
BROOD - Business Rule-Driven Object-
Oriented Designn

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Humanities

2005

Wan Mohd Nasir Wan Kadir

School of Informatics

Page 1

ProQuest Number: 11009524

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11009524

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

List of Contents

List of Contents
LIST OF TABLES..6

LIST OF FIG URES... 7

ABSTRACT........................... 9

CHAPTER 1 INTRODUCTION..14

1.1 M o t iv a t io n ..15

1.2 T hesis A im and O b je c t iv e s ...17

1.3 R esea rc h Co n tr ib u tio n s .. 19

1.4 In d u stria l Application - M ediN E T .. 20

1.5 Str u c t u r e o f th e T h e s is ...22

CHAPTER 2 SOFTWARE EVOLUTION AND BUSINESS RULES:
STATE-OF-THE-ART...24

2.1 In t r o d u c tio n ..25

2.2 So ftw a re E v o lu tio n .. 25
2.2.1 Process D im ension ... 28
2.2.2 Product D im ension ... 30
2.2.3 E laboration D im ension ... 32
2.2.4 Sum m ary and Further Rem arks on Software Evolution A pproaches..32

2.3 B usiness R u l e s .. 34
2.3.1 Business R ules Approach to Software D evelopm ent...37
2.3.2 Business R ules in O bject-Oriented Software D evelopm ent...43
2.3.3 O ther Areas o f R esearch on Business R u le s .. 46

2.4 B usiness R u le Co n ceptu a l M odelling and E vo lv able So ftw a r e Sy s t e m s48
2.4.1 Business R ule Conceptual M o d e llin g ..48

2.4.1.1 Business Rule Group (BRG)..48
2.4.1.2 Business Rule-Oriented Conceptual Modelling (BRO CO M).....................................51
2.4.1.3 BRS Approach ..55

2.4.2 Business R ules and Evolvable Software S ystem s...58
2.4.2.1 Adaptive Object Model (AOM)... 59
2.4.2.2 Coordination Contract...61
2.4.2.3 Business Rule Beans Framework...65

2.5 C ritiqu e on St a te-o f-t h e -art B usiness R ule Ap p r o a c h e s ..67
2.5.1 The Evaluation F ram ew ork ... 67
2.5.2 The Com parative E valuation ...72

2.5.2.1 The Comparative Evaluation o f Business Rule Conceptual Modelling....................73
2.5.2.2 The Comparative Evaluation o f Evolvable Software System s.................................... 76

2.6 Sum m a ry and F urther R e m a r k s .. 79

Page 2

List of Contents

CHAPTER 3 THE BROOD APPROACH........................ 83

3.1 T he R ation a l e ... 84

3.2 BROOD Ov e r v ie w ..88

3.3 T he B usiness R ule M e t a m o d e l .. 91
3.3.1 Business Rule T ypology...93

3.3.1.1 Constraint... 93
3.3.1.2 Action Assertion .. 94
3.3.1.3 Derivation..98

3.3.2 T he Rule T em p la tes ..99
3.3.3 M anagem ent E lem en ts ... 101

3.4 So ftw are D esign M e t a m o d e l ...102
3.4.1 Class D iag ram ...102
3.4.2 Statechart D iag ram .. 103

3.5 R ule P hrases and L inking E l e m e n t s ..104

3.6 Su m m a r y ..106

CHAPTER 4 THE BROOD PROCESS.. 108

4.1 In t r o d u c tio n ... 109

4.2 Softw are P rocess E ngineering M eta m o d e l .. 109

4.3 T he D escription o f th e H igh L ev el BRO O D P rocess C o m p o n e n t s .. I l l
4.3.1 T he BRO O D P h ases..112
4.3.2 U se-Case D iagram ..116

4.4 T he Specification o f BROOD P r o c e s s ... 118
4.4.1 Analysis P hase ...118
4.4.2 D esign P h a se ... 120
4.4.3 Evolution P h ase .. 122

4.5 Su m m a r y ..124

CHAPTER 5 USING BROOD IN AN INDUSTRIAL-STRENGTH
APPLICATION..125

5.1 M ediN ET O v e r v ie w .. 126

5.2 A nalysis P h a s e ...127
5.2.1 Business R ule Statem ents A nalysis...127
5.2.2 Packages and Classes A n a ly sis ..128

5.3 D esign P h a s e .. 130
5.3.1 M ediN ET S ub -system s ...130
5.3.2 Class D iagram s.................................... 131

5.3.2.1 Registration Package.................. 131
5.3.2.2 Billing Package 133
5.3.2.3 Invoicing Package.. 135

5.3.3 Statechart D iagram (S T D)... 137
5.3.4 The D evelopm ent o f Business Rules Specification .. 139

5.4 E vo lu tio n P h a se .. 141
5.4.1 Sim ple Business R ule C hange.. 141
5.4.2 Complex Business Rule C h an g e ... 143

5.5 D isc u ssio n ... 145

Page 3

List of Contents

CHAPTER 6 THE DESIGN AND IMPLEMENTATION OF THE BROOD
TOOL PROTOTYPE.. 148

6.1 In t r o d u c tio n ... 149

6.2 Gen eric M o d eling E n v iro n m en t (G M E)... 151
6.2.1 G M E M odelling C oncepts... 152
6.2.2 G M E A rchitecture ..154

6.3 BROOD P hy sica l M eta m o d els ... 157
6.3.1 Business Rule M etam odel... 157
6.3.2 Software D esign M etam odel.. 159
6.3.3 Rule Phrase E n tr ie s .. 160
6.3.4 M odelling C onstra in ts.. 162

6.4 BROOD T ool F e a t u r e s ... 163
6.4.1 M odel E diting ..163
6.4.2 Populating the Rule Phrase E n tr ie s ...165
6.4.3 Adding a N ew Business R u le ... 167
6.4.4 Perform ing Business Rule C h an g es ... 169

6.5 Su m m a r y ... 172

CHAPTER 7 CONCLUSIONS AND FURTHER W ORK..175

7.1 R esearch Sum m a ry and Ac h ie v e m e n t s .. 176

7.2 D iscu ssion of th e R esea rc h R esu lts ..181

7.3 Su m m a ry o f th e M ain C o n t r ib u t io n s ... 186

7.4 I ssues for F urther Research W o r k ..190

7.5 C o n clu d in g R e m a r k s ...193

REFERENCES..194

APPENDIX A MEDINET - THE CASE STUDY... 206

A .l M ed iN ET Ov e r v ie w ...206

A.2 T he B usiness P r o c e s s e s .. 207
A.2.1 R eg istra tio n ..208
A.2.2 B illing ...209
A.2.3 Invoicing..209
A.2.4 O ther Business P ro cesses... 211
A.2.5 The M odular D esign o f M ediNET Software S y stem ...213

A.3 T he B usiness E n t it ie s ...214
A.3.1 T he M ain Business E n tities... 214
A .3 .2 B illing-related E ntities...215
A .3.3 Invoicing-related E n titie s ...215
A.3.4 M ediN ET U sers...216
A .3.5 D ata Stored in M ediN E T .. 217

A.4 T he In fo rm a l B usiness R ule Sta t e m e n t s ...217
A.4,1 R eg istra tio n ..217
A.4.2 B illing .. 218
A .4.3 Invoicing ..219
A .4.4 O ther Business R u les... 220

Page 4

List of Contents

APPENDIX B THE EBNF SPECIFICATION FOR THE BROOD
M ETAM ODEL... 222

B.l T h e s e m a n tic s o f EBNF (ISO/IEC 14977) s y n t a x ..222

B.2 B u s i n e s s r u l e s y n t a x u s i n g EBNF... 222
B.3 U M L C lass D iagram syntax using E B N F..225

B.4 UML S t a t e c h a r t D i a g r a m s y n t a x u s i n g EBNF... 227

APPENDIX C THE BROOD PROCESS SPECIFICATION.. 228

Page 5

List of Tables

Table 2-1 The examples of the MediNET business rules and origins in BRG 51

Table 2-2 BRS business rule templates and exam ples.. 57

Table 2-3 The comparative evaluation of business rule conceptual modelling.............................75

Table 2-4 The results of the comparative evaluation of evolvable software systems...................78

Table 3-1 Business rule templates...100

Table 3-2 The associations between rule phrases and design elements...105

Table 5-1 The examples of business rule statements in the MediNET initial business rule
specification.. 128

Table 5-2 The examples of the rule phrases and the linked software design elem ents..............140

Table 5-3 The examples of change scenarios for simple business rule change............... 142

Table 5-4 The examples of change scenarios for complex business rule change........................144

Table 6-1 Linking the business rules to the software design components 159

Page 6

List of Figures

Figure 1-1 A framework of a holistic approach to software evolution..19

Figure 2-1 Impact of the types of software evolution and maintenance (taken from
[Chapin et ah, 2001])...27

Figure 2-2 The three-dimensional view of software evolution approaches...................................33

Figure 2-3 BRG’s business rule metamodel.............. ..50

Figure 2-4 BROCOM metamodel [Herbst, 1997]..54

Figure 2-5 The Adaptive Object Model [Yoder et ah, 2001b]... 60

Figure 2-6 The architecture of coordination contract approach..62

Figure 2-7 The interaction between BRBeans framework components [Kovari et al., 2003] ... 66

Figure 2-8 The Evaluation Fram ework..72

Figure 3-1 The BROOD Process..................... 90

F igure 3-2 The BROOD business rule metamodel... 92

F igure 3-3 Action assertion..95

F igure 3-4 A fragment of the Class Diagram metamodel (an excerpt from the UML
standard vl.4 [OMG, 2001])........ 103

Figure 3-5 State Machine metamodel (excerpt from the UML standard v l.4 [OMG, 2001]). 104

Figure 4-1 An exceipt from OMG Software Process Engineering Metamodel [OMG, 2002] 110

Figure 4-2 Notations used to describe software process... I l l

F igure 4-3 The BROOD Process metamodel... 112

Figure 4-4 The main phases in the BROOD Process...113

Figure 4-5 Use-Case Diagram for BROOD Process..116

Figure 4-6 The flow of the analysis activities...119

Figure 4-7 The flow of the design activities.. 121

Figure 4-8 The flow of evolution activities... 123

Figure 5-1 MediNET packages... 129

Figure 5-2 MediNET software architecture.. 130

Figure 5-3 Registration package........................ 132

Figure 5-4 Billing package...134

Figure 5-5 Invoicing package...136

Page 7

Figure 5-6 STD for HCSeivicelnvoice object...................................... 138

Figure 6-1 The illustration of the roles and architecture of the BROOD too l............................. 150

Figure 6-2 GME modelling concepts... .153

Figure 6-3 GME Architecture................. 155

Figure 6-4 The classes in Builder Object Network (BON) framework...156

Figure 6-5 Business rule metamodel ..158

Figure 6-6 Class diagram metamodel ... 159

Figure 6-7 Statechart diagram metam odel ..160

Figure 6-8 The metamodel of rule phrase entries................................... 161

Figure 6-9 The generated BROOD tool environment... 164

Figure 6-10 Adding a new attribute term rule phrase ... 166

Figure 6-11 Adding a new relationship constraint...168

Figure 6-12 Modifying an action assertion business rule..170

Figure 6-13 Modifying an event rule phrase.................. 172

Page 8

Abstract

In order to remain useful, it is important for software to evolve in accordance with the
changes in its business environment. Most of the current approaches to software
evolution focus primarily on improving software technology.

This research is based on the premise that a more effective solution to software
evolution can be achieved by considering the sources of changes in addition to software
technologies. The thesis identifies a major source of changes in the business rules that
dictate how the system’s environment (i.e. the business) needs to function. Evolution of
software is therefore considered in this thesis as being driven by changes to business
rules. Therefore, an important consideration is the linking between business rules as
specified in the business ontology and the way that these rules manifest themselves in
software architectures.

Current state of the art considers business rules mostly at the conceptual level but lack
the necessary constructs, techniques and tools to link these specifications to software
components. The few software evolution approaches that include business rules in their
solution lack the suitable concepts and structure of business rules. The research
presented in this thesis attempts to ameliorate these shortcomings by developing the
Business Rule-Driven Object-Oriented Design (BROOD) approach. The thesis presents
both product and process components. The product component is structured according
to a metamodel that defines the semantics and syntax of business rules statements and
links these rules to their related software design components. The Unified Modelling
Language (UML) was adopted to define the software design part of the metamodel. The
process component describes a flow of activities that guide the development and
evolution of a software system, which is specified using the Software Process
Engineering Metamodel (SPEM).

The BROOD approach is demonstrated using the industrial strength MediNET
application. MediNET was also used throughout this research, such as in understanding
the state-of-the-art and improving the BROOD metamodel. The software tool prototype
was also developed to demonstrate the potential of automating the important tasks in the
BROOD approach. It was developed on top of the configurable Generic Modeling
Environment (GME).

Page 9

Declaration

I hereby declare that no portion of the work referred to in the thesis has been submitted

in support of an application for another degree or qualification of this or any other

university or other institution of learning.

Page 10

Copyright Statement

(i) Copyright in text of this thesis rests with the Author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by
the Author and lodged in the John Rylands University Library of Manchester.
Details may be obtained from the Librarian. This page must form part of any such
copies made. Further copies (by any process) of copies made in accordance with
such instructions may not be made without the permission (in writing) of the
Author.

(ii) The ownership of any intellectual property rights which may be described in this
thesis is vested in The University of Manchester, subject to any prior agreement to
the contrary, and may not be made available for use by third parties without the
written permission of the University, which will prescribe the terms and conditions
of any such agreement.

(iii) Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of School of Informatics.

Page 11

Acknowledgement

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. Firstly, I am deeply indebted to my supervisor Professor P.

Loucopoulos from the School of Informatics, The University of Manchester whose help,

stimulating suggestions, and encouragement helped me during my study years in

Manchester, and from whom I've received a great balance of freedom, monitoring, and

guidance in gaining a challenging yet enjoyable learning experience of doing research.

Secondly, I would like to pay tribute to the Universiti Teknologi Malaysia for

sponsoring my PhD study. I also would like to thank Penawar Medical Group for

providing me with the information on WebCare and MediNET especially Dr. A.

Sulaiman (CEO), Masrizam (IT Manager), and Mohzasiraj (Software Engineer).

Thirdly, I wish to thank all academic and support staff from the School of Informatics

for assisting me in academic, administrative, technical, and socializing matters

especially Dr. Petrounias, Shermain, Willey, and Paul. I also want to thank Taiseera for

offering her generous help with proof-reading this thesis, and all of my friends (too

many to mention) in K13, K12, and K10 research laboratories for creating ‘short

breaks’ during my work hours.

Last, but not least, I would like to give my special thanks to my wife Rasidah, whose

patient and love enabled me to complete this work, as well as my sons Zakwan and

Syazwan, whose laugh makes me forget about the pressures of doing this research.

Page 12

For Rasidah,

Zakwan and Syazwan

Page 13

Chapter 1 Introduction

Chapter 1

Introduction

This chapter provides an introduction to the research work presented in this thesis. It

describes the research background that motivates the introduction of a new business

rule-driven approach to software evolution. This is followed by the discussion on the

premises, hypothesis, aim, and objectives of the reported research work. Subsequently,

it summarizes the main contributions of the research work in the related fields of

research and practice. Following this, it briefly explains the description and roles of the

selected case study namely the MediNET application. Finally, it introduces the structure

of the thesis.

Page 14

Chapter 1 Introduction

1.1 Motivation

Nowadays, nearly all of commercial and government organizations are highly

dependent on software systems. Due to the inherent dynamic nature of their business

environment, software evolution is inevitable. The changes generated by business

policies and operations are propagated onto software system. A large portion of total

software lifecycle cost is devoted to introduce new requirements, and remove or change

the existing requirements [Grubb and Takang, 2003], However, software evolution must

be accomplished; otherwise no one will use the software [Lehman, 1997]. In other

words, the evolution of a software system is inevitable for the software to remain useful

in its environment. Due to this reason, software evolution is considered as a key

research challenge in software engineering.

Many research projects attempt to find a more applicable way for building a software

system that is flexible to changes as well as predicting the effect of requirements change

[Finkelstein and Kramer, 2000]. Most of the approaches in software evolution utilize or

adapt the existing benefits in object-oriented, distributed system, software architecture,

and component-based technologies. They strive to propose a software model, or

architecture, that has the ability to reduce the evolution efforts or minimize the effect of

changes [Bennett and Rajlich, 2000; Garlan, 2000]. These approaches consider ‘design

for change’ as their main goal in software modelling. Some of them also define a

software process that provides a detailed flow of activities in performing the

development and evolution of a resilient software system.

However, there are at least three problems observed by the investigation of the current

software evolution approaches. First, most of them focus more on software technology,

ignoring the consideration of the sources of changes in a software operational

environment. Second, the majority of them confine their solutions at a concrete

modelling level although more evolvable software can be achieved by systematically

addressing the problem at the metamodel level. Finally, they generally define software

evolution as post-implementation activity even though there are changes occurred prior

to implementation especially in today's ‘emergent organization’ i.e. the organization

that is ‘continually changing and never arriving at stable state’ [Truex et al., 1999].

Page 15

Chapter 1 Introduction

Business rules, which are frequently changing in accordance with the business changes

[Rouvellou et al., 2000], have been identified as the important sources of changes. In

addition, their changes bring the highest impact on both software and business processes

compared to other changes such as altering code for elegance and readability, changing

data naming convention, speeding execution, or reducing internal storage usage

[Andrade and Fiadeiro, 2001; Chapin et al., 2001]. The explicit consideration of

business rules in software development is important in assisting future evolution

[Loucopoulos etal., 1991].

The advantages of externalizing business rules lead to the emergence of numerous

business rule approaches to software development. These approaches vary in terms of

the roles of business rules in the software lifecycle. For example, some approaches

address the use of business rules throughout the software lifecycle while others merely

consider the role of business rules in a particular stage of software development.

However, they share a common goal i.e. to externalize business rules for future software

evolution. Business rule extemalization may localize changes to a volatile part of

software systems. It may also simplify the maintenance of user requirements since

business rules are also considered as part of the requirements [Rosea and Wild, 2002].

From the investigation of the state-of-the-art business rule approaches to software

evolution, there are two identified prominent categories that are closely related to the

purpose of this research: business rule conceptual modelling and evolvable software

systems. The former provides the excellent typology and structure that help in capturing

and representing business rules but the approaches in this category supply little detailed

information on the implementation of business rules in a software system. The latter

provides the exhaustive explanation on the design and implementation of an evolvable

software system that implements business rules but the approaches in this category lack

the business rule modelling concepts. The gap that exists between these two categories

indicates that serious attention is needed to link the business rule specification and its

related software components for the purpose of future evolution [Appleton, 1984;

Kovacic, 2004].

The approach proposed in this thesis, which is called Business Rule-Driven Object-

Oriented Design (BROOD), attempts to close the gap between the above two categories

Page 16

Chapter 1 Introduction

as well as to address the earlier mentioned problems in software evolution. In achieving

a holistic approach to software evolution, BROOD tackles both product and process

perspectives. Regarding product perspective, BROOD introduces a metamodel that

defines the structure of business rules, software design, and their linking elements.

Unified Modelling Language (UML) was chosen to represent the software design part

of the metamodel. Concerning process perspective, BROOD defines a software process

that describes its development and evolution activities. The process is described using

Software Process Engineering Metamodel (SPEM). In addition, the automated tool that

supports BROOD is developed on top of the configurable Generic Modeling

Environment (GME).

The applicability of the BROOD approach is demonstrated using the industrial strength

MediNET application. MediNET is an Internet application that is used by healthcare

industry community such as healthcare providers and paymasters to manage the patient

registration, patient billing, and paymaster invoicing. The learning outcomes of this

study provide valuable insight into several issues and implications of practising

BROOD in an industrial application setting, and contribute to a deeper understanding of

the software evolution issues. Throughout this research, MediNET is also used to obtain

the feedback in the BROOD application that repeatedly improves the BROOD

approach.

1,2 Thesis Aim and Objectives

Summarizing the problem with the state-of-the-art approaches, a holistic approach to

software evolution may be achieved if the approach not only confines the solutions to

the software technologies such as object-oriented abstractions or software architectures,

but it also considers the sources of changes i.e. business rules. This fact leads to the first

premise of this research i.e. the explicit consideration o f business rules in software

modelling, in addition to the adopted software technologies, may improve the

evolvability o f a software system based on the fact that business rules are the most

volatile component in a business information system.

Apart from the above solution components, it is also important for the approach to

provide a software process that guides the development and evolution of a software

Page 17

Chapter 1 Introduction

system. Obviously, the proposed software process will be more complicated than the

traditional software process since it needs to include the additional activities that deal

with the newly introduced business rule components. However, the availability of an

automated tool may simplify the proposed software process. The roles of the software

process and automated tool lead to the second premise of this research i.e. the software

process and automated tool may enhance the practicability o f the proposed software

evolution approach.

The above premises serve as the principles of the conceptual framework adopted by this

thesis, which is illustrated in Figure 1-1. In this framework, a holistic approach to

software evolution considers all three components in producing a software system that

is resilient to business changes: software technologies, business rules, and software

process. Software technologies have been addressed by majority of the recent software

evolution approaches. This research is advanced by considering business rides as

sources of changes in order to reach the root of the evolution problem and to strengthen

the intended technological solution. Both software technologies and business rules

should be considered in defining the metamodel, which in turn determine the

characteristics of the software model. The third component, i.e. the software process

(and automated tool), improves the pragmatics aspects of the approach by guiding and

facilitating the complex development and evolution tasks.

The above premises also lead to the following research hypothesis:

The evolution of a business software system may be simplified by a practical holistic

approach that (i) explicitly considers business rules in software modelling in addition to

the adopted software technologies and (ii) provides a process and tool that facilitate the

development and evolution activities.

The above hypothesis is subsequently transformed to the aim and objectives that

systematically set the direction of this research. The aim of this research is to improve

software evolution.

To this end, the objectives of this research are listed as follows:

1. To analyse the state-of-the-art business rule approaches in software evolution.

Page 18

Chapter 1 Introduction

2. To develop a metamodel that externalizes the representation of business rules
and provides traceability to their implementation in software design.

3. To specify a software process that guides the development and evolution of a
software system using the proposed metamodel.

4. To demonstrate the practicability of the proposed approach in an industrial
strength software application.

5. To develop a software tool prototype that provides facilities that make BROOD
practically applicable.

Sources of Changes
(i.e. business rules)

Software Technologies
(Object-Oriented, Soft. Arch., etc.)

Metamodel

Model
(resilient)

t
Software Process

(establish traceability, perform changes,
automated propagation, etc.)

Figure 1-1 A framework of a holistic approach to software evolution

This research considers evolution in the pre-implementation stages of a software

system. It assumes that the technique to transform the design to software

implementation is available. In addition, this research addresses the evolution of

business rule changes relating to existing business components. It does not deal with the

other types of changes or with undocumented business rules.

1.3 Research Contributions

BROOD is a holistic approach to software evolution that considers all of the influential

factors in software evolution such as the sources of changes, software technology, and

software process. It is similar to the holistic approach to health or treatment that deals

with the whole person or system rather than treating isolated symptoms. Fixing only the

Page 19

Chapter 1 Introduction

symptoms is similar to only focusing on software technologies and addressing the

problems at the concrete modelling level or post-implementation phase, which were

identified as the problems with the current approaches in software evolution.

The proposed metamodel that can be used as the guidelines to capture and specify

business rules provides a more structured representation of user requirements. The

linking elements of the metamodel improves the business rules traceability in software

design, which in turn facilitate the propagation of business rule changes to their related

software design components. The detailed description of the BROOD process provides

a guideline in performing the development and evolution of a business rule intensive

software system. The proposed approach is also supported by an automated software

tool that simplifies the tasks of linking business rule specification to its related design

components during development and evolving the software in accordance with business

rule changes during evolution phase.

In particular, the contributions of this work to current business rules and software

evolution research include:

1. investigation of the roles that business rules play in facilitating the software
evolution process;

2. development of a metamodel that defines the typology and structure of business rules
and links business rules to software design;

3. development of a software process that guides the development and evolution of a
business rule intensive software system;

4. development of a tool prototype that demonstrates the automated feasibility of the
proposed approach; and

5. reflection on the implications of practising the business rule-driven software
evolution based on an industrial-strength application.

1.4 Industrial Application - MediNET

MediNET is a suite of Internet applications that addresses the administrative and back­

end processing requirements of the healthcare business community. The author of the

Page 20

Chapter 1 Introduction

thesis was involved in the original project of developing MediNET. Therefore, apart

from being a typical information systems application, MediNet provided the opportunity

for the author to compare in depth the traditional design to BROOD. MediNET acts as a

secondary layer to the existing administrative and information systems. It allows

various components of the healthcare industry to exchange business data

instantaneously and automate their routine administrative tasks. Therefore, facilitated

businesses are able to reduce their administrative burdens, become more efficient and

make better informed business decisions. In contrast to the traditional applications,

MediNET does not require its users to maintain separately installed software. It allows

its users to leverage the power of technology without having to bear massive

development, acquisition, infrastructure or maintenance costs. The MediNET users only

need to pay as and when they use the application.

In general, MediNET users can be divided into three categories: paymasters, healthcare

providers (HCPs), and supplier. Paymasters are those who pay for medical or healthcare

services, for examples employers, insurers and managed care organizations. They use

MediNET to maintain the basic parts of the patient records such as performing their

payee registration and defining the healthcare benefit coverage of their payees. HCPs

are the professionals who dispense medical treatment, for example general practitioners

(GPs), hospitals and dentists. HCPs use MediNET to manage patient records, patient

billing and paymaster invoicing. The current implementation of MediNET is only

limited to employers as the paymasters and GPs as the HCPs. The supplier is the

company who owns, provides and maintains the MediNET applications. It rents

MediNET to HCPs and paymasters as and when the applications are needed and charges

them based on the number of performed transactions. The detailed descriptions on

MediNET are available in Appendix A.

MediNET was chosen as a case study due to the various frequently changing business

rules introduced by its different users. For example, HCPs provide different packages to

the paymasters that constrain the way they perform the billing and invoicing processes.

Paymasters may also want to introduce different healthcare benefit coverage to different

staff levels that control the eligibility of the staff’s treatments. The business rules related

to the packages and benefit coverage are frequently changed by the HCPs and

Page 21

Chapter 1 Introduction

paymasters. Other common changes to business rules include the introduction of

invoice discounts, the rules to block non-paying paymasters, and the conditions to issue

reminder for the past due invoices. These frequent changes indicate the needs for the

approach that may simplify the implementation of business rule changes in MediNET.

MediNET plays at least three important roles throughout this research. First, it is used to

investigate and demonstrate the modelling concepts of the prominent state-of-the-art

business rule approaches to software evolution. The use of MediNET as their examples

provides useful information for the evaluation of these approaches, which in turn

generates the inspiration to improve the existing approaches. Second, MediNET is used

to provide a feedback for improving the proposed approach. The proposed metamodel,

process, and tool are repeatedly used against MediNET to identify their applicability in

the real-world application. Finally, it is used to demonstrate the work proposed in this

thesis.

1.5 Structure of the Thesis

Chapters 2 to 7 of this thesis are organised as follows:

Chapter 2 investigates the state-of-the-art software evolution and business rule

approaches. It presents the prominent views in software evolution and reviews the

recent software evolution approaches in three different dimensions i.e. process, product,

and elaboration. It also reviews the roles of business rules in various software

engineering research areas and evaluates the approaches that are closely related to this

research. The investigation on the state-of-the-art and its evaluation provide a

foundation for the BROOD approach.

Chapters 3 and 4 present a new holistic software evolution approach, i.e. the BROOD

approach. BROOD consists of both product and process components. Chapter 3

presents the BROOD product component i.e. the metamodel that defines the business

rules, software design and the linking elements. Chapter 4 describes the process

component i.e. the flow of activities that may be followed in developing a traceable

business rule specification and performing business rule-driven software evolution.

Page 22

Chapter 1 Introduction

Chapter 5 discusses the application of the BROOD approach in an industrial strength

software application i.e. MediNET. It demonstrates the applicability of the BROOD

metamodel and process in the development and evolution of the MediNET application.

The analysis of the BROOD application on the selected change scenarios shows that the

business rule-driven software evolution reduces the evolution efforts in MediNET.

C hapter 6 describes the BROOD tool prototype which is built on top of the

configurable Generic Modeling Environment (GME). It describes the GME modelling

concepts and architecture which build the modelling vocabularies used to design and

implement the BROOD tool prototype. Subsequently, it discusses the implementation of

the BROOD metamodel using the GME meta-metamodel and explains how the

BROOD tool automatically performs the main BROOD activities.

C hapter 7 concludes the thesis by discussing the research achievements and overall

contribution of the research in the context of related work in the area. In addition, it

discusses the limitations of the approach and points to future research directions.

There are three appendices that are included at the end of this thesis to supply more

detailed information about certain subjects discussed in this thesis. Appendix A

provides the detailed description of the MediNET application including the business

processes, user types, business entities, and database design of the MediNET system.

Appendix B provides a complete specification of the BROOD metamodel, which is

written in a context-free grammar definition using Extended Backus-Naur Form

(EBNF), Appendix C presents the structured textual specification that provides a more

detailed description of the BROOD process.

Page 23

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Chapter 2

Software Evolution and Business Rules:
State-of-the-art

This chapter reviews the state-of-the-art approaches in software evolution and business

rules. It starts with the overview of the popular views on software evolution and reviews

the recent software evolution approaches. The chapter then proceeds with the review of

the historical background and state-of-the-art business rule approaches to software

development. This is followed by the review of the prominent approaches from two

categories that are closely related to the current research work: business rule conceptual

modelling and construction of evolvable software system. The results of the evaluation

of these approaches using the proposed evaluation framework are presented in the

following section. Finally, the chapter summary, which includes the explanation on the

improvement opportunities of the current state the art business rule approaches to

software evolution, is presented at the end of this chapter.

Page 24

Chapter 2 Software Evolution and Business Rules: State-of-the-art

2.1 Introduction

In the effort to investigate the appropriate approach to developing evolvable software

system, this chapter focuses on the review of the literature concerning software

evolution. It is found that most software evolution approaches often have different

views and address different specific problem areas. Due to this diversified nature, in the

first part of this chapter, the author will discuss state-of-the-art approaches to software

evolution based on three different dimensions i.e. process, product and elaboration. The

three-dimensional view is not claimed to be mutually exclusive. It is merely used to

systematically review the current trends in software evolution approaches, as well as to

locate the proposed research in the field. A critique on the state-of-the-art software

evolution approaches is given at the end of this part.

Having identified that business rules are the important component in software evolution,

and they play a key role in rapidly changing business environment, business rules

approaches are discussed in the second part of this chapter. Based on the extensive

reviews on the available literature, the discussion on business rule approaches is

organized into the roles of business rules in various areas of research and practice:

software development lifecycle, object-oriented, and other research areas.

The above reviews of business rules and software evolution suggest that there are two

different extremes of a spectrum in business rule approaches to the development of

evolvable software systems: business rule conceptual modelling and evolvable software

systems. Three prominent examples of approaches for each extremity are examined in

the third part of this chapter. The comparative evaluation of these approaches is

presented in the fourth part using the proposed evaluation framework that includes

concept, modelling language, process, and pragmatics criteria. In closing the chapter,

the author will draw up summary and further remarks on the reviewed literature.

2.2 Software Evolution

Currently, there is no standard view or generally accepted definition on the term

software evolution. It is often used interchangeably with software maintenance [Bennett

and Rajlich, 2000; Chapin et al., 2001]. For that reason, instead of reviewing the

Chapter 2 Software Evolution and Business Rules: State-of-the-art

terminology definitions, the author will summarize views and comments of other

researchers, and elaborate his own view on software evolution at the end of this section.

Perry views software evolution as three fundamental dimensions i.e. the domains,

experiences and process [Perry, 1994]. The domains are real world environments within

the context of software systems such as business policies, government regulations, and

technical standards. The experience is the knowledge gained from the implemented

software system such as feedback and empirical study. The process is the way of

building and evolving a software system such as methods, techniques and tools. All of

the development and changes of these dimensions are considered as important sources

of evolution. According to Perry, it is more effective to understand and manage the

evolution of a software system by a deep understanding of these three dimensions.

Bennett proposed a slightly different view by considering software evolution as three-

levels model, in terms of the organization, process and technology [Bennett, 1996]. The

top level of this model emphasizes how software evolution meets the organizational

goals and needs within a defined time scale and budget. The middle level is concerned

with a set of activities for software evolution including initial request, change

assessment, cost-estimation, and change impact analysis. At the lowest level is

technology to support the process such as automated tools, languages, and notations.

The above process is organized in a staged model for software lifecycle. In short, the

model represents the software lifecycle as a sequence of stages namely initial

development, iterative evolution, iterative servicing and phase out stages [Bennett and

Rajlich, 2000]. During the initial stage, software architecture and team knowledge are

developed, which lead to the first version of a software system. The successful first

version is then evolved to adapt the changing user requirements and operating

environment at evolution stage. Servicing stage starts when there are no major changes,

and minimum involvement of domain or software engineering experts. Finally, the

software system that becomes less useful in its environment, and costly to maintain will

enter the phase-out and close down stage.

The effort to classify software evolution and maintenance by Chapin et al. brings a

useful different view to software evolution. Instead of using the traditional intention-

Page 26

Chapter 2 Software Evolution and Business Rules: State-of-the-art

based classification such as corrective, adaptive, perfective, and preventive, they use the

classification based on “objective evidence o f maintainers’ activity” [Chapin et al.,

2001], From their observations, they identify mutually exclusive software evolution

types, and arrange them into four clusters namely support interface, documentation,

software properties, and business rules. The degree of changes will determine which

activity is belonging to which cluster. They conclude that different types of maintenance

or evolution may have different impact on software and business processes as shown in

Figure 2-1. Based on their findings, it can be observed that business rule changes brings

the highest impact on both software and business processes.

Im pnctoa
software

Impact ou business processes
Low <------ ------------- --—->lli^h

C'htsler
and type

Low Support interface
A □ □ □ □ □ Training

i I
t P O P P Consultive

J 1
1 □ O Evaluative

! i Documentation
I □ □ Reformative
i
t

□ □ Updative
I \

i Software properties

i □ □ Groomative
i □ D O Preventive
ii | non Performance

□ □ Adaptive

i Business rules
i □ Reductive
i
v □OP Corrective

High □ □ □ □ □ □ Bnhancivc

Figure 2-1 Impact of the types of software evolution and maintenance
(cited from [Chapin et al., 2001])

Apart from lacking of standard definition of the terms software evolution, there is also a

problem related to inconsistencies in terminology used to define the attributes of

evolvable software systems; for example adaptability [Evans and Dickman, 1997; Liu,

1998], flexibility [Schneider, 1999], tailorability [Stiemerling et al., 1997], extensibility

[Liu, 1998], customizability [Masuhara et al., 2000], scalability [Kon et al., 2000],

maintainability [Burd and Munro, 1999], compatibility [Senivongse, 1999],

changeability [Lam et al., 1999], and stability [Diaz et al., 1998]. These terminologies

Page 27

Chapter 2 Software Evolution and Business Rules: State-of-the-art

often reflect the attributes of their proposed solutions to software evolution. Although

there is a minor different in their definitions, they share the common aim i.e. to

minimize the evolution (or maintenance) efforts of a software system.

In the following discussion, state-of-the-art approaches to software evolution will be

investigated by naturally categorizing the current approaches into three main

dimensions, as mentioned at the beginning of this chapter, namely process, product and

elaboration. The summary and further remarks are presented at the end of this section. It

is important to note that, in this thesis, the meaning of the term ‘approach5 may

represent a solution that consists of all or some methodological elements such as

method, technique, tools, process, or modelling language. It is more lenient than the

term ‘method5 defined in method engineering field [Brinkkemper, 1996].

2.2.1 Process Dimension

In the current context, process is referred to a set of well-organized activities to

accomplish certain tasks in order to produce well-defined results. Along this dimension,

software evolution approaches can be further classified into three main groups i.e.

development approaches, evolution management and evolution support.

Development approach provides a methodology for the development of software system

for future evolution. Even though most approaches serve for this same purpose, each of

them has distinctive flavour. For instance, DRASTIC aims at software evolution during

execution by exploiting object persistence and distributed systems implementation

[Evans and Dickman, 1997]. This approach is further refined by introducing the notions

of zones, contracts and change absorbers [Evans and Dickman, 1999]. Perrochon and

Mann introduce 'inferred design' to deal with rapid software evolution [Perrochon and

Mann, 1999]. Unlike conventional software development approach, inferred design

inverts the process by deriving design from the implementation. It is believed that this

approach enables one to deal with rapid software evolution since the changes to

implementation will cause the new model to be generated. Misra et al. take one step

further by considering the modelling of the environment of the software. This approach

is based on a 'meta-architecture' that provides a framework to software evolution using

COTS and custom component [Misra et al., 1997a; Misra et al., 1997b]. Lied considers

Page 28

Chapter 2 Software Evolution and Business Rules: State-of-the-art

a separation development of domain model at the beginning of development, which is

called 'domain engineering', and uses this model to generate an application software

[Lied, 1997]. EVOLVE uses adaptive schema and propagation pattern to make object-

oriented design easy to change [Liu, 1998], There are also approaches that specifically

deal with legacy system. Mehta and Heineman address legacy system evolution using

feature engineering to identify system features, and creates software component based

on these features [Mehta and Heineman, 2001]. MORALE (Mission Oriented

Architectural Legacy Evolution) that provides a complete cycle for evolving legacy

system starts from eliciting change requirements up to performing the evolution

[Abowdetal., 1997],

The next group that lies on process dimension is evolution management. Evolution

management relates to a process of handling evolution activities and software artefacts.

The general aims of evolution management are twofold, to record evolution information

for future references as well as to reduce the complexity of the evolved software. For

example, EMMA (Evolution-Memory Management Assistant) provides details of

evolution information for several software releases [McCullough et al., 1998]. Mens

uses graphs to manage evolution of software artefacts such as architectures and codes

[Mens, 2000]. Ohlsson et al. reduce component complexity, keep track of software

evolution and react before the system is difficult to maintain [Ohlsson et al., 2001].

Since evolution may jumble up the software components, it is important to maintain

their traceability. There are approaches that address this problem by maintaining

traceability links between software releases [Antoniol et al., 2001], visualizing

traceability links, and using knowledge engineering to link source code and domain

knowledge [Li et al., 2000b].

The final group in the current dimension is support for software evolution, which

includes language [Shibayama et al., 2000], operating systems [Saranauwarat and

Taniguchi, 2000] and tools support. Although most of the above mentioned

development approaches come with their own software tools, it is worth to mention a

number of tools for their distinctive features. For example, there are tools that transform

existing software (legacy system) to a new programming paradigm such as from

procedural to object-oriented program [Fanta and Rajlich, 1999]. This action is taken as

Page 29

Chapter 2 Software Evolution and Business Rules: State-of-the-art

a preventive measure to deal with future evolution. Software tools like Aspect Browser

aids evolution at higher level than codes by performing global software changes in a

system that consist of separate modules [Griswold et al., 2001],

2.2.2 Product Dimension

Under the scope of product dimension, most of work on software evolution is

predominantly associated to several distinct but closely related fields namely software

architectures, distributed systems, object-oriented and component-based software

system. Apart from these main fields, there are few observable trends in other fields

such as agent-based computing and design patterns. Due to the limited space, this

section discusses only the main fields.

In general, software architecture consists of components, connectors and organization

of its components and connectors [Perry and Wolf, 1992; Shaw and Garlan, 1996],

These architectural constituents can be manipulated and further defined to achieve an

evolvable architectural design, which in turn improves evolvability of a software

system. For example, refining the role of connectors makes run-time evolution of

software architectures feasible [Oreizy et al., 1998], and introducing good abstractions

of the components for composition improves software evolvability [Andrade et al.,

2002]. In product-line architectures, i.e. a set of software systems that share core

product architecture, the architectural constituents are carefully identified and defined

for a future product member evolution [Svahnberg and Bosch, 2000].

The effect of evolution in distributed systems is more complex since most of the

components are distributed across different address spaces; however, many benefits can

be gained from the inherent nature of distributed systems such as low coupling and high

cohesion of their architectural components. Although the approaches directly, or

indirectly, aim to utilize the distributed implementation features, their discussions still

focus on software architectures. For example, ‘mediator’ is used as a middle component

between changed server and older client in [Senivongse, 1999], change absorbers in

DRASTIC architecture [Evans and Dickman, 1999], ports in [Magee et al., 1994], and

actor 'liaison' in [Astley and Agha, 1998]. These architectural components attempt to

absorb or reduce the effect of changes in distributed software systems.

Page 30

Chapter 2 Software Evolution and Business Rules: State-of-the-art

There are also a number of related works on software evolution in object-oriented

software system. Although object-oriented features such as encapsulation, inheritance

and polymorphism are helpful in supporting software evolution, in practice they are not

enough to support evolution of large, complex software systems. Therefore, the

approaches in object-oriented software evolution emerge in divergent topics. For

example, the formalization of object behaviour specification [Itou and Katayama, 2000],

and the generalization of reuse contract formalism and its integration into Unified

Modeling Language (UML) metamodel [Mens and D'Hondt, 2000] proved to be useful

in supporting software evolution. Liwu uses UML extensions capability to express the

interrelations between classes based on the notions of 'contract' and 'protocol'; contract

specifies the services required and provided by a class whilst protocol register

cooperation between classes [Li, 1999]. Liu increases adaptability of object-oriented

design against requirement changes using adaptive schema style rules [Liu, 1998]. The

rules are used to transform any object-oriented design into a more adaptable design.

Diaz et al. provides method to explicitly identify, design and implement business

policies in object-oriented software system [Diaz et al., 1998]. The explicit description

of business policy is able to separate a volatile part from the stable part hence localizes

change and support evolution. Hursch and Seiter propose a framework to detect and

manage inconsistencies between objects and programs following object-oriented

schema transformation [Hursch and Seiter, 1996], The consistencies are re-established

via objects and programs transformation.

Component-based software is a software system that is developed by composition of

reusable predefined, pre-tested software components. It gains popularity from software

engineering practitioners for shorten time to market. Recent work shows that, with some

improvements, component-based software may benefit evolution. For instance, the

separation of components, connectors and configuration [Schneider, 1999], the

decomposition into a set of components based on business consideration [Jarzabek and

Hitz, 1998], and the use of precise specifications to determine and maintain the

semantic dependencies between components [Perry, 1999] are proved to facilitate

software evolution.

Page 31

Chapter 2 Software Evolution and Business Rules: State-of-the-art

2.2.3 Elaboration Dimension

Elaboration dimension embraces any effort to understand and describe particular

characteristics of software products or processes pertinent to software evolution. The

characteristics include static aspects such as consistency, traceability, complexity and

productivity, as well as dynamic aspects such as the impact of changes upon software

structure or behaviour. Evolution metrics and change impact analysis are two

considerable research trends that fall under this category. The former is concerned with

the study and application of software measurements, for example, the use of design and

implementation ‘instability’ metrics to track object-oriented software evolution [Li et

al., 2000a], and the use of metrics for measuring the aspects of software for the process

of reverse engineering [Yang et al., 1997]. The latter is concerned with the study of

effect from software changes; for example, extracting evolution effect from source

codes [Tahvildari et al., 1999], and using multi-graphs that represent software

components for early evaluation of change impact [Deruelle et al., 1999].

2.2.4 Summary and Further Remarks on Software Evolution Approaches

As a summary, the views on software evolution discussed at the beginning of this

section emphasize two important issues in software evolution; the environment that

generates changes and the process that describes the way to perform changes. The

former includes any source that causes a software system to evolve such as domain,

experience, and organization. Based on the objective evidence in software maintenance,

business rule changes are always considered as the most important sources to software

evolution. The latter refers to the issues related to software process such as software

technologies, method, tools, techniques, and languages. The solution to software

evolution problems is likely to success by addressing both of these issues.

The three different dimensions of software evolution approaches can be further

explained using a three-dimensional view graph as illustrated in Figure 2-2. In short,

process dimension refers to a set of activities, procedures, rules, guidelines and tools to

manage software changes as well as to develop a more evolvable software system.

Product is concerned with the improvement of the evolvability of software artefacts

such as the study of software architectures, distributed, object-oriented and component-

Page 32

Chapter 2 Software Evolution and Business Rules: State-of-the-art

based software systems. Elaboration dimension includes means to understand the

attributes and effects of requirement or software changes to software components. Since

these three dimensions are not mutually exclusive, some approaches may be located at

any intersection point in the three-dimensional graph.

Figure 2-2 The three-dimensional view of software evolution approaches

A more careful consideration of the discussed software evolution approaches leads to

other further remarks. Based on their success stories in real-world applications, it is

found that software evolution approaches that address both product and process

dimensions are more likely to success. In terms of the three-dimensional graph shown in

Figure 2-2, the approaches must be at least located at product-process intersection

(shown as P-P Plane) to ensure that they are practically accepted. In other words, all

software evolution approaches should define the structure of the product and describe a

fairly detailed process to produce and evolve the product. It is also found that very few

approaches include all of the process, product, and elaboration dimensions. Therefore,

such approaches (shown as P-P-E Intersection Point) are considered as the ideal

approaches since they are desirable but very hard to achieve.

Although they end up with different degrees of success, most approaches make their

own constructive contributions to the field of software evolution. However, these

approaches have several common observable drawbacks that are listed as follows:

P-P Plane
(shaded area)

Product <4 -
archilecture, distributed

Process
(development approach, evolution

management, tools support)

P -P-E Intersection Point

Product a —
(soft, architecture, distributed

system , 0 0 , com pon en t-based)
X

Elaboration
(meuics, change impact

analysis, etc,)

Page 33

Chapter 2 Software Evolution and Business Rules: State-of-the-art

♦ The majority of them ignore the important aspect, or the most volatile part of

rapidly changing business environment i.e. business rules. They tend to focus on

technological issue such as software architectures, modelling languages, and

software artefact management issues. As mentioned earlier in this section,

business rules are the important sources to changes, and their changes may bring

the highest impact to software system. Without considering the source of

changes, these approaches only confine their solutions to the problem, and not to

the sources of problem.

♦ Most of them concentrate on application model instead of the metamodel that

may provide a higher flexibility to software system. By considering the

evolution issues during the development of the metamodel, the components that

facilitate evolution can be enforced to be included in the developed software

model.

♦ Software evolution is often defined as the process of changes to the software

system after delivery or successful operation, which implies the changes are

only made after getting a feedback from the actual system deployment. This is

not always true for rapidly changing business environment. In a highly dynamic

business environment, the requirements are frequently changing even during

development phases. Future approaches should be able to deal with rapid

software evolution, in other words provide an application model that can be

evolved prior to actual system deployment.

2.3 Business Rules

In the previous section, we have identified the importance of business rules in software

evolution. By explicitly considering business rules in software development, we may

reduce evolution effort. Business rule changes should only change those related volatile

components, and they should not affect the core components of a software system. In

this section, an overview of business rule approaches to software development will be

examined.

Page 34

Chapter 2 Software Evolution and Business Rules: State-of-the-art

The term business rule was introduced by Daniel S. Appleton. He defines business rule

as “an explicit statement o f a constraint that exists within a business ontology”

[Appleton, 1984], This definition emphasizes the importance to explicitly represent the

constraints which are embedded in business ontology, i.e. a conceptual schema within a

business domain that is often represented by a typical hierarchical data structure

containing all the relevant entities, their relationships and rules. Without the explicit

statements of the constraints, it is difficult to deal with their inconsistencies and changes

within business ontology. Business rules, which explicitly represent the constraints, play

an important role in managing business ontology.

To date, there are many business rule definitions introduced by various areas of research

such as conceptual modelling, database, object-oriented paradigm, and business

modelling. The most popular business rule definition, which is adopted by many current

business rule approaches, is the definition proposed by the Business Rule Group (BRG).

BRG defines a business rule as

“a statement that defines or constrains some aspect o f the business. It is
intended to assert business structure or to control or influence the
behaviour o f the business” [Hay and Healy, 2000].

In the above definition, the statement ranges from the definition of each stored data to

the constraints on insertion, deletion, and modification of the data which specify the

structure and behaviour of business operation. They are often imposed by business

owners. For example, only validated purchase order will be accepted, and each purchase

order is only can be approved by an authorized person. Apart from business owners,

constraints may also be imposed by industry, economic, and political environments

[Moriarty, 1993]. The business rule definition proposed by the BRG is found adequate

to be adopted for the purpose of this research since it applies to both business and

information system perspectives.

From the above definitions, business rules are not newly discovered software artefact;

they already exist or are embedded in other software artefacts such as analysis models,

design components, source codes, and data constraints. Recently, there is increasingly

interest on separating business rules from other aspects of software development for a

Page 35

Chapter 2 Software Evolution and Business Rules: State-of-the-art

number of reasons. The most common reason is to facilitate software evolution since

business rules are the most volatile part in business information system. By explicitly

model and implement business rules, the rule changes are localised only to volatile part

without affecting the remaining stable part of software system.

