we

obtain

M; = M;(I) + M,-(”} + ...

where

oulD
M = €ijk / /; ) {a:j (—pm&cz + u_gmﬁ," -pU (5k1u§I) + 511”501)) - Hug)&ﬂ mdS

(4.15)
M . (_ang, 4,00 P (DY _ (DD
i = €ijk L N 4 K+ [ P PU( Kty + by ) — pUR Y
So T
—,uuch)Sj;} n,dS
Since €;;; = —¢€;, We can write

oD
MDD = ey / fS {mj (—P(I)5kz + #—au:—‘ — pUsnu) | + pUzruV6j1 — pui)65 ¢ mudS
[}

—€ijxBr; = €ix Bk (4.16)

Hence the force and the moment are related to the coefficients of the velocity

and pressure expansions by equations (4.14) and (4.16).
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We can also derive these results by considering the surface Sy as a large sphere
Sr; we substitute the expansions for ug) and pY) in the integrals for F,-(I) and M,-(H)
and evaluate the integrals as R = |z| — oo.

We now consider which terms in the expansion contribute to the respective in-

tegrals:

The order of the fundamental velocity on the sphere radius R is % inside the
wake and % outside the wake.

In the wake z5, 3 = O(\/I_i’,) and the derivative of the velocity w.r.t z; or z3
reduces the order by VR

Hence inside the wake the order of the fundamental velocity first derivative is
at greatest O('iz—\17}_t)' Outside the wake , the order of the fundamental velocity first
derivative is O(#5).

The order of the fundamental velocity second derivative is O(7;) inside the wake
and O(gr) outside the wake.

Similarly, the order of the fundamental pressure is %, fundamental pressure first

1

derivative % and fundamental pressure second derivative ;.

The area of the surface Sg outside the wake is O(R?) and inside the wake O(R),

since 3, ¥3, are of order = inside the wake.

Thus the contribution to the force F,-(I) from the first derivative terms 22~ | 22

By ) O

are O(ﬁ.R) inside the wake and O(4s.R?) outside the wake. The contributions
from higher derivatives are even smaller, so we need only consider the contributions

to F,-(I) from »(™ and p(™.
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2

I . . . . 2 u(n
Similarly, for M,-(I), the contributions from the second derivatives ai’:a:q, %'1:(3%

are O(R.;.R) inside the wake and O(R.-.R?) outside the wake. The term pos-
R R

sibly giving a contribution to the moment is

Hul™
Eilk/./..s‘o 11(—pU)mdw2d$3

where k, m and p are 2 or 3.
(n}
However, integration with respect to z,, gives values of 9‘%; outside the wake,
which are of O(r), and so the contribution to the moment is O(R.3.VR).

Thus in the case of M, .(I), we have to consider ("), p(") and %(L), apt») only.
' Ozm ' Ozm
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The force integral is given as an integral over the surface Sg, enclosing the body

S, on and outside which the Oseen approximation is valid, by equation (4.13).

IR

{0

ij

(«5.-1u§” + 53‘1“.('1)) } n;dS

and

u) = Anu{™ + B, n@u(m) + oo
! oz,

o (m)
pD = Anp™ 4 Ban 4

oz,

We consider the integral

=/ L

and so F,-(I) =An fi(m).

ij

(5,1u( m) 4 631u( ))} n;dS

The functions p(™ and u,("“) are the three fundamental pressures and velocities
respectively. Thus this integral is singular at the origin. We consider the surface
of a small sphere S5 whose centre is located at the origin. Applying the divergence

theorem to the above integral, we obtain

fi(m) // { ,J[,!, (m) _ pU (&.lugm) + 6j1uz(.m)) } anS

Z;j

m)

(
R T T Y
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But

(m)

6’“,’

o {_p "o+ 1y

— o (5 + 5,.1ugm>)} v

Z;

B Bm; +ﬂ8m,~c’)m,- —F 6m1
= 0

o™ ™ ou™

from the Oseen equations.

Thus

m)

uf
T

J

= pU ($aul™ + 6;u{™) } n;dS (4.17)
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From equation (4.15), we obtain the expression for the moment

M = Cijk/-/s {:L‘j (—pﬁm + #aak — pUS ) — PU511U§¢I)) — puy; }nzdS’
0

Substituting in the expansions for u}c‘r) and p(1), we obtain

m Bu{™
M,-(” = eijkAm/fSo {wj ("-p( Y60 + p 05’:21

+pUzu{™8;, — uuﬂm)ﬁﬂ} mdS

ap(™ 5% (m) Hul™
+Eukan// { ( 5kl "l' ﬂa la _PU611 a;n

(1) (m)
+pUzp——— Ouy ——bjp — p—o—— Ouj mdS
Oz, oz,

- pU(s,lu};"))

o
= ApJ™ + BpnL{™"

where J{™ and L{™" are given by the two integral expressions above.
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Thus,

m m au(m) m m m
']z'( ) = e;jk//SO {:cj (-—p( )6k(+uﬁ-’_ -pU (5k1uz( )+611u§c ))) '—I'“"';c )5j1}”ld5
(s, 4 2"
= €k f/36 zj | —p" 0k + p EEy
+f[/ O Joi [ —pms, + Guy”
v oz |\ TP T A Gy

- pU (5k1u§m) + 611u,(cm))) - pu,(c"‘}éﬂ} n;dS

— pU (81auf™ + &lu;:"’))

m,uugcm)@-;} dV]
However,
€ijk e [a:j {-—p("‘)ﬁk! + p ;:31 - pU (5&:11&} )+ O‘nu}g )) _ ‘uugc )53'1}:'

Bu(m) T m
= €k [5JI {_P(m)5k1 + [1.—3—;—""— - pU (6k1'u§”) + 5;1u§c )) }

ul™  gut™ . o
= €ijk [—p(m)f%k"i-#( e k) U (5k1u§ ) 60uf ))

3:1:1 6.1:,-
du{™ Au™
+$J {pU 61121 _pU 6:1:1
= 0
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Hence

m m 9 m m m
JM = e _//56 {a:j (—P( Y611 + M;—;‘ -pU (‘5k1uf )+ bnuf ))) - uufc’“)@-;} mds

(4.18)
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We now obtain the expansion of the fundamental solutions as r = |z| — 0.

