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Abstract

The ability to perform efficient human motion tracking is essential in a wide variety 
of applications such as human-computer interfaces, anthropological studies, entertain­
ment, and surveillance. Markerless human body tracking involves recovering the pa­
rameters of a kinematic model from video sequences. This inference problem is made 
difficult by the noisy and ambiguous nature of camera images. The high dimension­
ality of the parameter space is also a major challenge, making human-body tracking a 
very active research area in the computer-vision community.

This thesis presents algorithms for real-time human body-tracking based on mul­
tiple camera views. A robust volumetric reconstruction technique is first presented, 
combining shape and colour from multiple views in an hierarchical scheme. Back­
ground segmentation and volumetric reconstruction are merged into a single process, 
with benefits in performance and robustness. The appearance model, used to relate 
the kinematic parameters to image observations, is composed of Gaussian blobs. This 
blob-based model is automatically acquired from the data, and updated from the recon­
structed volume in an Expectation-Maximisation framework. Our first proposed track­
ing algorithm recovers the pose of the kinematic model directly from the blobs, us­
ing a two-steps inverse kinematics procedure. A second proposed method approaches 
tracking as a Bayesian estimation problem. To guide the propagation of samples in 
the parameter space, we propose a predictive model based on the combination of lo­
cal dynamics and learnt variable length Markov models of behaviour. The evaluation 
of the likelihood of the candidate model configuration is critical for computational 
efficiency. We propose a novel evaluation procedure based on the relative entropy be­
tween mixtures of Gaussian blobs. The robustness and performance of our system are 
demonstrated on challenging video sequences exhibiting fast and diverse movements.

11



Declaration

No portion of the work referred to in this thesis has been 
submitted in support of an application for another degree or 
qualification of this or any other university or other institu­
tion of learning.

12



Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either 
in full, or of extracts, may be made only in accordance with instructions given by the 
Author and lodged in the John Rylands University Library of Manchester. Details may 
be obtained from the Librarian. This page must form part of any such copies made. 
Further copies (by any process) of copies made in accordance with such instructions 
may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this 
thesis is vested in the University of Manchester, subject to any prior agreement to the 
contrary, and may not be made available for use by third parties without the written 
permission of the University, which will prescribe the terms and conditions of any 
such agreement.

Further information on the conditions under which disclosures and exploitation 
may take place is available from the Head of School of Computer Science.

13



Acknowledgements

Of course I would like to thank my supervisor, Toby Howard, for his support and 
encouragements. 1 wish to acknowledge Aphrodite Galata for giving me the motivation 
to achieve more. Thanks are also due to my family, without whom nothing (or not 
much) would have been possible. Special mention to Juana for helping me going 
through all those years, and for so much more... Finally big thanks to all my friends in 
Manchester -  Vivek, Gilles, Franck, Nikolay, Lilian, Jun, Gwenn, Bruno, and all the 
others -  for making the whole experience enjoyable.

14



Publications

Some of the work described in this thesis also appeared in:

•  F. Caillette and T. Howard. Real-Time Markerless Human Body Tracking with 
Multi-View 3-D Voxel Reconstruction. In A. Hoppe, S. Barman and T. Ellis, ed­
itors, Proceedings o f the 15th British Machine Vision Conference (BMVC), volume 
2, pages 597-606, Kingston UK, September 2004.

• F. Caillette and T. Howard. Real-Time Markerless Human Body Tracking Using 
Colored Voxels and 3-D Blobs. In Proceedings o f the 3rd IEEE and ACM Inter­
national Symposium on Mixed and Augmented Reality (ISMAR), pages 266-267, 
Arlington VA, November 2004

• F. Caillette, A. Galata and T. Howard. Real-Time 3-D Human Body Tracking us­
ing Variable Length Markov Models. In W. F. Clocksin, A. W. Fitzgibbon and 
R H. S. Torr, editors, Proceedings o f the 16th British Machine Vision Conference 
(BMVC), volume 1, pages 469-478, Oxford UK, September 2005.

• F. Caillette, A. Galata and T. Howard. Real-Time 3-D Human Body Tracking using 
Learnt Models of Behaviour. Submitted to the journal of Computer Vision and 
Image Understanding (CVIU),

15



List of Notations

t index of the current frame (discrete timestep). (IN)
u pixel measurement. (R3)
Nu number of pixel measurements. (IN)
M the true colour value of the pixel. OR3)
w noise associated with a pixel measurement. OR3)

standard deviation of the pixel noise. OR)
Sw covariance matrix of the noise. 0R3x3)
O'e standard deviation of the error in the pixel model. OR)
Dm Mahalanobis Distance to the Gaussian model. (R3—>R)
D'm Mahalanobis Distance with shadows handling. (R3—>R)
Td classification threshold with d degrees of freedom. OR—>R)
s pixel sample in the current frame. (R 3)
Ns number of pixel samples. (IN)
S set of spatially distributed pixel samples { s i , . . . ,  Sjvs}- (H3xN‘)

V a voxel.
sv size of the side of the voxel V. (R )
Xv position of the centre of the voxel V. OR3)
D current recursive depth for the reconstruction. ON)
D+ maximal recursive depth for the reconstruction. ON)
Ci camera number i. ON)
Nc number of cameras. (N )
ci colour of the voxel, as seen from camera a. (R 3)
Cy set of voxel colours, for all cameras {CJJ, . . . ,  C^c}. (R 3xAfe)

B a single Gaussian blob.
full mean vector of a blob B. (R 6)

Mx mean position vector of a blob B. (R3)
Me mean colour vector of a blob B. (R 3)
S full covariance matrix of a blob B . (R6x6)
Sx spatial covariance matrix of a blob B. ( E 3 x 3)

S e colour covariance matrix of a blob B. (R3x3)

16



Sxc mixed colour-position covariance matrix of a blob B. (R3x3)
S offset of attachment along a bone segment. (K)

spatial standard deviation along the main axis. (R)
°y spatial standard deviation along the second axis. (R)
Pz spatial standard deviation along the third axis. (R)
Nb number of blobs in the appearance model. (IN)
B set of blobs {B \ . .. B Nb} in the appearance model.

JU the ith joint in the kinematic model.
Nj number of joints in the kinematic model. (IN)
k length of the bone segment associated with joint JU, (R)
UJi axis of rotation for the joint JU- (R3)
Oi rotation angle of the joint JU around a;*. (R)
n maximum rotation angle for the joint JU- (R)
07 minimum rotation angle for the joint JU- (R)
e first derivative of the joint angle 0* with respect to time. (R)
© set of all joint angles {6i , . . . ,  6Nj }. (R Nj)
© set of all joint angles derivatives {Oi, . . . , (R Nj)
0 set of all joint angles and their derivatives {©,©}. (R 2xNj)
Po global position of the root of the kinematic model. (R3)
Pi global position of a joint JU- (IR3)
V vector of global positions of all joints. (R3x7Vj)
R q global orientation of the root of the kinematic model. (R3x3)
Ri global orientation of a joint JU- (R3x3)
Gi goal position for the joint JU- (R3)
Ng number of available goal positions. (IN)
Q set of all goal positions. ( R 3 x A b )

dz dimensionality of the observations. (IN)
Zt measurement or observation at frame t. (Rd©
z t all available observations up to frame t. (Rtxd©
d dimensionality of the parameter space. (IN)
ct configuration of the model at frame t. (Rrf)
C{ configuration of the particle i at frame t. (Rd)
w* weight associated with the particle i. m
Np number of particles. (IN)
k index of a cluster of elementary movement. (IN)
K set of all the clusters of elementary movement.
q current state of the particle in the YLMM. (IN)
D k l Kullback-Leibler distance between distributions. (Rd*xRd*—>R)

17



Chapter

Introduction

Markerless human-body tracking is a difficult problem which has 
been one o f the important challenges o f the Computer-Vision com­
munity for about 20 years. Since the earliest attempts [OB80,
Hog83], progress have been made in all areas touched by human 
body tracking, but despite a great deal o f attention in the recent years, 
the general problem remains unsolved. With this thesis, we intend 
to contribute to the state o f  the art in specific aspects o f this com­
plex problem. We shall particularly focus our efforts on the real-time 
tracking o f structured motions, using multiple camera views. In this 
introductory chapter, we present the applications and motivations o f 
our research, and then give an outline o f the contributions and o f the 
structure o f the thesis.

1.1 Applications of Human Body Tracking

Full human-body tracking has a wide and promising range of applications. The film 
industry has been pioneering the need for motion capture since the emergence of re­
alistic computer graphics. The capture and re-targeting of the movements of actors to 
animated characters is a very important application, used in films, but also in video 
games and in live broadcasts. Alternatively, computer-generated human figures ne­
cessitate realistic animations, which is very hard to achieve manually using modelling 
softwares. Using recent developments in statistical learning methods, it is possible to 
model and generate stylised motions [BHOO]. However, these techniques still require 
large amounts of training data, usually acquired though motion capture.
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The automatic tracking of human motions is important for surveillance and secu­
rity. Computerised systems can detect suspicious patterns of behaviour [DH04] and 
trigger some alerts. Computers can also analyse movements for rehabilitative pur­
poses [MPC+05], such as assessing the recovery of patients. Motion analysis can help 
sportsmen locate their weaknesses, and improve their performances. For the general 
public, computers could become virtual teachers in activities such as dancing or sign- 
language, capable of both instructing students and correcting their errors.

Last but not least, motion capture finds exciting applications in smart offices or 
households [Coh98, Coh99, BMK+00], where computers try to understand the inten­
tions of humans. Movements and gestures are essential vehicles of communication, 
and recognising them is a milestone towards “human-aware” buildings. More gener­
ally, gestures can become an essential way to interact with computers, more natural and 
expressive than current computer-centred devices. The whole domain of computer in­
terfaces could be reshaped by gesture-based interactions, which combined with speech, 
could allow users to interact freely with virtual objects. Video games are an obvious 
example of application that would greatly benefit from body tracking to enhance the 
immersion of the player. Likewise, tracking motions can be used to control realistic 
avatars in virtual environment. Social interactions would then be possible without the 
barrier of distance.

1.2 Motivation, Aims and Objectives

Commercial marker-based motion capture systems [Vic, Met] have been around for a 
few years. They can acquire movements at very high frequencies with good accuracy, 
which makes them an ideal tool for the film industry. However, these tracking systems 
are very invasive, typically requiring special clothing and a very controlled studio-like 
environment. Their high price also confines them to very specific applications, and 
prevents their wider adoption as a human-computer interaction technique.

By contrast, cameras are low-cost, flexible and non-invasive devices: their use for 
motion capture is a natural evolution towards ubiquitous computing. In the last few 
years, cameras have become commodity hardware and are increasingly integrated into 
various electronic equipment, from computers to mobile phones. Like the human eye, 
they can capture much more than the relative positions of the limbs. The information 
transmitted by cameras is very rich, and the main challenge in computer vision is to 
extract the small sub-set of information that is relevant for a particular application.
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The non-invasiveness of cameras is probably the most important factor that could 
allow a wider adoption of full body-tracking setups. Ideally, the tracker should only 
rely on raw camera images, with no specific assumptions about the environment or the 
clothing of the subject. However, considering the state of the art, a solution to this 
general problem seems currently out of reach. Some constraints have therefore to be 
imposed onto the tracking environment. In our case, we assume a static environment 
and the availability of multiple camera views. In our opinion, these constraints are 
relatively easy to meet for indoor tracking, but restrict nonetheless the scope of possible 
applications.

Performance, although neglected by many researches, is a necessary condition for 
the system to be usable. Most applications are interactive, and demand a responsive 
tracking system. Even relying on the fast increase in computing power, trackers which 
currently run several orders of magnitude slower than real-time have little hope of 
wide adoption. An important aim of this research is to design a full-body tracker 
capable of running in real-time on commodity hardware. Many methodology choices 
are made with this efficiency constraint in mind. The notion of “real-time” is subject 
to interpretation, but throughout this thesis, we shall target a full system running at 
10 Hertz on a single 2 GigaHertz computer. This targeted framerate represents a bare 
minimum for many applications, but would nonetheless allow interactive tracking of 
human motions.

Tracking people from camera images is difficult because of the high dimensionality 
of full body kinematics, the fast movements and frequent self-occlusions. Moreover, 
loose clothing, shadows, or camera noise may further complicate the inference prob­
lem. A robust tracker should cope with all these challenges, and provide ways of 
recovery whenever it fails. In this thesis, we attempt to develop original answers to 
all these issues. We finally demonstrate a full-body tracker running in real-time on a 
single computer, and robust enough to track challenging sequences of ballet dancing 
as acquired by low-quality webcams.

1.3 Summary of Contributions

Novel and original work presented in this thesis include:

• A fast hierarchical background segmentation technique, with robust classification of
sets of pixel samples and handling of shadows.
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• A volumetric reconstruction algorithm modelling uncertainty when combining the 
classifications from available camera views.

• The efficient inclusion of colour information in the voxel-based representation.

•  The dynamic reorganisation of blobs to automatically learn the appearance model.

• An iterative tracking algorithm based on the positions and directions of blobs.

•  In the context of Bayesian tracking, a prediction scheme based on variable length 
Markov models of behaviour.

•  A fast evaluation framework for the particles, based on the cross-entropy between 
the blob models.

1.4 Thesis Outline

In this chapter, we briefly introduced the research field of human-body tracking and its 
applications.

Chapter 2 takes a statistical approach to the problem of background segmentation. 
We propose a model for robust classification of sets of pixels, and detail a hierar­
chical segmentation algorithm with significantly improved performance compared to 
per-pixel schemes. Chapter 2 also serves as an introduction to the volumetric recon­
struction method, presented in Chapter 3. The volumetric reconstruction algorithm 
exploits multiple views to build hierarchically a voxel-based representation of the sub­
ject of interest, following the shape-from-silhouette paradigm. In Chapter 3, we detail 
the original aspects of our algorithm, and conclude with the inclusion of colour and 
some results.

Blobs are probabilistic descriptions of data-sets. In Chapter 4, we describe the 
use of 3-D Gaussian blobs as trackers for individual body-parts. The Expectation- 
Maximisation algorithm is chosen to relate the blobs to the voxels obtained from the 
volumetric reconstruction. In order to avoid manual initialisation of the appearance 
model, a scheme which automatically acquires the number of blobs and their reparti­
tion on the skeletal model is introduced.

Chapter 5 describes the parametrisation of the kinematic model, and presents a fast 
hierarchical tracking algorithm based on Inverse-Kinematics. The chapter concludes 
with some results highlighting both the benefits and the limitations of this method.
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In an attempt to address some problems of the hierarchical approach, Chapter 6 
introduces a global optimisation method based on particle filtering. The particles are 
propagated using the predictions of a variable length Markov Model, and evaluated 
using the blobs description from Chapter 4.

An overall evaluation of the tracking methods presented in this thesis is proposed in 
Chapter 7. Challenging sequences of ballet-dancing are used for quantitative and qual­
itative tests. Our method is also compared to other established tracking frameworks. 
Finally we conclude in Chapter 8 with a summary of the thesis and some suggestions 
of future work.
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Background Segmentation

When the cameras are fixed and the environment is relatively static, 
silhouettes are appealing visual cues, both robust and fast to extract.
This chapter presents a novel hieraivhical scheme for background 
segmentation, based on statistical analysis o f the camera noise and 
robust classification o f sets o f samples. After a general introduction 
to background segmentation and a presentation o f the state o f the 
art, a Gaussian model o f background pixels is described. Segmen­
tation is then possible on individual pixels, but also on sets o f pixel 
samples, leading to a hieraivhical scheme. Shadows and changes in 
lighting are handled in a computationally efficient way. The chapter 
concludes with qualitative results and a performance evaluation.

2.1 Introduction

Segmenting an image means labelling each of its pixels as belonging to zones or classes 
of the image. Background segmentation is a sub-case of general segmentation, where 
one is only interested in a binary classification of the pixels: either they belong to the 
object of interest, or they do not. Different synonymous names can be found in the 
literature for “background segmentation”, like “background subtraction”, “foreground 
segmentation” or more generally “image segmentation”. The term “background” refers 
to every pixel in the image that does not belong to the object of interest.

Background segmentation is used in numerous tracking algorithms (see [MG01] 
for a survey) because it discards the background region and isolates the object of in­
terest. Unaffected by irrelevant features, tracking is then simpler and more robust. An
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important advantage of background segmentation over most other image cues is its 
capacity to handle low-quality and blurry images. Motion-blur is indeed omnipresent 
in motion-capture, giving a hard time to edge or texture-based detectors. Background 
segmentation, however, is almost unaffected by blurry regions. The resulting silhou­
ettes encode the shape and the pose of the subject in a simple way, and constitute 
reliable cues for tracking.

A single silhouette is often too ambiguous to infer the pose of a human sub­
ject, especially considering the frequent self-occlusions characterising human mo­
tions. Multiple views are then frequently used, either through projection and eval­
uation of the fitness of the model [CTMS03, GSD03b, DF99], or 3-D reconstruc­
tion [MTHC03, LSL01, CKBHOO]. The need for real-time multiple silhouettes ex­
tractions imposes strong performance constraints on background segmentation tech­
niques. These techniques are usually kept simple enough to run in real-time while 
leaving enough spare processing time for subsequent algorithms.

The main inconvenience of background segmentation is the need to build a model 
of the background. In most cases this implies capturing the empty scene prior to the 
tracking and keeping cameras immobile during the tracking. These constraints are not 
too restrictive for an indoor office-like environment but applications such as tracking 
from archive video footage are ruled out. Another challenging problem is that back­
grounds do not usually remain totally static during long capture durations because of 
changes in lighting or moving objects. A way to update dynamically the background 
model during the actual segmentation is needed.

In the literature, classification is often performed independently on each pixel by 
comparing the current colour of a pixel with a model of the background. A standard 
framework for background segmentation is presented in Algorithm 2.1. In this al­
gorithm, a model for each background pixel is first built from an empty scene, and 
the actual segmentation is then performed by comparing current pixel values with the 
background model. This scheme is followed by most of the real-time image segmen­
tation methods, despite using more or less complex models of the background. The 
choice of the model must be a compromise between an over-simplified one, leaving 
many pixels misclassified, and a too complex one where the evaluation of the distance 
between the current pixels and the background model would be too complex for real­
time execution.

Image segmentation is often performed on a per-pixel basis, ignoring all higher
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Algorithm 2.1: Basic framework for pixel-based background segmentation.
> Background acquisition with an empty scene; 
foreach training image o f the background do

foreach pixel do 
| build and update the background model (Section 2.3); 

end
end

> Online background Subtraction; 
foreach new input frame do

foreach pixel do
compute the distance between the current pixel colour and the 
background model (Section 2.4); 
if distance > threshold then 

| pixel is labelled foreground; 
else

pixel is labelled background; 
update the model with the current pixel;

end
end

end

level structure. A justification is that image segmentation is performed as a pre­
processing step, and classification errors can be recovered from at later stages. Nev­
ertheless, foreground regions are often contiguous, and spatial coherency can be ex­
ploited to improve performance and robustness of background segmentation. When 
introducing a spatial prior, one must be careful not to bias the estimation. In this chap­
ter, we shall introduce a novel hierarchical scheme, performing classification on sets 
of samples in an unbiased way.

If cameras were perfect noiseless devices, background segmentation would be triv­
ial: any kind of distance between a single image of the background and the current 
frame would exhibit the object of interest, and thresholding values above zero would 
finish the algorithm. Unfortunately cameras have inherent noise which cannot be ig­
nored. The theoretical way to handle noise is first to measure its distribution, then to 
model it and finally to design robust statistical methods dealing with it.

After a presentation of related work on background segmentation, this chapter 
starts with the elaboration of a statistical model for the pixels of the background (Sec­
tion 2.3). The statistical tools to perform segmentation on individual pixels and on 
sets of pixels are then introduced in Section 2.4, leading to a hierarchical segmentation
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scheme. Section 2.5 then presents a simple and efficient shadows removal algorithm. 
Finally, a comparative evaluation of our method followed by a discussion concludes 
the chapter.

2.2 Related Work

The most basic methods reported in the literature (such as [BLOlb, TMSS02, Sze90, 
CKBHOO]) do not attempt to model noise. A simple subtraction is performed between 
the current pixel’s intensity and the corresponding pixel in a reference frame of the 
background. The result is then thresholded with an arbitrary chosen value. While this 
approach is very fast, it only gives good results if the contrast between the foreground 
object and the background is high. The segmentation of human body with standard 
clothing in a cluttered environment using this simple scheme is poor.

Wren et a l  [WADP97] use a more advanced model of the background, where the 
YUV colour of each pixel is modelled by a trivariate Gaussian distribution. The num­
ber of training background samples is arbitrary, but the method is robust and runs in 
real-time. A single Gaussian distribution is enough to model static backgrounds, but 
applications like road traffic control need to account for more variability in the back­
ground model. A logical extension is then to use more than one component per pixel: 
Friedman et a l  [FR97] and Stauffer et a l [SG99] both model each background pixel 
by a mixture of Gaussians. The Gaussian models are learnt using an Expectation- 
Maximisation framework. While this approach is theoretically appealing and gives re­
liable results in difficult cases, it is too general (and hence computationally expensive) 
for a simple, mostly static, office environment. The algorithm of Stauffer et a l  [SG99] 
will be evaluated in Section 2.6.

Another interesting extension was proposed by Javed et al. [JSS02] with a frame­
work for hierarchical segmentation. The segmentation is done successively at 3 levels: 
at the pixel level, a standard mixture of Gaussians is used in conjunction with gradients 
to classify each pixel as belonging to background or foreground. At a “region” level, 
individual misclassifications are recovered from, as a foreground region is assumed to 
be continuous and bounded by high-gradient values. Finally, the frame level accounts 
for global illumination changes. The whole framework seems particularly well adapted 
to outdoor monitoring, but unfortunately no performance evaluation is provided.

When multiple views are available, some researchers thought of including depth 
information in the model of the background. Harville et al. [HGWOlb, HGWOla] use
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a standard mixture of Gaussians in YUV space for colour information, and add depth 
collected from disparity in the Gaussian models. The method is targeted at pedestrian 
monitoring applications, and the learning rate of the model is modulated by the de­
tected “activity” at the corresponding pixels. Similarly Taycher and Darell [TD02] per­
form background segmentation simultaneously on multiple views using a 3-D model 
of the background previously acquired using range scanning lasers. An object is then 
classified as foreground if it occludes the background. These methods are very inter­
esting, especially in our case where multiple views are available, but are either too 
computationally demanding (computing disparity) or not flexible enough (the need to 
acquire a 3-D model of the background).

Using prior knowledge about foreground objects, Zhao and Nevatia [ZN02] pro­
pose a Bayesian framework where each pixel is segmented using both a colour model 
and the prior probability that it belongs to an object-level model. This scheme is ap­
plied to human monitoring where the heads of people are first detected, and some 
assumptions are then made about the expected position of the body. The facts that 
humans stand mostly vertical, and that their size can be bounded by perspective pro­
jection of the head position are exploited. Unfortunately, the same kind of scheme 
cannot easily be applied to full human body tracking because the positions of the 
limbs are difficult to predict. Using the tracked position from the previous frame as 
a model for Bayesian segmentation could be an idea, but since we are in turn using the 
segmentation for estimating the body pose, this would lead to a biased estimation.

2.3 A Model for Background Pixels

In this section, we propose a statistical model for pixels belonging to the background. 
A formal definition of the noise, and a measurement protocol are first introduced. The 
pixels’ colour representations are also discussed before starting the actual experimental 
noise measurements. From the obtained results, a model is proposed, along with a 
quantitative error estimation based on the number of training images.

2.3.1 Hypotheses and Formulation

Understanding camera noise should be the very first step for designing vision algo­
rithms. In this section, measurements of the camera noise will be used to propose a 
statistical model of pixels’ variations. While not demonstrated here, we will assume
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that pixels are statistically independent from each other. Indeed, the hardware camera 
sensors being independent for each pixel, it is reasonable to assume the same indepen­
dence in the output image. Moreover, the noise associated with a given pixel does not 
depend on the previous values of this pixel (in other words, this is uncorrelated noise). 
We will also assume that noise properties are not correlated with the position of the 
pixel on the image. Some of these assumptions might prove false in certain specific 
circumstances, but they constitute a reasonable basis of work for our purpose.

Because each pixel is constantly affected by noise, we need to measure its colour 
values over multiple frames to get an estimate of its true (noiseless) value, jj,. Let 
{u \ . . .  U]\rtt} be some measured colour values of the same pixel over Nu time steps, 
and {iui . . .  vjnu} the noise vectors associated with each measurement.

We assumed that the noise distribution has a zero-mean, but since we have no ground 
truth for the pixel’s value, there is no way to measure a possible bias in the noise. 
Actually, even if the noise was biased, we would simply consider the real value plus 
the bias as the correct value for the pixel. So, if Nu is a statistically significant number 
of samples we write:

where £?[•] denotes the expected value of a statistical variable.

2.3.2 Measuring the Noise

Regardless of the underlying processes generating the camera noise at each pixel, the 
sum of pixel samples over a sufficient number of frames closely follows a Gaussian 
(or Normal) distribution. This powerful result comes from the Central Limit Theo­
rem [Fel45] which states that the sum of a large number of independent, identically 
distributed random variables follows asymptotically a Gaussian distribution. In our 
case, each sample is a 3-Dimensional vector (dimensionality of the colour-space) so 
that the sum of sample values follows a trivariate Gaussian distribution:

Vz e  [ 1 . . .  Nu],Ui  =  fi +  Wi (2 . 1)

E[w) = E[{wu ■ ■ • , m } ]  = 0 (2 .2)

(2.3)
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where is the covariance matrix of the noise, which is not known yet. In particular, 
it follows from Equation 2.3 that the true value of the pixel, /i, is the expectation of the 
mean of the samples:

Actually, we chose the properties of the noise (null expectation) for this exact purpose. 
More interestingly, we are now capable of evaluating the uncertainty, or variance, as­
sociated with the measurement:

It is worth noticing that the variance of the measurement decreases linearly with the 
number of samples. Note that this same result can also be obtained with the Cramer- 
Rao lower bound. This result is interesting because it will allow us to obtain a good 
estimate of /i with an affordable number of samples. Nevertheless, in order to evaluate 
this “sufficient” number of samples, we need to measure the noise covariance (£ w). 
This is not a direct and easy measurement, since the true value of each pixel (/Li) is 
needed to determine the quantity of noise in the samples (Equation 2.1).

As seen in Equation 2.4, the maximum-likelihood estimate of /i over the samples 
{u \ . . .  is the mean of the samples, and the uncertainty associated with this esti­
mator is modelled by the covariance matrix from Equation 2.5. Another way to put it 
is to see the mean of the samples as a random vector following a trivariate Gaussian 
distribution of mean fi and covariance matrix Ylw/N u. The proposed experimental ap­
proximation consists in taking a statistically large number of samples (Nu ~  1000), so 
that the uncertainty in the measurement is minimal (Equation 2.5), and thus having:

From this and Equation 2.1, obtaining the noise vector for each sample is straightfor­
ward:

The next sections exploit this equation to study the properties of the noise, and we 
propose a model accounting for pixels’ variations.

(2.4)

(2.5)

(2 .6)

(2.7)
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(a) Noise for the Red Channel. Measured stan­
dard deviation awR = 4.89.
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(b) Noise for the Green Channel. Measured 
standard deviation awG = 3.69.
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(c) Noise for the Blue Channel, 
standard deviation awB — 7.91.
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Figure 2.1: Noise distribution in RGB colour-space.

2.3.3 Measurements and Interpretation

The first measurements presented in Figure 2.1 show the characteristics of the noise in 
RGB colour-space (see Appendix A for an overview of colour-spaces). The noise on 
each colour channel was measured independently as in Equation 2.7. The first graphs 
(Figure 2.1(a)-(c)) are cumulative noise values over all the pixels of the image, for 
100 image samples (Nu — 100). The resolution of the camera was set to 320 x 240 
for this test, which generated over 7.5 million measurements of the pixel values. The 
distribution of the noise can then be deduced for each colour channel.

It can be noticed that the distributions for each colour component have roughly 
a Gaussian shape, even if closer inspection tends to reject this assertion. Actually, 
these distributions are, at best, sums of Gaussian distributions, all zero-centred but 
with different variances: Figure 2.1(d) exhibits the relation between the variance of 
the noise and the colour intensity for the Red colour channel. There is a correlation 
between colour intensity and noise, darker pixels tending to suffer from more noise
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(a) Sony Wfine CCD™. (b) Sony Super HAD CCD™.

Figure 2.2: Spectral sensitivity characteristics o f some common camera sensors 
(reproduced from Sony camera specifications). In order to widen the recovered 
spectrum, some sensors use more than 3 input filters, which are combined to form 
the output.

than brighter ones.
The motivation for these measurements was to quantify the variance of the noise, 

crw2, and this has been done for each colour channel independently. The covariance 
matrix linking the noise variations for each colour channel was measured over 1000 
image samples:

/  23.87 1.93 10.30\
C o v (w r g b ) ~  [ 1-93 13.63 2.91

\10.30 2.91 62.51/

The diagonal elements are the variances for Red, Green and Blue channels. The other 
values represent the dependencies between variations due to the noise on different 
channels. We can notice, for example, that the noises on the Red and Blue channels are 
strongly interdependent. This is explained by the fact that RGB components are com­
puted as a transformation of an internal hardware colour representation which matches 
the camera sensors. For every model of camera, the range of the sensors never matches 
exactly the output colour space (Figure 2.2). A correction is then needed, where output 
colour components are computed as a non-linear combination of sensor measurements. 
Some noise on a camera sensor is then reported to more than one output colour com­
ponent, hence the observed dependencies.

The exact same measurements in YUV colour space are reported in Figure 2.3. It 
is very noticeable that noise distributions on YUV channels are narrower than on RGB 
channels. The standard deviations are consistently smaller, meaning that the noise is 
weaker in YUV colour space. These results should however be taken carefully: an
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(a) Noise distribution for the Y channel. Mea­
sured standard deviation uwY — 3.07.
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(b) Noise distribution for the U channel. Mea­
sured standard deviation awU — 3.89.
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(c) Noise distribution for the V channel. Mea­
sured standard deviation <jwV =  2.73.
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(d) Correlation between noise variance and 
colour intensity for the Y channel.

Figure 2.3: Noise distribution in YU V  colour-space.

important point to consider is that the YUV space is “smaller” than the RGB one. For 
example, the value (255,255, 255) is possible in RGB, but not in YUV. This alone 
could explain the narrower noise variances observed in YUV space. The measured 
covariance matrix is:

f  9.43 1.42 0.04 \

C ov(w yu v ) = 1.42 15.15 -0 .68
\0.04 -0 .68 7.48 /

Dependencies are minimal, which gives an advantage to the YUV colour space with 
respect to noise (at least with our model of cameras). There is a small dependency be­
tween noise on Y and U channels (correlation coefficient equal to <TwYU — =  0.12),

1 -ohiuu
but still weaker than the dependencies observed in RGB colour space. From these re­
sults, we choose the YUV colour-space, both for of its good performance toward noise 
and for the separation of luminance which will prove useful to handle shadows.
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2.3.4 Statistical Model for the Background Pixels

The noise distributions measured in Figure 2.3 represent the cumulative noise for all 
the pixels in the image. However the properties of the noise depend on the colour value 
of the pixel, and also on other parameters such as its position in the image. So, even 
if it can provide an overall evaluation of the noise properties, the cumulative noise 
distribution for all pixels is inadequate to find a model for the noise for individual 
pixels.

Measuring the noise distribution for each pixel, in every condition would be an im­
possible task. A Gaussian model for noise has been widely and successfully used in the 
literature. Within this research, we therefore assume a Gaussian model for the camera- 
noise, and justify this choice a posteriori by the correspondence of the measurements 
to the model. A pixel sample s belonging to the background is then modelled by a 
trivariate Gaussian distribution of mean vector p, and covariance matrix E^:

(2.8)

where, as defined in Equation 2.6:

Nu Nu
p ^  —  V )  Ui and Yiw — 'N ' (u{ — p)(ui -  p )T (2.9)

u i=1 u i= l

The probability density function of the trivariate Gaussian distribution is then defined 
as:

E„) =  - 1 (2.10)
(2tt)2 VIE^I

2.3.5 How Many Training Frames?

Having found an appropriate model for the pixels of the background, we still need 
to know how this model should be built. Estimating the mean and covariance matrix 
of a Gaussian distribution is straightforward, but these estimations have to be trusted 
for subsequent analysis to be meaningful. In this section, we estimate the number of 
training frames required in order to derive an accurate model of the background. This 
question is not insignificant, since, as we shall see, an inadequate number of training 
frames can result in significant errors.

Using the noise covariance matrix previously measured in Section 2.3.3, we can
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Confidence level {a): 50% 68% 80% 90% 95% 98% 99% 99.7%
________ Constant za : 0.67 1.00 1.28 1.64 1.96 2.33 2.58 3.00

Table 2.1: Values o f  the constant za, in number o f standard deviations, for two- 
sided a confidence intervals with Gaussian distributions [Mit97].

compute its standard deviation:

In order to get the maximal error, we are interested in an upper bound of the stan­
dard deviation, and thus of the variance. By definition, the maximal variance of a 
distribution lies along the first eigenvector of the covariance matrix. Put another way, 
the maximal variance is the greatest eigenvalue of the corresponding covariance ma­
trix. We can then estimate the standard deviation of the noise for our camera in YUV 
colour space: ow = \/l5 .54  =  3.94. Following Equation 2.5, the standard deviation oe 
of the measurement over Nu samples can now be estimated:

One of the interesting properties of the Gaussian distribution is that confidence 
intervals are well known (Table 2.1) and allow straightforward error estimation. In 
particular, if we consider the error between the actual measurement and the expected 
colour of a pixel:

then, this error follows a normal distribution of standard deviation oe. For a particular 
background pixel, this error has a  percent chances of being lower than za .oe where za 
is the constant defined in Table 2.1. Table 2.2 reports the maximal errors (za.oe) for 
different confidence levels a, and number of background samples Nu.

To analyse Table 2.2, we should keep in mind that the measured standard deviation 
of the noise as given by Equation 2.11 was aw =  3.94. Even if the noise itself does 
not necessarily follow a Gaussian distribution, it means that measured pixel values are 
typically that distant from their expected value, /i. It is very important to minimise the

sJ\Cov{w)\ (2.11)

(2 .12)

error
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Samples Nu 1 5 10 25 50 100 1000
a Std dev. oe 3.94 1.76 1.25 0.79 0.56 0.39 0.12
# Max. error 6.62 2.96 2.09 1.32 0.94 0.66 0.21oa\ percentage 2.59% 1.16% 0.82% 0.52% 0.37% 0.26% 0.08%
# Max. error 7.73 3.45 2.44 1.55 1.09 0.77 0.24
as percentage 3.02% 1.35% 0.95% 0.60% 0.43% 0.30% 0.10%

98
% Max. error 9.18 4.11 2.90 1.84 1.30 0.92 0.29

percentage 3.59% 1.60% 1.13% 0.72% 0.51% 0.36% 0.11%

99
.7

% Max. error 11.82 5.29 3.74 2.36 1.67 1.18 0.37
percentage 4.62% 2.07% 1.46% 0.92% 0.65% 0.46% 0.15%

Table 2.2: For a given number o f image samples, Nu, this table gives the maximal 
error which is expected not to be exceeded a percent o f the time. The percentage 
rows show how this maximal error relates to the range o f possible values for the 
colour channel.

error between actual measurements and expected values of the pixels because this error 
is additive with the noise itself and introduces bias for each measurement. As a rule of 
thumb, considering that the accuracy on each channel is hardly greater than 1/256th of 
the intensity range (colours are often encoded with integer values), choosing a maximal 
error between 1 and crw/2  is sensible. This maximum of ow/2  is purely indicative, but 
reflects the fact that the uncertainty of the mean of the model should be significantly 
lower that its variance. The value of a  has to be chosen carefully too, considering the 
very high number of pixels in an image. Taking a  = 90% for example means that there 
will statistically be 10% of outliers. This could be alright if the subsequent algorithms 
are very robust to outliers, but in general, confidence values greater than 98% should 
be considered.

Best compromises between accuracy and practical capture duration constraints can 
be found for 50 <  <  100, where the error in the expected colour of the pixels is
relatively small compared to the noise itself. Such numbers of samples can be reached 
quickly in most systems with capture rates being usually greater than 15 frames per 
second. Fewer samples can be used if the capture time is very limited, but =  10 
sample frames seems a strict minimum for tackling the noise.