Business rules also assist effective communication between users and software

engineers since they are understandable by users as business process owners [Moriarty,

1993; Gottersdiener, 1997], Business rules can also be considered as a source for

requirement determination [Bajec and Krisper, 2001], The intended users found that it is

easy to express their requirements, which in turn lead to faster application development

and better quality of requirements. They also act as a means to align software solution

with business environment by propagating their changes to the associated software

system [Morgan, 2002]. Other benefits of the explicit consideration of business rules

include facilitate change, promote reuse, and improve software scalability. The effort to

emphasize business rules in software development lead to a new approach to software

development namely business rules approach which is the area of discussion in this

section.

Business rules approaches vary in terms of the level of the roles of business rules

incorporated in software development activities. At a lower level, there are very

minimum differences from the current approaches with reference to business rules.

They use the existing techniques and notations in object-oriented, software

architectures, component-based, or databases. They may be only address the issue of

mapping business rules to other software artefacts [Hruby, 1998], encapsulate business

rules in an architectural component [Vives and Dombiak, 2000], implement business

rules as the specific distributed object components [Rouvellou et al., 1999; Rouvellou et

al., 2000], or provide business rules repository [Haggerty et al., 2001],

At a higher level, the approaches contribute more efforts to promote business rules as

central constructs in software development such as the specific models for business

rules modelling, and the specific software process for business rules [von Halle, 2001b],

In certain attempts, new notations, formalisms [Diaz et al., 1998], and framework

[Kardasis, 2001] were introduced for business rules modelling. Although business rule

approach provides a new way of thinking on how to effectively analyze, design and

Page 36

Chapter 2 Software Evolution and Business Rules: State-of-the-art

build a software system, in practice it is too early to claim that it is a new software

development paradigm. It still largely based on the previous paradigms such as object-

oriented and information system engineering.

Based on the in-depth review of literatures, the discussion on business rules approaches

can be organized into three sub-sections i.e. business rule approach to software

development, business rule in object-oriented software development, and other areas of

research on business rules. Since this research focus on a special category of software

namely business information system, the terms software, information system (IS), and

business IS are used interchangeably unless otherwise stated.

2.3.1 Business Rules Approach to Software Development

The importance of business rules in software development was recognised since 1980s.

One of the prominent example is RUBRIC (Rule-based Representation in Information

Construct) approach that separates and explicitly model business policy from

operational procedure in business information systems [Layzell and Loucopoulos,

1988]. In general, RUBRIC considers two types of rules i.e. static constraints and

dynamic rules. The former is used to augment E-R notation in the expression of

constraints; it is written in i f ..,t h e n format. The latter describes rules in terms of

‘trigger’, preconditions’, and ‘reference’. It is written in the following format: w h e n

<trigger> I F <preconditions> THEN <reference>, which means the behaviour of

an entity (reference) is executed on the occurrence of events (trigger), and the

satisfaction of certain conditions (preconditions). RUBRIC also provides system

architecture which consists of modules that capture, validate, implement, and maintain

business rules [Loucopoulos and Layzell, 1989].

In the following decade, there was more awareness that business rules are the essential

aspect of information systems. Moreover, the existing common software development

methods were found “insufficient or at least inconvenient” in expressing business rules

[Herbst et al., 1994]. Therefore, there were increasing interest in the method for

elicitation, documentation, modelling, deployment, and evolution of business rules.

Until now, they are still relevant as the important research and practice issues. Among

the popular focuses of the current research in business rule approach are the role of

Page 37

Chapter 2 Software Evolution and Business Rules: State-of-the-art

business rule in system development lifecycle, business rules as the link between

business and IS, and business rule representation.

Business rules in system development lifecycle

With regard to the coverage of software development lifecycle, business rule

approaches can be generally divided into two main groups: conceptual modelling and

the complete lifecycle. The foimer is concerned with the capture and modelling of

business rules during system analysis. The latter provides a more complete set of

activities for business rule lifecycle which consist of elicitation, modelling, deployment,

and evolution of business rules.

In conceptual modelling, Loucopoulos et al. introduce a conceptual model that consists

of Conceptual Rule Language (CRL) and entity relationship time (ERT) [Loucopoulos

et al., 1991]. CRL is used to facilitate the capturing and specification of business rules,

which are classified into three main types: constraint, derivation, and action rules. The

business rules, which are specified in CRL, makes reference to the ERT conceptual data

model and mapped to the object-oriented representation expressed in PROBE language.

The syntax for business rule expressions in CRL is described by its BNF definition.

For another example, Herbst proposes a set of steps in specification and validation of

business rules together with the metamodel for specifying the rule repository [Herbst,

1996]. The steps include the development of specifications for process structure,

processes, conceptual data model, and integrity constraints. In this approach, business

rules are used to specify processes and constraints. Regarding the metamodel, it can be

divided into core and environment elements. The core elements include event,

condition, and action which foim the rule expression. This type of rule is also known as

ECA rule. The environment elements comprise the closely related components in

information system such as business process, organizational unit, data model

component, and actor.

The Business Rules Group (BRG) aims to formalize an approach for identifying and

expressing business rules [Hay and Healy, 2000]. BRG proposed a metamodel that

defines the conceptual model for business rule expression. In this metamodel, business

rules are classified into structural assertion, action assertion, and derivation. Structural

Page 38

Chapter 2 Software Evolution and Business Rules: State-of-the-art

assertion consists of terms and facts, which is the constraints on terms such the

properties of entities, attributes and relationships. Action assertion constrains the

behaviour of business activities such as data updating or operation invocation.

Derivation derives a new fact based on the existing facts.

In information system analysis, Kardasis and Loucopoulos propose a process to

facilitate the business rule elicitation and a repository schema to assist business rule

management [Kardasis and Loucopoulos, 2003; Kardasis and Loucopoulos, 2004],

Their approach focuses on the modelling of business rules within the intentional and

operational views of information system analysis. The intentional view is concerned

with business context perspective whilst the operational view relates to business process

perspective. The informal business rules in business context perspective, which are

often expressed in natural language, are transformed to a more formal business rules

within business process perspective.

Apart from the above approaches, there are also other efforts in conceptual modelling

such as separating business policies, which can be broken on certain occasions, from

business rules which can never be broken [Snoeck, 2002]. There are also reported work

on the role of business rules as a complementary technique in other requirement

engineering methods such as objective driven [Bubenko and Wangler, 1993], client

oriented requirement baseline [Leite and Leonardi, 1998], workflow modelling [Liu and

Ong, 1999], extreme requirements [Leonardi and Leite, 2002], and enterprise modelling

[Skersys and Gudas, 2004].

For a broader coverage of business rule modelling in software development lifecycle,

Ho et al. propose a framework based on ‘data-rule-process’ design procedure [Ho et al.,

2003]. In this framework, the terms and facts are identified during data design. The

rules, which are built based on the terms and facts, are determined during rule design. A

set of Scenario Functions (SFs) is developed during process design. SF is a function

with a number of elements that can be expressed in programming language. Business

rules are implemented as an independent element in SF that can be maintained without

affecting other elements.

Page 39

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Rosea et al. propose a more complete business rule lifecycle which comprises of

acquisition, deployment, and evolution of business rules [Rosea et ah, 2002]. Their

approach is closely related to the techniques in decision support system. During

acquisition, the goal-oriented rules which relate to enterprise objectives are captured

using the method that exploits knowledge from the decision support systems. The goal-

oriented rules are further refined into operational rules. The determinism, conflict and

ambiguity of operational rules are addressed during deployment. During evolution, the

data gathered by monitoring activities supply information about the required rule

changes.

Business Rule Solutions (BRS) provide a comprehensive steps and guidelines for

business rule approach using its Proteus™ methodology [Ross and Lam, 2003]. BRS

also introduce sentence templates and automated tools for capturing and managing

business rules [Ross and Lam, 2001]. This approach is also complemented by a

comprehensive explanation on theoretical aspects of business rule using predicate logic

[Ross, 2003]. Similar business rule approaches are also proposed by other information

technology practitioners [Morgan, 2002; von Halle, 2002].

Business rules as the link between business and IS

In connection with linking business rules to IS, Hars and Marckewka introduce a CASE

tool that utilizes natural language processing (NLP) for interpreting and mapping

business rules to information systems design [Hars and Marchewka, 1996]. This tool

allows users to express business rules in their natural language, which in turn allows

them to provide complete and appropriate requirements without being restricted by

models and methods associated with IS design. The tool is capable of identifying

condition-action (EF-THEN) structures used in natural language. It is also capable of

identifying the key concepts and categories that are involved in each action and

condition such as person, location, and time. These business rules are used to generate a

business process diagram in flowchart notations. The limitation of this tool is it only

deal with a single word concept, and not applicable for word combination. Due to linear

nature of natural language, it is also very hard to automatically build complex branching

structure.

Page 40

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Bajec and Krisper advocates business rules to be used as information resources that help

in establishing link between organization’s business and its supporting IS [Bajec and

Krisper, 2001]. A number of activities related to business rule modelling and

implementation are included in both business modelling and IS development. Business

rule repository, which is accessed by these activities, act as an explicit link between

business and IS. The repository is independently managed by a set of business rule

maintenance sub-activities. However, there is no detailed explanation on how to

actually implement the link.

Groznik and Kovacic attempt to establish the relationships between business rules and

other business related concepts in business modelling [Groznik and Kovacic, 2002].

Their motivation is to establish an environment in which business rules can be traced

from their origin in business environment through to their implementation in IS. In their

approach, the initial rule-based description of business process (in business modelling),

which is written in natural languages, is broken down into detailed rules which act as

specifications of IS requirements. These detailed rules, which are now in a more

structured form, are consequently used to develop workflow model of IS design.

There are also suggestions to link business rules with UML use cases. Hruby outlines

the link between business process and business object views at organizational, system,

and architectural level using use case model [Hruby, 1998]. In a workshop on the styles

of documenting business rules in use cases, many participants suggest that if the number

and complexity of the rules is high, business rules should be located external to use case

[Anderson et al., 1997]. The business rules can be referenced from use cases using

pointers. In his thesis, Hurlbut proposes an adaptive use case, which is extended from

UML use case, to interact with business rule statements in facilitating domain evolution

[Hurlbut, 1998].

Business rule representation

Most of the above discussed approaches are supported by their underlying rule language

for the purpose of business rule representation. The main objective of the rule language

is often to provide an understandable business rule statements to both business and

technical users with enough formalization for automated validation and implementation.

Page 41

Chapter 2 Software Evolution and Business Rules: State-of-the-art

For this reason, there are different formality levels of the language. High level of

formality is important to ensure the preciseness and completeness of rule expression for

the modelling and implementation purpose. However, for the purpose of

communication with the business users, natural language which is less formal is more

suitable. With regard to the formal and structured representation of business rules, there

are three main category of languages i.e. sentence templates, mathematical logic, and

graphical representation.

Sentence template is the most popular form of representing business rules [von Halle,

2001a; Morgan, 2002; Ross, 2003; Wan Kadir and Loucopoulos, 2003; Skersys and

Gudas, 2004]. It can be easily mapped to natural language to provide effective

communication between business users and system developers. In terms of

implementation, it is structured enough to be mapped to design or implementation

components. For a more precise representation, these templates can be further defined

using context-free grammar meta-language such as Extended Backus-Naur Form

(EBNF) [Herbst, 1997; Kardasis, 2001].

A more formal approach in rule representation uses mathematical logic which mostly

comes from the field of knowledge representation. Using logic, the formal

representation of business rules can be automatically used in decision processes.

External Rule Language (ERL) is an example of a formal logic language that describes

business rules in terms of entity and relationship constraints and the details of

information flow [McBrien et al., 1991], Courteous Logic Program (CLP), which

extends ordinary logic programs with prioritized conflict handling, is another example

of the use of logic in business rule representation [Grosof et al., 1999]. CLP is encoded

using XML to produce Business Rule Mark-up Language (BRML) which is used in the

implementation of e-commerce applications. Defeasible logic offers more expressive

power and lower computational complexity compared to CLP [Antoniou and Arief,

2002], It consists of strict rules and defeasible rules. The former is different from the

latter in that the conclusion of the former is always valid whenever its conditions are

true whilst the conclusion of the latter can be cancelled by the existence of another rule

with an opposing conclusion.

Page 42

Chapter 2 Software Evolution and Business Rules: State-of-the-art

In a graphical representation of business rules, UML-A is proposed as an extension of

UML notations and guidelines in explicit modelling of active rules (event-condition-

action rules) during analysis and design [Berndtsson and Calestam, 2003], A simple

active rule is possible to be represented by UML statecharts using the concepts of

events, event parameters, conditions, and actions. A rhomb notation is used to represent

active rule that guards the transition between two states. For a more complex rule such

as multiple rules concurrently triggered by the same event, a ‘junction pseudo-state’

state is introduced to split the transitions. Situation/Activation diagram is another

example of the graphical representation of business rules [Lang and Obermair, 1997].

Situation diagram defines the situations that trigger business rules whilst Activation

diagram specifies business rules according to event-condition-action structure. There is

also Object Role Model (ORM) that provides a rich language for expressing business

rules, either graphically or textually [Halpin, 1996], ORM views the application domain

as a set of objects, i.e. entities or values that play roles, i.e. parts in relationships. It

provides different graphical notations that are attached to the roles to specify business

rules such as pair-exclusion constraint, asymmetric constraint, uniqueness constraint,

and entity subtype.

2.3.2 Business Rules in Object-Oriented Software Development

Object-oriented software development paradigm gains popularity in academia and

industry since 1980s due to its various benefits. The concepts found in object-oriented

paradigm such as object, class, attribute, operation, and relationship are closely

naturally related to the concepts in the real world. Its modelling mechanisms, such as

encapsulation of object details, inheritance, and polymorphism, are able to produce

extendable, evolvable, and reusable software components. Other benefits of object-

oriented paradigm include faster development, smooth transition from analysis to

implementation, higher cohesion components, and lower coupling between components.

Nowadays, object-oriented techniques are still incorporated in most contemporary

software development approaches within various fields including distributed systems,

business modelling, and adaptable software systems to name a few. A brief overview of

software evolution in object-oriented software systems was presented in section 2.2.2.

Page 43

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Although object-oriented techniques bring many benefits towards a more maintainable

software system, they are still focusing on the software issues. There are a lot of

improvement opportunities if the source of changes, i.e. business rules, is taken into

account. This leads to many attempts to incorporating business rules in object-oriented

paradigm. It is observed that majority of the approaches focus on the design and

implementation stages. They may be generally classified into three recognised fields:

specification, architecture, and framework.

Some approaches only consider business rules as a specification which is linked or

transformed to other modelling elements. For example, Eriksson and Penker suggest to

use Object Constraint Language (OCL) for business rule specification, which is linked

to a specific element in a business model [Eriksson and Penker, 2000]. OCL is a

declarative specification language that provides a precise and easily understood

specification for constraints. The specification is written in a curly bracket or note

attached to model element. Business rule is categorised into three main types:

constraint, derivation, and existence rules. Constraint rules specify the possible

structural and behavioural aspects of objects or processes. They are further divided into

structural, operational, and stimulus/response rules. Structural rules are often specified

by the specification of classes and relationships in the class diagrams. If necessary, short

OCL expression can be written in curly bracket and attached to the related model

elements. Operational rules define the pre- and post-conditions that must hold before or

after an operation is performed. The OCL expressions for operational rules are often

modelled as a note attached to a class. Stimulus/response rules define the flow of

business process. OCL cannot be used to specify stimulus/response rules since it is not a

procedural language. Instead, they are presented using an activity diagram. Derivation

rules define how to derive new information from other information. They are further

divided into inference and computational rules. OCL invariants (conditions that must be

true at all time) and post-conditions are used to specify derivation rules. Existence rules

describe the time condition of the object life. OCL invariant or the existing features in

class diagram, such as aggregation, can be used to specify this type of rules. During

implementation, the above rules are coded in their implemented class.

Page 44

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Another example is an event script, which is used to identify and specify business rules

[Poo, 1999]. The event script extends the use case modelling technique by adding

additional structured specification which includes the business rule descriptions such as

pre-event condition, post-event triggers, and derivative policies. These descriptions are

consequently transformed into class specification which provides an action for each

event.

There are also efforts that propose the use of business rules in their object-oriented

architectures to improve the evolvability of the produced software. Among their popular

examples are coordination contract [Andrade et al., 2002] and Adaptive Object Model

(AOM) [Yoder and Johnson, 2002]. In coordination contract, business rules are

implemented in an association class called ‘contract’ that intercept the method

invocation between software components. If the invoked method is registered as a

business rule event in a contract and the value of the rule conditions are true, then the

contract triggers the listed actions. AOM includes several design patterns and rule

objects in its meta-architecture. Design patterns simplify the core entities evolution

whilst rule objects externalize business rules, thus localise business rule changes.

Another example of business rule in object-oriented architecture is the three-layer

architecture that aims to reduce development and maintenance cost by simplifying the

specification and reuse of business rules [Mohan et al., 2000], It employs the well-

known three-layer software architecture: presentation, application, and persistence

layers. The application layer is further divided into domain and business rule layer. The

business rule layer consists of three packages: rule, rule handler, and observer. During

operation, an observer object detects any event object sent by an object in a domain

package. It then passes the information from event object to a rule handler. A rule

handler, which manages rule objects, triggers the necessary business rules. A rule

exception object is thrown if the rule execution fails for any reason.

Business rules are also found as the components of object-oriented framework, which is

an infrastructure for the design and implementation of object-oriented system. One of

the prominent examples this type of framework is Business Rule Beans (BRBeans)

[I.B.M., 2003]. In BRBeans, business rules are implemented and managed in a separate

component developed using JavaBeans technology. Business rules are fired by rule

Page 45

Chapter 2 Software Evolution and Business Rules: State-of-the-art

client component located in the software application. Another example of object-

oriented framework is Aspect Bean [Cibran et al., 2003]. Aspect Bean aims to address

the problem of unsystematic separating business rules from the core application which

causes the trigger points to be embedded and scattered within application.

Consequently, it is very hard to locate these trigger points if any business rule change

occurred. Therefore, Aspect Bean is developed to separate and encapsulate the linking

code using aspect-oriented programming technique.

Other than the above areas, there are also different topics relevant to the role of business

rules in object-oriented software systems. For instance, rule object design patterns

[Arsanjani, 2000], object-role modelling for conceptual data modelling [Halpin, 2001],

and the requirements for tools and environments to support business rules [Mens et al„

1998].

2.3.3 Other Areas of Research on Business Rules

In addition to the above mentioned software development approaches, there are also

other notable areas of research on business rules. They are: the architecture of business

rule system, business rules extraction, and in the field of database research.

With regard to the architecture for business rule system, Kang et al. propose an

architecture that allows user to manage business rules using rule editor [Kang et al.,

2004]. The rule editor interacts with rule repository via rule object model handler. For

the purpose of implementation, inference engine and rule language in XML format are

also included in this architecture. Rosea and Attilio propose an architecture that allows

the sending and receiving among proprietary rule repository of heterogeneous business

information systems [Rosea and D'Attilio, 2001]. In this architecture, business rule

document in XML format is generated by rule generator of one system, which is

consequently processed by rule parser of another system.

Business rules extraction also gained considerable interest given that many business

rules are buried in the source codes of legacy software systems or other software

artefacts. The study of business rule extraction from legacy systems is closely related to

the study of software reverse engineering. For example, Shao and Pound combine data

Page 46

Chapter 2 Software Evolution and Business Rules: State-of-the-art

and program understanding techniques to discover business rules [Shao and Pound,

1999]. They developed automated tools to produce generic representation of programs

and databases: parsing tools are used to convert program into an abstract syntax tree

representation whilst schema tools are used to derive conceptual data models from

databases. Then, business rules are extracted from these generic representations. Wang

et al. propose a framework for extraction of business rules from large legacy systems

[Wang et al., 2004], This framework consists of five steps: program slicing, domain

variable identification, data analysis, business rules presentation, and business

validation. Ramsey and Alpigini propose a mathematically based framework to extract

business rules from heterogeneous programming language using Wide Spectrum

Language [Ramsey and Alpigini, 2002]. Other than business rules extraction from

legacy systems, there is also a technique proposed to extract business rules from

structured analysis specifications such as data flow diagram, data dictionary, structured

English descriptions and general system descriptions [Leite and Leonardi, 1998]. There

is also an attempt to help the understanding of the extracted rules such as multi-format

presentation framework that consists of presentation and representation layers [Fu et al.,

2001].

In the database field, the Conceptual Rule Language (CRL) is introduced to model

constraint, derivation, and event-action rules, and consequently map to deductive

database [Petrounias and Loucopoulos, 1994]. Attribute-oriented business requirements

and constraints is proposed to bridge a gap between requirements elicitation and

database implementation [Khan et al., 2004]. This approach extends the existing entity

relationship model with a new construct that would express business rules along with

the conceptual model. Object Constraint Language (OCL) is used to express constraint

in the conceptual database model [Demuth and Hussmann, 1999]. In this approach,

business rules are encoded as a database schema, and not in an application program.

Minor modification to OCL is suggested to enable the transformation of its specification

into SQL. There is also suggestion to develop and implement business rules similar to

the development and implementation of database i.e. as meta-data [Perkins, 2002].

Page 47

Chapter 2 Software Evolution and Business Rules: State-of-the-art

2.4 Business Rule Conceptual Modelling and
Evolvable Software Systems

In the previous sections, the extensive reviews on state-of-the-art business rule

approaches suggested that the approaches can be divided into two categories with regard

to the objectives of this research: business rule conceptual modelling and construction

of evolvable software systems. The former focuses on capturing and representing

business rules but they lack detail in the information about linking or transforming

business rules to software systems. On the other hand, the latter places emphasis on

providing the details on developing a rule-centric evolvable software system but the

business rules are poorly specified and their software components are not clearly linked

to the conceptual level of business rules. In investigating the finest way of incoiporating

business rules, which are originated from business domain, with the development of an

evolvable software system, both business rule conceptual modelling and evolvable

software systems must be systematically reviewed. In this section, a number of

prominent approaches were selected to be reviewed based on the availability of

literatures and examples. The MediNET case study is occasionally used to provide

business rule examples in describing the selected approaches.

2.4.1 Business Rule Conceptual Modelling

Although many approaches include business rules in their modelling constructs, most of

them are coincidence, implicit, informal, and lack of details. There are very few

approaches that directly provide a set of modelling abstractions, such as a metamodel,

and process guidelines to externally systematically model the business rules. In this

section, we will discuss three approaches that attempt to formally model business rules

at the conceptual modelling or system analysis stage of software development i.e.

Business Rule Group (BRG), Business Rule Oriented Conceptual Modelling

(BROCOM), and Business Rule Solutions (BRS) approaches.

2.4.1.1 Business Rule Group (BRG)

The Business Rules Group (BRG), formerly known as the GUIDE Business Rule

Project, investigated an appropriate formalization for the analysis and expression of

business rules [Hay and Healy, 2000]. According to BRG, business rules are often

Page 48

Chapter 2 Software Evolution and Business Rules: State-of-the-art

neglected, implicitly modelled, and informally expressed during system analysis. They

are not adequately articulated until the time to translate the constraints into program

code. Therefore, BRG proposes a solution to this problem by defining a conceptual

model that completely described business rules as well as their formal expression for a

smooth translation into implementation constructs.

As mentioned in section 2.3, BRG defines business rule as

“ ...a statement that defines or constraints some aspect of the business. It is
intended to assert business structure or to control or influence the behaviour of

the business” [Hay and Healy, 2000].

Although the above definition can also be viewed from a business perspective, BRG

choose to limit the scope of their work to information system perspective. In this

perspective, business rule is considered as an explicit expression, either graphical or

textual, which represent the constraints on the structure (i.e. entities, attributes, and

relationships) of the stored and manipulated data, as well as the control on the

operations (i.e. creation, updating, and removal) that manipulate the data. The

expression must be declarative in nature, which specifies what is suggested, required, or

prohibited during the operation of an information system. It may describe ‘what’ must

or must not happen under certain conditions but it does not describe ‘how’ the thing

happens in a procedural way.

There are two main parts of the BRG’s business rule metamodel i.e. the origins of

business rules and business rule types. The metamodel is shown in Figure 2-3. The

origins of business rules help system analyst to identify business rules in an information

system. It starts with a reviewing of a general statement of business policy. Each

general policy may be composed of detailed policies. A policy may be the basis for one

or more business rule statements. A business rule statement is a declarative statement of

structure or constraint, and it is a source of one or more atomic business rules. Each

atomic business rule is expressed in one or more formal rule statements. A formal rule

statement is an expression in a specific formal grammar, which is specified by a formal

expression type such as structured English. The examples of policy, business rule

statements, business rule, and formal rule statement that found in MediNET case study

is shown in Table 2-1.

Page 49

Chapter 2 Software Evolution and Business Rules: State-of-the-art

C o m m o n T erm

B u s in e s s T erm

Litoral

C on tex t

P o licy

B a s e P a c t

S tru c tu ra l A sse r tio n <] - F ac t
A ttrib u te

A g g re g a tio n

B u s in e s s R ule

e x p re ssed in

an ex p ression of

A ction A sse r tio n

A c tio n C o n tro llin g A sse r tio nF o rm al E x p re s s io n T ype

A c tio n In flu en c in g A s s e r t io n

M ath em atica l C a lcu la tio n

Figure 2-3 BRG’s business rule metamodel [Hay and Healy, 2000]

As can be observed in Figure 2-3, business rules are classified into three main types:

structural assertions, action assertions, and derivations.

Structural assertion is a statement about concept or relationship of something of

importance to the business. There are two kinds of structural assertions i.e. terms and

facts. A term is a word or phrase, which has a specific meaning to business. It is either a

business term, which has a specific meaning to a business, or common term, which is

part of a basic vocabulary. A term can also be categorized into type, which is an

abstraction about a group of instances, or literal term, which is an actual value or

instance. A fact may be either a base fact, i.e. the originally gathered information, or a

derived fact, which is constructed from other assertions. It may also be classified into

attribute, participation, and generalization fact.

Action assertion specifies constraints on the results that actions can produce. It consist

of two components i.e. anchor object and correspondent object. An anchor object may

be any kind of business rule whilst correspondent object may be either another business

Page 50

Chapter 2 Software Evolution and Business Rules: State-of-the-art

rule or action. Often, action assertion is expressed in the form of i f (a n c h o r o b j e c t)

t h e n (b u s i n e s s r u l e | a s s e r t i o n) .

Action assertion may be classified in three ways. First, it can be classified into

condition, integrity constraint, and authorization. Condition rule is the basis for

executing another business rule based on the truth value of the specified condition,

integrity constraint is the expression that must always true at any time, and

authorization is a definition of a privilege or permission. Second, action assertion can be

classified in terms of its role in controlling the execution of business process into

enabler, timer, and executive. Finally, it can be classified to either mandatory (action

controlling assertion) or optional (action influencing assertion).

Finally, a derivation is a derived fact that is created by an inference or a mathematical

calculation from terms, facts, other derivations, or action assertions. A mathematical

calculation derives fact using a specified mathematical algorithm whilst an inference

produces a derived fact using logical induction or deduction.

Table 2-1 The examples of the MediNET business rules and origins in BRG

Policy MediNET must provide a different package to a different type of patients.

Business Rule
Statements

Cash patients should pay their bill amount in full.
Their employer (panel company) will pay the cost of panel patients'
treatment.
Partly sponsored panel patients should pay their bills if it exceeds certain
limit.

Business Rule If the bill amount of the partly sponsored patient is more than the limit set
by his panel company, the patient should pay the balance.

Formal Rule
Statement

IF (bill.amount>limit) AND (patient is a partly panel patient) THEN
bill.balance = bill.amount - limit
invoke bill.payment(bill.balance)

END IF

2.4.1.2 Business Rule-Oriented Conceptual Modelling (BROCOM)

BROCOM is an approach to system analysis that emphasizes business rules in

conceptual modelling [Herbst, 1996; Herbst, 1997]. It attempts to solve a problem in the

existing system analysis methodologies, which are found insufficient to completely and

systematically model the business rules. The detailed comparison of the capability of

these methodologies in business rules modelling are discussed in [Herbst et al., 1994].

Page 51

Chapter 2 Software Evolution and Business Rules: State-of-the-art

For this purpose, BROCOM provides a metamodel that formalizes business rules in

conceptual modelling, outlines modelling steps that systematically guide the process

specification using business rules, and develops repository called BURRO that allows

the administration of business rules as metadata.

BROCOM defines business rules as

".... statements about how the business is done, i.e., about guidelines and

restrictions with respect to states and processes in an organization” [Herbst, 1997].

In his active database research, Herbst expands the scope of business rule definition to

all kind of business processes, and not only restricted to data integrity constraints as

traditionally defined in the area of database systems. The words ‘states’ and ‘process’

implies that business rules are associated to integrity constraints and business processes.

Business processes are the dynamic properties of an organization. Integrity constraints

are defined as constraints on the possible database states to ensure the database is

always in the correct states in the context of the application. In its business rules

classification, BROCOM considers integrity constraints as a special type of business

rules.

Business rules often consist of three components namely event that triggers business

rules, condition that should be satisfied before an action, and action that describes the

task to be done. Based on this fact, business rules are specified in ECA structure or

ECAA for a less redundant specification. The specification template for ECAA structure

and the examples of business rules for the main processes in MediNET case study are

given below,

BUSINESS RULE [n] 'BUSINESS-RULE-NAME’
ON (event)
IF (condition)
THEN action

'PATIENT-REGISTRATION'
ON (presence of person) OR (request for consultation

registration)
IF (person not yet registered)
THEN begin patient registration;

raise event 'REGISTRATION-COMPLETE'
ELSE begin consultation registration;

raise event 'CONSULTATION-REG-COMPLETE'
BILLING’

ON (consultation completed)
THEN create new bill;

Page 52

Chapter 2 Software Evolution and Business Rules: State-of-the-art

bill items : = prescription items;
calculate bill amount;
print bill;
raise event 'BILL-ISSUED'

•INVOICING’
ON (bill issued)
IF (invoice is not yet created) AND

(the bill belongs to the panel company's staff)
THEN create invoice;

insert bills;
print invoice;
raise event 'INVOICE-COMPLETED'

The large number of business rules in a real information system increases the

complexity of rule and process specifications. To reduce such complexity, a top-down

approach is chosen which provides different level of abstractions in the specification of

rules and processes. Initially, the system is decomposed into a few numbers of main

processes similar to structural decomposition in traditional software development

methods. Next, business rules are used to specify each process. Each process is then

refined until it is detailed enough in describing all processes in the system. In the above

business rule examples, they are used to specify the higher level processes of MediNET.

Each process can be further refined into lower level processes, for example, the

INVOICING process may be refined into 'Invoice Item Pre-Processing1, 'Invoice

Creation and Item Insertion', and 'Invoice Closing'. The business rule specifications for

the refined processes are given below:

BUSINESS RULE [3-1] 'PRE-PROCESS-INVOICE-ITEM’
ON (bill issued)
IF (bill belongs to a panel patient)
THEN store bill in a list of panel bills;

raise event 'INVOICE-ITEM-TO-BE-PROCESS'
BUSINESS RULE [3-2]' CREATE-AND-INSERT-INV0 1 CE’

ON (invoice item to process)
IF (invoice is not yet created) AND

(the bill belongs to the panel company's staff)
THEN create a monthly invoice for the panel company;

insert the bill as invoice item;
raise event 'INVOICE-CREATED'

ELSE open the invoice;
insert the bill as invoice item;

BUSINESS RULE [3-3] ’CLOSE-INVOICE’
ON (t h e e n d o f month) AND (i n v o i c e c r e a t e d)
IF (invoice created)
THEN close invoice;

print invoice;
send to the panel company;
raise event 'INVOICE-COMPLETED'

Page 53

C hapter 2 Software Evolution and Business Rules: State-of-the-art

111 the above examples, we have shown some business rule specifications that are

associated to certain business processes. For a development o f specifications 011

integrity constraints, a conceptual data model is used instead o f process hierarchy. In the

above discussion, we also described the business rule components i.e. event, condition

and action. These components, together with business process and conceptual data

model components are considered as the core o f BROCOM metamodel, which is shown

in Figure 2-4.

consisted O .M O .M

O .M

O .M
encompasses 0..n

0„n

O .M

0..1
isra ise d_by

O .M
is_raised_by

O .M
1..n O .M

O .M
consist_olconsisl_ofO .M

O .M re fe ts jois_raised_by O .M O .M

1.M

O .M1.M

mfers_to

1..n

!5„ow nad_by

O .MO .M

Processo r

Condition

B usiness Rule

Data Model Com ponent

Event

Origin

Process

Action

Figure 2-4 BROCOM metamodel [Herbst, 1997]

As shown in Figure 2-4, BROCOM metamodel also includes organizational facts such as

origin, processor, and organizational unit. Business rules may be originate from internal

origins, which results from internal organizational decisions, or external origins such as

natural facts and legal norms. Processor may be manual processor i.e. human actors

such as a clinic assistant, or automated processor i.e. software or hardware components.

Page 54

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Processor executes business rules: it detects the occurrence of events, evaluates

conditions, and performs actions. Organizational unit is considered in the metamodel in

order to provide a comprehensive model of the universe of discourse. Since it owns

origin and contains processors, organizational unit helps system analyst to identify

origins and processors, which in turn support business rules gathering.

In short, BROCOM is able to deal with formalization, complexity, traceability, and

completeness in business rule-oriented conceptual modelling. The case study in

business rule implementation found that all rules are adequately formalized in the

ECAA structure [Herbst, 1997]. The complexity is reduced by rules classification whilst

traceability is achieved via links to organizational facts. By considering the

organizational environment in the metamodel, BROCOM achieves the completeness in

capturing information about the universe of discourse.

2,4,1.3 B R S Approach

BRS approach is a business rule methodology that assists users in capturing and

managing business rules (BRS stands for Business Rule Solutions, LLC). It is supported

by a strong theoretical foundation, sentence templates, and its own development

process. The metamodel and tool are also provided to facilitate users in managing

business rules in their organization. BRS is already applied in a large number of

information technology projects, and it is the best example of the combination between

theory and practice in business rule methodology.

In BRS, business rule is defined as “a directive intended to influence or guide business

behaviour” [Ross, 2003], BRS emphasises that business rule should be regarded as an

element of the business system, and not the component of software system, based on the

fact that it is not necessarily implemented as software component. Instead, it may be

implemented as manual process or using business logic technology such as rule engines,

decision management platforms, and business logic servers. Another point highlighted

by BRS with regard to business rule definition is the separation between the ‘know’ and

the ‘flow’. The ‘know’ part of business process (i.e. the ‘flow’) should exist and be

managed as a resource in its own right.

Page 55

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Business rules are classified in terms of how they react to events into three fundamental

categories: rejectors, producers, and projectors. Rejector rule disallows (or rejects) an

event on a violation of the rule to prevent business from incorrect data or state. Producer

rule derives a value based on some mathematical functions. It is further divided into

computation and derivation rules; the former computes a value using standard

arithmetic operations whilst the latter derives a truth value (true or false) based on

logical operations.

Projector rule performs the specified action on the occurrence of a relevant event. It

may be further divided into enabler, copier and executive rules. Enabler rule asserts that

either something is applicable or not based on certain circumstances. It determines the

truth value of a fact, the exception in firing of another rule, the creation or deletion of a

data item, or the permitted execution of an operation, process, or procedure. Copier rule

sets the data item with actual values from something that persists or defines the

parameter related to how data is to be presented. Executive rule triggers an operation,

process, or procedure to execute, or a rule to fire.

BRS provides sentence templates, which is called BRS RuIeSpeak, as the guidelines to

develop rule statements. Sentence template is a basic structure or pattern that can be

used to express rule in consistent, well-organized manner, The main purpose of using

templates is to improve the communication at business level. The use of templates

produces easily understood business rule statements with consistent meaning. Sentence

template is not a technical or formal language; BRS provide the formal definition of

business rules using predicate calculus. Although they are meant for business domain,

business rule statements written using sentence templates can be considered as a basis

for the implementation level rule structure. The BRS templates organized into their type

are presented in Table 2-2.

Regarding the development process, BRS introduces a business rule methodology called

BRS Proteus™ Methodology that defines a number of steps for both business and

system modelling [Ross and Lam, 2003], Regarding business modelling, the process

starts with determining the scope of the information system. It follows by the

development of business tactics, workflows, terms and facts. Next, the business rule

specifications are developed based on the information from workflows, terms, and facts.

Page 56

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Business rules can also be captured from the existing documented rules such as

procedure manuals, training materials, and existing system documentation. The business

product, service, and process are consequently analyzed to identify the decision points.

Finally, the existing business rules are further formulated and analyzed for consistency,

reducing complexity, validation, and detailing the rule properties.

Table 2-2 BRS business rule templates and examples

Category Templates Example

Rejector

<Subject> MUST/should [not] <fact>
[if/while <condition>]

Each patient MUST have a patient registration
number.

<Subject> may/should <fact> ONLY
if/while <condition>

A patient may register for consultation ONLY
if the patient is a registered patient.

Computation
<Subject> must/should [not] BE
COMPUTED as <mathematical formula>
[if/while <condition>]

The amount of a bill must BE COMPUTED as
the total amount of all bill items.

Derivation
<Subject> must/should [not] BE TAKEN
TO MEAN clogical expression> [if/while
<condition>]

A category one past due paymaster must BE
TAKEN TO MEAN a paymaster with more
than three months unpaid invoices.

Inference
<Subject> must/should [not] BE
CONSIDERED as [a] <term> if/while
<condition>

A paymaster must BE CONSIDERED as
preferable if its arrears in less than RM
3,000.00 and the total transaction in more
than RM 10,000.00 for the last four months.

Rule toggle <Rule name> must/should [not] BE
ENFORCED if/while <condition>

Each patient must be registered prior to
consultation UNLESS the patient is an
emergency patient.

Process toggle
<Process/procedure> must/should [not]
BE ENABLED/DISABLED if/while
<condition>

Insert-patient-in-consultation-queue should
BE DISABLED if the patient is in blocked
status.

Data toggle <Data> must/should [not] BE
CREATED/DELETED if/while <condition>

Each patient record must BE DELETED if the
patient is inactive for more than 10 years.

Imprint toggle <Term> must/should [not] BE SET to
<term/value> [when/if <condition>]

The bill status must BE SET to ‘unpaid’ when
it is created.

Presentation rule
<Subject> must/should [not] BE
DISPLAYED [to/in/on <media>] <display
manner> [if/while <condition>]

An invoice must BE DISPLAYED with the
detailed patient information if the paymaster
fully pays the patient bill.

Process trigger <Process/procedure> must/should BE
EXECUTED when <condition>

Send-invoice-reminder must BE EXECUTED
when the invoice’s payment is not received
after 30 days from the invoice issue date.

Rule trigger <Rule name> must/should BE FIRED
when <condition>

The print-format-rule must be FIRED when
the invoice is printed or displayed.

With reference to system modelling, the first step is the mapping of business rules

resulted from business modelling to their respective system components such as

devices, hardware/software platforms, and human roles. The next step is the reviewing

Page 57

Chapter 2 Software Evolution and Business Rules: State-of-the-art

of system interfaces to support the workflows and fact models. This step also include

the identification of other kind of infrastructure besides IT systems to support business

rules. The design of human interfaces, logical data model, and data migration are

designed are performed as the following steps. Next, the original business rule

statements are rewrite to follow the system naming and formatting standards.

Subsequently, the rule is reviewed to ensure the correctness and preciseness in terms of

logic flows, timing, exceptions, and triggers. Then, the automated actions are decided

by reviewing logic flows to ensure computability and user friendliness, and business

rule script is developed to provide executable business logic. Finally, the rules are tested

using the scenario test data specific to their type.

In respect of business rule management, BRS introduce metamodel that relates rule to

other business components. The metamodel consists of more than thirty rule

management elements which relate business rules to its origin and environment such as

sources, business components, and software components. The examples of the rule

sources are law, regulation, business policy, and procedures manual. Regarding

business components, business rules can be linked to business tasks such as operational,

decision-making, or creative tasks, and business purpose such as objectives, tactics, and

roles. In terms of software components, business rules can be linked to artefacts such as

design and implementation components. In the case that a business rule is not

automated, the business rule is linked to manual implementation components. Apart

from the metamodel, BRS also provides an automated tool for recording and organizing

business rules called BRS RuleTrack™.

2.4.2 Business Rules and Evolvable Software Systems

In contrast to the approaches discussed in the previous section that focus on the

externalization of business rules at analysis stage, the approaches in the development of

evolvable software systems focus on design and implementation stage. The majority of

approaches in this category aim to improve the understanding and evolution of a

software system by logically and physically separate business rule components from

other software components. Most of them also utilize or extend the object-oriented

techniques due to the inherent flexible nature of object-oriented concepts. In this

section, three leading approaches in the design and implementation of evolvable

Page 58

Chapter 2 Software Evolution and Business Rules: State-of-the-art

software systems that include the benefits of business rules and object-oriented concepts

are reviewed. They are Adaptive Object Model (AOM), coordination contract, and

Business Rule Beans (BRBeans).

2.4.2.1 Adaptive Object Model (AOM)

Adaptive Object Model (AOM), which is also known as Dynamic Object Model [Riehle

et al., 2000], is "a system that represents classes, attributes, and relationships as

metadata” [Yoder et al., 2001b]. Unlike traditional object-oriented design, AOM is

based on objects rather than classes. It provides descriptions (metadata) of objects that

exist in the system. In other words, AOM provides a meta-architecture that allows users

to manipulate the concrete architectural components of the model such as business

objects and business rules. These components are stored as an object model in a

database instead of in code. The code is only used to interpret the stored objects. Thus,

user only needs to change the metadata instead changing the code to reflect domain

changes. AOM is active because system will change immediately after changing

metadata.

AOM is a combination of several design patterns. TypeObject and Property patterns are

used in the core of AOM. TypeObject provides a way to dynamically define new

business entities. In a traditional object-oriented design, business entities are

represented by a set of classes or objects. The changes to these classes require code

changes since all classes are implemented in codes. Differently, TypeObject provides

higher abstraction notions by using ‘Entity’ and ‘Entity Type’ to represent business

entities. Users may extend the model by manipulating instances of Entity and Entity

Type, which are stored in a database. While TypeObject provides a flexibility to

manipulate objects and classes, Property pattern provides flexibility to define object

attributes. It allows objects of different types to implement attributes differently by

creating an instance variable that hold a collection of attributes.

The above TypeObject and Property patterns can be used together with the existing

object-oriented syntax and semantics to define the simple business rules such as types of

the entities or attributes, permitted subtypes, permitted type of relationships, cardinality,

and attribute’s optionality. However, Strategies [Gamma et al., 1995] and RuleObjects

Page 59

C hapter 2 Software Evolution and Business Rules: State-of-the-art

[Arsanjani, 2000] are used to model complex rules which are functional or procedural

in nature’ [Yoder and Johnson, 2002] such as permitted types o f values for certain

attribute, or permitted relationships based on certain conditions. Strategy pattern define

a set o f algorithm with different interfaces. Strategies implement operations which are

called by operations o f the fundamental entities. RuleObject, which is a combination o f

two or more primitive rules (strategies) using Composite pattern, is used to represent

more complex business rule. In RuleObject, the primitive rules that represent predicates,

numerical values, and sets are combined using their respective connectors. Micro-

Workjlow architecture is used to define business rules that describe workflow. This

architectural pattern describes the workflow structures including repetition, conditional,

sequential, forking, and primitive rules. The combination o f TypeObject, Property, and

RuleObject design patterns forms the architecture of the AOM, which is shown Figure

2-5.

PropertyTypeProperty PrimRule

EntityTypeEntity

C o m p o s i t e R u l e

Rule

0..n properties

0..n type

type

rule 0..n

Figure 2-5 The Adaptive Object Model [Yoder et al., 2001b]

With regard to software development process for AOM, the evolutionary process is

recommended due to the difficulty in finding the flexible parts o f the system during its

initial development phase [Yoder et al., 2001a], In this process, the initial framework is

developed and tested with the help o f the business users. The feedback is used to

identify the required flexibility and consequently evolve the framework. These activities

are repeated until the stable framework is achieved. During maintenance, the changes to

object model can be easily made since the system is stored as a meta-model.

Clearly, AOM makes a system more flexible and simple. It is flexible since users are

allowed to configure and extend a system by manipulating the objects that are stored in

database. The low number o f classes makes AOM simpler than the traditional object-

Page 60

Chapter 2 Software Evolution and Business Rules: State-of-the-art

oriented design. However, AOM also has several disadvantages [Yoder and Johnson,

2002] such as hard to understand and poor performance execution. The higher level of

abstraction (meta-level) leads to difficulty in understanding AOM models.

Consequently, the maintenance of such models is harder especially to a team member

who does not participate in the development of the models. In terms of performance, the

needs to inteipret the large number of stored objects reduce the overall speed of system

execution.

2.4.2.2 Coordination Contract

Coordination contract aims to separate coordination from computation aspects (or core

components) of a software system [Andrade et al., 2002]. It is motivated by the fact that

there should be two different kinds of entities in a rapidly changing business

environment: core business entities which are relatively stable and volatile business

products which keep changing for the business to remain competitive [Andrade and

Fiadeiro, 2000]. For example, in the MediNET case study, Patient, Panel Company and

Bill are the core business entities whilst Cash Patient and Panel Patient are the

examples of business products. It is desirable to have a separate modelling and

implementation of these two entities so that the changes are localized only to the

volatile parts, with minimum impact on the core services already implemented in the

system.

In coordination contract, volatile business products are implemented as contracts.

Contract aims to externalize the interactions between objects (core entities) by explicitly

define them in the conceptual model. It extends the concept of association class by

adding a coordination role similar to other components in architecture-based software

evolution such as architectural connectors [Oreizy et al., 1998], glue [Schneider, 1999] ,

actor [Astley and Agha, 1998] or change absorbers [Evans and Dickman, 1999], The

interacting objects never aware of contract. The invocation of the relevant method in the

registered component triggers the business rule in the coordination contract. Figure 2-6

shows the coordination contract in the architecture of the separated configuration and

component layers.

Page 61

Chapter 2 Software Evolution and Business Rules: State-of-the-art

la y e r containing
coordination units
controlling the
in teractions and
behavior of basic
com ponents

C o o r d i n a t i o n
C o n t r a c t

Layer containing
th e s tab le
independent
com ponents

C o o r d i n a t i o n r u l e

Rule: w h en <trigger>
w ith <condition>

b efo re { .. .}
d o { . . . }

afte r { .. .}

Contracts m ay have
o perations and a ttribu tes
like a norm al class

C o n t r a c t P a r t i c i p a n t
r e l a t i o n s h i p

C o m p o n e n t

Figure 2-6 The architecture of coordination contract approach.

By separating computation from coordination, the coupling between components is

minimize, which in turn localize the business changes [Andrade and Fiadeiro, 2001;

Andrade et al., 2002]. If there is any change to business product or its business rules, the

relevant contract is ‘superposed’ on the existing implementation of core entities, which

are considered as black boxes. The template for contract specification in Oblog

language is given below:

c o n t r a c t <name>
p a r t n e r s <list-of-partners>
i n v a r i a n t <the relation between the partners>
c o n s t a n t s
a t t r i b u t e s
o p e r a t i o n s
c o o r d i n a t i o n <interactions-with-partners>
b e h a v i o u r < behaviour being superposed>

e n d c o n t r a c t

The instances of contracts coordinate the instances of partners listed in p a r t n e r s

section that satisfy the relationships specified in i n v a r i a n t section. Business rules are

specified as interactions under c o o r d i n a t i o n section in the following form:

<name> : w h e n <condition>
d o <set of actions>
w i t h <condition>

The name of interaction is used to establish the overall coordination among the various

interactions and contract own actions. The above interaction is quite similar to ECA

Page 62

Chapter 2 Software Evolution and Business Rules: State-of-the-art

form as discussed in section 2 .4 .1 .2 . The condition specified by when section triggers

interaction; it is typically occurrences of actions in the partners. The do section specifies

the actions to be performed; they usually exist in the form of the partners’ actions or

some of the contract’s own actions. Finally, the w ith section defines constraints on the

action involved in the interaction, typically condition that should be satisfied before the

action.

