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A bstract

In this thesis we study non-linear dynamical systems on complex domains. Although 

the systems we consider are mathematical abstractions, our motivation is to gain in­

sights into neurobiological systems. The mathematical techniques we employ concern 

analysis on a particular class of fractal sets. This theory allows one to construct a 

Laplacian and to study the spectrum and eigenfunctions given a variety of boundary 

conditions. This thesis uses these results to define and study the cable equation and 

the FitzHugh-Nagumo system on the Sierpinski Gasket.
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C hapter 1

Introduction

Before the 20th century, mathematical intuition was bound up with ideas of continuity 

and smoothness. The development of calculus in the 17th century was built on this 

intuition and proved to be so spectacularly successful that in many of the applied 

sciences differentiability almost took the role of an axiom. However, by the early 

20th  century, many examples of objects or functions with peculiar properties had 

been created. In 1872 Karl Weierstrafi found a function that is continuous everywhere 

yet nowhere differentiable. In 1904 Helge von Koch gave a geometric definition of a 

similar function: his famous Koch curve (see Figure 1.2).

By far the most important (although not the most visually appealing) of these 

non-classical sets is an uncountable subset of the unit interval (in fact there is a 

bijection between it and the unit interval) which has zero Lebesgue measure. This 

set was first described by Cantor in 1883. The Cantor set is constructed from the 

unit interval by removing a sequence of open intervals. Let E0 be the interval [0,1], 

the set Ei is obtained by removing the open middle third of E0 so E\ — [0, |] U [|, 1]. 

Removing the middle third of each of these two intervals produces E 2 and so on. 

The set E & thus consists of 2k intervals of length 3~k. The Cantor set can then be 

thought of as the limit of the sets as k 00 . In the late 19th and early 20th 

centuries mathematicians such as Poincare, Klein, Fatou and Julia had investigated

14



C h a p t e r  1: In t r o d u c t io n

E q -----------------------------------------------------
E\ ---------------- ----------------
E 2 ------ ------  ------ ------

Er •••................... : .....................

Figure 1.1: The approximating sequence E q, E±, E2, E3 and E? to the Cantor Set.

iterated functions of the complex plane and found several examples of such complex 

sets. However, without the aid of computer graphics, they were unable to see the 

beauty of the objects they had created.

For a long time the irregular sets described here were often disregarded as patho­

logical counterexamples and certainly were not thought of as a class of objects on 

which a general theory could be developed. The change in this point of view is 

due to the mathematician Benoit Mandelbrot. While working for IBM in the early 

1960s he worked on an astonishing number of seemingly unrelated problems: noise 

on telephone lines, game theory, linguistics, economy and turbulence to name just a 

few. In 1962 Mandelbrot became interested in a problem related to the fluctuation of 

prices on the stock exchange. Classical theories dictated that short term fluctuations 

were largely random whereas long term fluctuations reflected the fundamental laws of 

economy. Mandelbrot discovered that the sequence of price changes was independent 

of scale: there was no statistical difference between the short term and long term 

fluctuations. On the basis of this, Mandelbrot was able to develop a mathematical 

model that could simulate very realistic stock exchange price fluctuations.

Soon afterwards, Mandelbrot concerned himself with the problem of noise in 

telecommunications lines at IBM. All such lines are subject to random fluctuations 

and if this noise fluctuates above a certain threshold, some information can be lost, 

creating an error. The engineers at IBM noticed that the errors seemed to arrive in 

clusters, separated by quiet intervals of variable length. Upon further inspection of 

a batch of errors, it was noticed that these too are made up of smaller batches also

15



C h a p t e r  1: I n t r o d u c t io n

separated by quiet periods without error and so on. Mandelbrot discovered that at 

every timescale, the relationship of errors to clean transmission remained constant. 

Again, therefore, he had found scale invariance in a seemingly unrelated physical 

phenomenon.

Mandelbrot turned to other data from geophysical origins and in 1968 he published 

a paper discussing the length of the coastline of Britain [51]. The paper discusses 

the research published by Lewis Fry Richardson [3] on how the measured lengths of 

coastlines are dependent on the scale of measurement. Mandelbrot was finding the 

same notion running through his research into so many diverse and unrelated areas: 

self-similarity.

A self-similar object is one that contains copies of itself at different levels of magni­

fication. These copies may be exact versions of the original object or an approximate 

or distorted version. Exact self-similarity is seen predominately in mathematical ob­

jects constructed by deterministic methods, such as the Cantor set. Many natural 

phenomena exhibit approximate self-similarity, whereby as the object is observed at 

different scales one sees structures that are recognisably similar but not identically 

so. For example, the leaf of a fern looks similar to the original fern. Sometimes 

self-similarity is not visually obvious, however there may be certain properties that 

are preserved across scales. This property is known as statistical self-similarity.

Mandelbrot claimed that many real world phenomena are not collections of smooth 

Euclidean shapes and are much better represented by irregular self-similar objects. 

Mandelbrot brought these objects together for the first time and coined the term 

“Fractals” from the Latin fractus meaning “fragmented and irregular” as a name 

for them [52, 53]. Mandelbrot pioneered the use of fractals to model a wide variety 

of scientific phenomena including the shapes of mountains, clouds and coastlines; 

the structure of plants, blood vessels and lungs; galaxy clusters. A new area of 

mathematics -  Fractal Geometry -  became a part of applied mathematics.

Much of the work that has been carried out in Fractal Geometry has been con­

16



C h a p t e r  1: In t r o d u c t io n

cerned with computing certain quantities which can be used to characterise fractals, 

the most important being that of dimension. We are all happy with the notion that a 

point has (Euclidean) dimension zero, a line is 1-dimensional, a plane 2-dimensional 

and so on, but what about the dimension of fractal objects? Fractal dimension is a 

quantity that gives us an indication of how completely a fractal appears to fill space as 

one observes the object on finer and finer scales. There have been many suggestions 

given as to what is a suitable definition of fractal dimension, the most important of 

which being the Hausdorff dimension, see, for example [17] (sometimes referred to 

as the Hausdorff-Besicovitch dimension). This fundamental idea was proposed by 

Hausdorff (1919) and subsequently developed by Besicovitch (1935).

The Hausdorff dimension of a set F  C is calculated by considering the number 

of sets U C Mn, whose diameter is at most 5, required to cover F. If {Uff is a 

countable collection of sets with diam(C/i) <  5 V i that cover F, then we call {Ui} a 

S-cover of F. Now for any s > 0 and any 5 > 0 we define

HI{F)  =  inf

where |Lfi| is the diameter of the set Ui. We then define the s-dimensional Hausdorff 

measure of a set F  C ]Rn to be

Hs(F) =  limW|(JF). (1.2)
0 — 5-U

This limit exists for any F  C l " ,  although as 5 decreases, the infimum in equation 

(1.1) increases so the limiting value may be oo. For any F, 77 s (F1) is non-increasing

as s increases from 0 to oo. In fact, if s < t we have

Hl{F) < 6‘- sHi(F),  (1.3)

which implies that (letting 5 —>0) if HS(F) < oo then 774(F) — 0. There exists a 

critical value of s, dimu F  such that

H S(F) = o o  s < dimHF,
(1.4)

H S(F) = 0 s > dimHF.

17
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C h a p t e r  1: I n t r o d u c t io n

This critical value of a, dimHF  is called the Hausdorff dimension of F.

The Hausdorff has the following desirable properties:

Open Sets: If F  is an open subset of Mn, then dimhF  = n.

Smooth Sets: If F  is a smooth m-dimensional manifold, then dim # F  =  m.

Monotonicity: If E  c  F , then dimh E  <  dimHF.

Countable Stability: d im #( Ffj = s u p - ^ ^  dimHFi.

Countable Sets: If F  is finite or countable, then dim h F — 0.

Although the Hausdorff dimension is technically the best definition of a fractal 

dimension, it has the disadvantage of being difficult to compute. There are, however, 

different definitions of fractal dimensions that are easy to calculate. One of the most 

widely-used is the box counting dimension, diing. The box counting dimension of a 

non-empty set, F  C is given by

dimBF  =  lim Xô f { F )  ^
5 — k x > —  log 0

where N$(F) is the smallest number of sets of diameter at most <5 which cover F.  

The box counting dimension shares many properties with the Hausdorff dimension 

although there are some disadvantages. For example, countable sets can have non-zero 

box counting dimension.

Now we introduce the notion of the similarity dimension of a set F , dim^F. This 

is only meaningful for a small class of fractals, however it is easy to compute and for 

strictly self-similar objects, the value of dim $ agrees with that of dimH and dim#. 

It is worth noting here that all fractal objects exhibit self-similarity, yet not all self­

similar objects are fractals. The simplest example of a self-similar set is that of a 

line. We may break this into two self-similar intervals each looking exactly like our 

original line that may be magnified by a factor of two to yield our original line. In 

general, we can break a line segment into N  self-similar pieces each scaled by a factor

18



C h a p t e r  1: I n t r o d u c t io n

of jj. Similarly a square and a cube may be decomposed into N 2 and N 3 self-similar 

copies respectively, each scaled by jj. We see that in all these cases there is a nice 

power law relation between the number of pieces the object is broken into, N , and 

the scaling factor, S. If F  is a line segment, or a square, or a cube etc. then

U-B)

where dim^F =  1,2,3 for the line, square and cube respectively. Equivalently we 

have

dimjJi’ =  “ 4", (1.7)
J°S s

and we see that in the case of the line, the square and the cube the value of the 

similarity dimension dim^F agrees with the Euclidean dimension.

Now, we shall calculate dim,5 for a fractal set. We consider the Koch curve which 

is constructed iteratively as follows. Begin with a straight line of unit length, F 0. 

To produce F i remove the middle third of Fo and replace it with two sides of an 

equilateral triangle that each have the same length as the remaining lines on each 

side. We now repeat this procedure, taking each of the resulting straight line segments, 

removing the middle third and so on, see Figure 1.2. The self-similarity of the Koch 

curve is immediately apparent. We see that the whole curve comprises four copies of 

the original, each one third the size. From (1.7) the similarity dimension of the Koch 

curve (KC) is therefore

dimsK C  = fa 1.2619. (1.8)
log 3

A similar calculation can be made on the Cantor set (CS) to give

dims C S =  s* 0.6309. (1.9)log 3

From a mathematical point of view, a fractal is defined to be an object whose similarity 

dimension exceeds its topological dimension.

In recent years it has been realised that many physiological and biological systems 

have no characteristic length or time scale, i.e. they have fractal properties. As an

19
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Figure 1.2: The approximating sequence Eg, E\, E 2 , E s and the Koch Curve.
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example, consider the behaviour of the heart. The human heart’s natural healthy 

rhythm is described as the “regular sinus rhythm”. In fact, it is anything but “regu­

lar” . The intervals between consecutive heartbeats normally fluctuate in a complex, 

apparently erratic manner, even in individuals at rest [37]. An ECG showing the 

meanderings of heart rate over a thirty minute period looks roughly the same as a 

graph that covers just three minutes -  the heartbeat is self-similar. Interestingly, this 

randomness is an indication of a healthy heart: diseased hearts show more regular 

heartbeats [28].

Another physiological structure that is known to behave in a fractal manner is 

the neuron or nerve cell. The neuron responds to stimuli applied to its dendrites 

by opening and closing ion channels in its axon. This causes an electrical signal to 

propagate down the axon, which can, in turn, stimulate the dendrites of impinging 

neurons. Fundamentally, a neuron is a threshold device: if the stimulus is large 

enough, the neuron responds, if not, it does not. Thus, the output of a neuron is a 

discrete spike-train, which can be measured as a time series. In [23], it was shown 

that the interspike interval of some neurons in the auditory cortex of the cat was 

essentially independent of the resolution of the timescale.

In this thesis, we shall be mainly concerned with naturally-occurring objects whose 

structure is fractal. A particular characteristic of fractal objects is the very large sur­

face to area (or volume) ratio. In many biological situations surface area is of crucial 

importance and all the distributive systems of the human body -  cardiovascular, res­

piratory, lymphatic, digestive and excretory -  display fractal characteristics. As an 

example, consider the structure of the lung, which is a branching structure. The 

trachea (or windpipe) branches into two bronchi, which in turn branch into smaller 

and smaller bronchioles eventually ending at the alveoli where the exchange of oxygen 

and carbon dioxide takes place. In order to maximise efficiency, the surface area of 

the lung must be as large possible. In fact, the surface area of a human lung is as 

large as a tennis court. The structure of the bronchial tree has been analysed using
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fractal techniques [72, 66] and it has been shown that the average dimensions of the 

bronchial tubes decays according to a power law rather than exponentially as had 

previously been thought.

Another example of fractals occurring in nature is the structure of certain types 

of fungi and bacteria. An example of this are the soil bacteria streptomyces that 

produce many different kinds of antibiotics. The life-cycle of the streptomyces is 

complex: initially the bacterium consists of a single free spore. The spore germinates 

growing long, branching filaments known as hyphae. A typical hypha consists of 

a tubular wall which surrounds, supports and protects the cells that compose the 

hypha. Hyphae do not grow through cell division as animal, plant or yeast cells, but 

by extending their cells. When a single cell has become a longer tube, a wall called a 

septum grows to produce two separate cells, the second having a nucleus copied from 

the first. This process of elongation and separation repeats producing a network of 

hyphae known as the mycelium. The unusual growth process of the hyphae leads to 

the mycelium having a geometrically complex structure.

An approach to quantifying the branching of the mycelia relies on fractal geom­

etry. Obert et al [57] have applied fractal techniques to calculate the box counting 

dimension of mycelial structures. This can be used to quantify the extent to which the 

mycelia permeate the space in which they grow. Obert et al analysed photographs of 

various mycelia: that is, they studied planar projections of objects that grow in two- 

or three-dimensional space.

The structure of a young mycelium was found to be a mass fractal, where the 

interior contains gaps and so the whole of the object is treated as a fractal. As 

the mycelium develops, the hyphae grow and gradually fill the interior. Now the 

mycelium is treated as a surface fractal, where only the boundary of the object is 

fractal. To distinguish between these two different types of fractal structure, two dif­

ferent box counting methods were applied. The box mass dimension of the mycelium 

(M), dimb m M,  considers the whole mass of the mycelium, whereas the box surface

22



C h a p t e r  1: I n t r o d u c t io n

dimension, dim^sM , just considers the boundary.

In the case where the mycelial structure is a mass fractal, the two methods give 

dimb m M  = diniB5M. For a surface fractal, dinissM  describes the surface irregular­

ities, whereas dimb m M  gives the dimension of the embedding space (d =  2 in this 

case). The fractal dimension is then defined to be the value of d im ^ M  in both cases. 

Obert et al showed that fractal geometry is a suitable technique to describe some bi­

ological growth patterns and that the fractal dimension of the mycelium increases 

during growth up to a value of 1.5.

Many other biological objects display fractal properties, including the patterns of 

blood vessels, DNA sequences and, as we shall now discuss, the branching structure 

of the dendritic tree of neurons. Not only does the neuronal spiking pattern follow 

fractal behaviour, as we have seen, but the structure of dendritic tree is geometrically 

complicated and self-similar. This is another example of how the body uses fractal 

structures to be as efficient as possible: the small nerve fibres and massive surface 

area means the greatest number of neurons can be packed into the brain and each 

nerve cell can connect with as many neurons as possible. It is in this context that 

much of this thesis will be concerned.

We have seen how many natural objects are well-described by fractals, so the 

question we wish to ask is “How can we model the dynamical processes that occur 

on them?” For example, the air flow in the respiratory system, the blood flow in the 

cardiovascular system, the transportation of moisture and nutrients in the mycelium 

of the streptomyces and the conduction of an action potential in neurons are all 

examples of natural processes on a fractal structure. We are therefore interested 

in modelling dynamical processes on fractal sets with a view to understanding how 

the complexity of the structure affects well-known processes such as reaction and 

diffusion.

The basic question is “what is the analogue of diffusion on such objects?” We 

begin with the problem of how to define a “Laplacian” on an object that is not
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smooth enough to define differential operators on from a classical viewpoint. This 

problem was first tackled by physicists in the 1970s, when it was suggested that 

fractals may represent the geometrical features of percolation clusters. This led to 

the calculation of the spectral dimensionality and other physical characteristics of 

fractals. The spectral dimension, ds is an exponent describing the scaling of the 

density of states with the energy on a fractal.

The fractal most commonly considered is the Sierpinski Gasket (SG). This is 

constructed from an equilateral triangle, subdividing it into four smaller triangles 

and removing the open central triangle. Repeating this process to infinity we arrive 

at the Sierpinski Gasket. The first progress from a mathematical point of view came 

when Kusuoka, [50], and Goldstein, [26], independently constructed Brownian motion 

on the Sierpinski Gasket by considering a sequence of random walks on the graphs 

that approximate SG. Under a certain scaling these random walks converge to a 

diffusion process on SG.

In 1989 Jun Kigami proposed a direct definition of a Laplacian on the Sierpinski 

Gasket [43]. This so-called analytical approach considers a sequence of graphs approx­

imating SG and the Laplacian on the Sierpinski Gasket is then the renormalised limit 

of the graph Laplacians. This approach gives rise to a natural and direct definition 

of a Laplacian on the Sierpinski Gasket using Dirichlet forms. It is also possible to 

describe harmonic functions, Green’s functions and solutions of Poisson’s equations. 

Later this approach was extended to define Laplacians on a class of fractals called 

post-critically finite (p.c.f.) self-similar sets [44]. With the definition of a Laplacian 

now in place it is possible to study dynamical processes involving diffusion on objects 

that can be approximated by p.c.f. fractals. The book [48] gives a detailed descrip­

tion of the approach and progress made so far in the area of Analysis on Fractals. 

In this thesis we shall mainly be considering the case of the Sierpinski Gasket and 

looking whether the complex geometry has any consequences in the dynamics of these 

processes. With a definition of a Laplacian on SG in place we can solve numerically
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differential equations involving second order spatial derivatives.

This thesis is organised as follows. In Chapter 2 we begin by discussing the 

theory of iterated function systems, which are often used to generate self-similar sets 

deterministically. We introduce the Sierpinski Gasket and use this as an example 

throughout the chapter to illustrate the theory. Following the approach of Kigami 

we discuss the geometry of self-similar sets and introduce the notion of a self-similar 

structure to give a topological definition of self-similar sets. We then give a definition 

of what is meant by a post-critically finite (p.c.f.) self-similar set: the class of self­

similar set on which the theory has been developed. We then go on to describe 

harmonic functions and their properties on p.c.f. self-similar sets and give a pointwise 

definition for the Laplacian on the Sierpinski Gasket, which is the rescaled limit of 

the Laplacians on the graph approximations to SG. Finally, we consider another p.c.f. 

self-similar set called H ata’s tree-like set, which geometrically resembles the dendritic 

tree of a neuron and show that the methods applied for SG do not give such nice 

results in the case of Hata’s tree-like set.

In Chapter 3 we consider the eigenvalues and eigenfunctions of the m-harmonic 

difference operators on the graph approximations to SG (The Laplacian on SG is 

simply the renormalised limit of the harmonic difference operators as m  —> oo). We 

consider two cases: Dirichlet boundary conditions and Neumann boundary condi­

tions. In both cases the spectrum can be completely determined: the eigenvalues of 

the level m  approximation to SG can be related to those on the level m  — 1 approxi­

mation by a decimation procedure and the eigenfunctions can be computed via a local 

extension algorithm. In the Neumann case we find that in order for us to be able to 

apply the decimation method, we must sacrifice the orthogonality of the Laplacian 

eigenfunctions. A way around this problem is to introduce the notion of a fractafold 

called the double of the Sierpinski Gasket. Finally we talk about the existence of 

localised eigenfunctions of the Laplacian on the Sierpinski Gasket.