2.4 A Metric for Segmentation

In Section 2.3, we have defined a Gaussian model of the background for each pixel of 
the image. Our aim is to segment the image into a background and a foreground region.
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For this purpose, we need a metric, or “distance” to evaluate how close a given pixel 
is to the background model. This section defines such a distance between pixels and 
the background models, and shows how thresholds on this distance can be derived. 
Segmentation of individual pixels is extended to a set of pixel samples, eventually 
leading to a novel hierarchical segmentation scheme.

2.4.1 Mahalanobis Distance

We saw in Section 2.3.4 that a background pixel s is modelled by a trivariate Gaussian 
distribution of mean vector fi and covariance matrix The exponent of the expo­
nential is a quantity that characterises the distance between the current sample and the 
mean of the distribution. It is called the Mahalanobis distance, and is denoted as DM ():

Dm (s , £«,) = { s -  (i) ■ • (s -  f f  (2.14)

This formulation is relatively similar to a standard Euclidean distance with an addi­
tional normalisation using the covariance matrix of the distribution. In particular, when 
the covariance matrix is equal to the identity, the Mahalanobis distance is equal to 
the squared Euclidean distance. In practice, it means that the square root of the Ma­
halanobis distance measures the number of standard deviations between a sample and 
the mean of the Gaussian distribution. This normalisation is very useful because all the 
pixels on the image can now be compared with a similar metric. A common threshold 
value can therefore be found based on the Mahalanobis distance. Note that the ma­
halanobis distance can also be defined between two arbitrary points by replacing the 
mean of the distribution in Equation 2.14 by the second point of interest.

2.4.2 Segmentation of individual Pixels

Since each pixel sample is composed of 3 channels (YUV), the distribution of Maha­
lanobis distances naturally accounts for these 3 degrees of freedom. We also use the 
fact that the Mahalanobis distances between a Gaussian model and the samples gen­
erated from this model follow a Chi-Square distribution. The Mahalanobis distance 
between a background pixel and its model of the background is a random variable 
following a Chi-Square distribution with d = 3 degrees of freedom (x§).

D m ( ) ~ x I  (2-15)
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The Chi-Square distribution can also be seen as a model for the normalised “strength”
of the noise. The probability density function of a Chi-Square distribution with d 
degrees of freedom is given below for x  > 0:

A comparison between the x l  distribution, and the actual measured Mahalanobis 
distances for background pixels over 20 frames (over 1.5 million samples) is presented 
in Figure 2.4. As we can see, measurements coincide very closely with our theoret­
ical assumptions, which constitutes the a posteriori justification for using Gaussian 
distributions to model background pixels.

We can also notice from Figure 2.4 that the probability of measuring a small Ma­
halanobis distance (less than 1) is comparatively small: it is indeed very unlikely to 
observe minimal noise on the three channels simultaneously. However, this particular­
ity of the distribution can be ignored for classification purpose because even if samples 
with very low Mahalanobis distances are unlikely, they should still be considered as 
belonging to the background model.

In order to find the most appropriate threshold, some values of the probability den­
sity function of the Chi-Square distribution are presented in Table 2.3. The last line 
shows the values of the cumulative distribution function of highlighting the rel­
atively good “compactness” of the Mahalanobis distance. For example, choosing a 
threshold of Dm Q < 15 means that 99.82% of background pixels should be correctly 
classified. Likewise, for any desired confidence level a, we can choose a threshold 
Td{ot) on the Mahalanobis distance using the cumulative density function of Xd:

Of course, this level of statistical misclassifications assumes a perfect (or at least very 
good) model of the background, which, as we saw in Section 2.3.5, is hard to achieve. 
In practice, using between 50 and 100 training frames increases the rate of misclassifi­
cations by only a few percent.

(2.16)

where

and in particular, for ri~3:

f xi(t)d t = a => P(D m (s ) < Td(at)) =  a  (2.17)
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Figure 2.4: The dashed line is the probability density function o f  the x 2 distribu­
tion with 3 degrees o f freedom. The solid line represents the measured cumulative 
Mahalanobis distances for around 1.5 millions o f background pixels.

X 1 3 9 12 15 18

fo f x i ^ dt

0.242
0.199

0.154
0.608

0.013
0.971

0.0034
0.9926

0.00085
0.9982

0.00021
0.9996

Table 2.3: Some values o f the probability density function and cumulative distri­
bution function for the Chi-Square distribution with 3 degrees o f freedom.

An example of background segmentation with a threshold of Dm Q <  18 is pre­
sented in Figure 2.5. Note that the environment is cluttered and the clothing of the 
subject is very similar to some elements of the scene. Shadows are obviously the main 
difficulty: some methods to reduce their effect will be presented in Section 2.5. The 
rest of the segmentation is relatively good considering the quality of the cameras and 
the absence of post-processing. A few samples are still misclassified (given our model 
and Table 2.3, an average of 31 pixels should be misclassified for a 320 x 240 image 
and a threshold of 18) but this is not really a concern, for two reasons. Firstly, we 
are using multiple cameras for 3-D reconstruction, and there is very little chance to 
observe these random misclassified samples at coherent positions across the different 
views. The misclassifications due to noise will then naturally be discarded during the 
reconstruction process (as described in Section 3.3.2). The second reason is that pixels
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(a) One of the background images. (b) Input frame for segmentation.

(d) Binary segmentation at Dm Q <  18.(c) Mahalanobis distances as grey-levels.

Figure 2.5: Segmentation with 100 background “training” images. Note that the 
background is not empty during training, which has consequences on the segmen­
tation. Shadows are the main cause o f misclassifications, but using a threshold o f 
18 still leaves a few random samples misclassified.

will not be segmented individually, but a decision will be taken about a set of uniformly 
distributed samples instead. This scheme is detailed in the next section, but intuitively 
speaking, the probability of misclassifying a set of samples should be lower than with 
a single sample because of the spatial incoherence of noise.

2.4.3 Classification of a Set of Samples

Let us now consider a set of pixel samples S  = { s \ .. .S jvs} spatially distributed in 
the current image frame. Our goal is to decide with reasonable confidence whether 
the whole set of samples S  belongs to the background, the foreground, or an edge. 
It is said to belong to an edge if some of its pixels belong to the background while
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others belong to the foreground. The classification of a set of samples is an important

without segmenting each individual pixel in a binary way. We claim that classifying 
sets of samples is statistically more robust and more efficient than standard “per-pixel” 
classification techniques. This new scheme will be the basis of voxel classification 
presented in Section 3.3.2.

The classification has to be done for the whole set of samples, and not indepen­
dently on each individual sample. Indeed, the likelihood that S  has been generated by 
the background model is the product of the probabilities that each sample Si belongs to 
the background model. As a simple example of this, let us consider a set of 8 samples, 
each having a 60% probability of belonging to the background. Segmenting the sam­
ples independently from each other leads to classify all of them as background, and 
consequently to classify the whole set as background. However, the real probability 
that the whole set of samples belongs to the background is only (0.6)8 ~  1.7%, which 
does hardly constitute enough evidence to discard the set of samples straight away.

In order to derive probabilities for $ , we need to to be able to compare the dis­
tributions of individual samples on a similar basis. The Mahalanobis distance (Equa­
tion 2.14) can be used as a point of comparison, since it has the interesting property of 
being normalised with respect to the initial Gaussian distribution. As we saw in Sec­
tion 2.4 the Mahalanobis distance Dm {s{) between a pixel sample and a trivariate 
Gaussian model follows a Chi-Square distribution with 3 degrees of freedom.

We could threshold these individual Mahalanobis distances, but our goal is to clas­
sify the whole set of samples S. The likelihood that the whole set S  has been generated 
by the background model is the product of the individual probabilities for each sample. 
Looking back at Equation 2.10, we can see that because of the exponential, a product of 
Gaussian probabilities corresponds to a sum of Mahalanobis distances. The total “dis­
tance” of S  to the background model is then the sum of the individual Mahalanobis 
distances at each sample:

The Chi-Square distribution has the interesting property that the sum of indepen­
dent variables, each following a Chi-Square distribution, follows itself a Chi-Square 
distribution with a number of degrees of freedom equal to the total degrees of freedom 
in the independent variables. Practically, this means that D m { $ )  follows a Chi-Square 
distribution with 3 x Ns degrees of freedom, where Ns is the number of pixel samples

problem because it will allow us to take decisions about whole areas of the image

(2.18)
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0.14
6 degrees of freedom 

15 degrees of freedom 
27 degrees of freedom 
48 degrees of freedom

0 0 10 20 30) 40
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Figure 2.6: Chi-Square distribution for 2 trivariate samples (6 degrees o f  free­
dom), 5 samples (15 dofs), 9 samples (27 dofs) and finally 16 samples (48 dofs).

The probability density function of a general order Chi-Square distribution was 
given in Equation 2.16, and a graphical representation of the distribution for various 
number of samples is shown in Figure 2.6. The graph shows that the uncertainty in 
the measurement (broadness of the distribution) increases with the number of samples. 
Nevertheless, by considering the set of samples as a whole, this uncertainty increases 
slower than when segmenting each sample independently. In practice, we saw in the 
previous section that a threshold of DMQ <18 was adapted to threshold single pixels. 
One might naively combine these individual thresholds to classify the set, which would 
amount to a “virtual threshold” of 18 x 9 — 162 for a set of 9 samples. By compari­
son, Figure 2.6 reveals that the sum of Mahalanobis distances for Ns = 9 samples (27 
degrees of freedom) should not exceed a threshold between 60 and 70, which is 2.5 
times lower than the previous one. At the same time, considering the set of samples as 
a whole is more tolerant to individual outliers (samples with individual Mahalanobis 
distance greater than normal) as long as the total distance is statistically plausible. 
By thresholding the sum of distances on samples instead of individual distances, the 
condition of belonging to the background model is then both tighter and more robust.

The appropriate threshold for the sum of an arbitrary number of samples has now to 
be determined. In a very similar way to that in which the threshold on individual pixels 
was defined in Section 2.4.2, the choice of a threshold for a set of samples is based on 
the Cumulative Density Function (cdf) of the Chi-Squared distribution. We might want

in the set <S:
(2.19)
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to find the threshold T  that will classify correctly a set of Ns samples a%  of the time, 
which is equivalent to finding the solution of the equation cdfx2 ^  ( T )  =  a. We shall 
denote as T3,Ns (a) the threshold classifying a set of k samples with a confidence level 
a , and which is the solution of:

fT3,Ns(a)
/  4 lvsW ^  =  q; (2-20)

j  0

These threshold functions are plotted in Figure 2.7 for confidence levels a  =  
{95%, 99%, 99.9%} and the number of degrees of freedom d in the range [1 ... 100]. 
When the number of degrees of freedom is fixed, the threshold Td{a) can simply be 
pre-computed. However the number of pixel samples can be dynamically adjusted as 
we shall see in Section 3.3.2. The values of the thresholds can then either be tabu­
lated and used as such, or approximated by a simpler function evaluated in real-time. 
Second-order polynomials are appropriate for approximating the threshold functions, 
because of their simplicity and the relative smoothness of the functions to approximate. 
A simple least-square fitting gives the desired polynomial coefficients:

rd(0.95) ~  —0.0013.d2 +  1.3193.ci +  4.987
T<j(0.99) ~ —0.0019.d2 + 1.4491.d + 8.5205

Td(0.999) ~ —0.0019.d2 + 1.5094.d + 13.0247

These fitted polynomials are shown as error bars on the curves of Figure 2.7, ex­
hibiting the goodness of the fit in the interval d =  3.Ns £ [1,100]. For higher degrees 
of freedom, the polynomial approximations can become inadequate, but for our pur­
pose, this interval is sufficiently wide.

The result of this new segmentation scheme based on sets of 9 samples is pre­
sented in Figure 2.8. Each pixel is segmented in a set including its 8 neighbours, and 
the whole set is thresholded at a distance of 70. As expected, the final segmentation is 
less sensitive to random noise, and more of the silhouette is recovered. This is partic­
ularly visible on the trousers of the subject, which colour is very close to the floor’s.
On the performance side, there is a slight overhead when adding all the distances to­
gether (Equation 2.18), but without particular optimisation we found the drop in speed 
negligible.

With this new segmentation scheme, sets of samples belonging to the background
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Figure 2.7: Values o f the Mahalanobis distance giving a particular level o f confi­
dence (95%, 99% and 99.9%), with relation to the number o f degrees o f freedom. 
Second-order polynomial fittings are displayed as error bars (very small on the 
graph).

(b) Thresholding at Dm (S) < 70.(a) Grey-level distances.

Figure 2.8: Segmentation using the centre pixel and its eight neighbours as the 
sample set. A few details are blurred compared to the per-pixel segmentation (Fig­
ure 2.5), but the tradeoff is that less noise remains and some parts o f the silhouette 
that were badly segmented are now recovered. One can notice that shadows are 
stronger, but a method to reduce their effect will soon be introduced.

can be detected and discarded with a better confidence level than previously possi­
ble. The remaining sets of samples are then either part of the foreground, or an edge. 
Detecting edges is not necessary for the segmentation itself, but it is done at a very 
low cost, and it will prove very useful for the hierarchical scheme presented in Sec­
tion 2.4.4.
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(a) Grey-level distances. (b) Edges and foreground sample sets.

Figure 2.9: Segmentation with foreground and edges classification. The sets o f  
samples classified as foreground are shown in grey and the edges in white. The 
threshold used for discarding background sets o f samples was 70 and the individual 
samples threshold was 18.

To differentiate foreground sets from edges, we fall back to per-sample thresholds: 
a set of samples is then classified as foreground if first it is not background, and second 
a high percentage ctj of its samples are individually classified as foreground. The 
coefficient otj accounts for possible outliers in the per-sample segmentation. It was 
found that a coefficient of =  0.9 gave robust results without misclassifying edge 
sets into foreground. All the sample sets that are neither background nor foreground 
are then classified as edges. Looking at the result of this classification (Figure 2.9), 
edges and foreground regions are mostly detected correctly. Extra edges appear in 
regions of uncertainty like the trousers or the shadows, but this is not particularly a 
problem since edges are eventually integrated into the foreground. Moreover, we shall 
devise a scheme to handle shadows in Section 2.5.

2.4.4 Hierarchical Silhouette Extraction

This section is a logical extension of the ideas presented in the previous section: if 
a set of pixel samples can be classified with reasonable confidence as background, 
foreground or edge, then a simple hierarchical scheme can be devised where edge 
regions are recursively subdivided. This makes sense because edges are the regions 
where details are needed, while foreground and background areas are advantageously 
modelled by large uniform regions. Additionally, this section serves as introduction to 
the hierarchical 3-D reconstruction scheme presented in the next chapter.
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The only difficulty at this point is to find the right sampling for an area of arbitrary 
size. The number of samples, Ns, has to be sufficient to cover the area as uniformly 
as possible, and at the same time it should be kept as low as possible for efficiency 
reasons. The whole justification of the method is the ability to classify an area with 
a sub-linear number of samples with respect to the number of pixels in the area. For 
this reason, we experimented with a number of samples equal to the square-root of 
the number of pixels in the area. For an area of 16 x 16 =  256 pixels, the number of 
samples will then be 16. For small areas (less than 3 x 3 pixels), however, this scheme 
gives poor results and we fall back to an exhaustive sampling of the area. Uniform 
sampling inside rectangular areas is relatively straightforward, and there is no need 
to consider more complex areas for simple image segmentation. A generalisation to 
polyhedral areas will however be necessary for volumetric reconstruction: the reader 
is referred to Appendix B for additional details.

Hierarchical silhouette extraction is demonstrated in Figure 2.10. The total num­
ber of samples used for full classification is 11,885 which, compared to the 76,800 
pixels of the full image, represents a factor 6.5 of improvement in direct performance. 
Figure 2.10(d) shows that samples are mostly distributed on the edges, maintaining 
a good overall level of accuracy. The final silhouette is slightly less detailed than in 
Figure 2.8, but one can notice that there are also fewer outliers in the background. This 
is explained by the fact that classifying large regions with higher number of samples 
makes the whole classification less sensitive to individual outliers. More results of hi­
erarchical silhouette extraction including shadow handling are presented later in this 
chapter.

2.5 Handling Shadows

Shadows are omnipresent in real-life setups. Detecting and removing them automati­
cally is crucial for the quality of the segmentation. A point of the scene is shadowed 
if part of the light it receives in normal circumstances is occluded. The corresponding 
pixels on the camera images are therefore still representing the same object, but under 
different lighting conditions. Depending on the type of lighting and the physical prop­
erties of the object, the colour of the pixels can be modified in a number of ways. For 
example, shadowing an object exhibiting some specular reflection can change drasti­
cally the colour of the corresponding pixels. Coloured light sources, when occluded, 
can also change the apparent colour of an object.
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*
(a) Intermediate subdivision stopped with 8 x 8  
blocks. Grey areas are already classified as fore­
ground, and white blocks are edges to be subdi­
vided.

(c) Final classification result with resolution of 
1 pixel.

(b) Next subdivision step with 4 x 4  blocks. 
More details appear in edge regions.

(d) Each white dot represents a sample used to 
classify image regions. As expected, they con­
centrate on edges.

Figure 2.10: Hierarchical silhouette extraction with initial subdivision into 16x16 
areas. Two intermediate steps are shown on top with the final result on the bottom 
left. The input frame is the same as for Figures 2.5, 2.8 and 2.9.

2.5.1 Related Work

Most of the recent approaches to background segmentation propose original solutions 
for shadows removal. In PFinder [WADP97 ], the chrominance channels are normalised 
by the overall luminance in YUV space. This is claimed to produce a stable illumi­
nation independent colour information. Cheung et al. [CKBH00] compute a colour 
“angle” in RGB space for pixels with lower luminosity than the model, and use a 
different manually-set threshold for the floor than for the rest of the background. Mix­
tures of Gaussians are used by Stauffer et al. [SG99J and Friedman et al. [FR97] with
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the advantage of having shadows automatically modelled by one of the Gaussians, as 
long as the shadows appear in the training frames. Unfortunately the generality of the 
framework leads to computationally expensive algorithms. Lo and Yang [LY02] pro­
pose a specialised shadow filter based on the combination of four low-level filters into 
a neural network classifier. The results are encouraging, even if the method is mostly 
aimed at offline full image processing.

2.5.2 A Gaussian Model for Shadows

In order to keep the system simple and fast enough, we only try to tackle the most 
usual type of shadows which are characterised by a loss in luminosity. Using the 
YUV colour-space, variations of luminosity almost entirely appear on the luminance 
(Y) channel only. We carried out measurements under various lighting conditions and 
found that the two chrominance channels (UV) are almost unaffected by a moderate 
change of luminosity. This observation breaks for important lighting changes, but it is 
relatively safe to assume that the shadows cast in a normal office environment belong 
to the category of moderate lighting changes: with multiple light sources as well as 
a strong diffuse lighting (radiosity), a person can only occlude the total illumination 
very partially.

We measured the variations of intensity on the luminance channel when back­
ground pixels got shadowed, and found these variations surprisingly constant for pixels 
of different colours and initial luminosities. In the office environment of Figure 2.5, the 
average luminosity loss accounted for oll =  5.5%. Of course this coefficient is bound 
to differ for other environments and lighting conditions, and could be measured auto­
matically. However, for the sake of simplicity, we treat a sa  manually-set constant 
of the system. The idea is to build a Gaussian model of a shadowed pixel by “shifting” 
the original Gaussian model by on the Y channel. For each pixel, the Mahalanobis 
distance Dm () is then selectively computed from the original model or from this new 
model for shadows.

For a given background pixel, with a Gaussian model of mean fi — (/iy, /i^, fiv )T 
and covariance the new mean (j! and covariance Y<J of the shadowed Gaussian 
model are:

£«/ =  2. (2 .21)
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Note that the covariance matrix is kept the same as in the non-shadowed model, even if 
the camera noise can have different properties for different luminosities. This approx­
imation is mostly aimed at saving memory by storing only one covariance matrix for 
each pixel, and did not affect the quality of the model for low values of a^. Stronger 
shadows, like the ones cast by a single light source, might require a re-evaluation of 
Y tJ , but are beyond the scope of this thesis.

This simple model of shadowed pixel can then be computed for all pixels of an 
empty scene, without needing to observe the pixels under shadow. Our scheme can 
then be used to detect and remove previously unseen shadows.

2.5.3 Efficient Distance Computation

A decisive advantage of our model over a standard Mixture of Gaussians is its effi­
ciency. Indeed, with a standard mixture of Gaussian, the distance to all individual 
Gaussian models needs to be computed before selecting the one giving the smallest 
distance. In our approach, however, a simple test on the value of the luminance (Y) 
component of a pixel reveals the appropriate model. In practice, we can then discard 
shadows without any noticeable performance loss.

The statistical advantages of a Mixture of Gaussians are nevertheless retained, and 
the theoretical analysis from Section 2.4 remains valid. Whether the pixel is shadowed 
or not, we select at runtime the appropriate Gaussian model. Using the “shifted” Gaus­
sian distribution from Equation 2.21, the new distance, D'M, defined in the following 
way:

D'm (s , a L) = f  < (1 -  *£)■!» (2 22)
|  Dm (s , A/3(/i, E-u,)) otherwise

still follows a Chi-Square distribution with 3 degrees of freedom.
As shown with Figure 2.11, replacing Dm () with D'M{) on the data from Figure 2.5 

allows us to discard most of the shadows without affecting the rest of the silhouette: the 
shadow on the floor has been totally removed, and very few shadowed pixels remain 
misclassified on the drawers. Unlike most other shadow removal schemes, this result is 
achieved without extra memory usage or noticeable performance deterioration. More­
over, the distance D'M () still has the same properties as the original Mahalanobis dis­
tance, and can be used in the recursive sampling algorithm described in Section 2.4.4.
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(a) Without shadows treatment. (b) Shadows as a 5.5% loss in luminosity.

Figure 2.11: Results obtained with the new distance Most o f the shadows
are now included in the background model and discarded by thresholding individ­
ual pixels at D'M() < 1 8 .

2.6 Evaluation and Conclusion

In this final section, we present the final results of our segmentation algorithm and 
compare them to another standard method. We conclude with some performance com­
parisons and a summary of the chapter.

2.6.1 Qualitative Results

No ground truth data was available to quantify the robustness of our algorithm. We 
therefore had to fall back to visual inspection and limit ourselves to qualitative results. 
In Figure 2.12, we compare side by side our hierarchical method, including shad­
ows handling, and the mixture of Gaussians model proposed by Stauffer and Grim- 
son [SG99]. This model (which we shall refer to as Grimson's model) is primarily 
aimed at monitoring applications in which the background can change rapidly, such as 
tracking pedestrians in a street. Nevertheless, Grimson’s model has also been increas­
ingly popular for various other types of applications, including indoor tracking.

For both algorithms, we used 100 background training frames. Grimson's algo­
rithm has a mechanism for learning the background model incrementally. In Fig­
ure 2.12(c), we activated this feature with an update coefficient a  =  0.003. The part 
of the image that was not empty during the acquisition of the model is then correctly 
segmented, and shadows are incorporated into the model and discarded. However,
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(a) Background (still not empty).
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(c) Grimson, 5 Gaussians per pixel and incre 
mental update with coefficient a  =  0.003

P ^ B i
(e) Our algorithm classifying pixels with a 3 x 3 
window and handling of shadows.

(b) Current input image.

(d) Grimson, 10 Gaussians per pixel. No incre­
mental update.

(f) Hierarchical segmentation with handling of 
shadows, starting from 16 x 16 blocs.

Figure 2.12: Comparison between our segmentation algorithm, and the mixture 
o f Gaussians model proposed by Grimson et cil. [SG99].
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Gaussians Handling of Time Speed
per Pixel Shadows ms/frame fps

Pixel-based Mahalanobis 1 No 16.2 61.6
Pixel-based Mahalanobis 1 Yes 16.8 59.4
Classification with neighbours 1 Yes 18.7 53.4
Hierarchical Seg. Init. 8 x 8 1 Yes 12.5 79.6
Hierarchical Seg. Init. 16 x 16 1 Yes 10.1 99.2
Grimson 2 No 35.8 27.9
Grimson 5 No 66.2 15.1
Grimson 10 No 106.3 9.4

Table 2.4: Performance comparison on 320 x 240 input images.

since the subject stands relatively static, he is also partially incorporated into the back­
ground model, leading to an overall poor segmentation. In Figure 2.12(d), we disable 
the incremental update of the model, and increase the number of components to 10 
Gaussians per pixel. The result is then very similar to the segmentation obtained with 
a single Gaussian per pixel (shown in Figure 2.5), which is not surprising since we 
experimentally showed in Section 2.3 that the camera noise is Gaussian.

In Figure 2.12(e), we classify each pixel using its 9 neighbours, as described in 
Section 2.4.3. Shadows are also handled by using the new distance D 'M() from Sec­
tion 2.5. By combining information from a set of pixels, the overall segmentation looks 
substantially better than using individual pixel classification. Finally, in Figure 2.12(f) 
we use the hierarchical scheme described in Section 2.4.4, with initial blocs of 16 x 16 
pixels. Even if some fine details are lost because of the initial coarse sampling, the sub­
ject is almost fully segmented from the background, while the noise and the shadows 
have a minimal effect.

2.6.2 Performance Considerations

The comparative performance of the various segmentation schemes described in this 
section are gathered in Table 2.4. All performance results were measured on a 2 GHz 
Pentium computer. Because of its higher number of Gaussian components, Grimson’s 
model is always significantly slower than all the methods presented in this chapter. 
With an average processing time of about 10ms, our hierarchical segmentation algo­
rithm is the only one allowing the simultaneous segmentation of more than 3 camera 
views in real-time.
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2.6.3 Conclusion

In this chapter, we justified experimentally a Gaussian model for background segmen­
tation of static scenes. We then improved the robustness of the standard segmentation 
by classifying sets of samples as opposed to individual pixels. A scheme to handle 
shadows at very low extra cost was also introduced. Real-time performance for multi­
ple input streams was finally achieved with hierarchical segmentation.

This chapter, while self-contained, can be seen as an introduction to Chapter 3 
where multiple camera views will be combined for volumetric reconstruction, using 
a hierarchical scheme very similar to the present one. The robustness of the classifi­
cation will be improved by modelling uncertainty, and using other camera views for 
disambiguation.

The main weakness of our model is the absence of background update scheme, 
where changes in the background could be incorporated incrementally into the model. 
While this is not a problem for static backgrounds (frequent in human-body tracking), 
other applications may require a more complex (multimodal) model: a model such as 
Grimson’s [SG99] could then prove more adapted.
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Volumetric Reconstruction

Having defined a way to segment input images, our next step is the 
volumetric reconstruction o f the object o f interest. Such a 3-D recon­
struction is possible because the cameras are fully calibrated, provid­
ing a mapping between 3-D object points and their 2-D projections 
on the camera views. This chapter introduces a fast and robust algo­
rithm for 3-D reconstruction based on Shape-From-Silhouette meth­
ods, which, as their name suggests, are concerned with the recon­
struction o f an object from a set o f  its silhouettes. The novelties o f 
the proposed algorithm include a hierarchical statistical framework 
and the inclusion o f colour.

3.1 Background and Basic Principle

In this section, we start by introducing the basic concepts of Shape-From-Silhouette, 
and define the term “Visual-Hull” . The historical context of these methods and some 
current research goals are then briefly presented, before discussing a standard algo­
rithm and its limitations.

3.1.1 Shape-From-Silhouette

Since our cameras are fixed and calibrated, the projection of any 3-D point is uniquely 
known through the projection matrix and the non-linear distortions. The inverse map­
ping -  from a pixel to 3-D -  is more complex and ambiguous since every pixel cor­
responds to an infinity of 3-D points, as illustrated by Figure 3.1(a). However, using
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Camera

CaPixels Recovered 
3-D Position

3-D projections
Matching Pixels

Camera 2

(a) Each pixel of the image plane cor- (b) The intersection of the extruded cones from matching
responds to a generalised cone in 3-D pixels defines the corresponding 3-D location.
space.

Figure 3.1: Correspondence between individual pixels and 3-D locations.

a minimum of 2 camera views, and assuming a way to find matching pixels in each 
view, we can find a finite 3-D location by intersecting the projected volumes, as shown 
in Figure 3.1(b).

Following a similar idea, a silhouette is the projection of an object onto an image 
plane. The object of interest then lies totally inside the generalised cone extruded from 
its silhouette and passing through the camera centre (see Figure 3.2(a)). Intersecting 
these generalised cones from multiple camera views is a technique called Shape-From- 
Silhouette: using a sufficient number of cameras placed in a way as to cover the widest 
possible range of angles, the intersection of these generalised cones can produce a rel­
atively good approximation of the 3-D shape of the object. This approximate volume 
is called the Visual-Hull of the object (Figure 3.2(b)). The Visual-Hull is also com­
monly defined as the largest possible volume which exactly explains a set of consistent 
silhouette images. This last definition is more formal, but equivalent to the intersection 
of generalised cones. In the literature, the Visual-Hull is sometimes referred to as the 
optimal convex approximation of an object, therefore assuming an infinite number of 
views. Note that for a convex object, the Visual-Hull would then be equal to the object 
itself. For practical reasons, however, our definition of the Visual-Hull in this chapter 
will be limited to using a finite number of camera views (three to five in practice). We 
can then immediately see that the Visual-Hull can become a rough approximation of 
the real shape of the object. Keeping in mind that our goal is not photo-realism but 
tracking, we will show in the following chapters that the Visual-Hull is sufficient for 
our purpose.
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Camera

Silhouette

Extruded 
generalised cone

(a) Projection of the silhouette into 3-D (b) The Visual-Hull of the object is the intersection of
space as a generalised cone originating the generalised cones extruded from its silhouettes (il-
from the camera centre. lustration reproduced from |MBR+00]).

Figure 3.2: Shape-From-Silhouette as intersection o f projected silhouettes.

A fundamental flaw of the Shape-From-Silhouette methods is that concave parts 
are not reconstructed (for the simple reason that they do not appear on silhouettes). A 
surface point of the object is considered to be part of a concave patch if there is not a 
single tangent line from this point that do not re-intersect the object. More intuitively, 
if a point is not reachable by sweeping a long ruler on the surface of the object, then 
it belongs to a concave patch. Figure 3.3(a) presents a simple example of object for 
which the Shape-From-Silhouette method is inefficient. This limitation is actually a 
minor problem when dealing with the human body which can be seen as a set of locally 
convex parts. Self-occlusions for some body poses can produce temporary concavities, 
but the use of a model can then compensate for the weaknesses of the reconstruction.

Another problem can appear when at least two distinct objects are present in the 
field of view of the cameras. Depending on the position and the number of cameras, 
some parts of the 3-D space can appear to belong to the Visual-Hulls of the objects, 
although they are only artifacts due to occlusions. These wrongly reconstructed parts 
are called Ghost Volumes. Figure 3.3(b) illustrates this phenomenon in 2-D. Ghost vol­
umes are normally a manageable problem if there are not too many occlusions between 
objects or if the number of viewpoints is sufficiently high, but it is also easy to foresee 
how problematic the reconstruction of multiple people can become. Ghost volumes 
can also appear with a single subject because of self-occlusions. Once again, the use 
of a model will prove necessary to disambiguate these situations.

Other kinds of limitations will be discussed in the rest of this chapter, but the princi­
pal advantage of the Visual-Hull over other reconstruction methods remains its overall
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structed with the Shape-From-

(b) 2-D illustration of “ghost volumes” appearing 
with multiple objects and a limited number of views.

Silhouette method.

Figure 3.3: Some weaknesses o f the Shape-From-Silhouette method: Concavities 
and Ghost-Volumes.

simplicity and efficiency. Artifacts can be observed in almost every existing recon­
struction method, but silhouette extraction is sufficiently robust to make Shape-From- 
Silhouette method a competitive choice on noisy and degraded images.

3.1.2 The Standard Algorithm and its Limitations

In this section we present the standard voxel-based algorithm for Visual-Hull recon­
struction. This algorithm is the basis for the novel reconstruction method introduced 
later in the present chapter.

The space of interest is first subdivided into discrete voxels. The idea is to consider 
voxels independently from each other, and project them successively onto the image 
planes of the available camera views. If a given voxel projects outside the silhouette of 
the object in at least one camera view, then it is necessarily outside the intersection of 
the visual cones, and can therefore be discarded. The full algorithm is given below.

Despite its simplicity, this algorithm performs well and is still used in recent publi­
cations, for example in [LSL01, TMSS02, MTHC03, KBG05]. Its complexity is linear
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Algorithm 3.1: Standard Visual Hull Algorithm 
> The space of interest is divided into discrete voxels; 
o Initialise all voxels as inside voxels; 
foreach voxel do

foreach camera view do
> project the current voxel on the current camera view; 
if the projection o f the voxel lies outside the object's silhouette then 

> Classify the current voxel as outside voxel; 
o Skip other views, and consider the next voxel; 

end
end

end
f> The Visual-Hull is the set of all inside voxels;

with the number of voxels, limiting strongly the resolution of the voxel-space. In prac­
tice, the maximal resolution manageable in real-time on a 2 GHz CPU is 128x128x128. 
Fortunately, the number of cameras does not have a linear impact on the complexity 
since most of the voxels are discarded before testing all the views. The robustness of 
the reconstruction depends directly on the quality of the silhouettes.

3.1.3 Background on Shape-From-Silhouette Methods.

Origins and History

The idea of reconstructing the shape of an object from its silhouettes is not new. With 
his PhD thesis, back in 1974, Baumgart [Bau74] was the first to use silhouettes to 
estimate the shape of a miniature horse, using four camera views. Actually, he used 
external contours instead of silhouettes to compute a polyhedral reconstruction of the 
object, but the basic idea would still be retained in much subsequent research. Al­
most 10 years later, Martin and Aggarwal [MA83] proposed a volumetric represen­
tation as a collection of “volume segments”. In subsequent papers, Chien and Ag­
garwal et al. [CA86, CA89] adopted an octree-based representation to improve speed 
and memory usage, but the reconstruction was still limited to 3 orthographic projec­
tions. This approach was extended to 13 standard orthographic views by Ahura and 
Veenstra [AV89]. Shape-From-Silhouette was then known as “volume intersection”.
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Potmesil [Pot87] allowed arbitrary viewpoints and perspective projections, while re­
taining the octree data-structure. Using a single camera, Szelinski [Sze90] recon­
structed static objects on a turntable, achieving real-time performance thanks to op­
timisations such as half-distance transforms and sequential octree refinement. Nobo- 
rio et al. [NFA88] proposed a novel octree reconstruction method in 3-space, where 
visual cones are computed from a polygonal approximation of the silhouettes, thus 
eliminating the need for perspective projection.

In an attempt to give some formalism to the Shape-From-Silhouette methods, Lau- 
rentini introduced the term Visual-Hull in a series of articles [Lau94, Lau95]. This 
term is now commonly used to refer to the broad result of the Shape-From-Silhouette 
algorithms, even if Laurentini originally defined it more restrictively as “the optimal 
volume that can be reconstructed from all possible silhouettes”. In addition to enun­
ciating the properties of Visual-Hulls, Laurentini’s work highlights the limitations of 
Visual-Hulls for object recognition.

Polyhedral Representation

More recently, real-time polyhedral Visual-Hull methods were introduced by Ma- 
tusik et al. [MBM01], Lazebnik et al. [LBP01] and Franco et al. [FB03], In contrast to 
approximate volumetric representations, polyhedral Visual-Hulls have a greater poten­
tial of accuracy, and their rendering benefits from hardware acceleration. Their main 
limitations are the overall fragility of the method which relies on a perfect silhouette 
segmentation, and the fact that triangle meshes are difficult to exploit for shape recog­
nition or tracking.

Following a more theoretical approach, Brand et al. [BKC04] proposed a way to 
compute algebraically the polyhedral Visual-Hull of an object in dual space, result­
ing in an algorithm with linear complexity with respect to the number of observed 
contour points. As a logical extension to polyhedral Visual-Hulls, Bottino and Lauren­
tini [BL04] recently proposed a smooth representation using curved patches.

Volumetric Reconstruction using Voxels

Volumetric representations have also benefited from a renewed interest in the last few 
years (to date 2005). This is mostly due to advances in computer hardware, opening 
the door to the real-time use of Visual-Hulls. Standard voxel-based reconstruction 
techniques have been used by Luck et al. [LSL01], Theobalt et al. [TMSS02] and 
Mikic et al. [MTHC03] as a basis for human-body tracking. All these approaches
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use a full silhouette segmentation, followed by a standard voxel projection technique 
(Algorithm 3.1), and some are reported to work in real-time on a cluster of PCs with 
CPUs up to 2 GHz.