As an example, consider the billing process in the MediNET case study. After the bill is

issued to a patient, an action should be taken depending on whether the patient is a cash

or panel patient. If he is a panel patient, the bill will be transferred to a temporary list to

be verified and subsequently inserted into invoice as an invoice item. Otherwise, he

must pay the bill himself. The flexibility in dealing with this kind of billing process is

accomplished by implementing the interactions between core entities, i.e. Patient and

Bill, in different contracts namely cash-patient and Panel-patient. If there is a

change in software requirements, for example ‘each bill belongs to panel patient should

be inserted to invoice’, the change can be done only at Panel-patient contract without

effecting the core entities. The shortened version of the specifications for cash-
patient and Panel-patient contracts is given below.

c o n t r a c t Cash-patient
p a r t n e r s b : Bill; p : Patient;
i n v a r i a n t Towns(b,p)=TRUE;
c o o r d i n a t i o n

cashBill : w h e n b .issued{)=TRUE
d o b .payment()

e n d c o n t r a c t

c o n t r a c t Panel-patient
p a r t n e r s b : Bill; p : Patient;
i n v a r i a n t Towns(b,p)=TRUE;
c o o r d i n a t i o n

panelBill : w h e n b .issued()=TRUE
d o b .insertToTempInvoiceItem{)

e n d c o n t r a c t

Assume that there is a panel company whom only wish to pay its staff’s bill up to a

certain limit, and the staff has to pay the balance. This requires the HCP to introduce a

new package. Again, the package is implemented as a new contract to be added to the

system without affecting existing core objects. The contract is specified below.

c o n t r a c t Partly-sponsored-panel-patient
p a r t n e r s b : Bill; p : Patient;
a t t r i b u t e s Limit : Integer;

Page 63

Chapter 2 Software Evolution and Business Rules: State-of-the-art

i n v a r i a n t ?owns(b,p)=TRUE;
c o o r d i n a t i o n

partlyPBill : w h e n b .issued()=TRUE
d o
{ Bill tb = new tb(b);

if (tb.amount <= Limit)
{ tb.amount = b .amount;

b .amount = 0;
} else
{ tb.amount = Limit;

b.amount - b.amount - Limit;
}
tb.insertToTempInvoiceltem()
payment

}
payment : d o

{ b .amount = paymentAmount;
b.status = 'paid';

}
w i t h b.amount > Limit

e n d c o n t r a c t

The concept of coordination contract is implemented as a design pattern [Andrade and

Fiadeiro, 2000; Gouveia et al., 2001] which is based on other well-known patterns,

namely the Broker and Proxy [Gamma et al., 1995]. This pattern exploits some widely

available properties of object-oriented programming languages such as polymorphism

and sub-typing. The semantics of contracts is defined by a formal program design

language and model called CommUnity. In short, there are three modelling languages

for coordination contract: CommUnity, design patterns, and structured specification.

As regards software development process, coordination contract extends the

component-based development with a number of steps: context setup, contract

development, testing, and deployment. Coordination Development Tool (CDT) is

developed to support these activities [Gouveia et al., 2001]. CDT allows users to

develop a coordination layer on top the implemented application components. The

application components are registered as candidates for coordination. Contracts are

defined to connect the registered components. Coordination rules and constraints are

defined on those contracts using a mixture of abstract specifications and programming

language syntax. The source code necessary to implement the coordinated components

and the contract semantics in the final system are produced by generating the necessary

parts according to the contract micro-architecture. Finally, the animation tool is used to

check the behaviour of the contracts, prior to building an application. The animation

Page 64

Chapter 2 Software Evolution and Business Rules: State-of-the-art

tool uses UML sequence diagrams to demonstrate the run-time behaviour of the

component interactions via contracts.

2.4.2.3 Business Rule Beans Framework

Business Rule Beans (BRBeans), formerly known as Accessible Business Rules

[Rouvellou et al., 1999; Rouvellou et al., 2000], is a framework that provides guidelines

and infrastructures for the externalization of business rules in a distributed business

application [IBM, 2003]. Business rules are externally developed, implemented and

managed to minimise the impact of their changes on other components such as core

business, application, and user interface objects. They are implemented as server

objects, which are fired by embedded trigger points in application objects. The rule

management facility is provided to help users to understand the existing rules and to

locate the rules when changes are required. BRBeans is implemented as a part of

WebSphere Application Server by IBM “to support business applications that

externalize their business rules” [Kovari et al., 2003].

In this work, business rule is defined as “a statement that defines or constraints some

aspect o f a business by asserting control over some behaviour o f that business” [Kovari

et al., 2003]. It can be originated from within the company or from outside, typically

from regulatory agencies. In general, business rules are categorised into two types: base

rules and classifier rules [I.B.M., 2003]. Base rules, which are the most common rules,

can be further divided into derivation, constraint, invariant, and script. Derivation rules

define an algorithm to calculate and return the value. Constraint rules ensures that an

operation follow the structural and behavioural constraints. Invariant rules make sure

that changes made by an operation are properly related to one another. Script defines a

variable portion of business process or workflow. Classifier rules derive a classification

of business entity for a particular business situation. For instance, a panel company in

the MediNET case study can be classified into active, archived, or blocked based on its

request, activities and payment history.

BRBeans approach provides guidelines to identify trigger points during object-oriented

analysis and design. Use Cases and Sequence Diagrams are carefully analyzed to find

the rules and “points o f variability” in a business process. An arrow notation is

Page 65

Chapter 2 Software Evolution and Business Rules: State-of-the-art

introduced to specify such points in Sequence Diagram whilst an attached text describes

which rules should be fired at that point. In a textual specification, keywords such as

‘except when’, ‘unless’, and ‘depend on’ can be used to indicate the points of rule

extemalization. Each point of variability is translated into a trigger point namely a set of

interfaces in the rule client that locate and pass the information for business rules

execution. The architecture of BRBeans framework showing the interaction between its

components are illustrated in Figure 2-7.

ApprovalClient
(Session Bean)

Rule Client

Trigger

i Return
Result

Trigger Point
Fire the

Rule

Return
Result

BRBeans
EJBs

Execute.
Rule

, Return
Result

Rule Implementors

WebSphere

ApprovalRule
(Java Class)

Figure 2-7 The interaction between BRBeans framework components
[Kovari et al., 2003]

During development, rule implementors are created to implement the business rules and

the common business logic that are going to be used by BRBeans Enterprise Java Beans

(BRBeans EJBs). Next, business rules are configured using the stand-alone Rule

Management Application and implemented as EJBs. They are arranged in folder and

defined by a set of properties such as rule name, folder name, start date, end date,

implementor name, firing parameters, and firing location. Finally, trigger points are

developed and placed in the rule client implementation to provide an interface to access

rules via BRBeans EJBs.

At runtime, the rule client creates an instance of a TriggerPoint object and executes one

of the object’s trigger methods that satisfy its current context. Next, the TriggerPoint

object find the Business Rule Beans rules by names defined using the Rule Management

Application. When the rule is found, the TriggerPoint object invokes the rule by calling

the fire method on BRBeans EJBs, which in turn executes the rules implemented in the

Rulelmplementor object. The BRBeans infrastructures are similar to component broker

architectures in most distributed object technologies such as OMG’s CORBA, Sun’s

Page 66

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Java RMI, and Microsoft’s DCOM.

2.5 Critique on State-of-the-art Business Rule Approaches

For a systematic comparative review and evaluation of state-of-the-art business rule

approaches, an appropriate evaluation framework and technique should be defined.

Floyd states that the approaches cannot be described and evaluated without a reference

to a specific conceptual framework and perspective for system development [Floyd,

1986].

2.5.1 The Evaluation Framework

Before going further into the description of the evaluation criteria, it is important to

decide the goals of the evaluation framework. Although the notion of business rules has

been coined in the last two decades, business rule approaches are relatively new

compared to software development approaches in other paradigms such as structured

and object-oriented. Moreover, the business rule approach is not a new software

development paradigm in that it uses or extends the techniques from other paradigms.

Therefore, the main goal is not to find the best approach, but to systematically set the

right directions of the will be proposed business rule approach to software evolution.

The evaluation framework is used to identify the desirable features of business rule

approaches as well as to identify the opportunity of improving the existing approaches.

The framework consists of a set of criteria which addresses not only classical software

development method attributes but also properties which are uniquely found in business

rule modelling. In order to provide a sound evaluation, some criteria of the evaluation

framework and techniques are taken and adapted from a set of well defined evaluation

criteria of various domains such as system analysis [Yadav et al., 1998], object-oriented

[Hong et al., 1993], agent-oriented [Dam and Winikoff, 2003; Sturm and Shehory,

2003], and business rule modelling [Herbst et al., 1994; Kardasis, 2001]. Several criteria

are also derived from the common and desirable quality attributes normally found in

business rule literatures. The framework is divided into four closely related components

i.e. concept, modelling language, process, and pragmatics.

Page 67

Chapter 2 Software Evolution and Business Rules: State-of-the-art

A concept is an abstract or general idea that serves to indicate a category or class of

instances such as entities, relations, and activities. In this framework, several concepts

are derived from business rule definition, metamodel, and taxonomy of the reviewed

approaches. The concepts are compared in term of their availability in a particular

approach and how detail they are treated. Among the list of relevant concepts to

compare are:

♦ Business rule definition'. The definition of business rule considered by the

approach may reflect the perceived perspective of business rules and type of

systems under consideration. It also reflects the scope or limitation of their

modelling language and process in a development of a software system.

♦ Business rule taxonomy: The taxonomy of business rules is an appropriate

source for deriving concepts in a business rule approach. It may also indicate

how complete and detail treatments were made by the approach in dealing with

various types of business rules, Although there is no standard taxonomy for

business rules, the approaches will be compared based on the following common

business rule categories:

o Structural rules'. Structural rules constrain the properties of the entities or

their relationships such as entity type, relationship type, cardinality, and

optionality. Some approaches also include the permitted behaviours of an

entity as structural rules.

o Behavioural rules: Behavioural rules constrain the behavioural aspect of

the business. It is often written as a statement that deteimines the

reaction of the system against the occurrence of event(s) and/or the

satisfaction of condition(s). Other popular examples of behavioural rules

are pre- and post-conditions of an operation.

o Derivation rules: Derivation rules produce a new value or fact based on

the existing value or fact. It is often further categorised into computation

and inference.

Page 68

Chapter 2 Software Evolution and Business Rules: State-of-the-art

♦ Business rule management elements: Business rule management elements refer

to modelling or specification components which are used to organize or manage

the business rules excluding the typology elements. This type of elements is

included for the purpose of improving the traceability and changeability of

business rules. For example, rule set is used as a way to organise the closely

related business rules. Organization elements also include rule environment

components that are related to business rule such as owner and business process.

Modelling language is a set of symbols (either graphical or textual), syntax and

semantics which is defined for supporting and representing the specified concepts of an

approach. In business rule conceptual modelling, most approaches often define their

modelling language using sentence templates or EBNF definitions. A modelling

language is compared using the following criteria:

♦ Understandability: The degree of understandability of business rule

representation is greatly determined by the language. Natural language is highly

understandable compared to formal language or programming language.

However, structured natural language or pseudo-code is more understandable to

system developers.

♦ Expressiveness: Expressiveness is related to a capability of the expressions

produced by the modelling language in completely and correctly presenting the

business rule concepts. The modelling language must have enough constructs to

represent or specify different types of business rules.

♦ Unambiguity: Unambiguity denotes the capability of modelling language to be

interpreted correctly and precisely. There two common factors that cause

ambiguity in the language expression: conflict of meaning and redundancy. The

former happens when a single business expression can give several meaning

whilst the latter occurs if there are more than one expression refer to the same

meaning.

♦ Formality: Formality is the measure of rigour in the specification produced by a

modelling language. It is important for the implementation, executability,

Page 69

Chapter 2 Software Evolution and Business Rules: State-of-the-art

testability, and preciseness of business rule expressions. At the highest level of

rigour, the specification uses the formal mathematical language. The most

common formality introduced by business rule approaches is structured

language using sentence templates and graphical notations. It is important to

note that, in many cases, higher formality may reduce understandability.

♦ Evolvability: Evolvability refers to the flexibility of a software system in dealing

with business changes. In other words, evolvability is the ability of an approach

to localise rule changes only to the business rule components or minimize the

impact of rule changes on other software components. Apart from flexibility,

traceability is also important for evolvability since it tracks the dependencies

between software artefacts, A modelling language is assumed to be high

evolvability if it explicitly provides traceability between software requirements,

design, and implementation.

Process is a series of well-defined steps or activities with corresponding input and

output products which assist users (such as analysts, developers, and managers) to

perform software development tasks. The criteria which are related to process

component are:

♦ Lifecycle coverage: Lifecycle coverage is a set of common development phases

defined by the evaluated approach. These phases include analysis, design,

implementation, and maintenance that are generally found in most software

lifecycle models.

♦ Process description: Process description is how the availability of detailed

descriptions about steps or activities within the scope of its lifecycle coverage.

The description includes deliverables at each stage (documentations or models)

and guidelines for quality or project management.

♦ Coherence: Coherence is the degree of logical connection from a flow of one

step to another step. The connection can be an activity or deliverable that links

the previous step to the next step in software process.

Page 70

Chapter 2 Software Evolution and Business Rules: State-of-the-art

♦ Support fo r evolution: The availability of process description regarding the

maintenance or evolution of business rules and the relevant software design

components.

Pragmatics is concerned with the practical aspects of deploying and using the

approach. It includes both management and technical issues. The former emphasis on

the total cost resulted from using the approach such as consulting services and

purchasing of tools. The latter is about the issues in the application of the approach in

establishing software development tasks. Among the criteria associated with this

component are:

♦ Communicability\ In software development, both models and processes must

support the communication between various groups such as manager,

developers, and end-users. Higher clarity, readability and understandability

specifications may enhance the communicability. In contrast, higher complexity

of the deliverables and process description may reduce the ability of smooth

communication.

♦ Usability: Usability is the easiness of applying the process and syntax. It is hard

to use an approach if the modelling language syntax is too rigorous or too vague,

or the process is too complex to be followed. Similarly, an approach is less

usable if there is not enough description on the process.

♦ Resources availability: The availability of resources such as text book, user’s

group, and training are important for the users in facing their everyday problem

in establishing their software development tasks.

♦ Openness: Openness is either the solution of the approach is independent or

dependant of certain implementation platforms such as architectures, paradigms,

or programming languages. For business rule modelling, the implementation-

independent approach is more acceptable by its users.

The components of the above evaluation framework are closely related to each other

since some evaluation criteria of one component have some degree of influence to the

criteria of another component. For example, higher understandability and unambiguity

Page 71

Chapter 2 Software Evolution and Business Rules: State-of-the-art

(modelling language criteria) may produce higher usability (pragmatics criterion). The

relationships among the framework components, as well as the relationships between

the framework and its application domain, are illustrated in Figure 2-8.

As shown in Figure 2-8, concept represents the abstraction of the real world entity,

relation, or activity which is related to the system under development. Modelling

language and process are developed to support the list of concepts defined by the

approach. During its application, process uses the modelling language as an input,

output, rules, or guidelines of its activities. Pragmatics acts as a ‘filter’ that determine

the degree of acceptance of the approach by users in the real world or application

domain. Most of the features of modelling language and process may influence the

criteria defined in pragmatics components.

Modelling
Language

determinesupport
use

Process

support determine

PragmaticsConcept

represent influence acceptance

Rea! World / Application Domain

Figure 2-8 The Evaluation Framework

2.5,2 The Comparative Evaluation

The previously described evaluation framework is suitable to be used with any

evaluation techniques. For the purpose of this research, feature analysis technique was

used to compare the selected business rule approaches. Although feature analysis is a

Page 72

Chapter 2 Software Evolution and Business Rules: State-of-the-art

subjective evaluation technique, it is easy to perform if the criteria are well-defined

[Siau and Rossi, 1998]. If a metamodel is available for each compared approach, this

evaluation technique can be combined with metamodel analysis technique for a more

objective evaluation [Hong et al., 1993].

Since the reviewed business rule approaches inclined toward two different categories

i.e. business rule conceptual modelling and evolvable software systems, the evaluation

should be done to reflect these two different contexts. However, most of the criteria of

the above framework are designed to be as generic as possible for use by both

categories. The results of the comparative evaluations of business rules conceptual

modelling and evolvable software systems are summarized in Table 2-3 andTable 2-4

respectively.

2.5.2.1 The Comparative Evaluation o f Business Rule Conceptual Modelling

In terms of business rule definition, the compared approaches focus their definition in

two perspectives: business and information systems. BRS emphasises that business rule

should be consider as an element of business whilst BRG and BROCOM emphasize the

business rule as a part of information systems. Regarding business rule taxonomy and

management elements, BRG provides a high number of elements related to structural

rules since it defines the term and fact in details. However, it has an average number of

elements for behavioural rules, derivation, and rule management elements. BROCOM is

found to have a very low number of structural and derivation rule types in their

metamodel. Nevertheless, it provides the highest number of concepts that described

behavioural rules. In fact, all BROCOM rules constrain the behaviour of the systems.

Similar to BRG, BROCOM also has an average number of business rule management

elements. BRS is observed to have a medium count of structural and behavioural rules.

Although structural rule count in BRS is only one, but it is considered as medium since

it excludes terms and facts in their taxonomy, which are clearly explained. BRS has a

very high number of business rule management elements that are included in its

RuleTrack metamodel.

With respect to modelling language, the approaches are compared based on their

metamodel which is often available in a form of graphical representation, context-free

Page 73

Chapter 2 Software Evolution and Business Rules: State-of-the-art

grammar definition, or formal mathematical logic. Both BRG and BROCOM have a

medium level of understandability; BRG provides natural language rule expressions,

which is easily comprehended by business users whilst BROCOM provides structured

expressions which facilitate the understanding for system developers. However, BRS

has a higher level of understandability by providing structured rule expressions which is

easily understood by business users and effortlessly linked to information technology

components. Both BROCOM and BRS have a high level of expressiveness since they

are rich in language construct to the textual representation for all of their business rule

types. In contrast, BRG does not define the textual language construct although it

specifies some concepts in their graphical metamodel. Regarding unambiguity,

BROCOM has a high unambiguity since there is no detected conflict and redundancy in

its language definition. Both BRG and BRS have an average level of ambiguity. The

former inherits the ambiguity from the natural language flexibility whilst the latter is

detected to have several ways to express the same meaning such as the redundancy of

derivation and inference rules. In terms of formality, BRS provides the highest level of

language formality via its predicate calculus definition of business rules. BRG and

BROCOM have an average level of formality by providing graphical and/or context-

free grammar representations. In terms of evolvability, both BRG and BROCOM has an

average level of evolvability in that it provides a definition for structured rule

expression and includes rule management elements in their metamodel. BRS is

considered as more highly evolvable than BRG and BROCOM because it has more rule

management elements, which in turn improve the traceability during evolution, in

addition to very structured expression via its sentence templates.

Regarding modelling process, BRG is unsuitable to participate in the comparison since

it does not describe the process. As regards BROCOM and BRS, both of them have a

detailed and clearly explained process description. Their steps and deliverables are

logically link from one stage to another stage of modelling process. Both BROCOM

and BRS support business rule evolution by providing detailed guidelines and

automated tools. The only different between BROCOM and BRS is the lifecycle

coverage. The former only covers analysis phase whilst the latter embraces analysis and

design phases.

Page 74

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Table 2-3 The comparative evaluation of business rule conceptual modelling

■— ---------- BR Approach
Criteria ' ----- BRG BROCOM BRS

Concepts
Business Rule Definition IS IS Business
Business Rule Taxonomy

- Structural Rules High (10) Low (0) Medium (1)
- Behavioural Rules Medium (8) High (>30) Medium (8)
- Derivation Medium (2) Low (0) Medium (2)

Bus. Rule Management Elements Medium (5) Medium (9) High (>30)

Modelling Language
Understandability Medium Medium High
Expressiveness (business rules) Medium High High
Unambiguity Medium High Medium
Formality Medium Medium High
Evolvability Medium Medium High

Process
Lifecycle coverage A A A + D
Process description N/A High High
Coherence N/A High High
Support for evolution No Yes Yes

Pragmatics
Communicability Medium High High
Usability Medium High High
Resources availability Low Medium High
Openness High Medium High

Lifecycle coverage: A -A nalysis, D -D esign , 1-lm plem entation, M -M aintenance

In connection with pragmatics criteria, BRS is found as the most practical approach in

the capturing and management of business rules. Its RuleSpeak sentence templates may

facilitate the communication and usability. The availability of the methodology, rule

management metamodel and tool improve the pragmatics aspect of BRS. In terms of

openness, BRS implementation is open to any type of implementation including

hardware, software, business logic technology, or manual process. Similar to BRS,

BROCOM also has a high degree of communicability and usability by providing a

structured format of business rules via its EBNF definitions. However, its resources

availability is slightly lower that BRS since BRS is supported by commercial

organizations. The openness is also lower than BRS since BROCOM is meant for active

database technology. As BRG is not supported by any process or tool, it is found the

least practical compared to other approaches as far as system development approach is

Page 75

Chapter 2 Software Evolution and Business Rules: State-of-the-art

concerned. It has an average level of communicability and usability based on the

availability of its metamodel and plenty of examples. It is very low in resources

availability since it has no support on process or tool. However, it is flexible in terms of

implementation since it says nothing about implementation.

2.S.2.2 The Comparative Evaluation ofEvolvable Software Systems

With regal'd to modelling concepts, the concepts provided by BRBeans are more

exhaustive than those provided by AOM and Coordination Contract. BRBeans is the

only approach that gives an explicit business rule definition. Its business rule taxonomy

covers a wide range of business rule types found in, or at least easily mapped to

conceptual modelling. In contrast, Coordination Contract only deal with EC A rules, and

AOM provide the primitive, composite, and workflow rules, which is difficult to map to

business rules in business perspective. In terms of business rule management elements,

BRBeans provides folder and rule attributes such as business intent, original

requirement, and description for the purpose of managing the rule changes. On the

contrary, there is no management element provided by the other two approaches.

In terms of modelling language, the current comparison is different from the previous

comparison in that the former also considers software modelling aspects in addition to

business rules specification. Furthermore, the language redundancy criteria in

representing business rules is deemed non-applicable since most design and

implementation approaches contain far less rule syntax compared to conceptual

modelling.

In the sense of software modelling, AOM is found the most understandable since it

provides the graphical representation that uses a set of well-defined and proven design

patterns. BRBeans and coordination contract is slightly less understandable given that it

relies on the existing object-oriented technology syntax and textual specification of

software components. However, the structured textual specifications provided by

BRBeans and coordination contract increase their ability in expressing business rules.

The structured specifications make them better than AOM in terms of the

expressiveness of representing business rules. Although rich in graphical representation,

AOM is low expressiveness since the business rule expression must be defined in terms

Page 76

Chapter 2 Software Evolution and Business Rules: State-of-the-art

of rule objects. Regarding the formality of modelling language, AOM has the lowest

degree of formality since it only includes the graphical representation. BRBeans

formality is slightly higher because it uses programming language as modelling

specification. Coordination contract provides the highest formality by introducing

highly formal language, i.e. Community, for specifying contract semantics in addition

to structured specification and design patterns. In terms of evolvability, there is no

doubt that all of the reviewed approaches are highly evolvable with their own styles.

AOM, Coordination Contract, and BRBeans respectively introduce rule object,

coordination rule, and BRBeans EJB to separate the volatile parts from other stable

parts of software system. These components can be independently changed with a

minimum impact on other components.

With respect to development process, BRBeans was found superior than other

compared approaches. It covers all of common activities in software lifecycle including

testing and maintenance. It provides a very detailed process description in a form of

technical specification, programmer’s handbook, and other publications. Regarding

coherence between activities, it offers a smooth link and sequence from one activity to

the next activity. In terms of support for evolution, BRBeans provide a rule

management tools that manage the rule changes without affecting other components.

IBM is currently improving business rule management using Fusion framework

[Rouvellou et al., 2004]. Coordination contract lifecycle coverage is slightly narrower

than that of BRBeans since it excludes system analysis. The process description of

coordination contract is also rather fewer than that of BRBeans. Relating to support for

evolution, coordination contract is also supported by tools but with less guidelines. The

lifecycle coverage of AOM is harder to be evaluated since it does not employ the classic

waterfall lifecycle. Instead, it uses the evolutionary development process which repeats

the development activities based on user’s feedback. There is no available detailed

description of AOM’s development process. In connection with support for evolution,

there is no an available automated tool or detailed discussions on maintaining software

evolution.

Page 77

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Table 2-4 The comparative evaluation of evolvable software systems

— -— _J3RApproach
Criteria “— -—

Adaptive Object
Model (AOM)

Coordination
Contract

Business Rule
Beans (BRBeans)

Concepts
Business Rule Definition Implicit Implicit Explicit

Business Rule Taxonomy primitive, composite,
workflow ECA

derivation, constraint,
invariant, script,

classifier
Business Rule Management Elements Nil Nil Yes

Modelling Language
Understandability High Medium Medium
Expressiveness (business rules) Low Medium Medium
Formality Low High Medium
Evolvability High High High

Process
Lifecycle coverage (Evolutionary) D + 1 + T + M a + d + i + t + m

Process description Low Medium High
Coherence Medium Medium Medium
Support for evolution Low Medium High

Pragmatics
Communicability High Medium Medium
Usability Low Medium Medium
Resources availability Medium Medium High
Openness Medium Medium Low

Lifecycle coverage: A -A nalysis, D -D esign , I-Im plem entation, T -T esting, M -M aintenance

Regarding the pragmatics issue, each approach has its own strength and weaknesses. As

far as communication is concerned, all of them have a medium level of

communicability. AOM lacks in textual specification for representing business rules

although the use of widely known design patterns simplifies the understanding of its

software design. Similarly, coordination contract and BRBeans be deficient in graphical

representation although it provides an acceptable structure for specifying business rules.

In terms of usability, AOM is found to have a low degree of usability in that it requires

knowledgeable developers to deal with the meta-level design. Moreover, there is no

detailed process description for the development of rule objects. On the contrary, both

coordination contract and BRBeans have a slightly higher degree of usability since the

process is clearly explained and supported by structured specifications and tools. With

respect to resources availability, coordination contract and BRBeans are very much

higher than AOM since they are supported by both research and commercial groups.

Page 78

Chapter 2 Software Evolution and Business Rules: State-of-the-art

Their supported resources include research papers, user’s manuals, technical

specifications, software tools, and support group. Relating to openness, AOM and

coordination contract have a medium level of flexibility in choosing the implementation

technology; the only possible restriction is that it must use object-oriented technologies.

In contrast, BRBeans must be implemented in Java programming language since it is

not architecture per se but an application framework.

2.6 Summary and Further Remarks

Many approaches that address various specific problems in software evolution have

succeeded in achieving their goals. The majority of them derive their benefits from the

outstanding features of object-oriented, distributed system, and component-based

technologies such as loosely coupled and highly cohesive components. The three-

dimensional view of software evolution approaches highlights the software evolution

research trends and pinpoints the desirable features for successful approaches. Based on

the reviewed state-of-the-art approaches to software evolution, there are some important

points that should be considered by software evolution approaches in order to ensure

their success in achieving their goals. In short, software evolution approach should:

♦ explicitly consider business rules, which were identified as the important sources

of changes that bring the highest impact to both business processes and software

system;

♦ utilize or extend the existing software technologies such as software

architecture, object-oriented, and component-based;

♦ at least provide the product and process, which were identified as the

compulsory components for a practical solution to evolution problem.

Since business rules are important sources of changes, business rule approaches to

software development were reviewed. Although business rule approaches were given

different names, for example, business rule-driven approach [Moriarty, 1993], business

rule-extended development method [Haggerty et al., 2001], or simply business rules

approach [von Halle, 2001b], and they propose diverse development techniques, they

share a common goal i.e. to simplify the evolution of a software system due to the

Page 79

Chapter 2 Software Evolution and Business Rules: State-of-the-art

frequently changing business environment. From the reviewed state-of-the-art business

rule approaches, they are observed to focus on several techniques in achieving this

common goal such as:

♦ the conceptual extemalization of business rules by separating business rule

specification from other software models or specifications. For example, they

can be captured and represented using their own model and notations during

analysis and design. This technique allows users to independently manage the

changes of business rule specification.

♦ the separation of business rule components from other software implementation

components. For example, a repository may be used to separately manage and

store business rules similar to the concept of database management, or a separate

software component may be developed to be triggered by main program in order

to execute particular business rules. By externalizing business rules, it is possible

to separate the volatile parts from the more stable parts of a software system.

♦ the establishment of business rule traceability in business and software

components. Establishing business rule traceability in a business modelling

component supplies the information about the reason of business rules existence

whilst linking business rules to software design and implementation components

allows the alignment of a business to its supporting software system.

♦ the use of an appropriate business rule representation. Representing business

rules in graphical or textual style may improve the communication between

business users and developers. At the same time, the representation should be

formal enough to facilitate their implementation in a software system.

♦ the introduction of various components such as metamodel, process, and tools.

These components are important to ensure the applicability of the approach in

applying their techniques to the real information systems.

♦ the utilization of the existing well-proven widely accepted software

technologies. Developing solution on top of the existing technologies or proven

techniques, such as object-oriented, expert system, distributed object, software

Page 80

Chapter 2 Software Evolution and Business Rules: State-of-the-art

architecture, design patterns, and metamodelling, may increase the chances for

the approach to be accepted by software development community.

Nearly all of the business rule approaches mention the above techniques but they lack in

detailed information about the way to achieve these objectives. For example many

approaches point out that it is important to link business rules to software system but

there is no detail explanation on how to perform the linking tasks. Some approaches

provide excellent details on certain aspect such as conceptual modelling but failed to

provide a detailed treatment on other aspects such as the implementation and evolution

of business rules. For these reasons, two groups of business rule approaches were

studied for the purpose of investigating a better business rule approach to software

evolution i.e. business rule conceptual modelling and the construction of evolvable

software systems.

The evaluation framework, which includes concept, language, process, and pragmatics

criteria, is developed to systematically carry out a comparative evaluation of the

selected business rule approaches. The framework does not only consider the

methodological aspect, but it also takes into account the business rule modelling and

software evolution issues. There are two main observations which are drawn from the

results of the comparative evaluation of the selected approaches.

♦ With regard to the business rule conceptual modelling approaches, they were

found very excellent in the modelling concept and language in representing

business rules. The only common drawback of these approaches is their

coverage in software lifecycle. There is no detailed information on the

implementation of their business rule specification in a software system since

they focus on the business rule lifecycle. Some of them suggest the business

rules may be implemented using a database (repository) or separate software

modules. It is agreed that storing rules in a database or separate software

modules makes rule management easier especially for the centralized database.

However, simply implementing all business rules in a database may cause poor

system performance. Data communication and rule interpreter are among factors

that may slow down the system execution. The poor performance system is

likely to become unusable.

Page 81

Chapter 2 Software Evolution and Business Rules: State-of-the-art

♦ Regarding the construction of evolvable software systems, they provide

exhaustive information on the software architecture, implementation and

process. However, their modelling concepts are limited in capturing and

representing business rules. In addition, their business rule specification is too

far from the user language, which in turn introduces a gap between analysis and

design in terms of business rule components. The conceptual model developed

during analysis, as proposed by BROCOM or BRG, is likely to be irrelevant

during software design although it is excellent in representing rules in a universe

of discourse. The current approaches unable to utilize the rich abstractions in the

proposed conceptual model. Due to their modelling constructs, most of them

only translate a small part of the conceptual model, thus wasting a lot of useful

information in the model such as links to organizational facts.

The analysis of the state-of-the-art business rule and software evolution approaches

identifies the opportunities of improvement, which should be done in order to

successfully exploit the benefits of business rules in software evolution. The identified

desirable features may be used to set the directions of future software evolution

approach driven by business rules. The approach that takes into account most of the

important issues discussed in this chapter will be explained in the next chapter.

Page 82

Chapter 3 The BROOD Approach

Chapter 3

The BROOD approach

The inherent problems in software evolution and the gap in the prominent business rule

approaches, which have been elaborated in the previous chapter, motivate the

investigation of a novel approach in software evolution that is driven by business rule

changes. The proposed approach, Business Rule-Driven Object-Oriented Design

(BROOD), brings together the benefits from business rule, model-driven and object-

oriented approaches to software development in producing a software system that is

flexible to business changes.

In this chapter, the overview of BROOD approach and the detailed discussion of its

metamodel are discussed. At the outset, this chapter presents the rationale behind the

BROOD approach. Next, it provides the overview of two main BROOD components,

i.e. the process and metamodel. The detailed discussions on the three main components

of the BROOD metamodel i.e. business rules, software design, and rule phrases (linking

elements) are made in the following sections. A chapter summary is presented at the end

of this chapter.

Page 83

Chapter 3 The BROOD Approach

3.1 The Rationale

In the previous chapter, the in-depth study on software evolution and business rules

suggests the main problem areas and gives the ideas about the desirable criteria to

improve the existing approach. This study leads to the rationale that motivates the

development of the BROOD approach. The rationale ranges from the well-known

fundamental evolution problems such as Lehman’s Laws and maintenance cost, to

specific limitations of the state-of-the-art approaches in business rules and software

evolution.

The following rationales are related to the fundamental software evolution problems in

general:

♦ Software evolution is an inevitable process.

The most fundamental reasons that motivate BROOD to focus on software

evolution are a number of principles proposed by Lehman’s Laws [Lehman and

Belady, 1985]. According to Lehman’s Laws, a software system that is used in a

real-world environment inevitably must change or become progressively less

useful in that environment. Software evolution can be thought as the natural

characteristic of business software system since today’s business environment is

frequently and rapidly changing in nature. Lehman’s Laws also state that the

software structure tends to become more complex due to the implemented

changes and its size must continue to grow to accommodate new user

requirements. Therefore, there is a need to introduce a method that facilitates the

management of the increasingly complex and larger size software system during

evolution phase.

♦ The cost o f modifying software is enormous.

Erlikh reported that an informal industrial poll indicates that 85% to 95% of

software costs are evolution costs [Erlikh, 2000]. In his survey on software

maintenance, Lientz discovered that 50% to 70% of the overall software

maintenance efforts is dedicated to fulfil new or changed user requirements

[Lientz, 1983]. These facts indicate that there is a crucial need for a better

Page 84

Chapter 3 The BROOD Approach

solution in producing a software system that is more resilient to requirement

changes. By focusing on the way of evolving requirement changes, and

automatically propagating them to software design, the enormous evolution

costs might be reduced.

The following rationales are derived from the facts on software evolution discussion in

the previous chapter:

♦ The sources o f changes are the root o f evolution problem.

By considering the sources of changes as the root of evolution problem, a more

holistic view of the problem can be realized. In other words, the holistic

approach to software evolution differs from the conventional approach in that it

takes into account the sources of changes in addition to the software technology.

This fact is aligned with the views on software evolution discussed in Chapter 2

that suggest software evolution can be viewed in term of the environment and

the process or technology. The environment can be inteipreted as the sources of

software changes, which is often referred to business rules.

♦ Product and process should be the compulsory components in a successful

software evolution approach.

Product and process components should be considered as the compulsory

components in software evolution approach. This assumption is based on the

review of software evolution approaches made in Chapter 2 that reveals the

approaches is more likely applicable if they include both product and process

components. Product component should embrace evolvability as one of its

quality attributes, while process component should include the detailed

description on how to perform the evolution tasks.

The following rationales are deduced from the state-of-the-art business rule approaches

in the previous chapter:

Page 85

Chapter 3 The BROOD Approach

♦ Business rule externalization is fundamental in separating the volatile part from

the stable part o f software system.

Having recognized that business rules are the most volatile parts of business

software system, and business rule changes bring the highest impact on both

software system and business processes, many approaches aimed to externalize

business rules from other software components. At the conceptual modelling

level, they provide separate syntax and semantics for modelling business rules.

This effort is not only localize the changes to business rule components, but it

also increases the understanding and maintainability of business rule

specification itself. At the implementation level, they create separate software

components that implement business rules. As a result, the business rule changes

will only localize to such components, and reduce the impact of changes to

overall software structure.

♦ Linking business rules to software system components can improve software

evolution.

In the previous chapter, the comparative evaluation was made on the prominent

software evolution approaches that incorporate business rules as their key

elements. It is observed from the evaluation results that there is one group which

is very excellent in producing evolvable software systems but they slightly be

deficient in representing business rule concepts. In contrast, there is another

group that is very excellent in dealing with the concepts related to business rules,

but they provide relatively little description on the design and implementation

aspect of business rules. Introducing the linking between the conceptual model

of business rules to software design and implementation may increase business

rule traceability, which in turn improves software evolution. Traceability may be

achieved using a proper documentation of business rules specification [von

Halle, 2001b]. Traceability is highly desired in software evolution since there is

a need to track the related software components in order to implement business

rule changes, which is originated by the changes in business environment. The

link may also ensure the fulfilment of user requirements since the implemented

Page 86

Chapter 3 The BROOD Approach

software system is linked to business rule specification that represents user

requirements.

♦ Business rule specification should naturally define business rules from business

user’s perspectives and, at the same time, be well structured enough to be

implemented or linked to software design.

Business rule specification should be easily understood by business users to

allow their involvement in the construction and management of business rules.

This principle motivates many approaches to provide a specification that mimics

the natural language. However, the structure of the specification should be

formal or structured enough for linking the represented business rules to their

implementation within software system. The introduction of sentence templates

is a popular example on how most approaches conform to this principle.

There are also other rationales relevant to both software evolution and business rule

approaches that influence the BROOD features:

♦ Building solutions on top o f the proven, widely accepted software technology

increases the chances o f the solutions to be accepted.

The leading approaches in software evolution focus on both business rules and

software technology. With regard to software technology, most of them utilize

the widely accepted, well proven techniques in the existing areas such as object-

oriented, component-based, and architectural connector to name a few.

♦ Evolution problem should be tackled at metamodel level.

A model is important to provide a blueprint for producing a workable software

system. The evolvability of the software model is largely determined by the

elements of its metamodel. Therefore, the evolution problem should be tackled

at the metamodel level. In terms of business rule-driven software evolution, the

business rule components should be linked to software components at their

metamodel level to facilitate their modelling and the propagation of business

rule changes to software system.

Page 87

Chapter 3 The BROOD Approach

♦ User requirement changes may happen prior to implementation.

A traditional view on software evolution is closely related to the traditional

waterfall software lifecycle model where the evolution happens after the system

is delivered i.e. during maintenance phase. However, in nowadays rapidly

changing business environment, changes might happen prior to software

deployment. Therefore, there is a need to support the evolution during early

phase of software development. The best solution is to link business rules,

which may be considered as the rapidly changing user requirements, to software

design, which represents the software components.

3.2 BROOD Overview

Business rule specification is considered as a central part of the BROOD approach. In

this approach, the metamodel is systematically developed to enable the appropriate

specification of business rules as well as to link the specification to object-oriented

software design. Using BROOD, the implementation of changes is performed at a

software design level, which is also known as model-driven software evolution.

In order to be considered as a complete and practical approach in a development of

evolvable software system, BROOD considers both product and process perspectives

of the development and evolution a software system.

The product is defined using the BROOD metamodel, which specifies the structure for

business rule specification, software design, and their linking elements. The BROOD

metamodel is considered as the core of this approach since it determines the

evolvability feature of the developed software applications. The metamodel is

complemented by a language definition based on the context-free grammar EBNF,

which is included in appendix B. The language definition defines the allowable

sentence patterns for business rule statements and describes the linking elements

between business rules and the related software design elements.

The process refers to a set of systematic and well-defined steps that should be followed

during software development and evolution. BROOD process emphasizes several

important activities in a software lifecycle that contribute to a more resilient software

Page 88

Chapter 3 The BROOD Approach

system. The scope of BROOD process is limited to analysis, design, and evolution

phases. The flow of activities in each phase, which are arranged according to their

process roles, is shown in Figure 3-1. The detailed explanation on the BROOD process

is presented in the next chapter. In summary, the BROOD phases are described as

follows:

♦ During analysis, the requirements model produced in the previous phase

(typically called requirements phase) is used by software architect and

component engineer to produce the analysis model, which consists of

architecture description, class diagram, statechart diagram and package

diagram. The use of the result from the previous phase ensures faithful

translation of the requirements to the design of the software under

development. In terms of business rule modelling, the informal business rule

statements and other requirement models produced by the previous phase are

analyzed to develop an initial business rule specification.

♦ During design, the analysis model is further refined to produce a suitable

structure for implementation. Some implementation-related information is

added to the model. For the purpose of future evolution, each business rule

statement in the business rule specification is further refined and linked to its

respective software design elements. The refinement and linking of the

business rule specification may require additional detailed information to be

added to the software design.

♦ During evolution, BROOD facilitates the management of rule changes and the

propagation of the changes to software design. By documenting correlated

business rules, the software design can be automatically changed according to

the rule changes even though the changes take place prior to software

implementation.

Page 89

C hapter 3 The BROOD Approach

Functional Analyst

Analyze BRArchitectural Analysis
■ — BR Specification

m >
Analyze a Class

Analyze a Package

Analyze a Claes

Analysis Model

Develop BR
Specification

Analysis Model Architectural Desigr

Design Model
(completed}

Analyze
BR Change Request

Implement
BR Change

->g
Validate BR BR Specification
Specification

Design Mode!
{changed}

— -i-----------

Figure 3-1 The BROOD Process

The prototype o f the automated tool that supports the core activities o f the BROOD

process were developed using the configurable Generic Modelling Environment

(GME). It aims to demonstrate the capability o f automating the important aspects o f the

BROOD approach such managing business rule changes and propagating them to

software design. The application o f the BROOD approach in an industrial-strength

MediNET case study is used to experiment, improve, and demonstrate the proposed

software development and evolution concepts.

With reference to the BROOD metamodel, there are three main components o f the

metamodel that are required in order to link and propagate changes o f business rules

from conceptual domain to software domain i.e. the business rules metamodel, the

software design metamodel and the linking elements between the two. The business

rules metamodel provides an exhaustive typology and management elements of

business rules. The formal language definition is derived from the business rule

metamodel to define the syntax o f business rule specification. A widely accepted

Page 90

Chapter 3 The BROOD Approach

Unified Modeling Language (UML) is taken as the software design metamodel.

Although UML provides various useful models, this research only uses class diagram

for modelling the static aspect and statechart diagram for modelling the dynamic aspect

of software system. Some approaches introduce the extension to the existing standard

UML metamodel by adding elements to cope with new semantic definitions dedicated

to business rules implementation. However, BROOD aims to avoid this extension by

introducing linking elements in its metamodel. The linking elements are written as

phrases that form business rule statements, and they are mapped to their respective

software design elements. Most of the business rule examples presented in this chapter

are taken from the MediNET case study.

3.3 The Business Rule Metamodel

The ultimate aim of the BROOD metamodel is to support the linking of business rules

to software design, which in turn facilitates the traceability and propagation of the rule

changes to its related design components. Since business rules are often managed by

business users, the metamodel should naturally define business rules from the users’

perspectives. At the same time, the definition should be well structured enough to be

linked to software design.

The business rule metamodels proposed by most of the existing prominent business rule

approaches in conceptual modelling are suitable for business users. Among the

important aspects of the metamodels including business rule typology, rule management

elements, and sentence templates. However, some templates of these approaches, such

as in [Hay and Healy, 2000; von Halle, 2002; Ross, 2003], are inappropriate and

redundant for the purpose of downstream development although they provide an

exhaustive business rule typology. Other approaches [Herbst, 1997; Morgan, 2002],

although they provide a good set of templates, are less comprehensive in their typology.

Almost all of them do not have a structure suitable to be linked to software design; they

also do not provide a detailed mapping of their metamodel elements to software design.

For these reasons, the above business rule metamodels were further improved to achieve

a set of appropriate typology and templates for the puipose of linking and propagating

business rule changes to software design. The initial concept of the metamodel was

Page 91

C hapter 3 The BROOD Approach

introduced in [Wan Kadir and Loucopoulos, 2003; Wan Kadir and Loucopoulos, 2004b]

and the technique for linking and propagating business rule changes to software design

were briefly described in [Wan Kadir and Loucopoulos, 2004a],

At the outset, three main desirable characteristics were set for deriving an appropriate

business rule metamodel which fit the puipose o f the aims o f this research. First, it

should have an exhaustive and mutual exclusive typology to capture all possible types

o f business rules. Second, it should have the structured forms o f expressions for linking

the business rules to software design. Third, it should include rule management

elements to improve business rule traceability in business domain, which consequently

simplifies business rule management. These three characteristics form the basis for the

development o f the business rule metamodel, which is shown in Figure 3-2.

Business Process Rule Set

Owner
Business Rule Statement B u sin ess Rule

represen tation

pattern

Rule Template

Constraint Derivation Action Assertion

Relationship Constraint Attribute Constraint Computation Inference

Condition

Action Event

Role Entity
V a l u eAttributeTerm F a c t

Cardinality L i s t AlgorithmReiOperator

o..*0..1

Figure 3-2 The BROOD business rule metamodel

Page 92

Chapter 3 The BROOD Approach

3.3.1 Business Rule Typology

As shown in Figure 3-2, the metamodel classifies business rules into three main types

i.e. constraint, action assertion, and derivation.

3.3.1.1 Constraint

Constraint rules specify the static characteristics of business entities, their attributes, and

their relationships. They can be further divided into attribute and relationship

constraints. The former specifies the uniqueness, optionality (null), and value check of

an entity attribute. The later asserts the relationship types as well as the cardinality and

roles of each entity participated in a particular relationship. The syntax of constraint

rules are further specified by the following EBNF definitions:

constraint = att_constraint | rel_constraint;
att_constraint = entity, ('must have' | 'may have'), ['a unique'],

att_term
j att_term, {'must be' | 'may be'), relational_op,
(value | att_term)
| att_term, 'must be in', list;

rel„constraint = ([cardinality], entity, 'is a/an', role, 'of',
[cardinality], entity
| [cardinality], entity, 'is associated with',
[cardinality], entity
| entity, ('must have' | 'may have'), [cardinality],
entity
j entity, 'is a/an' entity);

In the above definitions, the first valid sentence for attribute constraint determines the

optionality and uniqueness of an entity attribute. The presence of string literal 'must
have' indicates that the attribute is mandatory whilst the keyword 'may have' indicates

that it is optional for the attribute to have a value. The use of 'a unique' keyword

shows that the attribute must hold a unique value at all times. The examples of attribute

constraints in MediNET are shown below:

• Patient must have a unique patient registration number.

• Patient may have a passport number.

• Bill must have a unique bill number.

The remaining two definitions for the attribute constraint refer to the value check of an

entity’s attribute. The first sentence definition specifies the comparison between a value

of an attribute with the value of another attribute or any literal value. The comparison is

Page 93

Chapter 3 The BROOD Approach

made using a set of relational operator such as 'less than’, ‘equal’, 'greater than’,

'greater than or equal’, ‘less than or equal’, and ‘not equal’. Literal value may be any

value from the same type with the type of the compared attribute. The second definition

restricts the value of an attribute to be only from the listed values. The listed values are

often represented by a variable which contains a set of enumerated values. For example:

• The amount of Bill must be less than the maximum bill amount set by the paymaster.

• An employee level of a Panel Patient must be in {employer, executive, production

operator}.

For relationship constraints, the first definition states the role played by an entity in a

particular relationship with another entity. The cardinality of each participated entity

may also be defined using this sentence pattern. The second definition represents a

general association between two entities whilst the third definition specifies the

containment of an entity in another entity. The final sentence definition of relationship

constraints represents the generalization relationship between sub-type and super-type

entities. The examples of relationship constraints in MediNET are given below:

• Clinic item is a/an item type of bil! item.

• Bill must have zero or more bill item.

• HCP Service Invoice is a/an Invoice.

It is also important to mention that the use of words 'must' and 'may' implies different

meaning in a rule statement. The former specifies a mandatory feature that must be

satisfied by a business entity, whilst the latter specifies its optional feature. Business

events that violate the mandatory constraint should be rejected, whilst violation of

guideline rules should only raise a warning to the user.

3.3,1.2 Action Assertion

Action assertion, which is also known as active [Berndtsson and Calestam, 2003] or

EC A (Even t-Condition-Action) [Herbst, 1997] rule, is a statement that concerns a

dynamic or behavioural aspect of the business. Action assertion specifies the action that

should be activated on the occurrence of a certain event and possibly on the satisfaction

of certain conditions. The number of triggered events or tested conditions can be more

than one, and they can be connected using logical connectives AND or OR. The portion

Page 94

C hapter 3 The BROOD Approach

of the BROOD metamodel that further describes the action assertion rule is shown in

Figure 3-3. The EBNF definition for action assertion is

action_assertion = "WHEN', event, ['IF', condition], 'THEN', action;

ListValueUserAction

OperationTermDateTime

TimeUnit

Number

Action Assertion

UserEvent Entity AttrlbuteTerm

B usiness Rule

RelOperator

Figure 3-3 Action assertion

Event

In common language, an event is something that happens at a point in time. This

research refines the definition o f event to a happening or change that is significant to

both business and software activities. In other words, the events which are only

important to business such as ‘customer arrived’, and the events which are only

important to software such as ‘window closed’, beyond the scope o f this research. The

identification o f the possible significant events is important for a system to plan ahead

the response or action to be taken on the occurrence o f the events. For example, ‘the

receiving of a customer order’ and ‘the completion o f patient consultation’ are

considered as a significant event since they require a particular response to be taken.

The received customer order is needed to be confirmed by checking the condition that

the ordered items are available in stock, or rejected if the items are not available.

Similarly, the completion o f patient consultation indicates that the bill must be created

for the patient.

Page 95

Chapter 3 The BROOD Approach

The definition of event is given below:

event = simple_event | complex_event;
simple_event = change_event | time_event | userevent ;
change_event = att_term, 'is updated' |

entity, ('is deleted' | 'is created') |
(operation | business_rule), 'is triggered';

time_event = date_time |
n, time_unit, 'time interval from', date_time , 'is
reached' |
number, time_unit, 'after', date_time;

user_event = string;
complex„event = simple_event, {('Or' | 'And'), simple_event {('Or' |

'And'), simple_event)

Event can be either a simple or complex event. Complex event is the combination of

two or more simple events using the logical connectives AND or OR. Similar to their

usual implication, the use of AND to combine two events in action assertion denotes that

both events must occur for the specified action to be triggered, whilst the use of OR only

requires the occurrence of either one of the events. Simple event can be categorised into

change event, time event, and user event.