In Chapters 4 and 5 we shall be considering two mathematical models describing
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physiological phenomena. The first model is the linear cable equation, which describes 

the passive propagation of electrical signals in nerve cells. Secondly we shall consider 

the FitzHugh-Nagumo system, which is a more sophisticated reaction-diffusion system 

accounting for the excitable nature of nerve cells or cells in cardiac tissue. In both of 

these cases, we look for those properties which owe their origin to the fractal nature 

of the domain. Finally, in Chapter 6 , we summarise the results of this research and 

provide some concluding remarks.
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C hapter 2 

Fractals and Laplacians

2.1 Iterated  F unction  S ystem s and Self-Sim ilar Sets

Many self-similar sets can be generated by a class of mathematical systems which 

combine notions of randomness and determinism in an interesting way. These systems 

were first studied by Hutchinson in 1981 [36] and were later given the name iterated 

function system (IFS) by Barnsley [8]. Currently the most complete theory of IFSs 

concerns transformations of a complete metric space, (X, <7), which are in some sense 

contractive. The basic theory begins with the following definition:

D efinition  2.1. A hyperbolic iterated function system consists of a complete metric 

space (X, d) and a finite set of contraction mappings with respective contrac-

tivity factors 0 <  Si < 1, i = 1 ,2, . . . ,  N . The contractivity factor for the IFS is 

then s — m ax{si,. . . ,  sjy}.

Weaker ideas of contractivity can be employed, for example contractions-on-average 

[15], but for the purposes of this thesis we shall deal entirely with hyperbolic IFSs. 

We can think of self-similar sets as closed and bounded subsets of the set X , so we 

introduce the associated space of non-empty, compact subsets of X , TiiX). This set, 

when endowed with the Hausdorff metric h forms a complete metric space. Consider
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an IFS {/i}JLi acting 011 (X , d), we define the map F  : Tt(X)  —> H(X) by

A ^ )  =  U ^ ( A) V ^ S W ( X ) .  (2.1)

The following theorem establishes the existence of a unique attractor for the IFS and 

suggests how to compute such a set.

Theorem  2.2. Let be an IFS on Sie complete metric space (X, d) with con­

tractivity factor s. Then the map F  defined in (2.1) is a contraction mapping on 

(TL{X), h) with contractivity factor s. It then follows from the Contraction Mapping 

Theorem that F  has a unique fixed point, K  £ 'H(X), satisfying

N

K  = F{K) = \ J f i(K ) (2.2)
i=1

and is given by

K  = lim F iU )  (2.3)
i—+00

for any U £ 7L(X). K  is called a self-similar set with respect to the IFS {/i}£Li-

As an example of Theorem 2.2 consider the following collection of maps of the 

plane:

, s (  0-5 0 \/i(x) =  x  +  bi, i =  l, 2,3, (2.4)
y 0 0.5 J

where x £ R2, bi — (0,0)r , 62 =  (f ,0)r , 63 =  The unique fixed point of

this IFS satisfying K  — f\(K )U  fz iK )  U fs(K )  is the famous Sierpinski Gasket .(SG). 

In Figure 2.1 we illustrate the convergence implied by Theorem 2.2 for the case of 

two compact sets. The figure shows a sequence of images of a circle (which could be 

interpreted as the circle or the closed disc) and of a square (with similar choice of 

interpretation) under repeated action of the map F.

In this thesis we are concerned with the construction of differential operators, in 

particular a Laplacian operator, on a certain class of self similar sets. We use the 

Sierpinski Gasket as an example to illustrate the approach. For this purpose the
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Figure 2.1: Generating the Sierpinski Gasket when the initial set is (a) a circle, and 

(b) a square.
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Sierpinski Gasket is approximated by a sequence of graphs. We use standard graph 

notation: the level m graph approximation to the Sierpinski Gasket consists of a set 

of vertices (or nodes), Vmi and a set of edges, Em, and is denoted by Tm =  {V ,̂, 

see Figure 2.2. We begin our graph sequence with the zero level approximation to 

the Sierpinski Gasket, To, which consists of the nodes Vo =  {PijPajPg}, the three 

vertices of an equilateral triangle1 and the edges between them. Subsequent sets of 

vertices are then obtained inductively by

3

Vm + 1  = \ J f i ( V m). (2.5)
i=l

Clearly by Theorem 2.2 the set of vertices alone will converge to SG as m  —>■ oo. 

However, since we shall use the analogue of finite difference methods to approximate 

derivatives on self similar sets, we require a notion of adjacency. We therefore specify 

that adjacent vertices are joined by an edge. We can think of the set of edges as a 

subset of the set of all ordered pairs of vertices Vm x Vm. For two vertices V^, Vj£ E Vm> 

we have

0C >V l) € Em <s=*. (A (V ^),h (V i) )  e  E m + 1  for fc =  1,2,3.

That is: vertices in Vrn+i are joined by an edge if and only if their preimages in Vm

under any of the contractions /$ are joined by an edge. W ith this in mind, we shall

use the following notation to denote that two vertices on the graph Tm are joined

by an edge: x ^ y y and we say vertices x  and y are neighbours on Tm. The set Vo is 111
referred to as the boundary of SG. We note that Vm and Em contain §(3m +  1) and 

3m+1 elements respectively and that Vm — K . We shall adopt the following

notation: the graph Tm comprises 3m order-m (or minimal) triangles and we refer to 

the vertices that are common to neighbouring order-m triangles as (order-m) junction 

points.

1 Actually, P i, ib > Tt can be chosen to be any three non-colinear points in the plane without 

altering the theory.
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Figure 2.2: The approximating sequence T0, lb , T2 and the Sierpinski Gasket.

The set of vertices Vrn becomes dense in the Sierpinski Gasket in the sense that 

for any point x in K  and any e >  0 we can choose some suitably large m  such 

that the e-neighbourhood of x  contains a point in Vm. Continuous functions on the 

Sierpinski Gasket are then uniquely determined by their restrictions to the Vm. 

Consider the structure of a self-similar set K\ it is clear that K  satisfies 

N  N  /  N  \  N  N

k =  u  j({K) =  u  /«  U  uw  =  U  U  /*  °  / j (4  (2 -6 )
i=l i=l \ j —l  /  i = l j = l

Since maps of the IFS {/i}£Li are contracting, continuous maps, we have a decreasing 

nested sequence of compact sets:

K  D fi(K ) D ft o fj(K )  D . . .  i, j  =  1,2 . . . ,  iV, (2.7)

and the limit of such is non-empty. In fact, the limit of this sequence is a single point, 

the coordinates of which depend on the particular sequence of maps applied. We can

31



C h a p t e r  2: F r a c t a l s  a n d  L a p l a c ia n s

f i(K )  n  fs(I<)

Figure 2.3: The overlap of fi(K )  and fs (K )  is a single point.

think of such a sequence of maps as an infinite sequence of symbols and that this 

constitutes the address of the limiting point. Although every point in K  corresponds 

to at least one symbol sequence (i.e. has an address), it is possible for two different, 

symbol sequences to give rise to the same point. For example, consider the red point 

in Figure 2.3. This point can be thought of as either the image of the point P\ under 

the map / 3, or the image of the point P3 under the map / 1, so the corresponding 

symbol sequence could begin with either a 1 or a 3.

A way to formalise this idea is to consider the space of symbol sequences. We shall 

refer to a sequence of m  symbols as a word of length m. This idea is fundamental to 

the understanding of the topological structure of self-similar sets.

D efin ition 2.3. Let =  {W1W2 W3 . . .  : tu* G {1,2 , . . . ,  iV}, i £ N} be the collection 

of infinite words in N  symbols. Then E ^ is called the shift space in N  symbols.

It is often useful to consider words of finite length, which we formally define as follows:
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D efin ition  2.4. For m  > 1, W ff = {w 4 w2 . . .  wm : Wi £ { 1 ,2 , . . . ,  N }} is a word of 

length m  in N  symbols. Then, we define

W ?  =  U  <
m>  0

to be the set of all finite words in N  symbols. We also define the empty word, W ff — 0.

From this point onwards, we shall drop the superscript N  when using E, Wm, and 

W*. Using the above definitions, we state the following summary Theorem:

T heorem  2.5. For w — w4w 2 . . .w m G W*, set f w = f Wl o f W2 o - - - o  f Wm and 

Kw — fw(K)> where K  is the self-similar set with respect to the contractions {fi}fL r  

Then for any the map tt : E —> K  defined by

{7r(w)} =  K Uj1U2 ...u)m 
m> 1

is a continuous surjective map and n m>iiFu;iW2...wm contains only one point.

A nice property of the map 7r can be seen by considering shift maps on E, which we 

define here.

D efin ition  2.6. For k G {1,2 , . . . ,  N }, we define the map cr*. : E -4  E by ak(wiw2 w^ . . .)

kw\W2Ws  Also, we define the shift map, a : E —*• E, by a(wiw2w3 . . . ) =

w2 w^w4 ----

The map 7r plays an important role in our analysis. We can think of tt as a map that 

takes words in E to points on our self-similar set K  and every point in K  can be 

represented in this way. Since 7r(E) is a non-empty compact set Theorem 2.2 implies 

that tt(E) =  K .

The procedure defined in Theorem 2.5 converges to a single point because we are 

considering backward iteration: as we add a new symbol to our word, the correspond­

ing contraction is applied first and the previous sequence acts upon this set. If, on 

the other hand we were to consider forward iteration, the process would not converge

33



C h a p t e r  2: F r a c t a l s  a n d  L a p l a c ia n s

since each new symbol added to the sequence determines the final contraction applied. 

Forward iteration defines a dynamical process on K  which is stochastic. Given any 

x £ K , this can move to one of N  new points in K  according to which of the maps 

fi is applied. This is also known as a random iteration procedure and leads to an 

ergodic process. The forward and backward iteration of random (Lipschitz) functions 

is considered in [15].

Clearly, for any i £ {1 ,2 , . . . ,  IV},

{tt o cq(w)} =  p |  K iWlW2„.Wm =  p  fi{K WlW2.'.wJ  =  { fi o tr(w)}. (2.8)
m>l m> 1

Moreover, if we define w = w w w . . .  for w £ W*, w ^  0 then by Theorem 2.2 and 

Theorem 2.5 tt(w ) is the unique fixed point of f w. This idea can be extended to give

7r(u!U2 . . .v kw) = f v(pw),

where viv2 .. .  Vk € W* and pw is the fixed point of f w. Since periodic sequences are 

dense in E, given a suitable topology (see [48]), we have

K  =  {Pw : w G W*, w 7  ̂0}.

Throughout this thesis we will use the following notation to refer to subsets of SG: if 

v j  is a word of length m, then K w is an order-m subgasket.

Now we introduce the notion of self-similar structure to give a topological def­

inition of self-similar sets and also give a definition of post critically finite (p.c.f.) 

self-similar sets, to which the analysis presented here can be applied.

D efinition  2.7, Let K  be a compact metrisable topological space and let S  be a finite 

set. Also, let fi, i £ S  be a collection of continuous injections from K  to itself. Then 

(.K ) S , {fi} ies) *5 called a self-similar structure if  there exists a continuous surjection 

7r as defined in Theorem 2.5.

Most commonly we think of a self-similar structure as being (K , {1, 2 , . . . ,  JV}, {fijfL i) 

where {/i, / 2, • • • J 'n }  are injective contractions.
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D efinition  2.8. Let £  = (K, S ,{ fi} i&s) be a self-similar structure. We define

Cc,k = U U i( K ) n M K ) ) .

Then Cc = ir_1(CfJci/c) is called the critical set of £  and Vc — Un>icrn(Cc) is called

the post critical set of £ . Also, we define Vq{£) =  ^(Pc)-

We can think of Ccjc as being the set of overlapping points when we apply each of 

the maps { fi} its  to K  and take the union of the resulting sets. Then the critical set 

is the set of words in £  that, when the map 7r is applied, result in the set Cc,k - Also, 

the post critical set is the set of all possible pre-images of the critical set. The above 

definitions of the critical and post critical sets let us introduce the key notion of a 

p.c.f. self-similar structure. We say that a self-similar structure £  =  (K , S, {fi}i^s) 

is p.c.f. if and only if the post critical set is finite.

Once again, let us consider our continuing example of the Sierpinski Gasket. We 

have that

C = {SG, {1 ,2 ,3}, { /i}j=1) (2.9)

with the fi as defined in (2.4) is a self-similar structure. It is easy to see that 7r(j) — Pj 

is the unique fixed point of / j ,  j  = 1,2,3. Let the vertex midway along the edge 

between Pi and Pj be cp. where i ^  j  7  ̂ k E {1,2,3}. The set of overlaps is given by

G c ,s g  =  { g i ,  Q2> <?3}, ( 2 . 1 0 )

and the critical set and post critical set are

Cc = {12,2i, 13,3 i ,  23,32},
(2 .11)

Vc = { 1,2,3}.

Clearly, Vc is a finite set and so the self-similar set SG is indeed post critically finite.
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2.2 E nergy and H arm onic Functions on th e  Sier­

pinski G asket

We begin our discussion of harmonic functions on p.c.f. self-similar sets by considering 

the classical case of harmonic functions of M2. Consider a bounded, connected and 

open domain in R2 denoted by fh We define the boundary of Q by 9ft, and the 

corresponding closed set O is given by

0  =  ft U 90.

Then a function u E C 2(0) fi C(0) is said to be harmonic in O if

A u — 0 for all (a;, y) E O,

where A is the Laplacian on R2. Here, u E C2(0) means that all partial derivatives 

of u up to second order are continuous in O. A harmonic function u with given 

boundary values has the following properties: u attains its maximum and minimum 

on the boundary, u is uniquely determined by the values on the boundary, and u 

minimises the energy for all functions /  that share the same boundary values, where 

the energy of a function /  is defined to be

The above properties can also be made to hold for harmonic functions on the 

Sierpinski Gasket. However, we have not yet defined what is meant by the Laplacian 

on Sierpinski Gasket so we must work backwards. We will define first of all what we 

mean by a harmonic function, «, on SG and later show that it satisfies the condition 

Au — 0. The theory of harmonic functions on p.c.f. self-similar sets was developed by 

Kigami, see [45, 43, 44]. We shall adopt his approach here and begin by introducing 

the harmonic difference operator on the graph Tm.

(2 .12)
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r0
u(P3) -  c

Ti
w(P3) =  c

u{Pi) =  a u(q$) ~  z u(P2) =  b

Figure 2.4: The harmonic extension from To to T1.

D efin ition  2.9. Let l(Vm) — { f \ f  : Vm —> M} and define the map Hm :l(Vm) l(ym) 

by

(Hmf) ( x ) =  ^ ( / ( y )  -  f ( x ) ) t (2.13)
XrvV

m

where f  E Z(14i) and x  £ Vm-

Consider the level m  graph approximation to SG (or indeed any p.c.f. self-similar 

set) and a function /  E  l(Vm) defined on the graph. We define the graph energy of /  

to be

£ » ( / )  =  £ ( / ( ! / ) - / ( s ) ) 2> (2-14)
m

however, these energy forms are not related to each other for different m. Given

a function /  on Vm, there are many extensions of /  onto VJ^+i but only one that

minimises the energy. We denote this energy-minimising extension /  and call it the 

harmonic extension of / .  We would like the following consistency condition to hold:

Em+i( f)  =  c ^ t f ) ,  (2-15)

where cm is a renormalisation factor.
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To calculate cm consider a function u defined on Vo where the boundary vertices 

Pi, P2, P3 take the values a ,6, c respectively, see Figure 2.4. We want to extend the 

function u to Vi, where the values of the extension u  at the nodes qi, z =  1,2,3 G Vl\Vq 

are chosen so that the energy is minimised. Calculating P i from equation (2.14) and 

minimising with respect to u at qi} q2 and 53, we find that the values of the harmonic 

extension u at nodes qi,q2 , qs are given by

We see that the value of u at the interior node i — 1,2,3 is the average of the 

value of the function at the four neighbours of <&. Equations (2.16) lead us to give a 

definition of a harmonic function on the Sierpinski Gasket.

D efin ition  2.10. The function u G l(Vm) is said to be harmonic on Fm i f  for every

Equations (2.16) can be rearranged to give an explicit expression for u(qi) in terms 

of the boundary values a, 6, c.

means that the harmonic extension can be seen as local and therefore the same result

4x — b c-\- y

4 y = a + c + x + z, (2.16)

4z — a +  5 -t- a; +  y.

interior node, the value of u at node x is the average of the values of u at the four

neighbours of x. That is:

5 5 5 :
2 , 2 , 1 , (2.18)

5 5 5 ‘

Equations (2.18) give the rule for determining the values of the harmonic

extension u on Vi for given boundary values. In fact, the self-similarity of the gasket
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holds for all harmonic extensions from Vm to Vm+i. A nice way to describe this 

harmonic extension algorithm is in the following form.

1 u{FwP0  \  /  u(P,) \

u(FwP2) = A m -- -AWm u (Pt) , (2.19)

y u(FwP3) y y u(P3) j

where the A*, i = 1,2,3 are matrices given by

/
A\ —

1 0 0
2 2 1
5 5 5

\
A  o —

. 2 1 2  
\  5 5 5 / V

5 5

0 1 0
1 2 
5 5

1 \ f  2 1 2 \
5 5 5 5

0 > ^ 3  —
1 2  2 
5 5 5

5 }

r—
1

OO

(2.20)

Using the harmonic extension algorithm we can express the energy E\ in terms of 

the boundary values a, 6, c and we find that c\ — | c q -  In general the renormalisation

constant is

On Cq j

and for simplicity we take Co =  1. Then we have

and in general

£i(u) = -E x  (u) =  £o(u)t

(2 .21)

(2 .22)

(2.23)

We will now go on to state some theorems regarding harmonic functions on SG 

and their properties.

T heo rem  2.11. Given any three numbers a, b, c, there exists a unique harmonic 

function u on the Sierpinski Gasket satisfying u(Pi) = a, u(Pz) = b, u(P3) — c.

Proof of Theorem 2.11 can be found in [76].

T heorem  2.12 (T he M axim um  P rincip le). I f  a harmonic function defined on 

the Sierpinski Gasket K , attains the maximum value in the interior K \V q of K , then 

u is constant throughout K .
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The following proposition summarises the basic results from [43] concerning the reno- 

malised energy S and harmonic functions on K:

Proposition 2.13. For any continuous function f  on K , the sequence £ ( / )  is mono- 

tonically increasing and so

£( / )  =  lim £m(f)m~* oo

is well-defined and

£( / )  = 0 f  is constant.

We denote by dom(£) the set of continuous functions for which S{f )  < oo.

For a harmonic function n, the energy remains constant over all levels, in fact

£m(w) =  £{u) for all m.

2.3 D efin ing  th e  Laplacian on th e  S ierpinski G as­

ket

The theory of harmonic functions on SG described in Section 2.2 extends to allow us 

to define what is meant by the Laplacian operator on the Sierpinski Gasket in the 

sense of Kigami (see [43] for the SG case or [44] for the general case of p.c.f self-similar 

sets). We can define a Laplacian on the Sierpinski Gasket via the weak formulation 

for the Poisson problem:

A f  =  g. (2.24)

The weak solution satisfying (2.24) is given by

J  V /  ■ Vv dx = -  J  gv dx (2.25)

for all functions v in a suitable test space. On the Sierpinski Gasket, the analogue of 

J  V /  . V v dx is given by the energy form £ (/, v) and we must also choose a suitable
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measure p, to play the role of dx on the right hand side of (2.25). We consider the 

standard self-similar probability measure:

 ̂ I
^  =  £ 3  (2.26)

z=0
We can now give a formal definition of the (Kigami) Laplacian on the Sierpinski 

Gasket:

D efinition 2.14. A function f  G dom(£) is in the domain of the Laplacian, dom(A) 

and A/  =  g if and only if  there exists a continuous function g such that

£( / .« )  =  - /  QvdjJ,, (2.27)

for all suitable test functions v G dom(£) that vanish on the boundary.