We have

k(r—a1) 1 — et
E= /0 8wkt dt

This gives the expansion

. - n
since e~t = Y n=oe nt,

Thus for small r,

9*E

— 1 2 —_
E= 87r(r 1)+ 0(") wn = Oxrlc,

— V2Eébin

and hence

Trly

1 /71
Wkn = —'é;_' (;&m -+ ) + 0(1)

a'LUkn _ 1 (mm(S 5kmmn + 6mnwk + 3$k$m$n) + O(T'_l)

where ul? = =ty and p® = g = ~ &2
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We now evaluate the integrals ™, J and L,(vm’") over the surface Ss.

(m _ g, 1 IWin (_1_) z;
5 //56{ 4 5'J+6mj+o r rds
Ty Ti bin 2ziz,  d7iTH
B //36 {47rr3 r 87r (_—_ R + r )}d5'+0(5)

- Bﬂ_//&s( in 3";:”")d.5’+0(6)

1 4
- {47r6.-,, + 3.—«6,-,,} +0(6)
5

3

Thus

F(I) = An .'(n) - Ané\in

= A
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The moment expression is given by

M = A d™ 4+ B L™ + ...

where

dul (m) .
J( m) = e,Jk// { ( p(m)5k1 + M—a""—‘ — pU (Ekﬁl.l( ™) -+ 5{1u( ))) -—[l,u(k )551} nzdS

(m)
However, the contribution from »( and p{™ is O(6) and 8—:.;"? is O(3;). Therefore

J;(m) = 0.

We now calculate L{™™.

The contribution to the moment from the term %% is

G,ka/ w,gp(”)c?k; S =0

since €;;;x%;T; = 0 from symmetry.
7k 3

. m L
The contribution from the term — #%%,’5 ji 18

€ijk // ( 8u(m) )nzdS

_ ele //S ( $n6km _ wkwmmn + mkamn'l'mm‘skn) (5:,'1’111035
5

ik TnOkmMi TETmT 216, T Ok
— aJ // ( nOkmitly _3 ktm nnj + ;nnnj_l_ m3 nnj ds
Ss T r

r3 b
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Hence,

L'(m,n}

0 Wi 0wy, | =
6"'°f /s,, {"”aw,amm bit g T O 55

eijk // mg-’”l ﬁn_z _ 3xlmm Ser — 6km6ln + 6mn6kl
ss | r r3 5 kn r3

(6Icmwn + 5mnmk)ml (&clmm‘rn = 6lmwkmn + 6lnxkxm) (wkwlwmwn)

13 5 5 ~ 150 mTn)
r r
Zj [ Tm 5kmwn + 6mn7;k TpTmTn
-2 (2, - Smte Ll gttt} gs 4 0)
€ijk . _me 6lcm77n + 6nm~vk OkmTn + OmnTk TrTmTn
87 /_/‘;6:1: { ré Bkn i +3 rd +9 r8
TETmdn Lm OkmTn + OpunTh TETmTen

R } ds + 0(5)

36qk//5 { —~6knTjTm + SkmT;Tn + EunT;Th Sijz;czmmn}ds+0(5)
6

7-4
36:gk “Eknxjmm + §km$1mn
/ fS 6 ( ds + 0(6)
3€ijk ( 6](: 4775;m -+ 6km 776371) -+ 0( )
87
1 1
—é—e;mn + —2-6,'nm + 0(6)
€inm -

MO = pLm

- - Eimann
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4.3.4 The velocity and pressure expansion with linearly
independent terms.

However, the expansions given for the velocity and pressure are not linearly inde-

pendent, since

oul™ _ould _0 o™ 9 ( 1 ) ~0

0z, Oz, ’ 8z, Oz,0z, \47r
Thus of the nine solutions %";( : , %‘%, only eight are independent. We now give

eight linearly independent solutions for the velocity and pressure.
The equations V2p(D) = 0 has five independent solutions of the form Bnm%‘;—:—:;—).
With z; = rcosé, z; = rsinf cosp, z3 = rsin fsin 1, these may be taken, with

appropriate velocity fields, to be

o0 = ﬁé P}(cos 6) sin f cos = %”;? = a;ﬁ) L ud =3 (%Mm(:) + %yij))
D = 4;3 P}'(cos §) sin® § cos 29 = %pﬂ(: - %p::z) , ul) = aali) a aéi)
D = 4737’3 Py'(cos 8) sin® § sin 2¢p = 2%}:3) = 2(?;);2) , ul = 3;&1:) + 66%::)

Each of these solutions gives M;(I) = 0.
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The remaining three solutions of the Oseen equations have p() = 0 and u(D

antisymmetrized to give

(2) (3)

p(I) = 0 ) E(I) e curlg(l) = ?_'y'__. — au , M‘_(I) f— 26'1
8(133 6:82
(3) (1)

pD = 0, u® = curly® = 280 0D o
8:1:1 a.’Ea

pD = 0, o = curty® = 2D %Py o
6;v2 8331
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Chapter 5

The Oseen velocity
representation in two dimensions.