Change event includes the updating, deletion, or creation of attributes or instances of an

entity, and the invocation of an operation or business rule. In other words, it is

concerned with the events generated by the changes of attributes or state of an object.

The examples of change event in MediNET include ‘updating of the panel status’,

‘deletion of a patient record’, and ‘creation of a patient bill’.

Time event is triggered when the specified date and time are reached or certain duration

is elapsed. It can be further divided into time point, periodical, and time delay. Time

point event is raised when a system clock reach the specified date and time. Periodical

event is triggered when a specific event or temporal specification happens for the nth

time. A delay event happens after a duration which starts at the time point of the

occurrence of another event. The examples of time event are ’24 Oct 2004 / 18:00’,

‘every 2 weeks from start date’, and ‘30 days after invoice issue date’.

Each of the above event types describes the valid sentences for specifying business

rules. However, it is almost impossible to have a complete set of sentence structure that

Page 96

Chapter 3 The BROOD Approach

capture all type of significant events in a business system. Therefore, user event is

introduced to represent any significant event that is not categorised under the above

event types. User event is expressed in a natural language. It is often a manual event

generated by human activities. The examples of user event are ‘patient consultation

completed’ and ‘registration requested’. User event may also be an automated event

when it shows the interaction between user and software, for example ‘booking

confirmed’ and ‘bill is validated’.

Condition

Similar to event, condition may also be a simple or complex condition. Complex

condition is the combination of two or more simple conditions connected with the

logical connective AND or OR. Simple condition is a boolean expression which

compares a value of an entity attribute with any literal value or the value of another

entity attribute using a relational operator. It can also be an inspection of the existence

of a value of an entity attribute in a list of values.

The definition of condition is given below:

condition = simp1e_condition | complex_condition;
simple_condition = ['Not'], attribute_tenn, relational_op, (value |

attribute_term) | attribute_term, ('in') 'not
in'), list; ^

complex_condition = simp1e_condition, ('Or' | 'And'), simple_condition,
{('Or' | 'And'), simple_condition);

Action

Action is an activity that should be performed by a system in responding to the

occurrence of the significant event and the satisfaction of the relevant condition. The

execution of action may change the state of an instance of an entity. The enabling and

execution of an action is controlled by action assertion rule. Action is defined by the

following definitions:

action = simple_action | action_sequence;
simple_action = trigger__action | objects manipulation_action |

user_action;
trigger_action = 'trigger', (process | operation | business„rule);

Page 97

Chapter 3 The BROOD Approach

object_manipulation_action= 'set', att__term, 'to', value |
('create' | 'delete'), object;

action_sequence = simple_action, {simple_action};

As shown in the above definitions, action can be a simple action or a sequence of simple

actions. Simple action can be further categorized into three different types i.e. trigger

action, object manipulation action, and user action. Trigger action invokes an operation,

a process, a procedure, or another rule under certain circumstances. Object manipulation

action is a special type of trigger action that sets the value of the attribute or

create/delete an instance of an entity. User action is a manual task that is done by

system users. During implementation, user action is often implemented as a message

displayed to the user.

The examples of action assertion rule with different action types are given below:

• When new invoice created then calculate invoice end date.

• When a patient consultation completed then removes the patient from consultation queue

and create bill for the patient.

• When invoice entry updated if stock of drug smaller than re-order threshold then reorder

the drug.

3.3.1.3 Derivation

Derivation rule derives a new fact based on the existing facts. It can be categorized into

two types i.e. computation, which uses a mathematical calculation or algorithm to

derive a new arithmetic value, and inference, which uses logical deduction or induction

to derive a new fact. Inference rule is also used to represent permission such as user

policy for data security. The definitions for both computation and inference are given

below:

computation = attribute_term, 'is computed as', algorithm;
inference = 'if', condition, 'then', fact;

In the above definition, computation rule specifies an algorithm for the calculation of an

entity’s attribute. The algorithm can be specified using any procedural specification

language such as pseudo-code, third generation programming language, scripting

language, or natural language. As an example, consider the following rule:

Page 98

Chapter 3 The BROOD Approach

The amount HCP MediNET usage invoice is computed as the amount of

transaction fees, which are calculated as the transaction fee multiply by the total

number of transactions, plus the monthly fee’

The algorithm for the above rule is defined in pseudo-code as:

let a = transaction^:ee;
let b = number_of_treated_patient;
transaction_fees = a * b;
invoice_amount = transaction_fees + monthly_fee;

Inference rule implies that a fact is true upon finding a true value of a condition. The

condition may be a simple or complex condition as defined in section 3.3.1.2. The

derived fact is a declarative statement that represents a conclusion from a certain set of

circumstances (truth-valued conditions). Facts may represent either a static aspect of an

entity property such as the state or value of a particular attribute under certain

conditions, or a dynamic aspect such as the permission to perform certain action. The

examples of static fact are ‘patient is an emergency patient’, ‘customer is a preferred

customer’, and ‘tenderer is not a qualified contractor’, whereas the examples of dynamic

fact are ‘user may modify bill’, ‘customer may not cancel order’, and ‘user may view

medical certificate’. Fact is formally defined as follows:

fact = {attribute„term | entity), relational_op, ['a'], value) |
entity, {'may' j 'may not'), action;

The examples of inference rules are given below:

• If the paymaster’s last quarter transaction is more than RM12,000.00 and the

paymaster has no past due invoices then the paymaster is a preferred customer.

• If the user type is equal to HR Officer and the user company is equal to patient

paymaster then the user may view the patient’s medical certificate.

3.3.2 The Rule Templates

In BROOD metamodel, each business rule type is associated with zero or more rule

templates. Rule templates are the formal sentence patterns by which business rules

should be expressed. They are provided as a guideline to capture and specify business

rules as well as a way to structure the business rule statements. Each rule template

consists of one or more well-defined rule phrases, which are discussed in section 3.5.

Page 99

Chapter 3 The BROOD Approach

By using the available templates, an inexperienced user may easily produce a consistent

business rule statement. Rule templates help users to avoid tedious and repeated editing

when creating many similar rules; and ensure the uniformity by restricting the type of

rules that can be written by business users. The use of templates also allows the precise

linking of business rules to software design elements. The templates can be directly

derived from the language definition in Appendix B. Table 3-1 lists the identified

templates for each business rule type.

The following convention is used in the definition of the template in Table 3-1:

[x] x is an optional variable or value.
< x> x is a variable that represents a value or set of values,
x | y either x or y must exist.
x y z ‘ x y z ’ is a keyword or string literal in a business rule statement.

Table 3-1 Business rule templates

Types Templates

Attribute
Constraint

<entity> must have | may have [a unique] <attributeTerm>.
<attributeTerm1> must be | may be <relationalOperator> <value> | <attributeTerm2>,
<attributeTerm> must be in <list>,

Relationship
Constraint

[<cardinality>] <entity1> is a/an <role> of [<cardinality>]<entity2>.
[<cardinality>] <entity1> is associated with [<cardinality>]<entity2>.
<entity1> must have | may have [<cardinality>] <entity2>.
<entity1 > is a/an <entity2>.

Action Assertion

When <event> [if <condition>] then <action>.
The templates of<ever>t>:

<attributeTerm> is updated
<entity> is deleted j is created
<operation>[<rule> is triggered
the current date/time is <dateTime>
<number> <timeUnit> time interval from <dateTime> is reached
<number> <timeUnit> after <dateTime>
<userEvent>

The templates o f <condition>:
<attributeTerm1> crelationalOperators cvalue [attributeTerm2>
<attributeTerm> [not] in <list>

The templates o f<action> :
trigger <process> | <operation> [<rule>
set <attributeTerm> to <value>
create | delete <entity>
<userAction>

Computation <attributeTerm> is computed as <algorithm>

Derivation

if <condition> then <fact>.
The templates of <fact>:

<entity> | <attributeTerm> is [not] a <value>
<entity> may [not] <action>

Page 100

Chapter 3 The BROOD Approach

3.3.3 Management Elements

The management elements are also included in the BROOD metamodel for facilitating

the organization and management of business rules. These elements include the rule set,

business process, and owner. They can be found in the following definitions:

business„rule_model = rule„set, owner;

r u le _ s e t = (r u le _ s e t | rule_statement), { r u le _ s e t |
rule_statement}, [owner], [b u s in e s s_ p r o c e s s] ;

Rule set is used to simply group business rules into a set of closely interrelated rules.

Each business rule model must have a single rule set, which is considered as the root

rule set. This rule set must have at least one rule statement or another rule set. One of

the popular ways to identify a rule set is through its related business process. For

example, the rules ‘The bill amount is calculated as the sum of amounts of all bill items’ and ‘If

a patient is a panel patient and his paymaster pays the bill in full, the balance is set to 0 and the

bill status is set to unpaid’ can be grouped in a rule set which is related to ‘bill

preparation’ process. By properly organizing rules, the complexity of managing a large

number of rules can be reduced. In the Appendix A, there are more examples on the

business rules from the case study which were naturally and informally grouped into

business processes.

Each business rule model must have an owner. An owner may also be defined for a rule

set. The owner of a parent rule set is assumed to be the owner of its child rule set if the

child does not define its owner. It is important to define the owner information in

business rule model to determine the access rights and responsibility to a business rules

repository, especially for software systems with multiple user groups that possess

different business rules. Owner might be an organization, an individual user, a user

group or role that is responsible for the management of the respective business rules.

During business rule implementation, each rule set, business process, and owner is

given a unique identifier. The BROOD metamodel discussed in this chapter has no

intention to include the details of rule management components as it may restrict the

flexibility of its implementation.

Page 101

Chapter 3 The BROOD Approach

3.4 Software Design Metamodel

The Unified Modelling Language (UML) [OMG, 2001] metamodel is used to represent

software design since it is widely accepted in research and industry communities. In

general, the UML metamodel consists of three packages i.e. Foundation, Behavioral

Elements and Model Management. These packages define various useful models for the

understanding and specification of the system under development. The Foundation and

Behavioural Elements packages are the language infrastructures that correspondingly

specify the static structure and dynamic behaviour of the UML models. For the purpose

and scope of this research, only two models are included in the study namely class

diagram and statechart diagram which respectively model the static and dynamic

aspects of software systems.

3.4.1 Class Diagram

A static structure shows the kind of things that exist (such as classes), their internal

structure, and their relationships to other things. The central concept in a static view is a

class diagram. A class in the class diagram can be directly implemented in an object-

oriented programming language that has direct support for the class construct. Figure

3-4 shows the appropriate subset from the UML metamodel, which contains all the

necessary elements used in practice for the class diagram.

As shown in Figure 3-4, each UML model element is a subclass of the ModelElement

abstract class. An abstract class is not allowed to have any objects and it is used merely

to specify a common set of attributes and operations of its subclasses. Thus, the name

attribute is used to identify each model element in a UML model. The Class class,

which is inherited from an abstract class Classifier, has zero or more features. Feature

is an abstract class which is inherited by Attribute and Operation classes. In other

words, a class has zero or more attributes and/or operations. An attribute is a named

property of a class that describes a range of values that the instances of the property may

hold. It may also describe the multiplicity, visibility and type of its instance. An

operation is the implementation of a service that can be requested from any object of a

class to affect its behaviour. It is described with a return-type, a name, and zero or more

parameters.

Page 102

C hapter 3 The BROOD Approach

1 +genera1izatior

+parent +specializalior+param eler

{ordered)

{ordered}

Class

O p e r a t i o n

A s s o c i a t i o n

Classifier

n a m e : S t r i n g

ModelElement

v i s i b i l i t y i V i s i b i l i t y K i n d

Feature
v i s i b i I i t y : V i s i b i l i t y K i n d

Generalization

i n i t i a l V a i u e ; E x p r e s s i o n

A t t r i b u t e

i s H o o t : B o o l e a n
i s L e a f : B o o l e a n

GeneralizableElement

k i n d ; P a r a m e t e r K i n d
d e f a u l t V a l u e : E x p r e s s i o n

Parameter

m u l t i p l i c i t y ; M u i t i p l i c i t y
a g g r e g a t i o n : A g g r e g a t i o n K i n d

AssociationEnd

Figure 3-4 A fragment o f the Class Diagram metamodel (an excerpt from the UML
standard v l.4 [OMG, 2001])

The semantic relationship between classes is defined by an Association element. The

instances o f an association are a set o f tuples relating objects o f the classes. Each

association has at least two AssociationEnds. An AssociationEnd is an endpoint o f an

association, which connects the association to a class. The aggregation attribute o f

AssociationEnd defines the kind o f relationship none, aggregate, or composite. Apart

from Association, there is also Generalization relationship that connects a class to its

super-class so that the class inherit all o f the features from its super-class.

3.4.2 S ta tech art D iagram

Statechart diagram is used to model the possible finite states o f an object or system as

well as the transitions from one state to another. It specifies the sequence o f states, the

event that cause the transition, the guard (condition) that should be satisfied, and the

action triggered by the transition. It is useful for representing and understanding o f the

object with a complex behaviour.

The syntax and semantics o f Statechart diagram is described in the State Machines

package, which is a sub-package o f Behavioral Elements package. In State Machines

package, State is a static situation such as waiting for an event, or a dynamic condition

Page 103

C hapter 3 The BROOD Approach

such as performing a process. It has one or more outgoing and incoming Transitions.

Transition shows the change from the first state to the second state when the specified

Event occurred and the Guard satisfied. It also specifies the Action triggered by the state

change. The UML model elements related to statechart diagram is shown in Figure 3-5.

I +entry Q..1

Action

ModelElement
n a m e : S t r i n g

- - - - - - - - - - - - 2V"

T
StateMachine Guard

expression: BooleanExpression
0..1 +guarc

tdoActivily J

State ♦source +oulqoing Transition1 0,.*
♦ targel +incominc

0..*

H leferrableEvenl Event
♦trigger

Figure 3-5 State Machine metamodel (excerpt from the UM L standard v l.4
[OMG, 2001])

3.5 Rule Phrases and Linking Elements

Business rules can be implemented or linked to software system in many ways such as

using rule object, rule engine, UML metamodel extension, or OCL constraints.

However, the use o f rule object or rule engine increases the execution time overhead

during business rule trigger since the rule object or rule engine is located at different

address space with the triggering software components. The extension o f the well-

known UML metamodel should be minimized because it will introduce new modelling

elements that need new semantic definitions, which makes understanding o f the design

model more difficult. The use o f constraints expressed using OCL may provide a link

between business rule specifications and software design but OCL is still hard to

understand by business users although OMG claimed that no mathematical background

is required in using OCL. Due to these problems, BROOD introduces rule phrases that

link the user-oriented business rule specification to software design.

Page 104

Chapter 3 The BROOD Approach

Rule phrases are considered as the building blocks for the rule statements. They can be

maintained independently during implementation, in other words, they are not deleted

when a business rule is deleted. However, the modification and deleting of a rule phrase

is not recommended since a careful effort is needed in reviewing its aggregated business

rules.

In addition to playing a role as the building blocks for business rule statements, rule

phrases are also important in linking business rules to software design elements. As

shown in the metamodel in Figure 3-2, each rule phrase is linked to zero or more UML

model elements. The mappings between rule phrase types and UML model elements are

summarized in Table 3-2.

Table 3-2 The associations between rule phrases and design elements

Rule Phrase Type Software Design Elements

Entity Class

Attribute Term Attribute

Operation Term Operation

Attribute Constraints Attribute.isUnique, Attribute.notNull

Cardinality AssociationEnd.multiplicity

Role AssociationEnd.role

Event Transition.event Class.operation

Condition Transition.guard, Operation.specification

Action Transition.action -> Class.operation

Algorithm Operation.specification

Value - (literal value), Operation.

List - (enumeration), Operation

Relational Operator - (enumeration)

Most of the rule phrases are directly linked to class diagram model elements. Entity and

Attribute Term are directly connected to the respective class and attribute in the class

diagram. Cardinality and Role are correspondingly linked to multiplicity and role of an

association end of a relationship. Algorithm, which specifies the details of a calculation,

is linked to operation specification.

Page 105

Chapter 3 The BROOD Approach

Class diagram is the most important representation of the software implementation

components. For example, the information from class diagram may be used for code

generation or directly mapped to the constructs of a modem object-oriented

programming language. Therefore, it is important to maintain a link between business

rule statements and class diagram model elements in order to improve business rule

traceability in the actual software components. However, not all rule phrases can be

semantically linked to class diagram since it only concerns with the static aspects of a

software system. These rule phrases are Event, Condition, and Action, which are the

building blocks for action assertion rules. They are naturally linked to statechart

diagram since both action assertion and statechart diagram are concerned with the

dynamic aspects of a software system. Event, Condition, and Action phrases in action

assertion rule are respectively linked to event, guard, and action of a state transition in a

statechart diagram. Consequently, event and action may be linked to a class operation,

and guard may be linked to an operation specification, in a class diagram.

All of the above rule phrase type must be connected to software design elements. On the

contrary, the remaining rule phrase types, i.e. List, Relational Operator, and Value, are

not necessarily connected to any UML model elements. List and Relational Operator

contain enumerated values whilst Value contains a literal value. However, Value and

List can be linked to an operation that return a single and multiple values respectively.

3.6 Summary

The inherent problem of a software system in a dynamic business environment, the

recent views on software evolution, and the gaps in business rule approaches to

software evolution motivate the introduction of the BROOD approach. BROOD was

proposed to tackle the root of software evolution problem by considering business rules

as the important components of a software system. It provides the traceability that

allows the propagation of business rule changes to software design.

At the heart of BROOD is the metamodel that offers a complete foundation and

infrastructure for the development of a software system that is resilient to business rule

changes. The metamodel includes the exhaustive rule typology and templates for

guiding the process of developing a business rule specification. The widely-accepted

Page 106

Chapter 3 The BROOD Approach

UML metamodel was chosen to represent the software design part of the metamodel.

The rule phrases are defined to link business rules to the respective software design

elements in order to minimize the extension or modification of the standard UML

metamodel in implementing business rules.

The metamodel is capable to enhance the traceability of business rules from the

conceptual domain to the design elements of the software domain. If this work is

combined with the work on design traceability in source code [Alves-Foss et al., 2002],

it would then be possible to achieve total traceability in a software system. The

metamodel also contains some elements to facilitate the rule management or

maintenance. To further enrich the implementation potential, the metamodel is also

supported by EBNF definitions that describe the detailed definitions of the modelling

language. Using this metamodel, the evolution of a software system can be

automatically driven by the changes in business rule specification.

Although the metamodel and language specifications described in this chapter are

considered as the fundamental part of BROOD approach, the approach is not considered

complete without the descriptions on process, tools, and application. Therefore, the

discussions on the BROOD process, its supported tool, and its application examples will

be presented in the subsequent chapters.

Page 107

Chapter 4 The BROOD Process

Chapter 4

The BROOD Process

This chapter presents the second component of BROOD approach i.e. the software

process. It starts with a brief description of SPEM modelling concepts and notations,

which is used to model the BROOD process. This is followed by a high level

description of the BROOD process in terms of its process metamodel, lifecycle phases,

and use-case view of the process roles and main activities. Next, the detailed

descriptions on analysis, design, and evolution phases are explained using the activity

diagrams. Finally, the chapter summary is presented at the end of this chapter.

Page 108

Chapter 4 The BROOD Process

4.1 Introduction

As mentioned in the previous chapter, BROOD provides both the required components

of a practicable software evolution approach i.e. product and process. The metamodel

that represents the product component of the BROOD approach was presented in the

previous chapter. The software process that supports the BROOD approach will be

discussed in this chapter. In general, a software process is a set of activities that leads to

the production and guides the evolution of a software product. It is important to have a

detailed software process description as a guideline to validate the correctness or

completeness of a process as the process becomes complex. Having a correct process

model is like having an engineering blueprint, against which the activities can be

designed and validated. A good process model may also facilitate the management of

software project, improve communication between team members, and potentially

shorten time to market of the software product. The BROOD process is described using

the process model based on the syntax and semantics of the OMG Software Process

Engineering Metamodel (SPEM). This chapter describes the SPEM modelling concepts

and notations, the high level description of BROOD process, and the detailed

description of the phases of the BROOD process.

4.2 Software Process Engineering Metamodel

Software Process Engineering Metamodel (SPEM) is developed by the Object

Management Group to provide a metamodel and notations for specifying software

processes and their components [OMG, 2002]. The original purpose of SPEM is to

support the definition of a concrete software development process that suit

organization’s changing needs and environment based on the fact that the software

process is also constantly change and evolve similar to software product. It also aims to

provide a unified standard for process modelling techniques since there are many

process models and standards which uses different terminology for the same meaning,

or sometimes a different meaning for the same word or phrase. SPEM extends the

Unified Modeling Language (UML) [OMG, 2001] metamodel with process specific

stereotypes. A portion of SPEM that shows most of the important components of a

process structure is shown in Figure 4-1.

Page 109

C hapter 4 The BROOD Process

subWork

parentWork

0 . . *

W orkD efin ition work performer ProcessPerform er
perform er: Process Performer
parentW ork: WorkDefinition

0..* ♦
{ordered}

w o rk : WorkDefinition
/ \

Phase Lifecycle
governedProcesses : Process

Activity

Iteration
activ ity! 1

activity
0,.*

assistant
0 . !

ProcessRoIe

responsibleRoie 0..1

step | 1..* workProduct 0..*
Step W orkProduct

isDeliverable: Boolean

Figure 4-1 An exceipt from OMG Software Process Engineering Metamodel [OMG,
2002]

In SPEM, a work product is an artefact produced, consumed, or modified by a process.

It may be a piece o f information, a document, model, or source code. It is either used as

an input by workers to perform an activity, or a result or an output o f such activities. A

work product is called a deliverable if it is needed to be formally delivered by a process.

The examples o f work products in BROOD are class diagram, statechart diagram, and

business rule specification. Each work product is associated with a process role who is

formally responsible for its production.

A process role defines the responsibilities o f an individual, or a group o f individuals

working together as a team. Each process role may have a responsibility on a specific

work product and role in performing or assisting specific activities. For example,

‘functional analyst’ and ‘business user’ are two process roles that respectively play the

roles o f performing and assisting the production o f an ‘initial business rule

specification’ work product. One individual may participate in more than one process

role. Each process role is associated with zero or more performed or assisted activities.

An activity o f a specific process role is a unit o f work that an individual in that role may

be asked to perform. The activity has a clear purpose, usually expressed in terms of

creating or updating some work products. It may consist o f one or more atomic

components called steps. Activity is the main subtype o f work definition, which

describes the work performed in the process. Other subtypes o f work definition include

Page 110

C hapter 4 The BROOD Process

lifecycle, phase , and iteration . Ail instance o f work definition can be used to represent

composite pieces o f work that can be further decomposed. Figure 4-2 shows the

notations based on SPEM that can be used in conjunction with use-case and activity

diagrams to describe the above mentioned software process components. Please note

that two additional components, i.e. document and UML model, are added to represent

two sub-types o f work product.

1 1 1
P h a s e P r o c e s s R o l e

n > A c t i v i t y
« p e r f o r m » U s e C a s e

C o m m u n i c a t i o n

W o r k D e f i n i t i o n
« a s s i s t »

(p e r f o r m s t e r e o t y p e)

U s e C a s e
C o m m u n i c a t i o n

s

W o r k P r o d u c t

D o c u m e n t
{ W o r k P r o d u c t)

U M L m o d e l
(W o r k P r o d u c t)

-------- - >

- - - - - - - - - - - - - - - >

(a s s i s t s t e r e o t y p e)

O b j e c t F l o w
(A c t i v i t y D i a g r a m)

C o n t r o l F l o w
(A c t i v i t y D i a g r a m)

Figure 4-2 Notations used to describe software process

4.3 The Description of the High Level BROOD Process Components

Before going further into the description o f the detailed process specification, the high

level process components such as the main phases o f the BROOD process in software

lifecycle and the relationships between process roles and BROOD activities will be

described in this section. It is important to mention that the BROOD process only

defines the relevant phases in software lifecycle. It does not define any specific lifecycle

model to allow flexibility o f the BROOD process to be tailored for any type o f software

lifecycle model. The relationships between process roles and BROOD activities are

described using use-case diagrams.

Some concepts in SPEM must be further clarified and adapted since SPEM is too

abstract and largely influenced by the modem Rational Unified Process (RUP) lifecycle

model. For this purpose, the metamodel that is used to describe the BROOD process

components is developed; it is shown in Figure 4-3. The metamodel augments the

Page 111

C hapter 4 The BROOD Process

semantics o f SPEM elements to produce more concrete definitions o f work definition

elements such as lifecycle, phase, and activity. In this metamodel, software lifecycle

contains one or more phases. Each phase produces the tangible work products which are

considered as deliverables. A management decision is often made at the end o f each

phase either to continue to the development o f a project, or to drop it. Each phase

contains one or more activities, which in turn contain one or more steps. Activity

diagram is used to describe the flow o f activities in certain phases whilst the detailed

description o f each phase such as work products, activities, and steps is described using

structured process specification.

Lifecycle

Phase

i s A D e t i v e r a b l e O f

Activity WorkProduct
o..*

i s R e s p o n s i b l e F o r
s t e p

p e r f o r m s I a s s i s t s ^
Step ProcessRole

Figure 4-3 The BROOD Process metamodel

4.3.1 The BROOD Phases

The BROOD phases, which is shown in Figure 4-4, aims to give the high level view of

a software development process which contains a sequence o f possibly iterative phases

and their respective activities. It represents a typical software lifecycle that consists of

several main phases such as requirement, analysis, design, implementation, and

evolution. Although the diagram shows the complete phases in the software lifecycle,

the scopes o f BROOD process are limited to analysis, design, and evolution phases. The

requirements phase, implementation phase, and some activities in evolution phase are

outside the scope o f BROOD. However, they are briefly explained in order to position

the BROOD process in the overall software lifecycle.

Page 112

C hapter 4 The BROOD Process

The exclusion o f the requirement and implementation phases leads to two assumptions:

the requirements model produced by requirements phase is always valid, and the

presence o f a link between software design and implementation. The former implies that

the current research does not have to provide a detail treatment on requirements

gathering and specification which certainly consumes longer time to complete the

current research. The latter supports the claim o f this research that the techniques of

linking and propagating o f business rule changes to software design may improve the

evolvability o f the implemented software system since there is a link between software

design and its implementation.

» >
Analysis

» >
Design

» }
Evolution

V ID
Analyze BR

YD
Architectural Design

2D
Examine BR Change

Statem ents

Architectural Analysis
Design a Class

ID
Design a Package

'. \ ID
Perform BR

Modification Change

\ ID ZD
Analyze a Class

Develop BR
Specification

ED
Validate BR
Specification

ed
Design a Class

ED
Design a Package

Analyze

Analyze a Package

BR Change Request

ID
Implement
BR Change

Figure 4-4 The main phases in the BROOD Process

The main purposes o f the requirements phase are to understand the needs o f business

domain on the services provided by software under development and to define the scope

o f software application by the identification o f system boundaries. This phase starts

with gathering information from various sources such as interviews, questionnaire,

observation, and existing system documentation. It involves a great deal o f interaction

with the people who will be affected by the system. In certain occasions, system

developer may choose to develop business models such as business vision, process,

Page 113

Chapter 4 The BROOD Process

behaviour, or structure especially for a highly complex business domain. Apart from

system understanding, these models also provide useful information for the

identification of strategic, tactic, and operational business rules. These types of rules are

high level definition of business rules which are outside the scope of this research. Both

functional requirements, i.e. the statements of the services or functions the system

should provide, and non-functional requirements, i.e. the constraints on the services or

functions offered by the system, are captured during this phase. All of the captured

requirements are validated at the end of this phase to ensure the completeness,

unambiguity, and coiTectness. The activities in this phase are often iterated until the

correct and reasonably complete requirements specification is produced. The

requirements specification is often considered as contracts between software developer

and clients. Other examples of work products created at the end of this phase include

various business models, use-case model, domain model, and business vision

documents. They are often collectively referred as requirements model.

During analysis, the requirements model developed in requirements phase is analyzed to

achieve more precise understanding of the system. The requirements, including business

rules, are transformed into various models or specifications, which are more structured

or formal than requirements model. These models are used to detect and remove

redundancies and inconsistencies of system requirements. In contrast to the user-

oriented language used in requirements phase, the language used for communication in

analysis is more technical. A set of work products produced by the activities in analysis

phase is called analysis model, which includes class diagram, statechart diagram,

package diagram, and business rule specification.

The analysis model is further refined in the design phase to produce the descriptions of

the software’s internal structure that will serve as a basis for its construction. Among the

two main activities in this phase are the development of the detailed business rule

specification and the creation of object-oriented software design. These two activities

are closely related since there is a need to link business rule specification to software

design elements to facilitate future software evolution. They are considered as the core

software development activities in BROOD process. Among the work products

produced at the end of design phase are the design (or detailed) version of class

Page 114

Chapter 4 The BROOD Process

diagram, statechart diagram, package diagram (sub-systems), and business rule

specification.

The main puipose of the implementation phase is to translate the software design into

machine readable form. Most of the contemporary CASE tools are capable to

automatically generate code skeleton from the information in software design. The code

skeleton is used by the programmers in their coding activity. The individual unit of the

implemented software system is often tested prior to their integration. The system

testing is done after each unit is integrated. The term unit is loosely used to represent a

class, component, or subsystem.

The evolution phase is very crucial in determining the software survival in its business

environment owing to the frequent and rapidly changes in business environment.

Moreover, the cost of implementing software changes is often several times higher than

its development cost. In general, the process in this phase starts with the analysis of

change request initiated by business users, newly introduced technologies, or external

environment. The types of changes are classified according to the purpose of changes

such as to repair software errors, to adapt the software with different operating

environment, and to response to organizational or business change. After the type of the

required changes is identified, software architect will produce a change plan and pass it

to component engineer for the implementation of the changes. As justified in the

previous chapter, the scope of BROOD is to deal with the business changes, in

particular the business rule changes.

As mentioned earlier, BROOD activities can be applied to any software lifecycle model

with different arrangement of the BROOD phases. For example, the analysis, design,

and evolution phases can be converted into workflows in RUP software process model

[Jacobson et al., 1999]. The workflows may subsequently be fitted into inception,

elaboration, construction, and transition phases with appropriate number of iterations. In

SPEM terminology, the term workflow is called discipline.

Page 115

C hapter 4 The BROOD Process

4.3.2 Use-Case Diagram

Use-case diagram is used to show the relationships between process roles and the main

activities in software process. There are two possible stereotypes o f the relationships:

« p e r f o r m » and « a s s i s t » . The former indicates that an activity is owned by a

process role that is the performer o f the described activity. The latter refers to additional

process role that is the assistant in the activity. Three use-case diagrams were developed

for analysis, design, and evolution phases in BROOD process. They are shown in

Figure 4-5.

As shown in Figure 4-5, there are four process roles that involve in BROOD process i.e.

functional analyst, business user, software architect, and component engineer. Each

process role is responsible for the work products produced by his activities.

Functional analyst involves in the activities related to requirements elicitation, analysis,

and validation. He is responsible to ensure that the system fulfil the user requirements.

With regard to business rule modelling, functional analyst analyzes the initial business

Analyze BR
I Statements

Functional Analyst Business User
Architectural Analysis

«<perfofm:

perform’
Analyze a Class

Component
Engineer

Soft. Architect
Analyze a Package

1

I ANALYSIS
«perfocm*i

Examine BR Change
.Architectural Design |f t «peT fo rrn» U e!

I 2 3
‘perform’(performs

Perform BR
Modification ChangeBusiness UserSoft. Architect Component

Engineer
Functional Analyst

‘perform’
«pMorm»

Validate BR
Specification

Design a Package
« p o r fo rm »

Develop BR
Specification Analyze

BR Change Request I

I D p̂erforms

Implement
BR Change ■

EVOLUTION 1

Component
Engineer

Soft, Architect}rfortn» Business UserFunctional Analyst

Validate BR
Specification

DESIGN

L ANALYSIS I

DESIGN |

Figure 4-5 Use-Case Diagram for BROOD Process

Page 116

Chapter 4 The BROOD Process

rule statements during analysis phase. This activity produces the initial business rule

specification that contains more structured rule statements. Functional analyst also

validates the developed or changed business rule specification during design and

evolution phases. In a team of software developers, functional analyst is the most

familiar individual about domain or business knowledge.

Business user may be an individual who use the software system, perform some

business processes, or anybody who is directly responsible in the operation of the

system under development. During analysis and design, business user only assist

functional analyst in analyzing and validating business rule specification. However,

business user plays important roles during evolution phase. He is responsible to

examine the initial business rule change request from the business policy maker. If the

change is classified as simple change, he will perform the change himself. On the other

hand, if the change is complex, he will refine the initial change request and pass it to

software architect.

The remaining process roles, i.e. software architect and component engineer, are mainly

responsible with the activities and work products related to software system. During

analysis, software architect performs architectural analysis activity that identifies the

main classes and packages. Component engineer further analyzes the outlines of classes

and packages to develop the analysis versions of class and package diagram. During

design, they perform the activities that transform the analysis model into design model.

With reference to business rule modelling, component engineer performs the

development of business rule specification activity. Since this activity requires the

creation of rule phrases, which are needed to be linked to software design components,

the person with the detail knowledge on software design components is needed to

perform this activity. Functional analyst assists the development of business rule

specification using his business knowledge. During evolution, software architect

analyze the business rule change request to produce a more detailed change request

document. The document is passed to component engineer for the implementation of the

requested change.

Page 117

Chapter 4 The BROOD Process

4.4 The Specification of BROOD Process

The core activities of BROOD process are resided in analysis, design, and evolution

phases. Analysis phase produces analysis model that contains two main work products:

the initial business rule specification and preliminary software design models. Both

work products are refined and linked during design phase to produce a more traceable

and consequently evolvable software system. The detailed activities on how to perform

the analysis and design based on BROOD approach, as well as to implement the

business rule changes during evolution, will be described in this section. Activity

diagrams were used to show the flows of activities and their associated work products.

The detailed structured specification of these activities is included in Appendix C.

4.4.1 Analysis Phase

The activities in the analysis phase aim to produce the analysis model that possesses

more expressive power and formalism than the requirements model. It uses a more

formal language to represent the details of system requirements. Analysis model is

structured in a way that facilitates the process of understanding, using, and maintaining

of the requirements. It also acts as an input to the design and implementation phases.

However, solving problems and handling requirements that are better postponed to

design phase should be avoided. The flow of activities during analysis phase is shown in

Figure 4-6.

As shown in Figure 4-6, analysis phase starts with architectural analysis activity that

analyzes the work products from requirements phase such as use-case model, business

model, initial architecture descriptions, and supplementary requirements. Software

architect performs architectural analysis by identifying the analysis packages based on

the functional requirements and the knowledge of the application domain. Each package

realizes a set of closely related use cases and business processes to minimise the

coupling between packages, which in turn localizing business changes. Next, this

activity identifies analysis classes and outlines their names, responsibilities, attributes,

and relationships. In order to extract more information about the behaviour of the

classes, collaboration or interaction diagram can be developed based on the process

Page 118

C hapter 4 The BROOD Process

flows (scenario) in the use case models. The main work products produced by this

activity are analysis class diagrams and packages in their outline version.

The outline o f analysis class diagrams and packages are further refined by class analysis

and package analysis activities, respectively. Component engineer identifies more

detailed information about responsibilities and attributes o f each class. Different types

of relationships between classes such as association, aggregation, and inheritance are

also identified. The possible states and their transitions were identified to understand the

behaviour o f objects from certain classes. These steps are repeated until a complete

analysis class diagram, statechart diagram and package are achieved.

S o f t . A r c h i t e c t F u n c t i o n a l A n a l y s t

S u p p l e m e n t a r y
R e q u i r e m e n t s

B u s i n e s s M o d e l

U s e - C a s e
M o d e l

B R S t a t e m e n t s

^ V
-A

- >

"‘-A
H D

C o m p o n e n t
E n g i n e e r

 >
A n a l y z e B R B R S p e c i f i c a t i o n

S t a t e m e n t s { i n i t i a l d r a f t } x

A r c h i t e c t u r e A r c h i t e c t u r a l A n a l y s i s A n a l y s i s C D
D e s c r i p t i o n { o u t l i n e d }

{ i n i t i a l
iption

d r a f t }

'A
\ A n a l y s i s P a c k a g e

' y { o u t l i n e d }
\ |\ .

A r c h i t e c t u r e
D e s c r i p t i o n

{ r e v i s e d d r a f t }

A n a l y z e a C l a s s A n a l y s i s C D
{ c o m p l e t e d }

'A

A n a l y s i s S T D
{ c o m p l e t e d }

-> y y —>
A n a l y z e a P a c k a g e A n a l y s i s P a c k a g e

{ c o m p l e t e d }

Figure 4-6 The flow of the analysis activities

With regard to business rule modelling, the business rule statements produced in the

requirements phase are analyzed by a functional analyst during this phase. This activity

starts with identifying the types for each business rule statement based on the typology

proposed by BROOD. Next, the business rule statements are transformed into more

structured business rule specifications according to the available templates of each type.

The identified type and structured representation o f business rules facilitate the next

steps in this activity i.e. conflict resolution and redundancy elimination. At the end of

Page 119

Chapter 4 The BROOD Process

business rule statements analysis, the initial draft of business rule specification is

produced. The specification is also useful for modelling of the class diagram in class

analysis activity.

4.4.2 Design Phase

The goal of the design phase is to transform the analysis model to the design model that

provides blueprint for implementation. Apart from functional requirements, the

activities in this phase should acquire in-depth understanding of non-functional

requirements and implementation constraints. They should produce a seamless

abstraction for system’s implementation, which permits straightforward refinement by

completing the skeleton without changing the software structure. This abstraction

permits the use of techniques like code generation and round-trip engineering between

design and implementation.

The flow of activities in design phase is shown in Figure 4-7. It begins with the

architectural design activity performed by software architect that consider the analysis

model as an input. The first step in this activity is the identification of application-

specific and application-general subsystems. The application-specific subsystems are

related to packages that group a set of closely related services in application domain.

They are mostly defined during analysis phase. The application-general subsystem is

more related to implementation technology decisions such as the introduction of user

interface and database connectivity layers. Then, the architectural significant design

classes are identified. These classes include analysis classes, which represent the entities

in application domain, and possibly active classes, which are possibly needed to satisfy

the concurrency requirements. Finally, generic design mechanisms are identified to

handle special requirements such as persistency, security, and transaction management.

The design class diagram, package, and revised architecture description are produced at

the end of this activity.

The class diagram is used by class design activity to further elaborate the static and

dynamic information about the outlined classes. Additional information on the

operations, attributes, and relationships are added to each class. The specification of

operations and attributes is made using the syntax of the chosen programming language.

Page 120

C hapter 4 The BROOD Process

Regarding relationships, different types o f relationship such as association, aggregation,

and inheritance are included to provide more maintainable abstractions. If necessary, the

methods that specify the algorithm for the implementation o f operations are specified.

The statechart diagrams are developed for certain classes to provide more understanding

on the events and conditions that trigger their transition from one state to another. For

traceability, an event or action in statechart diagram is linked to its respective operation

o f a class in a class diagram. Similar to class diagram, sub-systems are also designed in

terms their dependencies and interfaces.

S o f t . A r c h i t e c t

■ ft

C o m p o n e n t
E n g i n e e r

1 5 -

F u n c t i o n a l A n a l y s t

- > T±>S u p p l e m e n t a r y ' t f ' " - >

R e q u i r e m e n t s u ® ® ' ^ a s e B R S p e c i f i c a t i o n ~ _ R R f V a l i d a t e B R B R S p e c i f i c a t i o n
M o d e ! _ { i n i t i a l d r a f t } D e v e l o p B R B R S p e c i f i c a t i o n

1 1 S p e c i f i c a t i o n { r e v i s e d d r a f t }

A n a l y s i s M o d e l

A r c h i t e c t u r e

^ V I J b
y - \ a — > Y D - - -> T

G H o c i n n !

- > ? 1 — - > l

V
S p e c i f i c a t i o r { c o m p l e t e d }

D e s c r i p t i o n A r c h i t e c t u r a l D e s i g n D e s i g n
, , v v / n i i t l i m

{ r e v i s e d d r a f t) \

C D
{ o u t l i n e d }

D e s i g n a C l a s s D e s i g n S T D
, v { c o m p l e t e d }

A N

D e s i g n P a c k a g e
{ o u t l i n e d } N

 ̂ I \

D e s i g n C D
{ c o m p l e t e d }

£
7 ~ V > ■#»

A r c h i t e c t u r e D e s i g n a P a c k a g e D e s i g n P a c k a g e
D e s c r i p t i o n { c o m p l e t e }

{ r e v i s e d } 1

F igure 4-7 The flow of the design activities

In terms o f business rule modelling, component engineer is responsible to develop

business rule specification based on its initial specification produced at the end of

analysis phase. The rule phrases should be firstly developed since they act as the

building blocks o f the business rule statements in a business rule specification. Each

rule phrase definition is stored in the repository called rule phrase entries. The possible

values for rule phrase may be a set o f enumerated values or the values o f the linked

software design element. The rules to determine the properties o f rule phrases are

described in BROOD metamodel. Having populated the rule phrases, the component

Page 121

Chapter 4 The BROOD Process

engineer is now ready to compose the business rule specification. Component engineer

may define certain attributes for each business rule specification such as rule priority,

owner, and business process. Each business rule statement can also be arranged in an

appropriate rule set to assist the future management of the business rules.

Finally, each business rule change is validated by functional analyst or possibly

business user. The validation activity aims to ensure the correctness, understandability,

and consistency of the newly introduced or modified business rules.

4.4.3 Evolution Phase

Evolution phase deals with the implementation of different types of changes. As

mentioned in section 4.3, BROOD process is only concerned with the business rule

evolution or rather, the changes of software design caused by business rule changes.

In a dynamic business environment, software evolution is unavoidable due to the

continuously, frequently changed business rules. The initial business rule change

request is often generated by business management team in a high level description

since they have little knowledge on the detailed specification of business rules. The

initial business rule change request is examined by a business user, i.e. the application

user who is responsible to manage the business rule specification during software

operation. The first step in examining the initial change request is the determination of

the type of business rule change.

In general, business rule changes may be classified into simple and complex changes

with regard to the required efforts for their implementation. Simple change is concerned

with the modification, addition, or deletion of business rules that do not need to

introduce new rule phrases or design elements. On the contrary, complex change

involves the addition or deletion of rule phrases or design elements. Simple change is

more frequently happen, easier to be automated, and often performed by business users.

In contrast, the implementation of complex change is often very hard to be fully

automated; it needs to be intervened by the technical skill and creativity of a person

with software engineering knowledge such as software architect or component engineer.

If the change request was identified as a simple change, the business user will perform

Page 122

C hapter 4 The BROOD Process

the change himself. Otherwise, he will produce a relatively detailed business rule

change request to be passed to software architect for further actions.

* Business User Soft. Architect

BR C hange Request
{initial}

BR Specification
{completed}

I— | -------- > y y Design Model \

{completed} T - ~ " I

Com ponent
Engineer

->
com plex change I— ^ 1 ^

mge BR C hange Analyze Change
R equest BR ch a n g e Reque plan
{revised}

— ->

Implement
BR Change

Design Model Perform BR BR Specification
{completed} Modification C hange {changed} -

Design Model
{changed}

Functional Analyst
/ Business User

—

Design Model
{changed}

BR Specification
{changed}

n>
Validate BR BR Specification
Specification {completed}

Figure 4-8 The flow of evolution activities

In the case o f simple change, business user starts performing business rule change by

locating the relevant business rule specifications. The appropriate rule organization such

as arranging business rules in their respective rule set according to business processes

makes it easy to locate business rules. Having located the relevant business rules, the

business user may change the value o f rule phrases. In the case o f adding a new

business rule, the user may compose the business rule statement using the available rule

phrases in the rule phrase entries. The committed change is automatically propagated to

the linked design elements.

For a complex change, larger efforts are needed since it involves the addition or deletion

o f certain design elements or rule phrases. The revised business rule change request is

analyzed by software architect to produce a change plan. The change plan contains the

detailed information about the effect o f the proposed change to both the existing

business rule specification and software design. Component engineer uses the change

plan to implement the changes. Similar to the design process, the changed business rule

specification is validated by functional analyst or business user.

Page 123

Chapter 4 The BROOD Process

4.5 Summary

This chapter describes the BROOD process using UML-based SPEM metamodel, which

provides a set of concepts and notations to describe various software process

components such as lifecycle phases, activities, process roles, and work products. The

scope of the BROOD process is limited to analysis, design, and evolution phases with

the emphasis on the role of business rules in producing an evolvable software system

and reducing evolution efforts.

During analysis, the requirements model is refined using a more structured or formal

language. The initial or informal business rule statements are transformed to the initial

business rule specification using the guidelines provided by the BROOD metamodel

and templates. The puipose of the analysis phase is to further understand the user and

system requirements by producing a set of analysis model using the developer’s

language. During design phase, the architectural and detailed designs of the software

system are developed based on the information from the analysis model. The initial

business rule specification is refined and linked to software design. Throughout its

operation, the delivered software application must undergo evolution phase due to the

unavoidable changes in its business environment. BROOD provides a set of activities to

deal with business rule changes including examining the initial change request,

performing simple business rule changes, planning for complex changes, and

implementing complex changes.

Page 124

Chapter 5 Using BROOD in an Industrial-Strength Application

Chapter 5

Using BROOD in
an Industrial-Strength Application

The purpose of this chapter is to provide an example of using the BROOD approach in

an industrial-strength application. This chapter starts with a brief overview of the

chosen application i.e. MediNET system. It is followed by the explanation on analyzing

business rule statements and the overview of the produced MediNET classes and

packages. The description of MediNET software design and the discussion on linking

business rule statements to the software design are made in the subsequent section.

Next, the explanation on how to implement the simple and complex changes based on

the selected scenarios is presented in the following section. Finally, the summary and

discussion on the lessons leamt from the BROOD application are made at the end of

this chapter. It is important to mention that the discussion on this chapter emphasizes on

the role of business rules in the development and evolution of MediNET. The detailed

discussion on common object-oriented software design techniques are only discussed as

necessary.

Page 125

Chapter 5 Using BROOD in an Industrial-Strength Application

5.1 MediNET Overview

MediNET, which is formerly known as WebCare [Wan Kadir et al., 2000], was chosen

as the case study due to its flexible nature for use by various businesses with different

business rules. It was also chosen because of the availability of the detailed system

description and the author’s experience in the development and deployment of its initial

version. Throughout this research, MediNET was also repeatedly used to experiment

and consequently improve the proposed BROOD product and process discussed in

Chapter 3 and 4 respectively.

MediNET is an internet-based application that allows various components of the

healthcare industry to exchange business data instantaneously and automates their

routine administrative tasks. In general, MediNET users can be divided into three

categories: paymasters, healthcare providers, and a supplier. Paymasters are those who

pay for medical services. They use MediNET to maintain the basic parts of the patient

records. Healthcare providers (HCPs) are the professionals who dispense medical

treatment. HCPs perform patient records management, patient billing and paymaster

invoicing. The supplier is the company that owns and maintains the MediNET

applications. The supplier lets users to access MediNET applications and charges them

based on the number of performed transactions.

In MediNET, there are three main business processes: patient registration, billing, and

invoicing. Patient registration can be done by the HCP or the paymaster. For each visit

to HCP, each patient must be registered for consultation. The consultation registration is

used to verify the patient eligibility and to prepare necessary information prior to the

consultation. Next, the verified patient is put in a queue. After consultation is

completed, a bill is issued to the patient based on the doctor’s prescriptions. Cash

patients must pay their bills whilst the bills for panel patients are sorted and verified

before they are inserted into an invoice as invoice items. Finally, the invoice is sent to

the paymaster. The more detailed descriptions of MediNET business processes, entities,

and rules can be found in Appendix A.

Page 126

Chapter 5 Using BROOD in an Industrial-Strength Application

5.2 Analysis Phase

In the analysis phase, the initial set of MediNET business rule statements were extracted

from the available documentation of the current system such as the textual system

description and system models. The examples of the identified business rules are listed

at the end of Appendix A. The business rule statements were further analyzed and

refined to produce the initial business rules specification. The specification consists of

more structured business rule statements which were written in accordance with the

available rule templates. It may be used in the identification of MediNET packages and

classes. In this section, the overview of the main activities in the analysis phase, i.e. the

analysis of business rule statements, packages, and classes, are discussed by providing

the examples of their work products.

5.2.1 Business Rule Statements Analysis

Prior to linking business rules to software design, the initial set of informal rule

statements must be transformed into more structured business rule statements. The rule

type for each business rule statement must be identified using BROOD typology to

simplify the selection of the relevant template. As a suitable template is selected, the

statements can be rewritten according to the selected template. During this stage, some

rules may be added or modified to produce a more precise and complete business rules

specification. Some examples of the MediNET business rule statements, which were

refined using the BROOD templates, are shown in Table 5-1.

The organization of business rule statements into business processes and the

identification of rule type of each rule statement are important in producing the initial

business rule specification. It can be observed from the above examples that business

rules are more organized when they are arranged in a set of interrelated rules (ruleset)

according to the business processes. Each ruleset may be further divided into the

smaller rulesets to reduce the complexity in rule management.