It is also possible to define the Laplacian A by the pointwise formula

A f (x )  =  lim 1 5™ Y ,  (/(») -  /(* )) (2-28)m—>00 2 z—7Xr̂ Vm

for any nonboundary vertex x. Note that it is indeed true that a function u is harmonic 

as defined in Section 2.2 if and only if Au = 0 with A defined by (2.28). We can also 

define normal derivatives at the boundary points:

dnf { x ) ^  lim f ^ \  f ( x ) ) .  (2.29)
m—*oo \  o / —

m

The formulae defined in (2.28) and (2.29) make it possible for us to define PDEs 

involving second order spatial derivatives and to solve them numerically. The simplest 

idea is to semi-discretise the problem (the analogue of the method of lines) by using 

the formula (2.28) as a discrete approximation to the Laplacian. The resulting ODE 

system can be solved by a suitable numerical technique. This technique was used 

in [14] for the heat and wave equations on SG. The analogue of the finite element 

method has also been developed on the Sierpinski Gasket using spline spaces, see [25] 

and [68]. A clear overview of the method, the programs used and the results can be 

found at [24].
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2.3.1 Physically-M otivated Derivation

From a physical point of view we can see where the coefficient |  5m comes from in 

(2.28) by considering the gasket as a system of point masses connected by springs of 

strength k, as discussed in [76], We assume that the masses move only perpendicular 

to the plane in which the gasket lies. This has been called the “Sierpinski Drum”.

In Euclidean space, the vibration of a surface can be modelled by the wave equa­

tion:
Q2U

M~p-^ = k A u  on fi, (2.30)
otl

where u(x, y, t )  gives the position at time t } M  is the mass of the surface, and the 

domain fi is the surface of the drum. We can construct the analogue of equation 

(2.30) on our sequence of graph approximations to SG. Then in the limit as m  ^  oo 

we will model the vibration on the Sierpinski Gasket. Let Mx>m be the point mass 

at node x  on Tm, and let the pair (x,y) denote the spring joining node x  to node y. 

Then, using Hooke’s law, the resultant force on node x  at time t  will be the sum of 

all forces of springs connected to x. We write

Fx,t =  -  km{u(x,t) -  «(?/,£)), (2.31)
Xr̂ jy

m

and so for each node x  we may write the equation of motion as

cP
M-m,x ^ 2  =  krn (-Hm^X^)} (2.32)

with (Hmu)(x ) as defined by (2.13). The problem remains as to what are suitable 

values of Mm>x and km.

The M ass D istribution

We are assuming that the mass, M, of the Sierpinski Gasket is uniformly distributed. 

Therefore, we divide Tm into 3m order m, or minimal triangles. Each minimal triangle
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has mass M . From this it is clear that we can define the point masses by

M, x € Vo,

3̂ r  x e V m \  Vq2

(2.33)

since the interior nodes receive contributions from two minimal triangles, while the 

boundary nodes only receive contributions from one minimal triangle.

The Spring Constant

To obtain the appropriate value for the spring constant km we must first consider the

properties of Hookian springs in series and in parallel. In fact, using such springs in 

series and parallel produces effective springs with force constants which look like the 

parallel and series laws for combining electrical resistances. We find that two springs

Similarly, the same two springs joined in series act as a single spring with force 

constant given by

Now consider the point masses and springs arranged as the zero level graph approx-

in this manner the three springs act as a single entity and we can find the force 

constant of the spring by using the analogue of the star-triangle transformation for 

electrical resistances: the effective force constant of three Hookian springs arranged 

as a triangle, each with spring constant k is the same as the effective force constant 

of three springs arranged as a star, where the spring constant of each spring is 3/c, see 

Figure 2.5. Using the star-triangle transformation and the rule for springs in series, 

we see that the three springs arranged as the triangle behave as a single spring with

combined in parallel with force constants ki and fc2 behave like a single spring with 

force constant

imation to the Sierpinski Gasket where each spring has spring constant /e0. Arranged
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■>

Figure 2.5: The star-triangle transformation for Hookian springs, 

spring constant

fce// =  |fco. (2.34)

Next we consider the r \  approximation to SG, where each spring has spring con­

stant A*. Once again, by applying the star-triangle transformation and the rule for 

springs in series, we see that the system behaves as a zero level approximation to the 

gasket where the spring constant of each spring is given by (see Figure 2.6)

=  (2.35)

Comparing (2.34) and (2.35) we see that the spring constants are related by ki = § &o. 

In general we have for every m  > 0,

&m+1 =  2 km. (2.36)

W ith ko = k this becomes

fcm =  ( | )  k. (2.37)

Now we have found suitable values for the mass distribution MmiX and the spring 

constant we can substitute these values into our equation of motion (2.32) for the
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Figure 2.6: The Ti system of springs can be reduced to the Tq system with related 

spring constants.

system to obtain the following equations:

M  A u(x, t) = 15mk{Hmu)(x) for x e  Vm \  V0,
*  2 (2.38)

M-r-r u(x, t) =  3 x 5mk{Hmu) (x) for x e V o -
at

Taking the limit as m  —> oo we arrive at the wave equation describing the surface

vibration of the Sierpinski Drum. Comparing equations (2.38) and (2.30) we see that

the Laplacian on the Sierpinski Gasket can indeed be defined by

Au(x) = lim ~ 5m(Hmu)(x), (2.39)
m —>oo 2

for vertices x e V m \  Vq.

2.4 O ther p .c.f. Self-Sim ilar Sets

In Chapter 1 we discussed how many naturally occurring objects can have fractal 

structure. Although these objects are only approximately self-similar, they are well- 

approximated by exactly self-similar sets generated by deterministic processes. Many
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of the biological and physiological examples we considered in Chapter 1 share a self­

similar tree-like structure, such as the dendritic tree of a neuron and the bronchial 

tree in the lung.

The Sierpinski Gasket has been a useful example in the development in the theory 

of Analysis on Fractals, However, a major application of this area of mathematics 

is to model dynamical processes on approximations to naturally occurring objects. 

For this purpose, the Sierpinski Gasket is not the best choice of self-similar set to 

consider. Ideally, we would like to model these processes on a p.c.f. fractal tree. An 

example of such a self-similar set is the tree-like set which was first defined by Hata 

[27]. H ata’s tree-like set is defined as follows: Let X  =  C. Set

f i  (z) = cz
(2.40)

f 2 (z) = ( l -  \c\2 ) z + \ c \2

where c G Z  and |c| < 1, |1 — c| E (0,1). If we let A  = { t : 0 <  t  <  1} U {tc : 0 < t <  

1}, then f i (A)  U / 2 (A) D A.  Hence if

An  =  1J  MA)
then {Am}m>0 is an increasing sequence and the self-similar set K  =  Um>0Am is 

shown in Figure 2.7. Referring to Definition 2.8 we see that for the Hata Tree, we 

have

Ccj< ={ |c|2},

C£ ={112,2i},

7>£ = {12 ,M }.

The boundary of the Hata Tree is defined as Vo(£) =  {0,1, c}. We would like 

to construct a Laplacian on the Hata Tree in an analogous way to the case of the 

Sierpinski Gasket. According to Kigami’s theory we can calculate the energy of each 

of the graph approximations to Hata’s Tree via the formula defined in equation (2.14)
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j * U' J.1 ^ ' ' ' ■'if vf.‘; v ■
*K '*•

Figure 2.7: The approximating sequence r 0, Ti, T2 and a random iteration procedure 

converging to Hata’s tree-like set. Here we have taken c =  0.4 -j- 0.3V—L

47



C h a p t e r  2: F r a c t a l s  a n d  L a p l a c ia n s

so that for a function u G /(Vo) we have

E0(u) =  H O ) -  «(1)}2 +  MO) -  ^(c)}2. (2.41)

We wish to find an extension of u to Vi that minimises the energy. Once again,

this harmonic extension is denoted by u and we would like to find a renormalisation

constant cm such that

Em+l(u) =  CmEmiu). (2.42)

We proceed by calculating Ei and minimising with respect to x  and y. We find that

3 x = a + b + y,
(2.43)

V =  a,

so that an explicit expression for the values of u at the points V\ \  Vo is

a  =  =  i ( a  +  6). (2.44)

and the energy is given by

E1(u) =  i{ f i( l)  -  «(0)}2 +  {2(c) -  «(0)}2. (2.45)

Clearly, in this case, there is no nice counterpart of the harmonic extension algorithm 

that we found for the Sierpinski Gasket and there is no constant c such that E\ =  cE0, 

In fact the values of u at the newly generated points are just the average of the values

at the neighbouring boundary points. If we were to carry on in this manner, we

would see that, as m  increases, the harmonic functions will become constant along 

the branches and the energy will become zero.

This problem occurs due to Kigami’s notion of boundary. For a fractal tree, a 

more natural notion of boundary would be to define the set of boundary points as 

those points that are the tips of the branches. So, as m  increases, the set of boundary 

points grows also. Thus, for the Hata Tree, JC, the set of boundary points would 

actually be an uncountable set. The addresses of such points would be all symbol 

sequences not in the critical set Cc ending in 2,
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The necessary development would require the separation of the notions of bound­

ary and the post-critical set and would be a major departure from the theory we 

have described here. The rest of this thesis will be concerned with understanding the 

consequences of the complexity implied by defining nonlinear PDEs on the Sierpinski 

Gasket and so this issue will not be addressed further.
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C hapter 3

Spectrum  and E igenfunctions of 

th e Laplacian on the Sierpinski 

G asket

3.1 In trodu ction

Now that we have a definition for a Laplacian operator on the Sierpinski Gasket, we 

are able to study the eigenvalue problem

—A v = \v .  (3.1)

The spectrum of the Laplacian on SG was first studied by the physicists Rammal 

and Toulouse, [60], [59]. Subsequently Shima [64] and Fukushima and Shima [20] 

completely determined the eigenvalues and multiplicities of the harmonic difference 

operator Hm in the case of both Dirichlet and Neumann boundary conditions. The 

numerical computation of such eigenvalues was also presented in [14].

D efin ition  3.1. I f  the function v that solves the eigenvalue problem (3.1) also satisfies 

the condition

t»|r0 =  0 
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then the eigenfunction v is called a Dirichlet eigenfunction (D-eigenfunction for short) 

o f —A.  Similarly, i f v  satisfies the condition

dnv{x) = ft V x  £ r0,

where dn is the normal derivative defined in equation (2.29), then v is called a Neu­

mann eigenfunction (N-eigenfunction) of —A.

We specialise to the case of the Sierpinksi Gasket in the plane (N  = 3 in [64] 

and [20]) and work with our graph approximations to the Sierpinski Gasket: Tm =  

{VmtEm} C IR2, m =  0 ,1 ,2 ,—  In this section, we will begin by considering the 

m-harmonic difference of a function f  at a non-boundary vertex x e  Vm as defined 

in (2.13). The Laplacian on the Sierpinski Gasket is simply defined to be the renor­

malised limit of Hm, according to (2.28) as m  —► oo.

Consider the discrete eigenvalue problem:

A m Vm  ~  X m V m  (3-2)

where A m is the graph Laplacian defined on Vm, defined in terms of the harmonic 

difference operator

(Hmf)(x)  = Y  (f(y) ~  /(a ))  (3-3)
Xr>uym

for all non-boundary vertices x  (see equation (2,13)). Until now, we have only defined

harmonic differences on interior nodes and have not considered what happens at

the boundary vertices Pi, i = 1,2,3. In the following sections we will describe the 

spectrum of Hrn in the case of Dirichlet and Neumann boundary conditions.
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3.2 E igenvalues o f  th e  Laplacian on th e  Sierpinski 

G asket

3.2.1 Eigenvalues of (D irichlet Boundary Condition)

First, let us consider Dirichlet conditions at the boundary. We define the linear

We see that — can be written as a (§(3m — 1) x |(3 m — 1)) sparse matrix. 

To begin with, we consider the eigenvalues of

We find that there is an eigenvalue equal to 2 which occurs with single multiplicity. 

Corresponding to this is the eigenfunction

Also, there is an eigenvalue equal to 5 which occurs with multiplicity 2. The corre­

sponding eigenfunctions in this case are and and are given by:

operator
(Hmf)(x)  if i e V » \  Vo 

0 if x  £ Vo
(3.4)

(3.5)

—1 -1  4 J

(3.6)

1 for x  =  Qk-i, 

vl(x ) ~  < - 1  for a; =  <?3, k = 2,3. (3.7)

0 otherwise

We denote the set of eigenvalues of —77^ by A m and so A \ — ( 2 ,5,5}.

Given the self-similar nature of SG, there exists a natural decimation procedure, 

which enables us to relate eigenvalues of —TC^ to those of Consider the
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Figure 3.1: The nodes considered for the decimation procedure.

eigenvalue problem for the vertices circled in the left hand part of Figure 3.1 and 

define the vectors

v(X)  =

1  v(Xi)  

v (X 2)

{  v (X3)

v(x) =

and the matrices

A  =

\

- 4 1 1

1 - 4 1

1 1 - 4

\

/

 ̂u(a:i) ^
v(x2)

V V(Xs) )

^ 0 1 1 ^

M  = 1 0 1 

1 1 0

(3.8)

(3.9)

We assume here that v (X)  is known and we wish to relate the eigenvalue problem on 

r 2 to that on Ti, that is, we wish to find the values of u(xx), i = 1,2,3 in terms of 

the values v ( X {), i = 1,2,3.

The eigenvalue problem restricted to these vertices on T2 is then

A v(x) +  Mv( X ') = — AIu(x), (3.10)

where I is the 3 x 3  identity matrix. System (3.10) can be solved to obtain an
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expression for v(x) in terms of v(X_):

v(x) = - { A  + XT) * 1 Mv(XX)

(  2 4 — A 4 — A \
1  (3.11)

(A — 5)(A — 2) vQO-4 — A 2 4 — A

y 4 — A 4 — A 2 j

Similar relationships exist for expressing v(zi) in terms of v(Zi)) i = 1,2,3 in the upper 

uncircled subgraph of IT (see Figure 3.1) and similarly with the remaining unlabelled 

subgraph.

Equation (3.11) describes how the value of the eigenfunction at the nodes € 

Vrn \  Vm-i  can be expressed purely in terms of the value of the function at the nodes

X{. This means that, given an eigenfunction of —7i^_1 with eigenvalue A, we can

extend this to an eigenfunction of —'Ĥ n with eigenvalue A7. The relationship between 

the eigenvalues A and A7 can be found by comparing the eigenvalue problem for a 

point X ij for example, common to both Vj and V2, We have on IT:

—4u(Ai) +  ^v(X2) +  v(X^)^j +  ^u(iT) + v(Zz)^ =  “ Au(Xi), (3.12)

and on V2'

-4v(X i) +  (v{x2) +  ^(^3)) +  ( W 2) +  v p 3)) =  -A T pG ). (3.13)

Using equation (3.11) and its analogue for v(z{) we can express ^ ( ^ 2) +  u(a;3)^ and 

(v(z2) +  ^(^3)^ in terms of {upT)} and {v(^)}  respectively and substitute these 

values into equation (3.13), which can be written in the form

-4u(A T ) +  ( y ( X 2) 4- v p f a))  +  ( y ( Z2) +  u(Z3))  =  -A 7(5 -  A > p T ) .  (3.14)

Comparing this with equation (3.13) we see the relationship between A and A7 is a 

quadratic:

A =  A7(5 — A7), (3.15)
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and we note that equation (3.15) is not invertible.

The results of this decimation procedure can be summarised by the following 

proposition [64]:

Proposition 3.2 (D ecim ation M ethod). Let lo(Vm) = { /  G l(Vm) : f{Pi) = 0, i =  

1,2,3} be the collection of real-valued functions on Vm that are zero on the boundary.

1. I f  = Xmv for v € l0 (Vm), Xm ^  6, then G lQ{Vm~i) and

'H'm—l(^|um_i) Am(5 — 'VrO' l̂Kn-l ‘

2. I f  ~'H^n_1v — Am(5 — Xm)v for v 6 ^o(hm-i) and Xm ^  2,5,6, then there exists 

a unique extension v E la(Vm) of v such that

- H Qmv =  Xmv.

Proposition 3.2 says that the restriction of an eigenfunction of with eigen­

value Xm 7  ̂ 6 to 14i-i is an eigenfunction of — eigenvalue Am_i =  Am(5 —

Xm)* Also, an eigenfunction of 7dm_-y with eigenvalue A^_i Afn(5 Am),A m 7̂  

2,5,6 can be uniquely extended to an eigenfunction of —T i^  with eigenvalue Xm. 

The exclusion of the eigenvalue 2 in the second part of Proposition 3.2 is clear since 

2 € Am only for m  = 1. It less simple to explain the exclusion of 6 in part one of the 

proposition and 5 and 6 in part two of proposition 3.2.

The eigenvalues of —Ti™ that are calculated by the decimation procedure do not 

form the complete spectrum of the harmonic difference operator. The following propo­

sition accounts for the existence and multiplicities of the remaining eigenvalues.

Proposition 3.3. 6 is an eigenvalue of with multiplicity §{3m — 2 x S™-1 — 1}. 

5 is an eigenvalue of with multiplicity |{ 3 m_1 — 2 x 3m_2 +  1}.

For a proof of the first part of Proposition 3.3 see [64]. The multiplicity of the 

eigenvalue equal to 5 then follows since it will be equal to the difference between the
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•  v =  0
•  u = +l
•  v  =  - 1
•  i> =  + 2

Figure 3.2: The three eigenfunctions of —7^2 with eigenvalue A =  6 .

number of vertices of the graph Tm and the number of eigenvalues of — deduced 

from the decimation procedure and Proposition 3.3.

Consider the eigenvalue A =  6. This first occurs when m = 2 with multiplicity 

three. We shall denote the three eigenfunctions corresponding to this eigenvalue 

by Vq̂ , i = 1,2,3. The values of these three eigenfunctions are shown in Figure 

3.2 and it is easy to check that they are linearly independent. We also note that 

the Vq all satisfy both Dirichlet and Neumann boundary conditions. This family 

of three eigenfunctions on T2 gives rise to nine eigenfunctions on T3 that also have 

eigenvalue A =  6 . These eigenfunctions are constructed as follows. We take each of 

our eigenfunctions on r 2, Vq {, i = 1,2,3 and for each one, we take each of the maps 

of our IFS, f j , j  =  1 ,2 ,3. The support of our eigenfunction on T3 will be the nodes 

x  £ V3 whose address begins with the symbol j .  The eigenfunction will take the value 

zero at all other vertices. The value of our eigenfunction at a node x  G V3 is then the 

value of Vq {, i =  1,2,3 at the pre-image of x  under the map f j . This construction is 

illustrated in Figure 3.3.

According to Proposition 3.3 there exist a further three eigenfunctions of — 

with eigenvalue A =  6 . Three such eigenfunctions are shown in Figure 3.4 and are 

denoted by vjL, i =  10,11, 12. Once again the vl (s form a linearly independent set and
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Figure 3.3: An eigenfunction on r 3 with eigenvalue A =  6 that is constructed from 

an eigenfunction on r2, also with eigenvalue A = 6.

satisfy Dirichlet-Neumann conditions. It is this property tha t allows us to construct 

eigenfunctions corresponding to A =  6 on subsequent graph approximations to SG in 

this manner.

