
A CHIP MULTI-CLUSTER
ARCHITECTURE WITH LOCALITY

AWARE TASK DISTRIBUTION

A THESIS SUBMITTED TO THE UNIVERSITY OF M ANCHESTER

FOR THE DEGREE OF DO CTO R OF PHILOSOPHY

in t h e F a c u l t y o f E n g i n e e r i n g a n d P h y s i c a l S c i e n c e s

2007

M atthew James Horsnell
School of Computer Science

ProQuest Number: 11005161

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11005161

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Contents

List o f Tables 7

List o f F igures 8

List o f A lgorithm s 12

A bstract 13

D eclaration 14

C opyright 15

A cknow ledgem ents 16

1 In troduction 17
1.1 M otiva tion ... 17
1.2 Microprocessor Design C hallenges... 19

1.2.1 W ire D e l a y ... 20
1.2.2 Memory G a p ... 21
1.2.3 Limits of Instruction Level P a ra l le l is m 22
1.2.4 Power L i m i t s ... 23
1.2.5 Design C o m p le x ity ... 24

1.3 Design Solutions ... 26
1.3.1 Exploiting P a ra l le l is m ... 26

2

1.3.2 Partitioned D esigns.. 29
1.3.3 Bridging the Memory G a p .. 30
1.3.4 Design Abstraction and R ep lica tion .. 31

1.4 Summary .. 33
1.5 Research Aims .. 33
1.6 C o n tr ib u tio n s ... 33
1.7 Thesis S tru c tu re .. 34
1.8 P u b lic a tio n s .̂ . . . 35

2 Parallelism 36
2.1 Application P aralle lism .. 36

2.1.1 Amdahl’s L a w ... 37
2.1.2 Implicit and Explicit Parallelism .. 37
2.1.3 Granularity of P a ra lle lism .. 39

2.2 Architectural P a ra lle lism ... 42
2.2.1 Bit Level P a ra lle lism .. 42
2.2.2 D ata Level P a ra lle lism ... 43
2.2.3 Instruction Level Para lle lism ... 44
2.2.4 M u lti th re a d in g .. 47
2.2.5 Simultaneous M ultithreading ... 50
2.2.6 Chip M ultip rocessors.. 50

2.3 S u m m a r y .. 51

3 Jam aica C M P and Software Environm ent 52
3.1 The Jam aica Chip M ultiprocessor.. 52

3.1.1 M u lti th re a d in g .. 53
3.1.2 Register W indow s... 55
3.1.3 Lightweight Task D is tr ib u tio n .. 58
3.1.4 Branch P red ic tion ... 59
3.1.5 Coherent Shared Memory H ierarchy.. 60
3.1.6 Hard and Soft In te r ru p ts .. 64
3.1.7 Devices .. 65

3.2 Jamaica Core Revisions .. 65
3.2.1 Interleaved M u ltith read ing ... 65
3.2.2 Working Set and Register W in d o w s.. 66

3.3 Jamaica Software Environment ... 67

3

3.3.1 Jam aica Assembler and C C om piler.. 67
3.3.2 Jam aica Boot P ro c e d u re ... 68
3.3.3 The Jamaica V irtual M a c h in e ... 68

3.4 Jamaica Simulation E n v iro n m e n t.. 70
3.4.1 Simulation A c c u ra c y .. 70
3.4.2 Simulation C onfiguration.. 71
3.4.3 System S im u la tio n .. 72

3.5 Summary .. 74

4 M u lti-level C ache C oherence 75
4.1 Multiprocessor O rg an isa tio n .. 75

4.1.1 Memory A c c e s s .. 76
4.1.2 Inter-Processor C om m unica tion .. 77

4.2 Scaling the Jamaica A rc h ite c tu re ... 78
4.2.1 Limitations to Bus S ca lin g .. 78
4.2.2 Multi-Level Cache H ierarchy ... 80
4.2.3 Cache In c lu s io n ... 81
4.2.4 Locality and A ff in ity ... 84

4.3 PIMMS - a Multi-Level Coherence P r o to c o l 84
4.3.1 Cache States .. 85
4.3.2 Network T ransactions... 86
4.3.3 State T ra n s it io n s ... 86
4.3.4 Four Phase T ran sac tio n s .. 86

4.4 Summary .. 92

5 M u lti-level C ache H ardw are 93
5.1 Cache O rgan isa tion ... 93

5.1.1 Level 1 Private C a c h e s ... 94
5.1.2 Shared Level C a c h e s ... 95

5.2 Coherence Messages and T ransactions.. 96
5.3 Flow C o n t r o l ... 96

5.3.1 Blocking and Negative Acknow ledgm ents.............................. 97
5.4 Deadlock Avoidance .. 98

5.4.1 Sinkable M essages.. 98
5.4.2 Non-Sinkable M essages.. 99
5.4.3 Sinkable and Non-Sinkable Queues and P r io r i t i e s 99

4

5.4.4 Passive and Active Non-Sinkable M essag es.............................. 100
5.5 Address B lo c k in g ... 103

5.5.1 Local T ra n sa c tio n s ...103
5.5.2 Deadlock Avoidance .. 104

5.6 Multi-Level S ynch ron isa tion ..105
5.7 Lazy Cache-Line A llo c a t io n ..106
5.8 Summary ..107

6 M u lti-level Task L ocality 108
6.1 Clusters and Cache L o c a li ty .. 108
6.2 Task D is tr ib u tio n .. 109

6.2.1 Locality Aware Task D is tr ib u tio n ... 110
6.2.2 Token R e q u e s ts .. 110
6.2.3 Locality Aware Token Request E x te n s io n s 112
6.2.4 Cache-Distance Id e n tif ie rs ...112
6.2.5 Hardware Support for L ocality ..114
6.2.6 Software Support for L o c a l i ty ..116

6.3 S u m m a r y ..120

7 R esu lts and A nalysis 121
7.1 Experimental M eth o d ..121

7.1.1 Simulation E n v iro n m e n t..122
7.2 Benchmark D e sc r ip tio n s ...123

7.2.1 Fork/Join B en ch m ark s ... 123
7.2.2 M ultithreaded JavaGrande Benchm arks..................................... 125
7.2.3 Benchmark P a ra m e te rs ..127

7.3 PIMMS Coherence P r o to c o l .. 127
7.3.1 Coherence Transactions .. 127
7.3.2 Four-phase T ra n s a c tio n s .. 129
7.3.3 Interconnect L a te n c y ...131
7.3.4 Negative A cknow ledgm ent... 131
7.3.5 Non-Sinkable Queue R o ta t io n .. 134
7.3.6 Effect of Inclusion ..135
7.3.7 Protocol R o b u s tn e s s ... 137

7.4 Single Bus Chip Multiprocessor A rch itec tu re ...138
7.4.1 Speed-up ...138

5

7.4.2 Wire D e l a y .. 145
7.4.3 Bus C o n te n tio n ... 146
7.4.4 Memory S a tu ra tio n ... 147

7.5 Cluster A rch itec tu res ...149
7.5.1 Speed-up ..150
7.5.2 Bus-Tree C l u s t e r ...155
7.5.3 Crossbar C l u s t e r ...155
7.5.4 Hybrid Bus-Crossbar Cluster ... 157

7.6 Locality Aware Task D is tr ib u tio n ... 158
7.6.1 Synchronisation L o c a lity ..158
7.6.2 Application I s o la t io n .. 160
7.6.3 Application R e s tru c tu r in g .. 161

7.7 Chip M ulti-Cluster Design C o n s id e ra tio n s ... 164
7.8 Summary ..166

8 C onclusions 168
8.1 C o n tr ib u tio n s ... 169
8.2 Future W o rk .. 171

B ibliography 173

A Jam aica - Instruction Set A rch itecture 185
A .l Instruction F o rm a ts ...185

A. 1.1 Register F o rm .. 186
A. 1.2 Immediate Form ... 186
A. 1.3 Branch F o r m .. 186
A. 1.4 Memory F o rm .. 186

A.2 Instruction Set ..187
A.2.1 Arithmetic/Logical In s tru c tio n s ...187
A.2.2 Control Transfer Instructions .. 188
A.2.3 Memory In s tru c tio n s ...189

A.3 Builtln In s tru c tio n s ... 190

6

List o f Tables

1.1 Growth in area between successive generations of Intel architectures. 24

4.1 Configuration of a 1 billion transistor CMP.............................. 79
4.2 PIMMS protocol: cache states.. 85
4.3 PIMMS protocol: network transactions, mnemonic codes and de­

scriptions 86

7.1 Configuration of the simulated cache hierarchy.......................... 122
7.2 Benchmark param eters used during experimentation...............127
7.3 Locality-aware task distribution... 163
7.4 Performance comparison CMC vs. single bus CM P..................165

A .l Jam aica instruction set: arithmetic/logical instructions........................ 187
A. 2 Jam aica instruction set: branch form control instructions.................... 188
A.3 Jam aica instruction set: memory form control instructions..................188
A.4 Jam aica instruction set: memory instructions.. 189
A.5 Jamaica instruction set: builtin instructions............................... 190

7

List o f Figures

1.1 Predicted percent of die reachable by each generation [104]............. 21
1.2 A growing gap between memory speed and processor speed leads

to bottlenecks during data intensive workloads [62]............................ 22
1.3 A growing gap between increases in the complexity of a chip and

productivity of design engineers and tools... 25
1.4 Exploiting thread-level parallelism: a) software scheduling, b) multi­

threaded hardware, c) multi-processor hardware................................. 29
1.5 The effect of increased cache size (MB) on performance (x) of the

Itanium 2 processor [107].. 31
1.6 Comparison of hardware scouting and increasing cache size [27]. . 32

2.1 Amdahl’s Law: Parallel speedup (S) vs. parallel fraction (P). . . 38
2.2 A simple code sequence amenable to ILP execution............................ 40
2.3 A simple code sequence containing no ILP... 40
2.4 Inner loop of the motion detection algorithm used in MPEG en­

coding, calculation of the sum of absolute differences........................ 41
2.5 Inner loop after scalar expansion and loop fission. The first loop

is now amenable to data level parallelism optimisations.................... 41
2.6 4-bit ripple-carry adder.. 43
2.7 4-bit carry-select adder.. 43
2.8 D ata Level Parallelism: the datapath inside the execution of the

psadbw SSE2 instruction... 44

8

2.9 A simple pipelined architecture... 45
2.10 Superscalar pipelined architecture.. 46
2.11 Single issue and superscalar scheduling... 46
2.12 M ultithreading scheduling... 49
2.13 SMT and CMP scheduling.. 50

3.1 The Jam aica single chip multiprocessor.. 53
3.2 Jam aica core: M ultithreaded pipeline and support structures. . . 54
3.3 Jamaica core: Context running states... 54
3.4 Jamaica core: Register windows, call and return overlaps................ 57
3.5 Jamaica core: Register windows; virtual to physical register lookup. 57
3.6 Jam aica core: Lightweight task distribution.. 59
3.7 Jam aica core: branch prediction.. 60
3.8 Jamaica: Split transaction bus protocol.. 61
3.9 Jamaica: Level 1 private cache.. 62
3.10 Jamaica: Lock acquisition code... 63
3.11 Jamaica: Shared level 2 cache and memory interface........................ 64
3.12 Jam aica core revisions: Register window call....................................... 67
3.13 Jam aica core revisions: Register window re tu rn 67
3.14 JikesRVM software to Jamaica hardware m apping............................ 69
3.15 Configuration code for jamsim... 72
3.16 Connected simulation components for jamsim..................................... 73
3.17 Jam aica Simulation: Java bytecode is executed through the JaVM

by jamsim within a Java virtual machine on top of the host system. 73

4.1 Multiprocessor memory access... 76
4.2 Theoretical bus access lim itations... 79
4.3 Jam aica multi-level cache h ierarchy .. 80
4.4 Multi-level hierarchy without inclusion.. 82
4.5 Multi-level hierarchy with inclusion.. 83
4.6 Multi-level cache state transitions... 87
4.7 Four phase read transaction.. 88
4.8 Four phase read transaction, timeline.. 89
4.9 Four phase concurrent write transactions.. 90
4.10 Four phase concurrent write transaction, timeline.............................. 91

5.1 Level 1 cache... 94

9

5.2 Shared level cache.. 95
5.3 Circular queue dependence... 98
5.4 Shared cache request queues divided into sinkable and non-sinkable

entities. Non-sinkable queue divided further into passive and active
queues allowing reordering... 99

5.5 Passive/Active queue reordering..102
5.6 Multi-level address blocking table...103
5.7 Multi-level deadlock arising in the address blocking tab le104
5.8 Multi-cluster load-linked/store-conditional...105

6.1 Multi-cache locality of reference.. 109
6.2 Multi-level data sharing... I l l
6.3 Unbalanced multi-cluster configuration... 113
6.4 Cache-distance identifiers...114
6.5 TRQ semantics: the preference operand.. 117
6.6 Remote-local distribution.. 118
6.7 Cluster affinity distribution...119

7.1 Bus utilisation during execution of the lu benchmark. The archi­
tecture is configured as a symmetric 2 cluster x 64 processors x 1
context CMP.. 128

7.2 Coherence traffic generated during the JavaGrande b a rrie rB en ch
benchmark, on a symmetric 2 cluster x 8 processors CM P................... 130

7.3 Network latency (lu) ...132
7.4 Negative acknowledgments.. 133
7.5 Non-sinkable reordering.. 134
7.6 Inclusive caches...136
7.7 Cost of inclusion... 137
7.8 Single bus CMP...139
7.9 CMP bus scaling - f ib o n a c c i ... 141
7.10 CMP bus scaling - m a trixM ult... 141
7.11 CMP bus scaling - ja c o b i .. 142
7.12 CMP bus scaling - l u ... 142
7.13 CMP bus scaling - i n t e g r a te ... 143
7.14 CMP bus scaling - m ergeSort... 143
7.15 CMP bus scaling - s e r i e s .. 144

10

7.16 CMP bus scaling - s o r ..144
7.17 CMP bus scaling - c ry p t ... 145
7.18 Bus speed relative performance.. 146
7.19 Level 1 bus utilisation... 147
7.20 Level 2 - level 3 bus utilisation... 148
7.21 LI bus negative acknowledgments..148
7.22 CMC architectures... 149
7.23 CMC scaling - f ib o n a c c i.. 150
7.24 CMC scaling - m atrixM ult..151
7.25 CMC sc a lin g -ja c o b i.. 151
7.26 CMC scaling - l u ..152
7.27 CMC scaling - i n t e g r a te .. 152
7.28 CMC scaling - m ergeSort.. 153
7.29 CMC scaling - s e r i e s ...153
7.30 CMC scaling - s o r ..154
7.31 CMC scaling - c ry p t ... 154
7.32 CMC scaling speed-ups...156
7.33 Locality-aware: s e tC lu s te r A f f in i ty .. 159
7.34 Locality-aware synchronisation... 159
7.35 Locality-aware isolation.. 160
7.36 Locality-aware restructuring of the so r benchm ark................................162
7.37 Locality-aware isolation.. 164

A .l R e g is te r fo rm Rc «— Ra op Rj,...186
A.2 R e g is te r im m e d ia te fo rm Rc *— Ra op R&... 186
A.3 B ra n c h fo rm ..186
A.4 M em o ry fo rm ...186

11

1 Cache-distance encoding

List o f Algorithms

112

12

Abstract

Chip Multiprocessor (CMP) architectures are fast becoming ubiquitous. Their
widespread adoption has been motivated by three dominant factors; power and
therm al limits have constrained higher clock frequencies, the memory wall has
expedited concurrency as a means of maintaining performance, and technology
advances have increased transistor budgets enabling the integration of multiple
cores on a single chip. It is anticipated tha t a trend of increasing the number
of cores with increasing transistor budgets will emerge, and th a t within the next
decade it will be feasible to integrate up to 128 cores w ithin a single chip archi­
tecture.

This thesis investigates the scaling limitations of current single bus CMP ar­
chitectures and proposes a Chip Multi-Cluster (CMC) architecture as a feasible
approach for future many-core designs. A novel cache coherence protocol and
hardware support for maintaining coherence across multiple clusters is presented.
Additionally, support at the hardware/software interface is provided to allow
locality-aware thread creation and distribution in order to best utilise the archi­
tecture. Several possible implementations of the CMC architecture are studied
through cycle accurate simulation using multithreaded benchmarks.

13

Declaration

No portion of the work referred to in this thesis has been
subm itted in support of an application for another degree
or qualification of this or any other university or other
institution of learning.

14

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made on ly in accordance with instruc­
tions given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made w ithout the permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in the University of Manchester, subject to any prior agreement to
the contrary, and may not be made available for use by th ird parties without the
written permission of the University, which will prescribe the term s and conditions
of any such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of the School of Computer Science.

15

Acknowledgements

I would like to thank my supervisor Professor Ian W atson for all of the help, en­
couragement, support and constructive feedback he has given me over the last four
years. I would also like to thank Ian Rogers, Ahmed El-Mahdy and Andrew Dinn
for proof reading this thesis and for the many discussions th a t have continued to
motivate me.

I would like to thank all of the members of the Jamaica project and the A PT
group. Those with whom I have been able to discuss research ideas and those who
have provided lively conversations over a few pints. I would also like to thank my
friends outside of computer science for keeping me sane by taking me away from
computers and remaining in contact with me throughout.

Special thanks to my parents for their continued support and encouragement,
and to my brother Jonathan and sister Katherine for their enduring friendship.

Finally, and certainly not least, a debt of gratitude is owed to Laura for her
unfaltering patience, understanding and love.

16

CHAPTER 1

Introduction

A chip multi-cluster architecture based on a novel multi-level cache coherence
protocol is presented in this thesis. This architecture supports interleaved multi­
threading and provides facilities for lightweight locality aware thread distribution.
The architecture is simulated using a novel cycle-level simulation platform and
is used to evaluate the concepts associated with increasing the number of cores,
bus contention and wire delay, scaling the memory hierarchy, and locality aware
task distribution.

1.1 M otiva tion

Over 40 years ago Gordon Moore observed tha t the to tal number of devices in­

tegrated on a chip doubled every 12 months [111]. Based on this observation
he boldly predicted th a t this trend would continue throughout the 1970s and
would subsequently slow down to a doubling every 24 months in the 1980s. This
prediction, commonly referred to as Moore’s Law, triggered a revolution in mi­
croarchitecture innovation and design th a t has delivered enormous increases in
computing power.

17

1.1. Motivation

During the last decade alone, the number of transistors integrated on a single
die has doubled every 24 months and the relative performance of microprocessors
when executing SPECint benchmarks has grown by over 75 times [63]. In the
same period the type of applications processed by microprocessors has diversified
enormously. W ith further expansion of broadband internet, multimedia, gaming
and mobile communication the complexity of such application areas continue to
push a demand for yet more performance increases.

Sustaining this performance growth has, to date, largely been achieved through
technology scaling. In the last 10 years mainstream semiconductor technology
has scaled feature sizes down from 350nm to 65nm, enabling operating frequen­
cies to increase from 200MHz to 3.2GHz, on the Intel Pentium Pro and Pentium
4 respectively. This frequency increase, of 16 times, has provided the majority of
the 75 times performance increase, with the remaining increase due to microar­
chitecture innovation and exploiting higher transistor budgets. Both frequency
increases and exploiting higher transistor budgets are becoming increasingly dif­
ficult in single processor designs.

Until recently increasing transistor budgets have been exploited by increasing the
pipeline depth, issue width and reorder buffers of single processor superscalar
architectures. Unfortunately, the performance gained in this manner has been
diminishing [20] and further small performance gains require discouragingly com­
plex additional hardware. A recent study [53] showed th a t there is a growing
discrepancy between the increase in area employed by a new microarchitecture
and the increase in performance, with the increase in performance growing at
the square root of the increase in area. A productivity gap is also emerging, as
designers and design tools are not able to keep pace with the increase in com­
plexity of modern designs. This was highlighted by the International Technology
Roadmap for Semiconductors as a grand challenge [139].

As mentioned previously, the rapid increase in clock frequency, 40 percent per
year for the past 15 years, has been the dominant factor in microprocessor perfor­
mance increases. This speed increase has come from two sources: smaller, faster
transistors and deeper pipelines with shorter critical paths. For two reasons this
increase has diminished in the past few years. Firstly, the rapid increases in speed
have hastened the emergence of a power wall. Simply put, the power consumed
by modern microprocessors is becoming too costly for the end user, and more

Chapter 1. Introduction 18

1.2. Microprocessor Design Challenges

im portantly perhaps, the heat dissipated is becoming too expensive to cool [38].
Secondly, as feature size decreases transistor switching speed increases, however
wires are not scaling as quickly [17]. This is leading to wire delay limited circuits,
where the percentage of the chip accessible in one clock cycle is decreasing per
generation.

W ith the main techniques responsible for increases in microprocessor performance
rapidly expiring, a shift towards different design strategies capable of maintaining
performance increases is currently underway. Although many alternatives were
initially proposed in a special issue of IEEE Computer [19], parallel architectures,
in the form of Chip Multiprocessors (CMP) have become the focus of most major
microprocessors roadmaps [81, 127, 78, 108]. These architectures are able to
overcome or avoid design challenges of modern microprocessors and at the same
time continue increasing performance, largely by exploiting parallelism.

The remainder of this chapter introduces and expands on some of the key issues
facing modern microarchitecture design. This is followed by a discussion of how
computer architects are innovating in order to overcome these challenges.

1.2 M icroprocessor D esign C hallenges

As mentioned previously, the application space for general purpose microproces­
sors is vast and is growing as new technologies and application areas are discov­
ered. Applications, whether multimedia, gaming, communications or scientific,
require microprocessors th a t are capable of processing a variety of tasks, many
within imposed timing constraints. At the same time computer systems are used
to run multiple applications concurrently, adding additional complexity to the
workload of a general purpose microprocessor.

For these purposes it is desirable tha t each successive generation of microprocessor
is able to face a changing and growing application space, and is able to remain
capable of processing workloads into the future. At the same time the end user of a
computer system does not want the cost of ownership to become overly expensive,
so power consumption is a key concern. The design of processors optimised for
performance, power and cost requires a carefully balanced architecture which

Chapter 1. Introduction 19

1.2. Microprocessor Design Challenges

addresses numerous challenges. This section describes the m ajor challenges tha t
architects face in designing modern architectures.

1 .2 .1 W ire D e la y

As semiconductor technology advances, transistors are becoming smaller and
more transistors can be integrated onto a single silicon die. These transistors
consume less power and the time taken by them to switch state, the gate delay,
decreases. In real terms transistors, and hence logic, on a chip are becoming
cheaper and faster.

In order to connect transistors as their feature sizes decrease, the width of wires
writhin a given technology must also decrease. This reduces the cross-sectional
area of the wires (A), which increases the resistance (R) per unit of length (L)
because resistance is inversely proportional to area, Equation 1.1. In the equation
p is the resistivity constant of the material.

R = ^ (i - i)

r = R C (1.2)

This means th a t the delay (r) through a wire, Equation 1.2, where C is wire
capacitance, will only decrease linearly with its length, which depends on the
underlying transistor technology [17]. As wire delay is only decreasing linearly
and gate delay is decreasing more rapidly, circuits are increasingly becoming wire
delay limited. This happens because the number of gates reachable in a single
clock cycle is decreasing.

The overall impact th a t this has on a microarchitecture is th a t shrinking a wire
delay limited circuit will not make it run any faster, as less of the silicon is
available within one clock cycle [66]. In fact, it was estim ated th a t when the
semiconductor technology gets down to a 0.1 ̂ m process, only 16% of the die will
be reachable within a single clock cycle [104], Figure 1.1.

Chapter 1. Introduction 20

1.2. Microprocessor Design Challenges

100

90

80

cT 70 o>TO
§ 60
ra
CL

_a> 50
XIra
I 40 ra
ra
Q 30

20

10

16 clocks

8 clocks

4 clocks

2 clocks

1 clock

0.18 0.13 0.1
Processor generation (pm)

F igu re 1.1: Predicted percent o f die reachable by each generation [104]-

1 .2 .2 M em o ry G ap

In order for a microprocessor to operate efficiently it needs to be fed with a steady
stream of instructions to process and to have access to the data required by those
instructions. In today’s architectures access to main memory, to load or store
instructions and data, is often a bottleneck. This bottleneck is caused by the
discrepancy in memory and processor speeds. While processor clock speeds have
increased by approximately 55% per year since 1980, memory performance has
only been increasing at less than 10%, creating a widening memory gap [62], see
Figure 1.2.