The identification of the rule type allows the right template is chosen in writing a

business rule statement. It is important for the rules to be specified in the templates for

future specification and implementation. The rule statements which are written

according to templates may also eliminate the overlapping or missing rules. However,

Page 127

Chapter 5 Using BROOD in an Industrial-Strength Application

the use of a specific rule phrases such as 'zero or more’ and ‘is greater than’ is not

necessary at this stage as the statements will be refined with such rule phrases during

the design phase.

T able 5-1 The examples of business rule statements in the MediNET
initial business rule specification

Business
Process Business Rule Example Rule Type

Registration

A patient must have a unique registration number. Att. Constraint

A patient may have more than one paymaster. Rel. Constraint

If a patient has an outstanding balance, then the patient should be banned from
consultation registration Action Assertion

When consultation registration is successfully completed, then put the patient
into the consultation queue. Action Assertion

if a patient's condition is critical then the patient is an emergency patient. Inference

Billing

The amount of a panel patient's bill must not exceed the maximum bill amount
set by the paymaster. Att. Constraint

Each bill item is associated with an item from the clinic transaction items Rel. Constraint

When consultation is completed then create bill. Action Assertion

If the bill is a panel patient’s bill then create panel transaction item. Action Assertion

The amount of a bill is computed as the sum of all amounts of bill items. Computation

The amount of bill item is computed as the unit amount multiply by the quantity, Computation

A bill can be modified only if the user role is Chief Clinic Assistant. Inference

Invoicing

One or more invoices must have zero or more payments. Rel. Constraint

When a payment is not received within 30 days from the invoice date, then the
first reminder will be sent. Action Assertion

The amount of HCP MediNET usage invoice is computed as the sum of monthly
subscription fee plus transaction fees. Computation

A paymaster (panel company) is under probation if the paymaster has an invoice
with category 1 past due and the current balance is more than RM 5,000.00. Inference

5.2.2 Packages and Classes Analysis

During the architectural analysis activity, the MediNET classes were identified based on

the description on business processes and business entities. From the identified

MediNET classes, it was found that they can be naturally and logically organized into

three packages according to the main MediNET business processes i.e. registration,

billing, and invoicing. The registration package groups all classes related to patient

registration such as Patient, Paymaster, HCProvider, Clinic, User, and RegLocation.
Billing package contains classes related to billing and drugs inventory such as Bill,
BillPayment, Bill_Item, TransType, Transitem, and Expenseltem Invoicing package

Page 128

C hapter 5 Using BROOD in an Industrial-Strength Application

includes classes related to invoicing and invoice payment for example invoice,

Invoiceltem, Payment, and PaymentAllocation.

Each package was further analyzed to refine its classes and to define its dependencies to

other packages. Some classes from the registration package are used by the billing

package for example, Patient class is associated with the Bill class as the receiver of

the issued bill. Invoicing package has the connections with some classes from both

registration and billing packages for instance, the Payment class is associated with the

Paymaster class from registration package and the Invoiceltem class is associated with

the Bill class form the billing package. The MediNET packages and their dependencies

are shown in Figure 5-1.

billingreg

invoicing

Figure 5-1 MediNET packages

Based on the experience in MediNET, there is no clear separation between the activities

o f package analysis and class analysis. They are closely related and frequently repeated

in a software development process. It is also found that some types o f business rules,

such as attribute and relationship constraints, directly assisted the development o f the

class diagrams. Similarly, the action assertion rules supported the development of

statechart diagram for the classes with complex object behaviour. At the end of the class

analysis, three class diagrams were developed that respectively represents the above

mentioned classes found in registration, billing, and invoicing packages. In addition, the

statechart diagrams for invoice, bill, and paymaster were also developed. The detailed

discussion on MediNET classes will be made in section 5.3.2 to avoid repetition of

discussing the same classes since the same set o f analysis classes were expanded during

design phase.

Page 129

Chapter 5 Using BROOD in an Industrial-Strength Application

5.3 Design Phase

During design phase, the analysis models such as package diagram, class diagrams, and

statechart diagrams were refined with more detailed information. The initial business

rules specification from the analysis phase was also refined for linking to the software

design. Each business rule statement was studied to derive the rule phrases and

consequently link to its respective software design element. If necessary, the statement

can be rewritten to match the available templates, to derive more suitable rule phrases,

or to achieve completeness and correctness of the business rules. However, this task

must be carefully done to preserve the original meaning of the rules.

5.3.1 MediNET Sub-systems

During the architectural design activity, the package diagram produced at the end of

analysis phase was refined with further design decisions. The first step in this activity is

to decide the MediNET sub-systems. MediNET is divided into three subsystems based

on their target users: myPeople, my Clinic, and myMediNET. myPeople is used by

paymasters to maintain their payee records. myClinic is used by HCPs to deal with their

patient transaction, paymaster invoicing, and other clinic management activities.

myMediNET is used by supplier to administer the MediNET application. Each

subsystem is represented by its corresponding package and it is further divided into

three layers: user interface, business objects and database layers. The MediNET

software architecture is illustrated in Figure 5-2.

1 n n
psulssysteim isuhsystuiiv* KSubsystom*
myPoopIo m yC linic my Modi NET

co re X i
. . 'L -

1
\\r

n
u»g billing '---- Invoicing

1
V 1 i

1
I
t

E 1
1 I
1 I
1 i

— 3 I I
1
i

- - - i

Figure 5-2 MediNET software architecture

Page 130

Chapter 5 Using BROOD in an Industrial-Strength Application

5,3.2 Class Diagrams

Although there are many types of design classes in MediNET systems, such as user

interface, control, and data access classes, this thesis will only focus on the classes that

are directly related to the implementation of business rules in order to simplify the

discussion. These classes are located at the business objects layer, which is represented

by the core package. In the MediNET software architecture, the core package is

commonly used by all subsystems. It consists of three sub-packages that already

mentioned in section 5.2.2 i.e. registration, billing, and invoicing.

5.3.2.1 Registration Package

Registration package models the properties and relationships of persistent classes such

as Patient, Paymaster, and HCProvider as well as transient classes such as

ConsultationQueue and PatientlnQueue. Most of these classes were identified from the

detailed description on the patient registration process. Their attributes, operations, and

relationships are shown by the Registration package class diagram in Figure 5-3.

However, all class diagrams presented in this section hide the parameters and the return

values of the class operations for the purpose of reducing the presentation complexity.

Patient class consist of the information on a patient such as patient registration number,

personal details, and contact details. A patient can be a guardian of zero or more other

patients. If a patient is a dependant of another patient, the guardian registration number

must be defined. It allows both HCP and paymaster to trace the patient claims. Patient
class has one subclass, i.e. PanelPatient, that represents a panel patient.

Paymaster class attributes include the paymaster ID, contact details, and status. The

status attribute is an enumerated attribute which can be set to 'active’, 'blocked’, or

'archived’. The value is set to ‘blocked’ by HCP or MediNET System Administrator

based on the defined business rules, which are related to the outstanding balance of the

paymaster’s invoices. The reason for being blocked is stored in the remark attribute. If

the paymaster wishes to stop from being a MediNET customer, its status is changed to

1archived\ The paymaster record is then deleted after certain archived period elapsed

and the MediNET usage outstanding balance was settled by the paymaster.

Page 131

C hapter 5 Using BROOD in an Industrial-Strength Application

HCProvider
hcpID : Siring
branchID : Siring
name : String
address : String
phone : String
fax : String
contactPerson : String
email : String
status ; MediNETStatus
invoiceMethod ; InvoiceMethoc
invoiceViewSetting : char

Clinic
hcpID : String
clinicID : String
name : String
address : String
phone : String
fax : String
contactPerson : String
em ail: String

User
userlD : String
password : String
name : String
description : String
d epartm en t: String
getUserQ

a..*
R ogLocation

hcpID : String
branchID : String
PatRegNo : String
shelfR ef: String
getShelfRef()

HCPUser

role : HCPUserRole
hcpID : String
clinicID : String
sh ift: WorkShifl

PMUser SupplierU ser

role : PMUserRole role : SUserRole
paymasterlD : String

C onsu lta tionQ ueue
item : PatientlnQueue[]
hcpID : String
branchID : String
addPatienlO
removePatientf)

- getPatientList()
moveUpQ
moveDown()

Patien ttnQ ueue

arrivalDateTime : Date
-queueN o : Integer
doctorlD : String

Patien t
patRegNo : String
prooflDType : ProoflDType
pmCollection ; PMCollection
name : String
DOB ; Date
s e x : char
homeAddress : Siring
hom eP hone: String
nationality: String
motherMadden : String
regDale : Date
bloodType : String
allergy: Boolean
isD ependent: Boolean
guardianRegNo : String
dependantRelation : String
detPatientListn
findPatienin
aetReoNofl

<f

0..* panel company

Panel
paymasterlD : String
hcpID : String
pmType : PaymasterType
maxBill: Double
maxlnvoice : Double
d iscoun t: Integer
pmStatus : Paym asterStatus
invoiceMethod : InvoiceMethoc
invoiceViewSetting : char
getPaym asters()
reRegister{}
terminated
block()
reActivate()

panel clinic

P ay m aster
paymasterlD : String
payeeCollection : PayeeCollection
name : String
address : String
p h o n e : String
em ail: String
fax : String
contactPerson : String
s ta tu s : MediNETStatus
rem ark s: String
reg D a te : Date
isBlocked()
getPayM aster()

guardian

dependant 0..*

P an elP atien t
paymasterlD : String
employeeNo : String
d ep artm en t: String
employeeGroup : String

Figure 5-3 Registration package

HCProvider class contains the information on HCP such as hcpID, contact details, and

status. The possible values and rules for the status attribute are similar to the above

mentioned Paymaster’s status. The HCP status is only maintained by MediNET System

Administrator.

RegLocation and Panel classes were introduced to simplify the problem of many-to-

many relationships. RegLocation represents the relationship between patient and HCP.

It is also used to store the shelf reference number of a patient record. Panel represents

the relationship between HCP and paymaster. It consists of both hcpID and paymasterlD

Page 132

Chapter 5 Using BROOD in an Industrial-Strength Application

attributes which respectively link to HCProvider and Paymaster objects. The Panel class

allows different paymaster account settings for different HCP. Paymaster can set the

maximum bill and invoice to be paid, and HCP may set the discount and status for the

paymaster. HCP may set the paymaster status to *active' or ‘blocked’ according to its

payment records and the defined business rules. The invoiceViewSetting attribute of

the Panel class allows paymaster to determine which fields to be included in its printed

invoice.

ConsultationQueue and PatientlnQueue are two transient classes that deal with the

implementation of a queue for patient consultation. ConsultationQueue is a queue type

data collection that allows the insertion, removal, and reposition of its items. Its items

are the objects instantiated from PatientlnQueue class, which is an inheritance from the

Patient class. PatientlnQueue class has three additional attributes i.e.

arrivalDateTime, queueNumber, and doctorlD. As implied by their names,

arrivalDateTime captures the patient arrival date and time information, queueNumber
assigns a position in a queue to a patient, and doctorlD is used for removing patient

from the queue if the patient is allocated to a particular doctor.

S.3.2.2 Billing Package

In the Billing package, which is shown in Figure 5-4, HCProvider class from

Registration package has several additional relationships. First, HCP may employ zero

or more doctors. Each doctor is registered to a particular HCP and is assigned a unique

ID. If the doctor is a part-timer (locum tenens) then isLocum attribute is set to ‘true’.

Otherwise, isLocum value is set to ‘false’.

Second, HCP has zero or more transaction types. Transaction types allow the grouping

of service and drug items provided by HCP. The examples of transaction types include

consultation, medication, ward charges, and X-Ray. Each transaction type has zero or

more transaction items. For example, consultation type possibly has doctor consultation,

nurse consultation, and specialist consultation as its items. The consultation item is

implemented as Transitem class. Transitem class plays an important role in patient

billing. It contains general information about the bill item such as name, description,

and measure unit. For bill item calculation puipose, the unit amount and service tax can

Page 133

C hapter 5 Using BROOD in an Industrial-Strength Application

be set. The former is a current price for a unit o f item whilst the latter is a service tax

normally imposed by the government.

0 ,.*

0 ..*

reg::HCProvider

0..*

0 ..*

consist of

0 ..*

0..1 0 ,.*

0 . . '

part of

typeCode : String
hcpID: String
description: String
gefTransTypeUstO
getTrartsltemQ

TransType

doctorlD: String
hcpID: String
n am e: String
isLocum: Boolean

Doctor

bilINo: int
item No: int
item Code: String
description : String
quantity: double
am ount: double
BililtemO

Bill_ltem

certNo: int
hcpID ; String
patR egN o: String
issueD ate: Date
from Date: Date
untilDate: Date
doctorNam e: String
d iagnosis: String

MedicalCert

bilINo: int
hcpID: String
branchID : String
paymentType: String
am ount: double
description: String
receiveD ate: Date
receiveStaffID: String

itemNo: String
hcpID: String
branchID: String
item Code: String
transD ale: Date
am ount: Double
description: String
updateStafflD: String
updateD ate: Date

Exponseltem

item Code: String
typeC ode: String
hcptD : String
name : String
description : String
m easureU nit: String
serviceTax: Double
unitAmount: Double
updateD ate: Date
updateStafflD: String

Transltem

bilINo: int
hcpID: String
branchID: String
patRegNo: String
doctorlD: String
item s: Bill_ltem[*]
am ount: Double
b a lance : Double
s ta te : Bilistatus = unpaid
issueD ate: Date
updateD ate: Date
isP anel: Boolean

Bill

Figure 5-4 Billing package

Third, HCP may issue zero or more patient bills, which is represented by the Bill class.

Each Bill object is uniquely identified by a combination o f a bill number and an hcpID.

The Bill class contains patRegNo and doctorlD attributes, which are used to

respectively identify the patient who receives the bill and the doctor who issue the

prescriptions. The bill items are implemented as an array o f Bill_item objects. The

Bill_item object has an item number that is sequentially assigned when the item is

inserted into the bill. It also has the itemCode attribute to reference to a Transltem

object. The amount o f each item is automatically calculated by multiplying the unit

amount with the item ’s quantity. If the value o f unit amount is not defined, Bill_item

class will allow a value for the bill item amount to be directly set without above

calculation. The amount o f bill is then calculated using the total o f all bill item amounts.

Page 134

Chapter 5 Using BROOD in an Industrial-Strength Application

Bill class also holds the bill status, which is an enumerated attribute which has three

possible values: ‘u n p a id ‘paid’, and ‘invoiced\ The bill status is initialized to ‘unpaid’

during bill creation. It is changed to ‘paid’ after a cash patient bill is settled and

‘invoiced’ after a panel patient bill is inserted into invoice, isPanel attribute is used to

check whether the bill is belonging to a panel or cash patient.

Fourth, if a patient is granted a medical certificate (MC), a new MedicalCert object will

be created during billing process. The MC contains certificate number, originating HCP

ID, and patient registration number. It also contains the start and end dates for the

puipose of medical leave. The name of the doctor who issues the MC and the medical

reason or diagnosis that leading to MC to be issued is also recorded in MedicalCert
object.

53.2,3 Invoicing Package

In Invoicing package, the Invoice class contains three sub-types i.e. HCServicelnvoice,
EMMediNETUsagelnvoice, and HCEMediNETQsagelnvoice. The invoice object only can be

instantiated from one of these sub-types since the Invoice class is an abstract class. Each

invoice object is uniquely identified by a combination of invoiceNo and isueriD
attributes. The possible value for the issueriD attribute depends on the invoice subtype,

for example the value of issueriD for HCServicelnvoice object is taken from hcpID of

the HCP that issue the invoice. For HYMediNETUsagelnvoice and

HCEMediNETUsagelnvoice objects, the value of issueriD is always set to ‘MEDINET’,

which is a reserved ID value for MediNET supplier, since it is always issued by the

supplier.

The amount of the invoice is stored in the amount attribute, which calculated using the

abstract calculateftmount operation. The calculation of invoice amount is different for

different types of invoices. For MediNET usage invoices, the amount is calculated

according to the tables included in Appendix A. The amount for healthcare service

invoice is calculated as the total of its item amounts after applying additional

computation rules such as bill limit, invoice limit and discount. MediNET uses the open

item invoicing method that allows an invoice issuer to track each unpaid invoice as an

individual item for aging purposes.

Page 135

Chapter 5 Using BROOD in an Industrial-Strength Application

o..*0 ..*
.... {OR} ■

0 ..*

payer

receiver receiver

0..1

0 ..*

0 ..*

0 ..*

0 ..*

Issuer

paymasterlD: Siring

calculateAmount()

PMMedlnetUsagelnvolce
paymasterlD: Siring
calculateAmountQ

HCPMedlNETUsagelnvoice
hcpID: String
calculateAmount()

itemNo; int
invoiceNo: int
hcpID: String
bilINo: int
branchID: Siring
description: String
insertDate: Date
insertStafflD: String

Invoiceltem

paymentNo: int
invoiceNo: int
issueriD: String
am ount: Double
allocateStaffID: String
allocateDate : Date
receiverlD: Siring

PaymentAllocation

paymentNo: Int
receiverlD: String
payerlD; String
ty p e : String
refBrenceNo: String
bankName : Siring
paymBntDate: Date
receiveDate : Date
am ount: double
balance: double

Paym ent
invoiceNo: int
issueriD : String
am ount: double
currentBaianca: double
description: String
s ta tu s : String
fromDate: Dale
publishDate: Date
endD ate: Date
publishStaffID: String
updateD ate: Date
updateStafflD : String
createlnvoice()
addltemQ
cIoselnvolce()
receivePayment()
allocatePaymentO
publish()
ca lc u la te A m o u n t()
archive()
re jec tlnvo icB ()
updateQ

Figure 5-5 Invoicing package

The state attribute of the invoice class stores the current state of the invoice. The

state value can be set to one of the pre-defined states. The explanation on the possible

states of an HCServicelnvoice object and their transitions are presented in section 5.3.3.

The date and user information of the invoice publishing and modification is stored in

publishDate, publishStaffID, updateDate, and updateStafflD attributes.

With regai'd to invoice items, panel patient bills are considered as the items for HCP

MediNET usage and HCP service usage invoices. For HCP MediNET usage invoice,

the number of bills issued by a particular HCP is counted as the number of transactions,

which is later used in the invoice amount calculation. A relationship that shows one and

only one HCmediJNETUsageinvoice object is associated with zero or more bills is enough

since no additional infoimation is needed for invoice calculation or maintenance.

However, there is a requirement to explicitly introduce a class for the items of HCP

Page 136

Chapter 5 Using BROOD in an Industrial-Strength Application

service invoice because additional information is needed to keep track the insertion of

each item into the invoice. Thus, the invoiceltem class, which contain the invoice

reference, bill reference, update date, and update staff ID information, is used to

represent the bill items of HCP service invoice. For paymaster MediNET usage invoice,

the invoice item class is not needed since the invoice amount for is calculated based on

the number of patients sponsored by the paymaster.

In terms of payment, the Payment class is included to represent each payment received

for the issued invoice. The payment number and receiver ID are used to uniquely

identify the payment object. The payerlD attribute is used to identify the payer, which is

either a paymaster or an HCP. Since MediNET also allows balance forward invoicing

method in addition to open item method, zero or more payments must be allowed to be

allocated to one or more invoices. This situation causes a problem of many-to-many

relationship. The problem is solved by introducing the PaymentAllocation class to

represent the allocation of each payment. The PaymentAllocation object can be

allocated to one or more invoice objects. The procedure to allocate the invoice is

depending upon the chosen invoicing method. Each time a payment is allocated, the

amount of payment allocation is deducted from the balance of the Payment object.

Again, the calculation is depending on the chosen invoicing method.

5.3.3 S tatechart D iagram (STD)

In practice, STD is not developed for every class in the class diagram. It is only

developed to provide more understanding on certain classes with complex object

behaviour. In BROOD, STD is used to improve both the understanding and

maintainability of a software system. The system maintainability is improved by

providing links between action assertion rules and STD. In MediNET, the classes such

as Paymaster, Bill, and Invoice are important to be modeled using STD since their

behaviours are associated with a number of action assertion rules. As an example, the

statechart diagram that is developed for an HCServicelnvoice object is shown in Figure

5-6.

Page 137

C hapter 5 Using BROOD in an Industrial-Strength Application

createlnvoice (issueriD)/ initializelnvoice

after: endDate/ dose

Rejected

publish()[receiver.webCustomer = true]
^ Closec

when: invoice rectified/ publishpublish()[receiver.webCustomer = false] / p rin ts
Published

after: 30 days]
currentBalance > 0] / issueFIrstReminderreceivePayment(amount)[

currentBalance = 0] / updateSuccessors

receivePayment(amount)[
currentBalance = 0] I updateSuccessors

after: 60 days|
currentBalance > 0] / issueSecondReminder

receivePayment(amount)[
currentBalance = 0]

after: 90 days|
currentBalance > 0] / blockReceiver

• lovc ivcr
currentBalance = 0] / updateSuccessors

F igure 5-6 STD for HCServicelnvoice object

An invoice object will be created as it receives the createlnvoice (issueriD) message

as a triggering event. It consequently triggers the initializelnvoice () action and enter

the Active state. During active state, the invoice items can be inserted into invoice until

the invoice is closed. The invoice changes its state from Active to Close after its end

date, which is specified during invoice initialization. After the invoice is printed or

published 011 the internet, its state changed to Published W hen the payment is received

and the current balance value is equal to zero, the state is changed to Paid When the

payment is not received after 30 days and there is a current balance, then first reminder

will be issued. If there is still no payment after 60 days, the invoice receiver will be

issued a second reminder and consequently blocked from receiving seivices from the

issuer after 90 days. The example o f linking action assertion rule to STD will be

presented in the next section.

Page 138

Chapter 5 Using BROOD in an Industrial-Strength Application

In addition to the links with action assertion rules, it is also important to link an STD to

a class diagram since a class diagram is the source of code generation. In the above

example, most of the events and actions such as createlnvoice (),
intializelnvoice(), publish(), and rejectlnvoiceO are linked to their respective

operations in the HCServicelnvoice class itself. Some events or actions such as

receivePayment () and blockReceiver () are implemented as the operations in other

classes. For example, receivePayment () is implemented in event class, which is often

modelled using UML «signal» stereotype whilst blockReceiver () is implemented as

an operation of the Paymaster class. With the latest advances in event-handling

mechanisms, this research assumes that the link between STD and class diagram is

seamlessly and easily established. Therefore, it only focuses on the links between action

assertion rules and STD.

5.3.4 The Development of Business Rules Specification

The development of business rule specification is the most important activity in

ensuring business rule traceability in software design. As its first step, each business

rule statement in the MediNET initial business rule specification, which was produced

at the end of the analysis phase, was further analyzed to identify the candidates for rule

phrases. The available templates were used as the guidelines to identify the rule phrases

and to determine the type of each rule phrase. The examples of rule phrases, which were

derived from business rule statements in Table 5-1, are shown in Table 5-2.

The first example in Table 5-2 shows the rule phrases derived from the attribute

constraint rule. The rule phrases ‘a patient’ and ‘registration number’ are directly

respectively linked to Patient class and patRegNo attribute. The keywords ‘must have’

and ‘a unique’ are not statically linked to any design element. Instead, they are used to

dynamically respectively toggle the optionality and uniqueness values of patRê tfo
attribute during the creation or modification of the business rule statement. In other

words, they are used to enable the automated change propagation to software design.

In the second example, the rule phrases ‘clinic item’ and ‘bill item’ are respectively

linked to Transltem class and Bill_item class. The rule phrases ‘one and only one’ and

‘clinic item’ play a similar role to keywords in attribute constraint rule i.e. to propagate

Page 139

Chapter 5 Using BROOD in an Industrial-Strength Application

business changes to design elements. The former specifies the multiplicity of an

association end whilst the later specifies the role of an association end. From the first

and second examples, it is found that constraint rules can be directly linked to class

diagrams and their changes can be easily propagated.

It is also observed from the above example that the previous business rule statements is

further refined with the more technical rule phrases or keywords such as ‘one and only

one’, ‘must have’, and ‘a unique’. Such phrases may improve the preciseness of the

business rule statements. For this purpose, some rule phrase types such as cardinality,

operator and several BROOD keywords are considered as the common phrases - they

have their own pre-defined rule phrases that are unlikely to change. For other rule

phrases, they are required to be created and defined by software engineers.

Table 5-2 The examples of the rule phrases and the linked software design elements

B Rule
Category Business Rule Phrases Software Design Elements

Attribute
Constraint

<entity> = ‘a patient’ Patient (class)

‘must have’ - (patRegNo.optionality)

‘a unique’ - (patRegNo.uniqueness)
<attributeTerm> = ‘registration number’ Patient.patRegNo (attribute)

Relationship
Constraint

<cardinality> = ‘one and only one’ - (AssociationEnd.multiplicity)

<entity> = ‘transaction item’ Transltem (class)

<role> = ‘item type' - (AssociationEnd.name)

<entity> = ‘bill item’ BilIJtem (class)

Action Assertion

<event> = ‘30 day after the creation date
of the invoice’ - (Trans1.event.spec)

<condition> = ’current balance of the invoice
is greater than O' - (Transl.guard.body)

<action> = ‘trigger issue the first reminder’ - (T ransl.action.initialiselnvoice().spec)

Computation

<attributeTerm> = ‘the amount of HCP
MediNET Usage invoice’ HCPMediNETUsagelnvoice.amount

<algorithm> = ‘the sum of monthly
subscription fee plus transaction fee’

HCPMediNETUsagelnvoice.
calculateAmount().specification

Inference

<attributeTerm> = ‘a paymaster status’ Paymaster.status

<value> = ‘under probation’ - (literal value)

<condition> = ‘the paymaster has an
invoice with category 1 past due’ AND
‘the current balance is greater than RM
5,000.00’

Paymaster. getStatusQ. specification

The third example shows the derived rule phrases from an action assertion rule. The rule

phrases that represent the event, condition, and action are not directly linked to any

design element but they are respectively used to generate the specifications of the

Page 140

Chapter 5 Using BROOD in an Industrial-Strength Application

transition’s event, guard, and action in the HCP service usage invoice STD. Since event,

condition, and action rule phrases are themselves composed by other rule phrases, they

may be indirectly linked to the related design components via these rule phrases.

The fourth and fifth examples illustrate the rule phrases derived from computation and

inference rules. Both business rules from these examples are linked to the operation

specification - the computation rule is linked to the specification of calculateAmount ()
operation in HCPMediNETUsagelnvoice class and the inference rule is linked to

getstatus () operation from Paymaster class, During the development of an inference

rule, a new operation is often needed to be added in its associated class to perform the

derivation and return the inferred value.

The defined rule phrases are stored in the MediNET rule phrase entries. They are later

used to compose a traceable business rule statements. In order to reduce the number of

rule phrases in the rule phrase entries, BROOD allows components engineer to rewrite

the business rule statements to match with the existing rule phrases. However, this task

should be carefully done without changing the meaning of the original business rules.

5.4 Evolution Phase

The ultimate aim of the BROOD approach is to effectively manage the implementation

of business rule changes caused by the changes of business policy. These changes

include the modification or deletion of existing business rules and the addition of a new

business rule. They may be classified into simple and complex changes according to the

efforts needed in the implementation of changes.

5.4.1 Simple Business Rule Change

Business rule change is considered as a simple change if it does not involve the

introduction of new rule phrases or design elements. A simple change includes a

modification of the existing business rule statements, an introduction of a new business

rule using the existing rule phrases, and a deletion of business rule statements. It is often

performed by business users.

Page 141

Chapter 5 Using BROOD in an Industrial-Strength Application

Modification of the existing business rules was found to be the most frequent type of

changes in MediNET. It is also the most simple since it does not involve the

introduction of new business rules and rule phrases. These changes normally involve the

change of the values in the rule phrases, and each change is often affects only a single

business rule or relatively small number of related rules. The examples of five change

scenarios that require simple business changes in MediNET system are shown in Table

5-3.

Table 5-3 The examples of change scenarios for simple business rule change

Change Scenarios Changed Business Rules

1. HCP allows patients to make ‘more
than one payment for their bills’
instead of the previously set ‘single
payment for each bill’ .

One patient bill is associated with zero or more payments.

2. HCP makes small changes on the
conditions to issue the reminder and
block paymaster.

WHEN 15 days from the invoice date IF a payment is not received
THEN issue the first reminder.
WHEN 30 days from the invoice date IF the payment is not received
THEN issue the second reminder.
WHEN 45 days from the invoice date IF the payment is not received
THEN block the paymaster.

3. The MediNET supplier offers a more
attractive usage charge to HCPs.
They are charged based on the
number of treated patients regardless
the number of patient visits.

The amount of HCP usage invoice IS CALCULATED AS if (opt new
package) then the transaction fee multiply by the number of
registered patients, else, the transaction fee multiply by the number
of treated patients, plus the monthly fee.

4. HCP introduces 5% discount to its
internet customer.

If the paymaster is an internet customer, then give 5% discount to
their invoices.

5. The HCP decides that each expense
item must belong to one of the pre­
defined types.

Zero or more expense item is associated with one and only one
transaction item.

In the first scenario, the HCP would like to introduce a more flexible way for patients to

pay their bills. Instead of a single payment, the HCP is willing to accept more than one

payment from patient. Obviously, this change only involves a single business rule. The

cardinality rule phrase of payment entity is changed from ‘one and only one’ to ‘zero or

more’. This change is easily propagated to the cardinality of the relationship between

bill and payment. The propagation is also easily automated using an automated tool

since it does not involve any creative human activity.

The second scenario leads to simple changes although it involves more than one

business rules. As shown in the modified business rules, it only changes the number of

Page 142

Chapter 5 Using BROOD in an Industrial-Strength Application

days (value changes) in the condition part of the existing business rule statements. The

change is then propagated to its respective guard in STD diagram for invoice object; in

particular the guard in the transition from ‘Published’ state to ‘CatlPastDue’ state is

changed from 30 days to 15 days. The similar changes are made on the guards of the

transitions to ‘Cat2PastDue’ and ‘Cat3PastDue’ with the new value of 30 and 45 days

respectively.

In the third scenario, the change in an algorithm to calculate the amount of HCP usage

invoice is propagated to the specification of the calculateinvoice operation in the

HCPMediNETUsagelnvoice class. Similar change is also required by the fourth scenario.

The final scenario in Table 5-3 is different from the previous scenarios in that it requires

the addition of a new business rule. Although it adds a new business rule, which

consequently introduces a new relationship between Expenseltem class and Transltem
class, this type of change is considered as a simple change since there is no new rule

phrase introduced and the change can be easily propagated possibly without creative

human activity.

In certain occasions, the changes in business policy may require some business rules to

be deleted. In this case, only the specific business rule statements are deleted from the

business rules specification. Their aggregated rule phrases and related design elements

are not deleted since they may also be used by other business rules.

5.4.2 Complex Business Rule Change

The implementation of complex business rule change requires more efforts than that of

simple change. It involves the introduction of new rule phrases or design elements,

which is needed to be performed by an individual with the knowledge of software

design. In addition to technical skills, it often requires creative skills in making a design

decision. As the examples, three change scenarios that lead to complex business rule

changes will be discussed in this section. They are shown in Table 5-4.

The first scenario initiates the modification of two existing business rule statements

namely the calculation of bill and the calculation of invoice amount. These business rule

changes consequently lead to a minor change in software design i.e. the introduction of

Page 143

Chapter 5 Using BROOD in an Industrial-Strength Application

hasMaxBill attribute in the Paymaster class. Although this scenario causes minor

software change, the knowledge of software design is needed to perform the change.

Table 5-4 The examples of change scenarios for complex business rule change

Change Scenarios Changed Business Rules

1. HCP introduces new package for
paymaster. In this package, the
paymaster may limit the maximum
amount of each patient bill to RM
20.00, and the excessive cost is
absorbed by HCP. However, the
paymaster must pay a monthly fee of
RM5.00 for each patient.

The amount of a bill is computed as
let amount = the sum of all amounts of bill items
if (patient is a panel patient) AND (paymaster has maximum bill
amount) AND (amount > RM 20.00)

amount = 20

The amount of HCP service invoice is computed as
let amount = the total of the invoice items
if (paymaster has maximum bill amount)

amount = amount + 5 * the number of paymaster’s patients

2. Paymaster wishes to provide different
healthcare benefit coverage for
different groups of its payees.

If (the patient is a panel patient) AND (the patient is an executive
staff) then the patient is entitled to any type of treatments and
medical procedures.
If (the patient is a panel patient) AND (the patient is a production
staff) then the patient is entitled for an outpatient treatment.

3. HCP would like to introduce a 5%
discount on the invoices to preferred
paymasters as a way to express
gratitude to the loyal, potential, and
good paying paymasters.

If (a paymaster has been a paymaster panel for more than 5
years) then (the customer is a 'loyal' customer).
If (a paymaster has an average of at least RM24000.00 for
the invoices over the last five years) then (the paymaster is
considered as a ‘potential’ customer).
If (a paymaster never has a past due invoice for the last two
years) then (the paymaster is considered as a good paying
paymaster).
When (the invoice in created) if (the paymaster is a loyal, potential
and good paying customer) then (set the discount of the invoice to
5%)

The second scenario is used to explain a more complex business rule change that

requires major changes in software design. In this scenario, the paymaster decided to

introduce different healthcare benefit coverage to different levels of their payees. For

example, the executive staff are entitled to any medical treatment and medical

procedures whilst the production staff are only paid for outpatient treatments. It is

obvious that simply implementing this new requirement into the existing Paymaster or

PanelPatient class may increase the complexity of these classes. Therefore, additional

classes that are responsible to manage the healthcare benefit coverage are required to be

added to the existing software design. The possible candidates for these classes include

BenefitCoverage, SelectedClinic, Medical Procedure, and Entitlement. The

introduction of new classes in software design is considered as a major complex change

since it requires large efforts in the implementation of such change.

Page 144

Chapter 5 Using BROOD in an Industrial-Strength Application

In contrast to the above two scenarios that are used to represent different level of

impacts of business rule changes, the third scenario is used to explain the importance of

creative skills in the implementation of business changes during evolution phase.

Consider the first solution to the third scenario that requires a number of new inference

rules to be added to define a loyal, potential, and good paying customer. In addition to

these business rules, an action assertion rule that initializes the value of the invoice

discount during invoice creation should also be added. The new business rules are

shown in Table 5-2. The introduction of the new inference rules consequently requires

isLoyal {), isPotential (), and isGoodPaying () operations to be added to the

Paymaster class. Similarly, the newly introduced action assertion rule requires

component engineer to modify the action component of the transition from the initial

state to ‘Active’ state in the STD for HCServicelnvoice object.

However, the above solution was found far complex than what it should be. A simpler

solution might be to modify the algorithm part in the computation rule that calculates

the amount of healthcare service invoice. To be precise, the algorithm should firstly

check for the loyal, potential, and good paying conditions, and consequently deduct 5%

discount from the amount of this invoice if the conditions are true. In this case, the

creative skills of component engineers in performing complex changes are as important

as their technical skills.

5.5 Discussion

This chapter has provided an example of using BROOD in the development and

evolution of the MediNET application. During development, it demonstrated how to

perform the BROOD activities that explicitly specify business rules and link them to

software design. Although there are additional tasks that should be performed during

development, these tasks have provided benefits in performing changes in MediNET.

During evolution, this chapter discussed the implementation of the simple and complex

changes using the selected scenarios. Contrary to the traditional approaches, the

availability of the BROOD metamodel, templates, and process description have

simplified the MediNET evolution tasks in most cases. r —---

Page 145

Chapter 5 Using BROOD in an Industrial-Strength Application

Using the experiences in using both traditional (object-oriented) and BROOD

approaches in the development and evolution of MediNET, the author observes several

common quality attributes that are maintained or improved by BROOD. By using the

standard UML for software design, BROOD maintains the well-known object-oriented

design quality attributes such as modularity, high cohesion, low coupling, efficiency,

and portability. It also improves the traditional approaches in terms of other quality

attributes such as requirements tracecibility, software evolvability, and approach

usability.

Regarding requirements traceability, the employed traditional approach does not

directly explicitly link the MediNET software design to its user requirements. Instead, it

provides a so-called ‘seamless transition’ from the use case models that document the

user requirements to the analysis and design models. The requirement structure is not

suitable to be directly linked to software design, and the business rules are embedded in

both requirements specification and software design models. Consequently, user

requirements are less traceable in MediNET using the traditional approach. In contrast,

BROOD smoothly transformed the MediNET requirements into the structured business

rules specification. The introduced structures allow the linking of business rules to the

related software design components.

Concerning software evolvability, it is slightly hard to implement the changes of

MediNET business policy in software design using the traditional approach. All types of

changes must be performed by software engineers with the knowledge of MediNET

software design. Since software engineers do not initiate the business changes, they

often have to repeat all phases in MediNET development lifecycle especially

requirements and analysis phases. It is also hard to locate the related software design

components since there is no explicit link between the MediNET design models and its

user requirements. Therefore, the traditional approach requires more software evolution

efforts than those of the BROOD approach. There is also no detailed process description

to guide software engineers in performing the changes. On the other hand, BROOD

provides the documented links between MediNET business rules specification and its

software design. The links allow the MediNET evolution to be driven by its business

rule changes. The business rule-driven software evolution may ensure the alignment of

Page 146

Chapter 5 Using BROOD in an Industrial-Strength Application

the user requirements with the implemented MediNET application. However, there is

one drawback identified with regard to software evolution. As mentioned in section

5.4.2, it is possible for software engineers to make a mistake in making an appropriate

design decision during the implementation of a complex change as shown in the last

example of the change scenarios. It is learnt from the example that, although some of

the evolution tasks may be automated, both technical and creative skills are required to

implement the complex change.

In relation to approach usability, the traditional approach is easier to be used during

development phase since it does not have to deal with additional steps that were added

to explicitly specify, document, and link business rules specification to software design.

These steps were found to increase the complexity and duration of software

development process. However, the availability of the business rule typology and

templates, which provide the guidelines for the analysis of business rule statements and

the identification of rule phrases, were found useful in minimizing the above problems.

The business rule templates have improved the MediNET system understandability and

increased the involvement of business users in the MediNET development. During

evolution, BROOD was found easier to be used than the traditional approach. Using

BROOD, business users may instantly perform the simple business rule changes as

demonstrated in the MediNET application. Rapid change implementation is important

especially in business critical application with intolerable downtime. The detailed

process description facilitated the implementation of complex changes in MediNET.

The linking between the MediNET business rules and its software design provide

business rule traceability, which consequently facilitates the propagation of the business

rule changes to their respective changes in software design. The BROOD metamodel

language definition using EBNF also allows the realization of the automated change

propagation. The design and implementation of the automated tool prototype will be

discussed in the next chapter.

Page 147

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

Chapter 6

The Design and Implementation of the
BROOD Tool Prototype

This chapter presents the design and implementation of the BROOD tool prototype that

implements the modelling concepts defined in Chapter 3 and demonstrates the possible

automation of the BROOD process described in Chapter 4. First, it presents the

overview of the architecture and roles of the BROOD tool. Second, it explains the

Generic Modelling Environment (GME) modelling concepts and architecture to

establish the modelling vocabularies that are used in the later sections of this chapter. It

is important to understand the GME concepts since the BROOD tool is developed on

top of the GME environment. Third, it presents the physical metamodels that

implements the BROOD metamodel discussed in Chapter 3. Fourth, it explains the

functionalities and inner-working of the BROOD tool in terms of graphical model

editing, rule phrase entries management, business rule composition, and business rule

modification. Finally, the summary is presented at the end of this chapter.

Page 148

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

6.1 Introduction

In Chapter 4, the software process was proposed to utilize the BROOD metamodel in

developing a more practical approach to software evolution. The process simplifies the

evolution activities by providing business rule traceability in object-oriented software

design which in turn facilitating business rule-driven evolution. However, the process

introduces several additional activities to the traditional object-oriented software

development. These additional activities include the documentation of business rules

and linking them to software design. Although these activities bring great benefit in the

evolution of a business rule intensive software system, but they make a software

development process too complicated without an automated tool support.

In this chapter, the author describes the design and implementation of the BROOD tool

prototype that supports the BROOD process. This tool assists users in performing the

development and evolution activities such as business rule creation and management,

software design editing, and business rule change propagation. It was developed on top

of the Generic Modelling Environment (GME), which is a configurable modelling

environment. The metamodel and templates, which were discussed in Chapter 3, were

used to generate the BROOD tool environment. The environment may be used to

visually edit the software design models, business rule specification, and rule phrase

entries. Three main modules (i.e. interpreters in GME terms) were developed to

simplify the rule phrase management, business rule composition, and business rule

modification. These modules also perform the automated propagation of business rule

changes to the respective software design elements, which is impractical to be

performed manually. Since some features in the BROOD tool are also used by business

users, the friendly user interfaces are provided to ease the management and traceability

of business rules by this type of users. The metamodel, the graphical model editor, and

the above three modules are located at the core component and user application layer in

the BROOD tool architecture. The rule phrase entries, business rule specification, and

software design models are considered as the stroge layer. The overview of the BROOD

tool architecture is shown in Figure 6-1.

Page 149

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

Figure 6-1 also illustrates the informal overview of the roles performed by the BROOD

tool in the BROOD software lifecycle. During development, software engineers use the

BROOD tool to develop software design models, populate the rule phrase entries, and

develop a business rule specification. They also use the tool to provide business rules

traceability by linking their specification to software design components. The BROOD

tool maintains the consistencies between business rule and the linked software design

each time the business rule is created or modified. The completed software design

models are assumed to be manually or automatically used in generating the application

software.

(software development,

complex change)

Software Engineer

(simple change)

♦ G raphical Model Editing
♦ Rule Phrase M anagement
♦ Business Rule Composition
♦ Business Rule M odification

BROOD Tool -
User application and core components

manageJ

Rule Phrase
Entries

B Rules
Specification

Business User

com pose/ \ propagate
modify \ changes

Software
Design Model

L_ BROOD Tool - Storage layer

EJ
Application
Software

generate

Figure 6-1 The illustration of the roles and architecture of the BROOD tool

During its operation (or evolution), the software application may need to be changed

according to the changes of business policies. The changes include the modification or

deletion of existing business rules, or the addition of new business rules, in accordance

with the changes in business environment. As explained in Chapter 5, the business rule-

related software changes may be divided into to types: simple and complex changes.

Page 150

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

The simple changes such as the modification of the rule phrases can be done by an

authorised application user whilst complex changes should be done by a software

engineer. The BROOD tool is capable to provide a full support in performing simple

changes whilst partial support in performing the complex changes. The fully automated

support to perform complex changes is almost impossible since it requires creative

skills of software engineers in making a design decision.

6 ,2 Generic Modeling Environment (GME)

The Generic Modeling Environment (GME) [Ledeczi et al., 2001a; VU, 2003], which

was developed by the Vanderbilt University in Nashville, is a configurable toolset that

supports the easy creation of modelling environments. The created modelling

environment can be subsequently used for building large scale, complex models. The

powerful modelling concepts such as model hierarchy, multiple aspects, sets, references

and constraints are integrated in the GME tool. GME also contains integrated model

interpreters for translating and analysing the models under construction. The

configurable feature of GME provides great flexibility for methodologist especially for

the frequently evolved modelling paradigm. This feature was also considered as the

main reason for this research to choose GME in experimenting and demonstrating its

proposed concepts.

In GME, the modelling configuration is accomplished through a metamodel that

specifies the modelling paradigm (or modelling language) of the application domain.

The metamodel defines the syntactic, semantic and presentation information of the

domain for example, the concepts that are used to construct the models, the

relationships that may exist among those concepts, the organization and view of the

concepts by the modeller, and the rules governing the construction of models. The

metamodel is composed using different combinations of the GME modelling concepts

such as model, atom, reference, connection, and aspect.

After the completion of the metamodel, GME requires an interpretation process to be

invoked in order to register the paradigm in the GME database. Once the interpreters are

created, environment users can create domain models and perform analysis on those

Page 151

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

models. Models are organised in a project and stored in a model database. A project is a

group of models created using a particular modelling paradigm.

GME provides a constraint manager as a general mechanism for representing modelling

rules and constraints. In GME, constraints are expressed using the MuItiGraph

Constraint Language (MCL), a predicate logic language based on the Object Constraint

Language (OCL). The constraint manager is fully compliant with the standard OCL 1.4

specification [OMG, 2001].

GME also incorporates a number of other significant features which make it a very

powerful and competitive tool. These features include ‘interpreter’ and ‘add-on’

components for programmability, XML format for model portability, and ‘decorator’

for enhancing model drawing capability. It also provides a development kit that is based

on the Microsoft’s Visual C++ programming environment for the puipose of component

development based on the Builder Object Network (BON) framework. This section

presents an overview of the modelling concepts and architecture of the GME.

6.2.1 GME Modelling Concepts

Prior to going into the detailed discussion on the development and implementation of

the BROOD tool prototype, it is important to understand the modelling concepts that

build the GME modelling (or metamodelling) vocabulary. The modelling concepts are

used in model composition. Figure 6-2 shows the UML class diagram of the GME

modelling concepts and their relationships. This diagram is also considered as the meta­

metamodel that is used to define the implementation metamodel of the BROOD tool.

As shown in Figure 6-2, a project contains one root folder, which may contain zero or

more other folders. In BROOD tool, only a single root folder is allowed in a project. A

folder acts as a container to organise a number of models. Model is an abstract object

that represents something in the real world. It typically has parts i.e. other objects

contained within the model such as atoms, references, sets, and connections. It also may

contain other models as part-models of the same or different kinds. In this case, it will

be a parent node to the part-models in the model hierarchy. All GME models are

Page 152

C hapter 6 The Design and Implem entation of the BROOD Tool Prototype

composed by different combinations o f the GME first class objects (FCOs, i.e. the

generic entities at the lowest level o f design in the GME paradigm).

0, , ’

FCO

sub-type I

Project

Connection

FolderConstraint
Attribute

Model

Rote

Reference

Atom

ConnRoie

Aspect

Part

Figure 6-2 GME modelling concepts [Ledeczi et al., 2001a]

Atoms are single modelling objects that do not have internal structure, although they can

have attributes. Atoms can be used to represent entities, which are indivisible and exist

in the context o f their parent model.

References are parts that are similar in concept to pointers found in various

programming languages. Reference parts are objects that refer to other modelling

objects. A reference part can point to a model, an atomic part o f a model, a model

embedded in another model, or even another reference part. A UML class from one

class diagram that is replicated in another class diagram is an example o f a reference

that is used in the BROOD tool.

A connection is used to express a relationship between two objects. The modelling

paradigm may specify the kind o f the relationship to be included in a model and the kind

o f object that may participate in the relationship. A connection may only express the

relationship between objects contained by the same model. A reference object can be

used to create a relationship between objects from different models.

All FCOs such as models, atoms, references, and connections may have the attributes.

An attribute is a property o f an object that is best expressed textually. The modelling

Page 153

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

paradigm may define the number of attributes for a particular object in their metamodel.

The attributes are often set using a form-based graphical user interface model editor.

The visibility of model components during visual model editing is controlled by the

defined aspect. Each model may have more than one aspect that may hide or show a

particular part contained by the model. The existence of visibility of a part within a

particular aspect is determined by the modelling paradigm.

6.2.2 GME Architecture

GME uses modular component architecture. The components provide services via the

interfaces based on Microsoft’s Component Object Model (COM) technology. In

general, the components of GME architecture can be conceptually divided into three

layers i.e. storage, core components, and user application layers. They are shown in

Figure 6-3.

The storage layer supports different storage formats including relational databases,

proprietary file formats, and XML. However, it currently only supports proprietary

binary file format and Microsoft SQL Server 7.0 via ODBC. Using GME binary file

format (project file) is faster than ODBC. XML is supported using the import/export

facilities. Supporting an additional format (e.g. Oracle) requires the implementation of a

single, well-defined, small interface component.

Core component layer is the most important component of GME. It consists of the core

component that implements the two fundamental building blocks of a modeling

environment i.e. objects and relations. The core component provides distributed access

and undo/redo services. This layer also contains two components that use the services of

the core i.e. GMeta and GModel.

The GMeta defines the modeling paradigm and configures itself by reading the meta­

specifications, while the GModel implements the GME modeling concepts for the given

paradigm. The GModel uses the GMeta services for self-configuration. During

execution, the GModel uses the GMeta component extensively through its public

interfaces. Both components expose their services through a set of COM public

interfaces.

Page 154

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

The GModel component exposes a set of events such as “object deleted” and “attribute

changed”. External components can register to receive the messages from these events.

It is often used by Add-ons (event-based components), which are useful for extending

GME user interface capabilities or for executing domain-specific operations.

User Application
COMCOM GME Editor Constraint

ManagerBrowser

Add-On Interpreter
COM

GMetaGModel

XML U M L /O C LGeneric Modeling Environment
Core Paradigm Definition

ODBCXMLStorage

DB#1 Storage OptionsDBMn

Figure 6-3 GME Architecture [Ledeczi et al., 2001b]

The components at the user application layer are provided to allow GME user or

application program to interact with the GModel or GMeta components. They include

the Browser, Editor, Add-ons, Interpreters and Constraint Manager. The Browser and

Editor components provide the graphical user interface (GUI) for visual model editing

by GME users. Any operation that can be accomplished through the GUIs can also be

done programmatically through other interfaces. This architecture is very flexible and it

supports extensibility of the whole environment.