As m  increases we can continue in this way to completely determine the eigen­

functions of with eigenvalue A =  6 given that we know those of There

will be f  {3m -  2 x 3™“ * — 3} eigenfunctions that come from contracting each of the 

eigenfunctions with A — 6 on r m_! onto the three order-one triangles of Tm. The 

remaining three eigenfunctions are the analogues of those shown in Figure 3.4, where 

the non-zero values are pulled towards the junction points q\)q2) q% as m  increases.

We can tell a similar story to determine the eigenfunctions of corresponding 

to the eigenvalue A =  5. On Fi, the eigenvalues corresponding to A =  5 are given by 

equation (3.7), however this is a special case, so, again we begin at m =  2. There 

are three eigenfunctions of —77° with eigenvalue A =  5, which we call Vg if i — 1,2,3. 

These are shown in Figure 3.5. Again, these three eigenfunctions are all linearly 

independent. However, only x satisfies Dirichlet-Neumann conditions, so, when

57



C h a p t e r  3: S p e c t r u m  a n d  E ig e n f u n c t io n s  o f  t h e  L a p l a c ia n  o n  t h e

S ie r p in s k i  G a s k e t

•  v =  0 
• v  =  + 1
•  v = -1
•  v =  + 2  

v = - 2

Figure 3.4: The three remaining eigenfunctions of —W.® with eigenvalue A =  6.

•  v = 0
•  v = +1
•  v =  - 1

Figure 3.5: The three eigenfunctions of — with eigenvalue A =  5.
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•  v  = 0

•  v  = +1
•  v  = -1

Figure 3.6: The eigenfunction a .

constructing eigenfunctions corresponding to A =  5 on r 3, we only construct three 

eigenfunctions whose support is confined to each of the three order-one triangles of 

r 3. Again, Proposition 3.3 tells us that there are a further three eigenfunctions of 

— with eigenvalue A =  5. These are the analogues of those on T2 shown in Figure 

3.5.

Consider the Dirichlet-Neumann function vfj. We can think of this as a ring, 

of alternating sign around the central hole, but set back one row of nodes. An 

analogue of this eigenfunction exists for every Tm, which we always refer to as 

As m  —* oo the support of this eigenfunction converges towards the nodes surrounding 

the central hole. The eigenfunction a is shown in Figure 3.6. The construction of 

the eigenfunctions of — corresponding to the eigenvalues 5 or 6 is one of many 

possible approaches1.

We now define the map $(A) =  A(5 — A) and its inverse

1In a recent publication, Strichartz , [69], outlines an alternative method
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- h ”

( 12)

Figure 3.7: The Decimation method used to calculate the eigenvalues (and multiplic­

ities) of —77^.

This, together with Proposition 3.2 leads us to the decimation diagram shown in 

Figure 3.7. The spectrum of the harmonic difference operator on Tq is shown in 

Figure 3.8.

In summary, to calculate the eigenvalues and eigenfunctions of —7 ^ ,  we begin 

with the lb  approximation to the Sierpinski Gasket. The eigenvalues and eigenfunc­

tions of — Tii are -4i =  {2,5,5} and {ujj.}, k = 1,2,3 respectively. Each v £ {u^} with 

eigenvalue A £ A \  can be extended in two ways, which we shall refer to as the posi­

tive and negative extensions v+ and u_, to eigenfunctions of —'H\- The corresponding 

eigenvalues are given by A+ =  r/)+(A) and A_ =  0_(A). At vertices x £ V\ fl V2 we 

have u+t_((r) =  u(a;) and the value of v+„(x) at vertices x  £ P2 \  Vi is obtained 

by substituting A+ or A_ as appropriate into equation (3.11). By this procedure we 

obtain six of the twelve eigenfunctions of —7 i \ .  The remaining six eigenfunctions 

correspond to the eigenvalues that are not calculated by the decimation method, the 

values and multiplicities can are obtained using Proposition 3.3. The corresponding 

eigenfunctions are constructed using the method outlined earlier in this section.

Once the complete set of eigenvalues and eigenfunctions of —Ti® has been com-
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Figure 3.8: The Spectrum of H q.

puted we use the same method to extend these eigenfunctions to some of those of 

—Ti®. Note that when extending eigenfunctions corresponding to eigenvalue A =  6, 

only the positive extension is taken. The extension of v\ to T6 using 0_ each time is 

shown in Figure 3.9. Figure 3.10 shows one of the three eigenfunctions of — H q with 

eigenvalue (0_(5))5, where the power 5 denotes the map 0_ composed five times.

3.2.2 Eigenvalues of — H m (Neum ann Boundary Condition)

We now consider Neumann conditions at the boundary nodes. We begin by defining 

the following linear operator:

(3.16)
(Hmf)(x) it x e V m\  Vo

2 £ x ^ y ( / to )  -  /(* )) if ^ e  Vo
'  m

Note that, for the boundary vertices, we multiply the corresponding rows in —7im by 

a factor of two. This effectively allows us to treat the boundary vertices as interior 

vertices (i.e. assuming that every x € Vm has exactly four neighbours). We can
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o"-Soa
4dobO
5
<4-1o

0 035

O

Figure 3.9: The eigenfunction of —H q with eigenvalue A =  (</>_(2))6.

Figure 3.10: An eigenfunction of —H% with eigenvalue A =  (0_(5))5
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therefore use the decimation procedure once again to fully determine the spectrum 

of H m. We denote the set of eigenvalues of —H m by Bm and we see that B\ = 

{0,3,3,6,6,6}. The eigenfunction corresponding to the zero eigenvalue is given by

vi(x) =  1 x G Vi.

The eigenvalue 3 corresponds to two eigenfunctions, which are given by

(3.17)

1 x = qk)

- 1  x = qu

vk( x ) = {  2 x = Pli (3.18)

- 2  x = Pk,

0 otherwise,
N

for k = 2,3. The eigenvalue 6 corresponds to three eigenfunctions, given by the 

following function: /
1 x = qa, dy £ i , j ,

—1 x =  Pi or P.■?> (3.19)

0 otherwise,

where i , j  = 1,2,3, i < j .  Once again, the eigenvalues and eigenfunctions of —H m 

can be obtained from those of using the decimation method described in

Proposition 3.2. As with the Dirichlet case, the decimation procedure does not give 

the complete spectrum of H m. The following proposition accounts for the existence 

of the remainder of the eigenvalues of 7im\

P ro p o sitio n  3.4. 6 is an eigenvalue of —H m with multiplicity |{ 3 m — 2 x 3m_1 +  1}.

5 is an eigenvalue of ~'7im with multiplicity §{3m 1 — 2 x 3 1} T  1.

This leads us to the decimation diagram shown in Figure 3.11 which describes the 

eigenvalues and multiplicities of the eigenvalues of the operator —Tim. The spectrum 

of —H q is shown in Figure 3.12. Once again, eigenvalues and eigenfunction of —Tim 

can be found by extending the eigenfunctions of —H i as in the Dirichlet case. We
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L (3 ) .-(3)
(15)

Figure 3.11: The Decimation method used to calculate the eigenvalues (and multi­

plicities) of —7im.

200 400 600 

Index, %
aoo 1000 1200

Figure 3.12: The Spectrum of —Tie.
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Figure 3.13: An eigenfunction of —H q with eigenvalue A =  (0_(</>+(6)))3.

note that in the Neumann case however, there always exists a constant eigenfunc­

tion corresponding to the zero eigenvalue. Figures 3.13 and 3.14 show two

eigenfunctions of —H q. The eigenfunction plotted in Figure 3.13 is one of six with 

eigenvalue (0_(0+(6)))3 «  0.0289. The eigenfunction plotted in Figure 3.14 is one of 

three with eigenvalue ((0+(6))2)^ «  0.0468.

3.2.3 Properties of the Eigenvalues of —A

We have now considered the spectra of the harmonic difference operators in the cases 

of both Dirichlet and Neumann boundary conditions. However, when defining the 

Laplacian on the Sierpinski Gasket, we saw how the graph Laplacians were not related 

to each other unless they were scaled according to the renormalisation factor |5 m. 

Therefore, the spectrum of the Laplacian on the Sierpinski Gasket is the renormalised 

limit of the spectra of the harmonic differences H ^  or 7Ym.

Many properties of the spectrum of the Laplacian on the Sierpinski Gasket have
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Figure 3.14: An eigenfunction of —H q with eigenvalue A =  ^ _ ((0 + (6 ))2)^

been described [59, 64, 20], and also for the general case of p.c.f. self-similar sets 

[49, 46, 65]. In [20] it was shown that for the SG case the eigenvalues of —A are 

non-negative, of finite multiplicity and the only accumulation point is oo in both the 

Dirichlet and Neumann cases.

In [49] if is proved that there exists ds > 0 such that

0 < liminf p{x)x~~* < limsup p(x)x~^  < oo, (3.20)
x~¥°° x—*oo

where ds is the spectral exponent (ds =  for the Sierpinski Gasket), and p(x) is 

the eigenvalue counting function or integrated density of states defined by

p(x) =  ${k\k is an eigenvalue of — A with k < x} (3.21)

with either Dirichlet or Neumann boundary conditions. Fukushima and Shima [20, 64] 

showed that for the Sierpinski Gasket, a strict inequality holds in equation (3.20). 

An analogue of Weyl’s theorem for Laplacians on Euclidean spaces has also been 

established, see [49].
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Since in this thesis we are concerned with solving differential equations that model 

certain biological and physiological processes, the notion of the size of our domain 

becomes important. So far, we have only approximated the Sierpinski Gasket by a 

sequence of graphs with no definition of size or length scales. We address this issue 

here.

Let Vm be the vertex set of the order-m graph approximation to SG. We embed 

Vm into M2 so that each node can be represented in cartesian coordinates by the pair 

(x ty). We define Vffl to be the vertex set whose boundary points are the vertices of 

an equilateral triangle with each side having unit length and P\ is fixed at the origin. 

Then we define

= n =  0 .1 ,2 ,. . .  (3.22)

for m  — 0 ,1 ,2 ,.... Then Tm is the embedding into M2 of the order-m graph approxi­

mation to SG, whose side length is 2 n.

In the limit as m —*■ oo, we similarly define

K(n) = T K , 71 =  0 ,1 ,2 ,. . .  (3.23)

and oo
#(<») =  y  /{■(«). (3.24)

71=0

So iC 00) can be thought of as an infinite Sierpinski Gasket. We also denote by Afi? 

the Laplacian on V m \ and similarly denotes the Laplacian on K ^ .  Prom [20], 

we have the following proposition.

P ro p o sitio n  3.5. A is an eigenvalue of —A (= — A ^ )  iff is an eigenvalue of 

- A (n).

Proposition 3.5 says there is a bijection between the spectra of two differently 

sized gaskets: as the length of the side of the gasket increases by a factor of 2, the 

magnitude of the eigenvalues decreases by a factor of 5. We shall assume here that 

this same scaling relation holds on the finite approximations Tm.
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3.3 A  P rob lem  w ith  and a S olu tion

When defining the harmonic difference operator with Neumann boundary conditions, 

we multiplied the rows corresponding to the boundary vertices by a factor of two in 

order to ensure that the decimation method could be used to calculate the spectrum 

of H m. In this thesis we are interested in the solution of certain partial differential 

equations formulated with Neumann boundary conditions on the Sierpinski Gasket. 

A powerful tool for solving such PDEs is that of Fourier analysis, which exploits 

the orthogonality of eigenfunctions of the Laplacian in Euclidean space. Clearly, the 

harmonic difference matrix defined in Section 3.2.2 is not symmetric and therefore 

the eigenfunctions of —H m do not form an orthogonal set.

Let us now define the following harmonic difference operator with Neumann 

boundary conditions on the Sierpinski Gasket:

f (Hmf)(x)  i f z e
( « " / ) 0 )  =  ( . (3.25)

1 E ^ „(/(!/) -  /(a)) if a € Vo ̂ in

From a physical point of view the harmonic difference operators defined in equations 

(3.16) and (3.25) do not differ. Their spectra and eigenfunctions however are not 

identical. Since H ^  is a symmetric matrix, its eigenfunctions will be orthogonal. 

There is a disadvantage in that we cannot use the decimation procedure to determine 

the spectrum of This must be computed numerically.

The spectra of H m and H ^  and the difference between the eigenvalues are shown 

in Figure 3.15. We see that in the limit as m  —> oo the two spectra appear to 

converge apart from in certain areas, where the difference remains constant. This 

result is disappointing since we would like the advantage of being able to calculate the 

spectrum via the decimation method and to have an orthogonal set of eigenfunctions 

when carrying out numerical simulations.

A way around this problem is to introduce the notion of a fractafold. A fractafold, 

which is the fractal analogue of the concept of a manifold in Euclidean space, was
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(a) The spectra of H 4  (red) and H 4

(blue).
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(f) The absolute value of the differ­

ence between H e  and H q .

Figure 3.15: The difference between the spectra of H m and for m  =  4,5,6.
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Figure 3.16: The second order approximation to the double of SG.

introduced by Strichartz [67]. We consider a specific example of a fractafold based 

on the Sierpinski Gasket known as the double of SG, see Figure 3.16. The double of 

SG consists of two copies of SG that are glued together at the three boundary points. 

We can construct a harmonic difference operator on the double of SG in exactly the 

same manner as we have done for the Sierpinski Gasket. In the fractafold case, we 

have the advantage that every vertex is now a true interior vertex with exactly four 

neighbours so the decimation method can be used to determine the spectrum and, 

since the harmonic difference operator is symmetric, the eigenfunctions do indeed 

form an orthonormal basis.

3.4 L ocalised  E igenfunctions o f th e  Laplacian on  

th e  S ierpinski G asket

The eigenvalues and eigenfunctions of the Laplacian on the Sierpinski Gasket are 

quite different from those of Laplacians on Euclidean domains. In particular, there
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exist localised eigenfunctions: a non-zero eigenfunction which vanishes on some open 

subset of the gasket. The existence of localised eigenfunctions of the Laplacian on 

the Sierpinski Gasket was first suggested by Rammal and Toulouse [60]. Here, we 

summarise the basic results, see [7] or Chapter 4 in [48] for a detailed description in 

the case of general p.c.f. self-similar sets.

We begin by defining the notion of a pre-localised eigenfunction.

D efinition 3.6. A function u is called a pre-localized eigenfunction of —A  if  u is an 

eigenfunction of —A and u satisfies both Dirichlet and Neumann boundary conditions 

(u is a DN-eigenfunction) for some eigenvalue A.

For the case of SG, it is easy to find DN-eigenfunctions. In fact every eigenfunction of 

the harmonic difference operator —'H%1 with eigenvalue equal to 6 or a descendent of 6 

under the map <J) satisfies Dirichlet-Neumann conditions. We then have the following 

Lemma:

L em m a 3.7. For w 6 W*, define uw by

,  v /  w (.f - ^ x ) )  x € K w 
uw{x) — <

1 0 otherwise

I f  u is a pre-localised eigenfunction of —A m with eigenvalue X, then uw is an eigen­

function of —A m+\w\ with eigenvalue 5^1 A and support in K w.

Lemma 3.7 says that given a pre-localised eigenfunction on Tm (clearly we must have 

m  > 2) we can construct a localised eigenfunction on Vm+n for any n  > 1 whose 

support is confined to an order n  subset of our graph.

As an example, let us consider the eigenfunctions of — Ag. The first DN-eigenfunction 

we arrive at corresponds to the eigenvalue

A =  |  x ^ \ ( j ) +(6)) «  673.125.

This is our pre-localised eigenfunction u. To construct a localised eigenfunction on 

T6, we choose one of the maps of our IFS, in this case we choose / 3, so the support
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(a) The pre-localised eigenfunction on Ts. (b) The localised eigenfunction on T6.

Figure 3.17: The extension of a pre-localised eigenfunction on r 5 to r 6 under the map

/ 3 -

of our localised eigenfunction will be those nodes x  € Ve whose address begins with 

a 3, and the value of our localised eigenfunction at these nodes will be precisely the 

value of u at the pre-image of x  under / 3. This is shown in Figure 3.17.

In [47], Kigami divided the eigenvalue counting function into two parts. He let 

pw (x ) denote the eigenvalue counting function corresponding to the localised eigen­

functions and pF{x) denote the eigenvalue counting function corresponding to the 

non-localised eigenfunctions. It was found that as x  —► oo, pw {x) ~  x ^ , whereas 

pF{x) ~  x KF, where kf < The localised eigenvalues therefore dominate.

Localised eigenvalues also have physical implications in that there are solutions to 

the heat or wave equation on the Sierpinski Gasket whose support remains in a small 

part of the gasket.
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C hapter 4 

T he Cable Equation

4.1 In trodu ction

The human brain is the most complex structure known to man. All of our movements, 

thoughts and abilities are determined by this organ, so it is no surprise that its 

extraordinary anatomy and properties are the focus of the research of many scientists. 

We focus here on the building block of the brain: the nerve cell, or neuron. We are 

interested in how electrical signals propagate along sequences of such cells. To be able 

to understand this process we must first familiarise ourselves with the structure and 

physical properties of individual nerve cells. A neuron consists, as almost all cells do, 

of a cell body (or soma) and a nucleus that contains all the genetic information of the 

cell. However, the structure of a neuron is tailored to aid its function by means of 

two additions: the axon is a long cylindrical extension of the neuron which transmits 

electrical signals away from the cell, and the dendritic tree which extends out from 

the nerve cell to receive signals from impinging axons.

Neurons are an example of excitable cells and exhibit threshold behaviour. Under 

rest conditions the neuron remains at a roughly constant rest state. If a weak stimulus 

is applied, the cell is briefly disturbed but quickly returns to the rest state. If a 

stronger, super-threshold stimulus is applied the neuron’s state undergoes a large
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excursion before returning to the rest state.

Remarkably accurate mathematical models have been devised as a result of well- 

developed experimental techniques and good experimental data. In this and the next 

chapter, we shall consider the question how do potentials spread in a dendritic tree 

or an axon? There have been many mathematical models developed in answer to 

this question, which range greatly in their detail and accuracy. In [70], Tuckwell 

describes and analyses the principle mathematical models that have been developed 

for neurons.

The simplest models capable of predicting the quantitative behaviour of nerve 

cells are known as single compartment or point neuron models. This type of model 

was introduced by Lapicque in 1907 and considers the whole cell by a single repre­

sentative circuit. The problem with this kind of model is that we cannot address 

questions concerning the effects of input position or the interaction between inputs at 

various points on the surface of the cell. We are also unable to see how the branching 

point in the dendritic tree or axon affects the integration of an input. So, rather than 

considering a neuron as a single lumped circuit, we model the dendritic or axonal 

branches as long, cable-like structures. It is for this reason that we call the mathe­

matical analysis of how impulses propagate along this type of structure in neurons 

cable theory.

The application of cable theory to dendritic neurons began when scientists who had 

been researching into nerve function found it necessary to interpret the experimental 

data obtained from individual neurons. Originally the cable equation was applied to 

the conduction of potentials in an axon by Hodgkin and Rushton in 1946 [34] and it 

was later applied to dendritic trees in neurons by Rail in 1962 [58]. Cable theory is 

concerned with how synaptic inputs propagate from the dendritic tree to the soma, 

how these inputs interact with one another and how the placement of an input on a 

dendritic tree affects its functional importance to the neuron. Since the structures 

concerned are so narrow in comparison to their length, variations in the membrane
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potential in the radial direction are negligible compared to those in the axial direction 

and so we can measure the membrane potential as a function of two variables only: the 

distance along the cable x and time t. We wish to solve our problem for the membrane 

potential V,  It is important to note here that cable theory only realistically models 

passive processes in neurons where the input currents are neither large enough nor 

close enough together to cause an action potential to fire.