This increasing memory gap reduces the benefit of increased operating frequen­
cies; whenever a processor requires access to a piece of data or instruction not
currently in a local cache it has to wait. Access to memory, in modern micropro­
cessors, takes hundreds of cycles during which time the processor remains idle.
This gap is especially evident in commercial applications th a t are transaction
intensive.

In order to alleviate this problem, smaller cache memories are used to keep fre­
quently accessed data local to the processor and most modern architectures now

Chapter 1. Introduction 21

1.2. Microprocessor Design Challenges

Memory

1980 1985 1990 1995 2000 2005
Year

F igu re 1.2: A growing gap between memory speed and processor speed leads to bottle­
necks during data intensive workloads [62].

contain at least two levels of cache memory, of which many different configura­
tions have been researched [75, 42]. Complimentary to storing frequently used
data are schemes for fetching data in advance of requirement. These prefetching
schemes have been attem pted both in software [23, 113] and hardware [28, 162]
to reduce the impact of the memory wall further.

1 .2 .3 L im its o f In str u c tio n L evel P a ra lle lism

Many modern processors contain hardware support for exploiting instruction level
parallelism (ILP). ILP exists where multiple instructions are independent from
each other and can be executed simultaneously. Independent instructions found
within an instruction stream can be issued to multiple functional units within
the processor for execution, and modern superscalar architectures are capable of
dispatching four or more instructions per clock cycle to separate functional units.

Whilst this approach has enabled performance increases, and fundamentally al­
lows more than one instruction to be executed in each clock cycle, it does have
limitations. In particular instructions within the same thread usually display a

Chapter 1. Introduction 22

1.2. Microprocessor Design Challenges

high degree of dependence, and finding further independent instructions requires
the ability to look further ahead in the instruction stream, which requires addi­
tional hardware.

A plethora of studies have looked at the limits of ILP [10, 22, 166, 129]. Many
have shown th a t even in the presence of theoretical perfect caches1, and perfect
branch prediction, the maximum attainable ILP is still only in the order of 10
to 100 instructions per cycle (IPC) [62]. In practice ILP very rarely attains
greater than 4 IPC with relatively complex but manageable hardware. Beyond
this, the complexity of large instruction fetch windows, broadcast networks which
suffer from wire delays, multiple functional units and centralised control becomes
impractical. Some of this hardware, for example register bypass logic, grows
quadratically [123] when attem pting to exploit further ILP and performance gains
diminish.

1 .2 .4 P ow er L im its

Power consumption has gone from being a factor th a t needed to be considered
when designing a new architecture, to becoming a first order constraint on the
design of new architectures. The limit to acceptable power consumption is usually
realised when the ability to dissipate the heat from a processor becomes difficult.
W ith the recent rapid increases in clock frequency and the continual increase in
chip transistor density, the heat dissipated by modern high end microprocessors
is becoming unmanageable.

Power consumption in a processor comprises a static component, called leakage
power, and a dynamic component, called switching power, Equation 1.3. Tra­
ditionally the static component has been a fraction of the dynamic component,
however in modern semiconductor technologies this is changing.

Power total = Power stauc + Power dynamic
_ v w T CV2f ciock
~~ ' ^ 1leakage T ^ \L3)

1A theoretical perfect cache would have the property that each access would result in a cache
hit.

Chapter 1. Introduction 23

1.2. Microprocessor Design Challenges

Process Old Architecture Area mm2 New Architecture Area mm2 Area Increase
l.Ojum i386 (compaction) 42.25 i486 (lead) 132.25 3.1
0.7^im i486 (compaction) 90.25 Pentium (lead) 289 3.2
0.5/im Pentium (compaction) 148.84 Pentium Pro (lead) 299.29 2.0

T able 1.1: Growth in area between successive generations o f Intel architectures.

As the feature size decreases with semiconductor technology, the size of the tran­
sistors and hence their capacitance (C) decreases. This reduced capacitance de­
creases the transistor switch time, or gate delay, leading to increased performance.
However as the feature size decreases the voltage (V) must be lowered to reduce
the interference between the closer components and in order to meet therm al
requirements for the design.

In order to keep the chip functioning correctly at a reduced operating voltage the
threshold voltage, the threshold at which the transistor switches state, must be
decreased. A lower threshold voltage brings it closer to ground which increases the
static leakage current, leakage> increasing the static power consumption. Recent
research has focused on techniques to reduce static power consumption [115].

1 .2 .5 D e sig n C o m p le x ity

Each semiconductor technology generation is allowing more transistors to be inte­
grated onto a single silicon chip, and potentially these additional transistors can
be incorporated into future microarchitecture designs. Recently Intel released
the Montecito processor [107], a dual-core, dual-threaded Itanium architecture,
which incorporated 1.72 billion transistors in the design, taking silicon chips into
the era of billion transistor architectures.

Unfortunately, growth in performance in a new microarchitecture is declining in
subsequent generations and is approximately proportional to the square root of
the growth in area of the microarchitecture in any given technology generation.
Taking the x86 family of architectures as an example, the growth in area of
approximately 2-3 times, Table 1.1, was accompanied by only a 1.5 - 1.7 times
increase in performance.

This discrepancy is due to the hardware tha t was added in subsequent genera­
tions of microarchitecture. As previously mentioned, hardware for exploiting ILP

Chapter 1. Introduction 24

1.2. Microprocessor Design Challenges

suffers from diminishing returns, as does adding larger cache memories. At some
point quadratic increases in the size of the hardware only achieve linear increases
in performance.

10b

103

10

10J

<r
102

1 0 '

Complexity

Productivity

1980 1985 1990 1995 2000 2005
Year

F igu re 1.3: A growing gap between increases in the complexity o f a chip and produc­
tivity o f design engineers and tools.

Another im portant issue associated with design complexity is designer produc­
tivity. The International Technology Roadmap for the Semiconductor Industry
(ITRS) 2005 [139] continued to highlight the gap between design complexity,
measured as the total number of transistors on a chip, and designer productivity
measured as transistors designed-in per staff member per month, Figure 1.3. The
number of transistors on-chip is growing at a rate of 58% per year, but design
productivity is only increasing at a rate of 21% per year. In order to close the
productivity gap the ITRS stated tha t reuse, testing and verification must all
improve by over 2 times.

Chapter 1. Introduction 25

1.3. Design Solutions

1.3 D esign Solu tions

Computer architects have responded, with many novel solutions, to the current
problems facing microprocessor design. In the following section some of these
solutions are presented.

1 .3 .1 E x p lo it in g P a ra lle lism

As increases in the underlying circuit speed decline, due to issues such as power
density and clock distribution, it appears tha t future performance will need to
come from doing more work in parallel. As mentioned previously, Section 1.2.3,
architectural techniques capable of extracting ILP are now reaching practical
limits, motivating the need to look elsewhere for parallelism.

Just over 40 years ago, a taxonomy was proposed placing all computer architec­
tures into four categories based on the parallelism in both the instruction and data
streams [48]. This model is still useful for explaining where additional parallelism
can be found in future microprocessors.

Single In stru ction , S ingle D ata Stream (SISD)

This category includes the uniprocessor, where a single instruction stream is
processed against a single data stream. As discussed parallelism in SISD ar­
chitectures can be extracted using ILP techniques, as is the case in superscalar
architectures [123]. In addition to the ILP extracted through complex hardware,
simpler hardware in combination with complex compiler techniques can be used
to define explicitly parallelism in a single instruction stream, as is the case in
Very Long Instruction Word (VLIW) architectures [45], Both of these techniques
have reached practical limits and further advances require discouraging expense
in hardware with low utilisation.

Single Instruction , M ultip le D ata Stream (SIM D)

In SIMD architectures a single instruction is executed by multiple Processing
Elements (PEs) on different data streams. SIMD architectures exploit data level

Chapter 1. Introduction 26

1.3. Design Solutions

parallelism (DLP), by applying the same operation to multiple data items in
parallel. Each PE has its own da ta memory, hence multiple data streams, however
each PE is driven by the same instruction streams, usually from a single control
processor responsible for fetching and dispatching each instruction.

For multimedia and scientific applications, which exhibit significant amounts of
DLP, this approach is very efficient. As these applications have rapidly migrated
into the desktop space, architectures have incorporated SIMD extensions into the
instruction set [126, 39, 118] and provided special purpose hardware for executing
these instructions. SIMD instructions are now ubiquitous in modern general
purpose architectures, accelerating cryptographic, media encoding and decoding,
and graphics processing.

The performance of SIMD architectures is limited only by the amount of DLP
available in any given application, as the addition of further PEs is relatively
cheap, in comparison to the structures associated with extending superscalar
techniques.

M ultip le Instruction , Single D ata Stream (M ISD)

MISD architectures process a single data memory with multiple instruction streams.
An implementation of a MISD architecture [58] has been shown to be useful for
very specific tasks, such as fast pattern matching in large data streams for which
there is no efficient index, and hence multiple different search tasks can be exe­
cuted on the same data in parallel. It appears th a t MISD architectures have not
shown significant benefits in any general purpose application areas, and as such
no commercial architecture of this type has been developed.

M ultip le Instruction , M ultip le D ata Stream (M IM D)

In MIMD architectures multiple processors execute independent instruction streams
on independent da ta streams. Each processor in a MIMD architecture executes a
separate thread of control. T hat is, they execute independent instruction streams
on largely independent2 data streams in parallel. This thread-level parallelism

2In MIMD architectures shared memory coherence, in particular atomic primitives such as
synchronisation, may prevent the streams from being fully independent.

Chapter 1. Introduction 27

1.3. Design Solutions

(TLP) is far more flexible than DLP and it can be exploited by a larger set of the
application space of general purpose microprocessors. For this reason TLP is per­
haps the best candidate to achieve future performance gains in general purpose
microprocessors.

Thread Level Parallelism

Many modern programming languages allow programmers to define, explicitly,
independent threads of control within a program all of which can be executed
in parallel. Additionally multi-processing operating systems allow multiple pro­
cesses to be run concurrently. Each of these processes may be run in parallel, and
in turn may contain threads th a t can also be run in parallel. Prior to MIMD ar­
chitectures, SISD architectures relied on the operating system software to switch
among concurrent processes and threads, ensuring th a t each was allowed sufficient
execution time within the same processor to continue making forward progress,
Figure 1.4 (a).

In order to accelerate TLP, many modern processors, especially in the server class,
incorporate hardware tha t allows a single processor to m aintain information for
multiple threads, switching between each thread at a hardware level and filling
empty slots in the processor’s pipeline on long latency cache misses, Figure 1.4
(b). In highly threaded applications, of which the operating system is an example,
multi-threaded hardware can help with hiding the long idle times associated with
data and instruction accesses th a t miss local or intermediate caches. Due to the
increasing memory gap, Section 1.2.2, these idle times can be several hundreds
of clock cycles during which time, in the absence of m ulti-threading hardware,
the processor would effectively remain idle. In some data intensive applications,
such as database workloads, the idle time in modern microprocessors is as much
as 75% [90]. A recent study [53], stated tha t adding m ultithreading hardware,
in the study two threads, to an existing architecture adds approximately 10%
additional logic to the CPU, increases the maximum power by less than 10% but
can increase throughput by over 30%.

Another approach to exploiting TLP in hardware is to add additional proces­
sors to the architecture, via an off-chip interconnect at the board or multi-chip
module (MCM) level, or, with billion transistor budgets, increasingly in the same

Chapter 1. Introduction 28

1.3. Design Solutions

Software Hardware
(Thread

Thread Operating
System

■►f Context WB
Thread

(Thread

(Thread
*1 Context Reg ap.
- j Lioomext
 »X>OnteXT K B yl

Thread Operating
System WB

Thread

(Thread

■») Context Reg |-

— m Context Re

WBThread

WBf Thread

(Thread

(Thread

Operating
System -»»| Context Reg |—

— » {Context Reg[-

WB
WB

F igure 1.4: Exploiting thread-level parallelism: a) software scheduling, b) m ulti­
threaded hardware, c) multi-processor hardware.

silicon die, Figure 1.4 (c). Additional processors can provide linear increases in
performance with die size on transactional workloads such as TPC-C [34]. CMPs,
where multiple processors are integrated on a single chip, can provide performance
increases even on applications exhibiting fine-grained TLP.

1 .3 .2 P a r tit io n e d D e sig n s

As mentioned in Section 1.2.1, wire delay is diminishing the area of a chip reach­
able in a single clock cycle with each generation of process technology. This
motivates the need for designs where cross chip communication is minimised.

A new class of parallel architectures have been designed with wire delay treated as
a first order design constraint. These communication-centric architectures such
as RAW [165], Smart Memories [102] and TRIPS [137] keep the length of critical
paths in the design to within 1 or 2 cycles. Whilst these architectures overcome
limits due to wire delay they also impose a message-passing [165] or data-flow
[141] paradigm of programming onto the compiler or software.

CMPs can also be designed to overcome wire delay limits. Each of the many
small processing cores on CMPs take up a relatively small area on the total chip,

Chapter 1. Introduction 29

1.3. Design Solutions

minimising the size of critical paths within each core. Only infrequently used and
therefore less latency critical wires, connecting processors and caches, need to be
long.

1 .3 .3 B r id g in g th e M em o ry G ap

The memory gap, as mentioned in Section 1.2.2, is constantly increasing the
penalty, in cycles, of memory loads and stores. In modern processors, such as
the Intel Pentium 4, the cost of accessing main memory can be as large as 200-
300 cycles. For this reason today’s high performance processors employ multiple
levels of cache memory to help reduce the performance gap.

Increasing the size of on-chip caches decreases the chance of a memory operation
in the processor having to go all the way to main memory. In today’s semiconduc­
tor technologies it is possible to integrate extremely large caches on-chip. Indeed,
Intel’s Montecito [107] processor included nearly 27MB of on chip cache memory,
improving the performance by almost a factor of 2 over previous generations of
the same architecture, Figure 1.5.

Cache memories cannot totally close the memory gap, as untouched data, when
first loaded must always come from main memory unless prefetched in advance
using hardware [28] or software [23]. It is however possible to improve perfor­
mance even during loads and stores to untouched areas of memory by exploiting
memory-level parallelism (MLP) [30], MLP can be exploited by overlapping mul­
tiple accesses to main memory during the period tha t the processor is idle waiting
for the first access to resolve.

To illustrate the potential of MLP as a performance booster, consider a memory-
bound application th a t spends two-thirds of its execution time in off-chip accesses,
doubling the MLP can halve the time spent in these accesses and potentially im­
prove performance by 25%. As long latency memory accesses are fairly dynamic,
occurring when a cache has evicted previously held data or has not yet seen it,
hardware schemes are needed to look for memory accesses th a t can be overlapped.

One such scheme is hardware scouting [27]. W hen a processor is forced to stall on a
memory operation, a scout thread is invoked. The scout th read’s sole purpose is to
run ahead in the instruction stream and look for memory accesses, while the real

Chapter 1. Introduction 30

1.3. Design Solutions

10 10

6 £

Itanium2 Itanium2 Itanium2 Montecito
(1.0 GHz) (1.5 GHz) (1.7 GHz) Itanium2

Figure 1.5: The effect of increased cache size (M B) on performance (x) o f the Itanium
2 processor [107].

thread is stalled waiting for the initial access to come back. The hardware scout
can pass control flow operations such as branches and jumps taking whichever
path is deemed most likely, and can continue scouting for memory accesses many
hundreds of cycles in advance of the real thread. Obviously when the initial
memory access is resolved the real thread is switched back in, and continues from
the point at which it stalled. Any memory accesses tha t were overlapped will have
been fetched into local caches and the cost for the following accesses is reduced.
Hardware scouting can be more efficient, in terms of logic area consumed, than
simply increasing the size of caches, as illustrated in Figure 1.6.

1 .3 .4 D e sig n A b str a c tio n and R e p lica tio n

Two methods by which the design complexity problem can be addressed are
abstraction and replication. The International Technology Roadmap for Semi­
conductors [139], has continually outlined the need for both of these methods to
be increased by at least a factor of two in order to bridge the productivity gap.

Chapter 1. Introduction 31

1.3. Design Solutions

1.45
— S couting

— No Scouting

1.35

 —a— —
1.25

Buys 50 MByte*

Buy* 1 MByte

0.95
12% bettor performanc*

0.9

0.85

0.8
0.25 0.5 32 641 2 4 8 16

L2 C ache S ize (Mbytes)

Figure 1.6: Comparison o f hardware scouting and increasing cache size [27].

Abstraction can be addressed by designing systems at a higher level. Initially
circuits were designed at the transistor level, then at the gate level using libraries,
and more recently at the macro block level. With billion transistor budgets the
abstraction level may have to be raised higher once more, possibly to the processor
or multiple processor level. Next generation architectures can be composed of
multiple copies of the previous generations in order to best utilise the increase in
transistor space.

Replication within an architecture is also necessary. This can already be seen with
current generation chip multiprocessors. Sun’s Niagara processor [81] contains 8
identical Sparc in-order cores, IBM’s Power 5 [78] and Intel’s Core Duo [108]
architectures both contain two identical superscalar processors, and STI’s3 Cell
processor [127] contains one Power processor and eight synergistic processors. All
of these architectures have reduced the design time normally associated with a
new architecture through successful replication and reuse.

3STI - a collaboration by Sony, Toshiba and IBM

Chapter 1. Introduction 32

1.4. Summary

1.4 Sum m ary

In this introduction, the major challenges facing modern microprocessor design
have been outlined. These challenges and the demand for continual performance
gains, have motivated research within this area. Moreover some of the solutions to
these challenges have been discussed, and many come from a shift to parallelism
as a design paradigm. In this context CMP architectures have been shown to have
significant potential for future general purpose high performance processors.

1.5 R esearch A im s

The research presented in this thesis focuses on CMP architectures. An archi­
tecture is presented th a t scales beyond the current generation of CMPs by in­
corporating a multi-level cache hierarchy on a chip, allowing the notion of Chip
Multiple-Cluster (CMC) architectures. In order to facilitate this clustering, a
novel multi-level cache hierarchy is presented as well as a novel cache coherence
protocol to m aintain shared memory coherency. A scheme allowing locality based
task distribution is presented, showing th a t in such architectures task isolation
and task affinity can be used to improve performance.

1.6 C ontributions

The contributions made by the work presented in this thesis are summarised as
follows:

• A multi-level shared memory cache coherence protocol.

• Cache hardware to support a multi-level shared memory cache coherence
protocol.

• An instruction set extension and mapping mechanism for exploiting cache
locality between threads.

Chapter 1. Introduction 33

1.7. Thesis Structure

• A simulation platform capable of evaluating, through cycle-level simulation,
chip multiprocessor and chip multi-cluster architectures containing upto and
including 128 cores.

• A fully cache coherent study, using real multithreaded applications, of the
effects and performance of large scale chip multiprocessor and chip multi­
cluster architectures.

1.7 T hesis S tructure

The rest of the thesis is structured as follows:

Chapter 2 reviews the availability of parallelism within software and the exploita­
tion of parallelism within software and architecture design.

Chapter 3 outlines the Jamaica CMP which is the base architecture subsequently
extended in later chapters. The chapter also presents the simulation platform used
to investigate and analyse the architecture, and describes the software toolchain
supporting it.

Chapter 4 introduces a multi-level cache coherence protocol capable of maintain­
ing shared memory coherence across multiple on-chip clusters.

Chapter 5 presents the hardware extensions necessary to implement the coherence
protocol. In particular a deadlock free queueing mechanism is described.

Chapter 6 introduces an extension to the instruction set which allows software to
exploit locality by controlling the affinity of distributed threads.

Chapter 7 evaluates the performance of the multi-level coherence protocol, the
architecture supporting it, and the optimisations using locality aware task distri­
bution.

Chapter 8 concludes the thesis by summarising the contributions made and sug­
gesting future directions of research th a t could be conducted.

Finally, the Appendix includes details of the Jamaica instruction set for reference.

Chapter 1. Introduction 34

1.8. Publications

1.8 P u b lica tion s

A ccep ted Papers

• M. J. Horsneil, J. Zhao, I. Rogers, A. Dinn, C. K. Kirkham, I. Watson, Optimiz­
ing Chip Multiprocessor Work Distribution using D ynamic Compilation, Euro­
pean Conference on Parallel and Distributed Computing, Rennes, France, August
28-31, 2007. Lecture Notes in Computer Science, Volume 4641/2007, pages 258-
267.

• I. Rogers, M. J. Horsneil. I. Watson, Virtualization and chip multiprocessor m em ­
ory management: the JA M A IC A architecture, 5th UK Memory Management Net­
work Workshop, University of Glasgow, UK, July 2005.

• M. J. Horsneil. I. Watson, Harnessing Java fo r Novel Chip-Multiprocessor Archi­
tecture Sim ulations, PREP2005 Conference, Lancaster, UK, March 2005.

A bstracts

• M. J. Horsneil. I. Watson,■ Simulating the Jamaica CMP Architecture, HiPEAC
AC ACES, L’Aquila, Italy, July 2005.

• M. J. Horsneil, I. Watson, Cycle-Accurate) Distributed Chip Multiprocessor S im ­
ulation , PREP2004 Conference, Hertfordshire, UK, March 2004.

Chapter 1. Introduction 35

CHAPTER 2

Application and Architectural Parallelism

W ith the gains available from conventional uniprocessor architecture techniques
diminishing with each successive generation of processor technology, parallel com­
puter architectures are being embraced by industry and researchers to provide
scalable, consistent performance increases.

Parallel architectures consist of multiple processing elements th a t cooperate in
order to solve problems, ideally in a shorter period of time than solving the
problem using a single processing element alone. There exist three constraints on
the performance attainable from a parallel architecture: the available parallelism
in the application, the parallelism available in the hardware and the efficiency
and nature of distributing and scheduling parallel work.

2.1 A p p lication Parallelism

For a parallel computer architecture to realise any speed-up during the execution
of a given workload, the workload must to some extent be amenable to paralleli-
sation. The amount of an application th a t can be successfully parallelised and

36

2.1. Application Parallelism

executed concurrently on a parallel architecture determines the extent to which
the parallel architecture is capable of reducing the overall execution time.

2 .1 .1 A m d a h l’s Law

The correlation between the amount of parallelism in a given code and the maxi­
mum speedup from parallel execution is commonly referred to as Ahmdahl’s Law
[4], and is a demonstration of the law of diminishing returns. The maximum
theoretical speedup 5, attainable from running an application on N processors,
is shown in Equation 2.1, where P is the percentage of the code th a t can be
parallelised.

s (2,1)

W hen Amdahl’s law is applied, as shown in Figure 2.1, applications containing
large percentages of parallel code sections do not guarantee large performance
speedups. W hen P = 0.9, th a t is 90% of the code in a target application is
amenable to parallelisation, and assuming no overheads associated with the par­
allel execution of the code, a 16 processor machine realises a speedup of less than
7. This result may initially appear disappointing, however, for the reasons out­
lined in Section 1.2, it may be infeasible to design and build a processor th a t can
run at 7 times the clock frequency, whilst remaining inside a given power budget,
therefore it may be more cost and time effective to replicate multiple processing
cores from an existing design, in order to achieve the additional performance.

2 .1 .2 Im p lic it an d E x p lic it P a ra lle lism

W ith the amount of parallelism available in an application determing the amount
of speedup attainable on a parallel architecture, it becomes essential to locate or
introduce parallelism into an application. Locating parallelism within existing
code is referred to as exploiting implicit parallelism, introducing or programming-
in parallel sections of code is referred to as exploiting explicit parallelism.

Chapter 2. Parallelism 37

2.1. Application Parallelism

16 p=i

P=0.99

P =0.95

P =0.9

P=0.8

P = 0 .5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No. of processors (n)

F igure 2.1: A m dahl’s Law: Parallel speedup (S) vs. parallel fraction (P).

Im plicit Parallelism

Writing programs without concern for how they map onto a given parallel ar­
chitecture has obvious benefits. However, without explicity marking sections in
the code as being parallel, a good automated strategy needs to be employed in
order to decide when to fork parallel computation. Much work has been done in
this area, with static parallelising compilers [122, 56, 16, 59] and also dynamic
run-time recompilation techniques [136, 41, 172], ranging from conservative ap­
proaches [37, 121, 120] where all dependencies must be guaranteed before applying
a given parallelisation technique to liberal speculative techniques [57, 135, 148]
tha t speculate on dependencies, predict values and roll-back on dependency vio­
lations or value misspredictions.

E xplicit Parallelism

Implicit parallelism, whilst being an attractive approach to locating parallelism,
often under performs as it either extracts parallelism conservatively, missing po­
tential performance gains, or it extracts parallelism too liberally and then wastes

Chapter 2. Parallelism 38

2.1. Application Parallelism

time cleaning up speculative state changes. Additionally the performance of im­
plicit techniques are often hard to reason without a solid understanding of the
underlying compiler or runtime execution environment.