We consider in this section Oseen’s representation in two dimensional steady flow

of the velocity v and the pressure p satisfying Oseen’s equations.

Oseen expresses both the fluid velocity and also the pressure at a point ¢ as an
integration of a velocity and pressure distribution over a closed contour C enclosing

the body but excluding the point q.

» powkq,
%a&g
D cloged) contows
<

Figure 5.1: The position of the contour C enclosing the body.
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Oseen obtains the results

1 Ou; 1 Oty 1
= "Zﬁ/c {t"* (”a_,: - ;Pnj) -t (”EJ{ - ;rknj) - qutjk’nI} dl

p . f Ou; 1 oi; 1. .
p=o- 1, {u,- (Vﬁ-hl — -P-pnj) - (V-bw# = hns | - Uujtijng ¢ dl
for functions t;; and 7, and particular solutions of #; and p all defined later.

This section is concerned with Oseen’s method in two dimensions given in Oseen
and Lagerstrom to obtain the particular velocity and pressure distributions over the

closed contour C which give the velocity and pressure at the point q.

We first consider the Oseen velocity expression and next give a brief description
of how we obtain it.

We shall define a function f such that the integration of f over the closed contour
L not enclosing the body is zero. The function f involves the velocity, pressure,
adjoint velocty % and adjoint pressure p where the adjoin t velocity and pressure
satisfy Oseen’s adjoint equation. The definition of f is given later.

The closed contour L consists of three curves; the closed contour C' enclosing the
body, the closed contour of a circle circumference centre at the point ¢ radius R — 0
and a closed contour of a circle circumference centred on the body and enclosing the
body and the point g of radius R — oo.

We shall first consider two particular solutions of @#; and B, ¢, and 7 respectively
such that the fluid velocity at the point ¢ is expressed as an integration of a fluid

and pressure distribution (the function f ) over the closed contour C.
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Oseen finds that these two particular solutions are

k

L

9g9(R) 9g(R) Lo
dy oz

7 =2pvV(logR)
where g(R) = log R+ Ko(kR)e*(#=2e) R = [(z — 2)? + (y — yc)?]/? and k= L.

(@¢, Ye) is a point on the curve.

We now give fully the method to obtain the Oseen velocity representation. We

first define the function f.

We first consider the function f given below which contains the perturbation
velocity u and the pressure p (satisfying Oseen’s equations ), and the adjoint velocity

@ and the adjoint pressure p (which satisfying the adjoint to Oseen’s equations).

Hence
UQM— = —1Vp + vV Vau=0 (5.1)
Oz p—
and
ou  1_. g .
U%—;_V_B—Vv_q Via=0 (5.2)

Oseen considers the function f along the closed contour C' whose outward point-

ing normal is n such that, in vector notation,

. : Ou; 1. .
flz,y;n) =4 (Vg;{ - -pnj) = Uy (V'b"j - ;ij) — Uujitjny

The integration I of the function f(w,y;n) over the closed contour L is zero.

This is shown by applying the divergence theorem.
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L Ou; 1 Qu; 1. .
I= /L{'U:j(’/‘g;li - ;Pnj) - uj(l/—g;:- — ;pn,-) — Uuyiijng }dl

where dl is a length element of the contour.

Applying the divergence theorem,

0 _O0u; 1 . oy 1 F) n
I, = //3 {6‘—:1:3 (Vu.'a—wj - ;Pw l/u.‘9 L ppu,) - a—wl(Uu,u,)} ds (5.3)

where S is the area enclosed by the contour L and ds is an element of area.

( The divergence theorem states that for a vector function h;(z1,x,) defined in a
region S bounded by a curve L, having outward normal n to the closed curve, then

Jo hi(z1, za)nidl = [ [ g;lf(xl, x3)ds.

We note that Uu;iijng = hin; where b = (Uu,;,0,0) )

From equations (5.1) and (5.2), §% = 0 and §% = 0. Hence the bracketed

expression inside the surface integral for I, of equation (5.3) is

~ Bzu.- ap 3'&,‘ 1 3}7 a'ﬁj " an
Vu‘awjamj P aa:, 'amjawj+ ~Uu va

Pl 6 I 6371 I 5-33_1-
which is equivalent to

;3 vViu; — 1 Op 8u. 4 u; { —vVi; + lf?f_ — U% (5.4)
p p0z; 6:1:1 p Oz;

From equations (5.1) and (5.2), this expression is zero. Therefore the area inte-

gral I, is zero, and so

., Ou; 1 di; 1, .
I = /L{Uj(va—n’ = o) = uilv gt = =pn;) = Uujiijmdl = 0 (5.5)
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We now consider the closed contour L not enclosing the body and consisting of
three curves: the closed contour C enclosing the body, a closed contour of a circle
circumference centre at the point g radius 7/ —4 0, and a closed contour of circle
circumference centred on the body and enclosing the body and the point ¢ of radius

R —o00. The closed contour L is shown diagrammatically below:

po\At<?
rdcfarg CaiVeAc Gl
roctiiv) 00

Figure 5.2: The closed contour L.

We apply Green’s integral theorem for particular values of uj and p.

We first consider Oseen’s representation in two dimensional steady flow of the

velocity u.