4.2 D erivation  o f th e  C able E quation

4.2.1 D efin ition of Parameters

In order to derive the cable equation, we assume that the neuronal cable is a uniform 

cylinder, of radius a, of conducting fluid (axoplasm), separated from the external 

medium (which also has conducting properties) by the cell membrane. The mem­

brane itself has an electrical resistance and capacitance. The cable is split up into 

compartments or segments of infinitesimal length as shown in Figure 4.1. We will 

assume that the following three types of current occur:

1. Current flow through the cell membrane. This is split into contributions from 

the capacitance and the conducting properties of the membrane, I c and I M 

respectively and we must remember that, by convention, membrane currents 

are defined to be positive outwards (as opposed to currents from an electrode, 

which are positive inwards).

2. Current flow in the axial direction along the interior of the segment, I.

3. Current flow in the axial direction along the exterior of the segment. It does 

not affect our derivation if we ignore this current. So, for simplicity, we will set 

this to zero.

We now go on to define some important membrane parameters.

75



C h a p t e r  4: T h e  C a b l e  E q u a t io n

Figure 4.1: This figure shows three segments of our neuronal cable, length Ax,  radius 

a, along with the currents we shall be considering.

• The axial current along the interior of the segment is subject to a resistance 

known as the Specific Axial Resistance RL. This is the resistance to current 

flowing along a 10mm long segment of cable with a 10mm2 end surface area. 

The inverse of this quantity is the Specific Axial Conductance, denoted by Gl *

•  There is also a resistance to the current flowing through the neuronal membrane. 

This is known as the Specific Membrane Resistance R m  and is defined to be 

the resistance of a 10mm2 patch of membrane. The inverse of R m is Gm -> the 

Specific Membrane Conductance.

• We must also consider the capacitance of the membrane. The Specific Mem­

brane Capacitance, Cm is defined to be the capacitance of a 10mm2 patch of 

membrane and is usually treated as constant.

Now that we have defined these specific membrane parameters, we can define their 

counterparts for our segment of cable.
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Specific Membrane Capacitance Cm — 10nF/mm2

Radius of Cable a ~  2/im

Specific Axial Resistance lKfhnm < Rj < 3KQmm

Specific Membrane Resistance lM ft < R,n < lOMfi

Table 4.1: Typical Values for the Specific Membrane Parameters

• The axial resistance of our segment will be R l multiplied by the length of the 

segment A x  and divided by the cross-sectional area, so we have

Cl = and gL =
7rcr A x

We see that these definitions make sense because increasing the cross-sectional 

area will increase the conductance, while increasing the length of the segment 

will reduce it.

• The resistance and conductance across the membrane will be proportional to 

the surface area of the segment, provided that we assume that the ion channels 

are evenly distributed over the surface of the segment. Therefore, the larger the 

surface area, the higher the conductance. This gives us our definitions for the 

membrane resistance and conductance:

tm  = o Rma and gM =  2 naAxG M 2iraAx

• Similarly, the total membrane capacitance is also proportional to the surface 

area of the segment and so we have membrane resistance and conductance:

cm =  2 'kclAxCm-

For biologically realistic neurons, Table 4.1 gives appropriate values. The values for 

the Specific Membrane Resistance vary considerably for different neurons and for 

different excitation levels and times within a single cell.
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Inside

wvW—— — AWV

Outside

Figure 4.2: The equivalent electrical circuit to Figure 4.1.

4.2.2 Derivation of the Cable Equation

To derive the cable equation, focus on the central segment of cable in Figure 4.1 

and consider the current flow between this segment and its two neighbours and the 

external medium. The point where two or more segments meet is called a node and 

we say that the length of the segment of cable beginning at node i is Axi and the 

current entering this segment from the previous segment in the axial direction is /*. 

The membrane potential at node i is defined to be Vi. The equivalent circuit to Figure 

4.1 is shown in Figure 4.2.

The voltage at node z is given by Ohm’s law, which tells us

Vi = Vi-i -  I(rL = Vi-! -  (4.1)
7TGT

so that

A Vi = V i - V i - i  = - I i ? ^ .  (4.2)
7TCT

We can rearrange (4.2) and take the limit as AXi —» 0 to give us the expression for

78



C h a p t e r  4: T h e  C a b l e  E q u a t io n

the axial current R:

We now apply Kirchoff’s Current Law at node i, which says that the current entering 

a node must equal the current leaving the node. This yields

h = i f +r+i i+1 (4.4)

and, similarly

A/j =  / j+1- 7 i =  - / " - r .  (4.5)

Again, using Ohm’s law and the time derivative of the equation for a capacitor we 

can write

—i f '1 = —— =  — 27raA£i-p- (4.6)
rM R m

and

-1 °  =  = — 27raAa?iC,M ^ ^ j (4.7)

which, when substituted into 4.5 gives us

AIi o V o n dVi fA&“t—  =  -27ra— 2vaCM-xr-  (4.8)
A  Xi R m at

In the limit as A Xi —> 0 (4.8) gives us an expression for the spatial derivative of the 

axial current at node i

We can obtain an equivalent expression for this derivative by differentiating (4.3) with 

respect to X{. This is
d h  =  ( 4 10)
dxi R l dxf

Equating equations (4.9) and (4.10) then gives us

S = ¥ ( £ - - § ) ■

79



C h a p t e r  4: T h e  C a b l e  E q u a t io n

Here we have assumed that the radius of the cable a is independent of x. Finally, 

multiplying (4.11) through by and dropping the nodal subscripts yields the cable 

equation

2Rl d'i:2 M M d l  ' '

4.2.3 Space and T im e Constants

The product R m Cm > which multiplies the time derivative on the right hand side of

(4.12) is a quantity with units of time, called the membrane time constant, tm =

R m Cm - The membrane time constant is independent of area (since R m and Cm

have reciprocal dependencies on the surface area of the membrane) and sets the basic 

timescale for changes in the membrane potential. We can see that this is the case 

if we suppose tha t our segment of cable is space-clamped at uniform voltage Vo at 

time t  — to, so that — 0. In this case, the distribution of voltage along the cable 

remains uniform for all time following the release of the voltage-clamp, and the cable 

equation (4.12) reduces to
dV

v  + ™ ~ ^  =  °- (4-13)

This linear first order ODE, together with the initial condition V (t0) — Vo is easily

solved to give the solution

V(t) = y0exp (t ~  *o)^- (4-14)

We see that in this case the potential decays exponentially with time constant tm at 

every point along the cylinder following the release of the voltage-clamp.

The constant ^  in equation (4.12) also has a physical interpretation. If we think 

about applying a constant trans-membrane current at some point on our segment of 

cable. Then, after sufficiently long time the voltage will become a function of the 

axial distance, x, only and ^  —> 0. This corresponds to a steady state, and at this 

steady state the PDE (4.12) reduces to the ODE

aRM d2V
2R l  dx2 
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the general solution of which is given by

y = Ae x p  y s t / ) + B e x p  ■ ( 4 i6 )

The constants A  and B  in (4.16) are determined by the boundary conditions. The 

simplest case to consider is that of an infinite cable, extending from —oo to + 00 . 

Let’s assume that at x = 0, the voltage is clamped to V = Vo- In this case we require

y ( —00) =  V(+oo) =  0

and thus for re > 0 we have A — 0 and B  = Vq. Similarly, for re <  0 we have A = V0, 

B  =  0. We define by

the electrotonic length of a cable of radius a. So, in the case of an infinite cable, the 

general solution of equation (4.15) is given by

V(x) = V0 e ~ ^ .  (4.18)

It is now clear why A is called a length-constant, it determines the voltage attenuation 

with distance: A is the distance along a cable at which a constant applied voltage will 

decay to I  of its original value.

Expressed in terms of the space and time constants tm and A, the linear cable 

equation becomes
, 2d2V  Tr dV

dx2 ~  M d t '   ̂ ^

4.3 T he Solu tion  o f th e  C able E quation  on th e  

Sierpinski G asket

The structure of dendrites is extremely complex, consisting of (often several) compli­

cated trees. It therefore seems natural to model this complex structure as a fractal
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and use this as our domain on which to solve the cable equation. We are, however, 

limited in our choice of fractal domain as the theory of analysis on fractals has thus 

far only been developed in the case of p.c.f. self-similar sets. Ultimately a p.c.f. frac­

tal tree such as Hata’s tree-like set would be an excellent choice to model a dendrite. 

However, the application of the formalism described in previous chapters to the Hata 

Tree seems to miss important features that might be expected to hold for a reasonable 

model. These limitations appear to be such that we lose nothing by working with the 

Sierpinski Gasket and so we shall use this as our complex domain on which to solve 

the cable equation. In this section we shall solve equation (4.19) on the Sierpinski 

Gasket.

Our purpose here will be relatively straightforward. The cable equation is a linear, 

dissipative dynamical system where the dissipation is due to transmembrane effects 

as well as axial resistance. Prom an engineering point of view we might study such a 

system by looldng at its response to a sharp temporal pulse. (There is a huge literature 

on this (see [13])- however mathematically this is essentially a way to compute the 

Green’s function for the system.) So, in this chapter we consider the cable equation 

on the Sierpinski Gasket as a linear input/output system by applying a sharp pulse 

near to one boundary point of the gasket, and observing the response near the other 

boundary points. We shall do this for Dirichlet (voltage-clamped) and Neumann (zero 

current flow at the boundaries) boundary conditions -  this will allow us to distinguish 

some of the effects of membrane dissipation and axial dissipation.

We shall be interested in finding numerical results which are independent of the 

graphical approximation to the Sierpinski Gasket. We shall use the correctly scaled 

Laplacian discussed earlier -  however the spatial form of the input spike is something 

that we must deal with. Naively, we might imagine constructing a spatial delta 

function to represent spatial localisation of the input spike. Here, however, we shall 

do something very simple -  we shall apply an initial stimulus of magnitude 1 to the 

vertices neighbouring the boundary point Pi. If we imagine how this projects onto
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the eigenfunctions of the Laplacian, we can understand that this will change as the 

order of the graphical approximation changes. The following will be an investigation 

of how to find behaviour which becomes independent of the graphical approximation 

-  we do this by finding a way to scale the magnitude of the input spike.

4.3.1 D irichlet Boundary Conditions

Let us now consider the discrete cable equation on the Sierpinski Gasket

r)Vm
A2A^V"> =  V m +  (4.20)

where V m is a vector containing the value of the voltage at the vertices of Tm. We are 

interested in the solution to equation (4.20) subject to Dirichlet boundary conditions 

where the initial condition takes the form of a stimulus, amplitude 1, applied at 

the two neighbours of the boundary point Pi. We fix the voltage to be zero at the

boundary nodes so that current can flow out from these nodes. We can write the

solution to (4.20) in the form

v ra =  E ci W F i 1’ (4 -21)

where the F ^ s are solutions to the discrete eigenvalue problem on rm,

A^FJ1 +  k f F f  =  0, (4.22)

subject to Dirichlet boundary conditions, and the CjS are time-dependent constants 

given by

Cj{t) = (4.23)

Substituting (4.21) into (4.20) we see that the cjs satisfy the following first order 

ODE:

^  =  _ T (A^  +  1)c, ,  (4 .24)

the solution of which is given by
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We can therefore write the solution to the discrete cable equation (4.20) as:

V m =  Y^Cj(0) exp t'j F f .  (4.26)

All the eigenvalues h™ are positive so the solution will decay exponentially. The 

Fourier mode corresponding to the smallest eigenvalue will decay at the slowest rate 

so, assuming a generic initial condition, after a sufficiently long time, we expect 

the solution of the cable equation to be of the form of the ground state Dirichlet 

eigenfunction of —A ^ (see Figure 3.9).

We solve equation 4.20 on Tm using a suitable numerical scheme (the solutions 

presented here were obtained using the Matlab solver ode23, which uses an explicit 

Runge-Kutta method). For all numerical calculations the values for the time and 

length constants are chosen to be — 10 and A2 =  | .  The numerical solution when 

equation (4.20) is solved on F6 along with the initial condition is shown in Figure 4.3. 

We note that in Figure 4.3(d), the solution of the cable equation is of the form of the 

ground state Dirichlet eigenfunction. This form, however, is only apparent on a small 

scale due to the current flowing out at the boundary nodes and the cell membrane.

How does the level of approximation to the Sierpinski Gasket affect the solution 

of cable equation on SG? To see this, we solved equation (4.20) on r m, m  =  3 ,4 ,5 ,6  

where in each case the initial condition is a stimulus, amplitude 1, applied at the two 

neighbours of the boundary node Pi. The average voltage of the neighbours of the 

other boundary points P2 and P3 was then observed and is plotted against time in 

Figure 4.4. We notice that as the order of our graph approximation increases, the 

voltage attained at the neighbours of the boundary points P2 and P3 decreases.

To investigate this we consider the form of the solution of equation (4.20), which 

after a sufficiently long time is given by

V mm  =  ci(0) exp (_>?kT + 1 1\ F™ (4 27)
\  tm J

where F™ is the eigenfunction of — with the smallest eigenvalue h™. We are 

interested in the average voltage of the two neighbours of P2 (or P3), given an ini-
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o
x*3

(a) t  = 0 (b) t = 0.1

O

(c) t  =  0.25 (d) t  =  0.5

Figure 4.3: The solution of the discrete cable equation (4.20) on r 6 with Dirichlet 

boundary conditions.
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Figure 4.4: The average voltage of the neighbours of the boundary point P2 obtained 

by solving the cable equation with Dirichlet boundary conditions, subject to an initial 

stimulus, amplitude 1, at the neighbours of the boundary point Pi.

tial stimulus applied at the two neighbours of Pi. Due to symmetry, the value of 

the ground state Dirichlet eigenfunction is equal at all the neighbours of the three 

boundary points, we call this value F™(N). Similarly we let V™(t) denote the average 

voltage of the two neighbours of P2 at time t. From (4.23) we see that C i ( 0 )  =  2F™(N) 

and we therefore write

= 2F™exp M  FF  (4-28) 

=  2^F1"*(7V)j2 exp +  , (4.29)

so

( v 2 A 2 A*m  - 1 - 1
f t w ) — Fr~ t = c™~ <4 -3 0 )

Figure 4.5 shows In Vm against time for the tails of the plots in Figure 4.4 for different 

order approximations to the gasket and, as expected from equation (4.30), we see four 

straight lines that appear to be parallel and equally-spaced. The gradient of the lines 

in Figure (4.5), given by — am is in fact independent of m  since as m  increases, the
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Figure 4.5: A log plot of the the average voltage of the neighbours of the boundary

point Pi against time.

value of h™ tends to a constant ps 16.816. The fact that am —> a as m  increases 

accounts for the lines being parallel.

The intercept of the lines in Figure 4.5, given by Cm, however does depend on the 

order of approximation. We have

and so we would like to know how F™(N) changes with m. A sm  increases, we find 

that the ratio between F^n~1 (N) and F™(N) approaches Then for large enough 

m, we have

(4.31)

(4.32)

and therefore

(4.33)

where calculation shows that A  PS C 0.3094̂ This gives us the following expression for

CA:
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Figure 4.6: Here, the input is scaled by a factor of ( y ) m, and we see that the output 

is now independent of the level of approximation of the gasket

By considering the difference between Cm- 1 and Cm we find that the distance between 

neighbouring lines in Figure 4.5 is In (y )  and

Cm ~  Cm- 1 -  In ( y^J =  C0 -  771 In ( y  ) . (4.35)

Taking the exponential of equation (4.30) then gives us the solution to equation (4.20), 

which is given by

v m W « ^ ( | ) me x p ( - ^ ± I ()  (4.36)

and so, if we scale our input according to ( y ) m, we should expect to see that the 

output values become independent of the order of the graph approximation of the 

Sierpinski Gasket. This is indeed what happens, and is shown in Figure 4.6.

4.3.2 Neum ann Boundary Conditions

We once again consider the discrete cable equation (4.20) on the Sierpinski Gasket and 

we repeat the numerical calculations from Section 4.3.1, this time imposing Neumann 

conditions at the boundary points. This is the equivalent of a segment of neuronal 

cable with sealed ends so no current can escape through the boundary nodes, only
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through the cell membrane due to its capacitance and conducting properties. Once 

again the initial condition takes the form of a localised stimulus, amplitude one, 

applied this time at the boundary point Pi.

The solution of equation (4.20) is given by equation (4.26) so we expect that after a 

long enough time, the solution will be of the form of the eigenfunction of the Laplacian 

(with Neumann boundary conditions) with the smallest eigenvalue. In the Neumann 

case there is always a zero eigenvalue that corresponds to a constant eigenfunction. We 

therefore expect to see the voltage diffuse to some spatially independent average value 

and slowly fall as current escapes through the membrane. The numerical solution of 

equation (4.20) is shown in Figure 4.7 and we see that this is indeed the case.

As in the Dirichlet case, we compare the output values obtained by solving the 

cable equation on Tm, m  — 3 ,4 ,5 ,6  for a consistent initial condition as shown in 

Figure 4.8 and once again, we find it necessary to scale the input. Equation (4.27) 

tells us that after a sufficiently long time the solution of equation (4.20) will be given 

by

V "(t) =  d(0) exp J F J 1, (4.37)

where FJ1 is the eigenfunction of — Am (subject to Neumann conditions at the bound­

ary) corresponding to the zero eigenvalue. In its normalised form the value of F™ at 

every vertex x  E Vm is

FVVz) =  * =  , 1 (4.38)y/mj ^ 1(3-  + 1)

and, (4.23) tells us that

d(0) =  r -.. 1 (4.39)
y |(3m + 1)

We are interested in the voltage attained at the boundary point P2 (which will be 

equal to that at Ps due to symmetry) and after long enough time this is given by
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(a) t  = 0 (b) t  = 0.1

I
I

(c) t  =  0.25 (d) t  =  0.5

Figure 4.7: The solution of the discrete cable equation (4.20) on r 6 with Neumann 

boundary conditions.
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£ >  0 004

t

Figure 4.8: The voltage at the boundary point P2 obtained by solving the cable equa­

tion with Neumann boundary conditions, subject to an initial stimulus, amplitude 1, 

at the boundary point Pi.

Taking the natural logarithm of equation (4.40) we obtain

ln V £  =  - l n Q ( 3 m +  l ) j  - i - ,  (4.41)

which is in the form of a straight line In Vp2 =  Cm — at. We have

Cm =  In ( 5 )  -  In (3”  +  1) *  In ( | )  -  In (3m) , (4.42)

provided 3m »  1. The difference between Cm_i and Cm is approximately ln(3) and 

the expression for Cm is then given by

Cm «  Cm—i -  ln(3) = C0 -  ln(3m), (4.43)

and so

V mW « ^ ( 0  \ x p ( - i - V  (4.44)

In this case, we see that scaling the input by a factor of 3m should give a constant

output that in independent of the level of approximation to SG. The results of this

are shown in Figure 4.9 and we see that, as m  increases, the output voltage is indeed

becoming independent of m. We notice that in this case, the convergence is slower

due to the condition that we must have 3m 1.
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l

Figure 4.9: The voltage at the boundary point P2 obtained by solving the cable equa­

tion with Neumann boundary conditions, subject to an initial stimulus, amplitude 

3*, at the boundary point P\.

4.3.3 Conclusion

We have found that, as the order of the graphical approximation to the Sierpinski 

Gasket increases, we must provide an increasingly large voltage spike in order to 

observe the same asymptotic behaviour. Moreover, the way that this voltage input 

scales depends on the boundary conditions. Effectively, we have been looking at the 

projection of the initial spike (always of magnitude 1 applied at the vertices which are 

the neighbours of Pi) onto the eigenfunction corresponding to the smallest magnitude 

eigenvalue of the Laplacian given Dirichlet or Neumann boundary conditions.