An alternative approach is for the programmer to annotate a program in order to
indicate to the compiler and runtime execution environment th a t parallel com­
putation might be beneficial. Most high-level programming languages support
abstractions for implementing concurrency such as the concurrency package [94]
in Java, and the POSIX thread library [21] in C and C + + . Using such libraries
it is possible for the programmer to abstract away much of the detail of the
underlying implementation and concentrate on writing parallel applications.

Unfortunately explicit parallelism is often conservative because critical sections of
code need to be locked, as incorrect locking can result in incorrect program exe­
cution, despite the fact th a t the majority of execution would succeed without the
locks in place. Much work has been done looking at alleviating the cost of locks
[133], lock-free synchronisation [86] and data structures [64] and more recently
a resurgence in transactional memory [65, 61, 5, 134] where locking structures
are removed entirely and the concept of a transaction is introduced. A transac­
tion is a body of code th a t either completes, in which case all of its changes are
committed, or fails and therefore none of the changes are committed.

2 .1 .3 G ran u larity o f P a ra lle lism

In general whilst parallelism is either implicit or explicity defined in an applica­
tion, there also exists a range of granularity at which parallelism can be defined
or extracted.

In stru ction Level Parallelism

Arguably the finest grain of parallelism exploitable in an application is instruction
level parallelism (ILP). ILP exists where multiple instructions within a sequence
are independent and can therefore be executed concurrently. Figure 2.2 and 2.3
show two simple sequences of 3 instructions. In Figure 2.2 all three instructions
are independent; there are no da ta dependencies between them, and they could all
be executed in parallel. In Figure 2.3 however, the instructions must be executed

Chapter 2. Parallelism 39

2.1. Application Parallelism

in sequence as the second instruction consumes the result of the first, and the
third instruction consumes the result of the second.

LOAD R l, 3 2 [R2] ADD R3, R3} #1
ADD R3, R3, #1 ADD R4, R3, R2
SUB R4, R4, R3 STORE 0 [R 4] , RO

F igure 2.2: A simple code sequence F igure 2.3: A simple code sequence
amenable to IL P execution. containing no ILP.

The amount of ILP within an application varies widely depending on the type of
application. A large amount of research has been done looking a t locating ILP
in applications [77, 167, 166, 24], and exploiting ILP using both compile-time
optimisations [99, 70] and architectural innovations [156, 100].

D ata Level Parallelism

D ata Level Parallelism (DLP), also referred to as SIMD [48], exploits parallelism
in applications where a single operation is applied to multiple data sets concur­
rently. Scientific applications tha t work on massive vectors or matrices are often
amenable to data-parallelism optimisations, as are many image and signal pro­
cessing applications [151]. DLP is usually fairly fine-grained, as multiple data
elements or registers are often processed using a single instruction and as such is
usually exploited using instruction set extensions. Most modern microarchitec­
tures contain vector specific instructions within their instruction set architecture,
for example Intel’s MMX [126] and later SSE(l-4), AMD’s 3DNow! [118], Pow­
erPC ’s AltiVec [39], Sun’s VIS [157] and Hewlett-Packard’s MAX-2 [96].

Figure 2.4, presents a loop from the MPEG encoder [110]. The loop is performing
a sum of absolute differences calculation on the arrays r e f and cu rr . After scalar
expansion and loop fission the two loops shown in Figure 2.5 are formed. The first
loop is then amenable to data level optimisations, as a subtraction is being applied
on multiple datasets, in Figure 2.5 it is assumed tha t the underlying architecture
has the capability to dispatch four substructions concurrently and so the loop
has an unrolling factor of 4. Exploiting DLP on multimedia applications, such as
MPEG4 encode/decode and H.264 decode has shown speedups in performance
by upto 2 times [54, 95].

Chapter 2. Parallelism 40

2.1. Application Parallelism

f o r (i = 0 ; i< 16; i+ = 4) {
T [i+ 0] = r e f [i+ 0] - c u r r [i+ 0]
T [i+ 1] = r e f [i+ 1] - c u r r [i + l]

f o r (i = 0 ; i< 16; i+ +) { T [i+ 2] = r e f [i + 2] - c u r r [i+ 2]
l o c a l d i f f = r e f [i] - c u r r [i] ; T [i+ 3] = r e f [i + 3] - c u r r [i+ 3]
d i f f += a b s (l o c a l d i f f) ; }

>
f o r (i = 0 ; i< 1 6 ; i+ +) {

d i f f += abs(T [i]) ;
>F igure 2.4: Inner loop o f the motion

detection algorithm used in M PEG en­
coding, calculation o f the sum of abso­
lute differences. F igure 2.5: Inner loop after scalar

expansion and loop fission. The first
loop is now amenable to data level par­
allelism optimisations.

Loop Level Parallelism

Another form of parallelism exploited by both implicit and explicit optimisation
techniques is Loop Level Parallelism (LLP) [3, 89, 12]. LLP fits into the MIMD
category in Flynn’s taxonomy [48]; the total iterations of a loop being divided
amongst the multiple processors in a multiprocessor system, and executed concur­
rently. Until recently gains from LLP were limited because of fine-grain synchro­
nisation and loop-carried dependencies [98], limiting the applicability to loops
amenable to course-grained division. More recently however the reduction in
communication latencies between multiple processors, especially those integrated
in the same chip or multi-chip module, has allowed loop level optimisations to be
applied on smaller loops exhibiting fine-grained parallelism [172].

T hread Level Parallelism

Perhaps the coarsest grain of parallelism exploitable w ithin applications is Thread
Level Parallelism (TLP). TLP is the parallelism inherent in an application tha t
runs multiple threads of execution concurrently. TLP has traditionally been
exploited in commercial applications, for example databases and web servers,
where system inpu t/ou tpu t is a generally a limiting factor on performance. By
running multiple threads in parallel, these applications are able to hide the latency
incurred by the inpu t/ou tpu t, and therefore increase the overall throughput of

Chapter 2. Parallelism 41

2.2. Architectural Parallelism

the application [85].

More recently with the advent of chip multiprocessors, exploiting TLP has become
an im portant source of performance gain within the desktop market. Several
studies have shown th a t upto 1.4 times speedup via TLP exists even amongst
the threads within common desktop applications [46, 47], however the level of
TLP present is only sufficient to provide performance speedups on dual or quad
processor architectures.

Like ILP and LLP, TLP is also limited by data and control flow dependencies.
In an attem pt to overcome some of these dependencies and hence extract more
TLP from existing applications much work has been done looking at speculating
on data dependencies [148, 119, 146, 147, 173], a technique referred to as Thread
Level Speculation (TLS). TLS allows sections of code th a t can not be guaran­
teed as independent at compile- or run-time to execute speculatively in parallel.
S tate changes are locally buffered, and results are only committed when no other
threads exist th a t can change the state previously seen by a speculative thread.
Studies have shown the TLS can extract between 1.74-2.1 times speedup for
floating point applications, and 1.23-1.7 times speed-up for integer applications
[130, 74],

2.2 A rch itectural P arallelism

Having outlined in the previous section techniques for exploiting parallelism
within applications, the following sections discuss how parallel execution is sup­
ported in hardware.

2 .2 .1 B it L evel P a ra lle lism

Of all the hardware techniques th a t exploit parallelism, bit level parallelism is the
finest-grained and is usually employed inside logic blocks within an architecture.
Exploiting bit level parallelism, whilst not able to reduce the to tal number of
cycles required to execute a given application, is often used to reduce the critical
path and hence allows for increased operating frequencies.

Chapter 2. Parallelism 42

2.2. Architectural Parallelism

mux mux

mux

Figure 2.6: 4~bit ripple-carry adder. F igure 2.7: 4~bit carry-select adder.

A simple example would be the implementation of a 4-bit. full-adder which can be
implemented as a ripple-carry adder, shown in Figure 2.6. In a ripple-carry adder
all but the first in the sequence of the 1-bit adders must wait for a carry input
before producing an output. In order to exploit bit level parallelism a carry-select,
adder can be used as an alternative, shown in Figure 2.7. In a carry-select adder
two additions are computed for each bit pair, using a carry of 0 and 1. The correct
result, is later selected and propagated when the true carry value is known.

2 .2 .2 D a ta L evel P a ra lle lism

As mentioned previously, Section 2.1.3, additional SIMD instructions have been
added to most, modern microarchitectures to better support common multimedia
algorithms. These algorithms generally consist of operations on values repre­
sented by 8-, 16-, and 32-bit integer or fixed-point data types, which are typically
smaller than the maximum datapath width, 32- or 64-bits or greater. Also men­
tioned in Section 2.1.3, SIMD optimisations can account for 2 times speedup
within multimedia applications, while the addition of SIMD support in hard­
ware has been shown to require minimal additional logic, in the UltraSparc I this
additional logic increased the die area by approximately 3% [158].

Figure 2.8 shows a high-level abstraction of the DLP within the data path used
by the Streaming SIMD Extensions (SSE) instruction psadbw, within compliant

Chapter 2. Parallelism 43

2.2. Architectural Parallelism

mm1 mm2
0 63

a8 a5

absolute difference
absolute difference

add 8 pairs

Figure 2.8: Data Level Parallelism: the datapath inside the execution of the psadbw
SSE2 instruction.

Intel architectures. Eight bytes are packed into each of two 64-bit registers.
The architecture is then capable of performing the sum of differences calculation
on all eight pairs of bytes with a 4-cycle latency, replacing 8 subtractions and
accumulations and handling the absolute value without using branch instructions.
The loop presented in Figure 2.4, using the SSE2 instructions and associated
hardware, can be reduced to just two psadbw instructions. W ithin the MPEG
encoder’s motion detection algorithm this can be used to produce a factor of 2
speedup [71].

One limitation of DLP support in hardware is tha t it is only invoked by an
application tha t has already been compiled or coded to include the extended
SIMD instructions, extracting DLP dynamically at runtime is impractical. This
means th a t when extensions are added to an instruction set architecture, and
extra logic blocks are added to the hardware, application code must be rewritten
or recompiled in order to use it.

2 .2 .3 In str u c tio n L evel P ara lle lism

Section 2.1.3 introduced a simple sequence of instructions tha t is amenable to ILP.
In order to illustrate how ILP can be exploited in hardware, it is first necessary
to introduce a simple pipelined processor.

Chapter 2. Parallelism 44

2.2. Architectural Parallelism

Sim ple P ipelin ed Processor

The simple pipelined processor, shown in Figure 2.9, is a simple MIPS-like [79],
control-flow, load-store architecture with a 5-stage pipeline. The Fetch stage is
responsible for loading instructions from memory and maintaining the current
program counter. The Decode stage decodes the instruction, fetches register
contents and determines when the instruction can be issued. The Execute stage
performs the operation. The Memory stage is responsible for loading or storing
data into the memory hierarchy. Finally the Writeback stage commits the results
of the operation back into the registers.

Fetch Decode Execute Memory Writeback

Figure 2.9: A simple pipelined architecture: showing pipeline stages, latches and data-
forwarding paths.

In the simple pipelined processor, shown in Figure 2.9, ILP can not be exploited as
there is no opportunity to execute multiple instructions concurrently, see Figure
2 . 1 1 .

Superscalar and V L IW Processors

In order to exploit ILP a processor must be able to issue and execute multiple
instructions per cycle from the same instruction stream. Two broad classes of
architecture, VLIW [45] and superscalar [7, 124, 123] have been designed around
the concept of multiple-issue pipelines, an example of which is shown in Figure
2 . 10.

Superscalar processors were originally developed as an alternative to vector pro­
cessors, aimed at achieving vector processor performance but from exploiting ILP
rather than DLP. In the pipeline of a superscalar processor upto n instructions can

Chapter 2. Parallelism 45

2.2. Architectural Parallelism

be issued each cycle, as illustrated in Figure 2.11, equating to a maximum achiev­
able throughput of n instructions per cycle. In an architecture where n > 3 and
where the right functional units were available, all of the instructions in the code
sequence listed in Figure 2.2 could be issued in a single cycle latency. Achieving
3 way ILP.

Integer Unit
EX

FP/lnteger multiply
M1 M2 M3 M4 M5 M6 M7

MemoryFetch Decode WriteBack

A2 A3 A4

FP/lnteger divider
D2 D22 D23 D24

F igure 2.10: A multiple-issue pipeline, with multiple functional units.

In order to utilise an n issue superscalar processor efficiently one instruction needs
to be issued to each functional unit in each cycle. Since the amount of ILP within
a basic block1 of code is small, instructions must be selected across basic blocks in
order to keep the functional units busy. Compilers usually employ optimisations
such as loop unrolling, code motion and register renaming, in order to exploit as
much ILP as possible.

Slngle-issue scalar piplinaThread A

Multiple-issue VLIW/SuperecalarThread A

Cycles

Figure 2.11: Instruction scheduling within a single-issue and superscalar/VLIW pro­
cessor.

'A basic block is a sequence of code that has one entry point, one exit point, and contains
no jumps or branches.

Chapter 2. Parallelism 46

2.2. Architectural Parallelism

Superscalar processors can be subdivided by their scheduling policy. Statically
scheduled superscalar processors are able to issue multiple instructions from a sin­
gle instruction stream, where dependencies and hazards are resolved in the decode
stage of the pipeline, such th a t the instructions are issued in the order they ap­
pear in the instruction stream. Dynamically scheduled, out-of-order, superscalar
processors allow instructions to be issued in any order, as long as dependencies are
maintained, regardless of whether preceding instructions have been issued. This
simplifies the job of the compiler as some dependencies can only be determined at
runtime, it allows the processor to tolerate dynamic cache behaviour and associ­
ated latencies and allows code compiled for a particular pipeline configuration to
run efficiently on a different pipeline. The flexibility of dynamic scheduling results
in further exploitation of ILP and therefore higher performance, than statically
scheduled superscalar or VLIW processors, but requires substantial increases in
the complexity of the hardware.

This complexity of dependence resolution amongst the inputs into and outputs
from the multiple functional units tha t form a superscalar architecture increases
quadratically with the number of functional units. This combined with diminish­
ing returns from attem pting to exploit wide-issue ILP have limited most super­
scalar architectures to between 2- and 8-way issuing.

2 .2 .4 M u ltith re a d in g

In single-issue, VLIW and superscalar architectures multithreading, tha t is switch­
ing between multiple instruction streams, is achieved through software support
of either cooperative or preemptive scheduling. These scheduling schemes rely
on either the operating system or the application itself to concede use of the
processor to another thread at regular intervals. In order for this to happen the
running thread is required to save all of its current working sta te2 into memory
before the context can be switched. The replacement context is then required to
load all of its previous working state into registers prior to continuing its execu­
tion of a thread. These software based context switches take many hundreds of
cycles to complete and are only invoked once a thread has had many thousands

2The working set includes the registers and context specific state, such as the program count,
stack pointer.

Chapter 2. Parallelism 47

2.2. Architectural Parallelism

of cycles of processor use. The combination of the memory gap, as mentioned
in Section 1.2.2, and increasingly multithreaded workloads, created the demand
for processors capable of switching between one thread of execution rapidly to
hide the memory latency of another. These multithreaded architectures are capa­
ble of issuing instructions from multiple threads, and can therefore exploit TLP
during otherwise wasted memory delay cycles. The manner in which threads
are scheduled for execution within a multithreaded processor defines two types
of multithreading, Interleaved MultiThreading (IMT) and Block MultiThreading
(BMT).

Interleaved M ultithread ing

IMT, also referred to as fine-grained multithreading, schedules an instruction
from each of the architecturally supported thread contexts each cycle, see Figure
2.12, leading to a context switch delay of zero cycles. Initially the number of
threads supported by IMT processors was equal to the number of pipeline stages.
This eliminates control and data dependencies between pipeline stages and re­
moves the need for complex hardware interlocking or da ta forwarding. W ithout
these complex paths the critical paths in the pipeline are reduced and it can
therefore be clocked at a higher frequency. A disadvantage to the original inter­
leaved m ultithreading scheme as implemented in the HEP architecture [142], is
th a t single-threaded execution was poor as a thread could only utilise the pipeline
every n cycles, where n is the number of hardware supported threads. Two tech­
niques proposed in the literature overcome this limitation, the first dependence
look-ahead [155] allows the compiler to tag each instruction with a number of bits
informing the pipeline how many following instructions are independent allowing
each context to gain more continuous time in the pipeline. The second technique
Interleaving [92], added data forwarding paths and hardware interlocking allowing
contexts to be switched on a cycle by cycle basis, but also efficiently supporting
single-threaded execution. This form of multithreading is implemented in Sun’s
Niagara architecture [81],

Chapter 2. Parallelism 48

2.2. Architectural Parallelism

Thread A --------------- ►

Thread A --------------- ►

A A i A A Single-issue scalar pipline

Interleaved multithreading (IMT)

Context Switches

M l !
Thread B --------------- ►
Thread C --------------- ► A B C D A B C

Thread D --------------- ►
Context Switch

Thread A --------------- ►
Thread B --------------- ►
Thread C --------------- ► A A g H B B B B Blocked multithreading (BMT)

Thread D --------------- ►
Cycles

Figure 2.12: Scalar multithreading scheduling schemes.

Block M ultithread ing

BMT, also referred to as coarse-grained multithreading, schedules instructions
from a fixed context until a specific event triggers a context switch, usually a
long-latency operation. When only 1 context is runnable no context switches are
triggered and the context achieves good single-threaded performance. The trigger
event can either be static or dynamic. A statically triggered BMT processor
switches contexts when a particular instruction is issued. These instructions can
either be specific context switch instructions or instructions within the instruction
set tha t are likely to cause long latency stalls, such as loads, stores and branches.
Dynamically triggered BMT processors switch context when a dynamic event
occurs such as a cache miss, see Figure 2.12, an interrupt or after the context has
run for a given quantum, say a thousand cycles. The advantage of static BMT
is tha t the cost of the context switch is still minimal, zero or one cycle, whereas
dynamic multithreading requires the pipeline to be flushed causing multiple delay
cycles.

In general BMT is less efficient than IMT especially when used in deep pipelines
[91], due to the cost of flushing pipeline stages following a context switch.

Chapter 2. Parallelism 49

2.2. Architectural Parallelism

2 .2 .5 S im u lta n eo u s M u ltith rea d in g

Simultaneous M ultiThreading (SMT) [159] is the natural hybrid formed by in­
cluding multithreading techniques within a superscalar architecture. A SMT
processor is capable of issuing multiple instructions from multiple threads each
cycle, as shown in Figure 2.13. Each hardware context can compete each cycle for
all of the available functional units, allowing both ILP and TLP to be exploited,
increasing pipeline utilisation and hence overall performance.

___ _
A A A 1 A A Processor 0

B B B B ■ B B Processor 1
Chip Multiprocessor

I n roao □ ■ w

C C C C
(CMP)

Processor 2

T h read n ------------------- D D D D D D D Processor 3

A_ l° l B D C

4-is8ue Simultaneous
Multithreaded (SMT)

Processor

Thread A -------------- ►
A C B A C B D

1 i I R k K J d w

Thread C -------------- ►
Thread D -------------- ►1 - D A A C | B

D B B D A A A

Cycles

Figure 2.13: Instruction scheduling within an S M T processor and a CMP.

2 .2 .6 C h ip M u ltip ro cesso rs

As the number of transistors integrated onto a single silicon chip has increased,
the ability to integrate multiple complete processors and a memory hierarchy on
the same chip has become feasible. Many Chip Multiprocessor (CMP) designs
have been proposed [44, 60, 82, 32, 103, 143, 145, 148, 13] and more recently
implemented [81, 127, 78].

CMPs initially consisted of multiple single-issue processors, which were able to
exploit TLP, but could not hide the latency of memory accesses amongst each
thread. As the technology has allowed, however, the processing cores used have
become more complex, and now multithreaded and even superscalar cores are

Chapter 2. Parallelism 50

2.3. Summary

replicated on a single chip, allowing the architecture as a whole to exploit TLP,
ILP and even memory level parallelism (MLP).

CMPs have two distinct advantages over a SMT, VLIW and superscalar archi­
tectures capable of exploiting the same level of parallelism. Firstly the design
is less complex, each processor integrated on the chip can be fairly simple and
is replicated. If necessary much of the complication of superscalar and SMT ar­
chitectures can be avoided by opting for multithreaded scalar processors. This
simplicity allows for higher clock frequencies and eases design validation. Sec­
ondly the power requirements within a chip multiprocessor are often far lower
than the equivalent performing superscalar processor [108].

These advantages are balanced against the necessity to m aintain memory co­
herency across multiple processors, requiring cache coherence protocols and shared
or distributed memory hierarchies, which increase the complexity of cache control
logic, however not to the same extent as the additional logic requirements of a
centralised superscalar wide-issue design.

2.3 Sum m ary

This chapter has reviewed the availability of parallelism within software and the
exploitation of parallelism within processor and architecture design. ILP has been
shown to provide benefits in the execution of single-threaded applications but is
limited by the availability of independent instructions within those applications
and the poor scalability of the complex control structures required to exploit
it within processors. TLP, on the other hand, can be explicitly defined and
extracted at multiple levels of granularity, and as such is easier to exploit and is
more abundant within modern workloads. Architectures th a t exploit TLP can
do so by hiding memory latency or by truly executing multiple threads in parallel
using an SMT or CMP architecture.

The next chapter reviews the Jamaica CMP architecture, introduces the jamsim
simulation platform developed to simulate it, and briefly describes the software
environment used to run applications on the Jamaica architecture.

Chapter 2. Parallelism 51

CHAPTER 3

Jamaica Chip Multiprocessor and Software Environment

In the previous chapter several techniques for extracting parallelism, from appli­
cation code, and methods for exploiting this parallelism within processor archi­
tectures were discussed. This chapter reviews the Jam aica CMP architecture, a
CMP with multithreaded cores and hardware support for lightweight work distri­
bution. The architecture is able to exploit thread level parallelism and hide the
latency of memory operations increasing parallel throughput.

The Jam aica CMP architecture provides a base design for the work presented in
subsequent chapters.

3.1 T he Jam aica C hip M ultiprocessor

The Jam aica1 architecture [170], as shown in Figure 3.1, is a CMP architecture
consisting of N cores integrated on a single chip implemented in a cycle accu­
rate simulation platform. Each core has its own Level 1 (LI) instruction and
data cache. These private caches are linked by an on-chip bus, employing the

1 Jamaica is an acronym for JA va M achine A nd Integrated Circuit Architecture.

52

3.1. The Jamaica Chip Multiprocessor

MOESI coherence protocol, to a unified Level 2 (L2) cache and on-chip memory
controllers. Bus snooping is used to implement load-linked and store-conditional
instructions, as per the Alpha architecture [140], which support the implemen­
tation of critical sections within application code. Several additional features of
the architecture aid the execution of object-oriented and multithreaded codes.

1$ Instruction cache
D$ Data cache

External
RAM

i
L2/M em ory
C on tro lle r

Ll Bus**-*---- *
V V

L2
C ach e

1$ D$ 1$ D$ 1$ D$ 1$ D$

co re co re co re ■ ■ ■ co re
0 1 2 n

F igure 3.1: The Jamaica single chip multiprocessor.

3 .1 .1 M u ltith re a d in g

Unlike many other CMP architectures [60, 13] each core within Jam aica is multi­
threaded to improve overall throughput. M ultithreading gives the appearance of
having multiple virtual processors per core by supporting multiple thread contexts
in hardware. Each context maintains a set of context specific registers, containing
register, interrupt and other thread specific state. Each context shares the core
pipeline and Ll private instruction and data caches, illustrated in Figure 3.2.

The contexts within a core can reside in one of five possible states: runnable,
stalled, waiting, empty and idle. The transitions between the five states is shown
in Figure 3.3. The fetch stage of the core pipeline is responsible for fetching
an instruction for the currently active context, chosen from the list of runnable
contexts.

Jamaica employs a blocked, switch-on-cache-miss m ultithreading policy [161],
extended by an additional switch-on-timer policy. The switch-on-timer policy

Chapter 3. Jamaica CMP and Software Environment 53

3.1. The Jamaica Chip Multiprocessor

Fetch Decode Execute Memory Writeback

Bus
Interface

RegFile

Inst
Cache

Reg
LUT

Decode ALU

Bus
Interface

Data
Cache

PC Thread
Mux CtxRegs Select

x 4 Logic

C ache Miss I
Quantum Timer I
Interrupts

Figure 3.2: Jamaica core: Multithreaded pipeline and support structures.

WAIT

lock address
written by another
context

following a LDL_L
on lock address

cache miss
wake-up interrupt

EMPTYy RUNNABLE STALLED

cache response

receive work
via THB/THJ

finish work
release token

IDLE

Figure 3.3: Jamaica core: Context running states.