Bottino and Laurentini experimented with voxel-based volumetric reconstruction 
in [BLOla] and [BLOlb], with the interesting detail that boundary voxels are the only 
ones kept and used. Cheung et al. [CKBHOO] proposed a “Sparse Pixel Occupancy 
Test” to classify voxels based on pixel samples. Silhouettes are still fully segmented 
on a cluster of PCs, but the reconstruction now runs in real-time on a single machine. 
Using the parallel processing capabilities of Graphic Processing Units (GPUs), some 
fast reconstruction methods have also been proposed [HLGB03, HLS04]. Unfortu­
nately, the resolution of the reconstructed volume is strongly limited by the memory 
of the video card. A more general drawback is the lack of flexibility and robustness of 
these techniques, which have to comply with a static programming pipeline.

Hierarchical Approach and Octrees

Even if they are not as widely used as simple voxel spaces, octrees still present com­
pelling advantages in allowing adaptive level of detail with a lower memory consump­
tion. A possible reason for their slow adoption is their relative complexity, especially 
regarding the interpretation of the generated volume. Nevertheless, following Szelin- 
ski’s reconstruction method [Sze90], Davis et al. [DBC+99] describe a system for 
movement acquisition. In subsequent publications [BD02, BSD03] by the same au­
thors, the octree volume is used for coarse-to-fine body pose estimation. In [BSD03], 
the reconstruction is performed on a cluster of PCs, and real-time performance is 
achieved through various caching techniques. The method itself is very standard, and 
only the optimisations and the distribution on a cluster differentiate it from Szelinski’s 
early algorithm.

Space Carving and Colour Consistency

Space Carving is a volumetric reconstruction method that uses colour consistency as 
well as contours to reconstruct an object. A very broad survey of reconstruction tech­
niques is available from Dyer [DyeOl]. The idea is to keep only the voxels that are 
photo-consistent across all camera views from which they are visible. Of course the 
visibility criterion is a big issue: it is usually solved by making multiple plane-sweep 
passes, using each time only the cameras in front of the plane, and iterating until con­
vergence. Unfortunately, the complexity of this method disqualifies Space Carving for
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real-time algorithms, even using hardware acceleration [SBS02a]. The reconstructed 
volume contains only the surface voxels of the object, and is commonly called the 
Photo-Hull.

Cheung et a l [Che03, CBK03b, CBK05] proposed a very interesting mixed ap­
proach between Visual-Hull and photo-consistency. Using the property that the bound­
ing edge of the Visual-Hull touches the real object at at least one point, a photo­
consistency test along the “bounding edges” of the Visual-Hull allows to refine the 
reconstruction at moderate cost. Unfortunately, the reconstruction is then very sparse 
and to be practical needs a lot of input data. Other encouraging reconstruction results 
have been reported by De Bonnet and Viola [BV99] and Broadhurst et a l [BDC01] 
using iterative optimisation techniques for space carving.

Other Extensions

A strong constraint of shape-from-silhouette methods is that the cameras have to be 
fully calibrated. Accurate calibration is not an easy task, and some authors have started 
to search for alternatives. Bottino et al. [BL03] pose the problem of Visual-Hull re­
construction when the relative position of the cameras is unknown. In their paper, they 
derive a number of inequalities to decide whether silhouettes are compatible with one 
another. However, their analysis is only a very first step towards automatic calibration 
from silhouettes, and is mainly focused on orthographic projections. Another potential 
limitation is that the object must exhibit some particular features, such as identifiable 
corners, for the silhouettes to be differentiable.

Trying to tackle the problem of robustness in silhouette extraction, Grauman et 
a l  [GSD03a] propose a Bayesian framework where silhouettes are recognised and 
corrected using a training dataset. A generalised Principal Component Analysis is per­
formed on multi-view silhouettes training data to generate a searchable feature space. 
When presented with a new set of silhouettes, the closest correspondence in the fea­
ture space is used to correct the silhouette. In [GSD03b], the same authors extend this 
approach to tracking, where the feature space is augmented with the parameters of a 
kinematic model. The main drawback of the method is that the training dataset has 
to be sufficiently large to include all possible body configurations and is dependent on 
the placement of the cameras. This scheme is then mostly adapted to tracking on very 
structured data, like pedestrians in a street.

In another attempt to improve on robustness, Snow et a l  [SVZOO] formulate the 
Visual-Hull reconstruction as the minimisation of an energy function. This function
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has a classical data term based on silhouettes data, and a new smoothness term sup­
posed to limit the noise in the generated volume. The voxel-based volume is then 
computed using a Graph-Cut algorithm [BVZ01]. The formulation of the reconstruc­
tion process as an energy minimisation problem is very interesting and can probably 
be further developed. However, the smoothness term does not appeal* to be an adequate 
answer because it tends to aggregate together nearby body parts and discard finer fea­
tures. Furthermore, the computational cost of the method is reported to be very high.

In summary, Visual-Hulls remain an active area of research because of their effi­
ciency, robustness and overall simplicity. Shape-From-Silhouette methods have also 
benefited from a recent (to date 2005) renewal of interest, thanks to advances in com­
puter hardware making them practical in real-time scenarios.

3.2 A Novel Hierarchical Reconstruction Approach

A novel method for real-time 3-D reconstruction is introduced in this section. After 
describing the method itself and the associated statistical framework, we discuss some 
extensions derived from the use of a model.

3.2.1 Aims and Constraints

Our aim is to present an algorithm for 3-D reconstruction that is best adapted to human- 
body tracking. Even though an algorithm using a polyhedral reconstruction and surface 
normals for tracking was recently presented by Niskanen et a l  [NBH05], polyhedral 
meshes are mainly aimed at rendering and remain ill-suited for tracking. Voxel and 
octree based techniques, on the contrary, have already proved adaptable to human- 
body tracking [CKBH00, MTHC03, TMSS02, BD02]. A volumetric representation is 
thus adopted, without yet being bound to a particular data-structure. Design concerns 
for the proposed algorithm include:

• Real-time on a single machine: All the previously cited methods are either too slow 
for real-time, or require a cluster of PCs. In order to be really usable, our method 
should be able to perform the image capture, silhouette segmentation and 3-D recon­
struction in real-time (>  lOfps) on a single machine. Moreover, enough resources 
should be left available for the tracking process. This is a challenge, especially con­
sidering that full silhouette segmentation alone has not yet been achieved in real-time 
for multiple high resolution views (see Section 2.6). However, using optimisations
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like per-sample segmentation in a hierarchical framework, we will show that high 
framerates are achievable without compromising on accuracy.

• Good maximal accuracy with acceptable memory footprint: When using voxel- 
space, the maximal accuracy has a strong impact on the memory footprint of the 
data-structure, making it very hard to achieve high resolutions. Octrees, on the other 
hand, suffer from a relatively high overhead inherent to the hierarchical structure. 
Our aim is to be able to reach an accuracy of the order of one centimetre for a 
human-size tracking area. An optimal subdivision level of 1/256^  of the tracking 
space should then be achieved, but only where it is needed. Indeed, generating too 
much data would be detrimental to the performance of the tracking step. The gen­
eral idea is then to retain the best features of both octrees and voxel-spaces, in the 
form of a hierarchical voxel reconstruction scheme that does not require a static tree 
structure.

• Robustness to errors and noisy data: Robustness is too often overlooked in recon­
struction algorithms which tend to rely on a perfect image segmentation. Unfor­
tunately, camera noise and artifacts like shadows make segmentation unreliable in 
real-life environments. Binary silhouette extraction is then bound to contain errors, 
and post-processing algorithms tend to work without knowledge about the underly­
ing data. A statistical approach, with “soft thresholds” is then desirable to cope with 
local errors.

•  Flexibility and adaptation to various tracking space configurations: A very useful 
feature for human body tracking is the possibility to follow the subject in relatively 
large environments. Restricting the tracking zone to the size of the subject is how­
ever needed to keep accuracy maximal. The solution is to dynamically move the 
region of interest in order to follow the movements of the subject. This approach is 
all the more appealing because the position of the subject is known through track­
ing. Of course, keeping the space of interest static allows optimisations like lookup 
tables, but we shall show that the advantages of a dynamic approach are more desir­
able.

• Inclusion o f extra-information such as colour: A minimum amount of information 
should be lost during the reconstruction process, and what is lost anyway should be 
of minimal significance for the tracking process. Having colour camera images as 
input, and assuming that colour information must be valuable for the tracking, we
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will describe a way to include colour in the reconstructed voxels. Once again, this is 
done at a minimal cost (no occlusion/visibility test possible), while keeping in mind 
the needs of tracking.

3.2.2 Algorithm Overview

The main concept of our proposed algorithm is its hierarchical nature. Just like for an 
octree, the idea is to start with a space coarsely subdivided in a few voxels and recur­
sively refine those voxels which need further subdivision. Typically, voxels needing 
subdivision are those on the edge of the object of interest. The logic behind this is 
that large background regions can be discarded quickly, and foreground regions do not 
need subdivision if they belong entirely to the object of interest with reasonable con­
fidence. A voxel is classified as edge if its projection is classified as edge on at least 
one view, while the projections on the remaining views are either classified as edge or 
foreground. Methods for projecting and classifying voxels will be detailed in the rest 
of this section. Classification is mostly based on the ideas discussed in Chapter 2.

The term “voxel” is defined as “the smallest distinguishable cube-shaped part of a 
three-dimensional space”, meaning that it could not theoretically be subdivided. How­
ever, in the rest of this thesis, voxels will denote a cube-shaped part of the three- 
dimensional space with a discrete size. This liberty is taken for the sake of simplicity, 
and also because no other term is totally adequate. The input of the algorithm is then 
a voxel V (position and size). The output classification of the voxel is expected to fall 
into four categories:

• Background: V is not part of the object of interest. It is then immediately discarded.

• Foreground: V is entirely enclosed inside the visual-hull of the object of interest. It 
is then kept and passed to the subsequent tracking process. Note that the voxel is not 
necessarily inside the object of interest, since the visual-hull is only an approxima­
tion of the real object.

• Edge: V is on the edge of the Visual-Hull of the object of interest. Because the 
voxel is too big to describe the disparities of the underlying data, it is therefore sub­
divided into 8 sub-voxels (octants). The classification algorithm is called recursively 
on each of the sub-voxels until either they fall into the two first categories or a max­
imal recursion level is reached. The maximal recursive depth is a tradeoff between 
accuracy and speed.
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• Unknown: This category is temporarily used if there is not enough evidence to clas­
sify V into either background, foreground or edge. Spatial continuity is then used to 
disambiguate unknown voxels.

3.2.3 Flexible Recursive Approach

The reconstruction algorithm starts with a root voxel which has the size of the subject 
(typically 2 metres wide), and is centred on her expected position. At initialisation, 
where no tracked position is yet available, the root voxel is simply positioned at the 
centre of the tracking area. This root voxel is then recursively subdivided. At each 
recursive call, the current voxel is classified according to Algorithm 3.4 (page 75), and 
voxels classified as edge are in turn subdivided until a maximal depth D + is reached.

The general reconstruction algorithm is summarised in Algorithm 3.2, and detailed 
in the rest of this section.

Initial Subdivision Depth

Looking at Algorithm 3.2 in more detail, the function M in D ep th  (line 3.2.1) first 
gives the minimal recursive subdivision depth depending on the position of the current 
voxel and the model from the last frame. The idea behind this method is that a finer 
initial subdivision should be beneficial to regions where the subject is expected to be. 
On the contrary, other regions that are relatively far from the expected position of the 
subject can be inspected more coarsely. The initial subdivision is important because 
the sampling of pixels inside the projected area of the voxels is relatively sparse: if 
the initial subdivision is too coarse, it is then possible to miss a small feature like a 
finger. By contrast, a coarse subdivision of the empty regions has a beneficial impact 
on speed.

A minimal subdivision level is enforced, ensuring that all regions of the tracking 
area are decently inspected. Indeed, since the tracking area is only 2 meters wide, a 
fast movement can place a body part in an unexpected region within a few frames. 
The policy used for initial subdivision is that the closer the voxels are to the model 
(expected position of the subject), the finer the initial subdivision becomes. The dis­
tance between a voxel and the model will be formulated in Chapter 4. We denote as 
Dm{Xv , model) the generalised Mahalanobis distance between the position of a voxel
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Algorithm 3.2: Framework for the novel reconstruction method. The recursive 
method is first called on a root voxel and then refines on the regions needing it, 
depending on the classification of voxels at each level. 

t> Start with a root voxel; 
begin

3.2.1 if recursiveDepth < MinDepth ( X v ,model) then 
| TempClass <— edge\

else
3.2.2 TempClass Classification of the current voxel according to

Algorithm 3.4;
end
if TempClass = edge then 

if recursiveDepth > D + then
3.2.3 | return foreground', 

else
3.2.4 > recursive call of the method on the octants;
3.2.5 t> unknown octants take the classification of the majority;
3.2.6 if All octants have the same classification then
3.2.7 | return the common classification of the octants;

else
3.2.8 | t> create the, foreground octants as voxels;

end
end

end
return TempClass ;

end

V and the appearance model. The function MinDepth is then defined as follows:

MinDepth(Ay, model) — <

3 if DM{XV, model) > 5
4 if Dm(Xv , model) e [2,5]
5 if Dm{Xv , model) e  [0.7,2[ 
4 if Dm(Xv , model) e  [0,0.7[

(3.1)

The chosen thresholds are arbitrary, but have proved to work well in practice. Actu­
ally, since the distance Dm Q is normalised with respect to the size of the blobs, the 
thresholds are defined in terms of standard deviations to the subject. These thresholds 
therefore remain constant when the size of the subject or the size of the tracking space 
vary. It can be seen that a voxel is less finely subdivided if it is very close to the model: 
such a voxel may indeed be entirely enclosed in the subject and be wholly classified
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(a) Model and blobs tracked from the last frame (b) Initial subdivision where each black dot repre­
sents the centre of a voxel.

Figure 3.4: Initial subdivision o f the tracking area using a blob model as a prior; 
and the function MinDepth from Equation 3.1.

as foreground. The result of this initial subdivision is shown in Figure 3.4. The cost 
of testing each voxel against the model is non-negligible, but since this is done only 
at low recursive depths, the number of voxels to test is low. This cost is still far lower 
than the one of having a finer but uniform initial subdivision, where far more voxels 
would have to be classified against the camera images.

Voxel Classification and Recursive Subdivision

Referring to Algorithm 3.2, the actual classification of a voxel occurs at line 3.2.2. 
This classification involves projecting the voxel onto the image planes, sampling from 
the corresponding areas and finally classifying the whole voxel. These steps will be 
detailed in the next section, and summarised in Algorithm 3.4. If the voxel is clas­
sified as either foreground, background or unknown, then this classification result is 
passed directly to the higher level voxel, from which the current one was recursively 
subdivided. The reason why the actual processing is not done at the recursive level of 
the current voxel is that additional post-processing is possible at a higher level, where 
knowledge about neighbouring sub-voxels is available.

Processing happens at the current level of recursion only if the current voxel has 
been classified as edge. At first (line 3.2.3), if the recursion level is higher than the 
maximal depth D +, then the voxel is re-classified as foreground. This is a very simple
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way of limiting the complexity of the reconstruction. These voxels could also be re­
classified as background to limit even more the total number of voxels, but a complete 
reconstructed volume is preferred.

If the current voxel is classified as edge and the recursion depth is still below the 
maximum D + , then the voxel is divided into 8 sub-voxels. The subdivision is straight­
forward because the size and the centre of the current voxel are known; if the current 
voxel has a size s y  and position X y  =  ( x y ,  y y ,  z y ) T , then the octants have a size equal 
to s y / 2  and are centred on (x y  ±  y y  ±  z y  ±  ^ f ) T . The algorithm is then called 
recursively on each of these sub-voxels (line 3.2.4), returning the corresponding clas­
sification results. Once again, the current recursion depth is one less than the one of 
the sub-voxels which are going to be processed. This allows neighbouring sub-voxels 
to be taken into account for disambiguation. Of course, only 8 sub-voxels are available 
and not the rest of the neighbours, but this is sufficient for the basic post-processing 
presented here. More complex schemes would necessitate storing the octree structure 
and performing multiple passes.

Re-Classification of Unknown Voxels Using Spatial Continuity

The first post-processing task (line 3.2.5) is to decide on a better classification for 
the sub-voxels currently classified as unknown. The unknown class is temporary and 
should be disambiguated. The approach taken here is to look at the neighbour vox­
els and to re-classify an unknown voxel with the class of the majority. If an unknown 
voxel is surrounded by a majority of foreground voxels, there is a high probability that 
it should have been classified as foreground in the first place: it is then re-classified as 
such. This process is illustrated in Figure 3.5. The same is true for unknown voxels sur­
rounded by background or edge neighbours. In the rare cases when an unknown voxel 
is surrounded by a majority of other unknown voxels, then the second most important 
representation is considered. An unknown voxel is allowed to keep its classification 
only if all its neighbours are also unknown, in which case a later scheme will pass the 
information for processing at a lower recursion level.

This approach is justified by the spatial continuity (or smoothness) of the recon­
structed volume. In most other shape-from-silhouette algorithms, smoothness is en­
forced as a 2-D post-processing step on the extracted silhouettes. This has the disad­
vantage of ignoring other camera views, which could disambiguate a voxel in a more 
obvious way. Our approach waits until no more image evidence can be exploited to 
use the smoothness argument in 3-D.
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Figure 3.5: At the current depth D o f the algorithm, a voxel is classified as edge 
(a). It is then subdivided (b), and each sub-voxel is independently classified (c) at 
the next recursion level. When returning from the recursive calls (d), the sub-voxel 
classified as unknown takes the classification o f the majority.

Merging Groups of Voxels with Similar Classification

Still following the process flow of Algorithm 3.2, the second post-processing task con­
sists in merging sub-voxels with similar classification into a higher-level voxel. This 
is simply done by checking whether all the sub-voxels have the same classification 
(line 3.2.6) and, if it is the case, passing the common classification to the previous 
recursion level (line 3.2.7). It can seem illogical to expect all sub-voxels to have the 
same classification, because the common classification should have been detected at 
the previous recursion level. However, the classification of a voxel is based on ran­
domly sampled pixels, making it non-deterministic when voxels are close to a class 
boundary. Furthermore, sub-voxels that were first classified as unknown can now con­
tribute to make all the sub-voxels alike. This merging process (illustrated in Figure 3.6) 
is quite simple, and still highly beneficial for compactness of the final reconstruction.

Finally, in the last line of Algorithm 3.2 (line 3.2.8), sub-voxels classified as fore­
ground are “physically” created. This only involves passing their position, colour and 
recursion level to the next stage. When reaching line 3.2.8, the only possible clas­
sifications of the sub-voxels are foreground, background and edge. The sub-voxels 
classified as edge can safely be ignored because they have been dealt with at a lower 
recursion level. Only foreground sub-voxels are therefore created, and in all cases, the 
classification of the current voxel (necessarily edge) is passed to the previous recursion 
level.
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Figure 3.6: The first steps (a-b) are the same as in Figure 3.5. All sub-voxels 
are now classified (c) with a compatible type. When returning from the recursive 
calls (d), unknown sub-voxels still take the classification o f the majority, and ad­
ditionally, i f  all sub-voxels have the same classification, the voxel at depth D is 
re-classified from edge to the common class.

Flexibility of the Reconstruction Algorithm

The recursive nature of the algorithm leads to flexibility. Some basic post-processing 
can be done at very small extra cost, and since there is no static data-structure, every 
single parameter of the reconstruction process can be adjusted dynamically. For exam­
ple, each of the voxels gets its position and size from its parent, which means that the 
initial position and size of the tracking space can be adjusted dynamically at no extra 
cost. This allows to track a subject within a relatively large space, without the need to 
reconstruct the whole tracking space.

In the same way, the maximal reconstruction depth, D +, is easily adjustable. It 
can then be adapted depending on the resources currently available or the need for 
accuracy. For a global search (for example at initialisation), the maximal depth of 
subdivision can be relatively low (typically 5 or 6). On the contrary, when more ac­
curacy is needed D + can be increased to up to 8, which would correspond to a static 
voxel-space of 256x256x256. Of course, the performance of the reconstruction highly 
depends on the choice of D +, but not as much as with standard voxel-based recon­
struction techniques: only the edge voxels are here subdivided until a depth of D +, 
which represents a low percentage of the total number of voxels.
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3.3 Voxel Classification

This section presents the steps leading to the classification of an individual voxel from 
image evidence. These steps include the projection of the voxel onto the camera image 
planes, followed by the sampling of the projected area. An efficient sampling method 
using pre-computed patterns is introduced. Finally, the voxel classification scheme is 
detailed, largely based on the classification method introduced in Chapter 2.

3.3.1 Projection of Voxels onto Image Planes and Uniform Sampling

As seen in the previous section, the classification of a voxel depends on the nature of 
the data it refers to. Projecting a voxel onto an image plane is then equivalent to finding 
the image data associated with this voxel. A 3-D point can be projected onto the image 
plane of a camera in a straightforward and unique manner. A voxel, however, is a 
volumetric 3-D entity and its projection onto the image plane is a polyhedral 2-D area. 
The data associated with this voxel are all the pixels lying inside this projected area.

A standard way to project a voxel would be to project its eight corners (or vertices) 
and find the area delimited by the corresponding eight 2-D points. Since the projection 
of a convex object is itself convex, the projected area of a voxel is the convex hull of 
its projected vertices (Figure 3.7), which can be computed very effectively using for 
example the Quick-Hull Algorithm [BDH96]. Note that to be completely accurate, 
the camera lens distortions should be applied on the contour points of the convex-hull, 
instead of only the eight projected vertices.

Among the two steps (projection of the vertices and extraction of the convex-hull), 
the projection of voxel vertices can be implemented in an efficient manner: since ad­
jacent voxels share the same vertices, a caching scheme can drastically reduce the 
number of projections. Lookup tables are also commonly used to speed up vertex 
projection but they imply a static zone of interest and a consequent memory usage. 
Moreover, vertex projection can now be achieved very efficiently exploiting the Single 
Instruction Multiple Data (SIMD) instruction sets featured in most CPUs. Unfortu­
nately, convex-hull estimation is more computationally demanding.

We describe in Appendix B a novel caching method for real-time pixels sampling 
inside the projected area of the voxels. The image plane of each camera is first sub­
divided into small regions onto which voxels project with similar shapes of areas. 
For each of these regions, and for each desired number of pixel samples, we pre­
compute offline a pool of patterns. To ensure a good repartition of the samples when
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Figure 3.7: Projection o f a voxel onto an image plane: It is computed as the 
convex-hull o f the eight projected vertices o f the voxel

pre-computing the patterns, we use clustered random sampling with a heuristic max­
imising the spacing between samples. The online computation is then reduced to the 
projection of the centre of the voxel, the random selection of a pattern of samples, and 
the placement of this pattern onto the image plane.

3.3.2 Voxel Classification

We are now able to obtain sets of pixel-samples uniformly distributed inside the pro­
jected areas of any given voxel. For a given voxel V, and a camera view q , let us 
denote these samples as S i =  { s 1! . . .  s ’jvJ .  Following Section 2.4.3 on image segmen­
tation, S l is classified into either background, foreground or edge categories. As we 
have seen, this classification is performed on all samples at once, improving robustness 
at no extra cost. Shadows are also handled (Section 2.5) in the classification process.

Re-visiting the Classification of a Set of Samples by Modelling Uncertainty

The classification of S l into 3 categories {background, foreground or edge) is relatively 
reliable. However, due to the complexity of the backgrounds, the choice between one 
category and another can become uncertain. To keep background segmentation sim­
ple, this uncertainty was not previously taken into account, but since the classification 
of a voxel involves multiple views, a more robust scheme is now proposed. An extra 
category is then added to the previous set of possible classifications. The new unknown
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category is used to denote a set of samples for which there is no strong evidence jus­
tifying any of the 3 previous ones. It is then used as a fallback category, used in the 
last resort in the hope that other camera views will be able to disambiguate the situa­
tion. Indeed, each view brings additional information, leading to a final classification 
of the voxel. The unknown category is then mostly used as a temporary classification 
denoting uncertainty. However, if all the available camera views are not sufficient to 
disambiguate the situation, a voxel can be entirely classified as unknown, using its 
neighbours for disambiguation during the recursive reconstruction (see Section 3.2.3).

The new classification process of S l including the unknown category is now de­
tailed. The Mahalanobis distance between S l and the model of the background asso­
ciated with the camera q  is DM(S l). As seen in Section 2.4.3, the threshold on the 
Mahalanobis distance Dm () is a function of the desired level of confidence a, and the 
number of degrees of freedoms (3.NS) associated with S l. The threshold, T3.ns (cx), can 
be approximated with good accuracy by a second order polynomial, allowing a fast 
evaluation for any number of samples.

Algorithm 3.3: Classification of a set of samples, including an unknown cate­
gory. This is the partial classification of a voxel from a single camera view.

if DM{Si) < Ts.Ns(ai) then
| return  background',

else if Dm ^ )  > T3M(a2) then
if Vs} G S \ D m (s}■) > T3(a 2) then
| return  foreground',

else
| re turn  edge;

end
e se re tu rn  unknown;

Given two confidence levels and a.2 , such as cti <  a 2, the partial classification of 
a voxel from the camera view c* is performed according to Algorithm 3.3. The choice 
of the confidence levels is still arbitrary, but it is independent of the number of sam­
ples and of the statistical properties of the model of the background. As a reminder, 
a confidence level represents the proportion of sample-sets that are truly part of the 
foreground when their distance to the model of the background is greater that the cor­
responding threshold. In practice, we chose a relatively low confidence level for the 
first threshold (a i ~  0.98), which has the effect of letting through more sample-sets 
than usual, even if they could actually be part of the background. Indeed, since voxels 
classified as background in a single view are immediately discarded, this classification
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should be used only for cases exhibiting strong evidence. Similarly, the second con­
fidence level used to decide whether a set of samples or an individual sample are part 
of the foreground, is chosen high (a 2 — 0.999) in order to minimise misclassifications. 
The large gap between the two thresholds is designed to encourage the use of the un­
known category, which delegates the classification of uncertain cases to other camera 
views.

Classification of a Voxel Combining Information from all Views

The full classification of a voxel using all the available camera views is presented in 
Algorithm 3.4 and illustrated by Figure 3.8. The algorithm is essentially a combination 
of the ideas exposed earlier in this section. Voxels are projected consecutively onto 
the available image planes, producing for each view a set of pixel samples. This set 
of samples is then classified using Algorithm 3.3, and the partial classifications are 
combined to infer the final classification of the voxel using the following rules:

• background classification is chosen if the partial classification on at least one view 
is background, independently of the partial classification of other views.

•  foreground classification needs at least one partial classifications to be foreground 
and the others to be either foreground or unknown.

• edge classification requires at least one partial edge classification with the rest clas­
sified as either edge, foreground or unknown.

• unknown classification is only used when all the available partial classifications are 
also unknown.

The position and the size of the zone of tracking are dynamically adjusted to the 
subject, which means that some voxels might not be visible at all time from all the 
cameras. While voxels are visible from at least one camera view, the classification 
occurs normally, and the only possible problem is a poorer classification as the number 
of views decreases. In the worst case, when a voxel is not visible from any of the 
camera views, it is classified by default as background. This choice is made to avoid 
those voxels having an influence on the later tracking process, as it happens relatively 
often that corners of the tracking space fall out of view using cameras with narrow 
focal.
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One of the Image

Current
Voxel

(e)

Figure 3.8: Overview o f the classification process. The current voxel is succes­
sively projected onto the image planes o f the available cameras, and a set o f pixel 
samples is chosen for the corresponding projected area (e). Note that only one 
camera-view is represented here. The classification then takes place, falling into 
either background (a), edge (b), foreground (c) or unknown (d) categories.

3.4 Incorporating Colour in the Volumetric Reconstruction

The volumetric reconstruction we described only contains information about the shape 
of the object of interest. Of course, the colour of individual pixels was implicitly used 
to build the reconstructed volume, but this information was lost in the classification 
process. Considering that the tracking process relies solely on the generated voxels, it 
seems reasonable to recover as much useful information as possible from image data. 
Colour, texture or edges are possible sources of information that could help locate and 
disambiguate body parts.

Texture can be a powerful cue for tracking, but it is 2-D information which would 
be hard to integrate in our voxel-based reconstructed volume. Edges are easier to 
obtain, but incorporating them from multiple views remains a difficult problem. It 
is also not clear how beneficial edges could be for tracking, if we keep in mind that 
external ones are already included in the reconstruction itself.

Colour information has the advantages of being relatively easy to collect and to 
represent in 3-D. Even if colour is not volumetric information (only the colour of the 
external surface of an object is visible), it can be “spread” so that internal voxels are 
also assigned a sensible colour. In the context of human-body tracking, where body 
parts need to be differentiated, colour is particularly important. For example, using

Randomly chosen 
pixel samples
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Algorithm 3.4: Overview of the classification of a voxel 
Data: Voxel V (position and size)
Result: Classification of V as either foreground, background, edge or unknown 
TempClass unknown ;
NbVisibleViews <— 0 ; 

forall Camera Views, Ci do
o project V onto the image plane of camera c* (c f Section 3.3.1); 
if V is visible from the camera ci then

NbVisibleViews NbVisibleViews +1;
> sample uniformly the projected area (cf Section B);
> classify the set of samples S l (cf Section 2.4.3 and Algorithm 3.3); 
if G background then
| re tu rn  background',

else if S l g  foreground &  TempClass f  edge then 
| TempClass foreground; 

else if S % G edge then 
| TempClass edge;

end
end

end
if NbVisibleViews > 0 then 
| re turn  TempClass ; 

else
| re turn  background; 

end

colour helps with localising the hands and the face.
Unlike most existing systems which encourage tight and uni-colour clothing, our 

system highly benefits from real-life clothing. No restriction is therefore imposed on 
the type or the colour of clothes: the shape and colour of the appearance model are 
learnt automatically during the first frames of the tracking process (Section 4.3). Of 
course, the more important the colour differences, the more valuable colour becomes 
for tracking.

3.4.1 Including All Possible Colours into each Voxel

Extracting the true colour of each voxel would require a visibility test from each cam­
era. Voxels would then be assigned a weighted average of the colours of their projec­
tions onto the cameras from which they are visible. Typically, a bigger weight would 
be given to cameras with a view angle closer to the surface normal at the position of
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the voxel. This is clearly impractical for our purpose, not only because internal vox­
els are then omitted or because we do not have surface normals, but mainly for the 
computational cost associated with visibility tests.

We assume that pieces of clothing are relatively uniform in colour, so that a given 
point of a body part can always be seen with the same colour from at least one camera. 
This means that, for example, a voxel on the hand of the subject always projects onto a 
skin-coloured patch in at least one camera view. This is not an unreasonably restrictive 
constraint, since most clothes are already uniform in colour, and so is the skin. A voxel 
placed in the middle of the torso will then be seen with the colour of the shirt from most 
cameras, and, even when this point is occluded from a few camera views, it will almost 
certainly remain visible with the same colour from at least one view.

If the “correct” colour of each voxel is visible from at least one camera view, then 
we simply have to select the camera view giving the best colour (with respect to the 
model), and give the corresponding colour to the voxel. There is obviously no such 
thing as a correct colour, but since we will have a model with an expected colour 
for each body part, the colour closest to the expectation is considered as the correct 
one. In practice, this means that the colours from each camera view are included 
into the voxels, and the best colour is selected later on, during the tracking process 
(Section 4.2).

The colour of a voxel as seen from a camera view is determined by averaging the 
pixel samples that were used for classification in the previous section. In theory, vox­
els can overlap areas with different colours, making a simple average of the samples 
inaccurate. However, in practice, the patches with uniform colour are relatively large, 
so we assume that voxels project onto zones of uniform colour in at least one camera 
view. Even when this is not the case, the model is robust enough to incorporate resem­
bling colours. The colour assignment could be made more robust by using the median 
instead of the mean colour of the samples, but it would be slower as it involves sorting 
the colours associated with the samples.

A voxel V is then fully described by its 3-D position Ay, its size sy, ar*d its mean 
colours Cy = {Cy, . . . ,  C ^c} as seen from the Nc available camera views:

Storing the colours from all camera views inside each voxel would normally con­
sume too much memory to be practical. However, for tracking purposes, voxels do not

(3.2)
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Figure 3.9: Placement o f the cameras. The hatched zone represents the space 
where the subject is visible from all cameras.

need to be stored in memory: as we will see in Chapter 4, as soon as a voxel is created 
and its colours assigned, it is incorporated into the blobs of the model. The only over­
head is then the test of each colour against the appearance model to determine the most 
appropriate colour, but this is minimal compared to the cost of performing visibility 
tests.

3.5 Results

The placement of the 5 cameras used for our tests is depicted in Figure 3.9. All cameras 
were placed at the height of the ceiling (approximately 2.5 metres), and orientated 
towards the same tracking space (hatched on the figure). Note the presence of an 
un-captured space, where additional people can stand without being visible from any 

camera.
An example of volumetric reconstruction using a maximal recursion depth of 7 and 

4 camera views {c\ , C2 , c3, C4 } is shown in Figure 3.10. The pixels sampled during the 
reconstruction are superimposed onto the original input images with red spots. It can be 
noticed that fewer and fewer samples are taken outside the subject in successive camera 
views, making the algorithm efficient and robust to partial changes in the background. 
The reconstructed volume is shown from 3 different viewpoints, with voxels displaying
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3 views 4 views 5 views
Max. Depth 6  

Max. Depth 7 
Max. Depth 8

11.0ms (90.4fps) 
24.1ms (41.4fps) 
73.5ms (13.6fps)

11.1ms (90.2fps) 
22.8ms (43.8fps) 
66.0ms (15.1fps)

12.8ms (78.2fps) 
28.1ms (35.6fps) 
78.6ms (12.7fps)

Table 3.1: Performance o f the volumetric reconstruction.

the average of the 4 view-colour.
Evaluating the accuracy and the robustness of the reconstruction is tricky because 

no ground truth measurement is available. In Figure 3.11, we compare the total recon­
structed volume across time for different numbers of camera views. The reconstructed 
volume should ideally remain stable, at a value approximating the true “volume” of the 
subject. A minimum number of 4 camera views seems required to obtain a relatively 
stable reconstructed volume. Five or more camera views certainly improve the results, 
but in lower proportions. Note that the relative placement of the cameras has a strong 
influence on the result, but an optimal placement was not pursued in this thesis.

The benefits of the hierarchical reconstruction scheme are demonstrated in Fig­
ure 3.12, where the contributions of the voxels are aggregated by size. Only half of 
the total volume is represented by voxels with maximal subdivision (mainly near the 
edges), while the rest of the reconstructed volume is advantageously represented by 
higher-level voxels.

Performance measurements of the full reconstruction algorithm for various num­
bers of camera views and maximal recursion depths are presented in Table 3.1. These 
measurements were performed on a 2 GHz Pentium computer, and averaged over 1000 
frames. Quite remarkably, the number of camera views does not seem to have a strong 
influence on the computing cost. Background voxels are indeed more likely to be dis­
carded at an early stage as more views are available. The cost of the projections on 
the extra views seems to be compensated by the benefits of a faster classification. We 
could not test this hypothesis further because of the limited number of cameras we had 
access to, but we could expect the computing cost to grow more slowly as more views 
are added.

The performance results from Table 3.1 can also be compared to the cost of back­
ground segmentation on single input images (Table 2.4). Using combined information 
from all available views and per-sample segmentation, the cost of the full reconstruc­
tion is lower than for the individual segmentation of all the input views.
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Figure 3.10: T h e  p i x e l  s a m p l e s  u s e d  t o  r e c o n s t r u c t  th e  v i s u a l - h u l l  a r e  r e p r e s e n t e d  
b y  r e d  d o t s  in  th e  4 t o p  in p u t  im a g e s .  In  th e  f i r s t  c a m e r a  v i e w ,  th e  s a m p l e s  c o v e r  
a l l  th e  t r a c k in g  a r e a , b u t  q u i c k l y  c o n c e n t r a t e  o n  th e  f o r e g r o u n d  s e c t i o n s  in  th e  
f o l l o w i n g  v i e w s .  T h e  c o r r e s p o n d i n g  r e c o n s t r u c t e d  v o l u m e  i s  s h o w n  a t  th e  b o t t o m  
f r o m  3  d i f f e r e n t  v i e w p o i n t s .
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Figure 3.11: Influence o f the number o f camera views on the reconstructed vol­
ume.
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Figure 3.12: Decomposition o f the total reconstructed volume with 5 camera 
views into the contribution o f the voxels at each recursive level.