The extensibility is achieved by writing programs that access or modifies model

information using several techniques such as GME interpreter, stand-alone program,

and Add-Ons. GME interpreter is a component that is loaded and executed using GME

environment whilst stand-alone program can be executed without the GME GUI.

Typically, Builder Object Network (BON) framework is used by GME interpreter to

represent an object in GME model database. BON is a network of C++ objects that

Page 155

C hapter 6 The Design and Im plem entation of the BROOD Tool Prototype

provide read/write access to the objects’ properties such as their attributes and

relationships. The classes in BON framework is shown in Figure 6-4.

Apart from BON, there are also other technologies which are available for developing

the external programs to access GME data for example, COM interface and GME

Unified Data Model (UDM-GME). COM interface is the most efficient way to access

GME data. However, COM programming and interface protocol handling are more

difficult compare to BON framework. UDM-GME is currently an experimental

technology that creates interpreters that use an automatically generated paradigm-

dependent programmatic interface.

C B u i ld e r C B u i ld e r O b je c t

C B u i ld o r M o d c l

C B u l l d a r F o l d e r

C B u i ld e r A to m

Figure 6-4 The classes in Builder Object Network (BON) framework [VU, 2003]

Add-On is an event-driven model interpreter that is invoked on the occurrence o f the

registered events. The events, such as “Object Deleted,” “Set Member Added,” and

“Attribute Changed”, are managed by the GME core components. Add-On components

may register to receive some or all o f these events. They are automatically invoked by

the core components when the events occur. Add-On is extremely useful for extending

the capabilities o f the GME User Interface or for reacting to a call o f some special

operations.

The Constraint Manager evaluates the constraint expressions to verify the constrained

model components against their attached constraint. GME may also specify constraints

to react to the occurrence o f the particular events. The Constrain M anager can be

invoked either using the command menu or by the occurrence o f the registered events.

Therefore, the constraint manager has both features o f an Interpreter and an Add-On.

Depending on the priority o f a constraint, the operation that caused constraint violation

Page 156

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

can be aborted. For a less serious violation, the Constraint Manager only sends a

warning message.

6.3 BROOD Physical Metamodels

The GME modelling vocabulary that is described in the previous section facilitates the

understanding of the BROOD physical metamodels. The physical metamodels are the

implementation version of their respective conceptual metamodels discussed earlier in

Chapter 3. It follows the semantics of the logical metamodels but slightly differs in

structure to comply with GME meta-language as well as to assist the programming of

model interpreters.

6,3.1 Business Rule Metamodel

In the business rule metamodel, which is shown in Figure 6-5, each business rule model

may contain zero or more rulesets. A ruleset is used to group business rules into a set of

closely interrelated rules according to their business process or sub-process. The names

or IDs of the business process and ruleset owner are the ruleset’s attributes that are used

for the purpose of business rule organization. The ruleset ED is used by the model

interpreters to uniquely identify the ruleset. A ruleset can be connected to another

ruleset using SubSetOf connection to show that the source ruleset is a subset of the

destination ruleset. Each business rule must be connected to one and only one ruleset in

order to simplify the business rule model traversal by the interpreters.

In the business rule physical metamodel, there are five types of business rules as

described in its conceptual metamodel: attribute constraint, relationship constraint,

action assertion, computation, and derivation. All types of business rules have two

common attributes i.e. template ID, which is used to identify the rule, and statement,

which is a complete sentence that describe the business rule.

There are two categories of attributes in each business rule type. First, the attributes that

are derived from the rule phrases defined in its sentence templates. The BROOD tool

will ensure that all of the necessary rule phrases are assigned the values according to the

selected template (stored as the template ID) during the creation of a business rule

Page 157

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

instance. For example, to create an attribute term using the template <attributeTerm1 > must be

I may be <relationalOperator> <value>, the attributeTeml, relCperator, and value must be

assigned the values. The business rule statement can be easily constructed using the

values of the attributes (rule phrases).

BuslnessRules
« M o d e l»

BelongTo
«Connec1lon»

C o n s t r a in t
« F C O »

AttConstraint
« A to m »

attrlbuteTerm2: field
entity: field
IsUnlque: bool
list: field
optionallty: enum
relOperator: field
value. field
attrlbuteTerml : field

RelConstralnl
«<Atom»

cardinality! : field
cardinality2: field
entity?: field
IlnkedRelatlonsnip field
optionallty: enum
role: field
entity!: field

>

0 .."

BusiriessRuIe
<<FCO»»

templalelD: field
statement: field

RuleSet
«Atom>»

businessP rocess: field
ruleSetlD: field
owner: field

jro |o..“ dst i

SubSetOf
<Connectlon«

ActionAssertlon
« A to m »

attrlbuteTerml : field
attrlbuteTerm2: field
attrlbuteTerm3: field
entity: field
UnkedClass: field
IlnkedOperatlon: field
IlnkedSTD. field
IlnkedTransllion: field
list' field
operationTerm. field
relationalOperator: field
rula: field
userAction: field
value: field
eventTerm: field

Derivation
«FCO»=

Compulation
«Atom»>

attributeTerm: field
UnkedClass: field
IlnkedOperatlon: field
algorithm: field

Inference
s<Atom>s

action: field
condition field
entity; field
UnkedClass: field
IlnkedOperatlon. field
value: field
attributeTerm: field

Figure 6-5 Business rule metamodel

The second category of attributes is those used to link or propagate business rule

information or changes to software design components. If the linking attributes are

defined, the specification of the related design components will be changed is time the

rule is created or modified. Table 6-1 shows the attributes of software design

components that possibly changed by the introduction of a new business rule.

Page 158

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

Table 6-1 Linking the business rules to the software design components

Types Software Design Components

Attribute
Constraint

Attribute.isUnique Attribute.isMandatory

Relationship
Constraint

Association.dstCardinality
Association.dstRoieName
Composition.partCardinality
Composition. partRole

Association.srcCardinality
Association.srcRoleName
Composition.wholeRole

Action Assertion
T ransition.actionName
T ransition.eventName
T ransition.eventOperation

T ransition.actionSpec
T ransition.eventSpec
T ransition.guardSpec

Computation Operation .specification

Derivation Operation.specification

6.3.2 Software Design Metamodel

In BROOD approach, there are two software design models: class diagram and

statechart diagram. These models were extracted from the UML Specification version

1.4 - they are respectively shown in Figure 6-6 and Figure 6-7.

ClassDlagram
«*;Model*>

Mode/Element
«FCO**” 0..'

FeaturetiFCO*

Attribute
<*Atom»

defaultValue: field
enumeration; field
IsMandatory: bool
isUnique: bool
type: field
visibility: enum
IntlalValue: field

Operation
« A to m »

IsQuery: bool
roturnType: field
specification: field
visibility: enum
parameter: field

Ciassoase
<«f c q »

ire0."
t

0..*
Relationship

««Connection>>

Class
<«lvlodel* ►

IsAbstracl: bool
IsLoaf: bool
isRoot: bool
stereotype: field

ClassCopy
'^Reference*:

Association
««ConnBction»»

dstCardinality: field
srcCardinality: field
srcRoleName: field
dstRoleName: field

Composition
^Connection**

partCardinallty: field
wholeRole: field
patlRole: field

Inheritance
^Connection**

Figure 6-6 Class diagram metamodel

In the class diagram metamodel, a class diagram contains zero or more model elements.

A model element has three sub-types: class base, feature, and relationship. Class base is

an abstract object that is used to introduce a special type of a class i.e. a class copy. A

class copy is a reference to a class object. A class is a model that has zero or more

Page 159

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

attributes and operations, similar to the concept of a UML class. Two additional

attributes were included in the attribute atom, i.e. isMandatory and isUnique, to

respectively store the optionality and uniqueness values in accordance with the attribute

constraint business rule specification. A class or class copy can be connected using one

of the three relationship kinds: association, composition or inheritance.

Regarding the statechart diagram, it may have zero or more states and transitions. Each

state has three attributes namely entry action, do action, and exit action which

respectively specify the action when an object enter, stay, and leave the state. Each state

can be connected using a transition. A transition has the attributes to store the

specification of the event that generates the transition, guard (condition) that must be

satisfied for the transition to happen, and action that is triggered as the side effect of the

transition.

StatechartDlagram
“ Model**

ModelElemenl
“ FCOProw*** 0 ..*

Stats
«=Atom*»

doActlon: field
exItAction: (leld
entryActlon: field

InitialState
“ Atom**

FlnalState
“ Atom**

Transition
“ Connection**

transActlonName: Field
transActionSpec: field
transEventName: field
transEvenlOperation; field
IransEventSpec: field
quardSpoc: Field

Figure 6-7 Statechart diagram metamodel

6.3.3 Rule Phrase Entries

In terms of the BROOD tool prototype, the rule phrase types may be categorized in

three category namely ‘literal’, reusable (not directly linked), and linked rule phrases.

The literal rule phrases are not stored in the rule phrase entries since they are too simple.

Instead, they are only stored as the attributes of the business rule instance. The literal

rule phrases have a single value or a very small number of possible values. The

examples of the literal rule phrases are value, optionality, and uniqueness.

Page 160

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

The reusable and linked rule phrases are stored in the rule phrase entries. They are

shown in the rule phrase metamodel in Figure 6-8. The reusable rule phrases are not

directly linked to the software design components, but their information is used by the

interpreters to propagate the business rule changes to the related software design

component. They are stored in business rule specification as the common rule phrases

that may be used during business rule composition. The types of the reusable rule

phrases include cardinality, relational operator, time unit, and list. The linked rule

phrases are also stored and reused similar to reusable rule phrases, but it also directly

linked to their respective software design components. For example, entity is linked to a

class, attribute term is linked to an attribute, operation term is linked to operation, event

is linked the operation that generate the event, and date-time is linked to the operation

that return the particular date and time. The linked operation of an event and date-time

rule phrases is not mandatory. The rule phrase entries are often maintained software

engineer or business user with software design knowledge. Once the rule phrase entries

is completely populated, business user may create or modify business rules based on the

existing rule phrases in the rule phrase entries.

RulePhraseEntries
"M odel**

RulePhrase
"FCO *** &..*

Entity
"Atom*

classN am e: field

TimBUnit
«A 1om »

Event
"Atom**

dateTime; field
entity; field
UnkedClass: field
IlnkedOperatlon field
number; field
templatalD: field
timeUnit: field
userEvent: field
attributeTerm: field

R elO p era to r
"Atom**

logicalSymbol: field

AttributeTerm
« A to m »

attrlbuteName: field
classN am e: field

List
eAtom»

item s; field
llemType: field

OperationTerm
"Atom**

classN am e: field
operalionNamB: field

DateTime
"Atom**

day: field
hour; field
minute; field
month: field
second: field
year: field
dataGetOperation: field

Cardinality
« A to m »

minCardinality: field
maxCardlnality: field

Figure 6-8 The metamodel of rule phrase entries

Page 161

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

6.3.4 Modelling Constraints

Most of the BROOD modelling rules and constraints, such as the cardinalities and

permitted types of a relationship, are controlled by its metamodels. Such rules and

constraints are important in maintaining the correctness of the syntax and semantics of

the developed models. However, the explicit constraints are needed for the additional

modelling restrictions that ensure the consistency of the model or its components. These

explicit constraints were included as the constraint objects in the BROOD metamodel.

They are specified using the MCL, which is an extended version of the OCL

specification. Each constraint object was connected to the metamodel element of its

constrained object. It may be invoked either manually using the check constraint

command or automatically upon the occurrence of the registered events. The registered

events may be the object, model, or project events. They are generated for example,

when the project is close, model is saved, or the object created. The respond to the

violation of the specified event depends on the constraint priority - the high priority

constraint will abort the current operation whilst the low priority constraints will only

display the warning message. In the current version of this prototype, only the simple

constraints were implemented. The examples of these constraints and their OCL

specifications are given below:

♦ RPEntriesSingleton:project .alllnstancesOf (RulePhraseEntries) ->size <2

♦ NotEmptyTemplatelD: self . templatelD, trim() <> ""

♦ UniqueRulePhrase: project.alllnstancesOf(Cardinality) ->
select(c | c.narne = self.name) -> size = 1

In the above examples, RPEntriesSingleton controls the project to only have a single rule

phrase entries model. This restriction may simplify the maintenance of a large number

of unique rule phrases. The second constraint, i.e. NotEmptyTemplatelD, checks the

tenplateiD attribute of the connected business rule instance to ensure that the value is

not empty. It is important in ensuring that templatelD always has a value since it is

frequently used in the developed inteipreters for instance the generated business rule

statement depends on the selected terrplateiD. The last constraint in the above

examples, namely UniqueRulePhrase, was attached to all rule phrase atoms or objects to

ensure that each rule phrase is unique. A unique rule phrase name may avoid the

Page 162

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

business user confusion on the meaning of the selected rule phrases in composing a

business rule.

6.4 BROOD Tool Features

Having completed and interpreted the physical metamodels discussed in the previous

section, the newly generated tool environment of the BROOD modelling paradigm that

is based on the GME meta-paradigm is now ready to be used. In its main window,

which is shown in Figure 6-9, the name of the currently opened project is displayed on

the Title bar. Menu bar and tool bar allow access to certain commands provided by the

environment. The buttons to execute the interpreters are located at the right-end of the

tool bar. Mode bar contains selection and connection buttons. Model editing window is

used to visually construct and edit the models. Users may add the model component,

which is called part in GME, by selecting it from part browser window and dragging it

to the model editing window. Each model editing window has its own title bar that

displays the name of the currently edited model. The attributes of the model can be

added or modified using the form-based attribute browser window. Users may navigate

the models in the current project using the tree structure view provided by model

browser window.

6.4.1 Model Editing

There are four main types of models can be created using the BROOD tool: rule phrase

entries, business rule, class diagram, and statechart diagram. The simplest way to create

a new model is to right-click the project name in the model browser window and select

Insert Model command from the pop-up menu. Users may select the type of the model

to be created from the displayed choices. As the type is selected, a new item with the

default model name is inserted in the tree view of the current project. By double­

clicking on the model name, the model editing window is displayed and the model is

now ready for editing.

Page 163

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

Title bar

Rle E<* View Window Help

/ i J - cl X q o * Tt * V d * . d a G r E C E B E f-- C o m p o n .n ts : *•« \ “t , " i ,

AflgresMe | Inheritance I Meta | \

Menu bar

[6u»net»RiieiBR-MedNEl

Tool bar
• f MsdNEI

>1 BR-ModWET
*j£ CO-BlngPecKege
y CO-tnvocngPeckege

- CO-Reg»trationPdckage
'A One
^ Consult afanQueuc
1 4 HCPUsei

HCPtovkJw
1 4 PM Use.
1 4 Pand
14 PenePatienl
f S Patient

& DOB
y j addtesa
98 homeAddress

wDependenl
.VjK name

Mode bar

^ CDRogi*1ra1ionP*ckage

T Name: |CD-Reg«ttationPac jOassOiagtam Aspect ! OassDiagram ^1 Base: |n /A

Model
Editing

Windows

pv*l company 10

HCProvider

RegLocatlonBrowser

fcategotyl -past-due-vwace

Altifculet | Pietetencei | Prapertw |

ClassCopy hnkedSTO STD-tnvoce
linkedTiansibon Tiaration
InkedOpetabon levwwU npa»d nvo»ce()
knkedClass InvoiceApp

Interpreters

Model
Browser

Attribute
Browser

Figure 6-9 The generated BROOD tool environment

The model component (which is called part in GME terms) may be inserted into the

model by dragging its type symbol from the part browser and dropping it on the model

editing window. The contents of the part browser are changed each time users change

the active model editing window. Different symbols are used to distinguish different

component types for example, the ruleset is displayed as a double outline box whilst a

business rule is represented as a single outline box.

The BROOD tool also provides a convenient way to create a connection between to

model components. Users may click the connect mode button on the mode bar and

consequently click on the source and destination component on the model editing

window. If there is more than one type of connections defined for the source and

destination types, the pop-up menu will appear to allow user to select the right type of

connection. In certain situations, BROOD allows users to make a connection from a

component in one diagram to another component in another diagram. For example, the

Bill class in the Billing class diagram can be connected to the Patient class in the

Registration class diagram by creating a copy of the Patient class in the Billing class

diagram. The Bill class is then connected to the Patient class copy.

Page 164

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

The above graphical model editing is convenient to be used in visual modelling such as

the development of the class diagram and statechart diagram. However, it is less

convenient in the development of business rule specification. For instance, the addition

of a new business rule requires users to link it to several rule phrases and software

design components. Using the graphical model editing alone requires user to manually

search for the related rule phrases in the rule phrase entries and the related components

in the class or statechart diagram. This is an inconvenient, time-consuming, and error-

prone process.

Therefore, several modules were developed to simplify certain modelling tasks that are

impractical to be performed using the design editors. These modelling tasks include the

population of rule phrase entries, the addition of a new business rule, and the

modification of the existing business rules. In the developed modules, Builder Object

Network (BON) was used as a high level programming library to access and modify the

BROOD models and their components. These modules are actually interpreters in GME

terms - they are called modules since they provide much functionality beyond

interpreting the models. The inner-working of these modules and the way on how to use

them in assisting the BROOD process will be discussed in the following sections.

6.4.2 Populating the Rule Phrase Entries

The rule phrase entries must be populated with an adequate number of rule phrases

since they are needed to compose a new business rule statement. Model editing window

can be used to add the simple rule phrases that are not directly linked to software design

components such as cardinality, relational operator, list, and optionality. For the rule

phrases of other types such as entity, attribute term, operation term, and event, the

developed Add Rule Phrase (ARP) module was developed to simplify the task of

creating and adding them to the rule phrase entries.

As the module is invoked, the ARP module displays a window that allow user to choose

the rule phrase type. Next, the module will display the respective window according to

the selected rule phrase type. As an example, Figure 6-10 shows the window that is

displayed when attribute term is selected as the rule phrase type. The first combo box in

the window is automatically filled with the names of the existing classes in the current

Page 165

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

project. When a user selects the class in the first combo box, the attributes of the

selected class are inserted into the second combo box. User may select the attribute

from the second combo box and linked it to the newly created rule phrase, which is

entered in the new rule phrase text box.

H l^ h tp rn ^ ru te ,p h ra s e Kl„

Select the class name | Bill

Select the attribute amount

Snterthe rule phrase | ,he amounl of 8 Palient's bil1

Add Rule Phrase Quit

Figure 6-10 Adding a new attribute term rule phrase

In the ARP module, the programming task of populating the class and attribute combo

boxes with the available classes and respective attributes was simplified by using the

BON framework. For example, the process of populating attributes starts with the

traversal of all models in the root folder returned by the BON CBuilder object. Upon

finding a class diagram model, it traverse all classes in that class diagram to look for the

currently selected class. As the selected class is found, it retrieves the name of each

attribute of the selected class, and subsequently adds the name to m_AttributeComboBox
combo box. The following source code snippet shows the extensive use of BON

components in retrieving the class diagram information.

const CBuiIderf'fcdelList * models = builder->GetRootFolder{) -X3etRootMcdels () ;
p o sm o sr pos = irodels->GetHeadFosition (} ;
while (pos)
{ CBuilderiVSbdel *model - models->GetNext (pos) ;

if (rnodel-X3etl<±ndI'lame () "ClassDiagram")
{ //Get the classes in the model

const CBuilderModelList ^classes = model->GetModels () ;
POSITION! pos = classes-xSetHeadPosition ();
while(pos)
{ CBuiIderModel *desClass = classes->GetNe>ct(pos);

if (desClass->GetlS]ame () .Ccirpare (className) — 0)
{ const CBuilderAtcrnList ^attributes - desClass->GetAtars ("Attribute") ;

POSITION! pos = attributes->GetHeadPosition () ;
while (pos)
{ const CBuiIderAtcm *attribute = attributes->GetNext(pos);

m_AttributeCQniboBox. AddString (attribute->GetName ()) ;
} //end while

}//end if (desClass...) - if the selected class
}//end while - individual class traversal

}//end if(model,.) - if a class diagram

Page 166

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

)//end vhile (pos) - models traversal

After the new rule phrase is entered and the linked attribute and class are specified, user

may create a new attribute term rule phrase by clicking the Add Rule Phrase button. The

rule phrase entries model that acts as the container to the new rule phrase is then

obtained via traversing the root models similar to the above class diagram traversal. As

the model is found, the new atom for the new rule phrase is created, and its name and

attributes is assigned to the atom. The example of source codes for creating a new

attribute term is shown in the following code snippet:

if (rtodel->GstKindNama () = "RulePbraseEntries")
{ //— Create new AttributeTem and set its attributes

CBuilderAtcm *newAttTerm - model->CreateNewAtcsn("AttributeTerm");
CString attCName = "className”, attAName = "attributeName";
newAttTerm->SetName(rulePhrase);
newAtt'lbrm->SetAttribute (attCName, className) ,-
newAtfIbm->SetAttribute (attAName, attributeName) ;

}//end if

The above implementation provides a fairly simple example of using the BON

components in the BROOD tool. Model traversal, atom creation, reading/writing the

values of the atom’s attributes are the examples of the most frequently used BON

components. The programming task is more complicated for a more complex rule

phrase. For example, in adding an event rule phrase, the writing of the rule phrase must

be done according to the selected template. If the event is linked to any class operation,

the event specification must be propagated to the specification of the linked class

operation.

6.4.3 Adding a New Business Rule

The Add Business Rule (ABR) module was developed to assist user in adding a new

business rule to the selected business rule model. The ABR module performs two main

tasks: business rule composition and software design updating. In business rule

composition, rule phrases are used as the building blocks to construct a new business

rule statement. Majority of the rule phrases are available from the rule phrase entries.

For certain types of rule phrases, such as value and number, they are not stored in the

rule phrase entries. Instead, their values are entered during rule composition and stored

as the rule attributes. With regal'd to updating the software design, the ABR module

Page 167

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

automatically updates the software design information to correspond with the newly

composed rule. The action taken depends on the selected rule type and template. For

example, the attribute and relationship constraints are directly linked to the attribute and

relationship in the class diagram.

As the ABR is invoked, it shows the selection window that allows a user to specify the

type of the business rule to be added. A business rule composition window is displayed

after the user made the choice. As the example, the window that is displayed when the

user chooses a relationship constraint is shown in Figure 6-11. User may enter the name

and choose the ruleset for the new business rule. The rule template must be chosen from

the listed choices. As the template is selected, the rule phrase type combo box is

populated according to the selected template. The available rule phrases are displayed in

the rule phrase list box. User only needs to double-click the desired rule phrase to select

it. The selected rule phrase is inserted in the selected phrases list box. Use construct rule

button to display the composed business rule statement.

Enter business rule name j master-bllHtam

Select Rule Set | Billing

Select Rule Template 'cardinality! >

■Business rule statement construction™

entity! > is a/an <role!> of«cardinality2* < e n l l t y 2 » j]

Select rule phrase type Uentity2!>

Select rule phrase

Selected phrases

healthcare provider
invoice
master transaction item
panel patient
patient
patient's record location
paymaster
payment

cardinality!»; one and only one
<entltyl >: mastertransacllon Item
<role»: master Item
<cardinaiity2>: zero or more
■=entlty2>: bill Hem

The constructed rule statement

one and only one m aster transaction Item Is
a/an master item of zero or more bill Item.

Add Business Rule ;

Figure 6-11 Adding a new relationship constraint

Having composed the business rule statement, the business rule is now ready to be

added to the currently opened business rule model. As mentioned above, the ABR

module does not only compose business rule but it also performs a trickier task i.e.

Page 168

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

updating the design components according to the newly composed business rule. In the

above relationship constraint example, the relationship constraint atom is firstly created

for the new business rule and it is consequently added to the current model after a user

clicked the Add Business Rule button. Next, it searches for the existing association

relationships between the first and second entities. Then, it displays the pop-up window

that allow user to link business rule to one of the existing associations or create a new

association. Once the association is selected or created, the cardinalities and role

information form the business rule is transformed to their respective attributes of the

selected association.

The creation of a new connection is trickier when the source and destination classes are

not located in the same diagram or the destination class is a class copy. To solve this

problem, the ABR module traverse all models and checks both classes and class copies

to find the source and destination classes. If the classes are located in the same class

diagram, it will create a connection from the source class to the destination class or class

copy. However, if the classes are located in different diagram, the ABR module must

create a new class copy as the destination for the new connection. The source codes that

implement this task is shown in the following code snippet:

//— Create a new Association connection where both classes in the same class diagram
if (classDiagraml == classDiagram2)
{ if {! dstClass->GetName () , Compare ("NULL") == 0)

conn = classDiagranil->CreateNev.Connection("Association" ,srcClass,dstClass) ;
else

conn = classDiagraml->CreateNewConnection("Association",sncClass,dstClassRef) ;
conn->SetName (linkedRelationship);
com->SetAttribute (srcCardAtt, designCardl) ;
conn->SetAttribute (dstCardAtt, designCard2);
conn->SetAttribute(srcRoleAtt, rolePhrase};

} else
// Create a new Association where srcClass and dstClass resided in different class diagram
{ CBuilderModelReference *newClassRef =

classDiagraml->CreateN0 AModelReference("ClassCopy",dstClass)
newClassRef->SetName (dstClass->GetNaire ());
conn - classDiagranh->CreateNewConnection("Association", srcClass,ne,\ClassRef) ;
conn->SetName(linkedRelationship) ;
conn->SetAttribute (srcCardAtt, designCardl) ,*
conn->SetAttribute (dstCardAtt, designCard2) ;
conn->SetAttribute(srcRoleAtt, rolePhrase);

6.4.4 Perform ing Business Rule Changes

The ultimate aim of the BROOD tool is to simplify the implementation of business rule

changes. The Modify Business Rule (MBR) module was developed to assist tool users

Page 169

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

in performing this task. The MBR module starts with displaying a tree structure of the

rulesets and business rule statements of the currently opened business rule model. User

may browse the business rule statement and select the statement to be modified. After

the statement is selected, the MBR module traverse the business rule model to obtain

the business rule object (atom), create a new window according to the type of the

selected rule, and populating the window with the current business rule information.

Figure 6-12 shows the window when a user select ‘WHEN 30 day after the creation date of the

invoice IF current balance of the invoice is greater than 0 THEN trigger issue the first reminder’ rule

statement from the tree view.

EyBnt phrase

Rule statement

Current template

jcatl-past'due-of-an-lrwoice

p o ctayaftertha creationTdate" of the Invoice
Modify Event |

HEN 30 day alter the creation date of the Invoice IF current balance of the
invoice is greater than 0 THEN trigger issue the first reminder

HEN 'event* IF 'attrlbuteTerml > 'relallonaluperator* 'value* THEN
prigger'operation*

Perforin condition and action change(s)

Change condition template

Change action template

j 'attrlbuteTerml * 'relatlonalOperator* <attribuleTerm>

trigger'operation!'

Select rule phrase type

Select rule phrase

'attrlbuteTerml 5

current balance of the invoice
patient registration number
patient's date of birth
paymaster's status
the amount of a patient's bill

Enter «value»

Currently selected phrases 'attrlbuteTerml!’: current balance ofthe
'relattonalOperator>: is greater than
*vatue»: 0
<operalion>; issue the first reminder

t [Confirm Templates

| View Changed Rule]

The constructed rule statement-------------------- -1

WHEN 30 day after the creation date ofthe I
Invoice IF current balance ofthe Invoice Is j
greater than 0 THEN trigger issue the first \
reminder !

Change link to software design-

Select Statechart diagram [STD Invoice "TJ Selected transition j Transition!

Select class InvolceApp T| Select operation [addRemlnderUstltemQi t |

Commit Changes

Figure 6-12 Modifying an action assertion business rule

As shown in Figure 6-12, the window is initially populated with the existing rule

phrases and templates of the selected business rule statement. User may modify the

event, condition, action, and linked software design components using this window.

With regard to the condition and action modification, user may change their templates

Page 170

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

by selecting one of the listed choices in the provided combo boxes. After the Confirm

Template button is clicked, the rule phrase type combo box is populated with the names

of the rule phrase types found in the selected templates. User may select a rule phrase

type to change from rule phrase type combo box. As the rule phrase type is selected, its

instances from rule phrase entries are listed in the rule phrase list box. User may select

the item by double-clicking. If the user select <value> from the rule phrase type combo

box, the edit box and Insert Value button will be activated to allow the user to enter the

value of <value>. The selected rule phrases are displayed in the selected rule phrases

list box. User may view the changed rule statement using the View Changed Rule

button.

Upon clicking the Commit Change button, the business rule changes are automatically

propagated to the linked software design components. The specification of event,

condition, and action of the business rule are transformed to event, guard, and action of

the linked state transition in the selected statechart diagram. The business rule may also

be linked to the operation that performs the specified action on the occurrence of the

event and the satisfaction of the condition. For example, this action assertion is

implemented in addRemmderListItem() operation of the InvoiceApp class that adds the

paymaster into the list of the category 1 past due paymasters when the payment is not

received within 15 days from the invoice date. The list is subsequently used to manually

issue the first reminder letters. In this example, the changed business rule specification

is transformed to the design specification and automatically inserted in the specification

of the addReminderListitem() operation. In certain occasions, user may need to change

the linked design components. However, changing the linked software design

components is infrequently happened during the software operation.

User is also allowed to change the event specification by clicking the Change Event

button. As the button is clicked, the window shown in Figure 6-13 is displayed.

Page 171

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

VVARNING1II The modification of this event will afreet Is aggregated action assertion rules

Change event template «number» «timeUnIt» after <dateTirne> 3
Change event phrase

Select sub-phrase type <tlmeUnlt»

Select sub-phrase Enter «numbor»
hour
minute
month
week
year

I’*

' The selected sub-phrases
<munber»: 15
"ftimeUnit*: day
»m_DateTime»: the creation date ofthe I

|

! Enter a new event phrase
1

] 15 day after the creation date ofthe Invoice \
or | Generate | }

r Link to Software Design —■- --- --
......i

1. s
. UnkedClass jlnvoiceApp _▼] Linked operation jaddBlllltemO n J

Commit Change j Quit J ...

Figure 6-13 Modifying an event rule phrase

As shown in Figure 6-13, the currently selected template and rule phrases are displayed

on the window. User is allowed to change the template, however it must be carefully

done since the event might be used by other action assertion rules. The most frequent

change to an event specification is to change the value of its rule phrase. For example,

as described in the second change scenario in section 5.4.1 (in Chapter 5), a user may

wish to change the number of days of a category 1 past due invoice from 30 to 15 days.

This can be done by very easily by selecting <number> from the sub-phrase type combo

box, enter the value in the <number> edit box, and press the Insert Number button.

Next, user may choose either to type in a new event phrase or automatically generate

based on the modified event specification. Finally, user may click Commit Change

button to save the event changes and return to the caller window. The event phrase and

rule statement in the caller window will be updated accordingly,

6.5 Summary

The design and implementation of the tool prototype that supports the BROOD

approach was described in this chapter. The tool prototype served two main purposes: it

demonstrated the possible automation of the critical activities in the BROOD process

Page 172

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

and it provided a means of experimenting and improving the BROOD concepts i.e. the

metamodel and templates. The automation of the critical development and evolution

activities was particularly achieved by the development of the modules that manage

composition, linking, and propagation of business rules to their respective software

design components. With regal'd to the improvement of the BROOD concepts, the

developed BROOD tool was found very useful in giving the technical feedbacks that

improved the metamodel and templates.

The BROOD tool prototype was developed using the configurable GME modelling

environment. The physical metamodels, which is the implementation version of the

BROOD metamodel discussed in Chapter 3, were developed for all BROOD models

such as rule phrase entries, business rule specification, class diagram, and statechart

diagram. A number of simple modelling constraints were also created and attached to

the particular metamodel components. The defined metamodels were used in generating

the BROOD tool environment. The chosen GME was found very convenient in

experimenting with the implementation feasibility and technical aspect of the BROOD

metamodel since it is highly configurable in generating a new modelling paradigm.

The BROOD tool prototype provides a number of functionalities in assisting the

development and evolution activities in the BROOD process. These functionalities are

provided using the GME-generated graphical model editor and the developed form-

based modules. Regarding the graphical model editor, the model can be developed by

composing parts and connections using the mouse operations. The attributes of the parts

and connections can be entered using the provided attribute browser. The graphical

model editing is particularly useful for the development of a class diagram and

statechart diagram.

With regard to the developed modules, they are provided to maintain rule phrase entries,

compose new business rules, and perform business rule changes. The form-based

graphical user interfaces of these modules facilitate the composition of a new business

rule statement using the existing rule phrases in the rule phrase entries. They also assist

the linking of business rules to their related software design components. These

modules automate the propagation of the business rule changes to software design via

the extensive use of the provided BON framework.

Page 173

Chapter 6 The Design and Implementation of the BROOD Tool Prototype

As a conclusion, the BROOD tool simplifies the tedious, error-prone, and time-

consuming task of linking and propagating the business rule changes to software design

components. A business rule can be changed by changing its rule phrases and the

changes are automatically propagated to the related software design components. Apart

from that, the BROOD prototype provided useful feedbacks in the improvement of the

technical aspect of the BROOD metamodel and templates.

Page 174

Chapter 7 Conclusions and Further Work

Chapter 7

Conclusions and Further Work

The Business Rule-Driven Object-Oriented Design (BROOD) approach, which is

proposed by this research, is evaluated in this chapter. This chapter starts with the

summary and the explanation on how this research achieves each objective set at the

outset of this research. It is followed by the evaluation of the research results using the

comparative evaluation framework introduced in Chapter 2. Subsequently, it

summarizes the main contributions of this research to various areas of software

development and evolution. Finally, it establishes the areas of future research.

Page 175

Chapter 7 Conclusions and Further Work

7.1 Research Summary and Achievements

The purpose of this research was to propose a software evolution approach that

explicitly considers business rules in the development and evolution of a business

software system. This research employed the engineering research method [Basili,

1992] that consists of several steps: analyse the existing approaches, propose a better

approach, develop the proposed approach, improve the approach based on the feedbacks

from the application of the approach in the selected case study, and repeat the process

until no more improvements appear possible. Chapter 2 analysed the existing software

evolution and business rule approaches using the developed comparative evaluation

framework. The analysis indicated that there is a gap between the approaches in

business rule conceptual modelling and the evolvable software systems. Chapter 3

introduced an arguably better approach i.e. the BROOD approach. It explained the

product component of the BROOD approach, namely the metamodel that specifies the

structure of business rules, software design, and their linking elements. Chapter 4

explained the process component of the approach. The applicability of the BROOD

approach in an industrial strength application was demonstrated in Chapter 5 using the

MediNET case study. Chapter 6 presented the BROOD tool prototype that demonstrates

the capability of automating certain important development and evolution activities of

the proposed BROOD approach. The remaining discussion in this chapter explains how

the research objectives were tackled by this research.

BROOD has been motivated by the inherent problems in software evolution and the

improvement opportunities of the state-of-the-art business rule approaches in software

evolution. As mentioned in the first chapter, the hypothesis of this research is restated

below:

The evolution of a business software system may be simplified by a practical holistic

approach that (I) explicitly considers business rules in software modelling in addition to

the adopted software technologies and (ii) provides a process and tool that facilitate the

development and evolution activities.

The above hypothesis is subsequently transformed to the aim and objectives that

systematically set the direction of this research. Thus,

Page 176

Chapter 7 Conclusions and Further Work

the aim of this research is to improve software evolution.

The above aim was broken down into a set of research objectives, which determine the

tasks that should be accomplished by this research. The achievements of this research in

accomplishing each of the stipulated objectives will be described in the rest of this

section.

Objective 1: To analyse the state-of-the-art business rule approaches in software evolution.

The preliminary investigation in the main views on software evolution suggested that a

holistic solution to the current evolution problem should consider the sources of

changes, i.e. business rules, in addition to software technologies. Business rules were

identified as the most frequently changed user requirements and their changes bring the

highest impact to both business and software systems. Therefore, analysing the state-of-

the-art business rule approaches to software evolution was set as the first objective in

this research.

Chapter 2 presented the review of the recent business rule approaches in various

research areas, which was performed to achieve the above objective. It reviewed the

roles of business rules in different research areas such as software development

lifecycle, the alignment of business with its information system, software specification,

object-oriented software development, software architecture, and database. From the

review, there are two categories of business rule approaches that are closely related to

this research: business rule conceptual modelling and evolvable software systems. This

research investigated the modelling concepts and techniques of the selected approaches

from these two different categories: the BRG, BROCOM, BRS, AOM, Coordination

Contract, and BRBeans. The MediNET examples were used to assist the understanding

of the selected approaches. The comparative evaluation framework, which is adapted

from the common software engineering method evaluation framework, was developed

with a great focus on the business rule modelling concepts and software evolution

support. This framework was used together with feature analysis technique to evaluate

the selected approaches.

Page 177

Chapter 7 Conclusions and Further Work

The review of the state-of-the-art business rules and software evolution approaches and

the evaluation of the selected approaches have provided the constructive observations

that lead to the identification of the improvement opportunities to the state-of-the-art

approaches to software evolution. The observations help in determining the issues that

should be addressed by BROOD. They include both the best practice of the current

approaches and the potential solutions to the identified problems. In short, the BROOD

approach should:

♦ provide explicit representation of business rules,

♦ utilize or extend the existing well-proven widely accepted software technology,

♦ address the evolution problems at the metamodel level,

♦ consider pre-implementation evolution,

♦ include both product and process components, and

♦ close the gap between the conceptual model of business rule and software

components.

Objective 2: To develop a metamodel that externalizes the representation of business rules

and provides traceability to their implementation in software design.

As described in Chapter 3, the BROOD metamodel consists of three main parts:

business rule, software design, and the linking elements. The business rule part defines

the business rule typology as well as the structure of a business rule statement. It also

includes other elements that help the business rules organization and management. Two

requirements were considered during the development of business rule structure: the

business rule statements should be understandable by business users and structured

enough to be linked (or implemented) to the related software components. The

metamodel was supplemented with EBNF definition that defines the structure and

templates of each business rule type.

In terms of software design, BROOD utilizes the benefits of object-oriented paradigm

by adopting the widely accepted Unified Modelling Language (UML) to represent

software design. The remaining problem is to link the business rule specification to

Page 178

Chapter 7 Conclusions and Further Work

software design. In addition, the information or changes of each business rule statement

should be propagated to its related software design components.

The above problems were tackled by the introduction of the rule phrases as the linking

elements. The rule phrases provide the traceability between business rule specification

and design components. The examples in section 5,3.4 illustrated the use of rule phrases

to link business rules to software design in MediNET. Section 6.3.1 explained the

different ways of automatically propagate the business rule information or changes to

the related software design components.

Objective 3: To specify a software process that guides the development and evolution of a

software system using the proposed metamodel.

Chapter 4 explained the BROOD process i.e. a software process that supports the

BROOD approach. SPEM was used to develop a visual model and textual specification

of the BROOD process. The BROOD process focuses on three phases i.e. analysis,

design, and evolution phases. The analysis and design phases consist of a flow of

activities to develop business rule specification and software design models. They also

include the way to link business rule specification to software design. The evolution

phase contains a flow of activities that may be followed in dealing with simple and

complex business rule changes. Apart from the flow of activities, the BROOD process

also clearly defines the process roles that performed the specified activities and the

work products that should be produced by certain activities. The clear description of

these process components makes the BROOD process as a useful guideline for the

BROOD users such as software engineers and business users.

Objective 4: To demonstrate the practicability of the proposed approach in an industrial

strength software application.

Chapter 5 presented the examples of the application of the BROOD approach in

MediNET. MediNET is an industrial strength software application, which is used by

different healthcare industries with various frequently changing business rules. With

regard to software development, it illustrated the process of systematically transforming

the initial set of MediNET business rule statements into the structured business rule

Page 179

Chapter 7 Conclusions and Further Work

statements (a collection of structured business rule statements is called a business rule

specification). It also demonstrated the process of linking each business rule statement

to the related software design components. The business rule typology and templates

were found useful in assisting the development of the MediNET business rule

specification.

Regarding the MediNET evolution phase, the use of BROOD in dealing with simple

and complex business rule changes were described using a number of change scenarios.

Business rule changes are classified as simple changes if they are concerned with the

addition, modification, or deletion of business rules that do not involves the introduction

of a complex rule phrase or design component. Otherwise, the changes are classified as

complex changes. Simple changes, which are more frequently occurred during software

operation, may be performed by business users whilst the implementation of complex

changes must be performed by software engineers.

Based on the experience in applying BROOD in MediNET, it was found that the

BROOD approach improves the traditional software development approaches in

simplifying software evolution. It allows the simple change to be performed by business

users, which in turn shorten the change implementation. The software changes that are

driven by business rule changes may ensure the alignment of software with user

requirements since business rules are also part of user requirements. The application of

BROOD against MediNET was also found useful in improving the detailed description

of the BROOD metamodel and process.

However, there are two identified BROOD weaknesses: (i) the additional steps of

dealing with business rules that increase the complexity and duration of software

development process, and (ii) the possible mistakes during the implementation of

complex change due to human intervention. These difficulties were already anticipated

at the outset of this research, which lead to the inclusion of the process and tool in the

BROOD approach.

Page 180

Chapter 7 Conclusions and Further Work

Objective 5: To develop a software tool prototype that facilitates the key activities of the

proposed software process.

At the outset of this research, it was anticipated that the proposed BROOD process is

more complex than the software process in the traditional object-oriented software

development approaches since it includes additional activities for dealing with business

rules. These activities include the construction of business rule statements, the linking

of business rules to software design, and the propagation of business rule changes to

their related design components. These activities was found tedious, error-prone, and

time consuming to be performed manually. Therefore, there is a need for an automated

software tool.

Chapter 6 explained the design and implementation of the prototype version of such

tool, which is developed using the configurable GME modelling environment. The tool

prototype may be used to easily compose a business rule statement using the rule

phrases as its building blocks. It also simplifies the linking of rule phrases and business

rules to the related design components. As the business rule is changed, the linking

information is used by the tool prototype to automatically propagate the changes to the

respective software design components.

7.2 Discussion of the Research Results

The BROOD approach is a well-engineered research result that is produced by a

systematic software engineering research method. In general the BROOD approach

consists of two main components: product and process. The former is a metamodel that

defines the typology and structure (or templates) of business rules, which are useful in

the capturing and specifying of business rules as well as the linking of business rules to

software design. The latter is the descriptions of phases, flow of activities, process roles

and work products that guide the way to use the BROOD approach in the development

and evolution of a business software system. It also includes the supported tool that

facilitates business users and software engineers to perform the difficult activities in the

BROOD process. In this section, the BROOD approach will be systematically evaluated

using the established comparative evaluation framework, which was used to evaluate

the related work in Chapter 2. The observations or lessons learnt from the application on

Page 181

Chapter 7 Conclusions and Further Work

the case study and the implementation of the case tool provide useful inputs to the

evaluation. The availability of the BROOD metamodel and detailed process description

supports a more objective evaluation of the BROOD approach. The following

discussions are arranged according to the framework components: concepts, modelling

language, process, and pragmatics.

♦ Modelling Concepts

The modelling concepts component of the evaluation framework focuses on three

criteria namely business rule definition, typology, and management elements. As

described in section 2.3, BROOD adopts the business rule definition proposed by

BRG since it covers both business and software perspectives. Moreover, the

BRG’s definition covers a wide range of business rule types which are often

implemented in software system.

With regal'd to business rule typology, BROOD introduces three main business

rule types: constraints, action assertion, and derivations. These types are further

divided into an adequate number of sub-types and templates as described in

Chapter 3. In contrast to BRG, BROCOM, and BRS approaches, BROOD

attempts to removes the redundancy by reducing the unnecessary business rule

types. At the same time, it improves the incompleteness of business rule types in

AOM, Coordination Contract, and BRBeans approaches.

In terms of business rule management elements, BROOD provides ruleset to

organize the groups and hierarchy of the closely related business rules. Apart

from that, it also has business process and rule owner elements that assist the

traceability of business rules to business domain.

♦ Modelling Language

Unlike other engineering products, software system is an intangible product. The

understanding of a software system largely relies on its models, either graphical or

textual. Therefore, modelling language is an important component in software

development since it determines the quality of the produced software models.

Page 182

Chapter 7 Conclusions and Further Work

Among the quality criteria of a modelling language are formality,

understandability, expressiveness, unambiguity, and evolvability. As mentioned

earlier, the availability of the BROOD metamodel and its EBNF definition

provide more objective evaluation of the BROOD modelling language. They are

respectively presented in Chapter 3 and Appendix B.

The EBNF definition and rule templates correspondingly improve the formality

and understandability of the BROOD modelling language. The former provides a

formal description of the valid business rule statements, software design models,

and linking elements. It is important in providing formality for the development of

an automated tool as well as the implementation of business rules in a software

system. The latter offers a greater understandability for business users since they

are written using rule phrases that use a natural language.

Compared to other related approaches, BROOD has a relatively high level of

expressiveness with the availability of an appropriate number of constructs to

represent business rules. The keywords in the language definition and enough

number of sentence templates may provide a complete representation of the

BROOD modelling concepts. However, the total expressiveness of a modelling

language to represent business rules is relatively hard to achieve due to the

tremendous ways of expressing business rules in a natural language. The extended

period of applying BROOD in different areas of businesses may provide

feedbacks to improve the expressiveness of the BROOD modelling language.

BROOD is found to have a high level of unambiguity by the introduction of the

appropriate typology and templates. BROOD provides a mutually exclusive set of

business rule types and removes the superfluous templates in order to avoid the

conflict and redundancy in representing the meaning of business rules, which

consequently improve the unambiguity of the BROOD modelling language.

Regarding evolvability, BROOD provides rule phrases as the linking elements

that establish business rule traceability in software design, which eventually

facilitates the evolution of a software system according to business rule changes.

The structure of a business rule statement also simplifies business rule changes

Page 183

Chapter 7 Conclusions and Further Work

since users only need to redefine or change the rule phrases in order to change

business rules. In addition, BROOD facilitates the automated propagation of

certain business rule changes to software design, which may reduce the evolution

efforts.

♦ Process

Apart from modelling language, process is also an important component in

ensuring the practicability of the proposed approach. It includes various

components such as activities, process roles, and work products that describe the

way of applying the modelling concepts and language. Among the evaluation

criteria with regal'd to the process component are lifecycle coverage, process

description, coherence, and support for evolution.

With regai'd to lifecycle coverage, BROOD focuses on three important phases in a

software lifecycle i.e. analysis, design, and evolution. These phases consist of the

necessary activities in the development and evolution for achieving a more

resilient software system. Although the implementation phase is important for a

complete lifecycle, it is beyond the scope of this research. BROOD advocates

model-driven or architecture-based evolution and assumes the availability of

technologies that transform a software design to its implementation components.

Concerning process description, BROOD provides a detailed process description

using SPEM as presented in Chapter 4. The description includes common process

components such as phases, a flow of activities, process roles, and work products.

It is supported by a structured process specification that is included in Appendix

C. SPEM metamodel was used in the modelling of the BROOD process to provide

an understandable and unambiguous process models.

Relating to coherence criterion, the BROOD process is found to have a high level

of coherence since it establishes a clear flow from one activity to another activity

in each phase. Moreover, it provides a logical connection between phases using

the deliverables (or work products) that are produced by one phase and consumed

by another phase.

Page 184

Chapter 7 Conclusions and Further Work

Regarding support for evolution, BROOD is found superior than other related

approaches since it explicitly considers evolution support in its software process.

For example, a number of development activities were introduced to establish

business rules traceability in software design. During evolution, the BROOD

process describes a detailed flow of activities that is purposely introduced to

handle simple and complex changes.

♦ Pragmatics Aspect

The pragmatics aspect is concerned with the criteria that influence the acceptance

of the proposed approach such as communicability, usability, resources ability,

and openness. BROOD possess high communicability by introducing sentence

templates to represent business rules and adopting UML to represent software

design. The business rule templates simplify the communication by using a

natural language, which is understandable by business users. Moreover, the

templates are structured enough to be implemented in a software system by

software engineers. The use of UML improves the communication among

developers since it is well-known and widely-accepted modelling language.

The use of business rule templates and UML also improves the usability of the

BROOD approach. The templates allow users to create a business rule statement

by simply composing the existing rule phrases whilst UML provides real world

abstractions for users to naturally design a software system. Moreover, the

detailed process description is provided to guide users especially in performing

complex tasks such linking business rules to software design and handling

different types of changes.

Regarding resources availability, BROOD provides a medium level of resources

since it is a new research result. Some research results that were already converted

into commercial products, such as BRS and BRBeans, provide a high number of

resources that support their approaches. However, the availability of the case

study examples, the tool prototype, and the detailed description of its software

process locate BROOD at the same level with other related approaches.

Page 185

Chapter 7 Conclusions and Further Work

In terms of openness, BROOD follows the benefits and limitations of UML since

it uses UML in representing the software design. The implementation of the

BROOD software design is not restricted to any programming language.