Chapter 3. Jamaica CMP and Software Environment 54

3.1. The Jamaica Chip Multiprocessor

triggers a context switch event when a context has been running for 1,024 cycles
unhindered by cache misses. This maintains forward progress in the presence
of spin-locks and the absence of an implicit context switch instruction. A round
robin policy is used to rotate the active context from the list of runnable contexts
for scheduling into the pipeline. If no contexts are runnable a t a context switch
event, the core itself becomes idle. A stalled context becomes a candidate for
scheduling once the stalled memory access is resolved.

Context switching can help to hide memory latency, by keeping the core busy
executing instructions from a runnable context during the memory stall incurred
by another context, improving the overall throughput. The policy employed by
Jamaica is most efficient when contexts suffer regular but not frequent cache
misses. In the presence of only one runnable thread no context switching occurs.

3 .1 .2 R e g is te r W in d o w s

To reduce the effects of frequent method calls within modern object-oriented
languages [160, 36], a large windowed register file is shared between all of the
contexts in a Jamaica core. The hardware supporting the register file implements
a register windowing scheme [125, 131, 52], based on the multi-windows proposal
[138]. The compiler can see 32 registers which are divided into four windows each
containing eight 32-bit registers.

• (%g0 - %g7) Global window, shared by all contexts on a core.

• (%xO - 7„x7) Extra window, private per context, statically allocated, non­
volatile across methods calls.

• (°/„10 - %i7) In window, private per context, dynamically allocated at each
method call, volatile across method calls.

• (°/0oO - °/0o7) Out window, private per context, dynamically allocated at
each method call, volatile across method calls.

Chapter 3. Jamaica CMP and Software Environment 55

3.1. The Jamaica Chip Multiprocessor

All the contexts on a core share the Global window, which is mapped directly
to the bottom eight physical registers2. Each context has a private Extra win­
dow, mapped into the physical register windows located directly above the Global
window. The In and Out window are allocated and released dynamically during
method calls. W hen a context is in the idle state it consumes only two windows
in the physical register file for the statically allocated Extra window and the bot­
tom allocated In window, allowing all other windows to be allocated to runnable
contexts.

C alling C onvention

Although compiler techniques, based on register colouring [31, 132], can reduce
the overheads associated with method calls, supporting register windows reduces
the need to save and restore registers on each call and return, and is still useful for
simplifying calling conventions. In Jamaica the Out registers of the caller method
overlap with the In registers of the callee method and so passing small numbers of
variables, six or fewer3, is handled implicitly, as illustrated in Figure 3.4. Passing
more values requires spilling and filling to the stack as per architectures not
supporting register windows.

R egister M apping

One of the disadvantages of register windows is th a t window indices, in Jam aica a
5-bit register index encodes the window indices, must be mapped to a register in
the physical set within the critical path of the decode stage which can prevent the
pipeline from being clocked at higher frequencies [125]. In Jam aica the register
operands decoded from an instruction are translated to physical addresses by a
context Look-Up-Table (LUT), illustrated in Figure 3.5.

Downstream of the decode stage, all register indexes are physical and therefore
data hazards and forwarding can occur using the same forwarding path and de­
tection logic found in architectures containing flat register files.

2 Additionally %g0 is hardwired to the value 0.
3 Only 6 registers are available for passing values as two registers are explicitly used to pass

the return PC, and the stack pointer.

Chapter 3. Jamaica CMP and Software Environment 56

3.1. The Jamaica Chip Multiprocessor

main multiply main
8 0 - 87 8 0 -8 7 8 0- 87

v o i d m a i n ()

{

7 2- 79 7 2- 79 7 2- 79

64-71 64-71 64-71

int a, b, c; 56 - 63 5 6- 63 5 6- 63
c = mul t ip ly(a , b);

}
48 - 55 4 8 - 55 4 8 - 55

4 0 - 4 7 1 [out 4 0 - 4 7 4 0 - 47

int m u l t i p o i n t a , int b)

{

;out 32 - 39 — ►jirT 32- 39 -Xout 3 2- 39

:in 24-31 24-31 iin 24-31

return a * b; 16 -23 16-23 16-23

} ! extra 0 8- 15 ! extra 08 - 15 [extra 08 - 15

[global 00 - 07 [global 00 - 07 [global 00 - 07

cal l return

F igu re 3.4: Jamaica core: Register windows, call and return overlaps.

global mapping table
Window R a g W w prav n u t pH

8 0 -8 7

7 2 -7 9

6 4 -7 1

5 6 -6 3
context

UUT
40 66

4 0 -4 7

outs
ins
extra 1 6 -2 3

virtual reg:
%\2

physical reg
34

global 0 8 -1 5

0 0 -0 7

DecodeFetch WritebackExecute Memory

F igu re 3.5: Jamaica core: Register windows; virtual to physical register lookup.

Chapter 3. Jamaica CMP and Software Environment 57

3.1. The Jamaica Chip Multiprocessor

W indow M anagem ent

Dynamic allocation of a new Out window occurs during a method call by setting
a pointer from the previous Out window to a currently free window. The free
window is then allocated and can not be used until it is released by a return.
Window allocation is not restricted to contiguous windows and so a backward,
prev, pointer is stored to trace back to the previous window on a return. A
forward, next, pointer is also stored. This is necessary as a window can be evicted
to the stack when all windows are allocated and a context attem pts a call. When
such an eviction occurs a previous frame present flag (pfp) is cleared to indicate
th a t the window has been spilled into memory.

These pointers are stored alongside the index mappings in a global mapping table,
shown in Figure 3.5.

3 .1 .3 L igh tw eigh t T ask D is tr ib u tio n

A novel feature of the Jamaica architecture is the hardware support for lightweight
task distribution. This hardware support consists of a ring interconnect connect­
ing all of the processing cores. The ring allows active contexts to locate idle
contexts to which tasks can then be distributed.

Idling C on texts

W hen an active context exits from the bottom of its current executing stack,
detected in hardware by a return from an In window th a t has no predecessor,
the context’s state changes from runnable to idle and a token is inserted into the
sequence of tokens circulating around the ring interconnect. There is no software
teardown prior to the release of the token, which leaves the resident software stack
in place in the context specific registers, ready to run when work is distributed
to the idle context. The token placed onto the ring simply contains the identity,
a unique co n tex t Id stored in a hardware fused register, of the context now in
the idle state.

Two additional instructions within the Jamaica instruction set are used by an ac­
tive context to locate an idle context, by requesting a token from the interconnect

Chapter 3. Jamaica CMP and Software Environment 58

3.1. The Jamaica Chip Multiprocessor

(4) snoop controller sees “0", context (3) task data setup in Out window
0 becom es runnable with task packet THJ bus broadcast "0" and task packet
placed in In window (ctxld, method_PC, stack_base, variables

a i \ L l Bus i k A
\ 1 \ r >r v

a

l$ D$ l$ D$

core ■ ■ ■ core
0 J

Token Ring
A
A

>
(1) context becom es idle
token "0“ released

(2) context requests token
TRQ aquires token “0"

F igu re 3.6: Jamaica core: Lightweight task distribution.

using a token request (TRQ), and then to distribute work to th a t context using a
thread jum p (THJ). The simple calling convention, mentioned in Section 3.1.2, is
also used during task distribution, the Out window being used to hold task setup
information as well as task input variables. When the THJ instruction executes, a
transaction is placed onto the shared bus, and the relevant snoop controller wakes
up the idle context, see Figure 3.6. If when executing the TRQ no other contexts
are idle, or a token is not acquired from the ring within a given number of cycles,
the TRQ instruction fails and the active context processes the work locally.

The average latency to find an idle context, if one is present, on an N core Ja­
maica architecture is ^ cycles, which for small numbers of N is significantly lower
than locating idle processors through a shared locked queue stored in memory.
Additionally the ring interconnect can be accessed in parallel, allowing multiple
cores to either release or request tokens concurrently.

3 .1 .4 B ran ch P re d ic tio n

Branch prediction in the Jamaica core is implemented using a simple 2-bit. satu­
rating up/down counter policy [171], indexed from a Least Recently Used (LRU)
evicted branch history table. The table is accessed during the fetch stage as part
of the calculation of the next PC. A hit in the branch history table alters the PC

Chapter 3. Jamaica CMP and Software Environment 59

3.1. The Jamaica Chip Multiprocessor

according to the 2-bit status. The branch is subsequently evaluated in the execute
stage of the pipeline, where the table is updated accordingly. Miss-predictions
are handled by flushing the pipeline and setting the PC to the correct branch
target.

update PC

search PC

Branch
History
Table

update BHT

Fetch Decode Execute Memory Writeback

branch miss
predict

Exception Bus

F igu re 3.7: Jamaica core: branch prediction.

In the Jam aica core, the delay between speculating on the branch target and
subsequently calculating the true target is only 2 cycles and so a context switch
is not triggered during this period. Branch prediction is however essential for
keeping the pipeline busy between context switches.

3 .1 .5 C oh eren t Shared M em ory H ierarch y

The Jamaica CMP has private Ll instruction (1$) and data caches (D$), con­
nected via a shared bus to a single shared L2 cache. Access to external memory
is through the integrated L2 cache and memory controller. All caches in the ar­
chitecture maintain sequential consistency to allow for standard shared memory
programming.

C ache C oherence

All caches in the Jamaica CMP are kept coherent by snooping a shared L1-L2
bus and cooperatively implementing a version of the Modified, Owned, Exclusive,
Shared and Invalid (MOESI) cache coherence protocol [153]. A cache line in the
Modified or Exclusive state is writeable, since it holds the only valid copy of

Chapter 3. Jamaica CMP and Software Environment 60

3.1. The Jamaica Chip Multiprocessor

data present in the system, the Modified and Owned states indicate that the
cache holding the line is responsible for writing the only updated dirty data
back to memory. The protocol used in Jamaica is based on features taken from
the Firefly, Dragon [8] and CRAC [154] protocols. In particular Ll cache to
cache transactions are allowed without updating memory, and ownership can be
transferred without informing the L2 cache or memory.

L 1-L 2 Shared Bus

All private Ll caches and the shared L2 cache and memory controllers are con­
nected by a shared bus. The bus implements a protocol allowing split, transactions
and transaction pipelining similar to the SGI Challenge’s Power2 bus [51]. Each
transaction is split into two distinct phases, request and response, allowing the
memory hierarchy to service requests during the delay due to a request missing
in the L2 cache and being serviced from main memory.

Bus Cycle

Request

Grant

Address, ID, lype

Data (128 bits)

Found/Excl/Own/Shared
and MAccept wires

Slave Request

Slave Grant

8

'-------p

I— r r

o

Transaction 1

j Transaction 2

zbcib
------ h,: /------

1 l\

s
JO

i
3Q)
IS

F igu re 3.8: Jamaica: Split transaction bus protocol.

The Jam aica shared bus implements an 8-cycle protocol, illustrated in Figure
3.8. The protocol allows pipelining of multiple requests, each starting at 1 cycle
intervals, with the condition tha t two requests for the same address can not occur
in sequence. This condition is required as the data and tags are in an unstable
state during cycles 6 and 7, the same cycles in which a subsequent transaction
would be checking the state of the corresponding cache line.

Chapter 3. Jamaica CMP and Software Environment 61

3.1. The Jamaica Chip Multiprocessor

Priority on the shared bus is given to requests originating from the L2 cache, all
other requests for access to the bus are fairly arbitrated by selecting the least
recently used cache. Requests tha t can not be responded to within the 8-cycle
protocol, those tha t miss in all Ll caches and the L2 cache, are responded to by
the L2 cache after the data is fetched from memory. The request and response
pairs are matched using the ID placed on the bus in cycle 3, a sequential number
unique to each cache.

Level 1 P rivate C aches

Each Ll private cache is shared by the multiple contexts supported by each core.
When a memory access misses in an Ll cache a context switch is triggered, as
mentioned in Section 3.1.1, and an entry is placed in the cache request table,
shown in Figure 3.9. The request table is responsible for progressing outstanding
requests onto the shared bus and for handling the responses. A small number of
buffers are provided for lines requiring writeback in the Owned or Modified state.
The writeback buffer is also used as a small victim cache when unmodified data
is evicted.

L1/L2 shared bus

Output Buffer
Bus Controller

Input Buffer

Tags and Data

Core Controller

core

F igu re 3.9: Jamaica: Level 1 private cache.

Chapter 3. Jamaica CMP and Software Environment 62

3.1. The Jamaica Chip Multiprocessor

L evel 1 A tom ic P rim itives

Atomic primitives, used to enforce critical code sections, are implemented using
load-linked (LDL_L) and store-conditional (STL„C) pairs, as illustrated by the code
sequence Figure 3.10. Inside each L l cache a small lock table is maintained,
containing one address and lock flag per context. The flag is set as part of the
LDL_L operation. A subsequent STL_C is allowed to complete, committing the
data word and setting an acknowledgement value of 1 in an allocated register, if
the lock flag is still set. A write to the lock address by any other context in the
architecture in the intervening period resets the lock flag, and the STL_C fails,
writing a value 0 into the allocated register.

lo c k _ a q u ir e :
LDL_L °/0i l , 0(% i0) ! lo a d lo c k
BNE °/0i l , w a it_ r e le a s e ! w a it i f n o n -zer o
ADD °/„g0, 1 , °/0i l
STL„C 70i l , 0(% i0) ! t r y t o a c q u ir e
BEQ “/ o i l , lo c k _ a q u ir e ! t r y a g a in i f s t o r e f a i l e d
RET

w a i t _ r e l e a s e :
WAIT Iw a it f o r lo c k r e le a s e
BR lo c k _ a q u ir e !r e t r y lo c k a q u ire

F igu re 3.10: Jamaica: Lock acquisition code.

Level 1 Synchronisation

For synchronisation the LDL_L can also be paired, in the Jam aica instruction set,
with the WAIT operation, also shown in Figure 3.10. After setting the lock flag
with a LDL_L the WAIT instruction sets the context state to wait. The context
is unavailable for scheduling until the lock address is w ritten to by another con­
text. In practice the WAIT operation is used sparingly, however, as multithreaded
applications containing more software threads than hardware supported contexts
require th a t multiple threads are serviced by each context, and disabling a context
with a WAIT could lead to starvation and dead-lock.

Chapter 3. Jamaica CMP and Software Environment 63

3.1. The Jamaica Chip Multiprocessor

Level 2 Shared C ache

In the Jamaica CMP the L2 shared cache is less complex than the Ll caches.
The L2 cache is unified, and is accessed via the shared L1-L2 bus. The L2 cache
only responds to bus transactions for which the data is not contained in the Ll
caches. This occurs when a transaction is in progress and during cycle 5 of the
bus protocol, see Figure 3.8, the Found wire is not set high. The L2 cache either
responds with the data in following cycles by setting the Found flag and state
flags (Excd, Owned , Shared) high, or sets the memory accept (M A ccept) flag to
high in which case the request is forwarded to memory by the L2 controller, see
Figure 3.11.

RAM

Memory Controller

P i l i
Tags and Data

Bus Controller

L1/L2 shared bus

F igu re 3.11: Jamaica: Shared level 2 cache and memory interface.

If a bus request for a line not in the Ll or L2 caches occurs when the mem­
ory queues are full, then neither the Found nor the M A ccept wire are set high.
The Ll cache must subsequently re-attem pt the same request after a subsequent
successful arbitration for the bus.

3 .1 .6 H ard and Soft In terru p ts

Support is provided within Jamaica for handling a limited number of hardware
and software generated interrupts. Interrupts vector a contexts execution path
to handler code located at the bottom of memory, addressed by the type of

Chapter 3. Jamaica CMP and Software Environment 64

3.2. Jamaica Core Revisions

interruption, A software interrupt, SIRQ, can be delivered to any context in the
runnable, waiting, stalled or empty states. The SIRQ is delivered to a context by
the shared bus in a similar manner to the THJ, without a data payload. Contexts
in the idle state can only be restarted using a THJ, therefore a SIRQ to an idle
context is ignored.

Jamaica currently employs a single software interrupt, used to wakeup all contexts
and vector them to a boot code sequence in order to setup a minimal stack, and
a single hardware interrupt to trap on accesses to invalid memory addresses.

3 .1 .7 D e v ic e s

As Jamaica is currently only a simulated architecture, there is no defined device
interface, and hence no associated device hardware interrupts. The simulation
of Jamaica enables calls to the underlying operating system, for I/O operations
through a set of defined built in operations. These operations are called within
the architecture by subroutine jumps, JSR, into small negative addresses. The
simulator recognises this address range and the calls are bypassed through to the
underlying operating system upon which the simulation platform is running.

3.2 Jam aica Core R evisions

Having outlined the Jamaica CMP architecture in Section 3.1, this section de­
scribes several revisions tha t this thesis has made to the core to improve and
simplify the architecture.

3 .2 .1 In ter lea v ed M u ltith re a d in g

As mentioned in Section 3.1.1 the Jamaica core architecture supports the exe­
cution of multiple hardware-supported contexts within the same pipeline using
blocked switch-on-cache-miss multithreading. Interleaved execution of multiple
contexts within the Jamaica architecture has been added providing further sup­
port for the execution of fine-grained threads.

Chapter 3. Jamaica CMP and Software Environment 65

3.2. Jamaica Core Revisions

The IMT policy is similar to the scheme presented by Laudon et al. [92] and the
scheme implemented in the Niagara (Sparc T l) architecture [81, 152]. The active
context is selected for execution every cycle from the set of runnable contexts.
This allows multiple contexts to inhabit the pipeline concurrently and requires ad­
ditional exception handling logic to determine the context from which exceptions
are triggered.

Additionally the policy adds another context state, long -latency s ta ll, similar to
the LLI state in the T l architecture [152]. This state inhibits the context from
being scheduled during operations th a t require multiple cycles. These opera­
tions include TRQ, JSR, BSR and RET. In the execution of the TRQ instruction, a
configurable number of poll-cycles is included as an instruction operand, dur­
ing which the token interface unit is able to poll the token ring for free context
tokens. Rather than stalling the whole pipeline during these poll-cycles, or ex­
ecuting multiple TRQ instructions, a context executing a TRQ instruction is set
to long-latencystall and only re-scheduled after either a token is located or the
poll-cycles expire. During this polling period, the pipeline is available to other
runnable contexts. The following section describes the operation of the JSR, BSR
and RET operations.

3 .2 .2 W ork in g S e t an d R e g ister W in d o w s

As outlined in Section 3.1.2, the windowing scheme employed by the Jamaica
architecture adds considerable complexity into the critical path of the decode
stage in the pipeline. To reduce this complexity and m aintain compatibility
with the Jamaica instruction set and associated software, the register windowing
scheme has been greatly simplified by removing window management and offset
indexing from the decode stage.

During normal execution a context accesses registers %gO-0/0x7, from a set of 32
working registers indexed directly. W hen a call (JSR or BSR) or return (RET)
is decoded in the decode stage the context is placed into the long-latencystall
state. During the subsequent stall period, window management occurs and other
runnable contexts can be scheduled into the pipeline. It is anticipated tha t win­
dow management can occur within two-cycles, using a 16-wide register transfer
port, labelled (1) in Figure 3.12 and (3) in Figure 3.13, and so in the revised

Chapter 3. Jamaica CMP and Software Environment 66

3.3. Jamaica Software Environment

Physical Set
Registers

Working Set
Registers

O U T [0-7]

©
--

--

--
►

©

XTRA
[0 -7]

O U T [0-7] IN [0-7] O U T [0-7]

O U T [0-7] IN [0-7] IN [0-7]

'©
IN [0-7] GLOBAL

[0 -7]

Pipeline

Physical Set
Registers

Working Set
Registers

O U T [0-7]

^
—

©

©

XTRA
[0 -7]

O U T [0-7] IN [0-7] OUT[0 -7]

OUT[0 -7] IN [0-7] IN |0 -7]

©
INtO-7]

GLOBAL
[0 -7]

Pipeline

F igu re 3.12: Window Call: (1) write F igure 3.13: Window Return: (1)
IN to physical, (2) copy O U T into IN, copy IN into OUT, (2) decrement win-
(3) increment window pointer. dow pointer, (3) read IN from physical.

Jamaica core a JSR, BSR or RET incurs a stall latency of 2 cycles before becoming
available for rescheduling.

Implementing register windows in this manner has been shown to reduce the

overall footprint as all but the working set of registers can be implemented in

compact 6-transistor per bit SRAM cells and decreases the critical access time to
the working set of registers [81].

3.3 Jam aica Softw are E nvironm ent

As the Jamaica instruction set is significantly different from both the Alpha
instruction set, from which many of the instruction formats evolved, and from
other common instruction sets, the Jamaica architecture is supported by a number
of tools providing a software compilation and execution environment.

3 .3 .1 J a m a ica A ssem b ler and C C om p iler

A toolset comprising a C compiler, based on the Princeton LCC compiler [50]
and an assembler is used in order to generate binary boot images for the Jamaica

Chapter 3. Jamaica CMP and Software Environment 67

3.3. Jamaica Software Environment

architecture. The C compiler is able to compile a sizeable subset of the C language
directly to the Jam aica ISA, but support for multithreading is not available, and
so where required as in the boot procedure, small hand coded Jam aica assembly
routines supplement the C generated code.

3 .3 .2 J a m a ica B o o t P ro ced u re

The Jam aica architecture, in simulation, implements a cold s ta rt protocol whereby
only a single context, the primordial context, begins the execution of code, all
other contexts start in the empty state4. Prior to execution, the simulation envi­
ronment loads an ELF binary, containing a boot procedure, into physical memory
placing code and da ta segments at addresses detailed by the ELF file. The start
address is extracted from the ELF file and is used as the initial PC value for the
primordial context.

The code contained in the boot procedure is responsible for initialising registers
and memory, including the initialisation of interrupt vectors and loading any other
required code into physical memory. After this initial phase all auxiliary contexts
can be woken using a software interrupt, SIRQ. The software interrupt vectors
execution into an initial wake-up routine tha t sets up a minimal stack for each
context capable of handling code shipped via the THJ/THB instructions. Upon
completion of this phase each context releases a token onto the work distribution
ring and switches to the idle state awaiting incoming work.

3 .3 .3 T h e J a m a ica V ir tu a l M ach in e

Software execution is supported on the Jamaica architecture primarily by the
Jamaica Virtual Machine (JaVM) [40], a port of the Jikes Research Virtual Ma­
chine (RVM) [1] to the Jam aica instruction set. The Jikes RVM compiles and
optimises Java bytecode to native machine code. The JaVM port allows execution
of unmodified Java applications on top of the Jamaica architecture.

4Section 3.1.1 discusses the states that contexts can reside in.

Chapter 3. Jamaica CMP and Software Environment 68

3.3. Jamaica Software Environment

JaV M B oot Procedure

Supplementary to the standard Jamaica boot procedure, boot strapping JaVM
ensures tha t the primordial context and all auxiliary contexts are associated with
a VM_Processor object, and tha t key Java class files are loaded into memory. The
VM_Processor object maintains a set of queues containing Java threads associated
with it. These threads are run within the context tha t the VM_Processor is
attached to, illustrated in Figure 3.14.

LVM—Emcassar #8________ E m c a a so t# 4
f VM PrnrASsn:#3 1 VM Prnr.ft.ssnr #7

- 1 V M P m ca sso r #2
VM P ro cesso r #1

f VM Prnr.B.saor #6 Branch
T h read #1

Thread #1
VM P ro cesso r #5

activeThread

runQ ueue

transferQ ueue

id leQ ueue

collectorQ ueue

activeThread

runQ ueue

transferQ ueue
Idle Thread #1 idleQ ueue

collectorQ ueue
Collector

T hread #1
Collector

T hread #2
Software
Hardware

c o re

F igu re 3.14: JikesRVM software to Jamaica hardware mapping: Each hardware con­
text is associated with a VM^Processor object.

Idling C ontexts

After the initial boot strapping phase, each context is associated with a VM_Processor

object. The VM_Processor is responsible for accepting and scheduling any Java
thread created by the virtual machine or application code for execution on the
context. In the Jikes RVM a VM .IdleThread resides inside the id leQ u eu e of
a VM_Processor. The id leT h rea d , a small loop checking for new threads in
the runQueue, is run whenever the runQueue becomes empty. In the JaVM the
id leT h rea d immediately schedules a VM_BranchThread, a thread tha t sets up
a small stack to handle incoming threads distributed across the shared bus us­
ing the THJ operation. The VM_BranchThread then exits from the bottom of its

Chapter 3. Jamaica CMP and Software Environment 69

3.4. Jamaica Simulation Environment

working stack, releasing a token onto the work distribution ring, and freezing the
hardware context, and therefore the associated VMJProcessor, in the idle state.