3.6 Discussion and Conclusion

In this chapter, we presented a novel shape-from-silhouette reconstruction method.
Original contributions fall into the main categories:

• Efficiency: hierarchical reconstruction framework with minimal memory footprint.

• Flexibility: the zone of tracking can be dynamically adjusted, and the initial voxel 
subdivision is defined by the tracked model.

• Robustness: the voxel classification uses the full statistical properties of the sets of 
pixel samples. The introduction of a unknown category allows information from all 
views to be combined for disambiguation.
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• Colour: inclusion of colour information in the reconstructed volume, at very low 
computing cost.

As future work, the statistical framework could be further developed by augment­
ing each voxel with its probability of being correctly classified. Voxels reaching 
the maximal subdivision level, which are classified as foreground under the current 
scheme, could then contribute to the reconstructed volume in a more nuanced way.

The inclusion of colour information could be made more compact and efficient by 
combining similar colours for each voxel. However, in order to compare colours across 
different views, cameras should be colour-calibrated. We believe that colour calibra­
tion is an important issue which could greatly improve the performance of the method. 
Automatic colour calibration could be achieved, for example, by using the blob-based 
appearance model to learn the mean colour of each body part and subsequently define 
a colour-correction function for each camera view.
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Tracking Body Parts with 3-D Blobs

This chapter presents the use o f 3-D blobs for tracking individ­
ual body parts. The blobs are Gaussian models, giving them 
a strong statistical predisposition towai'ds robust optimisation al­
gorithms like Expectation-Maximisation. We shall describe the 
specifics o f  the Expectation-Maximisation framework when track­
ing sets o f  coloured voxels with blobs. We shall finally present a 
scheme for automatically acquiring and constraining the attributes 
o f the blobs.

4.1 Blobs as Feature Trackers

Human body tracking involves finding the global position of the body as well as the 
relative position of each body part, for each frame of a video sequence. In order to 
recognise and follow these body parts from frame to frame, an appearance model 
is necessary. Given that the data available for tracking is the set of coloured voxels 
reconstructed in Chapter 3, the appearance model of a body part should also be a 
volumetric description of both its shape and colour.

Acknowledging that the human body is articulated as a whole, individual body 
parts (thigh, forearm, etc.), on the contrary, remain relatively static in appearance. Of 
course, the exact shape of each body part depends on the underlying muscles attached 
to the skeleton, so that their shape changes slightly as the body moves. With clothing, 
any movement combined with the laws of physics effectively changes the appearance 
(shape and illumination) of each part of the body. These considerations, despite be­
ing valid for high-quality models, are currently inapplicable to human body tracking
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because of both impractical complexity and the relative coarseness of the 3-D recon­
struction. We neglect these small variations in shape and illumination, and assume 
the existence of a manageable number of elementary body parts, whose appearance is 
self-coherent (unimodal in space and colour) and remains constant over time.

After a review of some alternative methods, this section introduces a statistical 
appearance model for tracking individual body parts directly from voxel data. We 
refer to this as the “blob” model. The properties of this blob model is then examined 
to pave to way for the tracking process itself, which is presented in Section 4.2.

4.1.1 Appearance Models in the Literature

Various types of model have been described in the literature for identifying body parts. 
In the vast majority of cases, the models are purely geometric and attached to an un­
derlying articulated skeleton. When the final purpose is tracking, the models are kept 
simple to achieve an acceptable level of performance. For example, Hogg [Hog83] 
uses cylinders attached to the bones of a hierarchical kinematic model. Candidate con­
figurations of the model are evaluated in 2~D by comparing the projected cylinders 
and edges extracted from the image. Mikic et a l [MTHC03] use a cylinder for the 
torso and ellipsoids for the limbs: tracking is then done from 3-D voxels with an error 
function accounting for the number of voxels left outside these geometric primitives. 
Mitchelson et a l [MH03] use similar primitives, but this time in association with a par­
ticle filtering framework and a combination of image filters. Delamarre et a l [DF99] 
have a slightly more complex representation including parallelepipeds, truncated cones 
and spheres. The model is then projected onto camera images and compared to edge 
information.

These simple geometric primitives have proved sufficient to model the shape of the 
limbs with reasonable accuracy. However, in an attempt to improve realism, more com­
plex representations based on polyhedral meshes [YSK+98, BLOlb] or superquadrics 
[GD96] have been proposed. Pushing further towards realism, Plankers et a l [PF03] 
and Carranza et a l [CTMS03] propose a muscular model using “metaballs”. These 
metaballs are in fact Gaussian density distributions, from which the skin is defined as 
an iso-surface. The idea is related to the blobs we propose in this chapter, but the pur­
pose of [PF03, CTMS03] is to achieve higher realism as opposed to robustness. Their 
underlying idea is that more realistic models should lead to a better evaluation of the 
pose. While this is an incontestable statement, one must keep in mind that realism has 
always a limit, especially with complex clothing. It is then not clear whether a more
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detailed model handles the variability of the data as flexibly as a simple one.
Focusing more on robustness than on accuracy, Borovikov et al. [BD02] devise a 

density-based model, where body parts are defined as isosurfaces of customised sta­
tistical distributions. The optimisation process is based on the distances between re­
constructed voxels and these distributions, following gradients of the distributions to 
converge towards a solution. This scheme, used in conjunction with hierarchical fit­
ting, seems to have the potential to estimate body poses robustly, even when no prior 
estimation is available. As we will see, the blobs we propose have similar desirable 
properties, but with the advantage of a simpler statistical description, making them 
more suitable for real-time tracking.

Body Representation using Biobs

A blob is one of the simplest possible descriptions of a unimodal set of data: it en­
capsulates only the average (or expected) value of the set of data, and the possible 
variations of the data around this average value. In statistical terms, a blob can be re­
garded as a Gaussian distribution, so that a mean vector and a covariance matrix fulfil 
these roles. With respect to spatial information, a blob is often represented by an el­
lipsoidal shape, which is actually an iso-surface around the mean value. Similarly, the 
colour information is modelled by a mean colour and a model of variations in colour­
space. By contrast with previously-described appearance models based on geometrical 
primitives, a blob is a statistical entity without hard boundaries. A given voxel has then 
a probability of belonging to the blob, based on its position and colour.

Blobs are well-adapted to describe the shape and colour information of body parts. 
Indeed, these elementary body parts (the limbs) can all be approximated by ovoid 
shapes at a certain level of accuracy: the most complex body parts can always be 
modelled by more than one blob. Moreover, as seen in Section 3.4 about voxels and 
colour information, the colour of individual body parts is assumed to be uniform. This 
means that a single blob should be able to represent both the shape and the colour of 
an individual body part.

Blobs in the literature

In the Pfinder algorithm [WADP97], Wren et a l use 2-D blobs to model the limbs. The 
blobs are described by mean vectors in position and colour, and block-diagonal covari­
ance matrices. The attributes of the blobs are re-evaluated in each frame from their 
support map of pixels. The support map of a blob is the set of data which is believed
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to correspond best to the blob model. Since no articulated model is used to constrain 
the tracking, the blobs are simply propagated between each frame using linear dynam­
ics. Initialisation relies on the extraction of contours, with the identification of specific 
body parts such as the hands and the head. Pfinder remains a crucial reference in the 
field of human-body tracking because it was one of the first real-time algorithms that 
was sufficiently robust to be really usable. However, the fact that it works only in 2-D, 
and the absence of an underlying articulated model leave some areas of improvement, 
many of which are addressed in this chapter.

Blobs have also been used more recently to model body parts, but often under 
different names and formulations. Aguiar et al. [dATM+04] use an “ellipsoid” for­
mulation, where each 3-D ellipsoid is described by a translation vector, three rotation 
coefficients, and three elongation coefficients. This geometrical formulation is roughly 
equivalent to the statistical approach which we propose, where a blob is assimilated to 
a Gaussian distribution. The statistical formulation, however, is more compact and 
lends itself better to formal analysis. Ellipsoid shells have also been used by Che­
ung et al. in [CKBHOO, Che03, CBK03a], with once again a geometrical description 
preferred to a statistical one. The parameters of the blobs are then estimated using 
the three first-order moments of the underlying data, which is equivalent to estimat­
ing the mean and covariance matrix. Bregler et a l [BM98, BMP04] define 3-D blobs 
geometrically in the local coordinate system of each body part. They also describe 
an Expectation-Maximisation procedure with pixels support maps, used to re-estimate 
iteratively the parameters of the kinematic model (as opposed to these of the blobs).

To the best of our knowledge, the only example of 3-D blobs used for human-body 
tracking and described with a Gaussian distribution formulation is due to Jojik et 
al. [JTH99]. In their paper, the upper-body is tracked from dense disparity maps, 
using 3-D Gaussian models for each body part. The tracking itself is performed us­
ing Expectation-Maximisation, and the parameters of an underlying articulated model 
are computed in an Extended Kalman Filtering (EKF) framework [Kal60, WB01]. A 
scheme is also introduced to detect self-occlusions. The algorithm is reported to run in 
real-time. While this work is clearly targeted at narrow-baseline stereo setups, it has a 
lot of common ground with the method we describe in this chapter. Nevertheless, we 
shall describe in this chapter various extensions to the formulation of the blobs, such 
as the inclusion of colour or the automatic acquisition at initialisation. The scope of 
our work is also different, as we are interested in full-body tracking from a volumetric 
reconstruction, instead of the upper-body from disparity maps as in [JTH99].
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The main advantage of Gaussian blobs over geometrical shape primitives is their 
natural integration into a statistical framework. Compactness and simplicity are other 
decisive advantages of this blob description, which has a minimal amount of free pa­
rameters. Keeping in mind that all voxels have to be tested against the appearance 
models of all body parts, the test itself must be simple enough to keep real-time per­
formance. As will be seen in the next sections, computing the probability that a pixel 
belongs to a blob is much faster than the corresponding test with most other shape 
primitives, such as cylinders or parallelepipeds.

Finally, because of their relatively small number of parameters, blobs are very flex­
ible and can be dynamically modified. This is especially important for body parts 
whose shape and colour have to be learnt during tracking. The next section formalises 
the description of blobs and explains their use for tracking through a standard tech­
nique called “Expectation-Maximisation” [DLR77]. Another use of blobs for Bayesian 
tracking will be presented in Chapter 6.

4.1.2 Theoretical Background and Notation

The data modelled by the blobs are the 3-D locations of the voxels in Euclidean xyz  
space, augmented by their colours in YUV colour space: each datum is a 6-dimensional 
vector. A blob is formally defined as a 6-dimensional multivariate Gaussian distribu­
tion of mean vector /x and covariance matrix S . The voxels (position and colour) 
belonging to the blob are assumed to be distributed in a Gaussian way around the 
mean vector /x, hence the ellipsoidal shape mentioned earlier. The mean vector /x of a 
blob is composed of a mean position /j,x and a mean colour fie  as follows:

The vectors {ix  and fic  are different in nature, but due to the normalising effect of the 
covariance matrix, they can be associated coherently. The 6 x 6  covariance matrix, E ,

(4.1)
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is decomposed into semantic blocs in a similar way:

(  YX (?xy &XZ & xY OxU & xV

a xy (T2V &yz a y Y ° y U O yV

&XZ 17 yz <72^  z 0~ZY &zU O zV

a x Y ayY & zY a Y &YU & YV

a xU cryu ®zU V Y U fT2 <Juv

\ ° x V o-yV & zV o y v o~uv

(4.2)

where Ex is the spatial covariance matrix, E c  is the colour covariance matrix, and Exc 
is a joint covariance, describing the dependencies between position and colour. In the 
few previous uses of coloured blobs in the literature [WADP97], this joint covariance 
matrix was ignored and set to zero. This was due to the fact that blobs were only in 
2-D, leaving the orientation of blobs uncorrelated with colour. In 3-D, however, posi­
tion and colour can be correlated as long as the blobs are kept in the local coordinate 
system of the body part that they are tracking. For example, a blob representing a 
forearm in global coordinates can be transformed into the local coordinate system of 
the forearm, with the x  axis always pointing from the elbow to the wrist. In this lo­
cal coordinate system, the first column of the joint covariance matrix Exc will always 
represent the colour variations between the elbow and the wrist, which can be a very 
valuable information for the repartition of the blobs. Note that an underlying kine­
matic model (described in Section 5.1) will be necessary to keep track of the hierarchy 
of coordinate systems, and perform the appropriate transformations.

Nevertheless, all dependencies between position and colour are not pertinent, es­
pecially considering the extra cost they generate. Setting Exc to zero effectively splits 
the matrix E  into 2 sub-matrices, considerably speeding-up matrix inversion. Further­
more, the 3-D reconstruction is often not detailed enough to account for colour varia­
tions along short axes: for most blobs, the only observable dependence between colour 
and position occurs along the main axis only. When such a dependence is observed, we 
prefer to reorganise the blobs dynamically in order to minimise this dependence. So, 
without disregarding the correlations between position and colour (Exc) completely, 
we will at this point of the analysis neglect their influence for efficiency reasons. Dy­
namic blob behaviour and the use of EXc  for re-organising the blobs is detailed in 
Section 4.3.

Since blobs are multivariate Gaussians, all the reasoning described in Chapter 2 
remains valid. In particular, considering a voxel V at position Xv and of colours Cv =
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{ C y , . . . ,  C y 1 , . . . ,  C^c} as seen from the Nc available camera views, the Mahalanobis 
distance Dm{V, B)  between this voxel and a blob S ) is:

D m ( V ,  B)  =  ( V  -  fi) • 5 T 1 • ( V  -  n ) T ( 4 . 3 )

we can expand this as: 

n  ( v  m -  ( X v ~ ^ x \  (  ( x v ~ f i X \

^  C Xv — fix )  A x  0 \  /  Xy  — /Ux \
~ \ q ? - n c ) ’ \ 0  E c )  ' \ C ^ - I J , 0 )

= (Xv -  m ) • E x -1 • (Xv -  H x f  +  (Cy* -  Me) ■ S c - 1 • (C ?  -  M c f
"- - - - - - - - - - - - - - - - - - V- - - - - - - - - - - - - - - - - - '  V- - - - - - - - - - - - - - - - - - - V/- - - - - - - - - - - - - - - - - - - '

D,U (XV ,3 ) Dm (Cv ,B )

( 4 . 4 )

The decomposition of the 6-dimensional Mahalanobis distance into a sum of distances 
on position and colour is only valid if Y>Xc  =  0. but this approximation is important 
for the real-time feasibility of the computation. The other remarkable part of the equa­
tion is the Mahalanobis distance on colours, which uses only the colour vector C y 1 
minimising the distance to the blob model:

m  — a r g m i n ( C y  -  jjlc ) • ^ c T 1 ' ( ^ v  “  M c)T ( 4 . 5 )
i= l...N c

Even if this formulation can seem expensive in terms of computational cost, it is ac­
tually efficient and accurate even in cases of severe self-occlusions. The Mahalanobis 
distance in 3 dimensions is indeed fast to evaluate.

The distance formulations (Equations 4 . 4  and 4 . 5 )  presented above are very similar 
to the ones used for background segmentation. A major difference, however, is that we 
are not trying here to decide whether a voxel belongs to a single blob (or Gaussian 
model), but rather to assign a voxel to the most probable blob. In the first case we had 
only one point of comparison, and had consequently to find a threshold for classifica­
tion. In the current scheme, there is no need for a threshold since a voxel is assigned 
to the blob with highest probability P(V\B).
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4.2 Tracking with Expectation-Maximisation

This section explains how Expectation-Maximisation (known as EM) can be used for 
tracking, first in a general context and then more specifically for the estimation of the 
parameters of the blobs from the voxel data. A general overview of the algorithm 
brings us to discuss its pitfalls and how they were addressed in the literature. The main 
two steps of the algorithm are then detailed.

4.2.1 Overview

Expectation-Maximisation was first introduced by Dempster et al. [DLR77] in 1977, 
as a way to compute iteratively the maximum likelihood estimate of the parameters of 
a model from incomplete data. This algorithm subsequently became very popular in 
many areas of Computer Science, mainly because it can be efficiently implemented as 
a loop over two simple steps. The general principle of the method is summarised in 
Algorithm 4.1. At each iteration, the parameters of the model are re-evaluated from 
the data that were the most likely to corroborate the model in the first place. Figure 4.1 
presents a visual overview of the EM algorithm for the fitting of blobs.

Algorithm 4.1: General overview of the Expectation-Maximisation algorithm, 
repeat

t> Expectation: each datum is assigned with the probability that it has been 
generated by the current estimate of the model;
> Maximisation: the model parameters are re-evaluated using the data 
weighted by the probabilities; 

until convergence;

The problem of Initialisation

In our case, the models are Gaussians distributions (the blobs) and the data are the 
reconstructed voxels. A first limitation of the algorithm is that the “structure” of the 
model has to be given a priori because only the free parameters of the model are 
optimised. Practically, this means that the optimal number of Gaussian blobs is not 
estimated by the algorithm, and must be chosen beforehand. Providing a good initial 
number of blobs is not an easy task, but using a skeletal model of the human body, 
we can have a rough idea of the number of body parts to track. The refinement of this 
estimation will be the topic of Section 4.3.
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Figure 4.1: O v e r v i e w  o f  th e  b l o b s  f i t t in g  p r o c e s s ,  ( a )  O n e  o f  t h e  in p u t  v i e w s  a n d  
( b )  th e  c o r r e s p o n d i n g  v o l u m e t r i c  r e c o n s t r u c t i o n  w i th  th e  p r e d i c t e d  b l o b s ,  ( c )  T h e  
v o x e l s  a r e  a s s i g n e d  t o  th e  n e a r e s t  b l o b  u s in g  b o th  p o s i t i o n  a n d  c o lo u r ,  ( d )  T h e  s e t s  
o f  v o x e l s  a s s i g n e d  t o  e a c h  b l o b  a r e  e x h i b i t e d  w i th  a r b i t r a r i l y  c h o s e n  c o lo u r s ,  ( e )  
T h e  a t t r ib u t e s  o f  th e  b l o b s  a r e  th e n  r e - e v a l u a te d  f r o m  th e  s e t  o f  v o x e l s  th a t  w e r e  
a s s i g n e d  t o  th e m ,  ( 0  g i v i n g  th e  n e w  s e t  o f  b lo b s .

Another pitfall of EM comes from its iterative nature, where the data are selected 
with respect to their agreement with the model. The initial parameters of the model 
must then explain the data in a satisfactory way, to avoid wrong data selection and sub- 
optimal convergence. So, blobs must then be sufficiently “close” to the data at each 
frame. The “closeness” is here understood in the sense of the Mahalanobis distance 
(Equation 4.4) between blobs and voxels, hence including colour as well as position. 
Since tracking is a continuous process, the pose of the subject at a given frame is 
assumed to be sufficiently close to the pose in the previous frame: the initial spatial 
parameters are then simply taken from the previous frame. The colour of body parts 
is also assumed to remain relatively constant over time, so that the tracked blobs from 
the previous frame should provide a sufficient initialisation.

Figueiredo and Jain [FJ02] proposed a few extensions to the standard EM algo­
rithm designed primarily at initialising the algorithm in an unsupervised (automatic) 
way. The optimal number of Gaussian models is chosen with a Minimum Description 
Length (MDL) criterion, and the problem of the initial placement of the Gaussian mod­
els is solved by first creating a Gaussian model for each data point and then iteratively
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discarding those with low support from the data. For an analysis of the required level 
of support, based on the MDL, the reader is referred to [FJ02]. These additions can 
prove very helpful when no assumption can be made about the data, hence avoiding a 
totally arbitrary choice of model. Unfortunately, several numbers of components have 
to be tried before selecting the best one, which makes the algorithm computationally 
demanding. Furthermore, in our case, the human-body model can provide the expected 
number of components (blobs), at a significantly lower cost.

Soft Assignment versus Support Maps

The standard EM algorithm uses soft-assignment of the data with respect to the model 
components. Each voxel can then contribute to the re-estimation of the parameters of 
all the blobs, with a weight proportional to the probability that it had been generated by 
each particular blob. While this approach is theoretically valid and allows the algorithm 
to perform well even with a small data set, it can also cause specific issues. The 
main problem concerns the overlapping of the blobs, which can be desirable in some 
applications, but makes little sense when blobs are supposed to represent solid body- 
parts. Soft-assignment tends to favour overlapping in dense regions, making blobs 
“fuzzier” than they really should. A standard way to solve this particular problem is to 
use hard-assignment or support maps. With hard-assignment, a voxel is assigned only 
to the blob that is the most likely to have generated it, hence building a binary support 
map for each blob. The parameters of the blobs are re-estimated only from the voxels 
belonging to its support map, which prevents overlapping, and improves performance. 
Note that with support maps, EM is very similar to the K-Means algorithm. The only 
difference is that in EM each cluster is modelled by a full statistical model, while 
K-Means uses only the centres (means) of the clusters.

Using support maps also has some drawbacks. Since the assignment of the voxels 
is binary with respect to each blob, the support maps do not have real Gaussian distri­
butions. Indeed, the “tails” of the Gaussians would normally be modelled by voxels 
with low probabilities, but instead, those voxels have high chances of being allocated 
to more likely blobs. This theoretical concern does not seem to be a practical issue as 
long as a relatively high number of voxels is available in each support map, allowing 
a sufficiently accurate estimation of the blobs’ parameters. Support maps are widely 
used to constrain EM, and have successfully been used in the context of human-body 
tracking by Wren et al. [WADP97] and Jojic et al. [JTH99].
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4.2.2 The EM Algorithm for Tracking

The two steps of the EM algorithm are summarised in Algorithm 4.2. During the Ex­
pectation step, each voxel V, is assigned to the most probable blob B r  This involves 
computing for all voxels the probability that they have been generated by each blob 
P{Vi\Bj), and finally selecting the blob that gave the highest probability (a slightly 
more efficient scheme is described in Section 4.2.3). The voxels assigned to a given 
blob (support map) are then used to re-evaluate its mean and covariance in the Maximi­
sation step. While the Expectation step is relatively straightforward, a correct Maximi­
sation is critical for the convergence of the algorithm. After each iteration of EM, some 
constraints are applied to the parameters of the blobs (more details in Section 4.3).

Algorithm 4.2: Overview of the use of Expectation-Maximisation for tracking. 
t> Initialise with the blobs tracked from the previous frame, and current voxels; 
repeat

t> Expectation (Section 4.2.3);
forall v o x e l s  V, do 

forall b l o b s  B j  do
Compute the probability 
P(Vi\Bj) that V, was 
generated by By,

end
Support Map: assign V, to
the blob Bj that maximises
P(Vi\Bj);

end

> Maximisation (Section 4.2.4);
forall b l o b s  B j  do

Re-evaluate the parameters of 
Bj from the set of voxels pre­
viously assigned with By

end
Apply constraints on blobs using
the kinematic model;

until c o n v e r g e n c e ;

Each iteration of the EM algorithm brings the blobs closer to the voxel data. If 
the blobs are initially sufficiently close to the data, then each voxel should be assigned 
to the most appropriate blob during the first Expectation step, and a single iteration
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is therefore sufficient. Multiple iterations are only necessary when some voxels are 
assigned to wrong blobs. These wrong assignments can be detected when the re­
evaluated blob parameters are in strong disagreement with the expected values. For 
example, if after the Maximisation step, some of the blobs change too radically in size 
or in colour, subsequent iterations of EM could converge towards a better solution.

4.2.3 Expectation Step

As we saw in Algorithm 4.2, the main difficulty of the Expectation step is the evalu­
ation of the probability for a given voxel Vi to have been generated by the Gaussian 
blob B j . Voxels are assimilated to 6-dimensional Gaussian vectors. Each blob B j is 
described by a mean vector fij and a covariance matrix E j . The probability that Vi 
was generated by Bj is the probability P(Vi\B j) of observing V* knowing Bj for a 
multivariate Gaussian distribution:

P i V J B j )  = ______-    (4 6)
(2 .7r)3.^S~|

where Dm (Vi, B j) is the Mahalanobis distance from Equation 4.4 and |E yj is the deter­
minant of the covariance matrix of Bj. Considering that the mixed covariance between 
position and colour is neglected, | | can be reduced to the product of determinants on
position and colour covariance matrices:

| S ; i
^x j  2xcj 

Sx c j  Z Cj
— I^Xjl x |£(7j - Z x c J  • SX j 1 • ^ x c j I — x \T,cj\ (4.7)

A very standard optimisation is to compare the logarithm of the probabilities instead 
of the probabilities themselves. The logarithm function is indeed monotonic, so that a 
maximum of probability is also a maximum of log-probability. Taking the logarithm 
of both sides of Equation 4.6 gives:

logP(V,|B,-) =  -3.log2.7r -  7. log |S j | -  f  B j)  (4.8)

which can be further simplified by discarding the constant terms and constant multi­
plicative factors yielding a function </>(), whose minimisation remains equivalent to the
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maximisation of the original probability:

Bj) =  log |£ j |  +  Dm {Vi, Bj) (4.9)

For a given voxel, minimising <f>() with respect to the choice of blob Bj mainly de­
pends on the minimisation of the distance Dm () between the blob and a voxel. The 
term log |X3j| is constant for a given blob, and acts as a normalising factor, raising the 
chances of “smaller” blobs in the sense of the variances encoded in the covariance ma­
trix. It is particularly useful when two blobs are very similar (in position and colour), 
because if only DMQ was used, the blob with the largest variance would always have 
the advantage. This consideration is important for human body tracking, where some 
blobs are frequently close to each other, while representing different body parts: for 
example, a blob representing an ami which comes close to the one of the torso.

Keeping in mind that in theory the function (/){) has to be evaluated for every voxel 
against all blobs (see Algorithm 4.2), any way to reduce the number of tests is highly 
beneficial for the system performance. The distance function DM() is composed of two 
asymmetrical parts in terms of computational cost: the distance on position is indeed 
much faster to compute than the distance on colour (Equation 4.5). A simple but very 
efficient optimisation is then to compute first the Mahalanobis distance between the 
position of a voxel and a blob, and if this distance is obviously too great for the voxel 
to belong to the blob, then the blob is disqualified and the next one is considered in 
turn. In order to determine an appropriate threshold, the analysis previously done for 
background segmentation (Chapter 2) is still valid. The Mahalanobis distance follows 
a Chi-Square distribution, and a threshold T3(a) can be defined for the 3 degrees of 
freedom of the position. A high level of confidence a  ~  0.999 is appropriate to detect 
virtually all possible candidate voxels for a given blob. This scheme has the additional 
advantage of discarding outlier voxels that are too far from all blobs.

Likewise, another simple optimisation is to stop testing other blobs when the total 
Mahalanobis distance including colour for a given blob is small. Because of non­
overlapping constraints, it is very unlikely that a voxel could be simultaneously close 
to the centre of two blobs. A threshold TQ(a>) with a relatively tight confidence level is 
used for the 6 dimensions in colour and position. In practice, taking a ' ~  0.8 means that 
we retain the 80% of voxels that are closest to the blob among all possible candidates.

The full process of the Expectation step is detailed in Algorithm 4.3. After selecting 
the most appropriate blob, each voxel is passed to the Maximisation process which is 
running in parallel. This allows voxels to be “pipelined” without any need to store the
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whole set of voxels. Because the full set of voxels does not need to be stored, memory
usage is minimal. The only drawback of this scheme is that multiple iterations of
EM are not possible because they would require subsequent accesses to the voxels. 
However, as previously stated, a single iteration of EM is sufficient.

Algorithm 4.3: Details of the Expectation Step 
forall blobs B j do pre-compute log | 1;
forall voxels Vi do 

ChosenBlob <— 0; 
CurrentMin <— 0; 
forall blobs B j do

if DM(XVi, Bj) < T3(a ~  0.999) then
if ^(Vi, Bj) < CurrentMin or ChosenBlob — 0 then 

ChosenBlob <— Bj\ 
CurrentMin <- <j>{Vi,Bj)\ 
if CurrentMin <  T6(a' ~  0.8) then 

| break loop; 
end

end
end

end
i f  ChosenBlob =4 0 then
| Add the voxel Vi to the support map of ChosenBlob ; 

end 
end

It can be noted that no constraint is placed on the blobs during EM itself. All 
corrections concerning the expected size of the blobs, their colour, or their movement 
take place in a later step using a kinematic model (Section 4.3). Placing constraints 
such as a maximal volume of voxels per blob, would only deteriorate the convergence 
of EM while being redundant with the later corrections.

4.2.4 Maximisation Step

Following the Expectation step described in Section 4.2.3, the parameters of the blobs 
need to be re-evaluated from the assigned set of voxels. The difficulty is that voxels 
have different, non-negligible sizes. The computation of the mean and covariance has 
to take the shape and volume of voxels into account. Let {V i. . .  Vat} be the set of 
voxels (support map) from which the new parameters (/n, XJ) of the blob B  are to be 
evaluated. Additionally, let be the size (side of the cube) of the voxel V*. The new
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mean vector fx of the blob B  is the weighted average of the voxel vectors:

l4- '01

In this formulation, colour and position are handled simultaneously. Note that at this 
point, voxels contain only a single colour Cy1, which was selected during the Expecta­
tion step (Equation 4.5). The computation of the mean is also appropriate for iterative 
evaluation where the weighted sum is updated as new pixels are included, and finally 
normalised by the total volume when all voxels have been processed.

In contrast, the computation of the covariance matrix is more delicate. For clarity, 
let us decompose the problem into the computation of the sub-matrices Ex, E c and 
Exc, standing respectively for position, colour and mixed position-colour covariance 
matrices. Starting with the computation of Ec, an important assumption is that the 
colour inside each voxel is uniform. This is obviously a simplification of the reality 
since the internal colour variance of each voxel exists and could have been computed 
during the 3-D reconstruction from the image samples. Nevertheless, a uniform colour 
vector C\>i for each voxel Vi is sufficient for our purpose because colour tends to be 
uniform on large space regions. The standard formula of the variance can then be 
applied, weighting the contribution of each voxel with its volume, as follows:

1 N
Ec =  — jy------ -. y Z sVi3-{CVi -  fic ) • (CVi -  (ic )T

] U = i sVi3 i=1

•(5 3  SV?£vi • GvJ) — He ' HcT

(4.11)

E N <5
1 * i= 1

The second formulation is adapted to iterative computation because the mean vector 
He can be used at the end of the integration of all voxels, when it is finally known.

The covariance matrix on positions, Ex, is slightly more delicate to evaluate. In­
deed, a given voxel V* cannot be reduced to the single position of its centre Xy*. Since 
voxels have non-negligible volumes, the sizes of the voxels themselves should con­
tribute to the total variance of the blob. The step-by-step computation of the covariance 
matrix Ex is detailed in Appendix C, reaching the following formula:

£x  =  ' I- ( 5 3  u - Svi5 ' ^  5v;3-^v; • XViT ] — fix ' HxT (4.12)
2 ^ i = i S v i 3    ' ST T V̂ ---------\  Internal cov. External cov.
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where / 3 is the identity matrix in 3 dimensions. This formulation is essentially the 
same as for the colour covariance of Equation 4.11, except for the addition of an in­
ternal covariance term reflecting the fact that a voxel cannot simply be assimilated to a 
weighted point in space.

The last covariance matrix to compute, Excs is the mixed covariance between po­
sition and colour. It reflects the correlations between the variations of colour and the 
axis of the blob. These correlations (or dependencies) are normally small because the 
blobs are designed to track parts of the body with relatively uniform colour. Actually, 
the minimisation of the correlations between colour and position is the main criterion 
of efficiency for a blob tracker. The computation of E\Xc  has the purpose of evaluating 
the strength of these correlations, and consequently adapt the distribution of the blobs 
in order to minimise them (this is why Exc was neglected during the Expectation step). 
The actual computation of Exc is very similar to the one of E c (Equation 4.11). Since 
a uniform colour is assumed for the voxels, the internal variance of voxels plays no 
role in this equation.

1 N
Exc =  sVt3-^Vi • CviT) — Ax • AcT (4.13)

E i= i« v i3

The covariance matrices Ex and Exc are computed in the global coordinate sys­
tem of the voxels, and not in the local coordinate system of each blob. Efficiency is 
the main justification of this approach: it is indeed much faster to transform the few 
blobs composing the appearance model after the completion of the maximisation than 
to transform all of the voxels beforehand. Interpretation of the parameters of the blobs, 
however, necessitates this transformation into the local coordinate systems. In the local 
coordinate system of each body part, the blobs have in most cases constant shape and 
colour properties, whereas in the global coordinate system, these attributes depend on 
the positions and orientations of the blobs. The global to local transformation neces­
sitates the position and orientation of the body parts, which will be made available by 
an underlying kinematic model (Section 5.1). The actual transformation of the blobs’ 
parameters and the use of these parameters to maintain a coherent appearance model 
over time are detailed in Section 4.3.
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4.3 Constraining EM with Learnt Models of Blobs

Expectation-Maximisation is a powerful optimisation method which finds the max­
imum likelihood estimate of the blobs model given the data. However, EM is not 
sufficiently constrained to avoid the gradual degeneration of the blobs when presented 
to imperfect data. When left unconstrained, blobs tend to drift from the features they 
are supposed to track, and end up loosing track completely. This problem is particu­
larly visible when using the reconstructed voxels as a basis for tracking, because body 
parts are prone to change shape depending on the viewpoints of the cameras.

The obvious solution is to constrain some parameters of the blobs between each 
iteration of EM, thus avoiding their degeneration. The constraints are learnt directly 
from the data during an “acquisition” stage. Likewise, the initial repartition of the blobs 
can prove inefficient or simply sub-optimal: a scheme is presented to dynamically re­
organise the blobs during the acquisition stage. The appearance model is then fully 
acquired from the data, and subsequently used to constrain EM.

4.3.1 Run-Time Correction of Blobs Parameters

All the parameters of a blob B  are encoded into its mean //, and covariance matrix S . 
While the mean vector /x represents the position and colour of the blob, the covariance 
matrix X encodes both its rotation and its variations in shape and colour. All these 
parameters need to be constrained in different ways because their physical nature is 
different. For example, the shape of a blob is expected to remain constant over time, 
while its orientation cannot be constrained a priori. In order to formulate the con­
straints, we need at this point to assume that an underlying skeletal model is available, 
driven by the blobs which are “attached” onto its bones (Section 5.2). The corrected 
positions and orientations of the blobs, satisfying the kinematic constraints, can then 
be obtained at each frame from this skeletal model.

Assuming that the blob B  is attached at an offset a  along a bone of the skeletal 
model, let us denote as P  the global position of this bone obtained after application 
of the kinematic constraints, and R  the associated rotation matrix (see Figure 4.2). 
The position of the point of attachment of the blob is described in the local coordinate 
system of the bone, allowing the offset a  to remain constant across time. The corrected 
mean position vector n'x  is then computed from the model as a simple conversion from
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Figure 4.2: N o t a t i o n s  f o r  th e  a t t r ib u t e s  o f  a  b l o b  D , a t t a c h e d  o n to  a  b o n e  o f  th e  
s k e l e t a l  m o d e l .

local to global coordinates:

(4.14)

The shape of the blob, encoded in its covariance matrix Sx, is summarised by 
its expected standard deviations {at ,(jy,(fz } along the 3 axes of the local coordinate 
system of the bone segment (Figure 4.2). If we assume that the axes of the bone 
segment are approximately aligned with the main directions of the blob, the conversion 
from global to local coordinates is equivalent to an eigenvalue decomposition. The 
corrected covariance matrix S ' v  of the blob D is again re-generated from the model:

( a 2 0 0 \

IIw

0 -2  CTy 0

\ 0 0
• RT (4.15)

The colour usually remains constant during the tracking period. Therefore, as soon 
as a model is acquired for the mean colour vector n c  and the colour covariance matrix 
S c , these can simply be re-generated at each frame from the model. If we denote as 
/ic the acquired model for the mean colour vector, and Hc  the corresponding model 
for the colour covariance matrix, the correction at each frame is:

M e Me (4.16)

Finally, the mixed position-colour covariance matrix Sxc is re-generated as equal 
to zero because the blobs are re-distributed (Section 4.3.3) during the acquisition stage 
so as to minimise dependencies between position and colour, and thus keep Sxc as
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Figure 4.3 : Data-Flow diagram o f the pai'ameters o f a blob between each frame. 
The dashed arrow denotes the fact that the acquisition process is only active during 
a preliminai'y stage o f tracking.

close to zero as possible:

Once the parameters of the model have been learnt, the run-time correction of the 
blobs is integrated into the tracking cycle according to Figure 4.3. The main steps of 
this data-flow are:

1. Expectation-Maximisation: The re-generated blobs are used as an initial estimation 
for EM, where they are adjusted to fit the voxel data.