7,3 Summary of the Main Contributions

BROOD is proposed by this research as a novel approach to software evolution. It

improves the traditional software evolution approaches by considering business rules as

the sources of changes in addition to addressing the software technology. It closes the

gap between the business rule conceptual modelling and the architecture of a software

system by providing links between business rule specification and the related design

components. The application of BROOD in MediNET strengthens the business domain

aspect whilst the implementation of the BROOD tool prototype improves the technical

aspect of the BROOD approach. The individual contributions of this research to various

areas in the development and evolution of a software system for a rapidly changing

business environment will be discussed in the remaining of this section, highlighting the

benefits of the conducted research in the context of the related work,

♦ Business rules specification

One of the main BROOD objectives is to explicitly consider business rules in

software evolution. It leads to the development of a metamodel that defines the

new structures of business rule specification, which in turn improve the way of

representing business rules with regard to software evolution.

In the area of business rule representation, there are two common issues addressed

by the state-of-the-art approaches i.e. the business rule typology and the structure

of a business rule statement. In terms of the business rule typology, most

prominent approaches [Hay and Healy, 2000; Ross, 2003] attempt to provide a set

of complete and mutual exclusive rule types. However, their typology was found

redundant and conflicting due to unnecessary and overlapping business rule types.

Moreover, they mainly focus on business rule conceptual modelling, which is

slightly different from the focus of this research that attempt to link business rules

to software design.

Page 186

Chapter 7 Conclusions and Further Work

With regard to business rule structure, the existing approaches strive to provide an

understandable and precise representation of business rules as discussed in section

2.3.1. They represent business rule structure in different ways such as sentence

templates [von Halle, 2002; Ross, 2003; Skersys and Gudas, 2004] , mathematical

logic [McBrien et al., 1991; Grosof et ah, 1999; Antoniou and Arief, 2002], and

graphical representation [Halpin, 1996; Lang and Obermair, 1997; Bemdtsson and

Calestam, 2003].

BROOD extends the state-of-the-art approaches to business rule representation by

reducing redundancy and avoiding conflict among business rule types in its

typology. The typology was also improved by considering the rule types in the

software perspectives, such as their mapping to the structure of a software design,

in addition to the existing consideration in the business perspectives.

In terms of the detailed structure of each business rule types, BROOD advocates

the use of templates. Similar to the existing approaches, BROOD provides

templates that are understandable by business users. However, it enhances the

structure of the templates to make them suitable for linking existing approaches to

software design in support of future software evolution.

Other than the above contributions, the BROOD metamodel also improves the

poor business rule specification in the evolvable software system approaches

discussed in section 2.5.2.2. The typology and templates of the BROOD business

rule specification guide the capture and representation of business rules. BROOD

also contributes to a convenient way to manage user requirements since business

rules are also part of requirements. The business rule part of the EBNF definition

(see Appendix B) offers a specification for the implementation of business rules

either as an independent repository or a linked specification to software design.

♦ Object-oriented design specification

BROOD provides a new way to align object-oriented software design with user

requirements via linking business rules to software design and transforming

Page 187

Chapter 7 Conclusions and Further Work

business rule information into the detailed specification of the related software

design components.

As discussed in Chapter 2, object-oriented paradigm is popular in business rule

approaches to software evolution due to many benefits such as system

understandability, system maintainability, component reusability, and faster

development. Some research efforts introduce new object-oriented architectures

that consider business rule component in improving software evolvability

[Andrade et al,, 2002; Yoder and Johnson, 2002], Other efforts advocate the

linking of business rule specification to other modelling components. For

example, OCL is used to document a business rule specification, which is linked

to the related component of the UML models [Eriksson and Penker, 2000],

Another example related to UML is the extension of use case modelling with the

event script that document the business rule specification [Poo, 1999].

The BROOD contribution to object-oriented design lays at the alignment of

object-oriented design specification with the frequently changing user

requirements i.e. business rules. In this effort, it does not introduce a totally new

object-oriented architecture but provide business rules traceability in the existing

architecture. With regard to UML, it does not make a major extension to the

standard UML methodology. Instead, it strives to use the standard UML to ensure

its acceptance since UML is a proven and widely-accepted software development

methodology. In addition to the business rule traceability, BROOD also provide a

way to transform the information from business rule specification into the detailed

specification in design components. Since business rules are part of user

requirements, BROOD allows the alignment of user requirements with software

system via software design.

♦ Software evolution process

With regal'd to software evolution, BROOD improves the current software

evolution approaches by providing a business rule-driven and user-oriented

software development process.

Page 188

Chapter 7 Conclusions and Further Work

The traditional software evolution approaches focus on the software technology

aspects in performing the evolution activities. For example, some leading software

evolution approaches such as DRASTIC [Evans and Dickman, 1999], EVOLVE

[Liu, 1998], and MORALE [Abowd et al., 1997] emphasize the manipulation of

suitable software components in their proposed evolution process. Other

approaches [Mens, 2000; Antoniol et al., 2001; Ohlsson et al., 2001] suggest that

the software evolution process should concentrate on the management of software

artefact. In a purely software technology perspective, they are excellent in

simplifying the evolution process. FEowever, they neglect the fact that the business

environment, as proposed by the holistic views on software evolution [Perry,

1994; Bennett and Rajlich, 2000], is an important component that greatly

influence the software evolution process. In particular, a holistic approach should

seriously consider the frequently changing aspect of business environment in

developing the technological solution to software evolution. As identified by

Chapin et al., business rules are the most frequently changing components in

business environment and their changes bring the highest impact on both software

and business components [Chapin et al., 2001].

BROOD expands state-of-the-art in the area of software evolution by considering

business rules in the evolution process. The linking of explicit business rule

specification to the related design components enables rapid evolution of a

software system, which is driven by business rule changes. Section 6.4.4 provides

an example of the possible automation in propagating the simple business rule

changes to software design. BROOD promotes the role of business users in the

software evolution process since the common changes may be performed by

business users through simply changing the rule phrases. Additionally, BROOD

allows the pre-implementation evolution by addressing the evolution problem at

software design level.

♦ Software development and evolution tool

BROOD extends the state-of-the-art software developments tools with the

capability to maintain business rules, provide business rules traceability and

Page 189

Chapter 7 Conclusions and Further Work

automate business rule changes to software design. The BROOD metamodel can

also be used by business rule management tools in linking their business rule

specification to software design.

Most of the existing software evolution tools such as Aspect Browser [Griswold et

al., 2001] and Coordination-Contract [Gouveia et al., 2001] were developed to

support their proposed approach. Similar to the drawback of their supporting

approaches, they only focus on software components. There are recent trends in

the commercial software development tools such as Rational Rose and Power

Designer [Sybase, 2003] to include business rules in their software design model.

However, these tools only allow users to define business rule specification and

attach to design component as comments, tags, or constraints. The introduction of

business rules brings no effect to software design except the addition of the

separate specifications. Another group of related tools are business rule

management tools such as ILOG and Blaze Adviser. These tools are very

excellent in business rule management but they lack in detailed links to software

design.

BROOD provides a metamodel that contributes a theoretical and practical

foundation to improve the above three software tool categories. It improves the

existing software evolution tools by automatically performing software changes

based on business rule changes. It also enhances the commercial software

development tools with the ‘design for change’ approach by providing the way to

link business rules to software design. The business rule specification is not only

attached to software design component, but its information is also used to add the

detailed specification to the related design components. In connection with

business rule management tools, BROOD utilizes their excellent business rule

specification and improves them by linking the specification to software design

for the purpose of future software evolution.

7,4 Issues for Further Research Work

This research work represents an important step towards the development of an

approach for supporting the practice of a business rule-driven software evolution.

Page 190

Chapter 7 Conclusions and Further Work

However, a number of further research works are required to support the full potential

of this approach as well as to overcome its current limitations.

♦ The elaboration dimension of software evolution

Another important issue in software evolution approach is the ability to

understand and explain the product or process related to software evolution. The

discussion in section 2.2.4 suggested that an ideal approach to software evolution

should consider product, process, and elaboration dimensions. This research

successfully deals with the product and process dimensions. However, it

puiposely ignores the elaboration dimension due to time constraint. Therefore, the

elaboration techniques for BROOD are the potential areas of further research. As

mentioned in section 2.2.3, the common examples of elaboration efforts include

metrics [Yang et al., 1997; Li et al., 2000a] and change impact analysis [Deruelle

et al., 1999; Zhao et al., 2002; Tahvildari and Kontogiannis, 2004].

The proposed elaboration techniques should be able to derive metrics such as

performance, complexity, coupling, and cohesion of both business rule and

software design components based on the input rule change parameters. The

techniques should also enable software engineers to anticipate the effect of

business rule changes to software design. By extending to the scope of business

rule changes, this research effort may improve the current approaches that

perform change impact analysis in the scopes of program structure and data

changes. Moreover, the information in BROOD metamodel and the availability of

the BROOD tool prototype may be considered as the ground work for this further

research.

♦ The business rule templates

The BROOD metamodel defines the rule phrase types that form the business rule

statements whilst business rule templates define the organization of these

elements that form the valid business rule statements. The number of templates

should be adequate in representing all possible forms of business rule statements.

At the same time, it should not be redundant in order to avoid conflicts between

Page 191

Chapter 7 Conclusions and Further Work

two business rule statements. The appropriate number of the business rule

templates may only be achieved via the application of BROOD to a larger number

of case studies, which may be considered as a necessary further work to

strengthen the BROOD approach.

♦ Round-trip engineering

Round-trip engineering is the ability to change the software implementation based

on its model and vice versa. Although BROOD extends round-trip engineering by

providing the traceability between part of user requirements and software design

(or model), it may become more useful if it has the complete round-trip

engineering features. Therefore, the further work should provide traceability

between software design and source codes. The design specification, which is

propagated from business rule changes, should be able to be transformed into

software codes and vice versa. In addition, the effect of source code and software

design changes on business rule specification should also be studied.

♦ The BROOD tool

The existing BROOD tool is only a prototype version that does not implement the

full functionalities of the BROOD approach. It was used to demonstrate the

applicability of automating the important aspects of BROOD. Therefore, there are

many opportunities to improve the current BROOD tool such as to provide the

traceability among different business rules and to handle the effects of deleting

certain business rule statements or rule phrases.

Another important aspect of BROOD tool that requires more research efforts is to

provide a highly flexible and configurable tool in dealing with a growing number

of templates. Users may be allowed to introduce a new templates based on the

existing rule phrases defined by the BROOD metamodel. The possible solution is

to provide the meta-templates that allow users to define a new template whilst

maintaining the business rule traceability for future evolution.

Page 192

Chapter 7 Conclusions and Further Work

7.5 Concluding Remarks

This research was motivated by the observation that software evolution is inevitable and

a key research challenge in software engineering. The important sources of changes, i.e.

business rules, were explicitly considered in the proposed BROOD approach to advance

the traditional software evolution approaches that focus primarily on improving

software technology. The introduced business rule specification, which is defined by the

BROOD metamodel, is understandable by business users and well structured enough to

be linked to software design. The metamodel also defines the rule phrases that act as the

linking elements between business rules and software design. The BROOD process

describes the detailed activities of the development and evolution of a business rule-

driven software development and evolution.

BROOD improves the state-of-the-art software engineering approaches in both product

and process perspectives. Regarding product perspectives, it improves the evolvability

of a software system by providing business rules traceability in software design. The

introduced business rule specification can be used to explicitly specify the volatile part

of user requirements in the user’s language. It consequently allows the alignment of the

development and evolution of a software design specification with user requirements.

Concerning process perspectives, it increases business users’ involvement in the

development and evolution of a software system, which in turn ensure the fitness for

purpose of the developed and evolved software system. The automation of the important

tasks in the BROOD process significantly reduces the evolution efforts.

With regard to knowledge transfer activities, the results of this research were published

in two international conference proceedings [Wan Kadir and Loucopoulos, 2003; Wan

Kadir and Loucopoulos, 2004a] and a well-known journal on software architecture

[Wan Kadir and Loucopoulos, 2004b].

Page 193

References

References

Abowd, G., Goel, A., Jerding, D. F., et al. (1997) MORALE—Mission Oriented Architectural
Legacy Evolution, in Proceedings o f the In te rna tiona l Conference on Software
M ain tenance '97 , Bari, Italy, September 29 - October 3.

Alves-Foss, J., Conte de Leon, D. and Oman, P. (2002) Experiments in the Use of XML to
Enhance Traceability Between Object-Oriented Design Specifications and Source Code,
in Proceedings o f the 35th A nnua l H a w a ii In te rna tiona l Conference on System
Sciences, IEEE Computer Society, pp. 3959 - 3966.

Anderson, E., Bradley, M. and Brinko, R. (1997) Use Case and Business Rules: Styles of
Documenting Business Rules in Use Cases, in Proceedings o f the Conference on Object
O riented P rogram m ing Systems Languages and A pp lica tions, Atlanta, Georgia, United
States, October 6, pp. 85 - 87.

Andrade, L. and Fiadeiro, J. (2000) Evolution by Contract, in Proceedings o f the A C M
Conference on O bject-O riented P rogram m ing, Systems, Languages, and A pp lica tions
2000, W orkshop on Best-practice in Business Rules D esign and Im plem entation,
Minneapolis, Minnesota USA, October 15-19.

Andrade, L. and Fiadeiro, J. (2001) Coordination Technologies for Managing Information
System Evolution, in Proceedings o f the 13th Conference on Advanced In fo rm ation
Systems E ng ineering , Interlaken, Switzerland, 4-8 June, LNCS 2068, Springer-Verlag,
pp. 374-387.

Andrade, L., Fiadeiro, J., Gouveia, J., et al. (2002) Separating Computation, Coordination
and Configuration, Jou rna l o f Software Maintenance and E vo lu tion : Research and
P ractice 14(5), pp. 353-359.

Antoniol, G., Canfora, G., Casazza, G., et al. (2001) Maintaining Traceability Links During
Object-oriented Software Evolution, Software : P ractice and Experience 31(4), pp. 331-
335.

Antoniou, G. and Arief, M. (2002) Executable Declarative Business Rules and Their Use in
Electronic Commerce, in Proceedings o f the A C M Symposium on A p p lie d Computing,
Madrid, Spain, pp. 6-10.

Appleton, D. S. (1984) Business Rules: The Missing Link, D atam ation 30(16), pp. 145-150.

Arsanjani, A. (2000) Rule Object: A Pattern Language for Adaptable and Scalable Business
Rule Construction, in Proceedings o f the 7th. Pattern Languages o f Program s
Conference, Monticello, Illinois, USA, August 13-16,

Astley, M. and Agha, G. A. (1998) Modular Construction and Composition of Distributed
Software Architectures, in Proceedings o f the In t. Symposium on Software Engineering,
f o r P a ra lle l and D is tribu ted Systems, Kyoto, Japan, 20-21 April, IEEE Computer
Society.

Bajec, M. and Krisper, M. (2001) Managing Business Rules in Enterprises, E lek tro tehn ijsk i
vestnik 68(4), p. 236-241.

Page 194

References

Basili, Y. R. (1992) The Experimental Paradigm in Software Engineering, in Proceedings o f the
In te rna tiona l Workshop on Experim ental Software E ng ineering Issues: C rit ica l
Assessment and Future D irec tions , Dagstuhl Castle, Germany, 1 4 - 1 8 September,
Springer-Verlag, pp, 3 -12.

Bennett, K. (1996) Software Evolution: Past, Present and Future, In fo rm a tio n and Software
Technology 38(11), November, pp. 673-680.

Bennett, K. H, and Rajlich, V, T. (2000) Software Maintenance and Evolution : A Roadmap,
in Proceedings o f the Conference on the Future o f Software E ng ineering , Limerick,
Ireland, 4-11 June, ACM Press, pp. 73-87.

Berndtsson, M. and Calestam, B. (2003) Graphical Notations for Active Rules in UML and
UML-A, A C M S IG SO FT Software Engineering Notes 28(2), March.

Brinkkemper, S. (1996) Method Engineering: Engineering of Information Systems
Development Methods and Tools, In fo rm a tion and Software Technology 38(4), April,
pp. 275-280.

Bubenko, J. A. and Wangler, B. (1993) Objectives Driven Capture of Business Rules and
Information Systems Requirements, in Proceedings o f the IE E E Conference on Systems,
M an and Cybernetics, Le Touquet France, 17-20 October, pp. 670 - 677.

Burd, E. and Munro, M. (1999) An Initial Approach Towards Measuring and Characterising
Software Evolution, in Proceedings o f the 6th W orking Conference on Reverse
Engineering, Los Alamitos, CA, USA, IEEE Computer Society, pp, 168-74.

Chapin, N., Hale, J. E., Khan, K. M,, et al. (2001) Types of software evolution and software
maintenance, Jou rna l o f Software Maintenance and E vo lu tion : Research and P ractice
13(1), pp. 3-30.

Cibran, M. A., D'Hondt, M., Suvee, D., et al. (2003) JAsCo for Linking Business Rules to
Object-Oriented Software, in Proceedings o f the In te rn a tio n a l Conference on Com puter
Science, Software Engineering, In fo rm a tion Technology, e-Business and A pp lica tions,
Rio De Janeiro, Brazil, 5-7 June, pp. 1-7.

Dam, K. H. and Winikoff, M. (2003) Comparing Agent-Oriented Methodologies, in
Proceedings o f the F ifth In te rna tiona l B i-Conference W orkshop on A gent-O riented
In fo rm a tion Systems (a tA A M A S '03), Melbourne, 14 July.

Demuth, B. and Hussmann, H, (1999) Using UML/OCL Constraints for Relational Database
Design, in Proceedings o f the 2nd In te rna tiona l Conference on The U n ified M ode ling
Language, pp. 598-613.

Deruelle, L,, Bouneffa, M., Goncalves, G., et a l (1999) Local and Federated Database
Schemas Evolution - an Impact Propagation Model, in Proceedings o f the 10th
In te rna tiona l Conference in Database and Expert Systems A pp lica tions D EXA '99
(LNCS Vol. 1677). 1999, pp.902-11., Berlin, Germany, Springer-Verlag, pp. 902-911.

Diaz, O., Iturrioz, J. and Piattini, M. G. (1998) Promoting Business Policies in Object-
Oriented Methods, Jou rna l o f Systems and Software 41(2), May 1998, pp. 105-115.

Page 195

References

Eriksson, II.-E. and Penker, M. (2000) Business M ode ling w ith U M L : Business Patterns at
Work. New York, USA, John Wiley & Sons, Inc.

Erlikh, L. (2000) Leveraging Legacy System Dollars for e-Business, IE E E IT Professional
2(3), May-June, pp. 17-23 .

Evans, H. and Dickman, P, (1997) DRASTIC: A Run-Time Architecture for Evolving,
Distributed, Persistent Systems, in Proceedings o f the 11th E w opean Conference on
O bject-O rien ted P rogram m ing, Lisbon, Portugal, June 14-18, Springer-Verlag, pp. 244-
75.

Evans, H. and Dickman, P. (1999) Zones, Contracts and Absorbing Change: An Approach to
Software Evolution, in Proceedings o f the Conference on O bject-O riented
Program m ing, Systems, Languages and A pp lica tions (OOPSLA '99), Denver, Colorado,
USA, October, 34, ACM, pp. 415-434.

Fanta, R. and Rajlich, V. (1999) Restructuring Legacy C code into C++, in Proceedings o f the
In te rn a tio n a l Conference on Software M aintenance, IEEE Computer Society, pp. 77-
89.

Finkelstein, A. and Kramer, J. (2000) Software Engineering : A Roadmap, in Proceedings o f
the Conference on the Future o f Software Engineering, Limerick, Ireland, 4-11 June,
ACM Press, pp. 3-22.

Floyd, C. (1986) A Comparative Evaluation of System Development Methods, in Proceedings
o f the IF IP WG 8.1 W orking Conference on In fo rm a tion Systems Design
M ethodolog ies: im proving the p ractice , Noordwijkerhout, Netherlands, North-Holland
Publishing Co., pp. 19 - 54.

Fu, G,, Shao, J., Embury, S. M., et a l (2001) A Framework for Business Rule Presentation, in
Proceedings o f the 12th In te rna tiona l Workshop on Database and E xpert Systems
A pp lica tions, Munich, Germany, pp. 922-926.

Gamma, E., Helm, R., Johnson, R., et a l (1995) D esign P atterns: Elements o f Reusable
O bject-O rien ted Software, Addison-Wesley.

Garlan, D. (2000) Software Architecture : A Roadmap, in Proceedings o f the Conference on
the Future o f Software Eng ineering , Limerick, Ireland, 4-11 June, ACM Press, pp. 91-
101.

Gottersdiener, E. (1997) Business Rules Show Power, Promise, A p p lica tio n Development
Trends, March, 1997.

Gouveia, J., Koutsoukos, G., Andrade, L., et a l (2001) Tool Support for Coordination-Based
Software Evolution, in Proceedings o f the TOOLS E urope, IEEE Computer Society
Press, pp. 184-196.

Griswold, W. G., Yuan, J, J. and Kato, Y. (2001) Exploiting the Map Metaphor in a Tool for
Software Evolution, in Proceedings o f the 23 rd In te rn a tio n a l Conference on Software
Engineering, Los Alamitos, USA, May, IEEE Computer Society, pp. 265-274.

Page 196

References

Grosof, B. N., Labrou, Y. and Chan, H. Y. (1999) A Declarative Approach to Business Rules
in Contracts: Courteous Logic Programs in XML, in Proceedings o f the 1st A C M
Conference on E lec tron ic Commerce, Denver, Colorado, United States, pp. 68 - 77.

Groznik, A. and Kovacic, A. (2002) Business Renovation: From Business Process Modelling
to Information System Modelling, in Proceedings o f the 24th In te rna tiona l Conference
on In fo rm a tion Technology Interfaces, 1, pp. 405-409.

Grubb, P. and Takang, A. A. (2003) Software M aintenance: Concepts and P rac tice .
Singapore, World Scientific Publishing.

Haggerty, N., Wall, J. and Etten, v. (2001) Defining the Requirements for a Business Rule
Repository, The D ata A dm in is tra tion Newsletter, April.

Halpin, T. (1996) Business Rules and Object Role Modeling, D atabase P rogram m ing &
Design 9(10), October, pp. 66-72.

Halpin, T. (2001) Augmenting UML with Fact-orientation, in Proceedings o f the 34th A nnual
H a w a ii In te rna tiona l Conference on System Sciences (H ICSS-34), Maui, Hawaii, 03 -
06 January, 3.

Hars, A. and Marchewka, J. T. (1996) Eliciting and Mapping Business Rules to IS Design:
Introducing a Natural Language CASE Tool, in Proceedings o f the D ecis ion Sciences
Institu te , Orlando, Florida, 24-26 November, 2, pp. 533-535.

Hay, D. and Healy, K. A. (2000) Defining Business Rules ~ What Are They Really?,
Technical Report Rev 1.3, the Business Rules Group.

Herbst, H. (1996) Business Rules in Systems Analysis: A Meta-model and Repository System,
In fo rm a tion Systems 21(2), April 1996, pp. 147-166.

Herbst, H, (1997) Business R ule-O riented Conceptual M ode ling . Germany, Physica-Verlag.

Herbst, H., Knolmayer, G., Myrach, Tv et al. (1994) The Specification of Business Rules: A
Comparison of Selected Methodologies, in Proceedings o f the IF IP W orking G roup 8.1
Conference CRIS 94, University of Limburg, Maastricht, Elsevier, pp. 29-46.

Ho, I., Komiya, Z., Pham, B., et al. (2003) An Efficient Framework for Business Software
Development, in Proceedings o f the In te rna tiona l Conference on C yberworlds, 3-5
Dec., pp. 336 - 343.

Hong, S., van den Goor, G. and Brinkkemper, S. (1993) A Formal Approach to the
Comparison of Object-Oriented Analysis and Design Methodologies, in Proceedings o f
the 26th H a w a ii In te rna tiona l Conference on System Sciences, 5-8 Jan., 4, IEEE
Publication, pp. 689 - 698.

Hruby, P. (1998) Mapping Business Processes to Software Design Artifacts, in Proceedings o f
the European Conference on O bject-O riented Technology (EC O O P '98), Berlin,
Germany, Springer-Verlag, pp. 234-6.

Hurlbut, R. R. (1998) M anaging D om ain A rch itec tu re E vo lu tion Through Adaptive Use Case
and Business Rule M odels, PhD Thesis, Illinois Institute of Technology.

Page 197

References

Hiirsch, W. L. and Seiter, L. M, (1996) Automating the Evolution of Object-Oriented
Systems, in Proceedings o f the Second JSSST In te rna tiona l Sysmposium on Object
Technologies f o r Advanced Software, Berlin, Germany, Springer-Verlag, pp. 2-21.

I.B.M. (2003) IB M WebSphere A pp lica tion Server E nterprise, ver 5.0.2, International Business
Machine Corporation.

IBM (2003) IB M WebSphere A pp lica tion Server Enterprise, ver 5.0.2, International Business
Machine Corporation.

Itou, K. and Katayama, T. (2000) Evolutionary Development of Object Behaviors, in
Proceedings o f the In te rna tiona l Symposium on P rinc ip les o f Software Evolu tion,
Kanazawa, Japan, 1-2 November, IEEE Comput. Soc., pp. 68-77.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The U n ified Software Development
Process. Massachusetts, Addison Wesley Longman.

Jarzabek, S. and Hitz, M. (1998) Business-oriented and Component-based Software
Development and Evolution, in Proceedings o f the In te rn a tio n a l W orkshop on Large-
Scale Software Com position, Vienna, Austria, August 28.

Kang, S., Jang, M. and Sohn, J, (2004) Design of Rule Object Model for Business Rule
Systems, in Proceedings o f the 6th In te rna tiona l Conference on Advanced
C om m unication Technology, 2, pp. 818-822.

Kardasis, P. (2001) Business Rule M o d e llin g , PhD Thesis, Dept, of Computation, UMIST.

Kardasis, P. and Loucopoulos, P. (2003) Managing Business Rules During the Requirements
Engineering Process in Rule-Intensive IT Projects, in Proceedings o f the 6th
In te rna tiona l Conference on Business In fo rm ation Systems (B IS 2003), Colorado
Springs, Colorado, USA, 4-6 June, pp. 239-247.

Kardasis, P. and Loucopoulos, P. (2004) Expressing and Organising Business Rules,
In fo rm a tion and Software Technology 46(11), pp. 701-779.

Khan, K. M., Kapurubandara, M. and Chadha, U. (2004) Incorporating Business
Requirements and Constraints in Database Conceptual Models, in Proceedings o f the
F irs t A s ian -P ac ific Conference on Conceptual M ode lling , Dunedin, New Zealand, 31,
Australian Computer Society, Inc., pp. 59 - 64.

Kon, F., Gill, B., Anand, M., et al. (2000) Secure Dynamic Reconfiguration of Scalable
CORBA Systems with Mobile Agents, in Proceedings o f the Second In te rna tiona l
Symposium on A gent Systems and A pp lica tions and F ou rth In te rna tiona l Symposium on
M ob ile Agents, ASA/M A 2000, Proceedings (LNCS Vol. 1882). Springer-Verlag, pp. 86-
98.

Kovacic, A. (2004) Business Renovation: Business Rules (Still) the Missing Link, Business
Process M anagem ent Jou rna l 10(2), pp. 158-170.

Kovari, P., Diaz, D. C., Fernandes, F. C. H., et al. (2003) WebSphere A pp lica tion Server
E nterprise V5 and P rogram m ing M ode l Extensions: WebSphere Handbook Series,
International Business Machines Corporation.

Page 198

References

Lam, W., Loomes, M. and Shankararaman, V. (1999) Managing Requirements Change
Using Metrics and Action Planning, in Proceedings o f the Proceedings o f the T h ird
European Conference on Software M aintenance and Reengineering, Los Alamitos, CA,
USA, IEEE Comput. Soc., pp. 122-128.

Lang, P. and Obermair, W. (1997) Modeling Business Rules with Situation/Activation
Diagrams, in Proceedings o f the 13th In te rna tiona l Conference on D a ta Eng ineering ,
Birmingham, UK, 7-11 April, IEEE, pp. 455-464,

Layzell, P, J, and Loucopoulos, P. (1988) A Rule-Based Approach to the Construction and
Evolution of Business Information Systems, in Proceedings o f the 4th IE E E
In te rna tiona l Conference on Software M aintenance , Phoenix, Arizona, USA, October,
pp. 258-264.

Ledeczi, A., Maroti, M., Bakay, A., et al. (2001a) The Generic Modeling Environment, in
Proceedings o f the Workshop on In te lligen t S ignal Processing, Budapest, Hungary, 17
May.

Ledeczi, A., Volgyesi, P. and Karsai, G. (2001b) Metamodel Composition in the Generic
Modeling Environment, in Proceedings o f the 15th European Conference on Object-
O riented P rogram m ing, University Eotvos Lorand, Budapest, Hungary, June 18-22.

Lehman, M. M. (1997) Laws of Software Evolution Revisited, in Proceedings o f the European
Workshop on Software Process Technology '96, October, LNCS 1149, Springer Verlag.

Lehman, M, M. and Belady, L. A. (1985) Program E vo lu tion : Processes o f Software Change.
London, Academic Press Inc.

Leite, J. C. S. and Leonardi, M. C. (1998) Business Rules as Organizational Policies, in
Proceedings o f the 9th In te rna tiona l Workshop on Software S pecifica tion and Design,
Ise-Shima, Japan, 16-18 April, pp. 68-76.

Leonardi, M. C. and Leite, J, C. S. (2002) Using Business Rules in Extreme Requirements, in
Proceedings o f the 14th In te rna tiona l Conference on Advanced In fo rm a tion Systems
Engineering, Toronto, Canada, 27-31 May, 2348, Springer-Verlag.

Li, W. (1999) On Managing Classes for Evolving Software, in Proceedings o f the Proceedings
o f the Seventh In te rna tiona l W orkshop on P rogram Comprehension, Los Alamitos, CA,
USA, IEEE Comput. Soc., pp. 144-150.

Li, W,, Etzkorn, L., Davis, C., et al. (2000a) An Empirical Study of Object-Oriented System
Evolution, In fo rm a tion and Software Technology 42(6), 15 April 2000, pp. 373-438.

Li, Y., Yang, H. and Chu, W. (2000b) Generating Linkage between Source Code and
Evolvable Domain Knowledge for the Ease of Software Evolution, in Proceedings o f
the Proceedings o f the In te rna tiona l Symposium on P rinc ip les o f Software Evolu tion,
Los Alamitos, CA, USA, IEEE Comput. Soc., pp. 196-205.

Lied, R. (1997) Domain Engineering Experiences in the 5ESS Switch, in Proceedings o f the
Proceedings o f the ISS'97 : W orld Telecom munications Congress. ' G loba l N etw ork
E vo lu tion : Convergence o r C o llis io n ? ' Toronto, Ont., Canada, 2, Pinnacle Group, pp.
533-538.

Page 199

References

Lientz, B. P. (1983) Issues in Software Maintenance, A C M Com puting Surveys 15(3),
September, pp. 271-278.

Liu, K. and Ong, T. (1999) A Modelling Approach for Handling Business Rules and
Exceptions, Com puter Jou rna l 42(3), pp. 221-231.

Liu, L. (1998) EVOLVE: Adaptive Specification Techniques for Object-oriented Software
Evolution, in Proceedings o f the 31st H a w a ii In te rn a tio n a l Conference on System
Sciences, 5, IEEE Computer Society, pp. 396-405.

Loucopoulos, P. and Layzell, P. J, (1989) Improving Information System Development and
Evolution Using a Rule-Based Paradigm, Software E ngineering Jou rna l 4(5), pp. 259-
267.

Loucopoulos, P., Theodoulidis, B. and Pantazis, D. (1991) Business Rules Modelling :
Conceptual modelling and Object-Oriented Specifications, in Proceedings o f the IF IP
WG8.1 W orking Conference on the O bject-O riented A pproach in In fo rm a tion Systems,
Quebec City, Canada.

Magee, J., Dulay, N. and Regis, J. (1994) Regis: A Constructive Development Environment
for Distributed Programs, D is tribu ted Software Engineering Jou rna l 1(5).

Masuhara, H., Sugita, Y. and Yonezawa, A. (2000) Dynamic Compilation of a Reflective
Language using Run-Time Specialization, in Proceedings o f the Proceedings o f the
In te rn a tio n a l Symposium on P rinc ip les o f Software E vo lu tion , Kanazawa, Japan, 1-2
November, IEEE Computer Society, pp. 128-137.

McBrien, P., Niezette, M., Pantazis, D., et al. (1991) A Rule Language to Capture and Model
Business Policy Specification, in Proceedings o f the CAiSE 91, Trondheim, Norway.

McCullough, D., Korelsky, T. and White, M. (1998) Information Management for Release-
based Software Evolution using EMMA, in Proceedings o f the Proceedings o f the 10th
In te rn a tio n a l Conference on Software Engineering and Knowledge Engineering (SEKE
'98), Knowledge System Institute, EL, USA.

Mehta, A. and Heineman, G. T. (2001) Evolving Legacy System Features using Regression
Test Cases and Components, Technical Report WPI-CS-TR-01-14, Computer Science
Department, Worcester Polytechnic Institute.

Mens, K., Wuyts, R., Bontridder, D., et at, (1998) Workshop Report - ECOOP'98 Workshop
7: Tools and environments for business rules, in Proceedings o f the ECO O P'98
Workshops, Demos, and Posters, Brussels, Belgium, 20-24 July, Springer, pp. 189-196.

Mens, T. (2000) Conditional Graph Rewriting as a Domain-Independent Formalism for
Software Evolution, in Proceedings o f the In te rna tiona l W orkshop on A pp lica tions o f
G raph Transform ations w ith In d u s tria l Relevance, LNCS Vol. 1779, Springer, pp. 127-
43.

Mens, T. and D'Hondt, T. (2000) Automating Support for Software Evolution in UML,
Autom ated Software Engineering 7(1), pp. 39-59.

Misra, A., Karsai, G. and Sztipanovits, J. (1997a) Model-integrated Development of
Complex Applications, in Proceedings o f the 5th In te rn a tio n a l Symposium on

Page 200

References

Assessment o f Software Tools and Technologies, IEEE Computer Society Press, pp. 14-
23.

Misra, A., Long, E. and Sztipanovits, J. (1997b) Evolutionary Design for Manufacturing
Execution Systems, in Proceedings o f the W orld M anu fac tu ring Congress, Auckland,
New Zealand, November.

Mohan, P., Yussuff, S., Crichlow, J., et at. (2000) A Rule Language for Specifying and
Reusing Object-Oriented Business Rules, in Proceedings o f the 1ASTED In te rna tiona l
Conference on Software E ng ineering and A pp lica tions , Las Vegas, NV, USA, 6-9
Nov., IASTED/ACTA Press, pp. 285-290.

Morgan, T. (2002) Business Rules and In fo rm a tion Systems : A lig n in g IT w ith Business Goals.
Boston, MA, Addison-Wesley.

Moriarty, T. (1993) The Next Paradigm, Database P rogram m ing and Design, February.

Ohlsson, M. C., Andrews, A. A. and Wohlin, C. (2001) Modelling Fault-proneness
Statistically over a Sequence of Releases: A Case Study, Jou rna l o f Software
M aintenance and E vo lu tion : Research and Practice 13(3).

OMG (2001) O M G U nified M ode ling Language Specification, ver 1.4, Object Management
Group.

OMG (2002) Software Process Engineering M etam odel Specification, ver 1.0, Object
Management Group.

Oreizy, P., Medvidovic, N. and Taylor, R, N, (1998) Architecture-Based Runtime Software
Evolution, in Proceedings o f the In te rna tiona l Conference on Software Engineering
1998 (ICSE '98), Kyoto, Japan, April 19-25, pp. 177-186.

Perkins, A, (2002) Business Rules = Meta Data, Business Rules Jou rna l 3(No. 1), Jan 2002.

Perrochon, L. and Mann, W. (1999) Inferred designs, IE E E Softw are ,

Perry, D. E. (1994) Dimensions of Software Evolution, in Proceedings o f the In te rna tiona l
Conference on Software M aintenance, Los Alamitos, CA, USA, IEEE Comput. Soc.
Press, pp. 296-303.

Perry, D. E. (1999) Software Evolution and 'Light' Semantics, in Proceedings o f the
In te rna tiona l Conference on Software Eng ineering , Los Angeles, CA, ACM,

Perry, D. E. and Wolf, A. L. (1992) Foundations for the Study of Software Architecture,
Software Engineering Notes 17(4), October 1992, pp. 40-52.

Petrounias, I, and Loucopoulos, P. (1994) A Rule-based Approach for the Design and
Implementation of Information Systems, in Proceedings o f the 4th In te rna tiona l
Conference on Extending Database Technology, Cambridge, UK, 28-31 March, pp.
159-172.

Poo, D. C. C. (1999) Events in Use Cases as a Basis for Identifying and Specifying Classes and
Business Rules, in Proceedings o f the 29th Conference on Technology o f Object-

Page 201

References

O riented Languages and Systems, Nancy, France, 7-10 June, IEEE Comp Soc, pp. 204-
213.

Ramsey, F. V. and Alpigini, J. J. (2002) A Simple Mathematically Based Framework for Rule
Extraction using Wide Spectrum Language, in Proceedings o f the Source Code Analysis
and M an ipu la tion , 2002. Proceedings. Second IE E E In te rn a tio n a l Workshop on, pp.
44-52.

Riehle, D., Tilman, M, and Johnson, R. (2000) Dynamic Object Model, Technical Report
WUCS-00-29, Dept, of Computer Science, Washington University.

Rosea, D, and D'Attilio, J. (2001) Business Rules Specification, Enforcement and Distribution
for Heterogeneous Environments, in Proceedings o f the 25th A nnua l In te rna tiona l
Conference on Com puter Software and A pp lica tions , pp. 3-9.

Rosea, D., Greenspan, S. and Wild, C. (2002) Enterprise Modeling and Decision-Support for
Automating the Business Rules Lifecycle, Autom ated Software Engineering 9(4), pp.
361 -404.

Rosea, D. and Wild, C. (2002) Towards a Flexible Deployment of Business Rules, E xpert
Systems w ith A pp lica tions 23(4), 2002/11/, pp. 385-94.

Ross, R. G. (2003) P rinc ip les o f the Business Rule Approach. Boston, USA, Addison-Wesley.

Ross, R. G. and Lam, G. S. W. (2001) RuleSpeak1M Sentence Templates: Developing Rule
Statements Using Sentence Patterns, Technical Report, Business Rule Solutions, LLC.

Ross, R. G. and Lam, G. S. W. (2003) The BRS Proteus™ M ethodology, Business Rule
Solutions.

Rouvellou, I., Degenaro, I., Rasmus, K., et a t (1999) Externalizing Business Rules from
Enterprise Applications: An Experience Report, in Proceedings o f the Conference on
O bject-O rien ted P rogram m ing, Systems, Languages, and A pp lica tions, Denver,
Colorado, November 1-5.

Rouvellou, I., Degenaro, L., Diament, J., et ah (2004) Business Users and Program
Variability: Bridging the Gap, in Proceedings o f the E igh th In te rn a tio n a l Conference
on Software Reuse, Madrid, Spain, 5-9 July.

Rouvellou, I., Degenaro, L,, Rasmus, K., et al. (2000) Extending Business Objects with
Business Rules, in Proceedings o f the 33 rd In te rna tiona l Conference on Technology o f
O bject-O rien ted Languages and Systems (TOOLS Europe 2000), Mont Saint-Michel/
St-Malo, France, June, IEEE Computer Society Press, pp. 238-249.

Saranauwarat, S. and Taniguchi, H. (2000) Operating Systems Support for the Evolution of
Software: An Evaluation Using WWW Server Software, in Proceedings o f the
Proceedings In te rna tiona l Symposium on P rinc ip les o f Software E vo lu tion , Kanazawa,
Japan, 1-2 November, IEEE Comput. Soc., pp. 292-301.

Schneider, J. (1999) Components, Scripts, and Glue : A Conceptual F ram ew ork f o r Software
C om position, PhD Thesis, Ins. of Computer Science and Applied Mathematics,
University of Bern.

Page 202

References

Senivongse, T. (1999) Enabling Flexible Cross-Version Interoperability for Distributed
Services, in Proceedings o f the In tl. Symp. on D is tribu ted Objects and A pp lica tions
(D O A ’99), Edinburgh, UK.

Shao, J. and Pound, C. J. (1999) Extracting business rules from information systems, B T
Technology Jou rna l 17(4), Oct 1999, pp. 179-186.

Shaw, M. and Garlan, D. (1996) Software A rch itec tu re : Perspective o f an emergence
d isc ip line . New Jersey, Prentice Hall Inc.

Shibayama, E., Toyoda, M., Shizuki, B., et al. (2000) Design Issues of Visual Languages for
Supporting Software Evolution, in Proceedings o f the Proceedings o f the In te rna tiona l
Symposium on P rinc ip les o f Software E vo lu tion , Kanazawa, Japan, 1-2 November,
IEEE Comput. Soc., pp. 241-248.

Siau, K. and Rossi, M. (1998) Evaluation of Information Modeling Methods: A Review, in
Proceedings o f the Proceedings o f the 31st H a w a ii In te rn a tio n a l Conference on System
Sciences, Kohala Coast, HI USA, 6-9 Jan., 5, pp. 314 - 322.

Skersys, T. and Gudas, S. (2004) Business Rules Integration in Information Systems
Engineering, in Proceedings o f the 13th In te rna tiona l Conference on In fo rm ation
Systems Developm ent: Advances in Theory, P ractice and E duca tion , Vilnius, Lithuania,
9-11 September, Kluwer Publishing, pp. 252-263.

Snoeck, M. (2002) Sequence Constraints in Business Modelling and Business Process
Modelling, in Proceedings o f the 4th In te rna tiona l Conference on Enterprise
In fo rm a tion Systems, Ciudad Real, Spain, 2-6 April, pp. 683-690.

Stiemerling, O,, Kahler, H. and Wulf, V, (1997) How to Make Software Softer - Designing
Tailorable Applications, in Proceedings o f the D IS (D esign ing In te ractive Systems) '97,
Amsterdam, August 17-20, ACM Press, pp. 365-376.

Sturm, A. and Shehory, O. (2003) A Framework for Evaluating Agent-Oriented
Methodologies, in Proceedings o f the F ifth In te rna tiona l B i-Conference Workshop on
A gent-O rien ted In fo rm a tion Systems (a t AAM AS '03), Melbourne, 14 July.

Svahnberg, M, and Bosch, J. (2000) Issues Concerning Variability in Software Product Lines,
in Proceedings o f the T h ird In te rna tiona l Workshop on Software A rch itectures f o r
P roduct Fam ilies, Springer Verlag.

Sybase (2003) PowerD esigner O O M User's Guide, ver 9.5.2, Sybase, Inc.

Tahvildari, L., Gregory, R. and Kontogiannis, K. (1999) An Approach for Measuring
Software Evolution Using Source Code Features, in Proceedings o f the IE E E A sia-
P ac ific Software Engineering (APSEC'99), Takamatsu, Japan, December, pp. 10-17.

Tahvildari, L. and Kontogiannis, K. (2004) Requirements Driven Software Evolution, in
Proceedings o f the P rogram Comprehension, 2004. Proceedings. 12th IE E E
In te rna tiona l Workshop on, pp. 258-259.

Truex, D. P., Baskerville, R. and Klein, H. (1999) Growing Systems In Emergent
Organisations, Comm. O f A C M 42(8), August 1999.

Page 203

References

Vives, F. and Dombiak, G. (2000) Implementing Business Rules in a Flexible Architecture, in
Proceedings o f the OOPSLA Workshop Best Practices in Business Rule Design and
Im p lem enta tion , Minnesota, USA, October 15-19.

von Halle, B. (2001a) Building A Business Rule System, D ata M anagem ent Review, January.

von Halle, B, (2001b) Powered by Rules, Business Rules Jou rna l 2(10), October,

von Halle, B, (2002) Business Rule A pp lied : B u ild ing Better Systems Using Business Rules
A pproach. New York, John Wiley & Sons, Inc.

VU (2003) G M E 3 User's M anual, ver 3.0, Institute for Software Integrated System, Vanderbilt
University.

Wan Kadir, W. M. N., Kumoi, R., Katmon, N., et al. (2000) A Web-based Healthcare
Information Systems, in Proceedings o f the Seminar on A ccoun ting and In fo rm ation
Technology, UUM, Sintok, Malaysia, 13-14 November.

Wan Kadir, W. M. N. and Loucopoulos, P. (2003) Relating Evolving Business Rules to
Software Design, in Proceedings o f the In te rna tiona l Conference on Software
E ngineering Research and P ractice (SERP), Las Vegas, Nevada, USA, 23-26 June, pp.
129-134.

Wan Kadir, W. Ml. N. and Loucopoulos, P. (2004a) Linking and Propagating Business Rule
Changes to IS Design, in Proceedings o f the In te rna tiona l Conference on In fo rm ation
System Development, Vilnius, Lithuania, 9-11 September.

Wan Kadir, W. M. N. and Loucopoulos, P. (2004b) Relating Evolving Business Rules to
Software Design, Journa l o f Systems A rch itecture 50(7), pp. 367-382.

Wang, X., Sun, J,, Yang, X., et al. (2004) Business Rules Extraction from Large Legacy
Systems, in Proceedings o f the 8th European Conference on Software M aintenance and
Reengineering, 24-26 March, pp. 249-258.

Yadav, S. B., Bravoco, R. R., Chatfield, A. T., et al, (1998) Comparison of Analysis
Techniques for Information Requirement Determination, Com m unications o f the A C M
31(9), August.

Yang, H., Luker, P. and Chu, W. C. (1997) Measuring Abstractness for Reverse Engineering
in a Re-Engineering Tool, in Proceedings o f the Proceedings In te rna tiona l Conference
on Software M aintenance, Los Alamitos, CA, USA, IEEE Comput. Soc., pp. 48-56.

Yoder, J., Balaguer, F. and Johnson, R. (2001a) The Architectural Style of Adaptive Object-
Models, in Proceedings o f the 15th European Conference on O bject-O riented
Program m ing, University Eotvos Lorand, Budapest, Hungary, June 18-22.

Yoder, J. W., Balaguer, F. and Johnson, R. (2001b) Adaptive Object Models for
Implementing Business Rules, in Proceedings o f the T h ird W orkshop on Best-Practices
f o r Business Rules Design and Im plem entation, Conference on O bject-O riented
Program m ing, Systems, Languages, and A pp lica tions (O OPSLA 2001), Tampa Bay,
Florida, USA, October 14-18.

Page 204

References

Yoder, J. W. and Johnson, R. (2002) The Adaptive Object Model Architectural Style, in
Proceedings o f the Proceeding o f The W orking IE E E /IF IP Conference on Software
A rch itec tu re 2002 (WICSA3 '02), Montreal, Canada, August 25-31.

Zhao, J., Yang, H., Xiang, L,, et al. (2002) Change Impact Analysis to Support Architectural
Evolution, Jou rna l o f Software M aintenance and E vo lu tion : Research and Practice
14(5).

Page 205

Appendix A MediNET - The Case Study

Appendix A

MediNET - The Case Study

This appendix provides a description of MediNET application. MediNET is used as a case study
to illustrate and experiment the concepts proposed by this thesis. It was chosen as a case study
because it is needed to be flexible for use by different businesses with various frequently
changing business rules. This appendix starts with the overview of MediNET. In the following
sections, the descriptions on MediNET business processes, entities, and rules are presented. In
simple terms, business process is defined as a set of activities to accomplish certain business
goals. Business entities represent the concrete persons or things, and the abstract concepts
relevant to MediNET. The entities contain information that is consumed, stored or produced by
MediNET. Business rules are statements that guide, determine, and constraint the way of
performing business tasks.

A.l MediNET Overview

MediNET is provided by an Application Service Provider (ASP) to serve the healthcare

community by offering a suite of Internet applications. The ASP is a solution provider who
rents information technology applications to users and charges them based on the number of
performed transactions. The benefits are many, including: access from anywhere there is an
Internet connection, less maintenance to worry about, easier and more frequent software
enhancements, and of course, lower costs. Users only need to pay as and when they use the
application.

MediNET addresses the administrative and back-end processing requirements of the healthcare
business community i.e. both the healthcare providers and their paymasters. It is an Internet-
based, role-specific suite of applications which is intended to act as a secondary layer to the
existing administrative and information systems. It allows various components of the healthcare
industry to exchange business data instantaneously and automate their routine administrative
tasks. Therefore, facilitated businesses are able to reduce their administrative burdens, become
more efficient and make better informed business decisions.

In general, MediNET users can be divided into three categories: paymasters, healthcare
providers (HCPs), and supplier. Paymasters are those who pay for medical or healthcare
services, for examples employers, insurers and managed care organizations. Healthcare
providers are the professionals who dispense medical treatment, for examples general
practitioners (GPs), hospitals and dentists. However, the current implementation of MediNET,
and the scope of this case study, is only limited to employers as the paymasters and GPs as the

Page 206

Appendix A MediNET - The Case Study

HCPs. The supplier is obviously the company who owns, provides and maintains the MediNET
applications.

Paymasters use MediNET to maintain the basic parts of the patient records. For example, a
paymaster (employer) may register his payee (employee) as a panel patient of his panel clinics.

The employer may decide to what extent the employee is entitled to treatment. Additionally, the
employer is also allowed to view medical certificates issued to his employees as well as view
the invoices issued to him.