W ork D istr ib u tion

When a thread resident on another VM_Processor creates a new VM_Thread ob­
ject, which encapsulates ordinary Java threads, it can attem pt to locate a token
from the ring using the TRQ operation. If it succeeds the THJ operation is in­
voked, supplying a schedule method as the restart address with the new thread
as argument. The idle context immediately enters the runnable state and exe­
cutes the method on the VM_BranchThread stack, inserting the new thread into
the runQueue of the resumed context’s VM_Processor and yielding until the new
thread exits. W hen the branch thread finally resumes it exits, releasing another
token. If a VM _Processor is not able to find an idle context to ship the new
thread to, the thread is placed into the local runQueue.

Using these processes, regular multithreaded Java application code, and the
threads within the virtual machine which is also w ritten in Java, benefit from the
work distribution mechanism provided by the Jam aica architecture. Addition­
ally the VM_BranchThread is capable of executing an arbitrary shipped method,
enabling it to be used to implement lightweight thread distribution.

3.4 Jam aica S im ulation E nvironm ent

The previous sections of this chapter have discussed the Jam aica CMP architec­
ture and its associated software environment. As Jam aica is a simulated archi­
tecture, this section describes the simulation platform developed as part of this
thesis to study and extend the architecture, and to provide an environment for
explorative software development.

3 .4 .1 S im u la tio n A ccu ra cy

Architectural simulations are typically a trade-off between speed and accuracy,
with a complete spectrum ranging from circuit-level timing delay simulations [114]

Chapter 3. Jamaica CMP and Software Environment 70

3.4. Jamaica Simulation Environment

through to cycle accurate and functional simulation [18], emulation and dynamic-
binary translation [14]. The Jam aica simulation platform [67, 68], jamsim, is a
Java simulation platform th a t has been developed to execute binaries created for
the Jamaica instruction set. The jamsim platform supports several models of
simulation. It can be used for fast, functional simulations required for system
software development as well as cycle-level simulations, which are essential for
quantitative evaluation of the architecture.

At cycle-level accuracy the simulation platform models the components in suffi­
cient detail to account for effects such as stalls due to pipeline hazards, intercon­
nection bus and queue contention, cache access contention and memory channel
queueing.

3 .4 .2 S im u la tio n C on figu ration

The jamsim simulation platform allows architectures to be configured based on
the Jamaica instruction set. Parameterisable components of the simulated ar­
chitecture, include the number of processing cores, the number of contexts per
core, the L l, L2 and Level 3 (L3) cache sizes and ways, the size of the branch
history table, the type of memory hierarchy and the interconnection network,
either bus-based, crossbar based or a hybrid of both.

The simulation platform is capable of simulating the processor, the interconnect
and the memory hierarchy both at the cycle-level and at a purely functional level.
Where it makes sense the simulation platform can be composed of components
at different levels of modelling. An example of this would be cache simulations,
where it may not be necessary to use a cycle-level model for the processors as
a functional model is able to generate the memory access patterns necessary to
exercise the caches.

Prom scratch this simulator was developed as part of this thesis. The simulation
platform is a structural simulator and currently consists of over 50 components,
and some 30,000 lines of Java code. Each hardware component has been mapped
onto a simulator component, a Java class, using object oriented practices. Addi­
tionally interfaces have been developed to enforce compatibility between multiple
models of key components within the simulation platform, such as the processors,

Chapter 3. Jamaica CMP and Software Environment 71

3.4. Jamaica Simulation Environment

private void initializeArchitectureO {
CycleLevelProcessor [] proc = new CycleLevelProcessor[noProcs];
LICacheController[] iCache = new LICacheController[noProcs];
LICacheController[] dCache = new LICacheController[noProcs];

for(int p = 0; p < noProcs; p++) {
proc[p] = new CycleLevelProcessor(this, noCtxs);
iCachetp] = new LICacheController(this, Llsize, Llsets);
dCache[p] = new LICacheController(this, Llsize, Llsets);
proc[p].connectCaches(iCache, dCache);

>
CacheController 12cache = new CacheController(this, L2size, L2sets);
Bus bus = new Bus(this, 12cache, iCache, dCache);
MemoryController memCont = new MemoryController(this, 12cache);

>

F igu re 3.15: Configuration code fo r building a CMP architecture in jamsim.

caches, interconnects and memory controllers and to allow simple configuration.
These interfaces have simplified the process of extending and adapting the current
architecture models.

The simulation platform can be configured to run Jamaica instruction set binaries
and Java class files through the JaVM port of the JikesRVM, targetting from
single-threaded single-core systems, right through to hundreds of cores and multi­
threaded, multi-cluster architectures.

3 .4 .3 S y s te m S im u la tion

As Jamaica is a simulated architecture and no device interfaces exist, see Section
3.1.7, complete system simulation is enabled using a special range of built-in
instructions, refer to Appendix A.3. These instructions, which attem pt a jum p
subroutine call, JSR, to small negative memory addresses are trapped during
simulation, and the simulation platform calls out to the underlying operating
system through the Java virtual machine in which the simulation is running,
illustrated in Figure 3.17.

Chapter 3. Jamaica CMP and Software Environment 72

3.4. Jamaica Simulation Environment

memCont

r F
l2Cache

X X
Bus

XI I I
iCache dCacheiCache dCache iCache dCache iCache dCache

proc proc proc proc

F igu re 3.16: Connected simulation components for jamsim, consistent with the con­
figuration code listed in Figure 3.15.

File I/O
System Calls

Compiled Java Jamaica
Classes Binaries

JaVM

j a m s lm

Jam aica Sim ulator

Execution Environment

Java VM on Host Machine

Simulation Output
->» Statistics

Checkpoints

F igu re 3.17: Jamaica Simulation: Java bytecode is executed through the JaV M by
jamsim within a Java virtual machine on top of the host system.

Chapter 3. Jamaica CMP and Software Environment 73

3.5. Summary

3.5 Sum m ary

This chapter has outlined the Jam aica CMP architecture as introduced by [170]
and subsequent revisions made to it for this thesis. Each core contains a simple 5-
stage RISC pipeline and accesses memory through private LI instruction and data
caches. Each core maintains sequential consistency and keeps coherent with other
cores, a shared L2 cache and memory via a split transaction snoopy bus and a
derivative of the MOESI cache coherence protocol. The architecture is supported
by a collection of tools allowing both C and Java to execute on the simulated
architecture. The jamsim simulation platform, developed as part of this thesis,
was presented as a platform capable of simulating the Jam aica CMP architecture
at both cycle-level and functional-level accuracies. In the following chapter an
extension to the architecture is introduced tha t allows multiple CMP clusters to
coexist within a chip, while still adhering to a shared memory paradigm.

Chapter 3. Jamaica CMP and Software Environment 74

CHAPTER 4

Multi-level Cache Coherence

As the number of transistors integrated within a single chip continues to grow the
ability to increase the number of processing cores within a chip becomes possible.
As more cores are added to a CMP architecture considerable pressure is placed
on the memory hierarchy. Sufficient bandwidth is required to keep all of the cores
working efficiently, and low latency is beneficial for inter-core communication.

This chapter briefly reviews alternative schemes for scaling up the memory hier­
archy of CMP architectures. In the context of these schemes the limitations of
the single shared bus Jam aica architecture are discussed and a novel multi-level
cache coherence protocol is introduced which extends the memory hierarchy of
the Jam aica architecture.

4.1 M ultiprocessor O rganisation

Much prior research within the multiprocessor field has looked at scaling archi­
tectures beyond tens of processors. This research established several categories of

75

4.1. Multiprocessor Organisation

multiprocessor organisation, with respect to both memory access [149, 117] and
inter-processor communication [105].

4 .1 .1 M em o ry A ccess

Two categories of memory access in multiprocessor systems exist: distributed
memory and Symmetric Multiprocessors (SMP). In SMP systems a single global
shared memory is accessible to all of the processors within the system. The la­
tency of memory access from each of the processors is uniform and as such SMP
architectures are also referred to as Uniform Memory Access (UMA) architec­
tures. Distributed memory systems, in contrast, usually have multiple memory
modules each paired with one or more processors, as illustrated in Figure 4.1.

Memory Memory

Memory Memory

I/O
System

Memory

C aches 1 C aches C aches C aches

F igure 4.1: Multiprocessor M emory Access: (a) Shared Memory, (b) Distributed M em ­
ory.

Two variants of distributed memory systems exist. The first, distributed shared
memory (DSM), also referred to as Non-Uniform Memory Access (NUMA) archi­
tectures, divides the global address space equally amongst the multiple memory
modules [2, 97]. Access by any processor in the system to an address must be
directed to the memory module containing tha t portion of the address space,
usually controlled by a directory based coherence scheme [26]. A DSM multipro­
cessor from a programming perspective appears identical to a SMP, however the
latency of memory accesses to local memory modules is far less than accesses to
remote memory modules [80]. The second variant of distributed memory archi­
tectures divides the total address space into multiple private address spaces local

Chapter 4. Multi-level Cache Coherence 76

4.1. Multiprocessor Organisation

to each memory module [9]. These private spaces, which are disjoint, are not ac­
cessible by remote processors, in effect each processor-memory pair is essentially
a separate computer.

In considering the scalability of a multiprocessor architecture, distributed sys­
tems appear to have two key advantages over SMPs. Firstly, if most memory
accesses can be contained within the address range of the local memory module,
the memory bandwidth of the architecture scales with the number of memory
modules. The second advantage of a distributed memory arrangement is a re­
duced memory access latency. This lower latency again is realised if most accesses
go direct to the local memory nodes. A disadvantage to a distributed approach
is th a t additional software complexity is required to balance the memory access
patterns made by each processor in order to utilise the bandwidth and latency
benefits. This additional complexity increases the overhead associated with dis­
tributing work to the multiple processors in the system and limits the granularity
of parallelism th a t can be exploited.

4 .1 .2 In ter -P r o ce sso r C o m m u n ica tio n

In order for the processors within a multiprocessor system to speed-up the execu­
tion of an application, inter-processor communication is necessary to coordinate
distribution of the overall workload and to synchronise on shared data. Two
methods are employed for communicating data amongst the processors in a mul­
tiprocessor system. In shared memory multiprocessors, both SMP and DSM,
communication occurs through the shared address space. D ata is implicitly ex­
changed through load and store operations within the shared memory space, with
every processor becoming aware of any changes through cache coherence [149].
In distributed memory systems where memory is disjoint and private to each pro­
cessor, communication of data is achieved by explicitly passing messages amongst
the processors [105],

A considerable disadvantage of the message-passing paradigm is th a t sharing of
data must be explicitly annotated within software. This leads to a greater degree
of software complexity [163] and again these additional overheads often reduce
the amount of fine-grained thread-level parallelism tha t can be exploited [150].

Chapter 4. Multi-level Cache Coherence 77

4.2. Scaling the Jamaica Architecture

4.2 Scaling th e Jam aica A rch itectu re

The Jamaica architecture [170], discussed in Chapter 3, is a CMP architecture
consisting of multiple simple processing cores connected via private LI caches to
a shared bus which in tu rn is connected to a globally shared L2 cache and an
on-chip memory controller. A limiting factor to this approach is the shared bus
tha t connects all of the processing cores.

4 .2 .1 L im ita tio n s to B u s S ca lin g

As the transistor budgets of future process technologies increase the viability
of incorporating more processing cores into the Jam aica architecture becomes
realistic. However, the single-shared bus within the Jam aica architecture becomes
a bottleneck to memory accesses as the number of cores is increased. Figure 4.2
shows the theoretical peak utilisation of the shared data bus in the Jamaica
architecture, assuming high LI instruction and data cache hit rates, 99% and
98% respectively, a perfect L2 cache hit rate and typical1 RISC code [63], 22%
loads and 12% stores. As illustrated, depending on the ratio of the bus frequency
to the core frequency the bus begins to become a bottleneck, even for a relatively
fast bus clocked at a quarter of the core frequency, the bus becomes saturated
after 16 cores. Bus utilisation levels of around 80% have been shown to create
detrim ental increases in access delays largely due to queueing effects [168].

This problem is further exacerbated by wire delay limits, discussed previously in
Section 1.2.1. If the number of cores connected to a single bus is increased then
the bus will necessarily have to span further across the chip. As illustrated in
Figure 1.1, in future process technologies as little as 10% of the die area will be
accessible within a single clock. To put this into context, consider the parameters
in Table 4.1.

If the Jamaica core architecture is considered to be of a similar complexity to
the Alpha 21064 [106], then incorporating 64 cores onto a 65nm technology chip
requires consideration of both wire-delay and bus scaling. Referring to Table 4.1,
each core spans approximately 5.5% of the die length in the technology, and a

1SpecInt92 average instruction mix as reported in [63].

Chapter 4. Multi-level Cache Coherence 78

4.2. Scaling the Jamaica Architecture

1 2 4 8 16 32 64
Number of Cores

F igu re 4.2: Theoretical bus access limitations, assuming a 98% L I data cache hit rate,
a 99% L l instruction cache rate, a typical R ISC code m ix [63] and a perfect L2 cache
hit rate.

65nm technology 1 billion transistors
14MB cache (6 transistors/bit) 704,643,072
64 (Alpha 21064) cores 179,200,000
Die span per core approx. 5.5%
Die span 8-core bus approx. 22%
Signal propagation 8-core bus 4 clocks
8 core utilisation at 4:1 (see Figure 4.2) 52%
Architecture 8 x 8 core clusters
128 x L l caches (total 2MB) each 16KB (1$ and D$ per core)
8 x L2 cluster caches (total 4MB) each 512KB
1 x L3 cache (total 8MB) each 8MB

T able 4.1: A feasible configuration for scaling a CMP using 1 billion transistors.

Chapter 4. Multi-level Cache Coherence 79

4.2. Scaling the Jamaica Architecture

bus connecting all 64 cores, depending on the topology, would be required to
span the length of some 30 core spans in order to connect them all, requiring
a stretch some 165% of the die length. This would clearly lead to an infeasible
design because the signal propagation on the bus would take more than 16 clocks
(see Figure 1.1), and such a bus would be saturated by only 4 working cores (see
Figure 4.2). A scalable memory hierarchy is therefore required to utilise the 1
billion available transistors fully, and as shown in Table 4.1, 8 clusters of 8 cores
connected by such a hierarchy could provide a feasible design solution.

4 .2 .2 M u lti-L ev e l C ach e H ierarch y

To increase the ability of the Jamaica architecture to scale with the addition of
more processing cores the single shared bus architecture is replaced by a scalable
multi-level cache hierarchy. The multi-level hierarchy, illustrated in Figure 4.3,
maintains shared memory coherence, a pre-reqnisite for efficiently running stan­
dard multi-threaded applications written in high-level languages such as Java.

M em o ry
C ontroller

L2 C ache 12 C ache

F igu re 4.3: Jamaica multi-level cache hierarchy.

The multi-level hierarchy, by dividing the total number of cores into clusters
each connected through a hierarchy of interconnect networks and caches, can
allow many more cores to be integrated onto a single chip, whilst maintaining
shared memory and limiting the span of each interconnect to reduce the effects
of cross-chip wire delay and bus contention.

80Chapter 4. Mnlti-level Cache Coherence

u b r iA h >

4.2. Scaling the Jamaica Architecture

Each intra-cluster network is independently arbitrated and accessed concurrently
allowing the cores within each cluster to access the larger cluster-shared cache
with less contention. The additional scalability, however, comes at the expense
of a more complex cache coherence protocol tha t needs to maintain coherence
across multiple clusters, and the need to maintain cache inclusion.

A Chip M ulti-Cluster (CMC) architecture, incorporating multiple on-chip clus­
ters each containing multiple cores and multiple levels of shared cache is feasible
given the transistor budgets of modern process technologies.

4 .2 .3 C ach e In c lu sio n

The Jam aica memory hierarchy, as outlined in Section 3.1.5, allows L l private
caches to take ownership of cache lines avoiding inclusive L2 caches. Once owner­
ship for a cache line is passed onto an L l cache, the line containing the non-owned
copy in the L2 cache is redundant and can be freed. This removes the necessity
for the L2 cache to include the set of all lines contained within the L l caches
which potentially allows the L l and L2 caches, when combined, to contain more
data.

In a multi-level hierarchy inclusion is im portant for shielding intra-cluster net­
works from the traffic of inter-cluster networks at each level [11]. W ithout inclu­
sion a multi-level cache hierarchy has no way of shielding inter-cluster coherence
messages from the intra-cluster networks, and an unnecessarily large amount of
traffic is generated.

N on-Inclusive W rite R equest

As an example consider a write request, illustrated by Figure 4.4. W hen a write
request to address A misses in the L l cache (Ll$[4]) attached to core 4 (P[4])} a
request is forwarded onto the L2 cache (L2$[2]). W ithout inclusion, the request
made to L2$[2] must be visible to other L l caches serviced by L2$[2], as they may
hold a copy of the data at address A. In a hierarchy of buses the write request
placed onto the intra-network bus L IN [2] would be snooped by Ll$[5] allowing
response of the data or an acknowledgement th a t the data is not present. In a
network hierarchy an explicit invalidation message would need to be sent directly

Chapter 4. Multi-level Cache Coherence 81

4.2. Scaling the Jamaica Architecture

to Ll$[5] and acknowledged with a message before the write request, is propagated
to the next level in the hierarchy.

F igu re 4.4: In the absence o f inclusion coherence messages m ust be forwarded to each
and every cache creating unnecessary network traffic, and acknowledgement of each
invalidation must be received before propagating requests to successive levels.

In the example the data at address A is not present in any cache, so the request
made to L2$[2] is forwarded onto the inter-cluster network (L2N[0]). Again before
the request can be forwarded to the memory controller (MC[0]), invalidations
must be made visible to caches L2$[0] and L2$[l], in turn all caches below them,
L1$[0]-L1$[3] must receive and acknowledge an invalidation message. Finally
when the invalidations have successfully been sent and acknowledged by all caches
the request can be forwarded to the memory controller and a response including
the data at address A can be returned to Ll$[4] which allows P [4] to continue
execution.

I n c lu s iv e W r ite R e q u e s t

By maintaining inclusion, the same request from core 4 would only generate
traffic on the networks containing copies of the data at address A. If the data
is not present in any cache in the system, the network traffic is reduced to the
propagation of the request and response, as shown in Figure 4.5. Where inclusion
information exists, messages do not need to be sent to lower level caches. In the
example, cache Ll$[5] does not need to be sent an invalidation message as L2$[2]

Chapter 4. Multi-level Cache Coherence 82

4.2. Scaling the Jamaica Architecture

knows th a t no copies exist in any lower level caches. This is not the case on
the inter-cluster network L2N[0] as the memory controllers contain no inclusion
information, and so messages must be sent to both L2$[0] and L2$[l] before
forwarding the request to MC[0]. The invalidations sent to L2$[0] and L2$[l] are
simply acknowledged, but 110 change of state is necessary as they do not contain
the data at address A, and no messages are forwarded to caches L1$[0]-L1$[3].

L1N[0] I

F igu re 4.5: M aintaining inclusion reduces any unnecessary traffic being generated in
clusters not containing copies o f the requested data.

M aintaining C ache Inclusion

A disadvantage of maintaining cache inclusion is tha t the set of lines in each
shared cache must be a superset of all of the cache lines contained within the
caches sharing it. To avoid poor hit rates in shared caches, they need to be
significantly larger than the sum of all the caches connected below them [168].
The space overhead of inclusion can be reduced by allowing certain lines, for
example those modified in lower level caches, to be cleared from the shared cache,
if a table of address tags for these lines is maintained and accessed in parallel to
the main cache tags [13].

Chapter 4. Multi-level Cache Coherence 83

4.3. PIMMS - a Multi-Level Coherence Protocol

4 .2 .4 L o ca lity an d A ffin ity

A further aid to scalability in a multi-level cache hierarchy is the implicit ex­
ploitation of locality. The multi-level hierarchy exploits both spatial locality and
parallel locality. Spatial locality is exploited in the same manner as all cache ar­
chitectures, each cache line fetched contains multiple words. Memory references
made in the near future have a high probability of being near recent past refer­
ences, and therefore multiple references may be made to the same line, removing
the necessity for multiple memory requests.

Parallel locality is an extension of the effect of spatial locality in the context of
a parallel program. Future memory accesses by a thread can be predicted by
recent memory access patterns of related threads, in the same parallel program,
in addition to its own recent accesses.

Significant levels of spatial and parallel locality are usually present in parallel
programs [49]. Parallel locality can be increased by explicitly enforcing an affinity
onto threads, distributing them in such a manner as to keep related threads
within a subset of the cache hierarchy. This same process can be used to insulate
applications, as much as possible, from interference by unrelated threads.

4.3 P IM M S - a M ulti-L evel C oherence P ro toco l

Having outlined in previous sections the motivation for extending the Jamaica
architecture to allow a scalable multi-level shared cache hierarchy, this section
introduces the PIMMS2 protocol, which maintains system wide cache coherence.
The protocol maintains compatibility with the original Jam aica instruction set
and as such code written for tha t architecture can run unmodified on the multi­
level hierarchy.

Unless otherwise stated, the examples presented in this chapter assume a hier­
archy of buses connecting the shared level caches. The protocol presented is,
with minor modifications, capable of maintain coherency additionally across a
hierarchy of crossbars.

2PIMMS is an acronym for the 4-bits used to encode all states; Pending, Invalid, Modified,
Modified Stale.

Chapter 4. Multi-level Cache Coherence 84

4.3. PIMMS - a Multi-Level Coherence Protocol

State Code Description
Invalid I no line present
Valid V read access only
Valid Shared v* as Valid, shared by lower level cache(s)
Modified M read and write access
Modified Shared M* as Modified, shared by lower level cache(s)
Modified Stale MS line stale, modified by lower cache
Pending P operation pending, refuse access

T able 4.2: PIM M S protocol: cache states.

4 .3 .1 C ach e S ta te s

The protocol used is extended from, the family of MOESI protocols [153] with
additional states to allow multi-level cache hierarchies. Ownership is discarded
as it is implied by maintaining inclusion. The protocol is similar to those used
in the KSR-1 [49], Paradigm [29] and Gigamax [168] multiprocessors. Any cache
line can be in one of seven states listed in Table 4.2, except for lines in private
L l caches which can only be in the states I, V, or M. Only lines within the
L l data cache can reside in the Modified state. A cache line in the Modified
Stale state additionally keeps track of the index number of the cache in the lower
level tha t currently holds the modified copy. Although similar to the protocol
states presented by Anderson and Baer [6] for multi-level hierarchies, the seven
states and index tracking maintained by the PIMMS protocol reduce unnecessary
coherence messages within the system and allow the protocol to generalise to non­
broadcast networks.

It should be noted tha t the states V* and M*, where the star denotes the line as
being shared by lower level caches, are weak annotations in a bus based hierarchy.
W hen a sharer exists the Sharer state is always set, however the state may remain
set even after a sharing cache has overwritten the shared line, and therefore no
longer shares th a t line. Infrequently this leads to invalidation messages being sent
to a cache no longer containing a copy of the line; these messages are ignored.

Where crossbars are used to connect cache levels in a hierarchy the Sharer states,
V* and M*, must maintain a list of sharers. This list of sharers is used to
determine the channels within the crossbar tha t must be reserved in order to
send an invalidate signal.

Chapter 4. Multi-level Cache Coherence 85

4.3. PIMMS - a Multi-Level Coherence Protocol

Class Code Name Description

memory
bound

SH
MD
MC
WB

Share
Modified
Cond. Modified
Writeback

Request for read access to a line
Request for write access to a line
As Modified but from a STLJS
Writeback/Eviction of a modified line

core
bound

MSH
MMD
INV

DWN
MWB

Mem Shared
Mem Modified
Invalidate
Downgrade
Mem Writeback

Response with read access and data
Response with write access and data
Force invalidation of line
Force downgrade of line (e.g. M —» V)
Force writeback of line

T able 4.3: P IM M S protocol: network transactions, mnem onic codes and descriptions.

4 .3 .2 N e tw o r k T ran saction s

Two classes of transactions are generated in the protocol. Those originating from
a cache on the core side of an interconnect th a t propagate in the direction of
memory are referred to as memory-bound transactions. Transactions originating
from the memory side of the interconnect, propagating towards the core side, are
referred to as core-bound transactions. In to tal eight types of network transac­
tions exist, listed in Table 4.3.

4 .3 .3 S ta te T ran sition s

Figure 4.6 shows all of the possible transitions between the seven cache states,
when network transactions occur on the upper or lower interconnects surrounding
a cache. The possible state transitions in the L l caches are far fewer as they only
include the states V, I and M.