In the case of Dirichlet boundary conditions, current can leak from the system 

both at the boundaries and through the membrane. While for Neumann boundary 

conditions we see the effects of the membrane alone. In this latter case, if we were 

to let tm —► oc we would see the initial pulse decay to a constant voltage which is 

uniform across the whole gasket. This constant is related to the average value, over 

all the nodes, of the initial input voltage. The scaling is then simply a matter of 

allowing for the increasing size of the approximating graph.
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In this chapter we have established that we are seeing sense, that our linear PDE on 

the Sierpinski Gasket behaves in a reasonable way. In fact, we know that it is possible 

to observe some unusual behaviour also. For example, if our original disturbance 

took the form of one of the localised eigenfunctions of the Laplacian, discussed in 

Chapter 3, we expect that the resulting voltage distribution would remain localised 

while it decays. If we construct an orthogonal set of eigenfunctions for Neumann 

boundary conditions, then, because the constant function is always an eigenfunction, 

any localised eigenfunction must also have zero mean value. Thus the decay of a 

localised eigenfunction can be thought of as a mutual cancellation of its negative and 

positive voltage variations. Such behaviour takes place with no information reaching 

as far as the boundary of the Sierpinski Gasket. This is the dissipative analogue of the 

“hearing the shape of a drum” paradox. In particular, we note that such behaviour 

makes boundary value inverse problems likely to be ill-posed.
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Chapter 5 

FitzH ugh-N agum o T ype M odels

5.1 In troduction

In the previous chapter, we modelled the conduction of electrical impulses in neural 

tissue using the linear cable equation. The drawback of modelling such propagation 

using the cable equation is that it omits the essential feature that neurons are ex­

citable. In this chapter we consider simple models of excitable neural systems. On a 

Euclidean domain, it is known that such systems can support various forms of wave 

solutions. We are interested in the solutions that exist when the system is solved on 

the Sierpinski Gasket; we wish to know if the geometrical complexity of the domain 

manifests itself in the phenomena that arise.

5.2 E xcitab le  M edia

An excitable medium can be considered as a continuum of coupled excitable elements 

whose dynamics behave nonlinearly and which interact with each other by a diffusion 

process. Excitable media have the ability to support undamped propagating waves of 

excitation: as each element is perturbed over some threshold value, it in turn excites 

its neighbours at a rate determined be the diffusion coefficient (a passive property of
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the medium), and how quickly the diffused species of the excited element rises (an 

active property of the medium). Excitable systems occur in many different contexts, 

but they are all characterised by the following properties: each excitable element 

has a rest state which is stable for small perturbations. An impulse that exceeds a 

certain threshold value can, however, trigger a significant excursion before eventually 

returning to the rest state. After such a response, the medium becomes refractory; 

that is: it cannot undergo another excursion until it recovers full excitability.

We now give some examples of excitable systems, the wave solutions of which 

often give rise to complex spatial patterns. Travelling waves are commonly observed 

in chemical systems, the most well-studied being the Belousov-Zhabotinsky (BZ) 

reaction [18], where two-dimensional patterns have been observed [74, 75]. In a phys­

iological context, the best known example is that of the propagation of an action 

potential along the axon of a nerve cell. Similar phenomena are also observed in 

cardiac tissue.

A general form of excitable media model is represented by the interaction of two 

variables: a fast excitation variable u and a slow recovery variable v. These variables 

interact locally according to the differential equations ~  =  f (u ,v ) ,  =  g{u) v). The

model is therefore given by the following pair of reaction diffusion equations:
du 2 *  p /  \£—  = £ A u  +  f(u , v)

!v m
—  = e8 Av + g(u,v),

where e is a small positive parameter, which represents the time scale distinction 

between the dynamics of the fast and slow variables u and v. The parameter 8  is the 

ratio of the diffusion coefficients of the two variables.

Much work has been carried out on the study of wave propagation in excitable 

media based on equations of the form of (5.1) in one, two and three spatial dimensions. 

Singular perturbation methods have been used to analyse such wave solutions in two 

main cases: firstly, when 4 =  0, the recovery variable does not diffuse in space, which 

is characteristic of pulse propagation in neural fibres and secondly, when 8  ps 1, which
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is characteristic of activity waves in the BZ reaction (see [39] and [71] and references 

therein for a summary of important work on singular perturbation theory in these 

cases).

The existence of spiral waves in the two dimensional case has proved to be of 

great interest due to its relevance to fibrillation in cardiac tissue [40, 10, 35, 16]. 

More recently, the three dimensional counterpart of the spiral wave, the scroll wave, 

has been studied and the singular perturbation methods used to understand spiral 

waves have been extended to the three dimensional case, [54], [55].

5.3 H od gk in -H u xley  T heory

In one spatial dimension, the best known example of an excitable medium is that of 

the nerve cell or neuron. Our understanding of this theory today is due chiefly to the 

experiments on the giant squid axon by the physiologists Hodgkin and Huxley, the

results of which were presented in a series of papers [33, 30, 29, 31, 32].

The cell membrane of a nerve cell consists of two layers of fat molecules, which 

are separated by an insulating gap. When a neuron is at rest, the concentrations of 

various ions differs between the interior and the exterior of the cell. These differing 

ionic concentrations give rise to a net voltage across the membrane, commonly referred 

to as the membrane potential. The membrane potential for most neurons at rest 

typically lies between -50mV and -90mV, so the interior of the cell is negatively 

charged with respect to the exterior. This separation of charge creates a capacitance 

effect and so the basic model for a cell membrane is based on that of a capacitor:

dF  dQ , .
c n  =  *-■ (5-2)

where C is the capacitance of the membrane, V  is the potential across the mem­

brane and Q is the charge. A key assumption of Hodgkin and Huxley was that the 

membrane, under certain conditions, can become permeable to sodium and potas­

sium ions. Therefore, the total current flowing across the membrane is made up from

96



C h a p t e r  5: F it z H u g h - N a g u m o  T y p e  M o d e l s

contributions from the capacitance and ionic currents. This can be written as:

m  = c ^ + I i t  (5,3)

where I{ is split into contributions from the flow of sodium and potassium ions and a 

leakage current:

h  — Incl +  h< +  lit* (5.4)

Each contribution can be written as

J7 =  gy(V  -  y7), 7 € {N a ,K ,L } ,  (5.5)

where g7  (g7(0) — 0) is a function giving the voltage dependence of the conductance

of the membrane to the ion in question and Vy is the potential at which there is no

net flux of the ion across the membrane. Equation (5.3) then becomes

dV
m  -  C —  +  gNa{V -  VNa) +  gK(V -  VK) +  gL(V  -  VL). (5.6)

Hodgkin and Huxley hypothesised that the ionic conductances, g , can be written

in terms of the maximum conductances g and the gating variables for the opening 

and closing of the ion channels. We therefore have

9N a — gN a.m 3h ,
(5.7)

9 k  =  9 i< n 4 .

The dynamics of the gate variables m, n, h are assumed to follow kinetics governed 

by equations of the form

~  =  a w(y )( l -  to) -  pm{V)w, w E {m, n, h}, (5.8)

where a  and (5 are functions of the voltage V  chosen by Hodgkin and Huxley to fit

the experimental data. Taken together, equations (5.3) and (5.8) represent the four 

dimensional Hodgkin-Huxley model for nerve impulse propagation.
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5.3.1 The F itzH ugh-N agum o M odel

In the mid 1950s, FitzHugh sought to reduce the Hodgkin-Huxley model to a two 

variable model for which phase plane analysis applies. His general observation was 

that the gating variables n and h have slow kinetics relative to m  and that for Hodgkin 

and Huxley’s parameter values, n  +  h is approximately constant. This lead to a two 

variable model in V  and n, A further observation due to FitzHugh was that the V- 

nullcline had the shape of a cubic function and the n-nullcline could be approximated 

by a straight line. The model, originally proposed by FitzHugh in 1961 [19] and 

subsequently developed by Nagumo and his coworkers in 1962 [56] is known as the 

FitzHugh-Nagumo (FHN) system. In dimensionless form the FHN system is written 

as follows:

du /, w \—  =  u{l — u){u — a) — v +  1
1  ^
-  = s (u ~ r> ),

where u represents the fast variable (membrane potential), v represents the slow 

variable (sodium gating), a, 7  and e are constants with 0 < a < 1 and e <C 1 

(accounting for the slow kinetics of the sodium channel) and I  is an applied electrical 

stimulus. Many different forms of the FHN system exist, [63] gives many of the 

popular versions along with a conversion between them.

A typical phase portrait for the system (5.9), when I  = 0, is shown in Figure 5.1. 

From Figure 5.1 we see how the FHN system exhibits excitable behaviour. If the 

initial condition is less than the threshold value a, then the potential returns quickly 

to the unique fixed point at the origin. If, however, the initial condition is perturbed 

above the threshold, then the potential undergoes a large excursion before returning 

to the rest state.

We have discussed how an excitable medium comprises a continuum of coupled 

excitable cells. We therefore need to add some spatial dependence into our problem. 

The FHN model can then be written as a system of two coupled partial differential
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Figure 5.1: A typical phase portrait for the system (5.9).

equations:

Ou
—  =  dAu  +  u( 1 — u)(u — a) — v + I  
f  (5.10)

=  e{u -  tv ),

where the term dAu  represents the propagation of the potential u at a rate determined 

by the diffusion coefficient d. We note that diffusion is not added to the equation 

governing v, since this represents the voltage-dependent opening and closing of the 

sodium channels and is not assumed to have spatial dependence. A comparison 

between this model and the cable equation studied in Chapter 4 (see equation (4.12)) 

shows that the term v — u(l — u){u — ot) replaces the linear term in the cable equation 

which represents the membrane leakage current (and of course the FitzHugh-Nagumo 

equation models the dynamics of the sodium gating).

The system (5.10) looks like system (5.1) under a rescaling of the spatial coordinate 

and with <5 =  0. In one spatial dimension, equations of this form are used to model
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nerve impulse propagation and in two spatial dimensions, equations of this form can 

model excitation in cardiac tissue.

5.4 T he H eart as an E xcitab le M ed ium

The heart is essentially an electromechanical pump consisting of four chambers: the 

two upper atria and the two lower ventricles. The function of the right side of the 

heart is to collect deoxygenated blood from the body and circulate it to the lungs. 

Once reoxygenated, the blood flows to the left side of the heart, from where it is 

pumped to the rest of the body. The cardiac cycle consists of two main actions: 

systole and diastole. The term systole is synonymous with contraction of a muscle 

and comprises two phases: atrial systole, where both atria contract at the same 

time forcing blood into the ventricles (known as atrial kick); and ventricular systole, 

where the subsequent contraction of the ventricular muscle pumps blood out into 

the body. This contracting phase is followed by complete cardiac diastole, where the 

heart relaxes in preparation for refilling.

The mechanical action of a heart beat is governed by underlying electrical activity. 

Each of the chambers of the heart is composed predominately of muscular tissue called 

myocardium. The myocardium is special because, unlike other muscles, it can conduct 

electricity, like nerve cells. Cardiac muscle is myogenic, meaning that it stimulates its 

own contraction without requiring an electrical impulse. A single cardiac cell, if left 

without input will rhythmically contract at a steady rate. If a number of cardiac cells 

interact, the contraction of the first will stimulate the second and so on. In this way, 

rhythmic sequences of electrical pulses propagate through the myocardium, triggered 

by stimuli that spread from the sinoatrial node, sometimes referred to as the heart’s 

natural pacemaker. As is the case with nerve cells, this wave of excitation is called 

an action potential.

Action potentials differ in different portions of the heart, both qualitatively and
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in duration. The governing processes are,however, the same and are outlined here. 

At rest, the myocardial cell has a resting membrane potential of around — 90mV, due 

to differing ion concentrations on either side of the cell membrane. The arrival of a 

stimulus increases the membrane potential and causes voltage-gated sodium channels 

to open. Positively charged N a+ ions then enter the cell, increasing the membrane 

potential further, thus causing more sodium channels to open. This is an auto- 

catalytic process and causes a sudden, fast influx of sodium ions, which is known as 

fast depolarisation. Soon after they open, the sodium channels close. The potential 

now saturates as the outward movement of potassium ions (K +) is balanced by the 

inward movement of calcium ions (Ca2+) through their respective ion channels. The 

potassium channels remain open well after the calcium channels have closed, the 

continuing efflux of I<+ ions repolarises the cell and the potential returns to its resting

The M odified FH N  System

The system we consider here is a modified form of the FitzHugh-Nagumo Equations 

proposed in [21]:

the PDE system (5.11). Clearly, there will be two fixed points at (0,0) and (1,1) and

value.

(5.11)

Initially, let us consider the spatially independent case:

(5.12)

System (5.12) has fixed points satisfying

(5.13)

and we note that these fixed points correspond to spatially uniform fixed points of
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(a) Here a = 0.75 and 7  = 0.06, so in (b) In this case q remains the same, while

this case the system (5.11) has five fixed 7  = 1, and we see now the number of

points. steady states is reduced to three.

Figure 5.2: The nullclines of the modified FHN system. The red curves show ^  =  0 

and the blue curves show =  0 .

either one or three more, corresponding to the roots of the cubic X 3 -  qX  +  7  =  0. 

Whether this cubic will have one root or three roots depends on the values of the 

parameters a  and 7 . The transition from one case to the other occurs when the 

second turning point (minimum) of the curve touches the X-axis, i.e. when

3X2 — a  =  0 X min =

We have two cases:

^min -  aXmin +  7  > 0 =* one root,
(5.14)

X min — otXmin +  7  < 0 => three roots,

giving us either three or five fixed points. The nullclines for both of these cases are 

shown in Figure 5.2.
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5.5 W ave Solu tions o f a M odified  F itzH u gh -N agu m o  

S ystem -E uclid ean  D om ain

We have discussed how a super-threshold stimulus on an excitable medium can elicit 

a wave of excitation travelling from the initiation site. The remainder of this chapter 

will be concerned with various types of travelling wave solutions of the system (5.11) 

that exist and the initial conditions that give rise to them. We restrict ourselves to 

the second case in (5.14), where a  and 7  satisfy:

(5.15)

We shall therefore fix a — 0.75, 7  =  0.06 and let e vary as a bifurcation parameter.

For the numerical calculations reported in the chapter, the system is solved using 

an analogue of the method of lines: we semi-discretise the problem replacing the 

Laplacian by the standard five point difference formula in the case of a Euclidean 

domain and our standard discrete Laplacian in the SG case. The resulting ODE 

system is then solved, subject to Neumann boundary conditions and a suitable initial 

condition, using the Matlab solver ode23.

We consider here the effects of applying super-threshold stimuli to a homogeneous 

excitable medium. The refractoriness of the medium affects pulse propagation in that 

pulses generally travel forwards towards previously unexcited tissue. The numerical 

simulations here are carried out on the square domain fi =  [0,50] x [0,50] with 

Neumann boundary conditions. This box size has been chosen to be large compared 

with the length scale over which u diffuses in the scaled unit time.

5.5.1 P lanar Wave Fronts in Two Dimensions

The first case we shall consider is that of a planar wave. To initiate a planar wave, 

we excite the whole of the left hand side of the domain. The Neumann conditions at 

the boundary cause the wave to propagate to the right and it is well known that this
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wave will propagate across the domain at a constant velocity. Figure 5.3 shows the 

propagation of such a wave. In this case we took e" 1 =  14.

It is possible to calculate the wave speed of the planar wave shown in Figure 5.3 

numerically. We consider the values of the potential u along the lower edge of our 

domain. Figure 5.4 shows the propagation of the wavefront as a function of the spatial

coordinate at discrete time intervals. At different instances in time, the position of

the wavefront can be identified by locating the greatest negative difference in the 

values of u. Figure 5.5 shows the location of the wavefront as a function of time. This 

appears to be a straight line indicating that the planar wave does propagate with 

constant velocity. The wave velocity is denoted by c and is given by the gradient of 

the curve in Figure 5.5. We find that the plane wave propagates across our domain 

at a velocity

c ~  2.17 (5.16)

Later on in this chapter, we shall be comparing the velocities of wave propagating 

across Euclidean domains and the Sierpinski Gasket. It therefore makes sense to 

normalise the wave speed by dividing by the linear size of our domain. This gives us

cN «  0.043. (5.17)

The velocity of waves propagating in an excitable medium can be found approxi­

mately using asymptotic analysis. This is a well-studied problem, see [71], and usually 

considers a pair of reaction-diffusion equations of the form:

eut = £ 2 V 2u +  f(u , v )
(5.18)

vt =  e 8 V 2v +  g(u, u),

where u and v take values in [0,1], Equations (5.11) can be reduced to the same form 

as equations (5.18) by setting 5 =  0 and choosing a suitable rescaling. We therefore 

rescale space according to X  =  y/ex and seek travelling wave solutions of the the form 

u(X ,t)  =  u{z)i v (X ,t)  =  v(z), z = X  — ct. This represents a pulse with fixed wave
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t = 0 t = 5

Figure 5.3: The potential, u, plotted for a planar wave initiated by putting u above 

the threshold at the left edge of the domain. A movie of this figure can be found on 

the accompanying CD, named FHNMovl.avi.

105



Po
sit

io
n 

of 
the

 
w

av
ef

ro
nt

C h a p t e r  5: F it z H u g h - N a g u m o  T y p e  M o d e l s

time
0.9

0.8

0.6
=  20=  5 =  10 =  15

0.4

0.3

X

Figure 5.4: The position of a planar wave for discrete times.
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Figure 5.5: The position of the wavefront as a function of time.
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z0Zl

Figure 5.6: Schematic diagram showing the form of u and v in the travelling frame.

form travelling to the right with speed c. Ahead of the pulse, the variable u remains 

at rest. At the wave front, z = 0, the value of u increases rapidly to the excited state 

and returns to rest at 2 =  z\ < 0. Figure 5.6 shows the form of the wave solutions 

we are seeking in the travelling frame.

In the travelling coordinate system, equations (5.11) become

£2 uzz +  scuz +  u (1 — u) (u — —1 ) = 0
V ° ’ (5.19)

cvz + it3 — v =  0.

Since e is small, the first equation in (5.19) will remain in equilibrium provided 

f{u ,v )  = u ( l  — u) [u — 1-^L) «  0 and so we expect that the solution trajectories 

will stay close to this curve, apart from points where they may jump from branch to 

branch. In this case the first and second derivatives of u with respect to z will be 

large. The condition f { u , v) = 0 has, for our parameter values, four branches:

1. u = 0 => dtv = —v.
This equation has a globally attracting fixed point at v =  0.
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2. u = 1 => dtv = 1 — v.

This equation has a globally attracting fixed point at v =  1.

3. u = 2 g L=>dtv = 4r(-v + 7 )3 -  v.
For our chosen values of a  and 7 , this has two solutions in the region of inter­

est. The first solution (smaller value of v) being stable, and the second being 

unstable.

For our purposes there are two relevant branches: u =  0, which we shall call u_; and 

u = 1, or u+.

We consider the problem in three regions: ahead of the wave front, z > 0; during 

the pulse, z\ < z  < 0; and behind the wave back, z < z±. The two outer solutions 

must then be matched to the inner solution.

Ahead of the Wave Front

For z > 0 the medium is at rest and excitable so we have:

u =  0,

cvz = v,
(5.20)

lim v = 0 ,Z—> OO

v(0 ) = Vo.