2. Kinematic Pose Estimation: The fitted blobs are used to drive a skeletal model 
towards a kinematically correct tracked position (see Chapter 5).

3. Blobs Re-Generation: The blobs are re-generated onto the bones of the skeletal 
model and converted into global coordinates. The re-generated blobs are the new 
initial estimations for EM in the next frame.

4. Acquisition: During an initial acquisition stage, the models for the various attributes 
of the blobs are learnt automatically. This acquisition stage is the topic of Sec­
tion 4.3.2.

4.3.2 Automatic Acquisition of Blobs Models

In the previous section, the models for the attributes of the blobs were simply assumed 
to be readily available. While using manual settings is a possibility for a few parame­
ters like the expected shape standard deviations {ax, aV) az}, it becomes impossible for 
others such as the expected colour covariance matrix S o  An automatic scheme for

(4.17)
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learning all the models of parameters during an acquisition stage is presented in this 
section.

Initial Positioning and Colour Estimation

During the acquisition stage, the subject is asked to adopt a pose generating as few 
ambiguities and occlusions as possible, and to remain in this pose, relatively immobile, 
during a few seconds. In practice, 2 to 3 seconds representing 50 to 100 frames are 
sufficient. The first step of the acquisition consists in positioning the blobs onto the 
parts of the body, and learning a first approximation of their colour. This process is 
done by disabling the use of colour during Expectation (a prior colour model is rarely 
available), and using initial default values for the shape of the blobs.

When no initial model of colour is available for a blob B, the acquisition of the 
colour model is based on all visible colours of the voxels belonging to the support 
map of B. A simple average of the colours seen from the Nc available cameras gives a 
sufficient approximation of the real colour of the body part, as long as the pose adopted 
by the subject during initialisation does not generate too many self-occlusions. The 
original formulae of the Maximisation step (Equations 4.10 and 4.11) are therefore 
modified to include all available colours:

The colour model is build incrementally as a running average of the values returned by 
this Maximisation step. For a given timestep t > 0, the colour models are acquired as 
follows:

During the preliminary phase of the acquisition process, only the colour parameters 
for which no prior value is available are learnt with this special treatment. The other 
models for the blobs attributes are learnt incrementally using at each frame the outputs 
of the standard Maximisation formulae.

(4.18)N  Nc

fict = +  (1 ~t
1

t
1 (4.19)
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Occasionally, some blobs can be initialised with a prior knowledge about their 
colour. For example, if we create some blobs supposed to track the hands, giving them 
an initial model of skin colour helps them focusing on the hands, instead of trying 
to learn the colour of another body part. When such a prior model is present, it is 
included in the acquired models from Equation 4.19 by starting the running average at 
a timestep t' >  1 depending on the strength of the prior.

Acquisition of the Full Models with EM

After only a few frames, when the blobs are positioned onto the body parts and an ini­
tial colour model has been acquired, the complete acquisition process can start, based 
on the actual EM algorithm from Section 4.2. At each frame t, a new mean (iL and 
covariance matrix X* of a blob B  are obtained from the voxels through the standard 
Maximisation formulae (Section 4.2.4). These new values are then incrementally inte­
grated into the blob-models with the running average formulation from Equation 4.19.

The shape models {o^, az} are updated by converting the spatial covariance ma­
trix Exi into the local coordinate system of the body part: R T • • R. The diagonal
elements of the transformed covariance matrix are the variances (squared standard de­
viations) along the local axes of the bone:

The last remaining model parameter to acquire is the offset of the point where 
the blob is attached onto the bone, a. The current offset is computed by projecting 
the mean of the blob fix onto the first axis R\ of the rotation matrix of the bone, as 
illustrated in Figure 4.4. Like other parameters, a  is then incrementally refined with a 
running average:

Even if the acquisition process is fully automatic, a series of constraints can be 
imposed on the blobs attributes. In order to avoid obvious errors, the shape models 
{oxi&yi&z} are bounded by minimal and maximal values. For example, a common 
maximal value for ox is half the length of the bone onto which the blob is attached. 
Likewise, the offset of the point where the blob is attached, a, is clamped between 
zero and the length of the bone segment. More advanced constraints are used when

1 /    1
- . yJdi ag(Rf -Ex t ‘R t ) + ( ! - - ) •  Oy

W  t_i

(4.20)

(4.21)
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Figure 4.4: The offset a  o f the attach point o f a blob along a bone is acquired by 
scalar projection o f the mean position gx o f the blob onto the bone. The direction 
o f the bone is the first column o f the rotation matrix R.

more than one blob is attached on the same bone segment. For example, we limit 
overlapping by keeping the distance between the points of attachment greater that the 
sum of their standard deviations.

4.3.3 Dynamic Splits

The acquisition process described so far is able to optimise all the attributes of the 
blobs, making them fit the body part they are supposed to track. However, the choice 
of the initial number of blobs is still an important open question. A blob is a single 
Gaussian distribution, and thus a strongly uni-modal tracker, unadapted to the tracking 
of multi-modal data. When confronted to the problem of tracking the human body, 
exhibiting non-homogeneous colour and spatial data, the obvious solution is to use as 
many blobs as there are self-coherent body parts to track. This is actually the generic 
problem of the choice of the number of Gaussian components for EM, mentioned 
earlier in Section 4.2.

A constraint to take into consideration, when choosing the number of blobs, is that 
each of them has to be attached along a bone of the underlying skeletal model. This 
means that the blobs cannot be placed freely in space, but are rather stacked one after 
the other along the bones of the kinematic model. This constraint is a consequence 
of both the axial symmetry of most limbs, and the fact that colour variations on small 
scales are inconclusive. The main consequence of this constraint is that the meaningful 
modes (statistical maxima) of the data should be separable along a bone segment to be 
modelled by distinct blobs.

The strategy we adopt is to start with the minimal number of blobs, and to itera­
tively split those which are trying to acquire multi-modal data. We are mainly inter­
ested in the modes of the colour information. Indeed, the spatial data for a single body
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part is normally relatively compact and self-coherent, regardless of the noise and re­
construction errors. So, if we were not using colour information, the body part around 
each bone could be represented by a single Gaussian blob. With colour, however, we 
have to take into account the radical changes that can happen along the same bone. 
For example, the forearms often exhibit an important change in colour because of the 
sleeves.

The main issue is therefore to detect a significant change of colour along the main 
axis of a blob. The mixed covariance matrix between position and colour Sxc was 
precisely built during Maximisation (Section 4.2.4, Equation 4.13) for this purpose. 
Although not detailed in the previous section, a running average of the matrices TjXc 
is maintained during the acquisition stage. This matrix, denoted as T,x c , encodes the 
variations of colour with respect to the spatial variations along the axes of the global 
coordinate system. The matrix A, which encodes the colour variations along the axes of 
the local coordinate system of the bone, is obtained by a change of coordinate system, 
followed by a normalisation of each axis by its standard deviation:

A =  Sxc • R  ' j 0  

\ 0

The columns {Ai, A2, A3 } of the matrix A are the colour standard deviations along 
each axis of the local coordinate system of the blob. For example, Ai represents the 
variation of colour which is correlated with a shift of one standard deviation along the 
axis Ri. In order to measure the relative strength of the colour variations along the first 
axis, we define A as the ratio between the norm of the first column and the norm of the 
second greatest one:

A = ----- ; | . 1, (4.23)
max(|A2|, |A3|)

For example, A =  2 would mean that the colour variations along the bone segment 
are twice as strong as in any other direction. Unfortunately, this does not constitute 
a real proof that the colour distribution along the axis of the bone is multi-modal. 
Nevertheless, even if distinct modes are not assured, we know that the mean colour 
significantly differs at the two poles of the blob. This alone justifies the use of two 
blobs instead of one, in the hope of making each tracker more specialised and efficient.

The notations for the splitting procedure of a blob B  with a large ratio (A > 2) are 
illustrated in Figure 4,5. When splitting the blob, the only important requirement is to

0 0 \
i  0 I (4.22)
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Figure 4.5: Splitting o f a blob having a high colour variance along the bone axis.

make the new blobs as distinct from each other as possible. All the attributes of the 
new blobs are subsequently re-optimised during the rest of the acquisition stage. The 
new colour means, p ^ 1 and p c 2 are first defined by shifting the original mean colour 
by one standard deviation along both directions of the bone axis:

Hei = He ~  Ai He2 — He + At (4.24)

Similarly, the new points of attach and cv2 are shifted apart by a standard deviation 
gx along the axis of the bone, while the new standard deviations axl and (rx2 are simply 
half the original one to reflect the split:

<*i =  a  -  y  Sj = + y  (4.25)
* (JT_____________________________________ (Jv

°x\ =  y  eX 2 = y  (4.26)

The other parameters are left untouched from the original blob. An illustration of 
the acquisition and splitting process is presented in Figure 4.6, over 20 frames. As 
described in this section, the blobs acquire their colour model in a first step, and the 
blobs exhibiting a large colour variance along their main axis are split in a second step. 
The appearance model obtained at the end of these two steps is much more accurate 
that any prior generic model.

4.4 Discussion and Conclusion

This chapter introduced a framework for using blobs as feature trackers. The blob- 
models were first formally described, and a fast fitting procedure based on EM with
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Figure 4.6: A u t o m a t i c  r e c o n f ig u r a t io n  o f  th e  b l o b s  d u r in g  20 f r a m e s  o f  th e  a c q u i ­
s i t io n  s ta g e .  ( L e f t )  th e  in i t i a l  r e p a r t i t io n  o f  b l o b s  b e f o r e  th e  s t a r t  o f  th e  a c q u i s i t i o n .  
( M i d d l e )  T h e  b l o b s  h a v e  a c q u i r e d  t h e i r  s h a p e  a n d  c o l o u r  f r o m  th e  v o x e l s ,  b u t  a r e  
n o n e  h a s  y e t  s p l i t .  ( R i g h t )  T h e  b l o b s  w i th  th e  g r e a t e s t  c o l o u r  v a r ia n c e s  h a v e  a u to ­
m a t i c a l l y  s p l i t  t o  r e f l e c t  th e  m o r p h o l o g y  a n d  c l o t h in g  o f  th e  s u b j e c t .

binary support maps was presented. Automatic acquisition and dynamic optimisation 
of the blobs-based appearance model was the subject of the last section. Novel con­
tributions reside in the formulation of EM, based on the hierarchical coloured voxel 
reconstruction, and in the automatic reconfiguration of the blob-models using a colour 
consistency criterion.

A possible extension of the current framework could be to allow more general 
distributions than simple Gaussians. While the ellipsoidal shape of the Gaussian blobs 
is well adapted to most body parts, and more complex features can always be modelled 
by multiple blobs, other “customised” distributions would be interesting to evaluate. A 
multimodal colour model, for example, could allow a single blob to represent a wider 
range of body parts.
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Chapter

Hierarchical Tracking with Inverse 

Kinematics

This chapter presents the direct recovery o f the full kinematic pose 
in a bottom-up way: the blobs from Chapter 4 are used to guide 
a kinematic model towai’ds the tracked pose in a two-step Inverse- 
Kinematics process. In the first step, the positions for the joints o f  
the kinematic model are computed from the blobs. The second step 
is then a standard case o f inverse kinematics. The kinematic model 
itself constrains the possible movements, and allows the interpreta­
tion o f the tracking data.

5.1 Kinematic Model

The blobs introduced in Section 4.1 are models describing the properties (shape and 
colour) of the body parts. This type of model is commonly called an appearance 
model, and is only a partial description of the properties of an object. The appearance 
of the object is by no means fully and accurately described just by the blobs, but since 
this model is sufficient for our particular application, we use the term appearance 
model.

This section focuses on another type of model describing the mechanical relation­
ships between the moving parts of the object of interest. The moving parts of the 
human body are, of course, the limbs and bones which are articulated by joints. This 
type of model is called a kinematic model. Kinematics is defined as “the branch of 
mechanics concerned with motion without reference to force or mass”, which simply

5

107



CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

means that a kinematic model describes the spatial relationships between body parts 
without any actual physical model of motion. A model describing the physical prop­
erties of each part is often called a dynamic model. While a kinematic model can 
only describe the relative position of the body parts, a dynamic model can correct and 
predict body poses through physical simulation.

After identifying the requirements of a kinematic model in the context of real-time 
human body tracking, the next section presents a range of kinematic models which 
have been used in the literature. A description of the chosen model parametrisation 
follows. The last two sections focus on the links between the appearance model (the 
blobs) and the kinematic model, and describe an efficient way to estimate the model 
parameters through inverse kinematics.

5.1.1 Requirements of a Kinematic Model

A kinematic model should obviously describe the relationship between each related 
moving body part. Less obvious is the level of detail that is most appropriate for real­
time tracking. Regarding the issue of accuracy, the first parameter to consider is the 
number of body parts to represent in the kinematic “skeleton”. While the major limbs 
(legs, arms) are necessary, other articulated parts like the fingers are not necessarily 
compatible with the achievable level of detail. The voxel-based 3-D reconstruction has 
indeed a strong limitation in accuracy (typically of the order of one centimetre), making 
the tracking of small body parts impossible. Another argument against the inclusion 
of hands and fingers is the inherent complexity of hand tracking and modelling, which 
in itself, is the subject of much research [SGH05].

A second issue concerns the modelling of the joints themselves: while all relation­
ships between adjacent body parts are rotations, the constraints associated with these 
rotations can be relatively complex. For example, the physiologically possible rotation 
of the elbow depends on the rotation of the shoulder, which itself depends on the global 
pose of the body. In [HUF04] and [HUF05], Herda et al. describe a method for captur­
ing and using implicit joint constraints for tracking. Valid joints configurations are first 
captured using a hardware tracker. A hierarchy is then established between the joints, 
allowing the valid sub-space of a joint to be recovered from its parents. The constraints 
themselves are modelled by implicit surfaces, delimiting the cloud of captured valid 
positions. [HUF04] and [HUF05] also show how to interpolate between key positions 
to compensate for the missing data, and incorporate the joint constraints in a standard 
least squares error minimisation framework for full human-body tracking. Another
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way to model constraints, based on Support Vector Machines (SVM) classifiers, is 
proposed by Demirdjian et a l in [DKD03]. An SVM classifier is trained to differen­
tiate valid and invalid poses, and subsequently to constrain the optimisation process. 
Both these types of constraints model appeal* promising and can make the tracking 
process more robust. In this section, we shall devise a simple scheme handling basic 
constraints. A more advanced scheme, capable of constraining the full body pose to 
learnt configurations, will be described in Chapter 6.

The number of parameters is a determinant criterion in the choice of a good model. 
The parameters of the kinematic model are divided into two main groups of variables. 
The morphological parameters such as the sizes of the various body parts belong to 
the first group that are evaluated prior to the tracking or during an initialisation step, 
but which remain constant during the tracking process. By contrast, the rotation angles 
of the joints and the global position of the skeleton belong to the second category of 
parameters which are evaluated “online” during the tracking process, and for which 
no prior value is available. Minimising the number of parameters in both groups is 
important to keep the model compact, efficient and robust. The compactness and per­
formance follow naturally from a reduced number of parameters. The increased ro­
bustness comes from the fact that, as the number of parameters is reduced, the space 
spanned by those parameters is smaller, therefore imposing more constraints on possi­
ble movements. Naturally, the space of online parameters has to remain big enough to 
include all possible body poses.

The remaining details to consider when choosing a model are the ease and cost of 
updates. The main operations expected from a kinematic model are forward kinematics 
and inverse kinematics. Forward kinematics is the standard way of updating the model 
from the online parameters (recovering the global positions of the body parts from 
the joint angles). Inverse kinematics works the other way around by recovering the 
online parameters of the model from the position (or desired position) of the body 
parts. While forward kinematics is usually considered an easy problem, and is handled 
efficiently by all types of kinematic models, inverse kinematics is non-trivial and is 
often formulated as an optimisation problem. The following section highlights the 
advantages and issues of some kinematic models described in the literature.

5.1.2 Kinematic Human Body Models in the Literature

The most common type of kinematic model is a hierarchy of bones (analogy with the 
term “skeleton”) and joints. The kinematic model is then a tree with a root usually
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placed at the pelvis, as illustrated in Figure 5.1. The global positioning of the model is 
defined by 6 parameters (3 for rotation and 3 for translation) which refer to the place­
ment of the root of the kinematic tree. The position of each node of the tree is then 
defined relatively to its parent, so that computing the global position and orientation of 
a leaf of the tree (one hand, for example) requires applying recursively all transforma­
tions along the kinematic chain linking the root to this leaf.

In the literature, complexity varies between 20 and 32 degrees of freedom for the 
full body. The most standard type of model includes only the main limbs (torso, legs, 
arms and head), already amounting to between 16 and 20 dimensions. When adding 
the 6 dimensions of the root of the tree, it is easy to realise that even these basic models 
represent a challenge for tracking. Kinematic trees including the main limbs are widely 
used in the human body tracking literature [CBK03a, MH03, GD96, BD02, YSK+98, 
CTMS03]. The coarseness of the models is often imposed by the quality of input 
images: wrists and ankles are indeed impossible to discern from many videos. Some 
authors, however, have tried more detailed models including ankle rotations [BLOlb] 
or wrists [DDR01], but no evaluation is provided regarding their tracking accuracy.

Parametrisation of the Joints

Regarding the formulation of the rotations, Euler angles are still widely used despite a 
number of pitfalls. The main problem with Euler angles is that they generate singular­
ities for specific rotation values: individual rotations around the basis axes are applied 
consecutively, so that a rotation in one axis could override a rotation in another, effec­
tively loosing a degree of freedom. This phenomenon is called “Gimbal Lock”. It can 
be avoided by imposing constraints on the joint angles, hence bounding the rotation 
angles to a “safe” zone, but the parametrisation is then tedious. For further details 
on Euler angles, and the way to alleviate their weaknesses for forward and inverse 
kinematics, the reader is referred to [Wel93].

Unit quaternions [Hor87] are an elegant way to tackle the Gimbal Lock problem 
by encoding any arbitrary 3-D rotation as a hyper-sphere in 4-D space. The 3-D ro­
tation encoded by a quaternion is equivalent to a single rotation around an axis which 
changes with the quaternion. The absence of fixed rotation axes poses the problem 
of data interpretation and constraints enforcement. Herda et al. [HUF04, HUF05] use 
quaternions to represent rotations with 3 degrees of freedom, and learn an implicit 
valid sub-space from motion capture data. The quaternions are then constrained into 
this subspace during the optimisation process.
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Twists and products of exponential Maps [MSZ94] are another alternative to Euler 
angles. Like quaternions, they can encode 3-D rotations without singularities. While 
their formulations are slightly more complex than the one of the quaternions, their 
derivatives are easier to obtain. This is particularly useful for problems like inverse 
kinematics, which rely on the Jacobian matrix for gradient-based optimisation. Twists 
and exponential maps were first used in the context of human-body tracking by Bre- 
gler et a l  [BM98, BMP04], where they permit pose estimation as a linear optimisation 
problem. Mikic et a l [MTHC03] also encode the rotations of their kinematic model 
with twists and exponential maps, and perform inverse kinematics with the help of a 
Kalman Filter. Finally, Demirdjian et a l  [DKD03] learn morphological constraints 
with Support Vector Machines, and incorporate those in an optimisation framework.

Other Types of Kinematic Models

In an attempt to simplify the inverse kinematics problem, Theobalt et a l [TMSS02] 
propose a 2-layer kinematic model. A very coarse and unconstrained layer is first 
fitted onto the tracked body parts. The second layer, containing the correct kinematic 
constraints, is then adjusted onto the data under constraints from the first layer. More 
specifically, in the first layer, an arm is only represented by the vector linking the 
shoulder to the hand. The possible positions for the elbow are therefore constrained 
to a circle in the second layer, and the best solution is found iteratively. The main 
problem with this approach is that it assumes that specific body parts (hands and feet) 
can be tracked reliably, which is rarely the case.

5.1.3 Model Description and Parametrisation

We used a classic kinematic tree rooted at the pelvis. The global positioning of the 
model is described by three parameters representing the position of the pelvis and 
three rotation parameters describing its global orientation. Euler angles were chosen 
mainly because of their simplicity, and because other formulations like quaternions 
or exponential maps would have required a large amount of motion capture data to 
learn useful constraints. A more advanced kinematic model is the topic of future work, 
but we shall show that even these simple kinematics are sufficient to demonstrate the 
efficiency of our tracking framework.

In order to avoid singularities, joints with 3 degrees of freedom had to be avoided.
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Root

Figure 5.1: Repai'dtion o f the joints in the kinematic tree, To avoid singulai'ities, 
most o f  the body parts have only two degrees o f freedom. The complete parametri­
sation o f each joint is given in Table 5.1.

The parametrisation of the arms and legs therefore redistributes one degree of free­
dom from the most complex joints (shoulders and hips) to the simpler ones (elbows 
and knees). The only drawback of this redistribution is that it modifies the semantics 
of the model, which no longer matches the human morphology. This is actually a 
minor concern because data classification and interpretation do not rely on a specific 
parametrisation. Even in cases where a specific mapping is needed, like for rendering, 
a conversion can recover the morphological parametrisation. The repartition of joints, 
{ J t i . . .  is illustrated in Figure 5.1.

For the sake of both performance and simplicity, all the joints are implemented with 
only one degree of freedom (one rotation around a fixed axis). More complex joints 
are then built by putting successively two or three of these 1 -dof joints in a kinematic 
chain: this is the way Euler angles work. The length of the bone of the first joints 
would then be null, giving the illusion of a single joint with more degrees of freedom. 
Such a choice simplifies the implementation of update algorithms.
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Jt,

Pi-x

Figure 5.2: Parametrisation o f a joint Jti with relation to its parent JL _i. The 
transformation is composed o f a rotation o f angle 9i around the axis toif and is 
followed by a translation o f length l-L.

Notations

In the following, the term “joint” will refer to both the joint itself and the bone attached 
to it. Let us now consider a kinematic chain (for example, the chain linking the pelvis 
and the right hand) instead of the whole kinematic tree. In such a chain of N j joints 
{JLr(i). . .  Jt^Nj)}* the function 7r(.) is a partial mapping from { 1 .. .  N j}  to { 1 ...  21} 
and the parent of a given joint J t ^ y j  E { 1 ...  N j}  is J i ^ - i y  In order to keep the 
notation simple and readable, we shall denote in the rest of this thesis the current joint 
in the kinematic chain as Jti and its parent as JL -i-

Each joint is defined in the coordinate system of its parent, which means that a 
joint contains only the transformation needed to compute its position with respect to 
its parent’s. Since all joints have only one degree of freedom (one rotation), the trans­
formation between J ti - 1  and Jti consists of a rotation of angle 9{ around the axis cj*. 
Note that the rotation axis tUi is defined in the coordinate system of J t ^ i .  The rota­
tion is followed by a translation of the length of the bone U, which is performed in the 
local coordinate system of Jti, so that we can arbitrarily decide that it always happens 
along the first axis of the local coordinate system. We finally define the global 3-D 
position of the joint JU as Pi, obtained after rotation and translation. These notations 
are summarised in Figure 5.2.

Using the joints as defined in Figure 5.1, and the notations from Figure 5.2, we now 
define the actual parametrisation of each individual joint in Table 5.1. The constraints 
are enforced under the form of bounding values on the joint angles, 0* £ [6L, $} ]• 
These constraints are very simplistic, missing all dependencies between joints, and 
are therefore clearly insufficient to limit the space of possible model configurations to 
only the valid ones. Figure 5.3 illustrates the rotation axes and constraints. As stated
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Joint Id Description u 0- &+ //scale Parent
Jti Torso Left/Right Z —7t/8 7r/8 0 Root
J  t2 Torso Front/Back Y —7t/4 7t/2 0 Jti
J t  3 Torso Twist X —7f/4 7t/4 0.281 J t 2
J  £4 Head Left/Right Z —7t/8 7r/8 0 J t 3
J Head Front/Back Y — 7t/4 7t/4 0.179 JU
JtQ Shoulder L. Up/Down X + Z - 2 tt/5 tt/2 0 JU
J t j Shoulder L. Front/Back Y — 7t/5 7tt/10 0.153 JU
Jtg Shoulder R. Up/Down ~ X  — Z —2tt/5 7t/2 0 JU
JtQ Shoulder R. Front/Back Y —7t/5 7tt/10 0.153 JU
Jtio Elbow L. 1 2 X P Z —37t/4 37t/4 0 J t j
J t n Elbow L. 2 Y 0 47f/5 0.164 JtlQ
J t  12 Elbow R. 1 - 2 X - Z —37t/4 37t/4 0 JtQ
J t  13 Elbow R. 2 Y 0 47t/5 0.164 Jtl2
J t u Hip L. Left/Right Z 7T/10 37t/4 0 Root
J t i  5 Hip L. Front/Back Y —7t/3 2tt/5 0.25 JtlA
JtlQ Hip R. Left/Right - Z 7T/10 37t/4 0 Root
J t n Hip R. Front/Back Y — 7t/3 27t/5 0.25 JtlQ
J t  18 KneeL. 1 - X  + Z 0 7t/2 0 Jt  15
JtlQ Knee L. 2 Y — 7r/2 0 0.235 J t  18
Jt20 KneeR. 1 X - Z 0 7t/2 0 J tn
J t 21 Knee R. 2 Y — 7r/2 0 0.235 J t 2Q

Table 5.1: Pai'ametrisation o f each joint o f the kinematic model, including its 
rotation axis oj, its bounding angle values [0“ , 0+] and its relative length.

previously, more accurate constraints would require motion capture data, and are the 
subject of future work. The lengths of the bones are reported as ratios of the total size of 
the subject, so that different body sizes are produced with a simple scaling factor. It can 
also be noticed that some axes of rotation for the right-hand limbs are flipped compared 
to the corresponding ones in the left-hand limbs: this allows a symmetry of the joint 
angles across each side of the body, which in turn facilitates data interpretation.

Forward Kinematics

Let us denote as (Po> R q) the global position and orientation of the root of the kinematic 
tree, r* the local rotation of angle 6i around the axis w?;, and f L the translation of length 
li along the first axis or the local coordinate system. The global position Pi of a joint 
JU in a kinematic chain { J t i . . .  J t ^ }  is computed recursively:

Pi = Pi_i +  R i-U  where Hi — R i_ i • r* (5.1)
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Figure 5.3: Screenshots o f the model in kinematically valid poses. The blue lines 
are the rotation axes o f the joints. Notice the inversions between the two sides o f  
the body, to keep a coherent parametrisation. The green surface patches represent 
the allowed movement o f a bone with respect to its parent in the kinematic tree.

leading to the standard formulation of forward kinematics:

Pi = Po +  Ro • t i (t\ +  r-2 (£2 +  (' ■ • +  n_  1 (fi_i +  rdi)))) (5.2)

The formulation of forward kinematics in the full kinematic tree is exactly the 
same, although the intermediate positions are cached to avoid unnecessary re-computations. 
Another optimisation, when realising that many of the ti are null, is to implement the 
local rotations r* with quaternions which make the composition of rotations faster.

5.2 Linking the Blobs to the Model

The kinematic model described in the previous section is used in conjunction with the 
blobs. As we saw in Chapter 4, the actual feature tracking is performed solely by the 
blobs during Expectation-Maximisation. The role of the kinematic model with respect 
to the blobs is twofold. First, it is used to constrain and correct the movements of 
the blobs (as seen in Section 4.3), and second, the kinematic model is necessary to 
interpret the data collected from tracking: it gives a semantic meaning to the blobs.
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Figure 5.4: Two blobs, D i and B 2, attached to a joint J t t. The blobs are attached 
by their centres px \ and p x2 along the main axis o f the joint, the actual offset o f  
the point o f attachment is noted by a coefficient (a?i and a 2).

Furthermore, the parameters of the kinematic model are a much more compact repre­
sentation of the tracked subject than the blobs.

Each blob is attached to a bone (a joint with a non-zero length) of the kinematic 
model. The “attachment” between a blob and a bone can be pictured as a virtual spring 
that would drive the corresponding joint towards the mean position of the blob. When 
the blobs have a clear orientation (typically, the greatest eigenvalue being at least twice 
the next one), then the virtual spring also drives the bone in alignment with the main 
direction of the blob.

The point of attachment of a blob onto the kinematic model is relative to the local 
coordinate system of the joint to which it is attached. Considering the relative sym­
metry of the body parts around the bones of the model, we only allow the points of 
attachment to lie along the bone itself. For example, a blob representing the hand will 
be attached near the extremity of the bone of the forearm. This assumption simplifies 
the estimation of the kinematic pose at a reasonably small cost in accuracy. As illus­
trated by Figure 5.4, each blob B^ is attached at its centre pxk to an offset a*- along 
the bone of a joint Jti.

The process of driving the kinematic model to match the position of the blobs is 
decomposed into two steps. Firstly, some “goal positions” are computed for the joints, 
taking into account the position and orientation of the blobs. Note that these goals are 
not necessarily all reachable by the kinematic model because no kinematic constraints 
were enforced during the fitting of the blobs. An iterative algorithm for computing the 
goal positions is described in the rest of this section. The second step then consists in 
finding the kinematically valid configuration of the model that satisfies best the goal 
positions. This last problem is a typical case of inverse kinematics, and is dealt with in

116



CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Section 5.3.

5.2.1 Evaluation of Goal Positions

We are now concerned with the evaluation of goal positions for the joints, using the 
blobs obtained after Expectation-Maximisation. Even if these goal positions do not 
need to be correct in the sense of kinematic constraints, they should nonetheless be 
computed using as much prior knowledge as possible because the subsequent evalua­
tion of the model configuration relies solely on them. In addition to the positions and 
directions of the blobs attached to the current joint, the computation of a goal position 
should also be influenced by the blobs attached to neighbouring joints in the kinematic 
tree. For instance, the position of the knee should be conditioned by both the blobs on 
the upper leg and the blobs on the lower leg. Finally, the current position of each joint 
is an important hint for the computation of the goals, especially when the orientation 
of the blobs is not decisive.

All joints do not need to have a goal position defined because the inverse kine­
matics scheme used to recover the full model configuration is able to interpolate the 
position of joints for which no goal is available. Nevertheless, a guess of the goal po­
sition of a joint is preferable to no information at all. Possible errors should indeed 
be robustly tackled by the kinematic constraints, but a total lack of information leads 
to a wild guess of the position of the joint, which is hardly desirable in the absence 
of a dynamic model. With a more elaborate model of dynamics or behaviour, guess­
ing the position of joints with no information would still be possible. For example, 
Grochow et a l [GMHP04] describe a style-based inverse kinematics method, where 
the optimal body pose is found under learnt constraints of movement-specific styles. 
The full pose of the body is then recovered from only a few goal positions, such as the 
recovery of the full gait cycle from the positions of the feet only. Such a method would 
be highly beneficial to our tracking algorithm, but in order to remain general enough, 
a large amount of behaviours would have to be captured and learnt. It is then not 
clear whether a method like [GMHP04] can learn all these diverse behaviours without 
loosing in efficiency.

For most interactive applications, it is especially important to compute as accu­
rately as possible the goal positions of the end effectors (hands, feet...). The algorithm 
used to compute the goal positions of the joints computes first the goal positions at 
the leaves of the kinematic tree, and propagates the computation up to the root. Since 
several concurrent constraints need to be satisfied for each joint, a general optimisation
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Figure 5.5: C o m p u t a t i o n  o f  g o a l  p o s i t i o n s  f r o m  th e  b l o b s .  F r o m  l e f t  t o  r ig h t :  (a )  
A f t e r  E x p e c t a t i o n - M a x i m i s a t i o n , th e  b l o b s  a t t a c h e d  t o  th e  b o n e s  o f  th e  k i n e m a t i c  
m o d e l  h a v e  n e w  p a r a m e te r s ,  ( b )  T h e  g o a l  p o s i t i o n  o f  th e  t i p  o f  e a c h  j o i n t  i s  f i r s t  
c o m p u t e d ,  f o l l o w e d  b y  th e  c o m p u t a t i o n  o f  th e  g o a l  p o s i t i o n  o f  th e  b a s e  b y  f i r s t l y  
( c )  t r a n s la t in g  to  m i n i m i s e  r e - p r o j e c t i o n  e r r o r , a n d  s e c o n d l y  ( d )  r e - a l i g n i n g  w i th  
th e  b l o b s .  T h e  e s t i m a t e  f r o m  e a c h  j o i n t  i s  th e n  ( e )  m e r g e d  w i th  th e  o n e  f r o m  i t s  
p a r e n t  b e f o r e  i t e r a t in g .

algorithm would be very complex and hence computationally too expensive. We use 
instead a simple iterative scheme, which optimises in turn the position of the tip and 
the base of each bone, eventually converging to a satisfying solution. This iterative 
process is illustrated in Figure 5.5, and includes the following steps:

1. We compute the goal position for the tip of the current joint using the base of the 
joint as a fixed rotation point (Figure 5.5b).

2. We translate the goal positions of the base and tip of each joint so as to minimise 
the projection error of the mean of the blobs onto the bone (Figure 5.5c).

3. The goal position of the base of the joint is optimised using this time the goal 
position of the tip of the joint as a fixed rotation point (Figure 5.5d).

4. The goal position coming from both the current joint and its parent are merged into 
a single goal position (Figure 5.5e). The algorithm is then iterated from step 1 using 
the newly computed goal positions as basis.

The algorithm typically needs only a few iterations to generate a satisfying solution. 
The stopping condition is then simply that the algorithm has converged, meaning that 
the sum of the squared distances between the goals from the last iteration and the
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Figure 5.6: Computation o f the direction o f a goal position from a fixed point G\ 
and some blobs B 2, B 3}.

current ones is below a pre-defined threshold (manually-set, in our implementation). 
The algorithm is kept simple and efficient by optimising only one goal at a time. We 
will now look more closely into the steps (b)-(e) of Figure 5.5 before exploiting these 
goal positions to recover a correct kinematic pose in Section 5.3.

Aligning a Bone Segment with the Associated Blobs

A non-trivial part of the algorithm from Figure 5.5 occurs twice, at steps (b) and (d) 
and involves aligning a moving goal with a fixed rotation point (a previously deter­
mined goal) and a set of blobs. As an illustration of the problem, let us consider
Figure 5.6, where we want to determine the direction of the vector G \G 2 pointing to 
the moving goal position G2 from the fixed point Gi. The blobs { B \ , B 2, £ 3 } of means 
{h-xi, hX‘2 i Mx3} are attached to the same bone segment at the offsets {S i, S 2 , S3}. Ad­
ditionally, the blob B 2 has an elongated shape so that a direction vector V d 2 could be 
computed.

Let us first deal with the position of the blobs alone and incorporate the possible

desirable property that the blobs furthest to G 1 have a greater influence. Unfortunately, 
it would not be robust to misplaced blobs: the influence of a blob should indeed be 
proportional to its real position along the bone segment, instead of its distance to the 
goal position, which is not reliable.

The direction of the goal position G2 can then be computed by giving to each blob 
BiG £ [1 , . . . ,  Ay a contribution proportional to its offset cî  along the bone segment:

intrinsic directions in a second step. A simple sum of vectors JT  G\px% would have the
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where I is the length of the current bone segment. The remaining task is to include
— >

the contribution of possible intrinsic direction, such as the vector V d2 in Figure 5.6. 
A fast algorithm to compute the main direction of a Gaussian blob is described in 
Appendix D. The contribution of this intrinsic direction does not depend on the offset 
of the blob along the bone segment, but only on the strength of the direction vector. 
A strongly elongated blob should contribute with greater strength than a smaller and 
rounder one. The ratio between the first and the second eigenvalue of the covariance 
matrix Ex of a blob reflects strength of the elongation. The full computation of the 
goal position G2 is performed according to the formula:

/
GiG-: GifiXt

Nb

^   ̂Qi
t t  WG^Xi

\
+ E •Vi, 1V di

K
(5.4)

V H,  2
>2

Translating the Goal Position

At step (c) of the algorithm illustrated in Figure 5.5, the goal positions G\ and G2 are
 >

translated along the current direction of the vector G \G 2. With this translation of offset 
T, we wish to minimise the square distances between the projected centres of the blobs 
and their actual points of attachment (see Figure 5.7). This is a standard least square 
optimisation problem:

I!GiG2|| J
(5.5)

5.2.2 Complete Algorithm

The recursive computation of all the goal positions in the kinematic tree is presented 
in Algorithm 5.1. This algorithm is applied to the root of the kinematic tree, and 
iterated until convergence. The goal position for a given joint is either enabled if 
sufficient information can be gathered from the blobs or the children joints, or disabled 
otherwise. The joints with zero-length are treated as a special case which transmit 
the goal positions but disable it for themselves. The algorithm also takes into account 
joints with no blobs attached, for which a goal position is inferred from the children, 
when possible.
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Figure 5.7: Translation o f  the goal positions G\ and G2 by an offset T  along the 
direction o fG iG 2, to minimise the error between the projected centres o f  the blobs 
and their actual point o f attachment.