We consider two particular solutions of uj and p, tjk and 7k respectively and

which are singular at the point q. (Where k£ = 1,2.) Thus

Ik = L {tik {"ifn ~ ~PUj) U {"'frn ~ pTfnj) _ Uujtjkni}dl (5.6)

We consider ¢k and 7k such that the contribution to /k around the point g is
some multiple ot the velocity uk. The point g is at position (<1,92) in the cartesian

coordinate reference frame.
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Oseen gives the solution (Hydrodynamik, section 4.5 pg. 37)

og(R 9g(R 1 0
= 0% o +2kKo(kr)e"““‘””°)(o o) 57)
Oxn oz
where
U

9(R) =InR + Ko(kR)e™ %) k== R=[(z1— q)* + (22 — 2)"]"/* (5.8)

and

T(R) = —2pvV(log 1/R) = 2prV (log R) (5.9)
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We now show the solution satisfies the equation

Otjr 107 2
el Lt - 5.10
anl » 0z vV (5.10)
We first consider the casefor j =1, k = 1.
Hence
atu 1 8T1
2 g
vV, + Uam1 pr 0

Substituting the functions ¢;; and 7; from equations (5.7) and (5.9) into the

above equation, and using the fact that V2logr = 0, we obtain

3j 0?
2 - ~k(z1—q1) —k(z1—q1)
vV B, (.Ko(k)e ) + an% (log R + Ko(k'R)e )

0 k g 0
2 wk(x1 —=q1) —k(zi—q)y _ ° —(—
+ UVA(2kKo(kR)e )+ U (hEo(kR)e )~ 2 (20) (1B R)

= 0

The left hand side of the equation is identically zero since

(V2 + 2k) { Ko(kr)e=*} = 0
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We next consider equation (5.10) for j =1, k = 2:

We substitute into this equation expressions for ;2 and 7, from equations (5.7)

and (5.9). Since VZlogr = 0, we obtain

UgZizlogR + U { & Ko(kR)e e -2)}

= Uaa:?3.1:2 log R - V%{sz{o(kR)e_k(ml"fh)}

The L.H.S and R.H.S of the equation are identically equal since
(V2 + 2k 357 ) Ko(kr)e —ka =,

We next consider j = 2, & = 1. This gives the same equation as above since

— O

t12 = ‘t21 &Ild B5y  Bag”

We finally consider the equation (5.10) for j = 2, k = 2:
0t22 1 07'2

——= V%
Bz, ~ p Oy vVt

We substitute into this equation expressions for t;; and 7 from equations (5.7)

and (5.9). Since V?logr = 0, we obtain

— _3_. i ~k(z1—q1)1 | - _q_ 2 —k(z1-q1)
U g ( 9o, {log R + Ko(kR)e b =v B (VAH{Ko(kR)e })

and the L.H.S and R.H.S of the above equation are identically equal.
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We must also show that the solution satisfies the equation

6tjk _

5 =0 : (5.11)

We first consider equation (5.11) for k = 1 and substitute into it expressions for

t11 and t2; from equation (5.7)

i dg9(R) ~k(z1—q1) i 99(R) —
aml {—6331 +2kKo(kR)C + 6372 6:1:2 =0

which gives

V(logR) + (V2 + 2k) Ko(kR)e™ @ ~a) = 0

The L.H.S. of this equation is identically zero.
We finally consider equation (5.11) for & = 2 and substitute into it expressions

for t;; and ¢35 from equation (5.7). We thus obtain

Pg(R) | Pl-a(R)] _,
6:::18:1:2 3:1:23:1:1

and the L.H.S of this equation is identically zero.
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5.0.5 Evaluation of the contour integral around the point
q.

We now evaluate the part of the contour integral L around the point ¢. We take the

contour along the circle circumference radius R centred at the point ¢ and consider

the value of the integral as R — 0.

Hence we evaluate the integral expression

. 2m an 1 i
11{1_1{10 {/0 |:tjk(l/"é-7-€ - ~p—pn,-) - uj(u—é—;]é— - ;pknj) - U'U:J’tjkn]] ’R,da} (5.12)
We consider the function ¢;(R) as R — 0.
From equation (5.8),

39 37_1_ _ kI{O(kR)e—k(a:l—-ql) + E’%e-—k(xl -q1) aI(O(kR)

9z, R? oR
As R — 0, Ko(kR) — —log R and e~*(@1-a1) _ 1, Therefore
dg

Also, from equation (5.8),

e~ F(@—a1)

0g T T aI(()(k'R,)
9o 7 R OR

Therefore as R — 0, 3—3% — 0.
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Thus as R — 0,

T (kloog’R

— —logR(

Hence

0
—klogR ) + 2k(—log R) (

10
01

ti; — —bijlog R

200

10
00

)

(5.13)




We evaluate the part of the integral expression of equation (5.12)

r—0

2r
lim {/0 -;—TknjUdea} (5.14)
From equation (5.9), 7 = 2pu5%‘-log'l?, =2pv s = 2pv 74

Thus the integral is

27
11{1_1% {21//0 nknjujda}

As R — 0, we expand u; in a Taylor series around R = 0. Expressing the

function u; in polar coordinates (R, a) about an origin at the point ¢, then:

2 §2
T——Q——u,-(o, )+ ..

d
uj(Rya) = uj(0,0) + Rosu;(0,0) + 57575

OR

+ _7?:3 ag’uj

Ou; Fu;
v 21 9R2

= ul+Rag

+ e (5.15)

q

Where u;] g 18 the value of u; at the point ¢. Therefore this expansion is inde-

pendant of the variable «, and so the integral approximates to

27
q+ )/0 nknjda}

However, 2™ ngn;da = 6;;m since n = (cos a, sin a).

. Ou;
11{1_1-% {21/ (u,-[q +R ﬁi

Therefore the integral of equation (5.14) approximates to

2vrur(q1, g2)

as R — 0.

201




We next evaluate part of the integral expression of equation (5.12)

2T at,}k
1@0{ 1//0 u; 52 Rda } (5.16)
However, from equation (5.13), as R — 0, ‘Z:R" — %‘1,

Thus the integral is

2m
lim {Vf ukda} = 2 vui(q1, g2)
0

R0

We finally evaluate the other integral contributions to equation (5.12). As R —
0, tjk — "—6_7']‘, log R.