We note that v = 0 is an unstable solution of the second of equations (5.20) and so, 

in order to satisfy the condition that v —-> 0 as z —> 00 , we must have u(0) =  vq = 0 .
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Behind the Wave Back

After the pulse has propagated through the medium it returns to the rest state and 

so for z < z lf we have

u =  0 , 

cvz =  v,
(5.21)

lim v = 0 ,
—OQ

v(z1) =  Vi.

During the Pulse

During the pulse, the medium is in the excited state giving the following:

it =  1,

cvz = v — 1,
(5.22)

v(z1 ) = v u 

u(0) =  Vo — 0.

M atching Inner and Outer Solutions

At z =  Zi and z = 0, the solution is discontinuous and so we introduce a boundary 

layer where we can match the solutions in the inner and outer regions. To do this, 

we introduce a stretched coordinate £ =  J , then equations (5.19) become

n"(0 + cit/(0 + M l - ' u ) ( ^ - 1̂ )  = 0
(5.23)

cy'(£) +  e(u3 — v) = 0 .

For matching at z = 0, we require:

lim u(£) =  U- = 0 ,
^ ”  (5.24)
lim tt(£) = u + — l.£—► — OO
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Conditions (5.24) are simply reversed to match the solutions at z — Z\. Setting 

u(0) =  0 and neglecting terms of order e gives us a single second order ODE in u:

u" +  cu' +  w(l — u)(u — —) =  0. (5.25)
a

Setting v! =  w yields the first order system:

(5.26)
—li(l — uj(u  — 2) — cw  J

subject to boundary conditions u (~ oo) =  1, u(oo) =  0 .

System (5.26) has three steady states, namely (tt*,w*) =  (^ ,0 ) , u* G {0, 2 , 1}. 

To analyse the system, we linearise it about these three steady states:

v! \  (  0 1

w 3 u — 2u(l +  ^) +  J  —c
(5.27)

i ru I

and we find that they are (for c > 0) a saddle, a stable focus or node (depending on 

the values of c, a  and 7 ) and a saddle respectively. If

(?>i( l _ ( T2
a \a .

then the fixed point will be a stable node, otherwise, it will be a stable focus. 

When c =  0 the system is Hamiltonian and the potential is given by:

V(u) =  Jf (uy0)du ==  « 2 ( _  J -

In this case there exists a homoclinic orbit of the saddle at the origin which encircles 

the fixed point at (^,0), which is a centre. A small, positive perturbation of c leads 

to this orbit being broken and the saddle at the origin will connect to the stable focus 

at (2,0). If the value of c is increased further, both saddles will connect to the fixed 

point at (2,0), see Figure 5.7. There exists a unique value of c, c* which separates the 

two cases mentioned above. For this value of c there is a heteroclinic orbit connecting 

the saddles at the origin and at (1,0). This heteroclinic orbit describes the change
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(a) c = 0

—►u

(b) 0 < c < c* (c) c > c*

Figure 5.7: Phase portraits of the system (5.26) for different values of c.

of the potential from the rest state to the excited regime and back again. That is, it 

provides the matching between solutions in the inner and outer regions.

An approximate value for c* can be found using a shooting method. System (5.26) 

is solved numerically with initial condition equal to (1, 0) perturbed with a small 

amount of the eigenvector corresponding to the unstable eigenvalue of the matrix in 

equation (5.27) evaluated at («*,io*) — (1,0). Using this method, the value of c* is 

found to be c* 0.5657. In terms of our original spatial variable £, the wave speed 

is given by:

c =  4 =- (5-28)
V £

Let us compare this to the wave speed we calculated numerically earler in this section 

given in equation (5.16). W ith e" 1 =  14, equation (5.28) gives us

c = V l l  c, 2.1166. (5.29)

The asymptotic analysis therefore gives us a reasonable approximation to our com­

puted wave speed.

5.5.2 Curved Wave Fronts in Two Dimensions

Let us now consider the effect of applying a localised stimulus to the domain. This 

is the equivalent of exciting a single cell or group of neighbouring cells. In this case a
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wave of excitation moves out as an expanding circle, called a target pattern. Figure 

5.8 shows the evolution of a target wave generated by solving system (5.11) when the 

initial condition is a stimulus, amplitude 1, applied at the centre of the domain. The 

target pattern is destroyed as it collides with the boundary of the domain. Target 

waves are produced by the simplest of excitations. When analysing the propagation 

of such waves, however, the effect of curvature must be taken into consideration.

The analysis of the wave speed of curved wave fronts was first carried out by 

Zykov, [78, 77] in the case when 5 =  0, and by Keener [41, 42] when 5 >  0. The wave 

speed of a curved wave front is given by the relation (up to order e):

N  = c + eK  (5.30)

Here, N  is the normal velocity and c is the wave speed of a planar wave propagating 

across the domain. The curvature of the propagating wavefront is given by K. If 

the wave front is curved away from its direction of propagation, then K  < 0. If the 

curvature is in the direction of propagation, then K  > 0. The correction term eK  is 

only meaningful if K  »  1, however if K  =  0(1) then the wave can be treated as 

planar. Equation (5.30) is given in dimensionless form. If the variables are considered 

in terms of physical units, equation (5.30) reads:

N  = c + DK, (5.31)

where D  is the diffusion coefficient of the fast variable u (the product D K  does indeed 

have dimensions of a velocity).

Clearly in the case of target patterns, the curvature only affects the wave speed 

close to the initiation site. As the wave expands away from the central region of 

excitation, the (negative) curvature becomes negligible and the wave speed increases 

to that of a planar wave. There are, however, certain types of curved wavefront for 

which the curvature plays an important role in determining the wave speed.
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Figure 5.8: The propagation of a target wave resulting from a stimulus applied to the 

centre of the domain. A movie of this figure can be found on the accompanying CD, 

named FHNMov2.avi.
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5.6 W ave Solutions o f a M odified F itzH u gh -N agu m o  

S ystem -S ierp insk i G asket

We have seen how waves of excitation can propagate across a homogeneous excitable 

medium. In this section we are concerned with whether similar solutions exist if the 

medium in question is geometrically complex and we shall investigate the similarities 

and differences that exist between the Euclidean and fractal cases. Here we shall 

solve system (5.11) numerically using the same method and parameter choices as in 

Section 5.5.

Once again we must choose the domain to be sufficiently large so that the size of 

our wave (the distance between the wavefront and the waveback) is small compared 

to the size of the domain. We therefore choose to work on an approximation to SG 

whose sidelength is 32 =  26 units. In addition, we choose our order of approximation 

to be m =  6 . This level of approximation is high enough to reasonably represent the 

gasket, yet small enough to make numerical simulations relatively fast. We donate 

this domain by Tg.

As opposed to the Euclidean case, a planar wave on the Sierpinski Gasket could 

propagate in two ways: from an edge towards the opposite corner, or from a corner 

to an edge. Figures 5.9 and 5,10 show the propagation of such a wave in both of the 

above cases. The wave in Figure 5.9 was initiated by setting u — 1 along the left 

hand edge of the gasket, whereas in Figure 5.10 the boundary point P3 and its two 

nearest neighbours were excited.

A Num erical Estim ate of the Wave Speed

In [1] and [2] a different discretisation of the Sierpinski Gasket is considered and 

a numerical estimate for the wave speed of planar wave solutions to an excitable 

reaction-diffusion system is obtained. The system studied is known as the Rinzel- 

Keller (RK) model [62], in which the cubic reaction term of the FHN system is replaced
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Figure 5.9: The potential, u, plotted for a planar wave, resulting from setting u = 1 

along the edge between the boundary points P\ and P3. A movie of this figure can 

be found on the accompanying CD, named FHNMov3.avi.
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Figure 5.10: The propagation of a planar wave, resulting from setting u = 1 at the 

boundary point P3 and its two neighbours. A movie of this figure can be found on 

the accompanying CD, named FHNMov4.avi.
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Figure 5.11: The wave profiles of a planar wave propagating across Ty.

by a piecewise linear approximation. Here we use a similar method to calculate the 

wave speed of a planar wave solution of the modified FHN system (5.11) propagating 

across our graph approximations to the Sierpinski Gasket.

In order to obtain a numerical estimate for the wave speed of a planar wave 

propagating across the Sierpinski Gasket, we solve the system (5.11) on r m for m  — 

4 ,5 ,6 ,7 and 8 . We initiated a planar wave by exciting a small number of nodes in 

one corner of Vm (for m  =  4 ,5 ,6  the point P3 and its two neighbours were excited, 

for m  — 7,8  it was necessary to excite P3 and its five nearest neighbours for a planar 

wave to propagate), the wave then propagates to the opposite edge. As the wave 

propagates we look along one side of the gasket (where we number the nodes from 

1 to 2m +  1) and consider the wave profiles at different instances of time. The wave 

profiles in the case where m =  7 are shown in Figure 5.11.

At a number of different instances of time, we identify the wavefront by locating 

the position along the side of Fm where the difference in the value of u at two adjacent 

nodes is greatest. Figure 5.12 shows the position of the wavefront as a function of time
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Figure 5.12: The nodal position of the wavefront (blue) and a linear least squares 

approximation (red) plotted as a function of time.
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for m  =  4 ,5 ,6 ,7. We see that the position of the wavefront appears to change linearly 

with time and this suggests that the planar wave does indeed propagate across Tm at 

a constant speed. We note here that the curves plotted in Figure 5.12 do not appear

as straight lines. This is probably due to the wave speed and the sampling times not

being synchronised. The velocity of the wave is found from the gradient of the lines 

plotted in Figure 5.12. Since the wave speed depends on the order of approximation 

to the gasket, we divide by the number of nodes on one side of Tm. We carried out 

similar calculations for a plane wave travelling across the gasket from an edge towards 

the opposite corner. Figure 5.13 shows this normalised wave speed as a function of 

m  in both these cases. We see that, as m  increases, the speed of propagation tends 

to a constant value. For a wave travelling from a corner to an edge we have

cN w 0.069, (5.32)

and for a wave travelling from an edge to a corner, we have

cN «  0.075. (5.33)

In both the Euclidean and Sierpinski Gasket cases, the phenomena seen here are 

comparable. The two wave forms are structurally similar and behave in the same way, 

propagating at a constant velocity. We can normalise the wave speed in the Euclidean 

case by dividing by the number of nodes along one edge of the domain. This gives us 

a normalised wave speed of c# ~  0.042. The two wave speeds are similar, although 

planar waves appear to propagate faster across the fractal medium.

We have found, therefore, a qualitative and quantitative distinction between the 

propagation speeds of such travelling waves on the Euclidean domain and on the 

Sierpinski Gasket. Qualitatively, we find that there are (at least) two wave speeds 

on the Sierpinski Gasket, depending upon the propagation direction. Quantitatively, 

both of these speeds differ from that found in the Euclidean case. A possible route 

to understanding these differences would be to consider the linear wave equation
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Figure 5.13: The normalised wave speed as a function of the level of approximation, 

m  for a wave propagating from a corner to an edge (blue) and from an edge to a 

corner (red).
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on the Sierpinski Gasket. This has been studied numerically in [14] and the wave 

speed has been shown to be infinite in this case. For our problem, however, the wave 

velocity is determined by the nonlinearity of the reaction kinetics. It might be useful 

therefore to set up an analogous asymptotic analysis on the Sierpinski gasket. This is 

an interesting but open problem as there is currently no well-defined definition of first 

order derivatives on p.c.f. self-similar sets apart from the normal derivative defined 

in Chapter 2 . Another possible approach to understanding wave speeds might be 

to formulate the problem in weak form since we have used Dirichlet forms on the 

Sierpinski Gasket when defining the Laplacian.

5.7 Spiral W aves Solu tions o f a M odified  F itzH ugh-  

N agum o S ystem

5.7.1 Spirals Waves in the M yocardium

Electrical signals propagate through normal heart tissue in successive waves of elec­

trical activity. Usually these impulses travel sufficiently quickly so that each cell 

will respond only once. These waves normally occur approximately once every 0.8s. 

Under certain conditions these planar waves can form or propagate abnormally, lead­

ing to arrhythmia. There are many different forms of cardiac arrhythmia of varying 

severity, one of the most frequently occurring and dangerous being so-called reentrant 

arrhythmias, caused by waves of excitation that repeatedly pass through the same 

tissue, forming a spiral. The mechanisms of the onset and stability of such spiral 

waves is the subject of extensive and ongoing investigation.

Spiral waves are waves of excitation that travel around a central, non-excitable core 

re-exciting themselves. For this reason spiral waves are also referred to as reentrant 

waves. The formation of a spiral wave involves the generation of a semi-infinite 

wavefront in the plane. Since there are more excitable cells adjacent to the end of the
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wavefront, the free end travels more slowly and curls back on itself to form a spiral. 

There are several possibilities as to how these broken waves can form, for example, if a 

propagating wave meets an obstacle such as a large vessel or a scar. Another possible 

cause of spiral waves is that impulses might propagate more slowly in certain areas 

of the heart. When part of the impulse arrives late, it is treated as a new excitation 

which can then spread backwards.

Ventricular tachycardia (VT) is one of many cardiac arrhythmia believed to be 

caused by a spiral-shaped reentrant wave front. VT is characterised by a fast heart­

beat as spiral waves oscillate quickly with a period of about 0.2s. Although not 

generally life-threatening in itself, VT often directly precedes the onset of ventricular 

fibrillation (V-Fib), which, if not treated immediately, results in death. V-Fib oc­

curs when a spiral wave becomes unstable and degenerates into a chaotic pattern of 

many small waves. During fibrillation the ventricles quiver and writhe rather than 

contacting in unison, and so fail to pump blood around the body.

We can simulate a spiral wave on the domain H =  [0,50] x [0,50] with Neumann 

boundary conditions by solving the system (5,11) with initial condition consisting 

of a broken planar wave. In order to obtain the initial condition, a planar wave is 

simulated and allowed to propagate for a short time. Then we simply set u =  v — 0 in 

the upper half of the domain and allow the wave to continue to propagate. Figure 5.14 

show the potential u for such a wave when e_1 =  14 and the consequent formation of 

the spiral wave.

Let us now look at the effect of the initial condition on the type of wave solutions 

arising. If, instead of truncating the wave in the middle, we set more or less of the 

plane to take zero value, we see that a spiral wave still forms but note that the centre 

of the spiral depends on where we set the plane wave to zero. Figure 5.15 illustrates 

this when the upper three quarters of the plane has been reset to u =  v =  0 .

Here, we have given a very brief overview of the existence of spiral waves in 

excitable media. A more detailed investigation of the circulation of excitation waves
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Figure 5.14: The potential, u, plotted for a rotating spiral wave. The initial condition 

in this case is a broken planar wave. A movie of this figure can be found on the 

accompanying CD, named FHNMov5.avi.

Figure 5.15: The potential, u, plotted for a skewed spiral wave. The initial condition 

in this case is a broken planar wave.
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in two-dimensional excitable media is given by Zykov in [79]. For a review of the 

singular perturbation theory, [71] gives an overview of the general approach as well 

as a detailed analysis in the case of waves propagating in two spatial dimensions, 

including both target patterns and spirals rotating around a central hole or core.

The stability of rotating spiral waves has also proved to be of interest. In [5, 

6] Barkley has carried out a linear stability analysis of such waves and shows that 

the transition between waves rotating rigidly around a circular core and so-called 

modulated rotating waves -  whose tip paths meander -  occurs via a Hopf bifurcation. 

Later work by Biktashev and Holden [9, 11] and by Nicol et al [4] has developed 

the theory of this meandering process in terms of the continuous symmetries of the 

system.

Spiral Break-up

It is widely accepted that the degeneration of ventricular tachycardia into ventricular 

fibrillation occurs when a spiral wave propagating in the myocardium spontaneously 

breaks up into many smaller excitation waves propagating in an erratic manner. The 

mechanism underlying spiral break-up is not well-understood although a possible 

cause [22] is that the wave front is slowed down by the refractoriness of the tissue 

ahead of the wave. The repolarisation wave (wave back) continues propagating at its 

original speed and therefore collides with the excitation front, causing it to break up.

In the model given in equations (5.11), whether a spiral wave will continue rotating 

or break up depends on the value of the parameter e-1. For given values of a and 7 , 

there exists some critical value e^ 1 such that for e-1 < e” 1 spiral break-up occurs. 

One can intuitively see why this is the case for two reasons. Firstly as e_1 decreases 

the planar wave speed c slows, which may account for the collision of the wave front 

and wave back as described above. Secondly, as e_1 decreases, the role of diffusion in 

the system becomes dominant over that of the reaction kinetics. Figure 5.16 shows 

the process of spiral break-up. The initial condition here is the same as in Figure
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Figure 5.16: The potential, u, plotted for the break-up of a spiral wave. The initial 

condition in this case is a broken planar wave. A movie of this figure can be found 

on the accompanying CD, named FHNMov6 .avi.

5.14, however, here we have taken e~l = 12.5.

The calculation of the precise value of e~l for which spiral break-up occurs is

difficult. In [21], Mischaikow and coworkers introduce a new technique to measure 

the spatial-temporal complexity of patterns using algebraic topology. The system 

they used to illustrate this method is given by equations (5.11). They solved this on 

the domain D =  [0,80] x [0,80] with Neumann boundary conditions and the plotted 

the solutions for the potential u. The parameters a  and 7  were fixed at a = 0.75, 

7  =  0.06 and £_1 varied. In order to obtain a clear contrast between the excited and 

non-excited regions, the data were thresholded so that every point (Xi,yj) for which 

u(xi, yj) > 0.9 (indicating the excited region) was shaded black, producing a complex 

pattern. Since the evolution in time of the excited region is of interest, Mischaikow 

et al represented the excited region by a set of voxels:

E  =  (Kj.fcKz*, Vji tk) > 0-9} Q ̂  (5-34)
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where T i s  the voxel corresponding to the ( i , j )th pixel at discrete time k. They 

then took time slices of the excited region. Let

Tn>b = £ E\n  <  k < n +  &}. (5.35)

Then, for fixed 6, the time evolution of the pattern is given by the map from Tnj> to 

T n.t-1 ,6-

The topological complexity of such patterns can be quantified using algebraic 

topology. In particular, the topological features of the set Tn^ can be partially char­

acterised by calculating the Betti numbers (3i(Tnib). Essentially, (3q gives the number 

of connected components of a set, gives the number of tubes (corresponding to 

target waves), and (32 gives the number of enclosed cavities. Since, in this case, they 

consider a three dimensional example (two spatial dimensions and time) & = 0  for 

i > 3.

Mischaikow et al have developed computer algorithms for the computation of the 

homology of cubical sets [38] meaning that the Betti numbers of such complicated 

patterns can be calculated. For the excitable media example discussed here, they 

find that (32 is zero. This is due to the refractoriness of the medium: once exited, 

a region cannot be re-excited for some time afterwards. In order for a closed cavity 

to exist, an expanding target wave would have to change direction, which is clearly 

impossible^ They also find that (3q is piecewise constant and small which, again, is 

intuitively reasonable. The behaviour of fii, however, proves to be more interesting. 

The value of pi changes as tubes are created or destroyed. This behaviour occurs 

during the break-up of spiral waves. In the fourth frame of Figure 5.16 (t — 30) we 

see that a tube has been created.

Mischaikow et al considered the time series

B {10) = {A(m )|m  =  1,2, . . . ,  10000} (5.36)

for different values of e-1 (the subscript 10 indicates the width of the time slice). The
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11,3

Figure 5.17: Mean values of the time series i?(io) (squares), and the mean values of 

the time series .B(100)(dots), as functions of e-1.

mean of /?i, fii was then plotted as a function of e-1, see Figure 5.171. We see that, 

as e-1 increases through some critical value, pi decreases to zero, where it remains. 