HCPs use MediNET to manage patient records, patient billing and paymaster invoicing. Each
HCP has a number of clinics located at different sites and offer various medical services.
MediNET allows the clinic staff to validate a patient’s eligibility for medical treatment and, if
applicable, determine the limit of bill amount set by his employer. The clinic may also register a
new panel patient with certain conditions, for example with the presentation of a confirmation
letter from the patient’s employer. The bill is issued as the consultation is completed. The bills
are automatically categorised and collated into appropriate invoices to be delivered to the
relevant paymasters.

The supplier uses MediNET to perform system administrative tasks such as information
maintenance and application usage invoicing. It maintains user accounts and manages most
information related to HCPs and paymasters. Using MediNET, the supplier may also calculate
the charges and produce the invoices of the respective customers.

It is important to note that MediNET is neither an Electronic Medical Record (EMR)
application nor a clinical diagnostic tool. Rather, MediNET is merely an administrative back­
end tool that addresses the business processes of its users. Although MediNET is able to record
some aspects of the patient's interaction with the clinic, it is not designed to discharge the
functionalities of a complete EMR system. With regard to GPs, MediNET is not specifically
designed to help them in diagnosis. It helps GPs to manage the administration of their
transactions.

A.2 The Business Processes

There are three main business processes in MediNET: registration, billing, and invoicing. In
brief, there are two type of registration i.e. patient registration and consultation registration.

Patient registration can be done in one of two locations, either at a healthcare provider (HCP) or
paymaster location. Paymaster HR Officer may register paymaster payee as a panel patient
where the paymaster pays the patient’s bill. HCP Clinic Assistant may register both cash and
panel patients. HR Officer and Clinic Assistant are the examples of MediNET users which are
described in section A.3.4.

Each time a patient visits HCP clinic for medical services, the patient should register for
consultation and his name is then put in a queue. When the consultation is completed, HCP

Page 207

Appendix A MediNET - The Case Study

Clinic Assistant will issue a bill based on the doctor's prescription. Cash patients must pay their
bills, whilst the bills for panel patients are paid by their paymaster - the panel patient bills are
later included in a paymaster’s invoice. However, each bill is verified by the HCP Account
Clerk before it is automatically sorted and inserted into invoice as an invoice item. Finally, the
invoice is sent to the paymaster. These processes are illustrated in Figure A-l.

Cash/Panel Patient Patient Record

Registration C onsultation

Paymaster
Payment

invoicing

BillingCash Patient

Figure A-l The MediNET Main Business Processes

Apart from the above processes, there are other business processes which are related to
information management, payment handling, and various report generation. They are discussed
at the end of this section.

A.2.1 Registration

Patient R eg istra tion : Each person must be registered as a patient before he can receive any
service from HCP. The registration can be done either at HCP or paymaster location. At the
HCP location, HCP Clinic Assistant may register a person either as a cash or panel patient. If
the person wants to register as a panel patient he must show an official letter from his
paymaster, and the paymaster must be a registered paymaster. At the paymaster location, HR
Officer may register his staff as panel patients. HR Officer may terminate any patient from his
list of payees, for example, when the patient is no longer employed by the paymaster. In this
case, the status of the patient will be changed from panel to cash patient. Although he can
terminate the patient from being a panel patient, the HR Officer cannot delete the patient record,
since all the patient records also belong to the HCP. Only the MediNET System Administrator
has the authority to delete the records. During registration, each patient is assigned a unique
patient registration number. If required, the patient will be directed to the consultation
registration.

C onsultation Registration'. All registered patients must register for consultation each time they
visit the HCP for medical services. The consultation registration is used to ensure the patient

Page 208

Appendix A MediNET - The Case Study

eligibility via online patient validation as well as to prepare necessary patient information prior
to the consultation. HCP Clinic Assistant input the supplied patient registration number or any
other acceptable search text. The input is automatically verified using the information available
in the MediNET system. Next, the verified patient is put in a consultation queue. The patient
details including queue number, patient name, paymaster name, and maximum bill amount is
printed and given to the patient. The Clinic Assistant uses the shelf location reference number
which is obtained from the patient record to get the physical patient’s medical record. The
medical record will be given to the doctor. For a panel patient, the status (active, blocked, or
archived) of his paymaster is also verified during consultation registration. The patient is
allowed to choose the paymaster if he has more than one paymaster. If the paymaster status
indicates that it is currently banned from HCP services, the patient will be informed that he must
pay the bill himself or change to another paymaster. As the consultation registration is
completed, the patient will be directed to the waiting area.

A.2.2 Billing
B il l P reparation'. After a consultation is completed, the doctor will issue prescriptions for the
patient. The prescriptions contain the drug list that should be dispensed to the patient and the
medical services which were given to him. Based on the prescriptions and patient information,
HCP Clinic Assistant creates a bill that includes patient information, consultation descriptions,
drug descriptions and the amount details. In addition, it also includes paymaster code (for panel
patient), issue date, and issue staff. The bill will be given to the patient together with his drugs
and a copy will be kept for future processing. The panel patient’s bill will be later used to create
a paymaster invoice.

B il l M od ifica tion '. There is a possibility of mistakes made by HCP Clinic Assistant during bill
creation. In this case, the HCP Shift Leader may directly perform correction to the incorrect bill.
The bill can only be modified by the HCP Shift Leader working in the same shift with the HCP
Clinic Assistant who creates the bill. However, to prevent fraud, the HCP Shift Leader cannot
modify the printed or paid bills.

B il l Payment'. Upon receiving the payment from a patient, HCP Clinic Assistant records the
method and amount of payment. The payment method can be cash, cheque, or credit card. The
bill state is changed from ‘unpaid’ to ‘fully paid’ or ‘partly paid’ depending on the amount paid
by patient. This function is only applied to cash or partially sponsored panel patient since
paymaster will pay for the fully sponsored panel patient. For the panel patient, the bill state will
be changed to ‘invoiced’ when the bill is inserted into invoice.

A.2.3 Invoicing
B il l Verification'. HCP Account Clerk assorts and verifies every copy of the actual printed bill
given to panel patients against the respective bill recorded in MediNET before it is inserted into
an invoice. Traditionally, the verification task is to ensure that bill amount is not exceeding the
limit set by the panel company. It is also used to ensure the actual amount charged to the patient

Page 209

Appendix A MediNET - The Case Study

corresponds to the amount recorded in the system. After the bills are verified, they will be
sorted and stored in the paymaster billing list for preparing an invoice.

H C P Service Invo ice Preparation'. HCP normally sends its service charge invoices to the
paymasters at the end of each month. However, the invoices can be created at any time and all
verified bills can be daily inserted as invoice items into the invoices by HCP Account Clerk in
order to avoid back-log at the end of month. Initially, the invoice state is set to ‘active’. The
invoice items cannot be inserted after the invoice state is set to ‘published’. The published
invoice may be viewed by the paymaster if the paymaster also subscribed to MediNET.
However, HCP may need to print the invoice and sent it manually if the paymaster is not
subscribed to MediNET. HCP Account Clerk may also send the invoice weekly or fortnightly
according to earlier arrangement between HCP and the paymaster. This arrangement also
determines the end date of each invoice, which is set during the invoice creation process.

Invo ice V iew ing and P r in tin g : A paymaster Account Officer is allowed to view and print a
completed invoice that belongs to his company provided that he has an access to the system.
The details of each invoice item vary from one paymaster to another according to the paymaster
requirements. In other words, the viewing and printing function should be flexible and
customizable in terms of information to be included for each invoice item. For examples,
paymaster A may be want to display only patient name and bill amount for each invoice item
whilst paymaster B needs to include date and time information. After viewing or printing the
invoice, paymaster may decide either want to pay or reject the invoice.

M o d ifica tio n o f Rejected Invoice'. The invoice may be rejected due to a number of reasons such
as the listed patient is not a staff, or the bill or invoice amount is exceeding the earlier stated
limit. HCP Account Clerk is responsible to modify the rejected invoices according to the
reasons of rejection supplied by paymaster. The invoice will be issued back to the panel
company.

Invo ice Payment. Upon receiving of a payment, HCP Account Clerk will record the payment
information. Using balance forward method, the payment is then automatically allocated to the
oldest unpaid invoice. After the first invoice is settled, it continues on to the second oldest
invoice if the cash remains unapplied using a FIFO type algorithm. Payment allocation is made
flexible since one or more invoices can be paid using one or more payments. Thus, there can be
a single payment for one invoice, single payment for more than one invoices, or multiple
payments for one invoice. The payment records are used to keep track the credit history of the
paymaster which in turn provides necessary information for producing the outstanding balance
report.

M e d iN E T Usage Invo ic ing : The supplier (ASP) produces invoices on MediNET usage to both
HCPs and paymasters. HCPs are charged based on the following two-tier fee structure:

Monthly Subscription Fee RM 50.00 per month

Transaction Fee RM 0.15 per transaction

Page 210

Appendix A MediNET - The Case Study

For example, let assume that a General Practice that uses the MediNET application to treat a
total of 400 transactions for the month of February 2004. Thus, the fee would be calculated as
follows:

No Description Calculation Fee Payable (RM)
1 Monthly Subscription Fee RM 50.00 x 1 month 50.00
2 Transaction Fee RM 0.15 x 400 transactions 60.00

Total fee for the month 110.00

For the paymasters, they will be charged based on the number of their payees. The following
table shows the current fee structure for the paymasters:

Employee + Dependant
Amount Range (person) * Monthly Subscription

Fee (RM)
Min Max

1 25 35
26 50 65
51 75 95
76 100 125
101 150 165
151 200 200
201 300 250
301 400 300
401 500 375
501 600 450
601 700 525
701 800 600
801 900 675
901 1000 725
1001 - negotiable

A.2.4 Other Business Processes
Apart from the main processes illustrated in Figure A-l, there are a number of other important
business processes in MediNET system. They are related to the service provider functions such
as MediNET usage invoicing and information management. The description of these additional
business processes are organised into MediNET system administration, HCP-related, and
paymaster-related processes.

M ed iN E T System A dm in is tra tion Processes

System L o g in : In order to ensure the system security, each user is given a unique user ID and a
password. The user must enter his user ID and password during system login. The login
information is verified to check for staff position and user access rights, and relevant
subsystems will be started upon the successful system login. User is only allowed to access the
granted subsystems according to their rights. The password can be changed whenever it is
necessary.

M ed iN E T User A d m in is tra tio n : MediNET users can be categorized into supplier, HCP, and
paymaster. In short, MediNET System Administrator (Sys Admin) is the super user who creates

Page 211

Appendix A MediNET - The Case Study

the administrator user accounts for HCP and paymaster. The HCP and Paymaster Sys Admin
maintain user information such as user ED, password, name, description, user type of his
respective users. User type is used to determine the access rights granted to each user. For

example, paymaster HR Officer is only allowed to register and view patients from his/her own
company. User administration function is only accessible by Sys Admin. Please refer to section
A.3.4 for more information on MediNET users.

H C P and Paym aster Records A d m in is tra tio n ’. Another important responsibility of MediNET
Sys Admin is the management of HCP and paymaster information. This task includes the
addition, deletion, and modification of HCP and paymaster records. All HCPs and paymasters
must register with MediNET before they can use the applications. Upon registration, they will
be given an administrator account to manage their own users.

H C P -re la ted Processes

M ed ica l Item Record M ain tenance : Medical item refers to any types of consultation, medical
services, and drugs, for examples X-Ray, CT scan, paracetamol, and specialist consultation. The
information about medical item includes item code, description, type code, and measure unit.
By maintaining this information, HCP Clinic Assistant may check the list of medical items
available in HCP as well as set default amount, measurement unit, and unit price.

Panel R ecord M aintetiance: Upon receiving a manual or online application from a paymaster,
HCP may decide either to approve or reject the application. If the application is accepted, HCP
Sys Admin will create a new panel paymaster for his HCP. During system operation, the status
of a paymaster is set as follows:

• 'a c tiv e ’ ’. It is set as an initial value during the creation of paymaster record. This
status indicates that the paymaster does not have any problem with outstanding
balances. It is also set when the paymaster cleared any pending payments after being
blocked by HCP.

• 'b lo cke d ’ : It will be set when a paymaster has a bad payment record according to the
current rules determined by HCP. Once the paymaster is blocked, their payees is not
permitted to obtain medical services from the HCP using the paymaster bill. Instead,
they have to foot their bill on their own.

• 'a rc h iv e d ’: When a paymaster decide to terminate HCP from being its panel clinic, or
HCP itself wish to terminate the paymaster, the paymaster status is set to ‘archived’.
The change of the status should be preceded by an official letter. The payment
records of the paymaster will be stored as an archive until the grace period elapsed
and, most importantly, until the paymaster settle all of its debts.

A ccounting Reports P re p a ra tio n : The system should be able to produce three main accounting
reports namely daily expenses, monthly and outstanding balance reports. Daily expenses report
is originally generated and completed for each clinic by an HCP Clinic Assistant. The examples

Page 212

Appendix A MediNET - The Case Study

of common expenses are allowances for locum tenens such as service, food, and stationeries
allowances. This report must also include the amount of petty cash received from the main
office. The daily transaction report is verified by HCP Shift Leader at the end of each work
shift. The information in the daily transaction report will be used to generate monthly report,
which is generated by an Account Clerk. Outstanding balance report is used to keep track the
invoice outstanding balance of a paymaster. The Account Clerk may keep track the credit
history of a paymaster by generating the invoice outstanding balance report. The information is
used to issue reminders.

D ocum enting and R eporting D ispensed D ru g s : Each time HCP Clinic Assistant creates a bill,
based on doctor’s prescriptions, he often insert a number of drugs which are dispensed to the
patient. The dispensed drug list should be automatically recorded for future drug listing.
According to government regulations for private medical practitioners, the dispensed drug
listing is required to be produced at any time as requested by State Health Department.

Paym aster-re la ted Processes

H C P A ppo in tm ent/Term ina tion : Paymaster may apply to appoint a new HCP or terminate
existing HCP using online application form.

D isp lay ing M e d ica l C ertifica tes (M Cs): A paymaster HR Officer is allowed to view or check
the MCs issued to his employees by HCPs, The MCs can be retrieved using their employee’s ID
or name. The date range can also be specified for displaying the MCs.

H ealthcare Expenses R eport: Paymaster generates healthcare expenses report to understand the
trends in medical benefit spending.

A.2.5 The Modular Design of MediNET Software System
With regard to the current implementation, MediNET is divided into three main subsystems i.e.
myPeople, myHCP, and myMediNET. myPeople and myHCP were implemented as web-based
application to fulfil the distributed nature of their users. The former is used by paymasters to
maintain their payee information, view MC and invoices, select or remove their HCPs, and
generate healthcare-related reports. The latter is used by HCP to perform patient registration,
billing, invoicing, information management, and report generation. myMediNET is used by the
supplier to prepare application usage invoices, maintain HCP and paymaster records, and
various report generation. These subsystems and their modules are shown in Figure A-2.

Page 213

Appendix A MediNET - The Case Study

Invoicing

• HCP MediNET Usage
- Paym aster MediNET

Usage

- Patient Registratior
• Patient Re-registratlor
- Consultation Registration

• Dispensed Drugs Report
- Accounting Reports
• M anagement Reports

- Invoice Paymonl

Billint
• HCP Informatior - Patient Registratior
- Paym aster InformaUoi - Consultation Registratior

• Paym aster Status
II Paymeir

Repor

Invcldns

R epor

myMediNET

MediNET

myHCFmyPeople

-D octor Informatior
- MC Informatior

Figure A-2 The Structure of MediNET Implementation

A.3 The Business Entities

A number of entities which is relevant to MediNET were identified in the description of the
above business processes.

A.3.1 The Main Business Entities
There are three main business entities in MediNET i.e. HCP, paymaster, and patient. These
entities iniatiate and perform the business processes.

HCP provides medical services to the registered patients. It has at least one clinic (branch). Each
clinic may register zero or more patients. HCP can be appointed as a panel HCP by several
paymasters, and the paymasters are called panel paymasters for that HCP. Each HCP and clinic
is given a unique ID. Among other details that should be kept to describe an HCP are name,
address, phone, fax, contact person, and e-mail. HCP may have one or more HCP users. Each
user has a unique ID, password, and user type. A more detailed discussion on MediNET users
are made in section A.3.4.

Paymaster may appoint zero or more HCPs to be its panel HCPs. It also has zero or more
employees registered as the patients of the clinics under its panel HCPs. Each paymaster is
given a unique ED, and other details such as name, address, phone number, e-mail, fax, and
contact person are stored in the paymaster record. The paymaster status is initially set to active.
The paymaster may also choose to specify the limit of patient’s bill and invoice amount.

Patient is registered to one or more clinics as a cash or panel patient. If the patient is registered
as a panel patient, he should have at least one paymaster as a payer. Each patient must have a
unique patient registration number (PRN). Other details such as full name, address, date of
birth, sex, blood type, allergy, phone number, registration date, and nationality are stored in the
patient record. A patient may have a number of dependants which in turn can be registered as
patients. Most paymasters pay patient’s dependant bills. However, guardian information must
be included in dependant claims. Thus, each dependant should include his guardian PRN. The
shelf location of the patient’s medical record is also created during patient registration. For a

Page 214

Appendix A MediNET - The Case Study

cash patient who wants to re-register as a panel patient, a new registration is not needed. It is
sufficient for HCP Clinic Assistant to only change the patient status. The patient status can also
be changed from ‘panel’ to ‘cash’ when the patient is no longer paid by his paymaster.

A.3.2 Billing-related Entities
During billing, there are a number of entities which are consumed or produced such bill, bill
item, bill payment, transaction item, and medical certificate.

A bill is issued to a patient after the consultation is completed. Each bill is given a unique bill
number where there will be no same bill number within any clinic. Apart from patient
information, clinic ID, staff ID, and issue date are also included in a bill.

The prescriptions supplied by a doctor are used to insert the bill items. There is at least one bill
item contained in each bill. The quantity of bill item is supplied to calculate its cost; the amount
of the bill is calculated as the sum of all bill items. The bill item has an item code which refers
to a specific transaction item. Transaction items are grouped under several transaction types.
Among the examples of transaction types are consultation, medication, ward charges and X-
Ray. Each transaction item has an item code to retrieve details on a particular transaction item.
The details include measure unit, service tax, and default amount.

A cash patient bill must be paid by the patient. The amount, date and type of payment are
recorded for future reference. For a panel patient, a bill is paid by his paymaster. The bill is later
inserted into invoice as an invoice item. In this case, the payment is received as an invoice
payment. If applicable, the medical certificate is issued to the patient.

A.3.3 Invoicing-related Entities

In general, there are two types of invoices in MediNET i.e. HCP service and MediNET usage
invoices. HCP service invoice is issued by HCP to claim a payment from paymaster for medical
services given to its payees. MediNET usage invoices can be further categorised into two types:
HCP MediNET usage and paymaster MediNET usage invoices. They are used by the supplier to
claim the usage of the MediNET from HCPs and paymasters respectively. HCP Service invoice
contains all bills issued to the paymaster’s payees for the selected date range. Different
paymaster chooses different level of details. For example, some paymasters would like to have
patient’s name, address, billing date, and bill amount displayed in their invoices whilst others
might be to see only the patient registration number, patient’s name and amount. MediNET
usage invoice is calculated based on the table given in section A.2.3.

Regardless of its type, an invoice can be associated with zero or more payment. A payment can
be allocated to pay one or more invoices. The amount of payment is recorded and a payment
number is assigned to each payment. A payment can be made using different methods: cheque,
cash, credit card 01* account transfer. Other information that depends on payment type should be
recorded for example, reference number, bank name, and payment date. Reference number is

Page 215

Appendix A MediNET - The Case Study

either transaction or cheque number. Since payment can be used to pay one or more invoices, it
is necessary to always keep the balance updated.

A,3.4 M ediNET Users

MediNET users are categorised into three user groups i.e. supplier, paymaster, and HCP. Each
user group consist of different types of users according to the users’ roles or based on the nature
of their responsibility in the respective organization. User type is used to determine the access
rights granted to the user. For example, paymaster Human Resource (HR) Officer is only

allowed to register and view patients from his/her own company. The categorization of
MediNET users is shown in Figure A-3.

There are two types of supplier users: MediNET System Administrator (Sys Admin) and
Account Staff. MediNET Sys Admin is responsible to create and manage paymaster and HCP
Sys Admins. These newly created system adminsitrator accounts will in turn create and manage
other paymaster and HCP users respectively. The MediNET Sys Admin is also responsible to

perform system administrative task such as performance tuning and data backup. The Account
Staff mainly involves with the monitoring and preparation of MediNET usage invoices for
paymasters and HCPs.

Paymaster users are given the authority to access the system remotely from their office via the
internet. Among the user type from this category are Paymaster HR Officer and Paymaster
Account Officer. It is important to note that the role names used to represent the user types
might be different from the post names used by paymasters. The Paymaster HR Officer is
responsible to add, modify or terminate their employees as the panel patients in MediNET
system. This type of user also has the privilege to view the medical certificate (MC) list that has
been certified to their employees based on date range or staff ID. The Paymaster Account
Officer’s role is to deal with the invoices issued by HCPs. The invoices contain the cost of
medical services given to their staffs. This type of users can view and print the invoices.

Paymaster Users

Figure A-3 MediNET Users

Page 216

Appendix A MediNET - The Case Study

With regard to HCP user group, there are four user types in this group namely HCP Sys Admin,
HCP Clinic Assistant, HCP Shift Leader and HCP Account Clerk. If the HCP is medical group
practices, HCP Clinic Assistant and HCP Shift Leader are located at each general practice (GP)
whilst the HCP System Administrator and HCP Account are located at the headquarters.

HCP Sys Admin is responsible to control most of the stored information such as HCP user
accounts, general practice records, transaction item records, and patient records. HCP Account
Clerk is dealing with the preparation and issuing of the paymaster invoices, and updating of the
record of payment and payment allocation. This type of users also has the responsibility to deal
with the Paymaster Account Officers regarding any rejected invoices, and make the
modification to the invoice when necessary.

HCP Clinic Assistant works in different shifts. She registers walk-in patients that haven’t
registered in the MediNET database as well as performing a consultation registration. She also
issues the bills to the patients, generates daily transaction report, and maintains the record of
dispensed drugs. For each shift, there will be one HCP Shift Leader who responsible for every
operation performed by the clinic assistant during her shift. The Shift Leader has the authority
to access all functionalities available to the clinic assistant, with additional privileges to modify
any incorrect bills, and to verify and modify the daily transaction report.

A.3.5 Data Stored in MediNET
The physical database design of MediNET application is shown in Figure A-4 at the end of this
appendix. It is important to mention that the diagram in Figure A-4 only includes tables relevant
to the scope of the case study.

A.4 The Informal Business Rule Statements

Based on the MediNET descriptions described in the previous sections and the information from
other sources, the initial set of business rules were identified. These business rules were initially
written as a set of informal business rule statements. The examples of the informal business rule
statements, which were organized according to their business process, are listed below:

A.4.1 Registration

P atien t R eg istra tion

• Each patient must be assigned a unique registration number.
• Each patient must supply name, date of birth, address, and gender.
• If a patient want to register as a panel patient, the patient must supply the document from the

paymaster that consist of important information such as paymaster name, paymaster address,
employee number, employee level, and department name.

• A patient may have more than one paymaster.
• If a patient wants to register as a dependant of a panel patient, the patient must show the

document from his guardian’s paymaster and supply the PRN of his guardian.

Page 217

Appendix A MediNET - The Case Study

Panel P a tien t E lig ib ility

• Panel patient may only register with the clinics from the panel HCPs of his paymaster.
• If the healthcare benefit coverage stated that the panel patient may only register at the

selected clinics, the panel patient must only register at the selected clinics. Otherwise, the
patient may register at any clinics belong to his paymaster’s panel HCP.

• The number of panel clinics registered by patient must not exceed the maximum number of
clinics allowed by his paymaster.

P atien t Consultation

• Each patient must be registered with the HCP before they can register for consultation.
• Any patient with an outstanding balance should be banned from consultation registration.
• If the patient has more than one paymaster, the patient must choose one paymaster to pay the

bill.
• If the patient is a panel patient, then the requested statement must be in the list of his eligible

entitlements.
• If the patient is a panel patient, then the allowed treatments must be in the list of eligible

procedures or entitlements of his healthcare benefit.
• At the end of each successful consultation registration, the patient is inserted into the

consultation queue.
• The patient should be entered to the consultation queue in time sequence, or first-come first-

serve basis. However, if the patient is an emergency, he may skip the queue.
• If the patient suffers life-threatening problem upon registration, the patient is considered as an

emergency patient.

A.4.2 Billing

B il l P repa ra tion

• When the consultation is completed, a bill is created for the patient.
• A patient bill has one or more bill items.
• Each bill item is computed as the unit amount multiply by the quantity. Some items have a

service tax value which is needed to be added to the item amount.
• Each bill item is associated with an item from the clinic transaction items.
• The bill amount is calculated as the sum of amounts of all bill items.
• If a patient is a cash patient, the balance will be initialised to the value of the bill amount and

the bill status is set to unpaid.
• If a patient is a panel patient and his paymaster pays the bill in full, the balance is set to 0 and

the bill status is set to unpaid.
• If the paymaster is partially pay the bill, the balance is calculated as the bill amount minus the

maximum bill amount set by the paymaster.
• HCP may ask the patient to pay or simply absorb the balance based on the earlier agreement

with the paymaster. For cash and partially paid panel patients, the balance of a bill is updated
when the payment is made.

• The balance of a bill is computed as the amount of the bill minus the amount of the payment.
• A bill can be modified only if the user role is Chief Clinic Assistant.

Page 218

Appendix A MediNET - The Case Study

• The amount of a panel patient’s bill must not exceed the maximum bill amount set by the
paymaster.

B il l Payment.

• If the paymaster is blocked or the patient is a cash patient, the patients must foot the bill on
their own.

At the end of billing process, some rules applied to the flow of bill information.
• If the bill was issued to a panel patient, the bill copy must be verified and sorted to be

processed as a panel transaction item. Panel transaction items are important to create both
paymaster and application usage invoices.

• If the bill was issued to a cash patient, the patient must pay the bill. The bill mistakes can be
rectified before the payment is made. However, it can only be modified by HCP Shift Leader.

A.4.3 Invoicing

Invo ice P repa ra tion

• Each bill must be verified before it is inserted into an invoice.
• When the bill is inserted into an invoice, the bill status is set to ‘invoiced’.
• The invoice status must be set to close at 12:00am on the next day after the invoice end date.
• If the panel’s invoice interval is monthly, the end date is set to the end of the month.

C a lcu la tion o f Invo ice Am ount

Different rules are applied in calculating the amount of different invoices,
• For paymaster MediNET usage invoice, the amount is calculated based on the number of the

paymaster’s payees according to the table in section A.2.3.
• For HCP MediNET usage invoice, the amount is calculated as the amount of transaction fees,

which are calculated as the transaction fee multiply by the total number of transactions, plus
the monthly fee. The current rate of HCP usage fees were shown by the table in section
A.2.3.

• For HCP service invoice, the amount is calculated as the total of the payees’ bill amounts.

Invo ice R ejection and M o d ifica tio n

• The invoice can be rejected if the patient is not a payee, the amount of any invoice item (bill)
is beyond the bill limit, or the amount of invoice is beyond the invoice limit.

• When the account clerk receive the rejection request, if the rejection request is accepted, then
the invoice state is set to ‘rejected’.

Invo ice Paym ent and Payment A llo ca tio n

• When the payment is allocated to the invoice and there is no more invoice balance, the
invoice state is set to ‘paid’.

• Each payment is allocated to the oldest unpaid invoice(s) using a FIFO type algorithm.
• Invoices can be paid by several payments.

Past Due Invoices and Rem inder

• The first reminder will be sent if a payment is not received within 30 days from the invoice
date.

Page 219

Appendix A MediNET - The Case Study

• If the payment is not received after 60 days from the invoice date, the Account Clerk will
issue the second reminder.

• If there is still no payment after 90 days from the invoice date, the paymaster information will
be sent to the System Administrator. At this point, System Administrator blocks the panel
company from receiving any service from the HCP.

• A paymaster (panel company) is under probation if the paymaster has an invoice with
category 1 past due and the current balance is more than RM 5,000.00.

A.4.4 Other Business Rules

Paym aster and H C P R egistra tion

• If a paymaster chooses to set the maximum invoice limit, the paymaster must select the pre­
defined limit. However, the paymaster must pay the monthly fee which is calculated as 4000
divide by the pre-defined limit.

• Due to the important of the stored information, MediNET imposes some rules in the deletion
of patient, paymaster, and HCP records. The patient, paymaster, and HCP records can only be
deleted by MediNET System Administrator after their status is set to ‘archived’ for particular
grace period. The grace period must be set to at least 5 years.

P atien t Record Maintenance

• Paymaster HR Officer may terminate any patient from their list of payees.
• When a paymaster terminates a patient from being his payee and the number of paymaster is

greater than zero, the number of paymaster is decreased by one.

Page 220

Appendix A MediNET - The Case Study

UyWAlpSMTUi

MASTER_TR AN S J TEM

PA NEL_PAYM ASTER

C 0 V ER AG E_LEVEL

Figure A-4 MediNET Physical Database Design (the latest version)

Page 221

Appendix B The EBNF Specification for the BROOD Metamodel

Appendix B

The EBNF Specification for the BROOD
Metamodel

B.l The semantics of EBNF (ISO/IEC 14977) syntax

X

' X '

[X]

{X }

n * x
(* note *)

x (unquoted text) is a non-terminal symbol
x (quoted text) is a terminal symbol
definition symbol
concatenation symbol
definition separator symbol
x appears at maximum once
x appears zero or more times
x appears n times
note is a comment

Note:
- Symbol priority from the highest to the lowest: * , | = ;
- All symbols are case sensitive.
- Since there exist similar terms in both business rule and software design

specifications, and some terms from the former are used in the later (and vice
versa), the different conventions for non-terminal symbols are used. Underscore
character is used to separate words in business rule syntax definitions, whilst
capital letter is used as the first letter of each word in UML Class Diagram
and State Machine Diagram definitions.

B.2 Business rule syntax using EBNF

Business rule organisation and typology

business_rule_model = rule_set, owner;
rule_set

business_rule

Contraint

constraint

A ttribu te C onstra in t

att constraint

= (rule_set | rule_statement) , (rule_set | rule„statement}
[owner] , [business_j?rocess] ;

= (constraint | action_assertion | derivation), name,
[is_mandatory], [priority], [is_propagatable];

att_constraint j rel_constraint;

= entity, ('must havef | 'may have'), ['a unique'], att„term
| att_term, ('must be' | 'may be'), relational_op, (value

Page 222

Appendix B The EBNF Specification for the BROOD Metamodel

att_term =

R elationship C onstra in t

rel_constraint =

Action Assertion

action_assertion =

Event

event =
simple_event -
change_event =

time_event =

user_event =
complex_event =

C ondition

condition =
s imple_condi tion =

complex_condition =

A ction

action =
simple_action =

trigger_action =
obj ect_manipulation

action_sequence

Derivation

derivation =

att_term)
| att_term, 'must be in', list;
attribute, 'of', entity;

([cardinality], entity, 'is a/an', role, 'of', [cardinality],
entity
| [cardinality], entity, 'is associated with', [cardinality],
entity
| entity, ('must have' | 'may have'), [cardinality], entity
| entity, 'is a/an' entity),
{ A s s o c i a t i o n } ;

'WHEN', event, ['IF', condition], 'THEN', action,
{ S ta t e c h a r tD ia g r a m , T r a n s i t i o n } ,-

simple_event | comp1ex„event;
(change_event | time_event | user_event), { C l a s s , O p e r a t io n) ;

att_term ('is updated' |) |
entity ('is deleted' | 'is created')
(operation | business_rule), 'is triggered';
date_time |
n, time_unit, 'time interval from', date_time , 'is reached' j
number, time_unit, 'after', date_time;
string;
simple_event, {('Or' | 'And'), simple_event {('Or' | 'And'),
s imple_event}

simple_condition | complex_condition;
['Not'], attribute_term, relational_op, (value) attribute_term)
| attribute_term, ('in' | 'not in'), list;
simple_condition, ('Or' | 'And'), simple_condition, {('Or' |
'And'), simple„condition};

simple„action | action_sequence;
trigger_action | object_ manipulation„action | user_action,
{ C l a s s , O p e r a t io n) ;

'trigger', (process | operation | business_rule);
.action = 'set', att_term, 'to', value |

('create' | 'delete'), object;
= simple_action, {simple_action};

computation | inference;

Page 223

Appendix B The EBNF Specification for the BROOD Metamodel

Com putation

computation
algorithm

= attribute_tezm, 'is computed as', algorithm, (C l a s s , O p e r a t io n } ;

- string;
(* i.e. a n y s p e c i f i c a t i o n la n g u a g e f o r s p e c i f y i n g t h e a l g o r i t h m

e . g . OCL, p s e u d o - c o d e , e t c . *)

Inference

inference
fact

= 'If', condition, 'then', fact;
= (attribute_term | entity), relational_op, ['a'], value) |

entity, ('may' | 'may not'), action, (C l a s s , O p e r a t io n } ;

Rule Phrases / Linking Elements / Low-Level Definitions

(* Some l o w l e v e l non-terminal s y m b o l s u c h a s < r e a l> , < i n t e g e r > a n d < s t r i n g >
a r e n o t d e f i n e d . * *** *)

entity
attribute
operation
cardinality
eventPhrase
actionPhrase
role
list
phrase
value
number
time_unit
relat ional_op

name
priority
i s„mandatory
is_propagatable
boolean

= phrase, C l a s s ;

= phrase, C l a s s , A t t r i b u t e ;

- phrase, { C l a s s , O p e r a t io n } ;

= phrase, maxCard, minCard;
= phrase, event, (C l a s s , O p e r a t io n } ;

= phrase, action, (C l a s s , O p e r a t io n } ;

= string;
= string,{string};
= string;
= string | integer | real [date | time;
= real | integer;
= 'second' | 'minute' | 'hour' j 'day' | 'month' 'year';
= 'equal'] 'not equal' j 'less than' | 'less than or equal'

'greater than' I 'greater than or equal';
= string;
= 'high' | 'medium'
= boolean;
= boolean;
= 'true' or 'false'

'low'

Page 224

Appendix B The EBNF Specification for the BROOD Metamodel

B.3 UML Class Diagram syntax using EBNF

(*
*

* * * *

T h e f o l l o w i n g d e f i n i t i o n s w e r e d e r i v e d f ro m OMG U n i f i e d M o d e l in g L a n g u a g e
S p e c i f i c a t i o n (V e r 1 . 5) . T h e r e i s n o i n t e n t i o n f o r p r o d u c i n g a c o m p l e t e a n d
p r e c i s e EBNF d e f i n i t i o n s f o r UML C l a s s D ia g ra m o r S t a t e c h a r t D ia g ra m , a n d t h e y
a r e a l m o s t i m p o s s i b l e t o a c h i e v e u s i n g EBNF a l o n e . T h e f o l l o w i n g d e f i n i t i o n s a r e
m e r e l y u s e d t o f o r m a l l y e x p e r i m e n t and d e m o n s t r a t e t h e t e c h n i c a l a s p e c t s o f
l i n k i n g b u s i n e s s r u l e s t o s o f t w a r e d e s i g n e l e m e n t s .
* *

* * J

ClassDiagram - name, {Note | TaggedValue | Stereotype | Constraint \ Class |
Generalization | Association};

Core Package

Class

IsActive
IsAbstract
Interface

AssociationClass

= {Comment | TaggedValue | Stereotype [
[IsActive], [IsAbstract], {Attribute

= boolean;
= boolean;
= {Comment | TaggedValue | Stereotype |

{Attribute I Operation};

Constraint}, name,
| Operation};

Constraint}, name,

= {Comment | TaggedValue | Stereotype | Constraint}, name,
AttachedAssociation, {Attribute | Operation};

AttachedAssociation = string;

Attribute

Attribute

Visibility
Changeability
Initial_value
Multiplicity
isMandatory
isUnique

{Comment | TaggedValue | Stereotype j Constraint }, name, Type,
Visibility, InitialValue, Changeability, Multiplicity,
[IsActive[, [IsAbstract], {Attribute | Operation}, isMandatory,
isUnique;
'private'
boolean;
string;
string;
boolean;
boolean;

'public'] 'protected';

Operation

Operation

Parameter

RetumType
Concurrency
IsAbstract

= {Comment | TaggedValue | Stereotype | Constraint}, Name,
[Visibility] , [RetumType] , [Concurrency] , [IsAbstract] ,
[IsLeaf], [IsRoot], {Parameter};

= {Comment | Note | TaggedValue | Stereotype
[Type], [DefaultValue], [Kind];

= string;
= string;
= boolean;

Constraint}, Name,

Page 225

Appendix B The EBNF Specification for the BROOD Metamodel

IsLeaf
IsRoot
OwnerScope

Generalization

Generalization

Parent
Child

= boolean;
= boolean;
= string;

= {Comment | Note | TaggedValue | Stereotype j Constraint},
Parent, Child;

= string;
= string;

Association and AssociationEnd

Association

AssociationName
Direction
Source
Target
RoleName
AssociationEnd

AggregationKind

AggregationKind

Ordering
Qualifier

Extension Package

TaggedValue
Tag
Value
Stereotype

Stereotype
BaseClass

= {Comment | Note | TaggedValue | Stereotype | Constraint},
{AssociationName}, AssociationEnd, AssociationEnd;

= Name, [Direction] ;
= Source, Target;
= Type, [RoleName];
= Type, [RoleName];
= string;
= {Comment | Note | TaggedValue | Stereotype [Constraint}, Type,

[Name], [Qualifier], [AggregationKind], [Multiplicity],
[isNavigable], [Visibility], [Changeability], [Ordering];

= 'AggregationWhole‘
'CompositionPart' ;

= string;
= string;

'AggregationPart' ’CompositionWhole'

= {Tag, Value};
= string;
= string;

= {Comment | Note j TaggedValue j Constraint}, Name, [BaseClass]
= string;

Constraint

Constraint
C_Body
C Element

= {Comment
= string;
= string;

Note}, CJBody, C„Element;

Page 226

Appendix B The EBNF Specification for the BROOD Metamodel

B.4 UML Statechart Diagram syntax using EBNF

StatechartDiagram = Name, {CompositeState | State | Transition}, [Note],-
State = Name, {EntryAction}, {DoAction}, {ExitAction}, [Note];
Transition = (TransitionLabel | Note}, Source, Target;
TransitionLabel = Event, {Guard}, {Action}, {SendClause};
Event = Name, {Parameter | Note};
(* C o m p o s . i t e S ta t e and PseudoState are n o t i n c l u d e d i n t h e s c o p e o f t h e c u r r e n t

research. T h e y a r e m e n t io n e d f o r t h e p u r p o s e o f c o m p l e t e n e s s . *)
Compositestate = Name, IsConcurrent, IsRegion, { State | CompositeState j

PseudoState | Transition | Note};
PseudoState = {Action | Transition | Note}, Kind;
Kind = Initial | DeepHistory | ShallowHistory | Join | Fork | Branch

Final;
IsConcurrent = boolean
IsRegion = boolean;
Parameter = string;
Source = string;
Target = string;
Action = string;
Guard = string;
Note = string;
SendClause = string;

Page 227

Appendix C The BROOD Process Specification

Appendix C

The BROOD Process Specification

The process is adapted from Rational Unified Process software process model. Only focus on
three phases: analysis, design, and evolution. The following specification is based on OMG
Software Process Engineering Metamodel.

Process: Business Rule-based Object-Oriented Design (BROOD)

Phase: Analysis
Activity: Analyze Business Rule Statements

ProcessRole: F u n c t i o n a l A n a l y s t

ActivityParameters {kind: input}
WorkProduct: U s e - C a s e M o d e l {state: r e v i s e d }

WorkProduct: B u s i n e s s R u l e S t a t e m e n t s {state: r e v i s e d }

ActivityParameters {kind: output}
WorkProduct: B u s i n e s s R u l e S p e c i f i c a t i o n {state: i n i t i a l d r a f t }

Steps
Step: I d e n t i f y b u s i n e s s r u l e t y p e

Step: R e w r i t e b u s i n e s s r u l e s a c c o r d i n g t o s e n t e n c e t e m p l a t e s

Step: R e s o l v e r u l e c o n f l i c t s a n d r e d u n d a n c y

Activity: Architectural Analysis
ProcessRole: S o f t w a r e A r c h i t e c t

ActivityParameters {kind: input}
WorkProduct: U s e - C a s e M o d e l {state: r e v i s e d }

WorkProduct: B u s i n e s s M o d e l {state: c o m p l e t e d }

WorkProduct: A r c h i t e c t u r e D e s c r i p t i o n {state: i n i t i a l d r a f t }

WorkProduct: S u p p l e m e n t a r y R e q u i r e m e n t s {state: r e v i s e d }

ActivityParameters {kind: output}
WorkProduct: A n a l y s i s C l a s s D i a g r a m {state: o u t l i n e }

WorkProduct: A n a l y s i s P a c k a g e {state: o u t l i n e }

WorkProduct: A r c h i t e c t u r e D e s c r i p t i o n {state: r e v i s e d d r a f t }

Steps
Step: I d e n t i f y a n a l y s i s p a c k a g e s

Step: I d e n t i f y a n a l y s i s c l a s s e s

Step: D e s c r i b e a n a l y s i s o b j e c t i n t e r a c t i o n s

Activity: Analyze a Class
ProcessRole: C o m p o n e n t E n g i n e e r

ActivityParameters {kind: input}
WorkProduct: A n a l y s i s C l a s s D i a g r a m {state: o u t l i n e d }

ActivityParameters {kind: output}

Page 228

Appendix C The BROOD Process Specification

WorkProduct: A n a l y s i s C l a s s D i a g r a m {state: c o m p l e t e d }

Steps
Step: I d e n t i f y c l a s s r e s p o n s i b i l i t i e s

Step: I d e n t i f y c l a s s a t t r i b u t e s

Step: I d e n t i f y c l a s s r e l a t i o n s h i p s

Activity: Analyze a Package
ProcessRole: C o m p o n e n t E n g i n e e r

ActivityParameters {kind: input}
WorkProduct: A n a l y s i s P a c k a g e {state: o u t l i n e d }

WorkProduct: A r c h i t e c t u r e D e s c r i p t i o n {state: r e v i s e d d r a f t }

ActivityParameters {kind: output}
WorkProduct: A n a l y s i s P a c k a g e {state: c o m p l e t e d }

Steps
Step: A n a l y z e t h e c o h e s i v e n e s s o f e a c h p a c k a g e

Step: A n a l y z e t h e d e p e n d e n c i e s b e t w e e n p a c k a g e s

Phase: Design
Activity: Architectural Design

ProcessRole: S o f t w a r e A r c h i t e c t

ActivityParameters {kind: input}
WorkProduct: U s e - C a s e M o d e l {state: r e v i s e d }

WorkProduct: A n a l y s i s M o d e l {state: c o m p l e t e d }

WorkProduct: A r c h i t e c t u r e D e s c r i p t i o n {state: r e v i s e d d r a f t }

WorkProduct: S u p p l e m e n t a r y R e q u i r e m e n t s {state: r e v i s e d }

ActivityParameters {kind: output}
WorkProduct: D e s i g n C l a s s D i a g r a m {state: o u t l i n e }

WorkProduct: D e s i g n P a c k a g e {state: o u t l i n e }

WorkProduct: A r c h i t e c t u r e D e s c r i p t i o n {state: r e v i s e d }

Steps
Step: I d e n t i f y s u b s y s t e m s a n d t h e i r i n t e r f a c e s

Step: I d e n t i f y a r c h i t e c t u r a l s i g n i f i c a n t c l a s s e s

Step: I d e n t i f y g e n e r i c d e s i g n m e c h a n i s m s

Activity: Design a Class
ProcessRole: C o m p o n e n t E n g i n e e r

ActivityParameters {kind: input}
WorkProduct: D e s i g n C l a s s D i a g r a m {state: o u t l i n e d }

ActivityParameters {kind: output}
WorkProduct: D e s i g n C l a s s D i a g r a m {state: c o m p l e t e d }

WorkProduct: D e s i g n S t a t e c h a r t D i a g r a m {state: c o m p l e t e d }

Steps
Step: I d e n t i f y o p e r a t i o n s

Step : I d e n t i f y a t t r i b u t e s

Step: I d e n t i f y r e l a t i o n s h i p s

Step: D e s c r i b e m e t h o d

Step: D e s c r i b e s t a t e

Step: L i n k S t a t e c h a r t d i a g r a m e l e m e n t t o c l a s s d i a g r a m

Page 229

Appendix C The BROOD Process Specification

Activity: Design a Sub-System
ProcessRole: C o m p o n e n t E n g i n e e r

ActivityParameters {kind: input}
WorkProduct: S u b - S y s t e m {state: o u t l i n e d }

WorkProduct: A r c h i t e c t u r e D e s c r i p t i o n {state: r e v i s e d }

ActivityParameters {kind: output}
WorkProduct: S u b - S y s t e m {state: c o m p l e t e d }

Steps
Step: D e s i g n s u b - s y s t e m d e p e n d e n c i e s

Step: D e s i g n s u b - s y s t e m i n t e r f a c e s

Activity: Develop Business Rule Specifications
ProcessRole: C o m p o n e n t E n g i n e e r

ActivityParameters {kind: input}
WorkProduct: B u s i n e s s R u l e S p e c i f i c a t i o n s {state: i n i t i a l d r a f t }

ActivityParameters {kind: output}
WorkProduct: B u s i n e s s R u l e S p e c i f i c a t i o n s {state: r e v i s e d d r a f t }

Steps
Step: D e f i n e r u l e p h r a s e s

Step: L i n k r u l e p h r a s e t o d e s i g n e l e m e n t s

Step: F o r m s t r u c t u r e d r u l e s t a t e m e n t s

Step: P o p u l a t e r u l e a t t r i b u t e s

Step : O r g a n i z e r u l e s e t

Activity: Validate Business Rule Specifications
ProcessRole: F u n c t i o n a l A n a l y s t / B u s i n e s s U s e r

ActivityParameters {kind: input}
WorkProduct: B u s i n e s s R u l e S p e c i f i c a t i o n s {state: r e v i s e d d r a f t }

ActivityParameters {kind: output}
WorkProduct: B u s i n e s s R u l e S p e c i f i c a t i o n s {state: c o m p l e t e d }

Steps
Step: E n s u r e c o r r e c t n e s s o f b u s i n e s s r u l e s p e c i f i c a t i o n s

Step: E n s u r e u n d e r s t a n d a b i l i t y o f b u s i n e s s r u l e s p e c i f i c a t i o n s

Phase: Evolution
Activity: Examine Business Rule Change Request

ProcessRole: B u s i n e s s U s e r / F u n c t i o n a l A n a l y s t

ActivityParameters {kind: input}
WorkProduct: B u s i n e s s R u l e C h a n g e R e q u e s t {state: i n i t i a l }

WorkProduct: B u s i n e s s R u l e S p e c i f i c a t i o n s {state: c o m p l e t e d }

ActivityParameters {kind: output}
WorkProduct: B u s i n e s s R u l e C h a n g e R e q u e s t {state: r e v i s e d }

Steps
Step; D e t e r m i n e t h e t y p e o f b u s i n e s s r u l e c h a n g e

Step: R e v i s e b u s i n e s s r u l e c h a n g e r e q u e s t (f o r c o m p l e x c h a n g e)

Activity: Perform Business Rule Modification Change
ProcessRole: B u s i n e s s U s e r / F u n c t i o n a l A n a l y s t

Page 230

Appendix C The BROOD Process Specification

ActivityParameters {kind: input}
WorkProduct: D e s i g n M o d e l {state: c o m p l e t e d }

ActivityParameters {kind: output}
WorkProduct: D e s i g n M o d e l {state: c h a n g e d }

Steps
Step: L o c a t e t h e r e l e v a n t b u s i n e s s r u l e s p e c i f i c a t i o n

Step: P e r f o r m c h a n g e o n b u s i n e s s r u l e s p e c i f i c a t i o n

Step: P r o p a g a t e c h a n g e t o s o f t w a r e d e s i g n

Activity: Analyze Business Rule Change Request
ProcessRole: S o f t w a r e A r c h i t e c t

ActivityParameters {kind: input}
WorkProduct: B u s i n e s s R u l e C h a n g e R e q u e s t {state: r e v i s e d }

WorkProduct: D e s i g n M o d e l {state: c o m p l e t e d }

ActivityParameters {kind: output}
WorkProduct: B u s i n e s s R u l e C h a n g e P l a n { }

Steps
Step: I d e n t i f y t h e e f f e c t o f c h a n g e s

Step: P r o d u c e t h e d e t a i l e d c h a n g e p l a n

Activity: Implement Business Rule Change
ProcessRole: C o m p o n e n t E n g i n e e r

ActivityParameters {kind: input}
WorkProduct: B u s i n e s s R u l e C h a n g e P l a n { }

ActivityParameters {kind: output}
WorkProduct: D e s i g n M o d e l {state: c h a n g e d }

Steps
Step: R e v i e w t h e c h a n g e p l a n

Step: P e r f o r m t h e c h a n g e s

Page 231