Hence

2n
tjkajrqda = —ak27r’Rlog‘R — 0

for some constant a;. Therefore the other integral contributions to equation

(5.12) are zero, and so

. I Oou; 1 Ot 1
11{13]6 [/0 {tjk(u—a-—?% — ;pnj) ( 67-{3 ;Tk‘n]‘) - qutjknl] ‘Rda}

= 4mryug
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We consider the closed contour L consisting of three curves: the closed contour
C enclosing the body, a closed contour over a circle circumference centre at the point
g radius R — 0, and a closed contour over the circle circumference enclosing the
body radius R — oo, as shown in figure (5.2).

We consider the integral I; given by equation (5.6). We will prove later in
section (5.3.1) that this integral over the circle circumference enclosing the body

radius B — oo is zero. Hence

1 Ou; 1 Oty 1
urlan,a) =~ [ {tﬂe( B P~ gl = Zmng) - qutjknl} d

drv

where t;,(21, %25 q1,¢2) and 7x(z1, 225 ¢1, G2)-

However, the variables ; and z; in the above functions are constrained to lie on
the curve C. Therefore we rename the variables such that

tie(2$, 755 1, g2) and (2§, 255 a1, g2)-

where (z$, z5) are the points that lie on the curve C.

The point ¢ is chosen arbitrarily, and so we could choose the point ¢ to be any
point lying outside the closed curve C.

Therefore we rename the point (g1, ¢2) and consider the general point (z1,z2).
Therefore we consider the functions

tie(xy, To; 2§, 25) and 7x(2y, x2; 25, 25).
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Thus, changing from the cartesian vector notation (z1, z2) to the usual cartesian

notation (z,y), then

1
uk(wa y) = 4,1,-'_,, / tjk(a:’ Y3 Te yc) ( uJ(wC'} yC) - ;p($c7?/0)nj)

(5.17)
- (@, ¥e) V'Q't'k(m i Ber¥e) = =Ti(er yoI;
J\"ey Je aﬂj”c’c p cy Je )iy
(5.18)
- qu(mm yc)tjk(ma Y5 Zey yc)nldl (5.19)
where 2y = z, 3 = y, 2§ = z. and 2§ = y..
Thus, from equation (5.7),
_(_l J_l Koz (1 0
kt = ( ) ! y |+ 2kKo(kR)e c 0 0 (5.20)
T =2prV(logR) (5.21)

where g(R) = log R + Ko(kR)eM—%e), R = [(z — zc)2 + (y — yc)?]Y? and k= Z
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We see this is equivalent to the velocity representation of Lagerstrom. Lager-
strom considers the superposition of fundamental solutions within the area A bound-
ing the closed curve C. Applying the divergence theorem to the integral of equation

(5.6) over the closed curve C and using the result in equation (5.4), we obtain the

relation
0 t 1
/ {tﬂc(”‘a_— — —pn;) — “j(V'g'L — —7kn;) Uu,tjknl} dl
_ oty 1 Op 0y v, o 10T Ot
_//A{tﬂ"“(yv Uj p O; UB )+ ui(—v+V t;k-l-pamj U6x1 dA

Lagerstrom considers a distribution of points  within the area A such that

ou 1 f(Q) at the points @
U8_+ ~Vp—vVu { 0 not at Q (5.22)

t;r and pg are singular at the general point (x,y) outside the area A, and so, in

cartesian vector subscript notation

19 ot;
//u,( vV2t1k+—%—Ua;f)dA

3

i 1O 0t
- (uv it e Ugar ) 49

Therefore

o | [ i@ (523)

which is the result obtained in Lagerstrom.
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5.1 The integral representation of the pressure
P.

We consider particular solutions of the adjoint velocity #; and pressure f such that
the pressure at the point ¢ is expressed as an integration of a fluid and pressure
distribution (the function f) over the closed contour C. These solutions are & =

V(logR) and = pU %(log R) such that the pressure p is
Ou; 1 oi; 1 .
= — i1 —_— . —_— ...__ [ j— YR dl
P=o C{u, (l/ 3n ppn,) Uj (l/ n ppn,) Uu,ujnl}

We consider equation (5.5) for the integral I:

i ~ an 1 ) ] 3Uj 1, . =
I= /L{uj(u% - ;pn,) - u,(u% - ;pn,) — Uuj i n, }bdl (5.24)

and we choose @; and § such that

. 0 . a
uj = 533—1,(10373) , p= PU%:(log R)

We now show that the above expressions for @, and j satisfy the Oseen adjoint
equations
Guj _13p Oit;

— 20 . .-.-.-.-.-‘-7.. f—
6:01 = pamj vV*i; and 0

ij

by substituting #; and p into the Oseen adjoint equations. This gives

a o a a 0? ? 0
Ua—mlalog’l?, —-(pU)é————log'R, (83:% + 8:42%) 92, log R
and
o 0 o 0
5—*3—( 873)4"5;:;%(10873) =0
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The L.H.S. and the R.H.S. of the above equations are identically equal since
Vi(logR) = 0.

The contour L comprises of the closed contour C enclosing the body, the circle
circumference of radius R — 0 centred at the point ¢, and the circle circumference
radius R — oo centred on the body and enclosing the contour C' and the point q.
~ (See figure (5.2). )

We first consider the above integral over the part of the contour L along the

circle circumference radius R — 0 centred at the point g. This is

) du;, 1 o0u; 1. -
7'12131;0 {f {uj(y «" ;pn]—) - uj(ug,}—é - ;pnj) - UUju,-nl}Rda} (5.25)
For the above equation, =2 Be; 52(log R) = 3 and ;> o-(log R) = % sincen = (cos a,sin o).