5.3 Inverse Kinematics

Inverse kinematics is concerned with recovering the parameters of the model from the 
desired global positions of the joints. In our case, the parameters of the model are 
the joint angles © =  { $ i , . . . ,  6 n j }  and the global position and orientation (Pq, Rq) of 
the root of the kinematic tree. The desired global positions of the joints are the goal 
positions Q = {C?i,. . . ,  Gng} computed in the previous section. Note that the number 
of computed goal positions Nq is usually smaller than the number of joints N j : this 
makes inverse kinematics an under-constrained problem. The relation between the 
parameters of the model and the subset of the joint positions V  =  { P i , . . . ,  PNg} 
is given by a set of forwards kinematics functions F  — { / i ,. ■ • f  n g } similar to that 
defined in Equation 5.1:

p  =  F ( p 0, p 0, e ) ^  I

P i = M P o , n o , 9 i , - - - , 8 Nj)
P2 — ^2(Po; -Roj #1, • ■ • ) @Nj) 

k P/Vq ■ fNq (Po, Ro, 0i ■)'•••> @Nj)

(5.6)

If F  was invertible, one could compute the desired model parameters from the goal 
positions as F ' 1(Q). Unfortunately, because of singularities, redundant configurations 
(Figure 5.8) and kinematic constraints, the function F  is non-invertible. Moreover, the 
goal positions Q are unlikely to be kinematically valid, and a solution can therefore not 
be reached.
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Algorithm 5.1: Recursive computation of the goal positions 
o Get recursively the goal positions from the children; 
if at least one blob attached to the current joint then

o Compute the goal positions for the current joint as in Figure 5.5; 
t> Merge the computed goal position of the tip of the joint with the ones 
returned by the children; 
t> Enable the goal position for the current joint; 
return the goal position of the base;

se
if at lest one children returned a goal position then 

if the length o f the joint is null then
> Disable the goal position for the current joint; 
return the average of the goal positions returned by the children;

se
t> Enable the current goal as the average of the goal positions 
returned by the children; 
return nothing;

end 
else

t> Disable the goal position for the current joint; 
return nothing; 

end
end

A standard idea is to linearise F  about the current configuration of the model. It 
should then be possible to invert this linear local approximation of F  to get iteratively 
closer to the solution. The local linearisation of F  is called the Jacobian matrix:

J  =
dF{P0)R 0, e )  
d(P0, i?0, 6 )

/  a / i  dh
dP0 dR0

9Jj_
99l

df N (- ;  

\  dPo
dfNn d f N£L
dR0 dOi

dh \  oeNj

dfNo 
99Nj /

(5.7)

A small variation of the global positions of the joints A V  is then propagated to the 
model parameters using the inverse of the Jacobian matrix:

A (P0> #0, 0 )  =  J  • A (P i , . . . ,  PNg) (5.8)

Unfortunately, the Jacobian matrix is generally not any more invertible than the origi­
nal function F.  The Moore-Penrose pseudo-inverse ((JTJ)~x J T) can be used instead,
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singular direction

Figure 5.8: (left) Singulai' configuration: no rotation o f the joints can move the ef­
fector along the singulai' direction. The corresponding row o f the Jacobian matrix 
contains only zeros, and is therefore non-invertible. (right) Redundant configura­
tion: the system is under-constrained. The Jacobian matrix is not squai'e and again 
non-invertible.

but singularities and the problem of the unreliable goal positions remain. The com­
putational cost is also high since the Jacobian matrix has to be re-computed at each 
iteration, until convergence.

A common variation around the Jacobian method is to integrate the estimation of 
parameters in an Extended Kalman Filtering (EKF) framework. This has been done 
for human-body tracking [MTHC03, JTH99] with a state transition matrix equal to the 
identity matrix, so that the main benefit of the Kalman filter is to smooth the mea­
surement noise. Unfortunately, this measurement noise is rarely evaluated, and the 
assumption that it should be zero-mean, white and Gaussian is never tested. Actually, 
the goal positions of the body parts are subject to many biases making these assump­
tions unlikely.

Alternatively, inverse kinematics can be formulated as an optimisation problem. 
The aim is then to minimise the error between the current positions V  of the joints and 
their goal positions Q. The squared Euclidean distance is often used to define the error 
function:

n g

\g -v \  = \ s -  F(p0, i?o, e)| = Y,  (G< -  MPo, fio, e))2 (5.9)
i= 1

Standard optimisation methods like Gauss-Newton of Levenberg-Marquardt can be ap­
plied to compute the set of joint angles minimising the error function. A local deriva­
tive of the error function is often used to get the direction of the gradient, leading to a 
convergence similar to that of the Jacobian matrix described earlier. Some constraints 
can also be incorporated into the system, leaving to the chosen optimisation algorithm 
the care to avoid local minima. Concerns about computational efficiency deter us from 
using these general optimisation methods, and a simpler iterative scheme is preferred.

Motivated by the difficulty of obtaining of the gradient of the error and the need to 
avoid local minima, Monte-Carlo methods are an interesting way to estimate a set of
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model parameters minimising the error function. They work by sampling (more or less 
randomly) a large number of model configurations in the parameter space, evaluating 
each of them, and finally, estimating the mode(s) of the weighted discrete distribution. 
We shall present in Chapter 6 an efficient pose estimation method based on discrete 
Monte-Carlo sampling.

In the rest of this chapter, we describe a simple direct evaluation scheme, aimed 
primarily at computational performance. The position and orientation of the root of the 
kinematic tree are first evaluated from the available goal positions of the torso and the 
hips. Each of the limbs is subsequently processed with an iterative local optimisation 
method called Cyclic-Coordinate Descent (CCD) [Wel93].

5.3.1 Estimation of the Root Position and Orientation

During normal tracking circumstances, the goal positions for the joints of the hips 
(G h ip  i  and G i lip 2) and the pelvis (G peiViS) are available because some blobs are always 
attached to the torso and the legs. The global position of the root of the kinematic tree 
(the pelvis) can be evaluated as a simple average of the goal positions of the hips and 
the pelvis:

]-) Ghip  i T  Ghip  2 -{- G peivis

P o ~  3
The positions of the hips are mainly taken into account for extra robustness. The global 
orientation is then computed using the goal position of the neck ( G neck)> which can be 
computed as the average of the goal positions of the shoulders when not available:

Roy

G  hip 2 G  hip 1

I G  hip 2 G  hip 1 11

( G neck G pelv i s ) ~~ { , {Gneck G pelvis ) • R qx ) . R qx

( G n e c k  G p e i v i s )  (((-A iec/c  G p e i v i s ) R q x ) . R q x | 

R qz ‘ Flox A Roy

5.3.2 Initialisation of the Root Position and Orientation

At initialisation, the root parameters are estimated using the main axes of the volumet­
ric reconstruction. A root blob is computed from all the voxels, using the Maximisation 
procedure described in Section 4.2.4. The eigenvectors, or principal axes, of this root 
blobs are obtained using the iterative algorithm described in Appendix D. The prin­
cipal axis of the blob defines the vertical orientation of the model, always pointing
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Figure 5.9: Initialisation o f the root position and orientation o f the model. The 
mean and covariance o f a root blob are evaluated from all the voxels. The two 
greatest eigenvectors define the orientation o f the model, while the root position is 
found along the greatest eigenvector.

towards increasing y values. The horizontal orientation is then defined by the second 
greatest eigenvector, up to “back-front flipping” ambiguity. We currently assume that 
the subject is always facing the same direction at initialisation, but a simple way to 
recover the direction faced by the subject would be to keep both hypotheses until a 
kinematic constraint is violated when tracking with the incorrect one. The position 
of the root of the kinematic tree is found along the main axis, by imposing the con­
straint that at least one of the feet should be on the ground. Figure 5.9 illustrates this 
initialisation process.

5.3.3 Cyclic-Coordinate Descent

The Cyclic-Coordinate Descent (CCD) is an iterative local optimisation method. Each 
joint of the kinematic tree is optimised independently, starting with the leaves (or end- 
effectors) and progressing towards the root of the tree. The optimisation at a given joint 
consists in minimising the error between both itself and its children in the kinematic 
tree, and the corresponding goal positions. Let us denote the current joint as Jf, and 
its children as {J f ^ i , . . . ,  Jt-iyn} with global position vectors {Pi, . . . ,  Pi n) and 
associated goal positions {G*, G ^ i,. . . ,  GiiTl}.

Let us first consider the simpler problem of optimising the joint Jt{ when either 
only itself or only one of its children has a goal position to satisfy. The only degree of 
freedom of the current joint J t{ is a rotation of angle 0t about the axis uol. The joint
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CO,

Figure 5.10: CCD with a single goal position, minimising the error between the 
joint o f current position Pi;i and associated goal position Giti.

with a goal position to satisfy is arbitrarily denoted as P ^  with associated goal position 
Git\. Our aim is to find the variation of angle A0i which minimises the error between 
Piti and Gitu as illustrated in Figure 5.10.

The position of the base of the joint JU is P ^ p  let us then denote P  =  Pi_iPi}i 
and G — It can be shown [Wel93] that the variation of angle A0* minimising
the distance between Pifl and G^\  also maximises the scalar product between P  and 
G,  and has the following closed form expression:

A Oi =  arctan A ^  (5.10)
G • P  - { G  - u j f f P  - w f

This formulation only finds a solution in the range A 0* E [— f , f]. While other so­
lutions can theoretically be found using the periodicity of tan, it is very unlikely in 
practice that a variation of more than |  radians could occur between two consecutive 
frames. The range of the solution is therefore sufficiently wide for our purpose.

The angle constraints defined in Table 5.1 are enforced by clamping the rotation 
angle 0* to the range [9~, Of} after each local optimisation. When constraints associated 
with Euler angles are too restrictive, the allowed sub-space of a given joint can be non- 
convex. In such a case, independent optimisation of joints is insufficient to bypass the 
lock enforced by the constraints. A practical solution is to disable the constraints for 
the first few iterations of the CCD, allowing angles to get past possible mutual locks, 
and then re-enforce the constraints in a second pass.

To allow a smooth repartition of movement between all the joints in the kinematic
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tree, an attenuation coefficient 77 is introduced. This attenuation (or stiffness) coeffi­
cient also limits undesired “oscillations” which tend to happen when optimising simul­
taneously multiple joints with contradictory sub-goals. At each iteration, the rotation 
angle 6i is updated in the following way:

Oi =  0< +  7?.A0i (5.11)

where the coefficient 77 controls directly the rate of convergence. We found 77 =  0.3 to 
be a good compromise between smoothness and efficiency.

Let us now deal with the full inverse kinematics problem, when more than one 
child of the current joint Jti  has a goal position to satisfy. Finding analytically the 
variation of angle A 0 * which minimises the total error between all the children and 
their goal positions would be too complex. Instead, we use an approximate heuristic 
which combines the individual optimisations of all the sub-goals. Let us denote as 
{ A ^ i , . . . ,  A0iffc} the angle variations computed with Equation 5.10, that optimise 
the sub-goals {G ^ i,. . . ,  Gi;k}- The combined angle variation for the joint Jti  is a 
weighted sum of the individual ones:

1Adi = . J2 K A K i  (5-12)
2^j= 1 Ahj 1

where {A^i,. . . ,  A*,*.} are weighting coefficients designed to give more importance to 
goals nearer to the root of the kinematic tree. Intuitively speaking, if the weights were 
uniform, the goals nearer to the root of the kinematic tree would only be optimised 
partially, whereas the goals near the leaves would be advantaged by their more frequent 
updates. In practice, we take equal to the inverse of the number of joints separating 
JU to the joint associated with the goal G ^ .  An illustration of the iterative optimisation 
process with two goals is presented in Figure 5.11.

The overall convergence rate of the CCD is difficult to analyse, because changes 
at each joint are incrementally taken into account when optimising the next ones. 
Welman [Wel93] reported a faster convergence rate with CCD compared to a stan­
dard Jacobian optimisation method. The CCD method has the additional advantages 
of behaving well around singular configurations, and of incorporating constraints in 
straightforward manner.
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A O

A O

Figure 5.11: CCD w i t h  t w o  g o a l  p o s i t i o n s  G\ a n d  G2 t o  s a t i s f y ,  ( l e f t )  T h e  a l ­
g o r i t h m  s t a r t s  b y  o p t i m i s i n g  t h e  j o i n t  n e a r e s t  t o  t h e  e n d  o f  t h e  k i n e m a t i c  c h a i n ,  
( m i d d l e )  T h e  p a r e n t  j o i n t  i s  t h e n  o p t i m i s e d ,  i n t e g r a t i n g  t h e  o p t i m i s a t i o n s  o f  b o t h  
s u b - g o a l s ,  ( r i g h t )  S u c c e s s i v e  i t e r a t i o n s  a l l o w  t h e  c o n v e r g e n c e  o f  t h e  m e t h o d .

5.4 Results

The computation of the goal positions and the fitting of the kinematic model are 
demonstrated in Figure 5.12. The kinematic constraints are also shown to illustrate 
the fact that some goal positions cannot be fully satisfied, for example at the right foot. 
The processing cost for these two steps is in average 0.55ms per frame (~  ISOOfps) 
with 10 iterations of IK, which is clearly within our objectives.

Figure 5.13 presents some tracking results, sampled from sequences of slow move­
ments, captured by 4 cameras at 15 Hertz. These results show the potential of the 
approach, faced with noisy images, a cluttered environment and a poor inter-cameras 
synchronisation. Overall, we found that the simple hierarchical method presented in 
this chapter worked very well, as long as the root of the kinematic tree can be lo­
cated. The inclusion of colour allows to keep track of limbs which would be lost using 
reconstructed volume alone, as illustrated by Figure 5.14.

Unfortunately, while locating the torso works well with relatively static sequences 
involving limited self-occlusions, more challenging types of motions remain problem­
atic. For example, the hierarchical tracker could not cope with the ballet dancing se­
quences presented in Chapter 7 because of the very fast movements and rotations of 
the torso. Additional constraints and a prior knowledge of dynamics would be required 
to make the tracking more robust to missing or ambiguous evidences: this idea will be 
further developed in Chapter 6.
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Figure 5.12: (left) The goal positions, illustrated with red dots, are computed 
using the previous tracked position and the blobs from the current frame, (right) 
The full kinematic pose is then recovered by positioning the root o f the kinematic 
tree, and optimising the remaining goals with inverse kinematics.

tracking method using 4 camera views.Figure 5.13: Results o f the hierarchical

129



CHAPTER 5. HIERARCHICAL TRACKING WITH INVERSE KINEMATICS

Figure 5.14: Colour is important to disambiguate poses with self-occlusions.

5.5 Discussion and Conclusion

We started this chapter with a description of the kinematic model used for tracking, and 
a choice of parametrisation. We then introduced an iterative algorithm to compute the 
goal positions of the joints of the kinematic model, based on the 3-D blobs. These goal 
positions were finally used to optimise the pose of the kinematic model using inverse 
kinematics.

Due to its very low computational cost, the hierarchical tracking method presented 
in this chapter is a practical solution for many human-computer interaction setups. It 
can be used, for example, in conjunction with a hand-tracker to recover gestures and 
control virtual interfaces. Hierarchical tracking methods are particularly adapted to 
upper-body tracking because the location of the root of the kinematic tree is fixed and 
known.

A number of improvements could be brought to the kinematic model and the hier­
archical tracking framework. The kinematic model would benefit from a better joint 
parametrisation, like quaternions or exponential maps. Euler angles were chosen for 
simplicity, but singularities prevent the definition of joints with 3 degrees of freedom.

The model would also greatly benefit from better kinematic constraints: preventing 
inter-penetration between body parts, for example, would make the whole tracking 
process more robust. Soft constraints, either based on physical simulation or learnt 
from training data could also guide inverse kinematics, even with low evidences from 
the blobs. Motion prediction would make the blob-fitting procedure more robust, and 
allow the tracking of fast motions. These last issues will be addressed in Chapter 6.
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Chapter

Bayesian Tracking with Monte-Carlo 

Sampling

This chapter builds on the volumetric reconstruction and blob-fitting 
frameworks, treating tracking as a global optimisation problem. The 
parameter space, augmented with first order derivatives, is automati­
cally pai'titioned into Gaussian clusters each representing an elemen­
tary motion: hypothesis propagation inside each cluster is therefore 
accurate and efficient. The transitions between clusters use the pre­
dictions o f a Variable Length Markov Model which can explain high- 
level behaviours over a long history. Using Monte-Carlo methods, 
the evaluation o f latge numbers o f model candidates is critical for 
both speed and robustness. We present a new evaluation scheme 
based on volumetric reconstruction and blobs-fitting, where appear­
ance models and image evidences are represented by Gaussian m ix­
tures.

6.1 Introduction

Tracking is a global optimisation process: because of kinematic constraints, body parts 
are all linked to each other, and cannot be optimised individually without affecting the 
whole body configuration. So, when a set of detected image features is available (such 
as the blobs discussed in Chapter 4) limbs must “compete” with each other to fit onto 
their own detected features. The global solution is likely to be a compromise between 
the optimal placement of each body part and the enforcement of kinematic constraints.

6
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6.1.1 Global Optimisation Techniques

One approach to tracking as a global optimisation problem is to start from image data, 
trying to detect features independently in each frame, and to search for a kinematically 
valid pose optimally satisfying the detected features. The configuration of the model 
is then recovered from the “bottom-up” [RF03], that is, from detected body part lo­
cations (features) to model parameters (joint angles). The feature detection stage is 
purely image-based, as no kinematic constraints or prior knowledge about the relative 
arrangement of the body parts are used. This has the important advantages of solving 
the hard problems of initialisation and recovery after failure, but the detectors are also 
weaker and the detected features are considered highly unreliable, typically producing 
many false-positives. The most likely model configuration must therefore be found 
robustly, and belief propagation techniques [SISB04, SBR+04] are a way to address 
this problem. A global solution is iteratively reached by message-passing between the 
nodes of an interconnected graph. The graph itself encodes the relationships between 
body parts in a probabilistic manner, with strong priors about human kinematics ac­
quired from training examples. Sigal et al. [SBR+04] extend this graph to include 
relationships between body configurations at the previous, current and next time-steps, 
resulting in a potentially robust tracker. Ramanan et al, [RFZ05] include a collection of 
characteristic poses into the model, which can then automatically start tracking people 
striking these poses.

While bottom-up belief propagation techniques are theoretically appealing, they 
rely on the detection of specific features. This can become an issue for the exact same 
reasons that played against hierarchical methods: detecting individual body parts is 
not always possible because of occlusions or loose clothing. In the context of 3-D 
tracking, the problem is worsened by the difficulty of locating and matching 3-D fea­
tures. Another important issue with the method is its computational complexity, which 
is currently too high for real-time applications.

Alternatively, one can use the body configuration in the current frame and a dy­
namic model to predict the next configuration candidates. These candidates are then 
tested against image data to find the most likely configuration. As opposed to the previ­
ous approach, we now start with estimations of the model parameters and test those hy­
potheses against image evidence: this is a top-down approach. In 1983, Hogg [Hog83] 
proposed a framework to evaluate model configurations of a walking person with ex­
tracted image features (edges). Tracking with particle filters works along those lines,
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approximating the posterior distribution by a set of representative elements, and updat­
ing these particles with the Monte Carlo importance sampling rule [GSS94]. A more 
in-depth description of particle filters is presented in Section 6.2.

Particle filtering has a number of advantages over hierarchical and bottom-up ap­
proaches. Firstly, the evaluation of particles does not pre-suppose any particular feature 
detection: this is important because it potentially makes the optimisation process very 
general. Any criterion or combination of criteria [MH03] can be used as objective func­
tion. Secondly, particle filters are simpler, and more flexible than most optimisation 
techniques. The number of particles and the complexity of their model of propagation 
can be adjusted for the application’s needs. It can also be argued that particle filters are 
more robust than most standard optimisation methods, in the sense that they do not get 
trapped in local minima, and can track multiple hypothesis simultaneously.

Of course, particle filters also suffer from a number of drawbacks, the most obvious 
being the high number of particles required. In full body tracking problems, the dimen­
sionality of the parameter space is far too high to accurately represent the probability 
distribution of the parameters given the image evidences (posterior) across the whole 
parameter space. In practice, a maximum of a few thousand particles can be managed 
in real-time, which is definitely too little to populate a parameter space with d = 27 
dimensions. Particles then tend to concentrate in only a few of the most significant 
modes, leading to possible failures when too few particles are propagated to represent 
a new peak in the posterior. Since the particles cannot cover the whole space, they 
must be guided toward the portions of the parameter space that are the most likely to 
contain the solutions. Using the previous tracked configuration as a predictive basis 
is a strong advantage, but more advanced schemes have to be used when dealing with 
fast movements. In Section 6.3 of this chapter, we shall describe a predictive method 
capable of capturing the high-level behaviour of the subject.

The second drawback of particle filters comes as a direct consequence of the po­
tentially large number of required particles, the main performance bottleneck being the 
evaluation of the likelihood function. Evaluating the likelihood of each particle usually 
involves generating a 3-D appearance model from the particle state, projecting this ap­
pearance model onto the available image planes, and finally comparing it with some 
extracted image features such as silhouettes or edges. Various simplifications or op­
timisations [CTMS03] have been attempted, but none of them were able to make full 
use of image information in real-time. Building upon the volumetric reconstruction 
technique from Chapter 3 and the blobs framework from Chapter 4, we shall propose
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in Section 6.4 a fast evaluation method enabling real-time use of our particle filter.

6.2 Bayesian Framework and Particle Filter

Image evidence is noisy and unreliable. Belief about the current configuration of the 
model should therefore be built incrementally from all available observations, up to 
the current one. At each time step, the probability of the model given all observa­
tions follows a distribution called the posterior. The estimation of the distribution of 
the posterior is the purpose of Bayesian tracking. The tracked position is the global 
maximum of the distribution of the posterior.

6.2.1 Bayesian Framework

We start by defining the evolution of the model as the discrete sequence of configura­
tion vectors ( Q ,  t E IN} which consist of the joint angles, and the global positions and 
orientations of the root of the kinematic tree. In the case of human-body tracking, each 
state C* is then a 27 dimensional vector (although we shall see in Section 6.3 that 
the configuration vector can be augmented with the first derivatives of the joint angles, 
reaching a total of 44 dimensions). The evolution of the state vector is modelled as a 
discrete process:

C t = f t( C t. u vt^ )  (6.1)

where f t : R rf —> IT* is a non-linear function describing the evolution of the model 
at time t, and {vt, t  E IN} is the process noise. The model process function f t is 
unknown, and impossible to observe directly. Being able to evaluate f t would enable us 
to estimate the model state at each frame, consequently solving the tracking problem. 
The objective of tracking is to recursively estimate the state vector from a series of 
measurements:

z t = h t(Cu wt) (6.2)

where ht : R d x R d —► R dz is the non-linear observation function, and {wt)t E IN} 
is the measurement noise. We seek filtered estimates of C t based on the set of all 
available measurements Z t = {z^ z2, . . . ,  z t} up to time t. The sum of these estimates 
form the distribution of the posterior. To estimate the posterior, we use the “Bayes’ 
rule”. Considering two hypothesis A  and B , the Bayes’ rule relates their conditional
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probabilities as follows:

-  P(A,  B ,  I m & Q i !  (6.3,
P(B\A) .P(A)  = P ( A , B )  ) P ( B)

Despite its simplicity, the Bayes’ rule is a powerful tool which allows the estima­
tion of a range of functions which are not directly evaluable. It is frequently the case 
that a conditional probability is easier to evaluate by transposing the problem. The 
probability P ( C t \Zt) of a model configuration C* given all previous measurements 
Zt is a typical example of function which is hard to evaluate directly. However, we 
can evaluate the probability of the current observation z t given a model configuration: 
P (z t |C f). This is called the likelihood. We therefore apply the Bayes’ rule to trans­
form the expression of the posterior into an evaluable formulation depending on the 
likelihood’.

P (Z J|C i).P (C ()
p ( c ‘| z ‘>= ~ m ) —  f 6 4 .

P ( z t , Z t^ \ C t) .P(Ct) ( ;
P (z t,Z (_!)

The current observation z t is not independent of the previous observations Zt_i, but
using Equations 6.2 and 6.1, we can show that given a model configuration C t, all
observations become functions of the Gaussian noise. We can therefore de-correlate 
the current observation from the previous ones:

P (z j |C t).P (Z 1_1|C ().P (C i)
p (C l|Z t) =  -  P W z _ , - j > ( z r T '  (6'5)

We can again apply the Bayes’ rule on the expression P (Z t_ i|C ():

P (z t |C l) .P (C t|Zt_1).P (Z i_1) .P (C ()
P(  C 4|Z () = P (z i |Z4_1).P (Z (_1) .P (C t)

1 .P (z t |C ,).P ( C (|Z(_!)
(6.6)

P (z t |Zt_i)

In order to exploit the incremental nature of the tracking process, we marginalise 
P ( C y z t_i) over the previous tracked configurations of the model C t_i, leading to
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Current Observation

Previous Posterior

Previous Posterior composed 
with Motion Prior

Likelihood

P(C,

Posterior

Figure 6.1: Tracking in the Bayesian framework. The previous posterior is used 
as a basis to estimate the distribution o f the posterior for the current frame. It 
is first composed with the motion prior (a), giving the expected distribution o f 
the posterior. This expected distribution is finally evaluated against the likelihood 
from the observations (b) to produce the final estimation o f  the posterior (c).

the formulation of the posterior,

P(Ct|Z,;> = K.P(zt|cy. J  P(Ct|Ct-i); P(Ct ilZt-QdCt-! (6.7)
Posterior Likelihood Motion Prior Previous posterior

where n — is a normalising constant. At initialisation (t = 0) no observation
is available, so that the initial distribution of the posterior is equal to the initial distri­
bution of the state vector: P (C 0|Zo) =  P(Cq), also known as the prior. The Bayesian 
tracking framework of Equation 6.7 is illustrated in Figure 6.1.
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Figure 6.2: Sets o f  1000 particles locally populating the parameter space o f the 
model configurations, and weighted so as to estimate the distribution o f the poste­
rior.

6.2.2 Sequential Monte-Carlo Approach

Particle filters estimate the probability density function (pdf') of the posterior with dis­
crete samples {particles). Each particle is a possible configuration C ? of the model 
in the parameter space. The general idea of the particle filter is then to “throw” an 
important number of these particles to populate the parameter space, and to estimate 
the posterior for each particle using the Bayesian framework described in the previ­
ous section. Figure 6.2 illustrates the particles (model configurations) populating the 
parameter space around the expected peaks of the posterior.

Particle filters also belong to the more general class of Monte Carlo methods, which 
all share a “random” component. Various names are used in the literature to denote par­
ticle filtering: it is also known as Sequential Monte Carlo, bootstrap filtering, CON­
DENSATION algorithm [IB98a, IB98b] and survival o f the fittest.

The posterior distribution is approximated by a set of discrete weighted parti­
cles, each representing a body configuration in the parameter space. Let us denote as 
{{Cj, w / } , . . . ,  { C f '1, w ^1' } } the set of Np weighted particles representing the proba­
bility density function of P ( C t\Zt). The weight are normalised such that w t ~  1- 
A set of particles is a random measure of the posterior, which can then be approxi­
mated as:

P ( C , \ Z t )«  ^ w ‘.<5(C, -  CJ) (6.8)
i= 1
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where <5() is the Dirac delta function. The approximation from Equation 6.8 ap­
proaches the true posterior as Np —► oo.

The Sampling Importance Resampling (SIR) particle filter follows the iterative for­
mulation of the posterior from Equation 6.7. At the current timestep t, the particles 
are assumed to approximate the previous posterior. We propagate each particle using a 
dynamic model (motion prior) approximating the process function f t ( C £_ i, vt) defined 
in Equation 6.1. In Section 6.3, we shall introduce a novel scheme to learn high level 
behaviours and approximate the true dynamic model. After propagation, the updated 
set of particles is a discrete approximation of the previous posterior combined with the 
motion prior (the right hand side of Equation 6.7).

In the next step, called “evaluation”, the weights of the particles are re-assigned 
according to the likelihood of the observation z t given the current particle. The eval­
uation of the likelihood function is critical for both robustness and performance: we 
shall present in Section 6.4 a novel evaluation method based on the 3-D blobs. After 
evaluation, the set of particles approximates the distribution of the posterior. The par­
ticles with highest weights can then be used to find the most likely configuration of the 
model (mode of the distribution).

The remaining step of the algorithm is called “resampling”. It optimises the distri­
bution of the particles, and is discussed in Section 6.2.3. These three steps, common 
to most particle filters, are illustrated in Algorithm 6.1.

6.2.3 Resampling

Resampling is designed to match the density of the distribution of the particles with 
the probability density function of the posterior. Practically, this is equivalent to elim­
inating the particles with small weights in order to concentrate on the particles with 
significant weights. The rationale behind resampling is that, since the total number of 
particles is limited, accuracy is mostly needed in regions where the expectation for true 
model configuration is high.

It has been shown [AMGC02] that without resampling, the variance of the weights 
can only increase over time. This degeneracy problem implies that only a few particles 
gain a high weight, while the vast majority contribute very little to the approximation of 
the posterior. This situation is obviously undesirable because computational resources 
are then wasted updating unimportant particles, while the peaks of the posterior are not 
accurately represented.

An estimate of degeneracy for a set of weighted particles is the effective sample
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Algorithm 6.1: Generic SIR Particle Filter.
repeat

> Resampling (Section 6.2.3);
for i = 1 to Np do

Draw C\ ~  P { C t^ \ L t_x)\ 
Reset weights as wj <— ^ ;

end

> Propagation using the 
motion prior (Section 6.3);

t> Evaluation (Section 6.4);
o Np dofor i =  1 to Np do

I w; 
end 
for i

w;
1 to Np do

w*’Ẑ k=l
end

t <— t +  1; 
until end tracking;

Previous
Posterior

ITT T T TT F T T T T

t u  M  t t t t  t y t  Resampling

Propagation1 Y YHt-t̂ A, •<< A,

Evaluation

F T T Ft  ¥ tT FTT T
;Lt'( .U ' ?•

size N ejf ,  introduced by Liu et al. [LC98], and defined as:

Small values of the effective sample size N ef f  indicate severe degeneracy, and 
in many implementations [AMGC02], trigger the resampling of the set of particles. 
However, the SIR implementation (Algorithm 6.1) resamples systematically the set of 
particles at each frame: the effective sample size is then unnecessary but can still be 
used as a performance indicator of the filter.

The resampling step involves generating a new set of particles, sampled from the 
approximate discrete approximation of the posterior (Equation 6.8). The Systematic 
Resampling [Kit96] algorithm was chosen because of its linear complexity in the num­
ber of particles: 0 ( N P). The principle of Systematic Resampling is described and 
illustrated in Algorithm 6.2. The resulting set of particles is a random sample from the 
discrete approximation of the posterior, which explains that all weights are reset to
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Algorithm 6.2: Systematic Resampling Algorithm.
cdfi *- w j; 
for i =  2 to Np d o  
| ccf/i c d f i - i  +  w*; 

end
Draw r ~  U[0, Â ™1]; 
i <- 1;
for j  =  1 to AJ, do 

r
while cdfi <  Uj do 
I i <— i +  1; 

end
{C?,w^} <- {C*, A Jf1};

end

A particularity of Systematic Resampling is that existing particles are used as sup­
ports to initialise the new ones: the particles that have high weights are therefore sta­
tistically selected and replicated many times in the new set. This phenomenon, called 
sample impoverishment characterises itself by a loss of diversity among the particles 
as the resultant sample will contain many repeated points. This problem is usually 
harmless when the process noise is strong enough, allowing particles to differentiate 
from each other during the propagation step. In presence of smaller noise however, al­
ternative techniques such as regularisation [AMGC02] have to be used, with an impact 
on performance.

6.3 Propagation of the Particles

In this section, we introduce a novel method for propagating particles in an efficient 
way. The dynamics of the subject are learnt at two levels of granularity: local dynamics 
are encoded with second-order Gaussian models, while higher level behaviours are 
represented by a Variable Length Markov Model (VLMM).

cdfi

r 
0 o

w;

Nr,
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6.3.1 Theory and Related Work

In the context of particle filtering, the role of the motion prior is to propagate the 
particles using a dynamic model, so that the distribution of the particles after the prop­
agation step approximates the expected distribution of the likelihood. Ideally, the eval­
uation of the likelihood has then the sole role of correcting wrong predictions, which 
are bound to be frequent because of the necessary simplifications of the motion model. 
General-purpose prediction of human movements is very complex because of the high 
dimensionality of the parameter space combined with the highly non-linear nature of 
most motions. Unfortunately, the literature on motion prediction is too vast to be fully 
reviewed in this thesis. We shall therefore focus on some of the most pertinent contri­
butions. The reader is invited to refer to some relatively recent surveys [Gav99, MG01] 
for further details.

In the CONDENSATION algorithm [IB98a], Isard et al. model the dynamics of 
the system with a single second order Auto-Regressive Process (ARP) in the full pa­
rameter space. When the number of particles is sufficient with respect to the size of 
the parameter space, enough particles are assumed to be propagated in the direction of 
the true motion. In practice, since the number of manageable particles is limited, prob­
lems start occurring when too few particles are propagated to represent peaks in the 
distribution of the likelihood. In the ICONDENSATION framework [IB98b], Isard et 
al. propagate the particles either using the same scheme as in the standard CONDEN­
SATION algorithm, or guide them towards the most relevant regions of the parameter 
space using an auxiliary measurement obtained directly from the image data. More 
specifically, in [IB98b], Isard et al. use some colour blobs to track the hands and prop­
agate a predefined proportion of the particles towards the corresponding image regions. 
This scheme compensates for the prediction errors of the dynamic model, but neces­
sitates a reliable auxiliary measurement, which can become difficult to obtain in high 
dimensionality problems.

Annealing [DBROO] was introduced by Deutscher et al. as a coarse to fine ap­
proach that can help focus the particles on the global maxima of the likelihood, at the 
price of multiple iterations per frame. A smoothing function is used to “broaden” the 
peaks of the likelihood, hence increasing their chances of being initially represented 
by a sufficient number of particles. In subsequent iterations, the smoothing decreases 
simultaneously with the propagation noise, so that the particles are resampled nearer 
and nearer to the maxima of the likelihood. Due to the complexity of human dynamics, 
no dynamic model is learnt and the particles are propagated using solely the Gaussian
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process noise. The tracking process therefore relies mostly on the evaluation of the 
likelihood. Of course, as the dimensionality of the parameter space increases, more 
and more particles are needed to explore all possible directions, which can be very 
wasteful in computational resources. Compared with CONDENSATION, the extra 
cost generated by the multiple iterations per frame is compensated by the lower num­
ber of required particles. However, problems still occur when either the number of 
particles is too small, or when the movements are too fast, placing the new peaks of 
the likelihood out of reach by the random propagation.

In [DDR01], Deutscher et al. propose two new methods to help focus particles 
on the relevant parts of the parameter space. Hierarchical partitioning (also known as 
“scaled sampling”) adjusts the propagation noise to the variance of the set of particles 
after resampling. The dimensions of the parameter space with the greatest influence 
on the evaluation of the likelihood have a lower variance than the less influential di­
mensions. For example, the global position of the kinematic model is more influential 
than the joint angle of a hand, so that its variance after the first evaluation and resam­
pling should be lower. By iteratively adjusting the propagation noise to the variance of 
each dimension, the most influential dimensions are fitted first, making the algorithm 
behave like an automatic hierarchical method. Another extension is the crossover oper­
ator, which exchanges subset of parameters between high-weighted particles, borrow­
ing the idea from genetic algorithms. The convergence rate using these techniques is 
reported in [DDR01] to be four times better than with standard annealing, but remains 
too high for real-time processing.