This result is interesting since the Betti numbers are non-negative integers so if their 

mean is zero then all the pi in the time series must be zero, so the excited region of 

the domain contains no tubes. It is therefore possible to determine the critical value 

of e~l for which spiral wave solutions of the modified FHN system become unstable 

and undergo spiral break-up. This critical value, e” 1, was found to be between 12.5 

and 12.625 so that for e~l > e~l spiral waves are stable and for e_1 < e" 1 spiral 

waves are unstable and undergo break-up.

1 Reprinted figure with permission from [21]. Copyright 2004 by the American Physical Society.
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5.7.2 Spirals on the Sierpinski Gasket 

Spiral Waves

The work of Mischaikow et al demonstrates the generation of non-trivial topological 

structures on a Euclidean domain -  that is, topology generated by the dynamics 

rather than the structure of the domain. W hat can be seen in this system in the case 

of a non-simply connected domain? In particular, what happens on the Sierpinski 

Gasket where the topology is extremely complex?

To compute an analogue of the spiral wave on the Sierpinski Gasket we simulate 

a planar wave as in Figure 5.9 and allow it to propagate for a short time before 

initiating a spiral by truncation. This is done by setting u and v to zero in the lower 

left order-one triangle K\. Figure 5.18 shows an analogue of a spiral wave on the 

Sierpinski Gasket after the initial plane wave was allowed to propagate until t — 5 

before being truncated. This is a wave, of fixed amplitude, which travels round the 

central triangular hole. This wave, unless disturbed, appears to propagate without 

changing in velocity or form.

We can think of this kind of wave as a sequence of plane waves, which propagate 

across subgaskets. For example, consider Figure 5.18 at t  — 4. The node qi can be 

thought of as being excited sufficiently to initiate a wave which propagates across 

the subgasket K 2 (in this configuration the subgasket K a is in a refractory state). 

When the wave reaches the base of K % it is annihilated (reflection is prevented by 

the refractoriness so the local dynamics on the base nodes simply cycle back to the 

fixed point (u = 0, v =  0)). However, diffusion couples the vertex to the subgasket 

K i  so the dynamics at this vertex initiate a planar travelling wave which propagates 

across K\. This process is thus repeated in the cyclic sequence of subgaskets K\  —> 

K$ —► K% —► K\  —> • • ■ giving a stable analogue of a spiral wave.
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Figure 5.18: The potential, u, plotted for the analogue of a spiral wave. The times 

shown are after the truncation of a planar wave, propagating for 5 time units. A 

movie of this figure can be found on the accompanying CD, named FHNMov7.avi.
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Figure 5.19: The position of the planar wave at t = 4.5.

Hints of Com plexity

We now examine the second type of spiral wave seen in Section 5.7.1, that is, when 

the initial planar wave is not truncated in its centre so the resulting spiral wave 

becomes skewed. To replicate this result on the Sierpinski Gasket, we follow the same 

procedure as in the case of the regular spiral. However, as well as setting u and 

v to zero in K \, we also prescribe zero values on Ks\. Now the wave can not only 

propagate forwards in its original direction, it should also be able to travel backwards.

To initiate the wave in this instance, we allow the initial planar wave to propagate 

until the maximum value of the potential has travelled exactly one quarter of the way 

across the gasket so it has just entered K 32  and K 12. This happens at t = 4.5. The 

wave profiles for u and v in this case are shown in Figure 5.19. Then we truncate the 

wave as described and allow the wave to continue across the domain. The evolution 

of this wave at discrete time intervals is shown in Figure 5.20. Now we see that the 

wave does indeed propagate backwards into the region that was reset to zero (compare 

Figure 5.20 with Figure 5.18).

In this case we effectively have a number of small planar waves propagating in 

different directions around the central hole of each order-one subgasket. These waves
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Figure 5.20: The potential, it, plotted for the analogue of a spiral wave. The times 

shown are after the truncation of a planar wave, propagating for 4.5 time units. A 

movie of this figure can be found on the accompanying CD, named FHNMov8.avi.
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split into two at the junction points between the order-two subgaskets. At time t  — 10 

we see two waves have entered K \ from different directions. Due to the Neumann 

boundary conditions and the fact that the parts of the gasket behind these waves are 

in recovery, these waves are annihilated. This leaves us with two wave fronts that, 

at t  — 14, are in a similar position on the gasket to those at t — 4. By defining unit 

time as the time taken for an excitation front to propagate over a fixed region of the 

gasket, it can be shown that the wave propagation in this case becomes periodic after 

an initial transient.

The behaviour of the wave shown in Figure 5.20 can be interpreted as follows. 

The analogue of a spiral wave is propagating around the central hole of the order- 

one triangle K^. Each time this wave meets one of the junction points q\ or q2, other 

plane waves are initiated which propagate across K \ and K 2- When these plane waves 

collide, they die out. With the correct choice of initial condition and value of e, it 

should be possible to initiate spiral waves that travel around the central hole of any 

order-m triangle of the gasket, K W: |u;| =  m. At each order-m junction point, plane 

waves will propagate into the neighbouring subgaskets. The ultimate fate of these 

waves could be that they destroy each other as is the case here, however, there is 

clearly the possibility of much more complex interactions.

This behaviour is reminiscent of certain patterns seen in the “Game of Life” in­

vented by the mathematician John Conway in 1970. Life is an example of a cellular 

automaton and is played on a grid of square cells. Each cell is in one of two states 

-  alive or dead. The evolution of the game from an initial configuration of cells then 

depends on a particular set of rules.

The Game of Life is one of the simplest examples of a system that exhibits “emer­

gent complexity” (for more information on Life and examples of many patterns that 

occur, see [73]). One of the most interesting patterns seen in Life is that of a glider -  

a small pattern which repetitively rearranges itself and, in doing so, moves across the 

grid. There also exist so-called “glider guns” , which emit gliders at regular intervals.
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It is possible to arrange the Game of Life so that the gliders interact to perform com­

putations. In fact, it has been shown (see [61]) that the Game of Life can emulate a 

universal Turing machine: anything that can be computed via an algorithm can be 

computed with Conway’s Game of Life.

We have seen that there in a sense in which the solution of the FHN system on the 

Sierpinski Gasket can behave like a cellular automaton: a spiral wave travels around 

Ks and periodically gives rise to propagating plane waves in a way that suggests an 

analogy with glider guns. With this observation comes the possibility that reaction- 

diffusion systems on the Sierpinski Gasket might be capable of complex computational 

tasks.

U nstable Behaviour

For our next simulation we consider the same situation but this time we allow the 

plane wave to propagate a little bit further across the gasket before truncating. Figure 

5.21 shows this when the initial planar wave is truncated at t  = 5. Now we see different 

behaviour. Initially, as we expect, the wave propagates forward in its original direction 

and backwards into i f 31, which has been reset to zero. However, shortly after this 

has occurred, this part of the wave appears to propagate in two directions, back into 

J<32, producing an extra small plane wave. As we proceed in time, pairs of these small 

plane waves collide and destroy each other. Eventually, we are left with a single wave 

of excitation which travels around the central hole as we saw in Figure 5.18.

The unusual behaviour seen here occurs around the junction point between Af31 

and A32 between times t  = 0 and t  — 4. To investigate this behaviour further, we 

consider the junction point between K^i and K32 and three vertices close to it. We 

label these vertices a, 6, c and d, see Figure 5.22. We are interested in how the values 

of u and v change with time at these nodes and in how this differs to the behaviour 

seen in the previous simulation. We therefore consider the phase trajectories in both 

cases at each of these nodes. We plot u against v for times between 1 = 0  and t = 4
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Figure 5.21: The potential, u, plotted for the analogue of a spiral wave. The times 

shown are after the truncation of a planar wave, propagating for 5 time units. A 

movie of this figure can be found on the accompanying CD, named FHNMov9.avi.
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Figure 5.22: The location of the nodes we are interested in, a, b, c and d.

since this is the time interval in which this interesting behaviour occurs.

Figure 5.23 shows the phase space for the nodes a and b (nodes that have initially 

been reset to zero) in both cases. Similarly, Figure 5.24 shows the phase space for the 

nodes c and d (initially in the excited state). In both of these figures, the left hand 

column shows the first case where the initial planar wave is truncated at t = 4.5, and 

the right hand column shows the case where the planar wave is truncated at t — 5. 

The red dots indicate the initial values.

Figures 5.25 and 5.26 show the values of u and v against time in each of these 

cases. We see that there is a marked difference between the left and right columns 

of these figures, although this difference is far more pronounced when comparing the 

vertices c and d in the two cases.

We begin by considering the nodes a and b. Initially, these nodes have been reset 

to zero and are at rest. Two of the neighbours of 6, however, are in the excited state. 

Very quickly the diffusion causes u to rise rapidly, exciting node b. Soon afterwards,
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Figure 5.23: The phase space for t = 0 to t = 4 for the nodes a and b. In the left had 

column the planar wave has been truncated at t =  4.5. In the right hand column the 

planar wave has been truncated at t =  5.
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Figure 5.24: The phase space for t — 0 to t =  4 for the nodes c and d. In the left had 

column the planar wave has been truncated at t = 4.5. In the right hand column the 

planar wave has been truncated at t = 5.
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Figure 5.25: The u (blue) and v (red) values plotted against time for the nodes a and

b. In the left had column the planar wave has been truncated at t = 4.5. In the right

hand column the planar wave has been truncated at t =  5.
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Figure 5.26: The u (blue) and v (red) values plotted against time for the nodes c and 

d. In the left had column the planar wave has been truncated at t = 4.5. In the right 

hand column the planar wave has been truncated at t = 5.
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a is also excited. The phase portraits for these nodes are exactly as we would expect: 

the increase in u activates v, which begins to increase soon afterwards. The increase 

in v then inhibits u, which plateaus and then begins to decrease as v reaches its 

maximum. The decrease in u also causes v to decreases and both variables return to 

the rest state at the origin. The behaviour seen here is essentially the same in both 

cases, although, when the plane wave is truncated at a later time, the value of u  at 

nodes neighbouring b is lower so the diffusion takes a longer time to push b above the 

threshold.

Now we consider the nodes c and d. Initially these nodes are in the excited state so 

we would expect the u and v values at these nodes to return directly to the rest state 

at the origin. This, however, is not the case. When the planar wave is truncated at 

t = 4.5, we see the trajectories make a small loop before beginning to return to rest. 

In the case where the plane wave is truncated at a later time the nodes in question 

seem to become re-excited rather than returning to rest. Again, the onset of this 

behaviour is explained in terms of diffusion. Since initially node c has a neighbour 

that has been reset to zero, the diffusion quickly decreases the value of u at this node. 

This implies that when the dynamics come into play, the initial value is in a different 

area of the phase space.

For our parameter values, the reaction kinetics of the system are such that, in 

the absence of diffusion, there is a fixed point at (u,v) ~  (0.823,0.557), which is an 

unstable focus. So, when the diffusion initially shifts the value of u, the trajectories 

follow this orbit, forming a loop before returning to the rest state. Figure 5.27 shows 

the nullclines and the vector field of the system without diffusion and two possible 

phase trajectories accounting for the behaviour of node c in Figure 5.24. In the first 

case we considered, the loop is small and the node quickly returns to the rest state. 

In the second case, the node undergoes a larger excursion, and therefore takes a much 

longer time to return to the rest state. This is why we see such different behaviour 

in the two cases considered here.
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(a) Here the plane wave is truncated at t = (b) Here the plane wave is truncated at t = 5.
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Figure 5.27: A comparison between actual phase trajectories (with diffusion) and the 

vector field of the diffusionless FHN system.

We first recall that, if the value of v at a node is high, then the node is refractory 

and therefore not susceptible to re-excitation. In our first case, since the loop is small, 

node c is re-excited quickly. By the time node d is recovered, node c has returned to 

the rest state and does excite node d. In our second case, however, by the time node 

d has recovered, node c is still in the excited state. This causes a wave of excitation 

to be initiated from node c in the clockwise direction. We can see this in Figure 5.28 

where we plot the (u, v) values on node c against the value of v on node d. In the 

right hand plot we see that large values of u(c) can be found when v(d) is small. This 

is in marked contrast to the left hand plot.

Spiral Break-up on the Sierpinski Gasket

It is not obvious what is meant by spiral break-up on the Sierpinski Gasket as our 

domain is full of holes. We can, however, study the effects of reducing the parameter 

e-1. Recall that on the Euclidean case, it was shown that spiral break-up occurs for 

values of e~l less than some e~l «  12.5.
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Figure 5.28: The relationship between the state of node c and the recovery variable 

on node d.

We begin by repeating the simulation shown in Figure 5.18, this time with e_1 = 

12.5. We note here that prior to truncation, the planar wave propagated with e~l =  14 

for 5 time units to ensure the same initial condition for the two simulations. The wave 

propagation in this case is shown in Figure 5.29. We see that when the wave has passed 

through the junction point q\ it seems to be reflected back again into K 3 as well as 

continuing to propagating in its original direction. This behaviour is reminiscent of 

that seen in Figure 5.21.

As in that case, we can consider the phase space at this node for times t = 0 to 

t =  10. The trajectories once again form a loop before returning to the rest state. This 

gives the neighbouring node behind the wave front (node n) enough time to recover 

before being re-excited by the node q2, thus initiating a wave in the anticlockwise 

direction. The phase space at node q2 is shown on the left of Figure 5.30. The 

relationship between the value of v at node n and u(q2) and v{q2) is shown on the 

right of Figure 5.30.

This demonstrates that a similar dynamical process accounts for the production
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Figure 5.29: The initial condition here is a plane wave reset to K\ = 0  after propagat­

ing until t — 5. e~l = 12.5. A movie of this figure can be found on the accompanying 

CD, named FHNMovl0.avi.
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Figure 5.30: The left hand plot shows the state of node q\ and the right hand plot 

shows this state in relation to the value of the recovery variable at node n.

of a reflected wave in both this case and that described earlier (see Figure 5.21). The 

underlying mechanism is, however, different. In the present case, the extra diffusion 

makes it far less useful to compare the actual local phase space trajectory with the 

vector field of the FitzHugh-Nagumo system. However, if we compare trajectories for 

the two cases we see that analogous things are happening.

We have demonstrated how a local effect can disturb the simple patterns that 

result from travelling waves on the Sierpinski Gasket. More generally, however, there 

is a great potential for complex behaviour in this system. For example, we see in 

Figure 5.31, that contrary to expectation, the regular oscillation shown in Figure 

5.20 is preserved when e~l is reduced. A further reduction of e” 1, however, gives the 

complicated spatio-temporal patterns shown in Figure 5.32. This suggests that global 

behaviour on the gasket such as the mutual destruction of counter propagating waves 

can lend extra stability in some circumstances. Clearly we have just begun to scratch 

the surface here.
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Figure 5.31: The initial condition here is a plane wave reset to K \ = 0  and K$\ =  0 

after propagating until t = 4.5. e~l = 12.5.
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Figure 5.32: The initial condition here is a plane wave reset to K\ = 0 and K$i =  0 

after propagating until t = 4.5. £~l = 12. A movie of this figure can be found on the 

accompanying CD, named FHNMovll.avi.
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C onclusions and Further W ork

In this thesis we have considered a number of dynamical processes that, in real life, can 

be seen to be occurring on domains that are spatially complex. The recent advances 

in the area on Analysis on Fractals mean that we are now able to define differential 

operators on a class of such sets. We can, therefore, solve PDEs modelling such 

processes on these domains with a view to understanding how the spatial complexity 

affects the phenomena seen.

We began by giving a review of the literature concerned with defining Laplacians 

on p.c.f. self-similar sets, primarily the Sierpinski Gasket. We then discussed the 

properties of the eigenvalues and eigenfunctions of the Laplacian on SG. In particu­

lar we described the decimation procedure (unique to the Sierpinski Gasket), which 

relates the eigenvalues and eigenfunctions of different order graph approximations to 

SG to each other. This was carried out for the Laplacian on SG with both Dirichlet 

and Neumann boundary conditions. We have also discussed the existence of localised 

eigenfunctions, which do not exist in the case of a Euclidean domain, and shown how 

to construct such functions. The main part of this thesis has been concerned with 

solving neural models on the Sierpinski Gasket. Our starting point was the linear 

cable equation which we then extended to a more sophisticated system.

When studying the cable equation in this context we see phenomena that arise
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purely from the complexity of the domain (since this is a linear system). In the cases 

of both Dirichlet and Neumann boundary conditions, we have derived a scaling law, 

which enables us to see asymptotic behaviour that is independent of the order of 

approximation to the Sierpinski Gasket.

Since the cable equation is only relevant for passive processes in neurons we then 

introduced a system of equations, which provides a good qualitative model of the 

behaviour of excitable media such as nerve fibres and cardiac tissue. This is known 

as the FitzHugh-Nagumo system. In the case of a Euclidean domain we discussed the 

types of solutions that exist and gave a brief overview of research carried out in this 

area, including using an asymptotic analysis to determine the wave speed of travelling 

wave solutions of this system. We then carried out an analogous analysis where the 

domain is the Sierpinski Gasket. We saw that the gasket can support travelling waves, 

which (qualitatively at least) behave in a similar fashion to those seen in the Euclidean 

case. We then calculated the velocities of waves propagating across SG numerically 

and showed, interestingly, that the Sierpinski Gasket can support at least two different 

wave speeds.

We have discussed the existence of spiral waves on a Euclidean domain and how 

the break-up of these waves propagating in cardiac tissue can cause the onset of 

certain cardiac arrhythmia. Again, we have computed an analogy of a spiral wave on 

the Sierpinski gasket and investigated its behaviour. We have found that a “spiral 

wave” on the Sierpinski Gasket is just a cyclic sequence of planar waves propagating 

over subgaskets. This is a nice result, as we do not need to consider the effects of 

curvature of the wavefront. We have also seen how complex behaviour can arise, 

which is unique to the solution of the system on the Sierpinski Gasket. In particular 

we have seen phenomena which are reminiscent of behaviour seen in certain cellular 

automata.

As a result of the research carried out to produce this thesis, many questions 

arise which suggest further work that may be done. In Chapter 2, we discussed
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Hata’s tree-like set, which, initially seemed like a good choice of domain when solving 

neural systems on p.c.f. self-similar sets. We found, however, that Kigami’s notion 

of boundary gave rise to harmonic functions that became trivially constant over the 

whole tree. We would therefore like to be able to construct a p.c.f. fractal tree whose 

boundary is identified as the tips of the branches. We must be able to uniquely 

identify the boundary points in this case. It may then be possible to apply this 

theory to certain fields of neuroscience.

Recently, research has been carried out by Broomhead and coworkers, [12], on the 

development of an iterated function system approach to signal processing. They have 

studied the effect of driving the cable equation with a random sequence of pulses and 

shown that this model has a unique attractor. A similar analysis could be carried 

out on the Sierpinski Gasket. Here, the spectrum of the Laplacian might be expected 

to enter the expression for the Hausdorff dimension of the attractor in an interesting 

way.

When considering the FitzHugh-Nagumo system on the Sierpinski Gasket, we feel 

that there are many possible directions in which this could go. We feel we have only 

investigated a small sample of the phenomena which may arise in this context. We 

have seen lots of complex behaviour and managed to account for the existence of 

some of this. It would be advantageous to set up an analogous asymptotic theory 

of wave velocities on the Sierpinski Gasket, however this would require knowledge of 

first order derivatives on SG, which have yet to be defined. A possible application of 

solving the FitzHugh-Nagumo system on the Sierpinski Gasket may be to use this as a 

cellular automaton that can carry out computations. Further investigation would be 

required as to the level of complex behaviour that can been seen in the FHN system 

such as spiral waves travelling around smaller subgaskets and giving rise to glider 

analogues.
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