4 .3 .4 Four P h a se T ran saction s

In a single shared bus architecture a request placed on the bus either receives a
response from another cache holding a copy, or after a delay from memory. In
both cases all caches th a t either hold a copy or require a copy can alter state
after snooping a transaction for the same data on the bus. In a multi-level cache
hierarchy, however, data can be present in caches tha t are not directly connected

Chapter 4. Multi-level Cache Coherence 86

4.3. PIMMS - a Multi-Level Coherence Protocol

U:MMD

L.MD

U:INV
,:MD

:WB
U:DWN

:SH
MSU D W N

U:MMD
U:INV

L':MMD U:[DWNIMWB]L:MDL:SHU:MMD

U:WB L:SH L:SH U:MMD

L:SH

U:DWNM*U:MSH

U:INV

l.MWB

:INV

U:MSH

L:WB(U:MWB)

K E Y

U: u p p e r n e tw o r k

L: lo w e r n e tw o r k

S H r e q u e s t r e a d a c c e s s

M D r e q u e s t w r i te a c c e s s

W B w r i te b a c k /e v ic t lin e

M S H r e s p o n s e r e a d a c c e s s + d a t a

M M D r e s p o n s e w r i te a c c e s s + d a t a

IN V f o r c e l in e in v a l id a t io n

D W N f o r c e d o w n g r a d e lin e

M W B f o r c e w r i te b a c k lin e

[A |B] A o r B

(A) fo llo w in g A

* a n y t r a n s a c t i o n s e e n

— ► L1 c a c h e t r a n s i t i o n s

F igu re 4.6: Multi-level cache state transitions for shared level caches. Note that for
clarity M C transactions are left off the diagram as apart from their handling internally
in the cache controller queues, see Section 5.6, the state transitions are identical to
MD.

Chapter 4. Multi-level Cache Coherence 87

4.3. PIMMS - a Multi-Level Coherence Protocol

to the same interconnect as the requesting cache. As a result two additional
scenarios are encountered within the hierarchy:

1. Multiple transactions for the same data can be generated on separate in­
terconnects concurrently.

2. Copies of data may be modified in caches not shared by the requesting
cache.

The implication of the first scenario is that two requests tha t have started can
meet a t a shared interconnect both competing for the same data. This is handled
in much the same way as with a single bus architecture; the requests are handled
in sequence, after the first transaction is completed the second may progress. The
second scenario requires an extension from the two phase (request, response) bus
transactions employed in single shared bus architectures, to four phase transac­
tions (request, action, reaction, response).

L3$[0]

L2N[0]

A: MS[0] A:l

L2$[0] L2$[2]

L1NI

A: M
L1$[0]

A:l
L1$[1] L1$[2] L1$[3] L1$[4] L1$[5]

F igu re 4.7: Four phase read transaction.

Chapter 4. Multi-level Cache Coherence 88

4.3. PIMMS - a Multi-Level Coherence Protocol

Four P h ase R ead Transaction

As an example of a four phase transaction consider the scenario illustrated in
Figure 4.7. Core P[4] issues a read for data at address A, the most upto date
copy of which resides in L1$[0]. On issuing a read to the interconnect L1N[2] a
miss is triggered in the cache L2$[2]. L2$[2] forwards the read request and issues
it on the interconnect L2N[0]. The cache L3$[0] currently holds the line in state
MS. The modified stale state indicates tha t the line is present in the cluster under
cache L2$[0], and none of the caches connected to the interconnect L2N[0] can
supply an up to date copy of the data because the da ta has also been modified
by a cache below L2$[0]. In order to be able to respond to the read request
made by P [4], the modified data must first be fetched from L1$[0]. An action, in
this case downgrade (DWN), is issued to L2$[0] and eventually to L1$[0]. L1$[0]
downgrades the line and issues a reaction, in this case a writeback (WB) along
with the data. W hen the WB and data are issued on the L2N[0] interconnect, a
response can be forwarded to the original requestor, Ll$[4]. A timing diagram of
the four phase read transaction, including cache line state transitions, is shown
in Figure 4.8.

Four P h ase C oncurrent W rite

The potential for two concurrent requests for the same data to arrive at a shared
bus concurrently is illustrated in Figure 4.9. Both core P[4] and P[0] are attem pt­
ing to gain write privileges to data at address A. Both private L l data caches,
L1$[0] and Ll$[4], only contain the data in the valid state and therefore prop­
agate MD requests up the hierarchy to the L2N[0] network in order to acquire
the line in a modified state from the L3$[0]. Assuming both requests arrive at
the interconnect L2N[0] concurrently, one of the requests is given priority, in this
case the request originating from L1$[0].

As outlined in the timing diagram, Figure 4.10, as the MD request from L1$[0]
is responded to with a MMD, an invalidate is triggered in the L2$ [2] cluster to
invalidate its copy of the data. After the initial MD request has cleared from the
interconnect the second MD request can be issued. During this phase the second
MD request triggers a MWB to fetch the data from the cluster beneath cache
L2$[0]. It is possible th a t the original MMD is still propagating towards L1$[0],

Chapter 4. Multi-level Cache Coherence 89

4.3. PIMMS - a Multi-Level Coherence Protocol

L 1 $ [4 P

L1N[2]
Stfl:A

L 2 $ [2 > -

L2N[0] Ll N [0]

SI-fcA

DWKl:A

W 8:A

W $:A *l_2$[0]

M5|H:A

MSiH:A •L2 $ 12]

S ta te Transitions

L 3 $ [0] MS to P

L 2 $ [0] MS to P

L 1 $ [0] M to V

L 2 $ [0] P t o V*

L 3 $ [0] P to V*

L 2 $ [2] I to V*

L l$ [4] I to V

F igu re 4.8: Four phase read transaction, timeline.

L2N[0]

L3$[0]

A: M*

A:V* A: I

L2$[0] L2$[1]

L1 N[0] | L1N[1] |
?i I , I T I I< j A:V

L1$[0] L1$[1] L1$[2] L1$[3]

A:V*

L2S[2]

l i

L1N 2] I
l

A:V
L1$[4] L1$[5]

F igu re 4.9: Four phase concurrent write transactions.

Chapter 4. Multi-level Cache Coherence 90

4.3. PIMMS - a Multi-Level Coherence Protocol

and the network must ensure ordering so tha t the original request is responded
to and has time to commit the write before the data is w ritten back in response
to the MWB. Following the writeback the data is sent with modified permissions
to the cache Ll$[4]. As can be seen concurrently writing to the same location
from cores in separate clusters generates considerable network activity.

L1N[2] L2N[0]

L1$[4]«-----— ►

. Md:A

L1N[0]
Mti:A

1 L2$[0]

MMb:A

INV:A • L2$[2] L2$[0]« MMp:A

L2$[2]« M? :A

MWB:A

L2$[0]« MW

WB:A

B:A

Wft:A > L2$[0]

MI^D:A

MMD:A > L2$[2]

’ L1$[0]

L1$[0]

S ta te T ransitions

L3$[0] M* to MS

L2$[0] V* to MS L2$[2] V* to I

L1$[0] V to M L1$[4] V* to I

L3$[0] MS to P

L2$[0] MS to P

L1$[0] M to I

L2$[0] P to I

L3$[0] P to MS

L2$[2] I to MS

L1$[4] I to M

F igu re 4.10: Four phase concurrent write transaction, timeline.

P end ing S ta te

A potential difficulty with the four phase transaction is that while an action is in
progress, within a cluster, another transaction outside of the cluster may request
the data involved. In the read example, from the point at which the downgrade
(DWN) is issued until the point tha t the line is written back (WB), the state of
line A is in flux. If the state of line A in L3$[0] is left as modified stale (MS) during
this period a read request from a cache above the L3$[0] would cause the L3$[0]
to issue a downgrade (DWN) onto the L2N[0] interconnect. This downgrade
would be issued into the L2N[0] network. This would not only cause unnecessary
network traffic, but has the potential to generate a downgrade to a cache that
has already downgraded the line. To prevent occurrences of such transactions, a

Chapter 4. Multi-level Cache Coherence 91

4.4. Summary

line is set in the Pending state (P) while an action is in progress. Any request to
the line is negatively acknowledged and must be retried after regaining access to
the network.

4.4 Sum m ary

This chapter has outlined the scaling limitations of the single shared bus design
currently employed by Jam aica and several other CMP architectures [60, 108,
80, 83]. In order to fully increasing transistor budgets fully the integration of
many more cores on-chip will be desirable. At the same time maintaining a
shared memory hierarchy simplifies the implementation of parallel applications
and allows exploitation of finer grained parallelism.

Furthermore, this chapter introduced the concept of a CMC architecture and a
protocol based on four phase transactions, th a t is able to keep a CMCs multi­
level cache hierarchy coherent. A novel aspect of the protocol is the Pending state
which prevents unnecessary inter-cluster traffic entering a cluster while the data
requested is being altered by another four phase transaction.

In the next chapter the hardware support required to implement the multi-level
PIMMS coherence protocol is introduced.

Chapter 4. Multi-level Cache Coherence 92

CHAPTER 5

Multi-level Cache Hardware

The introduction of a multi-*level cache hierarchy into the Jam aica CMP archi­
tecture requires significant changes to the cache hardware. Moving from a single
shared bus to a hierarchy of buses or other interconnects introduces networking
issues which must be handled by the caches. M ultithreaded cores and the addi­
tion of the four-phase coherence protocol allow many outstanding transactions to
be in transit in the multi-level hierarchy at once. The cache hardware must be
able to support these transactions, prevent the hierarchy from becoming easily
saturated and avoid deadlock. This chapter describes the cache hardware, used to
implement the coherence protocol described in the previous chapter. The cache
hardware has been implemented, through detailed simulation, for a hierarchy of
buses, crossbar switches and a hybrid of both.

5.1 C ache O rganisation

The multi-level cache hierarchy consists of two types of cache, the private Ll data
caches and a number of shared caches depending on the depth of the hierarchy.
The organisation of both types of cache is outlined in the following sections.

93

5.1. Cache Organisation

5 .1 .1 L evel 1 P r iv a te C aches

As mentioned in Section 3.1.5 the Ll caches are shared by multiple contexts
within each of the processing cores. Each context is stalled on both an instruction
cache and data cache miss, restricting the number of outstanding operations in the
cache hierarchy to two per context. This restriction also ensures tha t the memory
accesses made by each context remain sequentially consistent [87], despite any
reordering tha t may occur higher up in the cache hierarchy.

The Ll caches in the multi-level hierarchy, shown in Figure 5.1, differ little from
those in the single shared bus architecture. When a memory operation misses
in the Ll cache an entry is made into the cache request table which holds one
request per context. On gaining access to the interconnect, the interconnect side
controller issues a request from the request table or writes back a line from the
writeback buffer. Writeback buffer entries are given priority over entries in the
request table.

Interconnect

Output Buffer
Interconnect Controller

Input Buffer

Tags and Data

Core Controller

core

F igu re 5.1: Level 1 cache.

Responses, invalidations or writeback requests originating from higher level caches
in the hierarchy are also handled by the interconnect controller. As both the core
and the interconnect controllers share a single access port to the tag and data
array in the Ll caches, contention between the two can occur and is resolved
by giving priority to the interconnect controller. Should queue congestion occur,
which is possible in the data cache, the interconnect controller is able to block or

Chapter 5. Multi-level Cache Hardware 94

5.1. Cache Organisation

negatively acknowledge incoming writeback requests until a slot in the writeback
buffer is freed.

5 .1 .2 S h ared L evel C aches

The second type of caches in the multi-level hierarchy are shared level caches.
Shared level caches are generally shared by multiple lower-level caches. Although
this is not a strict requirement, they are generally larger than the sum of all the
caches directly sharing them, and are necessarily slower to access. Importantly
the shared level caches act as a bridge between two levels in the hierarchy and
are connected to two interconnects, see Figure 5.2.

interconnect

^ u tp u tB u ff e i^ ^ «

l i s

xInput Buffer Bu h

In te rco n n e c t C ontroller

Tags an d D ata

In te rco n n e c t C ontroller

Interconnect

1
Inpu t Buffer J

O u tp u t Buffer

F igu re 5.2: Shared level cache.

As mentioned previously, in Section 4.3.2, two classes of network transactions ex­
ist, memory-bound transactions and core-bound transactions. The shared level
cache, in bridging two interconnects, is required to accept and process memory-
bound and core-bound transactions, update the cache tags and data, and forward
the requests or responses to either higher or lower level caches. A separate queue­
ing channel is implemented for each class of transaction, and a separate controller
is required for the lower and upper interconnects. Again access to the cache tags
is shared by both the upper and lower interconnect controller, with the upper
controller having priority when contention arises.

Chapter 5. Multi-level Cache Hardware 95

5.2. Coherence Messages and Transactions

5.2 C oherence M essages and T ransactions

In the following discussions of flow control and deadlock avoidance within a multi­
level cache hierarchy the terms coherence message and transaction are used.

A coherence message is used to mean the actual physical message sent through
the hierarchy. In the multi-level hierarchy this coherence message consists of the
request or response type, the address and optionally the data. The memory-
and core-bound request queues, illustrated in Figure 5.2, are required to store
coherence messages.

A transaction simply refers to the process of delivering a coherence message across
the interconnect in a multi-level hierarchy. An incoming transaction, for example,
refers to a coherence message being sent across the interconnect and arriving at
a cache’s interconnect controller.

5.3 F low C ontrol

In the multi-level cache hierarchy requests and responses may potentially propa­
gate through multiple interconnects and caches; requiring buffering into queues at
each level. These queues can overflow due to interconnect saturation, and to pre­
vent the loss of transactions a mechanism is required which guarantees message
delivery. Additionally, in the process of maintaining coherency, a single incoming
transaction can trigger multiple outgoing transactions; for example, upgrading a
line in one cache and concurrently invalidating all sharers of the same line. In
such cases the incoming transaction cannot be removed from a buffer until all of
the outgoing transactions have been delivered.

To handle flow control in the multi-level cache hierarchy, each shared level cache is
encapsulated by a core-bound and memory-bound FIFO based queue system, see
Figure 5.2. Incoming coherence messages are buffered into the input buffer and
then processed by the interconnect controllers which also m aintain the coherence
protocol logic. As previously mentioned, access conflicts by the interconnect
controllers to the cache tags are resolved by giving priority to the higher level
interconnect controller, the one closer to memory and generally running at a lower
frequency.

Chapter 5. Multi-level Cache Hardware 96

5.3. Flow Control

The interconnect controllers are also responsible for forwarding coherence mes­
sages between levels when required by copying the messages from the input buffers
into the request queues. W hen an incoming transaction simply requires tha t the
shared level cache changes state, for example a writeback meeting a modified stale
line, the coherence message is consumed by the interconnect controller and is not
forwarded. W hen a transaction triggers responses or actions the interconnect
controller is responsible for generating and issuing them.

5 .3 .1 B lo ck in g and N e g a tiv e A ck n o w led g m en ts

W hen an incoming transaction requires th a t the shared level cache generates a
coherence message, for either a response or action, there is a possibility that
the message may be blocked by the destination cache. This can occur when the
destination cache is no longer accepting incoming transactions as the relevant
request queue has reached or is approaching capacity.

When such an event occurs the original incoming transaction is either negatively
acknowledged (Nack’d), where the interconnect is a bus, or the transaction is left
within the buffer slot it occupies in a crossbar fabric. In both cases the transaction
is subsequently rescheduled. Rescheduling occurs until the transaction is able
to complete because the relevant destination cache’s request queue is no longer
blocked. Simulations done for this thesis have shown th a t queue blocking does
occur frequently in larger many core architectures.

In order to avoid deadlock, particularly when the memory-side cache controller
has a blocked transaction, and to avoid rescheduling repeatedly blocked core-side
caches an exponentially increasing, 7-bit saturating block counter is used. Each
cache controller only arbitrates for the interconnect when the block counter is 0.
If a transaction is nack’d then the block counter is incremented in powers of 2,
until it saturates at 128. The block counter is decremented by 1 for each missed
arbitration slot, until reaching zero and retrying the transaction.

Chapter 5. Multi-level Cache Hardware 97

5.4. Deadlock Avoidance

5.4 D eadlock A voidance

In multi-level cache hierarchies, in particular in the interconnect and queues that
connect them, deadlock can occur. This is because all four conditions required
for deadlock to occur [33] are present. In particular deadlock can arise in multi­
level hierarchies between the memory-bound and core-bound queues leading to a
circular chain of dependencies [109], an example scenario is shown in Figure 5.3.
Both the write request (MD A) in the memory bound queue and the writeback
request (MWB B) in the core bound queue are blocked as they both generate
responses, which cannot be buffered in the cache’s core and memory bound queues
and deadlock arises.

interconni q u e u e full
can not a ccep t
MMD A

MMD AMD A

O u tp u t Buffj
In terconnect Controller

In p u t B ufferT3
•o<1) 3 3 <DWB J

Tags and Data
MSH C
INV Fc MWB

In p u t B uffer

[x
q u eu e full
can not a ccep t
WB B

Interconnect Controller
i tp u t B uffer

WB B MWB BInterconnect

F igu re 5.3: A circular dependence between the queues leading to deadlock.

To overcome deadlocks arising from circular dependencies the queueing system
within the shared level caches is extended in a similar manner to the NUMAchine
architecture [101, 55]. The request queue is divided into two separate physical
queues handling different classes of coherence messages. For queueing purposes
two classes of coherence messages exist.

5 .4 .1 S in kab le M essa g es

Sinkable messages are coherence messages tha t do not elicit a response back
into the interconnect. In the PIMMS protocol these messages include writebacks

Chapter 5. Multi-level Cache Hardware 98

5.4. Deadlock Avoidance

(WB) and invalidations (INV). Neither of these messages generate additional
coherence messages back into the network which generated them. The messages
are either consumed or forwarded by a shared level cache.

5 .4 .2 N o n -S in k a b le M essa g es

Non-sinkable messages are coherence messages tha t do elicit responses back into
the interconnect. In the PIMMS protocol these messages include read requests
(SH), write requests (MD and MC), downgrade requests (DWN), writeback re­
quests (MWB) and additionally read and write responses (MSH and MMD). The
responses are included in the list of non-sinkable coherence messages as, due to
the lazy allocation of cache lines, a response can evict a modified line generating
a writeback.

Interconnect

O u tp u t B uffer
In te rc o n n e c t C on tro ller

Input Buffer I

Tags and D ata

Input B uffer

In te rc o n n e c t C on tro ller
O u tp u t Buffer

interconnect

F igu re 5.4: Shared cache request queues divided into sinkable and non-sinkable en­
tities. Non-sinkable queue divided further into passive and active queues allowing re­
ordering.

5 .4 .3 S in kab le and N on -S in k ab le Q u eu es an d P r io r itie s

The queueing structure resulting from splitting the input queues into sinkable
and non-sinkable queues is shown in Figure 5.4. The dependencies leading to
deadlock in the previous scenario, illustrated in Figure 5.3, are now avoided.
The writeback (WB B), generated by the core bound memory writeback request
(MWB B), is now guaranteed to find space in the memory-bound sinkable queue.

Chapter 5. Multi-level Cache Hardware 99

5.4. Deadlock Avoidance

This in turn frees a slot in the core-bound non-sinkable queue which then allows
the write request (MD A) to be issued.

In general deadlock is avoided by ensuring three rules are adhered to by all of the
coherence messages in the multi-level hierarchy:

1. sinkable messages remain ordered,

2. sinkable messages are guaranteed to propagate, and

3. sinkable messages are always given priority over non-sinkable messages.

5 .4 .4 P a ss iv e and A c t iv e N on -S in k ab le M essa g es

Unlike the scheme developed by Grindley et al [55] for the NUMAchine architec­
ture, the queue containing non-sinkable coherence messages is additionally split
into two further queues, a passive and an active queue, again refer to Figure 5.4.
The passive queue is used to hold coherence messages prior to gaining access to
the interconnect network for issuing. The active queue is used to maintain a
copy of non-sinkable coherence messages currently in the process of being issued
across the interconnect. W hen a coherence message has been issued the entry is
removed from the active queue. If during the issuing the interconnect controller
determines th a t a non-sinkable coherence message can not complete, then the
entry is removed from the active queue and inserted back into the passive queue.
Upon reaching the head of the passive FIFO the coherence message is retried.

Allowing non-sinkable messages to become re-ordered in the passive and active
queues allows the processing of coherence messages to be pipelined and prevents a
single message from unnecessarily blocking the progress of other messages in the
queue. Each message, in the simulated implementation, can only be re-ordered
twice, at which point the message gains blocking priority over the non-sinkable
passive queue. Limiting re-ordering ensures tha t eventually each message will
make forward progress.

Chapter 5. Multi-level Cache Hardware 100

5.4. Deadlock Avoidance

C oherence M essage R eordering

Figure 5.5 illustrates the function of passive and active queues when connected
to a bus-based interconnect. Five snapshots of the memory-bound input queues
for a shared level cache are shown. For clarity it is assumed th a t no other cache
is competing for the bus during the period shown. The non-sinkable and sinkable
queues contain three read requests and a single writeback request respectively.
Following the deadlock avoidance rules, mentioned in Section 5.4.3, the writeback
takes precedence over the three read requests and is issued first. At cycle 3, the
writeback transaction is placed on the bus, freeing the non-sinkable queues to
arbitrate for access to the bus. At cycle 5 the first read request is issued on the
bus for address B, and a copy of the coherence message is placed in the active
queue. At cycle 7 the second read request, this time for address C, is issued. A
copy is placed in the active queue, and the data for the writeback is transferred
on the da ta bus. During the same cycle, however, the upper level cache triggers a
Nack for address B, signalling a blocked queue. The interconnect controller raises
the retry signal, and the coherence message (SH B) is re-entered into the passive
queue. At cycle 9 the third read request is issued. No Nack is triggered during
this cycle so the copy of the coherence message for the second read request is
cleared from the queue. Finally during cycle 11 the initial read request (SH B)
is re-issued.

As the queue was blocked during the issue of the first read request the final
ordering of the requests sent across the network is WB A, SH C, SH D and SH B.
Were the three read requests being sent to a multiple banked cache, where each
address was contained within separate banks, the blocking of address B would
not significantly delay the progress made by the other requests. Re-ordering is
also beneficial when a shared cache is issuing core-bound transactions to multiple
cores or clusters. A coherence message being sent to a cluster or core tha t is
blocking incoming transactions will not unnecessarily delay subsequent messages
to other cores or clusters.

Chapter 5. Multi-level Cache Hardware 101

5.4. Deadlock Avoidance

cycle 3

cycles

Input Buffer

cycle 7

cycle 9
Remove

Output Buffer!

cycle 11
Remove

THTT

B us C ycle
1 2 3 4 5 6 7 8

/ -------- 5

/ \

7

Bus Cycle
1 2 3 4 5 6 7 8

........... f.
/---- 5

G nt

Type

! / \

...... V
-*

B us C ycle

R q t

Gnt.

Type

1 2 3 4 5 6 7 8

; t \ • /

!...........

(' ' f l i r i u i.
*......... - ‘ \ ! /

J . Nack B ,

Bus Cycle
3 4 5 6 7 8 9 10

■t / / \

G n t

Type

!........... / | / \

.‘ WBA c m bT*.— 4 - W c ‘ \ (W O ,
............

i /N a c k

Bus Cycle

R q t

5 6 7 8 9 10 11 12

■*. i..... “\ / — h

G n t

iy p «

Data

; / \

(S M S 4 -SMC •» 4_~ SM d -a
^ S MB

-
r

r \

I / N ick t\
........... J.........

F igu re 5.5: Passive/Active queue reordering.

Chapter 5. Multi-level Cache Hardware 102

5.5. Address Blocking

5.5 A ddress B locking

To reduce the number of coherence messages propagating through the multi-level
hierarchy, and to simplify the protocol logic, each interconnect in the hierarchy
implements address blocking. A small table of addresses is stored at the lower
interconnect controller within each shared level cache, as shown in Figure 5.6.
When a coherence message is propagated up to a higher level in the cache hierar­
chy the address is stored in the address blocking table. Should another coherence
message for the same address arrive at the lower level interconnect controller
it is blocked, and rescheduled as previously described in Section 5.3.1. The ad­
dress blocking table also prevents multiple transactions for the same address from
entering the same shared level cache concurrently. When the address blocking
table is full, subsequent transactions tha t require propagation to higher levels are
blocked.

Tags and Data

addr
Input BufferAddress

blocking
table

O utput BufferInterconnect Controller

Interconnect

F igu re 5.6: Multi-level address blocking table.

The address blocking table also stores the identifier of the cache that issued the
transaction onto the interconnect. This id is subsequently used when a response
is generated in order to route the coherence messages back through the hierarchy.