While the previously-mentioned schemes are general enough to track all types of 
motion, their robustness fully depends on the estimation of the likelihood. When ob­
servations become too noisy or ambiguous, these methods unavoidably fail, and have 
no means of recovery. Human-body tracking is a typical example of application where 
the observations are unreliable (self-occlusions, camera noise, motion blur, and so on), 
and more robust schemes must therefore be employed.

Prediction

Using a good predictive model, inconclusive observations can be recovered from. Par­
ticles are indeed propagated only in plausible directions, which means that even in the 
absence of strong evidence, the tracking can hold for a while by relying mostly on the 
motion prior. Outliers are also automatically discarded since no particles are propa­
gated towards them. Another advantage of a good prediction scheme is that the limited
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number of particles is used much more efficiently than with random propagation: full 
body tracking becomes practical in real-time. Of course, since motion prediction is 
itself very complex and sometimes unreliable, wrong predictions are bound to happen, 
possibly resulting in a loss of tracking. When possible, recovery schemes should then 
be implemented.

Extending incrementally the CONDENSATION framework, Isard and Blake pro­
pose in [IB99] a mixed state dynamic model for tracking. A set of second order ARPs 
is learnt from manually segmented data, and the transitions between these dynamic 
models is performed at runtime according to a manually-set transition matrix (first or­
der Markov model). Tests validate the benefits of the approach on simple dynamics 
composed of only 2 or 3 classes. In [BNI99], the same authors devise a scheme for 
learning automatically the transition matrix from the data. The number of dynamic 
models is still manually set and the models themselves are very constrained (only two 
free parameters in their example), but this method represents a first step towards the 
automatic learning of complex motions.

Using a Bayesian tracking framework, Sidenbladh et al. [SBFOO] propose a varia­
tional model for simple activities such as walking and running. The parameters (joint 
angles and global position) are first projected into a lower dimensionality space using a 
standard Principal Component Analysis (PCA), and their distributions are modelled by 
a single Gaussian. The motion prior is therefore evaluated using this Gaussian model 
of variations between the previous frame and the current one. Despite the relative sim­
plicity of the dynamic model, results suggest that the motion prior improves greatly 
the accuracy and robustness of the tracking. However, the number of required particles 
is still very high (10,000), and the dynamic model remains limited to very simple types 
of motion, such as the walking cycle.

Agarwal et al. [AT04] extend the work of Sidenbladh et a l  [SBFOO] by first clus­
tering the parameter space using K-Means. Each cluster then represents a simpler 
activity which is easier to learn than trying to learn dynamics over the whole param­
eter space. This clustering allows the learning of complex activities, provided that 
elementary sub-activities can be identified. Inside each cluster, the dimensionality of 
the parameter space is reduced with a PCA, and dynamics are learnt using a second 
order Auto-Regressive Process. Transitions between clusters are based on the current 
configurations of the particle, the conditional probability of each cluster being mod­
elled by a Gaussian distribution. In the absence of a higher level model of behaviour to 
guide the transitions between clusters, it is not clear how Agarwal’s system copes with
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tracking failures. A limited evaluation is also suggesting the success of the method on 
short activities, but more challenging and diverse sequences remain untested,

Urtasun et al. [UF04] learn separately the dynamics of various walking and run­
ning rhythms under PCA projection. The variations (derivatives) of the joint angles 
are stored in a database, and retrieved during tracking. The switching between the dy­
namic models (for example, walking to running) seems to be implemented by testing a 
posteriori the likelihood of each model. The method also necessitates manual segmen­
tation of various activities, which is impractical for complex sequences. In [UFF05], 
the same method is applied to the tracking of the golf swing, with more details on the 
least square optimisation framework that optimises the selection of the dynamic model 
along with the other model parameters. Unfortunately, the optimisation necessitates 
the computation of the gradients from the objective function, which is both costly and 
not always possible. Finally, in [UFHF05], the PCA is replaced by Scaled Gaussian 
Latent Variable Models (SGPLVMs) [Law04] which perform better for non-linear mo­
tions, and for small training sets.

In Style Machines [BHOO], Brand and Hertzmann learn the general structure of the 
training data at the same time as the stylistic variations exhibited by individual sub­
jects. To achieve this, specific models learning the training data of individual subject 
interact with a general model supposed to learn the common structure of all the se­
quences. Both specific and general models are Hidden Markov Models with Gaussian 
emission probabilities. During learning, the interactions between the specific models 
and the general one are formulated as a sum of entropies, including a cross-entropy 
term. The full objective function is designed to maximise overlapping between the 
specific models and the general one, while keeping the specific models specialised and 
the general model simple. A modified Expectation-Maximisation loop is used to fit 
the Gaussian models on the joint angles data, previously summarised by a PCA. Once 
both the general and the specific HMMs are learnt, the stylistic variations are recovered 
as the parameters allowing the transition between specific Gaussian emission models 
inside the general one. In practice, under PCA, only a few parameters are sufficient 
to explain the variability between specific models. While they were mainly designed 
for retargeting applications, stylistic models can be an interesting way to learn ac­
curate motion priors once the stylistic parameters for the tracked subject have been 
discovered. For prediction, it is possible to follow a smooth path between Gaussian 
distributions, as detailed in [Bra99].

In [SBS02b], Sidenbladh et al. take a different approach to particles propagation:
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instead of trying to learn a predictive model, they build a database of model configu­
rations from a large amount of training data. An efficient search algorithm, based on 
a PCA and a binary tree, allows the lookup of a particular pose. More interestingly, a 
“heat” coefficient controls a probabilistic perturbation of the search algorithm, so that 
similar body configurations can be sampled from. Using a standard particle filtering 
framework, the propagation of the particles is therefore strongly constrained by the 
poses included in the database. When the target motions are very similar to the train­
ing examples included in the database, this scheme has the potential to be very robust 
and efficient. However, this data-based approach does not readily generalise to new 
motions, and as the size of the training data grows, storage can become an issue.

Other proposed methods include the unscented particle filter [vdMDdFWOO] which 
utilises the predictions of an Extended Kalman filter. The dynamic model is then learnt 
online, with no need for training data. The accuracy of this method is however ques­
tionable, especially since the Kalman cannot capture the non-linear variations of the 
parameters. Another propagation scheme proposed by Choo et a l [CF01] utilises the 
gradient of the likelihood to guide the particles. The method assumes that the gradient 
can be computed, and also takes the risk of attracting particles towards local maxima.

Many other predictive methods are borrowed from the field of Artificial Intelli­
gence, with a strong emphasis on movement classification and recognition. For ex­
ample, Hong et a l [HTHOO] use finite state machines to classify gestures. Brand et 
a l  [BOP97] introduce coupled hidden Markov models to model interactions between 
limbs.

6.3.2 Learning Dynamics

We now describe the learning of our dynamic model. The parameter space is clustered 
into Gaussian states, over which high-level behaviour is modelled by a variable length 
Markov model.

Description and Pre-Processing of the Training Data

The training data consists of the joint angles © =  {#1 , . . . ,  #19} of the kinematic model 
augmented by their first derivatives 0  — {0i , . . . ,  0ig}, amounting to 38 dimensions. 
Note that the degrees of freedom of the head were not included in the model because 
the corresponding training data was unavailable. The global position Pq and orienta­
tion R 0 of the kinematic model are also not included in the training data to keep the
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dynamics invariant to the placement of the subject. For convenience, let us denote as 
0  =  { 0 ,0 }  the feature vector composed of the joint angles and their derivatives. 
The full configuration of a kinematic model at time t is therefore described by the 
configuration vector C £ =  {Pot, Ron ©t} with a total of 44 dimensions.

A first part of our training data is acquired from a Vicon tracking system, which 
returns accurate and smooth estimates of the 3-D positions of the body parts. The rest 
of the training data is obtained from manually annotated video sequences, producing 
sparse and noisy 3-D positions for the body parts. In both cases, the values of the 
joint angles are recovered using inverse kinematics (Section 5.3). The joint angles 
corresponding to manually annotated sequences are then smoothed using a Gaussian 
kernel A/"(0,1), and the data is completed by interpolating between annotated positions 
with Cubic Splines.

The first derivatives (velocity) of the joint angles are computed in a discrete man­
ner as 0 £ =  0 £ — 0 £_r , where r  is the number of interpolated configurations between 
two keyframes taken at the original framerate. A Gaussian noise (with a variance of 
typically 1/100 of the total variance of each dimension) is finally added to all the pa­
rameters to ensure a good generality of the learnt model and avoid overfitting.

Clustering the Parameter Space

Due to the complexity of human dynamics, we break down complex behaviours into 
elementary movements for which local dynamic models are easier to infer. The prob­
lem is then to automatically find, isolate and model these elementary movements from 
the training data. We achieve this by clustering the feature space into Gaussian clus­
ters using the EM algorithm proposed by Figueiredo and Jain [FJ02]. Their proposed 
method automatically addresses the main pitfalls of traditional EM, that is, the delicate 
initialisation, the arbitrary choice of the number of components, and the possibility of 
singularities. Body configurations sampled from a few clusters on ballet-dancing data 
are shown in Figure 6.3.

Learning Transitions between Clusters with a VLMM

Complex human activities such as dancing (or even simpler ones such as walking), can 
be viewed as a sequence of primitive movements with a high level structure controlling 
the temporal ordering. A suitable way to obtain probabilistic knowledge of the under­
lying behavioural structure is variable length Markov models (VLMMs) [RST96].
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Figure 6.3: Model configurations sampled from various Gaussian clusters. The 
mean values o f the derivatives are represented at each end effectors by a green 
arrow with a size proportional to the absolute value o f the derivatives.

Variable length Markov models deal with a class of random processes in which the 
memory length varies, in contrast to n-th order Markov models. They have been previ­
ously used in the data compression [CH87] and language modelling domains [RST96, 
GP951. More recently, they have been successfully introduced in the computer vision 
domain for learning stochastic models of human activities with applications to be­
haviour recognition and behaviour synthesis [GJH99a, GJH99b, GJH01, GCMH02]. 
Their advantage over a fixed memory Markov model is their ability to locally optimise 
the length of memory required for prediction. This results in a more flexible and effi­
cient representation which is particularly attractive in cases where we need to capture 
higher-order temporal dependencies in some parts of the behaviour and lower-order de­
pendencies elsewhere. A detailed description on building and training variable-length 
Markov models is given by Ron et al. [RST96].

A VLMM can be thought of as a probabilistic finite state automaton (PFSA) M. =  
(Q, /C , r ,  7 ,  s), where /C  is a set of tokens that represent the finite alphabet of the 
VLMM, and Q is a finite set of model states. Each state corresponds to a string in
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Figure 6.4: Synthetic VLM M  with alphabetic =  {A7 , k2, k3}, and 7 states. The 
thickness o f  the aivs represent the output probabilities 7, and the thickness o f  the 
state ellipses stands for the probability distribution s over the start state.

1C of length at most N m  (Nm  > 0), representing the memory for a conditional transi­
tion of the VLMM. The transition function r, the output probability function 7 for a 
particular state, and the probability distribution s over the start states are defined as:

The VLMM is a generative probabilistic model: by traversing the model’s automa­
ton M  we can generate sequences of the tokens in 1C. By using the set of Gaussian 
clusters as the alphabet, we can capture the temporal ordering and space constraints 
associated with the primitive movements. Consequently, traversing A4 will generate 
statistically plausible examples of the behaviour.

In this section, we describe the way particles are propagated (motion prior). The 
VLMM guides the transitions between clusters of elementary movements. For each 
particle, the joint angles are propagated with local dynamics encoded by the current 
Gaussian cluster, while the global parameters are propagated stochastically.

r  :Q x 1C — Q

7  :Q X /C —> [0 ,1] , V q e Q , J 2 ' f ( q , k )  =  l
(6.10)

s -Q -  [0.1]

6.3.3 Predicting Using the VLMM
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Transitions Between Clusters with the VLMM

The particles are augmented with their current VLMM state qt, from which the clus­
ter kt to which they belong may be easily deduced. Transitions (or jumps) between 
clusters are conditional 011 the particle’s feature vector S t as well as the transition 
probabilities y(-, •) in the VLMM. The probability of transition towards a new Gaus­
sian cluster kt+i of mean Hkt+1 and covariance T>kt+1 is derived using the Bayes’ rule:

At each frame, the state transition is chosen according to the above probabilities for 
each neighbouring cluster. In practice, only a few transitions are encoded in the 
VLMM, making the evaluation efficient. If the same cluster is chosen (k t+ 1 =  kt), 
the particle is propagated using local dynamics, as formulated in the next section. If a 
new cluster is selected, the particle’s parameters are re-sampled from the new Gaussian 
cluster.

Local Dynamics Inside Each Cluster

Inside each Gaussian cluster, a new model configuration can be stochastically predicted 
from the previous feature vector ©t_i. Since the Gaussian clusters include derivatives, 
the prediction effectively behaves like a second-order model. Let us consider a Gaus-

(
^ 0 0  2 * \

n°^Se

vector is directly sampled from the cluster’s covariance matrix with an attenuation co­
efficient A, leading to the formulation:

The square-root of the covariance matrix is computed by performing the eigenvalue

P (k t+i | ©*,&) =
=  P (O i\k t+l).P(qt \kt+1).P (kt+1) 

P(®t)-P{qt)
=  P (® t\h +i) .P (k t+i\qt).P(qt).P(kt+i) 

P ( 0 t) .P (9t).P(fcm )

oc P(@ t | kt+1).P (k t+1 | qt)

(6 .11)

©£ — © i - i  +  X . d O t 

©  t — © i — 1  +  © t  +  X . d Q
with (6 .12)

The random noise vector is drawn as (det det )T = v ^ ©  * X  with X  ~  J\f(0, / ) .
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k3

Figure 6.5: Probabilistic propagation o f  the particles using local dynamics from 
the Gaussian clusters {k \ , k2, £,'3 } .  The ellipsoidal shape o f the clusters represents 
the covariances E 0© o f the joint angles. The mean values o f  the derivatives o f  the 
joint angles /i0 are represented by green airows.

decomposition, S 0 =  V  ■ D  • V T, and taking the square root of the eigenvalues on the 
diagonal of D, so that a/S© =  V  • \[D  • V T.

This predictive model has to be understood in the context of Monte-Carlo sampling, 
where noise is introduced to model uncertainty in the prediction: the properties of the 
noise vector are therefore almost as important as the dynamics themselves. The covari­
ance matrix of the current cluster provides a good approximation of this uncertainty, 
and sampling the noise vector from the cluster itself makes propagation of uncertainty 
much closer to the training data than uniform Gaussian noise.

S@©,;

£ i © . l
^0,1 S@©,2

>M@,2

M©,2

t ' 3
*  §£*0,3

£ © 0 ,3

Random Propagation of the Global Parameters

The six parameters describing the global position P0 and orientation R 0 of the model 
are not included in the dynamic model. They are therefore propagated with Gaussian 
noise, in a similar way to the CONDENSATION algorithm [IB98a]. The amplitude 
of the Gaussian noise has to be sufficient to follow fast motions. We therefore define 
some scaling coefficients p9 and Xg, respectively for the global position and the global 
orientation of the kinematic tree. These coefficients depend on the type of motion and 
the framerate of the cameras capture. In our experiments, we set pg =  60 millimetres 
and Xg = 0.1 radians. The global parameters are stochastically propagated according 
to:

Pot -  P o t - i + P g - X  w .t h  x ~ N ( 0 , I 3) (6.13)
Rot -  Pot_i + A,.X
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6.4 Fast Evaluation of the Likelihood

In this section we present a fast evaluation technique for the particles. Because of its 
good compactness, the 3-D blobs representation introduced in Chapter 4 provides an 
ideal basis for the evaluation of the likelihood function. We shall see how the blob 
description can be integrated into the particle filtering framework, alleviating most of 
the pitfalls of the hierarchical tracking.

6.4.1 Introduction

The distribution of the likelihood is approximated at timestep t  by a set of Np weighted 
particles {{Cj, w j} , . . . ,  {C fp, wf^}}. The evaluation stage consists in weighting 
each particle proportionally to the probability of the current measurement zt given 
the model configuration encoded by the particle: Vz G [1 ... Np], P ( z t | CJ).

To estimate the probability of the observations given a model configuration, an 
appearance model is first generated from the model parameters, and is subsequently 
evaluated against the observations. The goal of appearance models is to encode in a 
compact way all the pertinent information about the subject, that can be extracted from 
the current observation. The evaluation of the appearance model therefore occurs at 
a “middle ground” between raw observations (image inputs) and the parameter space 
of the model. The choice of this “middle ground”, or feature space, is critical for the 
overall performance of the system because an appearance model must be generated 
and evaluated for each particle at each frame.

A variety of features are used in the literature to characterise the configuration 
of the subject. Silhouettes, extracted using background segmentation techniques (see 
Chapter 2), are very popular [MH03, CTMS03, DBROO, DDR01] because of their 
simplicity and good overall robustness. The appearance model is often projected onto 
all available image planes, and the number of matching pixels defines the objective 
function. More or less complex appearance models, ranging from a set of cylinders 
to deformable mesh models, have been used for evaluation: the reader is invited to 
refer to Section 4.1.1 for a short review of appearance models. The intrinsic limita­
tions of silhouettes include the loss of internal features, the absence of colour and the 
need for a static background. Moreover, in presence of strong camera noise, silhouette 
extraction can generate outliers, thus requiring costly post-processing. Figure 6.6(b) 
demonstrates the overall robustness of silhouette extraction, even in extreme condi­
tions, but also exhibits the numerous outliers which are a consequence of processing
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(a) Input image. Note the presence of strong mo- (b) Silhouette extraction using Grimson et 
tion blur and camera noise. al. fSG991’s method (10 Gaussians per pixel).

(c) Canny [Can86] edge detection. (d) Volumetric reconstruction using all 5 available
camera views.

Figure 6.6: Comparison o f image-based features for particles evaluation.

each pixel independently.
Edges can also be exploited, with, for example, the distance to the closest edge 

pixel as objective function. The result of applying the Canny [Can86] edge detection 
algorithm is shown in Figure 6.6(c). Even if, once again, the results are rather good 
considering the challenging input image, some important features such as the right 
hand are missing because of the motion blur. The cluttered background is also prob­
lematic as it can distract the objective function from the subject, and lead to a loss of 
tracking.

When multiple camera views are available, evaluating model configurations based 
on a volumetric reconstruction becomes an interesting option. In recent years, the vi­
sual hull has been exploited [TMSS02, CBK03a, CBHK04, MTHC03, KBG05] to de­
fine various objective functions for human-body tracking. However, to our knowledge,

Silhouette extraction using Grimson 
[SG99]’s method (10 Gaussians per pixel).
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volumetric reconstructions have not yet been used in the context of discrete Bayesian 
tracking. The advantages of the 3-D reconstruction over other image cues have already 
been advocated throughout this thesis: let us just insist on the increased robustness, 
the good compactness of the data, and the inclusion of colour. The result of our 3-D 
reconstruction method (Chapter 3) using all 5 available camera views is shown in Fig­
ure 6.6(d).

Various other image cues have been used in the literature. For example, Stefanov et 
al. [SGH05] perform a Hough transform on the silhouettes of the hands to detect the 
round shape of the fingertips. The particles are then evaluated in the Hough space 
instead of the image space. Let us finally mention the widely used boosting [MR03] 
framework, which combines the outputs of a collection of specialised detectors to pro­
ducing a more robust classifier.

The full literature on feature detection extends far beyond the scope of this thesis. 
However, the area of human-body tracking is relatively conservative regarding image 
features. Silhouettes, edges, and occasionally disparity maps are indeed the basis of 
the vast majority of trackers. This short overview, although not exhaustive, is there­
fore representative of the common current evaluation schemes used for human-body 
tracking.

The next sections describe how the volumetric reconstruction from Chapter 3 can 
be used as a basis for the efficient evaluation of the likelihood. We start in Section 6.4.2 
by introducing a direct voxel-based evaluation scheme, and improve its efficiency in 
Sections 6.4.3 and 6.4.4 by exploiting the blob-fitting procedure from Chapter 4 into a 
fast blob-to-blob evaluation scheme.

6.4.2 Direct Voxel-Based Particle Evaluation

The appearance model associated with a given configuration C t of the model is a 
set of blobs B — { B x, . . . ,  As we saw in Section 4.3, the attributes of the
blobs are automatically acquired from the data, and new sets of blobs B  can be readily 
generated for any model configuration C*. In other words, the configuration vector C t 
conditions fully the set of blobs B. The evaluation of the likelihood distribution at a

153



CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

given configuration vector C £ is as follows:

P{zt | C t) oc P (Voxels | B)

= n  sv?.P(Vi|B)
Vi G Voxels (6.14)

Nb

= II
VjG Voxels j~ 1

Using the formulation of P(Vi | Bj) from Equation 4.6 (Section 4.2.3), and taking the 
logarithm of the expression gives:

/
logP(z( | Ct) oc Y ,  sv?-log E t T -

Vi G Voxels \ j = 1 \ * - n )

This expression can be further simplified by exploiting the fact that blobs are not over­
lapping. The likelihood of each voxel is then computed exclusively with respect to the 
most probable Gaussian blob:

lo g P (z ( I Cl) £  Svi- E fw  (“ log ls jl -  Du (Vi,Bj)) (6 16)
Vi G Voxels 3 h

Even with a low number of blobs, and exploiting the hierarchical nature of the 
voxel space, it is easy to see how this formulation remains far too computationally 
expensive for the online evaluation of a full set of particles. One must keep in mind 
that this scheme is nonetheless much more efficient than most image-based evaluation 
methods, that would require testing all the pixels for all the camera views. In the next 
sections, we propose a far more efficient evaluation scheme exploiting the blob fitting 
procedure from Chapter 4.

6.4.3 Data Density as a Mixture of Gaussians

In Section 4.2, we showed how to fit a mixture of Gaussian blobs onto the 3-D voxels 
in real-time using an EM-like procedure. Provided that this blob-fitting procedure 
is reliable enough, the resulting set of blobs constitutes an ideal basis for efficient 
evaluation of particles. Each set of blobs can be assimilated to a mixture of Gaussians, 
for which we can derive an efficient measure of similitude based on the cross-entropy. 

As with every EM-based algorithm, the reliability of blob-fitting strongly depends

:.e (6.15)
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Figure 6.7: B l o b s  f i t t in g  p r o c e s s ,  ( l e f t )  T h e  r e c o n s t r u c t e d  v o l u m e  f o r  th e  c u r r e n t  
f r a m e ,  a n d  th e  m o d e  o f  th e  p o s t e r i o r  c o r r e s p o n d i n g  to  th e  l a s t  t r a c k e d  p o s i t i o n ,  
( m i d d l e )  T h e  p a r t i c l e s  a p p r o x i m a t i n g  th e  p o s t e r i o r  a r e  p r o p a g a t e d  u s in g  l o c a l  d y ­
n a m ic s  a n d  th e  V L M M .  ( r i g h t )  T h e  b l o b - f i t t in g  i s  p e r f o r m e d  f r o m  th e  c e n t r e s  o f  
th e  c l u s t e r s  w i th  h ig h  s u p p o r t  ( d i s p l a y e d  in  b lu e ) ,  a n d  th e  m a x i m u m - l i k e l i h o o d  s e t  
o f  b l o b s  is  r e ta in e d .

on initialisation. The number of blobs and their attributes are known from the appear­
ance model, but their actual positions depend on the pose of the underlying kinematic 
model. Initialising EM from the tracked position in the last frame can prove insufficient 
for fast movements. Fortunately, the VLMM can predict the next possible clusters by 
traversing the automaton from the last tracked positions. EM is then performed from 
the means of these clusters, and the maximum-likelihood result is retained.

A strength of the particle filter is the ability to track multiple hypotheses at once. 
Different states in the VLMM can therefore be represented by meaningful numbers of 
particles. In order to avoid biasing the evaluation process, EM should be performed 
from every predicted maximum of the p o s t e r i o r .  To achieve this, we count the num­
ber of particles corresponding to each cluster after resampling and prediction. If this 
number is greater that a given ratio of the total number of particles, then the corre­
sponding cluster maps to significant values of the predicted p o s t e r i o r ,  and EM must 
be performed from the centre of the cluster (illustration in Figure 6.7). In practice, 
we take the threshold ratio to be 1/10 of the total number of particles, which allows 
simultaneous tracking of multiple hypothesis and prevents unnecessary computations 
from clusters with low support.

The likelihood of each set of blobs obtained after performing EM from the clusters 
with high support is evaluated using Equation 6.16. Even though this formulation is 
too expensive for real-time evaluation of all particles, its performance is sufficient to 
evaluate the small number of candidates resulting from EM. Let us denote as B =
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{B i . . . ,  Bjyb} the set of blobs with the greatest likelihood.
This blobs-fitting procedure has the important advantage of detecting tracking fail­

ures: if the best mixture B  has a low likelihood, the tracker is lost and needs re­
initialisation. Unlike most other trackers, automatic recovery from failures is then 
possible because the parameter space is clustered in motion prototypes. Performing 
EM from all clusters might provoke a noticeable lag, depending on the total number 
of prototypes, but is bound to return a good result. The VLMM state of all particles 
is then reset, which has the effect of spreading them across the clusters. To ensure a 
quick recovery, a bias towards the clusters that returned the best mixtures is introduced 
for the first state transition.

6.4.4 Fast Particle Evaluation as Cross-Entropy Measure

A model configuration (particle) is evaluated by first generating an appearance model 
from the particle state, and then comparing the produced set of blobs with the maxi­
mum likelihood set of blobs B  obtained after EM. Figure 6.8 illustrates the evaluation 
framework. Let us denote as B  =  { B x, . . ., B Nb} the set of blobs generated from 
a given particle of configuration Ct (the generation of the appearance model is per­
formed according to Section 4.3.1). In the following, we shall assimilate the sets of 
blobs IB and B  to mixtures of Gaussians, which assumes equal priors for each Gaussian 
blob:

A)
V x e R 6 P{x\B) = Y , j r P ( A B i )  P{x\B) = Y i — P {x\B i) (6.17)

i = l  *=1 b

The cross-entropy between two statistical distributions reflects the “energy” that 
is required to transform one distribution into the other. By contrast to some simpler 
metrics (comparing only the means and the variances between two distributions), the 
cross-entropy compares all the moments of the statistical distributions simultaneously. 
The distance corresponding to the measure of cross-entropy is often referred to as the 
Kullback-Leibler (KL) divergence, and defined as:

Dk L{B\\B)=  f  P(x\B ) In P ^ B) dx (6.18)J  R6 P(x\B)

where d =  6 is the dimensionality of the Gaussian blobs. For a mixture of Gaussians,
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Figure 6.8: O v e r v i e w  o f  th e  p a r t i c l e  e v a lu a t i o n  f r a m e w o r k .  T h e  v i s u a l  h u l l  is  f i r s t  
r e c o n s t r u c t e d  (a )  f r o m  th e  in p u t  im a g e s .  T h e  m a x i m u m - l i k e l i h o o d  s e t  o f  b l o b s  
B  is  th e n  f o u n d  ( b )  b y  p e r f o r m i n g  E M  f r o m  th e  c e n t r e s  o f  th e  c l u s t e r s  w i th  h ig h  
s u p p o r t  ( c ) .  T h e  p a r t i c l e s  a r e  e v a lu a t e d  b y  g e n e r a t i n g  a  b l o b - m o d e l  ( d )  f r o m  th e i r  
c o n f ig u r a t io n  v e c to r ,  a n d  m e a s u r in g  th e  c r o s s - e n t r o p y  ( e )  b e t w e e n  th e  t w o  s e t s  o f  
b l o b s .

this formulation can be expanded as:

^ i p V 1 p
Dk l {B\\B) = Y j —  P ( x \B ,) \n P ( x \B ) d x - V — /  P (x \B t)\n  P (x\B )dx

IS/b J R «  “  Jr6

This formulation is simplified by exploiting the fact that the blobs are well separated 
(minimal overlapping). The mixture B was generated including non-overlapping con­
straints, and B was computed with binary support maps, limiting overlapping during 
EM. Using the approximation proposed by [GGG03], we approximate the sum over
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the mixture B by the contribution of the closest blob only:

Nb

DKL(B\\B) ~  L  ( f '  f  P (x \B i) ln ^ - P ( x \B i)dx
* b Ju6 N

c 1 ^  \
— max / P (x \B i) \n — P (x \B j)d x )  

v 1 '  Nb K ' 31 J

1 Nb
=  rflin  i DK L{B i \ \B j )

Moreover, correspondence between blobs is maintained under the form B { <-* 
so that the complexity of the run-time evaluation function becomes linear with respect 
to the number of blobs:

h Nb
D k l {B\ \B) ^  (6 . 19)

l~\

This last formulation can be efficiently computed using the closed form solution of the 
KL divergence between two Gaussian blobs B  ~  T,B) and B  ~  Eg):

Dk l (B \\B )=  f  P (x  I B ) \ n P{-X \-B dx 
J ro P (x  | B)

= l | l n( l n  j l f j  _  6  +  t r ^ S B l s s )  +  ( a * b  -  P b ) T ^ b '  ( M b  ~  P b ) )

(6 .20)

The weighting of a particle is proportional to the inverse of the relative entropy 
D k l { B \ \ B )  between the particle and the set of blobs corresponding to image evidence. 
The proportionality factor is unimportant since the weights are re-normalised before 
resampling.

6.5 Discussion and Conclusion

This chapter started with a general introduction to Bayesian tracking and Monte-Carlo 
approaches, where the need of a good prediction scheme for both performance and 
robustness was highlighted. We then introduced a novel prediction scheme, based on 
the automatic decomposition of the parameter space into clusters of elementary move­
ments, and the learning of the transitions between these clusters with a VLMM. The

158



CHAPTER 6. BAYESIAN TRACKING WITH MONTE-CARLO SAMPLING

second part of the chapter focused on the evaluation of the likelihood. We presented 
a fast evaluation technique based on the relative entropy between sets of blobs. An 
extensive evaluation of this tracking framework will be the topic of Chapter 7.

The extension of the dynamic model to include the first derivatives of the global 
parameters is the subject of future work. We feel that this relatively straightforward 
extension could improve greatly the accuracy of the propagation scheme. Another 
potentially important extension could be the learning of stylistic variations between 
subjects, as proposed by Brand [BHOO]. Predictions could then become more accurate 
for a specific subject, while extrapolation to unseen styles would be possible.

Another worthwhile research topic would be the projection of the parameter space 
onto a lower dimensionality manifold, where dynamics could be easier to learn and 
correlations between the parameters implicitly encoded. Recent developments in this 
area, based on Scaled Gaussian Process Latent Variable Models [Law04, GMHP04, 
UFHF05], suggest the clear benefits of the method, particularly when a limited amount 
of training data is available. To date, SGPLVMs have still not been used in the context 
of Monte-Carlo Bayesian tracking.
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Overall Evaluation

This chapter presents the evaluation o f our Bayesian tracking algo­
rithm on challenging sequences o f ballet dancing. We start by de­
scribing the hardware setup used to capture the video streams. We 
then detail the content o f the video sequences and the acquisition o f  
the ground-truth data. The evaluation consists o f a visual inspection, 
followed by quantitative error measurements. We also compare our 
algorithm to other standai'd methods. After some performance re­
sults, a discussion about the scalability o f the system concludes the 
chapter.

7.1 Hardware Setup and Test Sequences

This section describes the acquisition of the test sequences, and the training of the 
dynamic model from Section 6.3 on the training data.

7.1.1 Hardware Setup

All video sequences presented in this thesis were captured using commodity hardware. 
We used 5 webcams capturing video sequences at 30 frames per second, in 320 x 
240 resolution. The images were acquired in YUV:422 format, which means that the 
chrominance components were sub-sampled, reducing the quality of the image. The 
videos were acquired by a single computer to which all cameras were linked through 
an IEEE1394 (also known as “firewire”) bus.
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No external triggering being available, the synchronisation between multiple views 
is approximate. At full framerate (30fps), the maximal delay between frames is quite 
small, so that the level of synchronisation is sufficient for most applications. The 
reconstruction of fast movements (more than 10cm per frame), however, suffers from 
this lack of accurate synchronisation.

The cameras also exhibit a high level of noise (analysed in Chapter 2). The speed 
of the shutter was kept at the minimum to limit motion blur, but the problem with 
short exposure times is that a strong lighting is required. Since we could not reach a 
sufficient level of lighting, we had to increase the gamma correction, which has the 
undesirable effect of accentuating the noise.

The calibration of both intrinsic and extrinsic camera parameters was performed 
using Bouguet’s Matlab Toolbox [Bou]. This toolkit implements the calibration proce­
dure described by Zhang [ZhaOO]. A chessboard pattern was used to acquire coplanar 
points, and perform the full calibration. The placement of the cameras was limited to 
arrangements where all views had a full coverage of the chessboard pattern.

Finally, even though the tracking space was emptied to allow the dancers to perform 
safely, no particular effort was made to facilitate the background segmentation. It can 
be noticed on the video sequences that the background is still cluttered, and that the 
clothing of the dancers is very similar in colour to some elements in the background.

7.1.2 The Ballet Dancing Sequences

Ballet dancing is an interesting application for the evaluation of human-body tracking 
algorithms because of its diverse body postures, and its fast and challenging move­
ments. The speed of execution is a key challenge and represents an important test for 
human-body tracking algorithms. Finally, ballet dancing is a structured activity, al­
lowing some predictability in the succession of the movements, therefore making the 
learning of behaviour patterns possible.

We evaluated our tracking algorithms on ballet dancing sequences, captured with 
students of Kate Simmons Dance Ltd. Our dancers were not professional ballet dancers 
and as a consequence, the choreographies were only reproduced approximately. We 
insist on this point because it makes the learning of dynamics and the generalisation 
from examples particularly challenging.

The dancers performed a complex sequence composed of 2 exercises, amounting to 
approximately 1500 frames (750 frames for each exercise). The choreography of each 
exercise is given in standard ballet notations in Table 7.1. The test sequences feature
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Exercise 1 Exercise 2
1. Glissade derriere

2. Jete derriere

3. Coupe

4. Assemble dessous

5. Sissonne fermee devant

6. Sissonne fermee derriere

7. Sissonne fermee de cote

1. Deux Balances

2. Pas de cote droit soutenu

3. Degage de cote droit

4. Preparation pour la Pirouette

5. Double Pirouette fermee 
derriere

Table 7.1: Description o f the dance exercises in standai'd ballet notation.

the full choreography (both dance exercises), while the training sequences consist of 3 
repetitions of each dance exercise.

7.1.3 Ground-Truth and Training Data

The data used respectively for training and quantitative evaluation were obtained by 
manual annotation of the video sequences. The 2-D locations of 12 body parts were 
first annotated for each frame of the sequence, and for all camera views. The 3-D 
locations of the body parts were then computed as a linear optimisation problem, min­
imising the reprojection error. The trajectories of the body parts were then smoothed 
and interpolated from, as described in Section 6.3.2. The joint angles were finally re­
covered using inverse kinematics. We obtained a total of 13000 frames for training by 
oversampling and varying the amount of smoothing for each training sequence.

For each dance exercise, we automatically clustered the training data using our own 
implementation of the EM algorithm proposed by Figueiredo et cil. [FJ02], as described 
in Section 6.3.2. A total of 122 clusters were found for the full choreography (both 
dance exercises), which can seem high but actually reflects the underlying complexity 
of the motions. As a comparison, the same clustering on a simpler “arms pointing” 
sequence returned only 5 clusters.

The data-path of the parameters across the Gaussian clusters was used to train a 
variable length Markov model with various maximal history lengths. Using a maximal 
memory length of 10, the VLMM learnt 948 distinct states. This number of states 
rose to 2262 with a maximal length of 20 and 2890 with a maximal memory length of 
30. All VLMMs were trained with a threshold on the Kullback-Leibler divergence of
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e = 0.0001 (see [RST96] for details).

7.2 Tracking Results

In this section, we present the results of the tracking of the ballet-dancing sequences 
using our algorithm. We then compare accuracy and robustness against other standard 
techniques.