We first consider the integral

This equals

bm [,0% 1 g
Ly A Va'R, ;pnjn.:, fad

Ou,; [ y  [27
= limv=—> [ njda- 1—/ njn;do
0

R—=0 OR

The velocity and pressure and their derivatives are continuous at the point ¢
and so we find their Taylor expansion in R as R — 0 and bring them outside the

integral. (See equation (5.15).) Therefore

. L Ou; 1 2w
}g_% {_/0 il (l/-a-ﬁ" - ;pn,) 'Rda} = --'-o-p

We next consider the integral
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. 2w aﬁ 1 .
Lim {/0 —u (u-(,;—% - ;pnj) ’R,da}

~ ng

3 of; . __n;
i; = 2%, and so ¢ = —z%.

Thus this integral is

X vu; 2w 27
%E%J{W]./o njda-I—Uu,'[) nlnjda}

= UU17I'

We finally consider the integral

. 2
lim { /0 —-quﬁjnl')?,da}

This equals

2w gy .
Lim {—-qu/o -?;—ém'Rda} = —Uu;m

R—0

Therefore,

p(a1, @) = ""é% Hm { /O%{ﬁj (V%% - %P’%‘) — U (V% - %ﬁn,-) - Uﬂjﬁjnl}da}
(5.26)

We take the contour L along the closed contour C enclosing the body, the circle
circumference radius R — 0 centred at the point ¢, and the circle circumference
radius R — oo centred on the body enclosing both the contour C' and the point ¢.
We show in the next section, (5.3.2 ), that there is no contribution to the integral

I of equation (5.22) from the circle circumference radius R — oo centred on the body

and enclosing the contour C' and point q.

Thus,
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s ) = o [ AG( G2 = 2pms) = ui(v G = ;) = Ui ol

where the functions @;, § and u; are evaluated on the curve C. We let the
general point on the curve C be (z§,z5), and so in the above integral equation
(g, 235 41, 92), P21, 25; q1, ¢2) and u;(af, 25).

The point g at position (q1,g2) was arbitrarily chosen except for the only con-
straint that it lied outside the closed curve C. Thus we consider a general point at
(21, z2) lying outside the closed curve C and therefore obtain an integral represen-
tation for the pressure p(zy, z2).

We express the equation in the more familiar cartesian coordinate notation (z, y)
where ¢ = z; and y = z,.

Hence the Oseen integral representation for the pressure is

. Ou; 1 oi; 1. "
p(z,y) = é% /0 {'Uj (1/—5?—21 - ;pnj) — Uy (1/-57—:- - -{;pnj) - quujnl} dl (5.27)

where @ = V(logR) and p = pU 2-(log R).

R? = (z — 2)? + (y — y.)? where (z,y.) is a point on the curve C.
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5.2 The expansion for the velocity and pressure
calculated from the Oseen velocity and pres-
sure representations.

5.2.1 The expansion for the velocity from the Oseen ve-
locity representation.

We shall now show that the expansion for the Oseen velocity representation is equiv-
alent to the expansion for the velocity obtained from the Lamb-Goldstein velocity
representation. We consider the tensor function t;. From equation (5.7), we see
that it involves summation of the functions log R, Ko(kR)eF® and their derivatives.

We also consider the vector function 7. From equation (5.21), we see that it
involves derivatives of the function log R.

The function log R satisfies Laplace’s equation and the function Ko(kR) satisfies
the modified Helmholtz equation.

Therefore the velocity ux involves the summation of functions which solve ei-
ther Laplace’s equation or the modified Helmholtz equation. Thus the velocity is

represented in the form

y_ﬁﬂ'f' (g—f’_%%)

where

0
20 2 __ —
V¢ =0 and (V 2k)8m¢—0

(This is the Lamb-Goldstein velocity representation of two dimensional steady
Oseen flow. (See section (3.1).) )

We now find the highest order terms in the potential expansion from Oseen’s
integral representation of the velocity. By inspection of equation (5.18), the highest
order terms are ¢ = Z(logr), 2¢ = Z(logr) and similar equations for %‘5.

These terms can only come from either the function logr or 6.

Thus the potential expansion for ¢ is
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L6 — )

27U + lower order terms

D
¢~——- Wlogr—

Hence we see that we obtain an expansion for u from the Oseen velocity rep-
resentation which is equivalent to the expansion for the velocity obtained from the

Lamb-Goldstein velocity representation.
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5.2.2 The expansion for the pressure from the Oseen pres-
sure integral representation.
Similarly, by inspection of equation (5.19), we see tht the pressure p satisfies Laplace’s
equation with terms in the expansion of highest order 2(logr) and é%(Iog 7).
Therefore, referring to equation (3.24), we see that the expansion derived from
the Oseen pressure representation and the Lamb-Goldstein pressure expansion are

equivalent.
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5.3 The evaluation of the integral I for the veloc-
ity representation and pressure representa-
tion over the circular contour circumference
radius R.

5.3.1 The evaluation of the integral I for the velocity rep-
resentation over the circular contour circumference
radius R.

We represent the velocity as u = V¢ + w.

As R — oo then |V4] is of highest order (37).

We first consider the contribution to the integral from the velocity potential only.
Each term in the integrand is of order ;; and hence this gives no contribution to

the integral.

We next consider the contribution to the integral from the function w only.

As R — oo, K.(kR) — 5%

—kR(1-cos @)

= for some func-

Therefore, the functions w; and w, are of the form £ 9)e
tion g(@).

where the polar coordinates (R, ©) have origin centred on the body.