5 .5 .1 L ocal T ran saction s

The address blocking table is implemented as a separate structure to the cache
tags and as such the size is necessarily limited to allow fast access. The table can
therefore become full if many coherence messages all for different addresses are

Chapter 5. Multi-level Cache Hardware 103

5.5. Address Blocking

sent to the upper levels of the hierarchy. During periods of significant activity
locally contained transactions, those not requiring any further propagation, are
still allowed access to the shared level cache. Local transactions may complete if
no coherence messages are triggered to higher levels in the hierarchy by a change
of cache state.

If the number of entries in the address blocking table is fewer than the total
number of core side caches attached to the network, a portion of the address
blocking table is reserved. This reserved section ensures throughput from local
transactions is always maintained. When a local transaction completes its entry
is removed from the address blocking table.

5 .5 .2 D ea d lo ck A v o id a n ce

The address blocking table is im portant for routing responses back to the original
requesting caches, however it also introduces another possible deadlock scenario.
Should the address blocking table block all coherence messages then it can easily
become deadlocked, as illustrated in Figure 5.7.

Tags and Data MMD AMD A

addr
In p u t B uffer IAddress

blocking
table In terconnect Controller

INV Athe invalidate, which must
precede the write response, ♦
can not proceed because the
write request has an entry for
address A in the addresblocking table

F igu re 5.7: Multi-level deadlock arising in the address blocking table.

By applying the same rules outlined in Section 5.4, in particular guaranteeing the
propagation of sinkable messages by not blocking them, deadlock can be avoided.
Sinkable messages share the reserved portion of the blocking table with local
transactions so tha t they can always propagate across the interconnect.

Chapter 5. Multi-level Cache Hardware 104

5.6. Multi-Level Synchronisation

5.6 M ulti-L evel Synchronisation

Extending the cache hierarchy to multiple shared levels has implications when
providing synchronisation instructions using the load-linked and store-conditional
pair. Multiple processors can execute a load-linked instruction and subsequently
attem pt a store-conditional instruction, illustrated in Figure 5.8.

MC[n]

L2N[0]

MDC MDC

L2$[0] L2$[1]

L1N

M M D S INV
L1$[2]L1$[1] L1$[3]

lock A lock A

s t l_ c s u c c e e d s , c o n t in u e s t l_ c fa ils , retry

F igu re 5.8: Load-linked and store-conditional synchronisation in a multi-cluster ar­
chitecture.

The store-conditional instruction generates a store-conditional, MC bus transac­
tion, which can be in flight for multiple processors concurrently. Arbitration for
the top level bus will ensure tha t only one of the MC transaction succeeds, proces­
sor P [0] in Figure 5.8. A MMD response is generated towards processor P [0], and
because P [2] ’s cache holds the line shared, an INV transaction is generated. The
invalidate transaction is also required to remove any in-flight store-conditional
transactions for the same address from all memory bound buffers th a t the in­
validate signal passes. When the invalidate signal reaches the cache attached to
P [2] the context waiting for the store-conditional to complete is woken and the
store-conditional fails. Software routines, such as the one outlined in Figure 3.10,
are responsible for a subsequent reattem pt to enter the critical section of code.

Chapter 5. Multi-level Cache Hardware 105

5.7. Lazy Cache-Line Allocation

This cancellation process is necessary to stop a subsequent MC generating an
INV response which could reach the processor before the store response1. In such
a scenario both store-conditional transactions would arrive at the processors with
both sets of locks reset, and so would fail and need to be reattem pted. Such a
scenario can lead to livelock.

In the presence of multiple levels of shared cache it may be more appropriate to
use the compare and swap primitive for certain concurrent algorithms to avoid the
potential for ping-ponging between multiple load-linked/store-conditional pairs.

5.7 L azy C ache-L ine A llocation

Both the private and shared level caches within the multi-level hierarchy imple­
ment a write-back policy, and can therefore hold the only up to date copy of a
given cache line. Write-back caches are advantageous in multi-level hierarchies as
they generate less write traffic when compared to write-through caches [76], with
only evictions generating transactions on the interconnect.

A lazy cache line allocation policy is implemented within the multi-level hierarchy.
W hen a cache miss occurs a coherence message is generated and propagated
into the network w ithout allocating a line to hold the response. This occurs at
each successive level in the hierarchy and no line is allocated until a response
transaction is received.

When a response is received by a cache, the least recently used set for each line
mapping is selected as an allocation candidate for the incoming cache line. If the
candidate line is Valid the line is simply overwritten, if the line is Valid Shared
the line is overwritten and invalidations are generated for the sharing caches. If
the candidate line is Modified a writeback is generated, if it is Modified Shared
a writeback and invalidations are generated. If the candidate is Modified Stale a
writeback request is generated to fetch the latest data into the cache and the line
is set Pending, however the response is delayed and must be rescheduled. The
response is rescheduled until the candidate line is no longer in the Pending state
and the line in the Modified state can be written back and overwritten.

BN V and W B are examples of sinkable transactions which are able to overtake other trans­
actions due to the split-channels described in Section 5.4.3.

Chapter 5. Multi-level Cache Hardware 106

5.8. Summary

This policy ensures tha t when a line is finally allocated, after the response is
received back at each level, the least recently used set in each cache is selected
for eviction. Additionally during the period from a request being generated to
a response being received no lines within the cache are reserved, which would
reduce cache utilisation. Furthermore, lazy allocation prevents requests from
being blocked when a particular mapping in the cache has been allocated across
all of the sets for outstanding transactions.

5.8 Sum m ary

This chapter has presented the cache hardware required to implement the cache
coherence protocol presented in Chapter 4. The hardware implementation of
shared level caches within the hierarchy was discussed, in particular the core- and
memory-bound queueing systems were outlined. The addition of multiple levels
of shared cache introduces networking issues such as flow control and deadlock.

Deadlock within the multi-level hierarchy is prevented by dividing the coher­
ence messages into sinkable and non-sinkable messages and providing separate
queueing channels for each. A novel passive and active queueing mechanism was
presented th a t allows reordering of non-sinkable messages and prevents head of
queue blocking. Finally lazy cache line allocation was introduced.

In the next chapter distribution and optimisation schemes are discussed th a t best
utilise the multi-cluster architecture.

Chapter 5. Multi-level Cache Hardware 107

CHAPTER 6

Multi-level Task Locality

The extension of the Jam aica CMP architecture to a CMC architecture presents
several challenges and opportunities for software applications. The ability to in­
tegrate many more cores within a single chip shared-memory architecture, poten­
tially allows for greater performance but also increases inter-processor communi­
cation. If clustering is a possible direction for next generation CMP architectures
then both application restructuring and scheduling to take advantage of locality
of reference must be carefully considered.

This chapter discusses locality within the CMC architecture outlined in Chapters
4 and 5, presents a novel extension to the work distribution mechanism and the
instruction set and discusses the use of this scheme to implement both application
restructuring and scheduling.

6.1 C lusters and C ache L ocality

In a multi-level cache hierarchy multiple levels of sharing exist; the contexts
within a core share the LI cache, all cores within a cluster share the L2 cache,

108

6.2. Task Distribution

and all L2-clusters share the L3 cache or memory, as illustrated in Figure 6.1.
This sharing continues to extend in deeper hierarchies as more cache or index1
levels are added.

MC[0] MC[n]

level 2 locality sharing i

L2$[0]

L1N[0] I

L2$[1]

L1N — — « — — N
i level 1 locality sharing^

L1S[1) I

5 E *
L1$[3] IL1$[0] L1$[2]

; level 0 locality sharing >

P[0] P[1] P[2] P(3]

F igure 6.1: The multi-cache hierarchy implicitly exhibits a hierarchy o f locality of
reference within each shared level working cache set.

Ideally application tasks or threads should be distributed across the processing
cores in an attem pt to best exploit the locality between associated tasks. Bal­
ancing tasks in this manner reduces the bandwith requirements of higher level
interconnects, reduces the visible memory latency, and avoids unnecessary con­
gestion within the network.

6.2 Task D istr ib u tion

The Jamaica architecture, outlined in Chapter 3, provides hardware support for
fine-grained parallelism by means of a token distribution ring, outlined in Section
3.1.3. The ring allows tasks to be distributed from a running thread maintained
within one hardware context to any other idle hardware context within the CMP.

1 Maintaining a cache at every level in the hierarchy is not strictly necessary, higher levels
within the system can be coordinated using tag matrices [49], to reduce the transistor require­
ments.

Chapter 6. Multi-level Task Locality 109

6.2. Task Distribution

Given a single bus CMP architecture the distribution of tasks is arbitrary and
each idle context is given an equal weighting as a candidate for task distribution.
This scheme works well as all contexts within a single bus CMP share a single
L2 cache and any LI cache can transfer data to any other LI cache, because
all shared data is accessed across the single shared bus. Some advantage can be
gained from distributing two associated tasks to two idle contexts within the same
processing core, as there will be some benefit from the sharing of data within a
LI cache, but can also be a disadvantage when another free context resides in a
wholly idle core somewhere else on the chip.

6 .2 .1 L o ca lity A w are T ask D is tr ib u tio n

Extending the architecture to a multi-cluster CMP extends the access possibilities
for data shared between multiple contexts. D ata may be shared, and subsequently
modified, by a context within a different cluster. Successive modifications to the
same data by two contexts in two separate clusters will incur significant delays
due to the latency of continually passing updated copies of the data across higher
level interconnects and invalidating and moving the data through multiple levels
of cache, as illustrated in Figure 6.2.

Minimising the level at which data is shared by associated tasks can significantly
reduce the access latency to shared data by those tasks and, as a consequence,
improve the performance of a parallel application.

Synchronisation also benefits from locating coordinated tasks within a cluster
where possible. This ensures th a t data regions used to implement atomic primi­
tives remain as close to the context attem pting synchronisation as possible, min­
imising the latency of each synchronisation.

6 .2 .2 T ok en R e q u e sts

In the original single shared bus Jamaica architecture a token-request instruction,
TRQ, is executed during the process of forking a task. The token-request either
returns an integer value, uniquely associated with an idle-context somewhere
on the chip, or after polling unsuccessfully for a software set number of cycles,

Chapter 6. Multi-level Task Locality 110

6.2. Task Distribution

MC[0]

L2N[0]

L2$[0] L2$[2]L2$[1]

L1N[2]d(L2) d(L2)

L1$[0] L1$[2] L1$[3]

d(L1) d(L1) d(L1)d(L1)

P[5]P[2]

cluster 2cluster 0 cluster 1

Intra-cluster sharingInter-cluster sharing

Figure 6.2: Two contexts operating on the same data per/own more efficiently if that
data can be kept within the same cluster, intra-cluster sharing, as opposed to sharing
between clusters, inter-cluster sharing.

returns 0 informing the context executing the token-request th a t no idle context
was available during the polling period.

When an idle context identifier is returned by the execution of a token-request,
task setup data is sent across the single shared bus along with the idle context’s
unique identifier using the thread jump, THJ, instruction. The idle context, as
part of constant normal cache snooping, recognises the identifier and reads the
task data, eight 32-bit values, off the data bus and into the context’s In register
window2, before beginning execution of the forked task. Part of the task data
includes a value uniquely identifying the parent thread, which is required when
notification is later sent back to the parent thread informing it tha t one of its
forked tasks has completed.

In order to maintain this lightweight thread-shipping mechanism within a multi­
cluster architecture the token-request instruction has been extended to encode
information about the cache locality of each context.

2 Register windows are discussed in Section 3.1.2.

Chapter 6. Multi-level Task Locality 111

6.2. Task Distribution

6 .2 .3 L o ca lity A w are T oken R eq u est E x te n s io n s

The CMC architecture exhibits a number of levels of cache locality, shown in
Figure 6.1. Two contexts within a CMC architecture can either cohabit a cluster
or exist in separate clusters at each level of cache locality. As an example all
contexts within the processing core P [0] , in Figure 6.1, cohabit a level 0 cluster.
A context in P [0] and a context in P [1] cohabit a level 1 cluster, but exist in
different level 0 clusters. The minimum locality level at which two contexts share
a common cache will be referred to as the cache-distance between them.

The cache-distance can be used to distribute tasks to contexts either within a
locality level, or outside of a locality level. In order to calculate the cache-distance
between two contexts, the token distribution mechanism is extended such tha t
cluster information is encoded into the unique-identifiers.

6 .2 .4 C a ch e -D ista n ce Id en tifiers

The CMC architecture and coherence protocol, introduced in Chapters 4 and 5,
allow for an arbitrary configuration of the multi-cluster hierarchy. A CMC archi­
tecture can be configured in a balanced tree-like topology, as shown in Figures
6.1 and 6.2, or in an unbalanced topology, as shown in Figure 6.3.

By assuming th a t an architect may want to build or analyse the performance of
both balanced and unbalanced cluster configurations the cache-distance identifier
is encoded with sufficient information to determine the minimum level at which
two contexts share data by comparison with another context’s cache-distance
identifier.

A lg o rith m X Cache-distance encoding.
1: cache-distance id = 0
2: fo r I = top sharing level down-to 0 do
3: components = max number of sharing components at level I
4: bit_shift = bits needed to express the number of components
5: bit_mask = index of the component the context is connected under at level

I o r index of component itself o r 0
6: cache-distance id — cache-distance id | bit_mask
7: cache-distance id = cache-distance id « bit .shift
8: en d for

Chapter 6. Multi-level Task Locality 112

6.2. Task Distribution

MC[0] MC[n]

L2N[01

L2$[0] L2$[1] L2$[2]

L1N[1]L1N0]

L1$[2]L1$[0] L1$[1] L1$[3] L1$[5]L1$[4]

F igu re 6.3: An example of an unbalanced multi-cluster configuration.

Each cache-distance identifier is a bit-mask which is composed of the encoded
locality of each context, defined by the algorithm listed in Algorithm 1. The bit
mask is stored in a context specific register, discussed in Section 3.1.1, and can be
accessed by the LI cache logic as well as by privileged software. To illustrate how
the cache-distance identifiers are allocated consider the unbalanced architecture
shown in Figure 6.4.

Starting with the top level of sharing, level 2, the number of connected compo­
nents, in the example comprising three L2 caches, is counted in order to derive the
number of bits required to represent all components at the same level. For each
context the level 2 bitmap is the binary representation of the level 2 component
which is above it in the hierarchy, using left to right indexing. In the example
all contexts connected to processor P [0] have 00 as the level 2 bitmap, contexts
connected to P [1] and P [2] have 01 as the level 2 bitmap. This trivial process
is repeated at each level of sharing. It should be noted th a t all cache-distance
identifiers must be of the same length, even when the hierarchy is unbalanced, as
illustrated by P [0] in Figure 6.4.

Chapter 6. Multi-level Task Locality 113

6.2. Task Distribution

MC[0] MC[n]

L2NID1

00|00|00

L2$[0] L2$[1] L2$[2]

•obi " i " : ; o i i " i " i j i b i 'T I

[m j
Ctx[0| | ooiodjool

L1N[1]

L1$[0] | L1$[1] L1$[2] L1$[3] | L1$[4] | L1$[5]

:0 1 |0 c O l :6 i |b i’0 :10|00|__: • i b i b i Q l :ib ii6L _ ':| :10 |11L ;

Ctx[0] 01|00|00 CtxtO] 01|01|00 Ctx{0] 10|00|00 CtxtO] oOoo

CtxtO] 10|10|00 Ctx(0] 10|11|00

ctxtu 01100|01 Ctxtu 01|01|01 ctxtu 10|00|01 ctxtu o_oo

CtxIU 10|10|01 ctxtu 10|11|01
ctxf2]
Ctx(3]

10|00|10 Ctxp] 10|01|10 Ctxp] 10|10|10 Ctxp] 10|11|10
10|00|11 Ctx[3] 10|01|11 Ctxf3] 10|10|11 Ctx(3] 10|11|11

F igu re 6.4: The allocation of cache-distance identifiers to contexts in an unbalanced
multi-cluster architecture.

6 .2 .5 H ard w are S u p p o rt for L oca lity

In order to support lightweight threading within the CMC architecture it must
be possible to locate idle contexts across the whole chip, and then be able to
distribute tasks to available idle contexts.

Locating Idle C ontexts

Locating idle contexts within the CMC architecture is done using the same ring
structure found in the single bus architecture. Each core on the chip is connected
to two neighbouring cores creating a single ring network. When contexts become
idle the cache-distance identifier is placed onto the ring or, if no space exists on
the ring, into a local token pool. Idle contexts, as previously mentioned in Section
3.1.3, are located by polling the ring network for tokens using the TRQ instruction.

A single ring network has two major disadvantages when connecting all of the
processing cores in a CMC architecture. Firstly the latency for a cache-distance
token to complete a rotation of the ring is equal to the number of cores connected
to the ring. W ith the possibility of integrating hundreds of cores this latency can

Chapter 6. Multi-level Task Locality 114

6.2. Task Distribution

be significant, however, the actual latency is dependant 011 the requirements of
the token request instruction. The second disadvantage is th a t the ring is not
fault tolerant. Any damage to the structure during manufacturing will remove
the ability to locate idle contexts using the ring. The ring does however provide a
simple mechanism th a t allows multiple cores to poll for and release idle contexts
concurrently and is retained for this reason within the CMC architecture.

D istrib u tin g Tasks

To support task distribution within the CMC architecture each shared cache must
be able to forward task-setup data either up or down the hierarchy so th a t an idle
context, even in a different cluster, can receive it. Each level of shared cache in
the architecture contains logic to make a simple comparison of the cache-distance
identifier within the task-setup data, and tha t stored in the caches test mask.
The task-setup data is forwarded up the hierarchy until the test mask matches
the cache-distance identifier, the task is then moved down the hierarchy of caches
based on the values in each successive bitmap within the cache-distance identifier.

Suppose core P [l] , in Figure 6.4, upon executing a TRQ instruction receives the
cache-distance identifier [101101]. The forking code executing on the core pack­
ages the task-setup data into registers oO - o7, and executes a THJ instruction.
The LI cache logic checks th a t the cache-distance identifier is not within its local
group of contexts, using the test mask [0100—], and, in a similar manner to
load/store instructions missing in the LI cache, arbitrates for access to the bus,
LIN [0]. The task data, consisting of 8 32-bit registers, matches the size of a
cache line, and so task distribution reuses the logic already required for cache
coherence.

W hen the interconnect network is a bus, a THJ transaction can be snooped by
all the caches and consumed by a cache where the test mask matches the cache-
distance identifier. W hen the interconnect network is a crossbar, the THJ transac­
tion must be forwarded to the higher level shared cache, where logic then deter­
mines if the THJ should be forwarded up or down the hierarchy. In this example
the L2 cache, L2$ [1] buffers the THJ transaction and the task-setup data, as the
cache-distance identifier [101101] does not match the test mask [01------] and
so the transaction must be passed onto the next level bus, L2N [0].

Chapter 6. Multi-level Task Locality 115

6.2. Task Distribution

W hen the THJ transaction is placed onto the top level bus, L2N [0], the L2 cache,
L2$ [2] , is able to match the cache-distance identifier [101101] with the test mask
[10-] . The THJ transaction is subsequently forwarded down the hierarchy,
using the same process, until it arrives on bus L1N[1] and is consumed by the LI
cache Ll$ [5]. The cache is then able to wake the relevant context in core P [6]
which becomes runnable, and will begin processing the distrubuted task when
the context is next scheduled.

The delay associated with shipping a task across the chip is related to the distance
th a t the task is being shipped. A longer delay will be associated with shipping
a task to a core in a remote cluster when compared to shipping a task within
the same cluster. This delay is acceptable however as distributing the task to a
remote core is reserved for tasks tha t exhibit poor locality or th a t are sufficiently
independent to achieve benefits from running in separate caches.

6 .2 .6 S o ftw are S u p p o rt for L oca lity

The lightweight task distribution mechanism is exposed to software via the TRQ
instruction so th a t parallel applications can be optimised to best utilise the CMC
architecture.

Token R equest Sem antics

The TRQ instruction has been modified to allow programs to express a preference
for how near or far away in the cache hierarchy a shipped task should be dis­
tributed. The TRQ instruction is of the register form, see Appendix A .1.1, which
is composed of two input operands Ra and Rb and a result register Rc. The first
operand is used to define the number of cycles tha t the TRQ operation is allowed
to poll for a token. The TRQ operation returns either a token, containing the
cache-distance identifier, or -1 in the result register depending on whether a suit­
able token is found or not. The second operand is used to define the preferences
for selection of a token, and is composed as shown in Figure 6.5.

The operand can be interpreted as either a mandatory or preferential set of
arguments. The TRQ instruction will try to satisfy the arguments of the operand
during the poll cycles supplied within the first operand. If no token of any sort is

Chapter 6. Multi-level Task Locality 116

6.2. Task Distribution

preference (0) or mandatory (1).

match level(OO), or cache-identifier(11), or
given level-identifier at level(10).

less than (0) or greater than or equal (1) bit

level cache-identifier or level-identifier
j i i i i i i i ' i i i i i i

31 30 29 28 27 23 22

F igu re 6.5: The TRQ semantics allow preferences for token selection which are exposed
within the preference operand (Rb)

available it will return -1. As soon as a token matching the preferences is found
tha t token is returned, curtailing the polling period. If other tokens are found
during the polling period and the arguments are supplied as preferential, then
each token is held until another is found, at which point the newly found token
is held and the previously held token is released back onto the token ring. If
no matching tokens are found when the polling period expires the held token is
returned.

The semantics allow software to select tokens tha t are related to a given cache-
distance identifier, th a t are a given level distance from the executing context’s
cache-distance, or tha t are in a particular cluster at a given level. Because the
TRQ instruction stores the resulting cache-distance identifier in register Rc, the
software can use this value in future distribution operations. However, the soft­
ware can not generate a cache-distance token to distribute a task to, the returned
identifier is stored in a privileged internal register which is used by the following
THJ or THB instruction. Additional instructions within the instruction set allow
software to enquire about the number of levels of sharing and the number of com­
ponents at each level, relative to the context executing the instruction. These
values are hardwired into control registers within each processor.

To utilise the token semantics two initial distribution methods were developed;
cluster affinity and remote-local distribution. Using the TRQ semantics it is also
possible th a t other scheduling schemes described in the literature could be imple­
mented within software, in particular balance-set scheduling [43] and sampling-
based and electron-based policies [164] and go some way to approaching quality-
of-service schemes [73].

Chapter 6. Multi-level Task Locality 117

6.2. Task Distribution

R em o te -L o ca l D is tr ib u tio n

Remote-local distribution is a simple policy tha t allows a thread distributing work
to decide whether the task should be forked to a local context, within a cluster at
a given sharing level to improve data locality, or to a remote context in a remote
cluster at a given sharing level to improve load-balancing. This scheme is used
by software to keep threads either local, for example when dividing work on a
shared array of data, or to ship threads away from the distributing thread to avoid
unnecessary cache interference th a t may delay the progress of the distributing
thread.

A disadvantage to the remote-local distribution policy is th a t remote tasks are
sent to arbitrary remote clusters, based on the order they are acquired using the
token-request TRQ instruction. This can lead to work imbalance, where a number
of remote tasks are distributed to the same cluster and potentially clusters remain
idle. The remote-local scheduling is best used when a large number of worker
threads need to be distributed by a single distributing thread. The distributing
thread can therefore opt to distribute tasks to remote clusters or cores to allow
itself to progress without being impeded by time-sharing a core’s pipeline.

remote ship call 4
remote ship call 3

local ship
call

© ©

F igu re 6.6: Remote-local distribution allows a program to fork a task to a context
within either a local or a remote cluster. Even though four remote threads are forked
there is no guarantee all clusters will receive work.

Chapter 6. Multi-level Task Locality 118

6.2. Task Distribution

C lu s te r A ffin ity

Cluster affinity distribution allows a program to ship tasks to a context within
a specified cluster of processors at a given sharing level. The policy enables
software to distribute tasks to all clusters at a given sharing level, ensuring that
all clusters are utilised within an architecture leading to a better load-balance,
see Figure 6.7. Additionally this is beneficial when running multiple independent
application threads. By running each application in isolation, each restricted to
a separate cluster, cache interference can be avoided within the smaller, lower
level, shared caches whenever possible.

shlpto
cluster 0

ship to duster 3
ship to duster 2
ship to duster 1

o 0

12$

~ r

o o
Cluster 0 Cluster 1

0 0
Cluster 2

0 0
Cluster 3

F igu re 6.7: Cluster affinity allows a task to be distributed to a specified cluster at a
given sharing level.