7.2.1 Visual Analysis

Figures 7.1 and 7.2 show the tracked model pose, superimposed on one of the 5 input 
views used to capture the first dancing exercise. We used for this sequence a VLMM 
with maximal history of 20 frames and 1000 particles. The tracking is successful over 
the whole sequence, but it can be noticed that on a few frames, the tracked position does 
not match exactly the subject. Poor image evidences are mainly to blame, especially 
in presence of fast movements generating motion blur. A second explanation is the 
relatively small amount of training data (3 repetitions of the exercise), making the 
generalisation of the motions difficult. Finally, as for all Monte-Carlo techniques, the 
true mode of the posterior is difficult to reach, so that the displayed pose does not 
necessarily reflect the underlying distribution of the particles.

Despite these shortcomings, and even if the tracked position is sometimes approx­
imate, the overall pose of the body remains coherent with both the training sequences 
and image evidence. The dynamic model propagates particles only in plausible direc­
tions, so that the model never falls into obviously impossible poses. The consistency of 
the pose is enforced, even when image evidence is very poor. These results appear very 
promising for the future, as we could expect tracking accuracy to improve substantially 
using cameras with better resolution and synchronisation.

A subject performing the second dance exercise is tracked in Figures 7.3 and 7.4. 
More particles (2000) had to be used for this sequence because of the fast rotation of 
the root of the kinematic tree, for which no dynamic model is currently learnt. We 
expect the number of required particles to be significantly reduced with the inclusion 
of the derivatives of the global parameters into the dynamic model.

Once again, despite occasional inexact positionings, tracking was successful over 
the whole sequence. This second dance exercise is particularly challenging because the 
limbs tend to stay close to the body during fast rotations (pirouette). In these cases of
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Figure 7.1: Tracking the first dancing exercise, with a VLM M  history o f  20 
frames, and 1000 particles. The video sequence is sampled every 5 frames, corre­
sponding to 167/ns (continued in Figure 7.2).
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Figure 7.2: End o f the tracking o f dance exercise 1 (continued from Figure 7.1).

important self-occlusions combined with motion blur, the reconstructed volume pro­
vides very poor image evidence. The motion prior is then fully exploited, constraining 
the poses of the model to the learnt configurations. The ability of the particle filter to 
keep track of multiple hypothesis is also important for automatic recovery after periods 
of ambiguous likelihood function.

7.2.2 Quantitative Error Measurements

We now present comparative error measurements between our algorithm, and other 
standard approaches based on particle filters. The CONDENSATION [IB98a] algo­
rithm propagates particles using the predictions of an auto-regressive process (ARP). 
Annealing [DBROO] iterates a propagation-evaluation loop over multiple layers, in a 
“coarse to fine” manner. Having a simple predictive model, these two methods are 
unable to provide a good initialisation for the blob-fitting procedure, and quickly fail 
in normal tracking conditions. Even with 5000 particles evaluations, they both quickly
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Figure 7.3: Tracking the first dancing exercise, with a VLMM history o f  20 
frames, and 2000 particles. The video sequence is sampled every 5 frames, corre­
sponding to 167ms (continued in Figure 7.4).
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Figure 7.4: End o f the tracking o f dance exercise 2 (continued from Figure 7.3).
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Figure 7.5: Accuracy comparison between the particles propagation schemes o f 
CONDENSATION , annealing, and our method. The RMS joint position error with 
the manually annotated ground truth is shown for the first dance exercise.

lose track when used in our “blobs evaluation” framework, as illustrated in Figure 7.5. 
Our algorithm, however, maintains a good overall accuracy with only 1000 particles. A 
momentary tracking failure around frame 420 is automatically detected and recovered 
from by reinitialising the VLMM.

To keep the comparison focused on the dynamic models, we use the same like­
lihood distribution for all three algorithms (CONDENSATION, annealing and our 
method). At each frame, the blob-fitting procedure is initialised from the annotated 
ground-truth pose of the model. This provides a good, but also realistically noisy, 
likelihood function for all three algorithms. Results are reported in Figure 7.6. Even 
using 5000 particles, CONDENSATION is unable to explore the parameter-space in 
all appropriate directions, resulting in a poor overall accuracy. The Annealed particle 
filter uses only 1000 particles, but because of the 5 layers of annealing, the compu­
tational cost remains equivalent to CONDENSATION. Annealing produces relatively
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Figure 7.6: Accuracy comparison between the particles propagation schemes o f 
CONDENSATION, annealing, and our method. All three algorithms ai'e evalu­
ated against a common likelihood function, in which the blob-fitting procedure is 
initialised from the annotated ground-truth.

accurate results in most of the test sequence, although it is still distracted by the noisy 
likelihood function. Annealing also tends to focus particles on a single mode of the 
posterior, limiting the ability of the tracker to recover from ambiguous situations. We 
tested our propagation method with only 200 particles. Despite having 25 times less 
particle-evaluations than the two other methods, accuracy and robustness were main­
tained throughout the sequence.

Figure 7.7 compares the accuracy of predictions using various memory lengths for 
the VLMM and only 200 particles. A memory of 1 frame (first order Markov model) 
is insufficient to capture the complexity of the succession of movements, and wastes 
particles by propagating them to the wrong clusters. Accuracy is therefore penalised 
by the smaller number of particles tracking the right pose. With a longer memory, 
the propagation of the particles is more focused, and the overall accuracy is improved. 
The accuracy of the prediction is slightly improved by increasing the maximal memory 
length of the VLMM from 10 frames to 20 frames.

The optimal memory length of the VLMM can be experimentally determined by 
measuring the relative entropy between the predictions of the trained VLMM and test 
sequences. Unfortunately, we could not carry out this these types of experimentations, 
mainly because of the limited amount of training data. A maximal memory length of 
20 currently seems to give the best results, but a more systematic testing is needed. For 
more details about optimising the parameters of variable length Markov Models, the 
reader is referred to [GalOl].
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Figure 7.7: Prediction accuracy for various history lengths o f  the Markov model,
using 200 particles.

7.3 Performance Considerations

Table 7.2 reports performance measurements on a 2 GHz Pentium 4. The timings of the 
volumetric reconstruction are similar to these presented in Section 3.5. As mentioned 
earlier, the maximal recursive depth of the 3-D reconstruction is the main parameter 
which conditions both performance and accuracy. A maximal depth of 6 (64 x 64 x 
64 voxels) produces a coarse reconstruction, but is nevertheless sufficient for some 
tracking requirements. All the results presented in this section were obtained with a 
maximal recursive depth of 7 (128 x 128 x 128 voxels), which gives a good compromise 
between efficiency and accuracy. Also, the low resolutions of our cameras (320 x 
240) made finer reconstructed volumes meaningless. However, when using higher 
resolution cameras, a maximal recursive depth of 8 (256 x 256 x 256 voxels) can be 
envisaged, still running with a competitive level of performance.

Because of the linear complexity of EM with respect to the data, the cost of the 
blob-fitting procedure is strongly influenced by the number of reconstructed voxels. 
The timings are reported in Table 7.2 for a single blob-fitting procedure, and should 
therefore to be multiplied by the number of actual blob-fittings performed at each 
frame. The number of candidate clusters for the blobs-fitting highly depends on the 
predictions of the VLMM. As the predictions are more accurate, less particles are 
propagated to the wrong clusters, and the effective number of blob-fittings is decreased. 
When using a VLMM with a maximal history of 20 frames, the number of candidate 
clusters was below 5 in most of the dance sequence, corresponding to a total time 
below 74ms per frame. When a re-initialisation of the tracker is needed, however, it 
implies fitting the blobs from all the clusters. With 122 clusters, each re-initialisation
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3-D Reconstruction Blobs Particle Filter
Max. Depth 3 views 4 views 5 views Fitting 500 1000
D+ = 6 11.0ms 11.1ms 12.8ms 3.1ms
D+ = 7 24.1ms 22.8ms 28.1ms 14.8ms 20.7ms 45.3ms
D + = 8 73.5ms 66.0ms 78.6ms 74.1ms

Table 7.2: Overall performance measurements.

provokes a lag or nearly 2 seconds.
The performance of the particle filter including resampling, propagation and eval­

uation is also reported for 500 and 1000 particles in Table 7.2. These timings are 
independent of the maximal recursive depth of the 3-D reconstruction because the 
evaluation of the particles is only based on the fitted blobs. All algorithms composing 
the particle filter have a linear complexity with respect to the number of particles. The 
framework can therefore scale to large numbers of particles, which can be managed in 
real-time, thanks to the fast evaluation procedure.

The full tracker with a reconstruction depth of 7 and 1000 particles ran at an average 
of 8.5fps over the dance sequence. While special care has been given to the algorithms, 
we believe that the efficiency of the implementation could be improved by a significant 
margin with low-level optimisations. Considering the extra overheads, such as disk 
accesses or displays, this final performance result satisfies our original objective of 
running in real-time on a single computer. Let us finally mention the great potential 
for parallelisation of the whole system. Not only all modules can run concurrently on 
a multi-processor system, but also each individual module can be parallelised in a very 
straightforward manner.

7.4 Discussion on the Scaling Issue

Even if our test sequences exhibited diverse and challenging movements, more tests 
would be needed to confirm the applicability of the method to other types of behaviour. 
Because of their simple dynamics, atomic and cyclic activities, such as walking, should 
be straightforward to learn. The main challenge, however, would be to try learning 
large amounts of diverse activities altogether. Unfortunately, this type of large-scale 
evaluation could not be performed in the scope of the work described in this thesis be­
cause it would have required a readily available motion capture setup. We can nonethe­
less extrapolate on the potential issues and benefits of our predictive framework, when
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confronted with larger sets of motions.
Clustering the parameter space into atomic behaviours should not suffer from a 

larger database of movements. No dimensionality reduction method was employed, so 
that clustering is performed in the full parameter space in which different motions are 
naturally separated out. Of course, we expect some atomic movements to be recurrent 
in diverse types of behaviour, but this is actually a benefit as the number of clusters 
would not grow linearly with the size of the dataset.

The process of learning transitions between clusters should also scale naturally to 
a larger dataset. The variable length Markov models are designed to optimise locally 
their memory length, so that the size of the VLMM should remain manageable. The 
computational cost of the predictions would remain unaffected by a more complex 
VLMM because of the finite state automaton structure.

With the increased number of clusters, the advantage of VLMMs over lower or­
der models should however become more prominent A long history should allow be­
haviours to be differentiated, and predictions to be performed accordingly. For exam­
ple, even if the walking cycle shares some clusters of atomic movements with other 
types of behaviours, the VLMM would associate these common clusters with the cur­
rent behaviour based on contextual history. When a subject is walking, the predictions 
of the VLMM would then be unaffected by other types of behaviours sharing common 
atomic motions, but different from their context.

Of course, problems will still appear for movements previously unseen in the train­
ing data. In the current implementation of the system, nothing is done to handle these 
cases, and the tracker has to be reinitialised. As long as the total number of clusters 
remains significantly lower than the number of particles, this simple reinitialisation of 
the VLMM works well. However, for larger pools of diverse movements, a simple 
reinitialisation can prove both computationally expensive and inefficient. Unfortu­
nately, switching back to a stochastic propagation method is not a viable option, as we 
demonstrated in this chapter that such methods are incapable of exploring the whole 
parameter space. This difficult problem is left open for future research.

7.5 Conclusion

In this chapter, we evaluated our Bayesian tracking algorithm on challenging sequences 
of ballet dancing. The visual results exhibited the complexity of the sequences, and 
the poor image evidence that the tracker had to handle. A series of quantitative error
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measurements allowed us to evaluate our method against other standard algorithms. 
We demonstrated the benefits of our predictive scheme for both increased robustness 
and accuracy. Finally, we evaluated the performance of the system and its suitability 
for real-time applications with some benchmarks.
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Conclusion and Future Work

We now review the key points o f the work presented in this thesis, 
followed by a summary o f achievements, and suggestions o f possible 
extensions and future work.

8.1 Summary of the Thesis

In this thesis, we have introduced two algorithms for real-time full human body track­
ing. Both techniques are based on the prior volumetric reconstruction of the subject 
of interest, and the fitting of 3-D Gaussian blobs. An important design constraint is to 
keep all algorithms efficient enough to reach real-time performance. This is achieved 
in various ways without compromising on robustness.

Our hierarchical volumetric reconstruction algorithm is based on the more general 
shape-from-silhouette paradigm, using background segmentation on each input view. 
Unlike other approaches, the extraction of the silhouettes is not artificially separated 
from the reconstruction process, which allows the classification of voxels using robust 
discriminative statistics. Performance is improved by segmenting only the required 
pixel samples, and robustness benefits from the combination of multiple views for 
ambiguous cases. We also include colour information into the reconstructed volume, 
in a fast and straightforward manner.

The blob-fitting procedure is designed to exploit the hierarchical structure of the 
reconstructed volume. We have detailed the two steps of an EM-like procedure which 
fits blobs onto reconstructed body parts using both position and colour. We have also 
introduced an automatic procedure to acquire the number of blobs and their disposition 
onto the kinematic model.
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Our first tracking technique uses direct inference to recover the pose of the kine­
matic model from the set of fitted blobs. A set of goal positions is computed from 
the blobs, and the pose of the model is recovered as an inverse kinematics problem. 
This bottom-up approach has the clear advantage of simplicity and performance, and 
is adapted to many practical scenarios like human-computer interactions or upper-body 
tracking.

Our second approach to tracking estimates the distribution of the posterior with 
a set of discrete samples. The propagation of the particles is based on a relatively 
complex prediction scheme, decomposing the parameter space into clusters of elemen­
tary movements, and predicting the transitions between these clusters with a YLMM. 
Real-time performance is achieved with an evaluation scheme based on the relative en­
tropy between two sets of blobs. Tests show the good robustness of the method, even 
confronted with challenging movements such as those found in ballet dancing.

8.2 Summary of Achievements

The final, and most important achievement of the work described in this thesis is the 
successful tracking of the ballet-dancing sequences presented in Chapter 7. To our 
knowledge, tracking such fast and complex motions in real-time is presently unique. 
The novel prediction and evaluation schemes that we developed for this purpose enable 
robust tracking at a greatly reduced cost when compared to the standard Bayesian 
Monte-Carlo framework.

With the hierarchical tracking technique, we demonstrate a low cost algorithm ca­
pable of handling non-critical motions. While the method is arguably less robust than 
the Bayesian one, it is also more general in the sense that no motion model has to be 
learnt.

Although they are not the direct aim of this thesis, the volumetric reconstruction 
and the blob framework, on which both tracking methods are built, constitute worthy 
contributions by themselves. The full volumetric reconstruction runs in real-time on 
a single computer while being robust enough to cope with noisy input images and 
cluttered backgrounds. Colour is incoiporated at a very low extra-cost, making the full 
reconstruction algorithm very competitive, both in terms of features and performance. 
The appearance model based on 3-D blobs is acquired automatically and is efficiently 
fitted to the voxels.
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8.3 Future Work and Possible Extensions

While usable and potentially useful for real applications, the work presented in this 
thesis is not a general solution to the human-body tracking problem. A number of sim­
plifications and shortcuts had to be employed to obtain a running system, but we could 
expect most of these to disappear in the future. Our background segmentation scheme, 
for example, currently necessitates an empty scene at start-up and cannot cope with 
changing environments. An automatic acquisition and update scheme would be very 
useful, and would make the system more practical. A possible idea for such a scheme 
would be to update incrementally the models of the pixels which we know (from the 
tracked model) belong to the background. Other constraints that could be dealt with in 
a foreseeable future include automatic camera calibration and synchronisation.

Another type of improvement concerns the modelling of the subject, which is quite 
crude in our current system. The appearance model, composed of blobs, represents 
efficiently the body parts but is incapable of modelling accurately finer features such as 
the face or the hands. Experimenting with more complex statistical distributions could 
lead to more accurate results, but would also involve more processing. Nevertheless, 
this step might become unavoidable in the ambition of recovering the pose of more 
body parts, such as the feet or the hands. For these comparatively small parts of the 
body, learnt motion models are likely to play a major role when image evidence is 
insufficient.

As mentioned in Chapter 5, the kinematic model would benefit from a parametrisa- 
tion without singularities. Replacing Euler angles with quaternions should be relatively 
straightforward and integrate well into the Bayesian framework. Another practical ex­
tension would be the automatic acquisition of the kinematic structure. Although we 
believe that some kind of prior knowledge about the kinematics of the target is neces­
sary, learning automatically the relative sizes of the limbs could help adapt to different 
morphologies. This process could be coupled with the dynamic learning of the appear­
ance model.

In the current scheme, the blobs-fitting procedure requires a good initialisation to 
be able to “snap” blobs to the correct voxels. This bias from the predictive model 
towards the image evidence is an important limitation of our approach. When a cor­
rect initialisation cannot be provided, the blobs used as image evidence can become a 
wrong interpretation of the image data, and generate tracking failures. Breaking this 
link from tracking (even with a good prediction scheme) to image evidence is a future 
research goal. Some EM algorithms which alleviate the need for a good initialisation
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have been proposed [FJ02], but additional experiments are needed to evaluate the com­
putational efficiency of these methods, and how they would maintain consistency when 
presented with noisy and incomplete voxel data.

Simultaneous tracking of multiple subjects would open a new range of applica­
tions. It is still not clear how robustly our system would perform when presented with 
multiple subjects. The shape-from-silhouette algorithm used for reconstruction is the 
main potential problem, as multiple subjects would generate an important number of 
occlusions. The number of cameras and their dispositions would then play a crucial 
role, which remains to evaluate. The rest of the tracking process should generalise 
painlessly.

A final research area is the learning of the dynamic and behaviour models. A num­
ber of significant improvements could be made in this area, with the common objective 
of modelling more accurately a wider range of activities. Dimensionality reduction 
methods, such as SGPLVMs, are a promising direction worth investigating. An impor­
tant part of human dynamics could be encoded on a lower dimensionality manifold, 
hence increasing the power of expression of the Gaussian clusters. Modelling stylistic 
variations would also make it easier to generalise from a simpler model, and provide 
more accurate predictions. Online learning, where unseen sequences are incrementally 
integrated into the behaviour model, would also represent a worthy contribution.

Learnt predictions could finally be assisted with physical priors. As a general rule, 
incorporating more prior knowledge into the model can only help in tracking (as long 
as this knowledge proves to be valid) and in cutting down the size of the required 
training dataset. Kinematic constraints can obviously be incorporated into the model 
to avoid impossible poses. Other priors based on the laws of physics, such as the overall 
balance of the subject, could also make predictions more accurate, even confronted to 
movements unseen in the training data.
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Appendix A
Colour Representation

Most background segmentation techniques rely solely on the colour of the pixels for 
classification. The position of the pixels in the image is usually not considered because 
that would require a prohibitively complex model of the object of interest. The colour 
of a pixel is usually encoded with discrete values in a given a number of channels. 
Monochrome pixels are represented by a single intensity value whereas colour pixels 
have 3 to 4 components. While the coding of monochrome pixels is straightforward, 
there are various ways to code the colour of a pixel on 3 or 4 channels.

RGB (Red-Green-Blue) encoding is the most common way of defining a pixel 
colour. Each of the 3 channels has a value (usually an integer) representing the intensity 
of the corresponding base colour. This representation has the advantages of simplicity 
as well as a direct mapping with hardware pixel format. RGB colour-space has been 
used in various image segmentation techniques (for example [JSS02, SG99, FR97]). 
However the human perception of colours is very different from the one of the machine 
(the human eye is more than 5 times more sensitive to green than blue), and RGB 
encoding is not necessarily the most appropriate format for colour comparison.

Figure A .l: Graphical representation o f RGB, YUV, HSV and HLS colour-spaces.

(a) RGB (b) UV plane, Y=0.5 (c) HSV “wheel” (d) HLS
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APPENDIX A. COLOUR REPRESENTATION

YUV (Luminance-Chrominance) colour space is used mainly for video broadcast­
ing: it is part of the PAL television standard. The luminance (Y component) represents 
the intensity or brightness of the colour. The other two channels (U and V) define the 
colour itself for a given brightness, as illustrated by Figure A. 1(b). The YUY colour 
space is an affine transformation of RGB which has the advantage of being closer to 
human perception:

/  0.299 0.587 0.114 \ ( R \
(  ° ^-0.169 -0.332 0.5 G + 128.0

\  0.5 -0.419 —0.0813/ W \128.0 /
(A.1)

The human eye is indeed far more sensitive to brightness changes than to colour 
changes. This leads to interesting applications: as a compression method (JPEG com­
pression), the chrominance channels are often sub-sampled while keeping an accurate 
luminance. In computer vision and background segmentation, it is interesting to sepa­
rate luminance from chrominance information because illumination artifacts (shadows) 
are then easier to discard. Just like RGB, YUV colour-space has been widely used for 
segmentation and tracking [HGWOlb, HGWOla, WADP97, BLOlb].

HSV (Hue-Saturation-Value) is another common colour space. The Hue is an an­
gular value on a virtual colour wheel representing the chrominance of the colour, the 
Saturation can be seen as the “purity” of the colour and finally the Value is its bright­
ness (Figure A. 1(c)). The HSV colour-space is mainly used in computer graphics 
because of its convenience, but the transformation from RGB and YUV is non-linear, 
leading to singularities. This is particularly problematic in presence of random noise, 
where small perturbations in RGB or YUV colour-spaces can lead to big jumps in HSV 
space. Moreover, the conversion is inconsistent for some colours -  like greys -  where 
the Hue or the Saturation are undefined. There has been some rare examples of use of 
HSV in computer vision, but it is mostly inappropriate for our purpose, especially in 
the context of a coherent statistical framework.
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Uniform Pixel Sampling

All pixels lying inside the projected area of a voxel should theoretically be inspected 
to decide on the classification of this voxel. However, an approximation has to be used 
to maintain the performance of the system. Following a method similar to Cheung et 
al. [CKBHOO, Che03], the projected area of a voxel is sampled uniformly, and the 
classification is based on these samples alone. This approach makes sense in our case 
because the distances to the background model are then computed per-sample, and 
not for the whole image as when background segmentation is performed as a pre­
processing step of the reconstruction.

The optimal number of samples is a critical parameter for robust classification. In 
the so-called SPOT (Sparse Pixel Occupancy Test) algorithm, Cheung et al, [CKBHOO, 
Che03] use only 2 samples out of an average of 10 pixels in the projected area of each 
voxel. This number is derived from measured error rates in silhouette extraction. The 
total misclassification probability per voxel is then reported to be below 1%. Unfor­
tunately, the same kind of reasoning cannot be applied to our case because we do not 
perform any binary segmentation of the silhouette pixels, and consequently misclassi- 
fications cannot be measured on a per-pixel basis.

Instead of sampling from the irregular shape of the projected area, one could sam­
ple uniformly inside voxels in 3-D space, and then use the projection of these 3-D 
samples. However, depending on the angle of view, these 3-D samples often project 
onto the same pixels or fail to uniformly cover the area. Alternatively, picking some 
pixels randomly from a 2-D area is straightforward, but for small numbers the result­
ing distribution can be uneven. A bad distribution of the samples can be damaging 
to the 3-D reconstruction considering that voxels are discarded from a single view. A 
small image feature or an edge can easily be missed if samples leave some part of the
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APPENDIX B. UNIFORM PIXEL SAMPLING

projected area uncovered. Samples should then be chosen so as to cover a maximum 
of space inside the projected area of the voxel. Several standard techniques exist to 
achieve this goal:

•  Systematic sampling: There is no random element in this method. Pixels are linearly 
sampled at a regular interval, determined by dividing the total number of pixels in the 
area by the number of wanted samples. This method has the advantage of simplicity 
but can result in an uneven 2-D distribution, especially if the shape of the area is 
irregular. Moreover, the random aspect is important if we want all pixels to be 
sampled with equal probability.

• Random sampling with heuristic: The desired number of pixels is sampled randomly 
from the area. A heuristic measuring the goodness of the repartition is then evaluated 
and the samples are re-chosen iteratively until a criterion is satisfied. Depending on 
the heuristic used, the final repartition can be relatively uniform. Unfortunately, 
there is no guarantee of convergence, especially as the number of samples increase.

• Clustered random sampling: The area is first divided into as many clusters as desired 
samples. This clustering can be done in a number of ways, but using a regular grid 
is one of the easiest. In a second step, a single pixel is chosen randomly from each 
cluster. This technique is relatively simple and samples cover most of the area.

The “random sampling with heuristic” approach is very appealing from a statistical 
point of view, but its convergence problems make it hardly usable in practice. We 
choose to use a hybrid approach where, initially, the projected area is coarsely divided 
in equal clusters. The number of clusters is proportional to the number of desired 
samples, a practical ratio of 3 to 4 samples per cluster being sensible. The desired 
number of samples is then randomly picked from each of the clusters, insuring both 
maximal covering of space and randomness.

To avoid cases where the overall distribution of samples is still poor, a global 
heuristic is used to choose the most uniform distributions among a number of tries. 
The heuristic is chosen as an energy function 7i maximising the spacing (Euclidean 
distance) between all samples { s i . . .  sns}:

Ns Ns

'H{s\ . . .  Sjvs) — distance(si , Sj)2 (B. 1)
i= i  j ~ i
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Figure B .l: F r o m  l e f t  t o  right: T h e  p i x e l s  l y i n g  t o t a l l y  i n s i d e  th e  p r o j e c t e d  v o x e l  
a r e a  a r e  s e l e c t e d ,  a n d  d e p e n d i n g  o n  t h e i r  n u m b e r  a n d  th e  d e s i r e d  n u m b e r  o f  s a m ­
p l e s ,  t h e y  a r e  d i v i d e d  i n to  c l u s t e r s  o f  e q u a l  s i z e .  P ix e l s  a r e  th e n  r a n d o m l y  s a m p l e d  
i n s i d e  e a c h  c lu s te r ,  th e  g o o d n e s s  o f  th e  d i s t r i b u t io n  b e i n g  e v a lu a t e d  f o r  th e  w h o l e  
a r e a  u s in g  a  h e u r i s t i c  f u n c t io n .  F in a l ly ,  d i s t r i b u t io n s  s a t i s f y i n g  th e  h e u r i s t i c  a r e  
r e ta in e d .

Figure B.l shows a step-by-step illustration of the sampling process for a fairly large 
voxel projected area. For smaller projected areas, the clustering step can be unneces­
sary and pixels are then sampled randomly from the whole area. The heuristic function 
is still used to ensure a good repartition of samples.

Unfortunately, this type of sampling is still far too complex for real-time use. Actu­
ally, even the simplest sampling schemes would be too demanding for real-time imple­
mentation because they all require convex-hull computation and numerous tests. We 
have to pre-compute patterns of samples instead. The underlying assumption is that 
for a given camera, all voxels projecting on a relatively small part of the image plane 
are seen from a similar view angle. If we divide the image plane n  into such regions 
{II I . . .  FItv;.}, the projections of all voxels falling into the same region IT, will have a 
similar shape. We can then approximate these projections by the same pre-computed 
area Su, (see Figure B.2 for an illustration). A single projection area needs to be 
computed for all voxels projecting onto the same image region: different voxel sizes 
or distances to the camera are just matters of real-time scaling. Using the sampling 
method described earlier, patterns are pre-computed for different numbers of samples. 
The two steps below detail the offline computation of patterns of samples:

1. P r e - c o m p u t e  th e  p r o j e c t e d  a r e a s :  For each camera-view, divide the image plane 
IT into Nr regions { f l i . . .  11^} (in our implementation, Nr = 9). For each region 
IT, , pre-compute the approximated shape of the projected area of voxels falling into 
these regions. This is done by projecting (without applying lens distortions) all eight 
vertices of a voxel of unitary size, situated at a unitary distance from the camera,
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APPENDIX B. UNIFORM PIXEL SAMPLING

Image plane (17)

Figure B.2: Voxels projecting onto a same image region (IIJ  have a similar pro­
jected area. These projected areas can therefore be approximated by pre-computed 
mean shapes •

and which projects at the centre of region 11*. The actual size of the projected area 
depends on the focal length of the camera, but is always big enough so that pixel 
discretisation is not a problem. The convex-hull of the eight projected vertices is 
then computed and the corresponding area is denoted as Sn t . The centre of Sut is 
the projection of the centre of the voxel.

2. Pre-compute patterns o f samples: For each projected area and desired number 
of sample Ns, pre-compute patterns of samples using the clustered random sampling 
with heuristic method (Figure B.l). For each projected area S u and desired number 
of samples, a large number of patterns are first generated without using the heuristic 
function Tt. Only a fraction of these patterns which maximise N. is retained (in 
practice, we retained the best 10 out of 100 patterns). The position of each sample 
inside the pattern is stored relatively to centre of Patterns of samples can 
subsequently be retrieved depending on image-plane region 11*, number of samples 
Ns and index of random pattern j .

Using these pre-computed patterns in real-time is now relatively straightforward, 
but in order to understand the different phases of voxel projection, let us first decom­
pose the camera projection matrix. For a given calibrated camera c*,i E of
focal length f l iy principal point ppit orientation matrix I f  and position vector T*, we
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define:

(  f h , x 0 PPitx \

0 f k v PPi,y X m  X-i * R% K Ti (B.2)

V 0
0 1 /

K i =

The matrices K m  and K n  are pre-computed for each camera. Also using the non­
linear function kkiQ : R 2 —»1R2 which applies camera distortions to a 2-D point, the 
complete projection of a 3-D vertex X  onto the corresponding pixel ( y ) can be written 
as:

I u\
=  kkj I w 1 where =  K R i - X  +  K Ti (B.3)v

w
This is a standard technique which would not be worth mentioning if we did not need 
to use intermediate results to place the pattern of samples on the image (for example, 
the distance of X  to the camera is w ). The few steps below detail the online process 
for a voxel V of size sy and 3-D position X y \

1. Voxel projection: Using Equation B.3 on X y  gives the distance from the voxel to 
the camera (w) and the image coordinates of the projection of Ay before applying 
distortions (x =  u /w  and y =  v/w).  Note that only the centre of the voxel is 
projected, which represents a significant speedup as compared to the projection of 
the eight vertices of the same voxel.

2. Pattern selection: The 2-D coordinates (x, y) of the projected centre designate the 
region TT̂ , while the scaling factor of the pattern is the size of the voxel divided by 
its distance to the principal point ( s y / w ) .  The number of samples is then computed 
as a function of the scale factor (typically, Ns = constant x ( s y / w ) ) .  Finally, a 
random number j  is drawn to select the pattern that will be applied.

3. Pattern positioning and scaling: Since the coordinates of the samples in the patterns 
are normalised and relative to the projection of the centre, they need to be scaled by 
s y / w  and translated by (x, y).

4. Apply distortions: The function kkiQ applies camera distortions to the 2-D coordi­
nates of the samples. The distortions have to be applied at the end of the process 
because they depend on the positions of samples on the image, which are only 
known when placing the pattern. To speedup the evaluation of kkiQ, we build a 
lookup table for the whole image in a pre-processing step.
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Spatial Covariance of a Voxel

Let us consider a voxel V of centre X y  and size s y .  We aim at computing the spatial 
contribution of this voxel to the covariance matrix of a Gaussian distribution centred 
on fix, as illustrated in Figure C .l. The partial covariance matrix dXx contributed by 
the voxel V is defined as:

dTjX =  I f J v X  ~ m )  ' ( X  “  m)TdX  ( C 1 )

V

▲ yA l^x
•  X y

Figure C.l: We wish to compute the contribution o f the voxel V to the covai'iance 
matrix o f a Gaussian distribution o f mean fix- The main axes o f the voxels are 
aligned with the axes o f  the coordinate system.
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A  closed form solution can be obtained by introducing the centre of the voxel X y , and 
integrating over the volume:

dT,x  =  ( X  -  f ix)  ■ { X  -  ftx )T d X

( ( X  -  X y )  +  ( X y  -  l l x ) )  ■ ( ( X  -  X y )  +  ( X y  ~  flX ) f  d ,X

(.X  -  X y )  ■ ( X  -  X y ) 1 +  2 . { X  -  X y )  ■ ( X y  -  flx Y  

+  ( X y  — f ix )  ' ( X y  — f l x ) Td X

( X  -  X y )  ■ ( X  -  X y f d X  +  2. f  ( X  -  X y )  ■ ( X y  -  f i x f d X
Jv

+  Sy3.(X y  ™ fix) ' (Xv — flx)T 

/  X2 x.y  x . z \,£V.
2 1 2

2 2

2

,£V.
2

Sy2.

( I

\

sv
%2dx

2

x.y  y  y .z  
\ x . z  y . z  z 2 )

0

dx dy dz  +  sv 3. ( X v -  fix ) * ( ^ v  — P x ) : 

0 \

f j k  V2dy 
2

0 S.
sv
_2s^ z 2dz  

2

+  Sy3.(X y  — f ix )  * (X y  — flx )'

— —  .<sy5. / 3 +  s y 3 .(X y  T x )  ' (X y  T x )

It can be noticed that this internal covariance appears only on the diagonal of the 
covariance matrix: it is intuitively explained by the fact that a voxel is a cube which 
sides are aligned with the axis of the coordinate system. It follows that the internal 
distribution is the same on each axis, with no dependencies on other axes.
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Fast Computation of the Direction of Blob

When tracking the human body, one must notice that most of the trackable features 
have a clearly defined direction. The torso, the legs and the arms all have an elongated 
shape that necessarily reflects on the blobs, giving them a clear main direction. Ex­
tracting the main direction from blobs proves useful to drive the underlying kinematic 
model to an accurate position estimate. Of course, this scheme cannot apply to some 
features (head, hands, etc.) because of their rounder shape, and the system should be 
able to handle these special cases.

The main axis of a Gaussian blob is the eigenvector of the covariance matrix Ex  
associated with the greatest eigenvalue. The eigenvalues are first found by solving 
the characteristic polynomial P c { X )  = det(T,x  — A./3). The eigenvectors can then be 
computed as the vectors X  satisfying T>x  ■ X  =  X . X .  The characteristic polynomial 
is a cubic which admits general analytical solutions, but at a high computational cost. 
Also, even with the eigenvalues computed, finding the eigenvectors is still a relatively 
expensive optimisation problem. A faster scheme is needed, at the possible price of a 
sacrifice in accuracy. Our accuracy requirements are relatively low since the directions 
of the blob are rather unstable with respect to noisy data.

The main axis of each blob from the last frame is also available, constituting a 
good first order approximation of the new main axis. Convergence is ensured by the 
fact that the main eigenvector is the only local maximum close to the approximate 
previous direction. Actually, the multiplication of any vector by the covariance ma­
trix converges towards the main eigenvector, so that multiplying a sufficient number of 
times the initial estimate by Hx  should converge towards the solution. Unfortunately, 
the convergence of this method is very slow, typically needing hundreds of iterations
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Figure D .l: Iterative gradient descent converging towards the main eigenvector 
o f the blob (from left to right). A t each step, the current estimate (red airow) is 
rotated around the axis y and z, and the sample with the minimal distance (blue 
arrow) is retained for the next step. It can be noticed that from the second iteration, 
only 3 samples are drawn since there is no need to re-evaluate the previous guess.

to produce a good result. Another method for simple iterative gradient descent is pro­
posed to achieve faster convergence.

For convenience, the above problem of maximisation of the eigenvalue is trans­
posed into the equivalent problem of minimisation of the Mahalanobis distance be­
tween the unitary direction vector X  and the blob of spatial covariance matrix EyY. 
The solution of the problem is then the vector X  minimising the distance Dm (X , B ) =  
X  E^ * Xi undei the constiamt ||2f || — 1. The inveision of E^ is not a penalty 
since it is also used during the Expectation step of the blob fitting process.

Starting with the direction estimate from the last frame, the distance Dm Q is eval­
uated on 4 direction vectors, sampled by rotating the initial estimate around the two 
main rotation axis. If we represent the direction vectors with quaternions, then the 4 
samples mentioned above are easily obtained by multiplying the current estimate with 
pre-computed quaternions representing rotations around the axis y and z. For each of 
the 4 samples, the distance DM() is evaluated and the algorithm is iterated using the 
best sample as new initial guess. A schematic illustration of this process is presented 
in Figure D .l.

The chosen angle of rotation has a direct influence on the convergence rate. In prac­
tice, an angle equal to ^  gives a good constant convergence rate. However, to improve 
even more on accuracy and performance, the angle of rotation is chosen hierarchically 
in a coarse to fine scheme. In practice, 2 levels of accuracy with rotation angles taken 
successively at ^  and ^  give a very good final result in only a few iterations.

Once the main direction is computed, it can be useful to find the remaining axes
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of the blob. The second axis is computed in a similar way than the main one. The 
problem is however more constrained since the second axis is perpendicular to the 
main direction: convergence is even faster. The third axis is immediate to compute as 
the cross product of the first two.