As R — o0, this function is exponentially small and so will give no contribution
to the integral, except in the region for small ©.

For small O, the function tends to ﬁ%

Therefore in this region, the highest order terms in the integrand are of the form

P Re2
9»%%(2—. Thus the integral contribution from the function w is of order

© o~kRE? ;
/.e kR Rdp

where ® — 0 as R — oo.

Making the variable change 3 = \/%t, then the integral contribution is of order
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2 ’\/%T —t2
\/;/_ %Te dt

which tends to zero as R — oo.

Hence the integral tends to zero as R — oo.
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5.3.2 The evaluation of the integral I for the pressure rep-
resentation over the circular contour circumference
radius R.

From equation (5.22), the integral I for the pressure representation over the circular

contour circamference radius R is

_ 9=2=% . a‘uJ 1 . ) a'u,j 1 . .
I= /0=0 {ua (V?ﬂ - ;png) — U; ("‘a?{ - ;an) - Uu,u,nl} Rdf

From equation (5.25), we see that @; and j are of order (§ as R — oo.

As R — o0, g-%—>g,;;—>0a.ndy“-—>0.

Therefore as R — oo, then the integral I over the circular contour circumference
tends to zero.

Therefore as R — oo, then the integral I over the circular contour circumference

tends to zero.
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Chapter 6
The flow 1n the far field.

6.1 Solutions for far field Laminar wake flow.

6.1.1 The Lagerstrom solution.

Lagerstrom considers solutions for the flow due to a singular drag element and a

singular lifting element.

The singular drag element is due to a force D located at the origin in the negative

z-axis direction. This is equivalent to a flow considering only the terms

b=

27U logr, and U =T,

This solution satisfies the condition that the streamfunction of the flow v is

single valued, and is such that there is a force D on the body located at the origin.

The singular lifting element is due to a lift L located at the origin in the negative

y-direction. This is equivalent to the flow due to the potential term

_L(#-n)

¢= 2 pU

However, Lagerstrom considers the force located at a point rather than a body

surface and so an extra condition that the velocity does not become singular at the

origin must be considered. Therefore we consider the flow due to the terms
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_L(6—m)

¢= 2mpU
such that
. dp aov
im {5+ % ) -
and

As r — 0, me~** Ky(kr) — —mlogr and so m =

217

, and U = me % Ky(kr)
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6.1.2 The Landau and Lifshitz solution.

We follow exactly the method given for obtaining the far field wake flow in Landau

and Lifshitz, applying it to two dimensional rather than three dimensional flow.
However, we shall see that this method applied to two dimensional flow presumes

the wrong order for the velocity composient u; in the far field wake. Hence this

method gives invalid results.

We first consider the function of the form

a  _ ksl

----—-em FE]

Ve

This function satisfies the diffusion equation

0? d

which the modified Helmholtz equation

8
( 2k(9a:) 0

reduces to in the far field wake.

We presume as in the method given in Landau and Lifshitz that the lift and drag

come from functions of the above form. Therefore to leading order we assume the

w ~ .__fl._. __,_c_.e"%ui __...._E__ k e"%ui
= oU \ 27z ’ pUV 2w

where d and ! are the drag and the lift on the body for the Landau and Lifshitz

solution

solution. However, from section (3.6) equation (3.33) we see that the wake velocity
component wy does not have this form in the far field and thus we obtain invalid

results.
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The condition ¥V.w must be satisfied. Therefore we consider the function G of

2
lower order than the function —‘—)lﬁ -2—1’{33' % such that
k ky?
Wo ~ ——pAf g™ 2¢ G
? pU Y 2na +

We want the function G to give no contribution to the lift and so we consider

G= —2—3 where Z is a continuous function. (Thus —pU [ 2Edy = 0 and so G gives

—00 By

no contribution to the lift.)
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Since
0 [ _wm? Jd ( _m?
5 () <5 (<F)

then the equation V.w = 0 reduces to

_6._ _l. ie'—% —_ _....Qf.::q_
Oy | pU V 2rx T gy?
where E satisfies the modified Helmholtz equation (V2 — 2k 2)Z = 0. In the far

field wake, we expect changes in velocity terms in the z-direction to be much less

than changes in the y-direction. Thus
= 0=

Ox? < 0y

and so the modified Helmholtz equation reduces to the diffusion equation

2 .
(o -2ha)z=0

Oy? dz
Therefore
2 =
9y? Oz x pUY 27z
Ly
We consider the function =/ = ¢ \/-” . Differentiating =’ with respect to z, we

obtain

in the far field.
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Thus we choose

= 1 k .
T U orz’

and the method given in Landau and Lifshitz applied to steady two dimensional

far field wake flow gives

wo [—LofE e Lk g O JE e
= pU orz pU onT Oy | pU orz’

The Landau and Lifshitz method assumes that the function w; is of the form
%e" Y in the far field and that the potential ¢ gives no contribution to the lift.
From equation (4.1.2), we see that there is a contribution to the lift from the po-
tential ¢, and from equation (3.33) we see that the order of w; in the far field is
a%ﬁe‘%y; and so both these assumptions used in this method are invalid.

Thus the Landau and Lifshitz method cannot be applied to two dimensional
flow. This raises questions as to the validity of the method in three dimensional flow,

although the same results are given in Batchelor (Introduction to Fluid Mechanics,

pg 377).

(The reason given by Landau and Lifshitz for introducing the function = is that
the term —%Vp from Oseen’s equation may be taken as the gradient VZ of some
scalar function =. However, there is no relation between p and = since p satisfies
Laplace’s equation and is of much lower order in the wake than = which satisfies the

diffusion equation .)
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Chapter 7

Discussion.

We have found the complete expansions for the velocity and pressure in the far field

where Oseen flow is valid for steady two dimensional flow.

Some of the coefficients in the expansion are related to the drag, lift and moment

on the body.

The complete velocity and pressure expansions are found to be equivalent to
the Oseen representation of velocity and pressure as a distribution of singularities

(Oseenlets and multipoles ) over a closed contour enclosing the body.

In the far field wake, the velocity components from the complete velocity expan-

sion are the same as the velocity components given in Lagerstrom.

An important result for two dimensional flow is that although the drag is ex-
pressed in terms of a wake traverse, the lift is calculated from the circulation of the

velocity potential V.
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7.0.3 Lamb’s treatment of three dimensional steady Oseen
flow.

Lamb considers the case of axisymmetric flow. He solves the Oseen flow past a
sphere and introduces a function x related to the vorticity w by w = (0, -—%f, %;—5 .

(From Lamb Hydrodynamics art. 342 equation 19.)

7.0.4 Goldstein’s treatment of three dimensional steady
Oseen flow.

[Goldstein, S. Proceedings of the Royal Society; volume 131 1931a pg 198-208]
Goldstein considers the singular needle and singular lifting element (defined in
Lagerstrom, High speed aerodynamics and jet propulsion; volume 6 pg 92-98) which

give rise to drag and lift forces respectively at the origin.

Hence he considers the equivalent of Oseen flow past an infinitely small body
which has no shadow region. However, it is possible that the potential ¢ and the

potential derivative %3 are discontinuous on the infinite half line z > 0, y = 2 = 0.

Goldstein locates the terms in the Fourier expansion of the pressure %% (where
f(y, z) are rational integral harmonics of degree n in the Fourier expansion of the

pressure and are funcions of y and z only) which give rise to the discontinuity in ¢.

Goldstein argues that a general solution for the flow past a body is some dist1i-
bution of singular needle and singular lifting elements. From section (4.3.1), we see

that this is indeed the case.
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7.0.5 Future work.

The aim of the work is to find the relations between ship manoeuvrability and hull

design.

We have found the velocity and pressure in the far field. (Some of the coef-
ficients in the expansion are related to the lift, drag and moment.) Thus these
expansions may be asymptotically matched to near field expansions for the velocity

and pressure.

We have also considered Oseenlets which are the singular functions valid in Oseen
flow which cause the lift, drag and moment on the body. We may further consider

the various body shapes generated by particular distributions of these.
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Appendix A

Fourier’s theorem for the
expansion of a function.

We consider an expansion of a certain type of function g(r,#) for r > R where the
radius R encloses any singularity in f and the function g(r,8) is continuous in the
region r > R. Thus in this region 6 is defined from 0 < § < 27. We apply Fourier’s
theorem to give us an expansion of the function g(r, 8).

We state a form of Fourier’s theorem below:

A certain type of function f(¢) defined in the region —T' < ¢ < T can be expressed

by a Fourier series in the form

it nnt . nwt
f(t) =(1/2)ao + 21: ancos(—T—) + b,.szn(T)

where the coefficients a,, and b,, are given by the formulas

ayn = -;‘—/_1; f(T)cos(-?}g,l)dr, by = —71—1/_2 f(T)sin(?—%I-)dT
Letting £ = 8 and T = =, we have an expansion for 8 in the range -7 < @ < 7.
Noting that f(8) = f(8 + 27), we give the expansion for 6 in the range 0 < § < 2.
Thus for fixed r, we expand g(r, ) in terms of a fourier series. Different values
of r give different coeflicients a,,, and b,. Thus a,, and b, are functions of r and we

write the expansion of g as:
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g(r,8) = (1/2)ao(r) + D_(an(r)cosnd + bs(r)sinnd)
1
where
1 por 1 2= .
an(r) = ;/0 g(r,8)cosnbdb, b,(r) = ;/0 g(r, 0)sinnbdl
for @ in the range 0 < 8 < 2.

A.0.6 The Fourier expansion of Laplace’s equation.

We consider the case for the function g(r,8) satisfying Laplaces equation. In polar

coordinates,
o, dp d 10p
2
Vig= {Br( "or) T 36 rao)}
Applying the operator (%) to the function a, we obtain
d . da, 1 27 9, 9p
% Tﬁ) = ;/0 81 ('r—a—)cosneda
* 9 10p
= _;/0 69( )cosm9d9
by Laplace’s equation.
Thus,
d  da, Jdp an LU
. TW) = —(1/7r) { [cosn()a()} +n/(; sznnedp}

2
= —(1/mr) {[psinnO]g" - n2/ cosnﬂpdﬁ}
0

= —a,
r

(Since g(f) = g(# + 27), and a%(:) = ag(%-;%r), the square bracketed terms in the

above equations are zero.)

Thus a,, satisfies the second order differential equation

2:1

"+ ral, —n?a, =0 (A.1)
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This is satisfied by a,(r) = Ar®t 4+ Bre2 for n > 1, where o; and «; are different
constants dependant on n.

Substituting into the above equation @, = r®, we obtain

rla(a— 1"t 4 rar" ! —n?r* = 0
ala—1)+a—-n? = 0
@ = n?

Thus a; = n, and az = —n.
For the casen =0

d
E;(rag) =0 = rag=k

Thus ag = 2kilnr + 2k, where k; and %k, are constants.
Similarly, b,(r) = Cpr"™ + D,r—".

Thus we obtain g as an expansion in the form

p(r,0) = kg + kylnr + Z {(Anr" + Bp,r~")cosnf + (Cn,r™ + Dnr'")sz’mw} (A.2)
1
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