Software can also use cluster affinity as a means of keeping a thread within the
same cluster throughout its lifecycle. On a heavily loaded system, many threads
will be competing for a limited number of hardware contexts to execute on.
A global thread scheduler is responsible for ensuring all threads make forward
progress, and when required will force threads to yield. When those threads
are subsequently rescheduled cluster affinity can be used to ensure tha t they are
rescheduled within the same cluster in order to benefit from previously cached
data.

Chapter 6. Multi-level Task Locality 119

6.3. Summary

6.3 Sum m ary

This chapter has described how locality can be exploited within a CMC architec­
ture. In particular an extension to the TRQ instruction was presented tha t allows
software to exploit locality by controlling the affinity of distributed tasks. Two
simple examples of the use of the extended TRQ instruction for locality based task
distribution were presented.

The next chapter presents and analyses results from experimentation using the
coherence protocol introduced in Chapter 4, the hardware support introduced in
Chapter 5. and finally locality aware task distribution introduced in this chapter.

Chapter 6. Multi-level Task Locality 120

CHAPTER 7

Results and Analysis

Previous chapters have introduced a cache coherence protocol for multiple levels
of shared cache, a CMC architecture built to support this protocol and locality
based task distribution to take advantage of cache locality within the architecture.
This chapter analyses the architecture, protocol and distribution mechanism by
exercising a cycle-level simulated system using parallel benchmarks.

7.1 E xp erim en ta l M eth od

Accurately evaluating the performance of the CMC architecture, the coherence
protocol and the locality distribution mechanism requires a way of simulating
the system and exercising its components with workloads likely to reflect those
used in real parallel systems. In this section the simulation environment and the
benchmark applications used in this study are described.

121

7.1. Experimental Method

7.1 .1 S im u la tion E n v iro n m en t

To evaluate both the protocol and the architecture built to support it, the jamsim
framework was extended with additional components. These components include
a modified cache component, able to express the seven states of the PIMMS
protocol, see Table 4.2, and both a bus and crossbar based interconnect able to
implement the protocol transitions.

For each simulation the architecture is configured with, unless otherwise stated,
the parameters listed in Table 7.1. The processor, the interconnect and the
memory hierarchy are simulated using cycle-level models to account for, and al­
low further analysis of, the many interactions, stalls, queue delays and blocking
associated with the architecture. Additionally the simulation platform has been
extensively instrumented to extract statistical data from each of the studied com­
ponents and overall performance metrics.

Component Parameters
LI caches 16KB, 4-way set-associative, access 1 cycle,

4 entry core- & memory-bound queues.
L2 cache 2MB, 8-way set-associative, access 8 cycles,

4 entry core- & memory-bound queues.
L3 cache 4MB, 16-way set-associative, access 32 cycles

4 entry core- & memory-bound queues.
Off-chip Memory 2GB, access 100 cycles
L1-L2 bus 8 phase, memory led split-transaction protocol, L2 clock
L2-L3 bus 8 phase, memory led split-transaction protocol, L3 clock

T able 7.1: Configuration o f the simulated cache hierarchy.

The Java benchmark applications selected are executed within the ported version
of the Jikes RVM which is hosted natively on the simulator. The use of the JaVM
allows Java threads to be mapped onto the underlying hardware thread distri­
bution mechanism. The benchmark applications are statically compiled into the
Jikes RVM bootimage using the highest level of optimisation (-02). This avoids
the cost of dynamic compilation and optimisation of the benchmark classes dur­
ing execution and as a consequence reduces the impact of noise and interruptions
by JaVM threads to the application threads at runtime, allowing a more intuitive
reasoning about the performance.

Chapter 7. Results and Analysis 122

7.2. Benchmark Descriptions

7.2 B enchm ark D escrip tions

In order to exercise the architecture and stress the coherence protocol a set of
multi-threaded applications were selected from two benchmark suites: Doug Lea’s
Fork/Join package [93] and the JavaGrande Forum benchmark suite [144]. The
param eters used for each benchmark have been chosen to avoid the side-effects of
garbage collection during execution, again avoiding unnecessary JaVM activity.

7 .2 .1 F o r k /J o in B en ch m ark s

The fork/join benchmarks have been selected from a set of nine demonstration
applications used to study parallel application performance using a Java work-
stealing framework. Out of the nine benchmark applications three were discarded,
Microscope because the code was heavily interleaved with a graphical user inter­
face, Heat because standard parameters consumed too large a simulation time,
and NQueens because results and timings are non-deterministic, due to the nature
of its multiple solution strategy.

The fork/join benchmarks are supplied at runtime with the number of threads
available to process tasks; for each simulation configuration this is set to the
number of hardware supported contexts. The following sections briefly introduce
the six benchmarks selected.

F ibonacci

The f ib o n acc i benchmark calculates the nth fibonacci number by recursive par­
allel decomposition. The initial number is decomposed into two parallel tasks to
calculate the (n — 1) and (n — 2) numbers. This decomposition is done recursively
until the value of n falls below a threshold, at which point it is calculated se­
quentially. The results of the decomposed values are then successively combined
to form the to tal result. Each task of the decomposed pair, (n — 1) and (n — 2),
must wait for the other to complete before combining the results and completing
the n task th a t they themselves were recursively divided from.

Chapter 7. Results and Analysis 123

7.2. Benchmark Descriptions

M atrixM ult

The m atrixM ult benchmark performs a parallel divide-and-conquer m atrix mul­
tiplication. The matrices A and B are divided into quadrants and then multiplied
using Equation 7.1.

(>U,i ^ 1 , 2 \ y (Bi,i \ __ / (Ai,ixBi,i) (Ai,!x£?i,2) \ . / (Ai^xi^.i) (A i ^ x i ^ ^ D in -1 \
\ ^ 2 ,1 ^ 2 , 2 / \ £?2,1 Z?2,2 / \ (^ 2 , 1 X i 3 l , i) (A 2 , 1 X 2 ? 2 ,1) 1 \ (^ 2 , 2 X i ? 2 , 1) (^ 2 , 2 X i? 2 ,2) ' ^ ’ '

The matrices on the right hand side are recursively divided into smaller quad­
rants until reaching the threshold set in the benchmark, at which point the leaf
multiplications are calculated using sequential code. Synchronisation is required
to recombine all the quadrant results in order to produce the result matrix.

Jacobi

The ja c o b i benchmark performs iterative relaxation on a m atrix mesh. The
initial mesh is configured with the value 1 in all edge elements and 0 in all other
elements. The complete mesh is represented internally as a tree structure and
relaxation is carried out on each of the leaf nodes within the tree. Each leaf node
contains a subsection of the mesh upon which nearest neighbour averaging is
carried out sequentially. Leaf nodes are processed in parallel tasks, with synchro­
nisation occurring where edge elements overlap two leaf nodes. A defined number
of nearest neighbour averaging iterations is performed over the to tal mesh, until
the number of iterations expires or the result converges.

LU

The lu benchmark performs a m atrix decomposition of a randomly filled matrix,
into the product of two triangular matrices, Lower and Upper, and is a Java
version of the well known Linpack benchmark. The actual composition of the
algorithm is beyond the scope of this study, suffice to say th a t the decomposition
is calculated again in a divide and conquer manner. Eventually the division
creates sub-matrices whose granularity falls under a threshold, at which point

Chapter 7. Results and Analysis 124

7.2. Benchmark Descriptions

the LU decomposition is calculated sequentially inside th a t m atrix, and multiple
calculations are performed in parallel.

Integrate

The in te g r a te benchmark computes integrals using a recursive Gaussian quadra­
ture. Essentially this calculates the area under a curve using a finite approxima­
tion, by dividing the area into sections and calculating rectangular areas. The
function of the curve, for which the integral is being calculated is listed in Equa­
tion 7.2.

(2i - l)x^2i- l) (7.2)

M ergeSort

The m ergeSort benchmark performs a parallel merge/quick-sort of a set of inte­
gers. The complete array of integers is recursively subdivided into smaller sets
of integers, until the set size falls below a threshold at which point the standard
quick-sort algorithm is applied. Quick-sort of multiple sets occur in parallel, and
the results are then merged into larger sets until the whole array has been sorted.

7 .2 .2 M u ltith re a d e d JavaG ran d e B en ch m ark s

The JavaGrande m ultithreaded benchmark suite consists of three sets of bench­
marks; low-level, kernel, and application codes designed to evaluate parallel ap­
proaches to standard computationally intensive problems. From these three sets,
one low-level and three kernel tests were selected. The benchmarks have largely
been re-programmed with reference to the sequential JavaGrande benchmarks,
which in tu rn were re-coded versions of the Splash-2 benchmark suite [169]. Par­
allel work is distributed statically to the number of threads passed to the bench­
marks as a parameter. Unlike the fork/join benchmarks, no work stealing occurs,
and so each thread completes the whole portion of the work given to it.

Chapter 7. Results and Analysis 125

7.2. Benchmark Descriptions

B arrierB ench

The b a rr ie rB en ch benchmark is a low-level benchmark designed to measure
the performance of barrier synchronisation. Internally the benchmark creates
a number of threads which loop for a given number of iterations and attem pt
to synchronise on two types of barrier, a simple shared counter and a lock-free
tournam ent barrier.

Series

The s e r ie s benchmark calculates the first n Fourier coefficients of the function
listed in Equation 7.3, over the interval [0, 2]. The benchmark consists of a large
loop over the Fourier coefficients, however, each iteration of the loop is indepen­
dent of every other iteration and the work is simply divided and distributed to
the parallel threads.

f (x) = (x + l) x (7.3)

SO R

The so r benchmark performs 100 iterations of successive over relaxation on a
N x TV grid. The benchmark contains three loops, the outer iteration loop and
two inner loops over the row elements to process the relaxation. In order to
parallelise the algorithm the elements in the grid are processed using a “red-
black” ordering scheme, which allows the inner loops to be partitioned between
the threads. Synchronisation occurs at the end of each iteration to ensure th a t all
red (black) elements have been updated before attem pting to update the black
(red) elements.

C rypt

The c ry p t benchmark performs IDEA (International D ata Encryption Algo­
rithm) encryption and decryption on an array of N bytes. The benchmark con­
tains two principle loops whose iterations are independent and can therefore be

Chapter 7. Results and Analysis 126

7.3. PIMMS Coherence Protocol

partitioned between the threads in a block fashion.

7 .2 .3 B en ch m ark P a ra m eters

For completeness the parameters used for each benchmark, unless otherwise
stated alongside results, are listed in Table 7.2. Each benchmark was run us­
ing N threads, where N equals the number of hardware contexts supported by
the architecture being simulated.

Benchmark Type Parameters
barrierBench low-level size = 0
fibonacci kernel number = 39, threshold = 20
matrixMultiply kernel matrix = 1024x1024, granularity = 128
jacobi kernel matrix = 1024x1024, steps = 128
lu kernel matrix = 512x512
integrate kernel low = 1, high = 42, exponential = 5, tolerance = 0.001
mergeSort kernel sort array = 5,000,000 integers
ser ie s kernel size = 100
sor kernel matrix = 256x256
crypt kernel 500,000 bytes

T able 7.2: Benchmark parameters used during experimentation.

7.3 P IM M S C oherence P rotoco l

Having outlined the simulation configurations and the benchmarks used to ex­
ercise the architecture and the coherence protocol, this section looks at various
aspects of the protocol, working under simulation, to assess its correct function.

7 .3 .1 C o h eren ce T ran saction s

As mentioned in Section 4.3.2, nine coherence transactions coordinate all of the
on-chip shared memory coherence. Coherence messages propagate both up and
down the multi-level cache hierarchy to ensure that the cached representation of
memory seen by all contexts is consistent.

Chapter 7. Results and Analysis 127

7.3. PIMMS Coherence Protocol

Coherence transactions are tracked during simulation when they appear in the
interconnect. This tracking provides an insight into both the composition of
the coherence traffic and the peak utilisation of the interconnect. Figure 7.1,

shows this utilisation, during execution of the lu benchmark. As the system is
configured as a two cluster CMC. there are two bus networks, LIN [0] and LIN [1] ,

connecting the LI private caches of the 64 cores within each cluster and a higher
level bus network, L2N, connecting the two L2 caches.

□ MWBb e n c h i u _ 2_ i 2 S _ i _ i
Start 9 7 5 5 9 0 4 9 0
e n d 1 2 6 4 7 1 7 2 4 6
c y c le s 2 8 9 1 2 6 7 5 6
p e a k (%)7 7 .5 4 M M Dw 48 -

V) 80 -
o -
</>

60 -

z f -
n 4 0 -
o -
o' 20 -

b e n c h l u _ 2 _ i 2 8 _ i _ i
s ta r t 9 7 5 5 9 0 4 9 0
e n d 1 2 6 4 7 1 7 2 4 6
c y c le s 2 8 9 1 2 6 7 5 6
p e a k (%)9 5 .0 2

26

w 76 -
o
V)
©] 5 7 —|
Z
□ 38
o
^ 19 H

0

b e n c h l u _ 2_ i 28_ l _ i
s ta r t 9 7 5 5 9 0 4 9 0
e n d 1 2 6 4 7 1 7 2 4 6
c y c le s 2 8 9 1 2 6 7 5 6
p e a k (%)9 2 .5 0

26

52 78
cycles (107)

52
cycles (107

52
cycles (107)

I
78

104

J MWB

□ MWB

104

F igu re 7.1: Bus utilisation during execution of the lu benchmark. The architecture is
configured as a sym m etric 2 cluster x 64 processors x 1 context CMP.

The area under the utilisation curve is divided, by percentage, into the constituent
coherence message types. SH, MD, MC and WB are memory-bound transactions,

Chapter 7. Results and Analysis 128

7.3. PIMMS Coherence Protocol

MSH, MMD, INV, DWN and MWB are core-bound, and are described fully in
Section 4.3.2.

As the benchmarks are Java classes, the period during which the JaVM is booted
and all supporting classes are loaded is significant, in Figure 7.1 this period lasts
until cycle 975,590,490. After this point the benchmark execution begins and the
coherence traffic increases significantly. The benchmark executes on all of the
processors, and the bus utilisation increases to peak at 95.02% on the LIN [1]
bus.

The coherence traffic on buses LIN [0] and LIN [1] mainly consists of transactions
satisfied either by a load from the L2 cache or a transfer of ownership/permissions
from another LI cache. This is noticeable as the number of the SH, MD and MC
request transactions far exceeds the corresponding memory oriented responses.

7 .3 .2 F ou r-p h ase T ran saction s

As mentioned in Section 4.3.4, four-phase transactions are necessary in order
to m aintain coherence across the cache hierarchies in a CMC architecture. The
number of four-phase transactions can be calculated from the combination of
MWB and DWN transactions, which are only triggered during the action phase
of a four-phase transaction.

In Figure 7.1 the number of four-phase transactions peaks a t around 10% of
the to tal transactions seen on the level 2 bus, some 130,711 MWB and DWN
transactions during a period of 10 million cycles, in which 1.25 million level 2 bus
slots are available.

The lu benchmark, the execution of which generated Figure 7.1, performs syn­
chronisation as it combines results of sub-matrix decomposition to form the whole.
During this process synchron ized methods inside the benchmark ensure tha t
locks are gained on the results prior to combining them, so some four-phase
transactions are generated. Figure 7.2, however, better illustrates the four-phase
transactions, this time generated during execution of the b a rrie rB en ch bench­
mark. As the benchmark is simply attem pting to synchronise on barriers a larger
portion of the coherence traffic visible on all buses is related to four-phase trans­
actions.

Chapter 7. Results and Analysis 129

7.3. PIMMS Coherence Protocol

23 46 69 92
cycles (107)

□ MWB
■ DWN
■ INV
■ MMD
□ MSH
0 WB

I MC
□ md

■ SH

Chapter 7. Results and Analysis 130

□ MWB
■ DWN
■ INV
■ MMD
□ MSH
■ WB
□ MC
□ md

■ SH

F ig u re 7.2: Coherence traffic generated during the JavaGrande barrierBench bench-
mark, on a symmetric 2 cluster x 8 processors CMP.

□ MWB
■ DWN
■ INV
■ MMD
□ MSH
H WB
□ MC
□ md

■ SH

_ b e n c h b b _ 2 _ l 6 _ l _ i
S tart 7 2 2 9 3 9 7 5 2

" e n d 1 1 3 8 9 0 6 7 7 6
- c y c l e s 4 1 5 9 6 7 0 2 4

p e a k (%)8 .4 9

46 69
cycles (107)

CO 6

46 69
cycles (107)

b e n c h b b _ 2 _ i 6 _ l _ i
S tart 7 2 2 9 3 9 7 5 2
e n d 1 1 3 8 9 0 6 7 7 6
c y c le s 4 1 5 9 6 7 0 2 4
p e a k (%)8 .9 0

b e n c h b b _ 2 _ l 6 _ l _ l
S tart 7 2 2 9 3 9 7 5 2
e n d 1 1 3 8 9 0 6 7 7 6
c y c le s 4 1 5 9 6 7 0 2 4
p e a k (%)3 6 .9 4

7.3. PIMMS Coherence Protocol

7 .3 .3 In terco n n ect L a ten cy

Another factor which is introduced with the extension to multiple clusters is the
effect tha t memory sharing across clusters has on the latency of the interconnect.
The graph, Figure 7.3, shows the average network latency during discrete periods
of 1 million cycles on each of the shared buses in a two cluster architecture during
execution of the lu benchmark. The latency of each transaction is calculated from
the time th a t the request arbitrates for the bus to the point at which the response
is received.

Prior to execution of the benchmark, denoted by the dashed line, the average
latency on all of the buses is fairly erratic as the architecture is booting the
JaVM and loading and compiling all necessary classes, requiring frequent calls to
memory. Immediately before the benchmark is invoked the latency increases sig­
nificantly for a period of around 160 million cycles. This increase in latency, upto
240 cycles and 160 cycles on the level 2 and level 1 buses respectively is caused
by memory allocation as the benchmark begins to create data structures. Once
the benchmark is executing however, the average latency decreases to around 10
cycles on the level 1 buses and 40 cycles on the level 2 bus. These latencies are
almost as low as is feasible, given tha t the minimum time for a single transaction
to complete is 8 cycles on the level 1 bus and 32 on the level 2 bus.

The observed latency is related to the distance tha t each transaction is required
to travel in the hierarchy in order to gather the requested data. In this example,
most requests are being satisfied directly from the shared cache without having
to traverse the inter-cluster bus.

7 .3 .4 N e g a tiv e A ck n o w led g m en t

During periods of heavy coherence traffic on the interconnects, transactions may
not be able to commit, which can occur when transaction queues are at their
capacity. A negative acknowledgment signal is sent to the cache attem pting the
transaction, and the cache must subsequently re-attem pt the transaction.

Figure 7.4 shows the percentage of the total bus slots negatively acknowledged
over the execution of the f ib o n a c c i benchmark on a 16 core CMP.

Chapter 7. Results and Analysis 131

7.3. PIMMS Coherence Protocol

280 -

240 -
CO
CM 200 -
—1 ^ -
r- W
O ® 160 -
o ’ ^ c ° 120 -
a) -

£ 80 -

40 -

0 -

oo
—I 'vi
C £ 160 H o o
o J i 120 H
c
£15

o
00

280 -

240 -

200 -

c £ 160 — o o
&]£ 120 -

80 -

40 -

0
0

b en ch l u _ 2 _ 8 _ l _ l
start 8 5 8 0 5 8 4 5 0
en d 1 5 5 6 2 0 3 8 0 9
c y c le s 6 9 8 1 4 5 3 5 9
min 38
avg 85
m ax 2 8 0

600 800 1000 1200 1400
cycles (10°)

b en ch
start
en d

2 8 0 - l U _ 2 _ 8 _ l _ l
8 5 8 0 5 8 4 5 0
1 5 5 6 2 0 3 8 0 9

c y c le s 6 9 8 1 4 5 3 5 9
min 0

20
202

2 4 0 -

200 -

Û UiiOl
T

200 400 600 800 1000
cycles (106)

1200 1400

b en ch
start
en d
c y c le s
min
avg
m ax

1 u _ 2 _ 8 _ l _ l
8 5 8 0 5 8 4 5 0
1 5 5 6 2 0 3 8 0 9
6 9 8 1 4 5 3 5 9
9
21
3 0 0

i
200

I
400 600 800 1000 1200

■»6v
1400

cycles (10)

F igu re 7.3: Average latency of bus transactions during execution of the lu benchmark
on a 2 cluster x 4 processors CMP.

Chapter 7. Results and Analysis 132

7.3. PIMMS Coherence Protocol

b en ch
start
en d
c y c le s

2.4

m 2'1
3 1.8
o 1.5
£ 1-2
| 0.9
c 0.6

0.3
0

6 9 0 1 0 4 3 3 0
1 5 9 3 2 1 8 1 9 0
9 0 3 1 1 3 8 6 0
3 1 9 7 8

0 20 40 60 100 120 140
cycles (106)

32.4
o 28.8
“ 25.2
c 21.6
Z 18

14.4
% 10-8
2 7.2

3.6
0

b en ch f i b _ l _ 1 6 _ l _ l
start 6 9 0 1 0 4 3 3 0
en d 1 5 9 3 2 1 8 1 9 0
c y c le s 9 0 3 1 1 3 8 6 0
m ax 1 7 8 6 5 3 0

20 40 60
cycles (10°)

F igu re 7.4: Negative acknowledgments blocking a transactions progress as a percent
of available bus slots, fo r a single cluster 16 processor CMP running the f ib o n a c c i
benchmark.

Chapter 7. Results and Analysis 133

7.3. PIMMS Coherence Protocol

7 .3 .5 N on -S in k ab le Q u eu e R o ta tio n

As introduced in Section 5.4.4, each cache’s non-sinkable transaction queue is
split into a passive and active sub-queue. This allows requests in the non-sinkable
queue to be re-ordered when a transaction at the head of the queue is blocked
due to address locking or resource contention.

~ 70000
f? 60000
£ 50000
o 40000 ©
^ 30000
'5 20000

g 10000
0

— 70000
^ 60000
£ 50000
o 40000
^ 30000
w 20000
g 10000

0

c y c le s (10 ')

Figure 7.5: Non-sinkable passive/active queue reordering (per 10 million cycles) for
both L2 caches, in a 2 cluster x 64 processors CMP, executing the in tegra te bench­
mark.

Figure 7.5, shows the number of reordering events between the sinkable and non-
sinkable queues, during the execution of the in te g r a te benchmark on a single
cluster CMP with 128 cores. These events are counted when a transaction success­
fully commits tha t was behind an aborting transaction tha t has been reordered.

bench
start
end
cy c les
m em
core

i n t e g _ 2 _ l 2 8_ 1_1
8 59 370002
1622916 3 82
7 63 5 4 6 3 8 0
76121
44930

m em ory-bound q u eu e
 core-boun d q u eu e

60 80 100
cycles (107)

120 160

bench
start
end
c y c le s
m em
core

i n t e g _ 2 _ 1 2 8 _ l _ l
8 59 37 0 00 2
16229 1 63 8 2
7 6 35 4 6 3 8 0
7 6942
44016

m em ory-bound q u eu e
 core-bound q u eu e

160

Chapter 7. Results and Analysis 134

7.3. PIMMS Coherence Protocol

7 .3 .6 E ffect o f In c lu sio n

A limitation in the current implementation of the PIMMS coherence protocol
is th a t each shared level cache in the multi-level hierarchy maintains cache-line
inclusion1. This introduces redundancy within the shared level caches and reduces
their efficiency. Lines in the Valid Shared, Modified Shared, and Modified Stale
states are redundant in each shared-level cache.

Figure 7.6 illustrates the state of the lines within each of the shared caches, at 1
million cycle intervals, during execution of the f ib o n acc i benchmark. The archi­
tecture is configured as a 2 cluster CMP where each cluster contains a 1MB level
2 shared cache, and 8 processing cores connected to 16KB instruction and data
caches. A 4MB level 3 cache is shared by both clusters. During the benchmark
phase, from around 750 million cycles, when all of the cores are executing code,
on average 12.5% of the L2 cache’s lines are redundant, and 40-45% of the L3
cache lines are redundant. In the absence of any code or da ta sharing between
contexts the redundancy in the caches is directly proportional to the size of the
caches directly below, and can be calculated, using Equation 7.4, where Si is the
size of the larger shared cache, Ss is the size of the smaller caches, and R is the
percentage of redundant lines in the larger cache due to inclusion.

R = 100 x (7.4)

Using this calculation the expected redundancy, in the absence of sharing is 25%
in the L2 caches and 50% in the L3 cache. The discrepancy between expected and
actual redundancy is primarily due to code sharing in the f ib o n a c c i benchmark
and the small amount of data th a t is shared between the threads.

Looking at inclusion across all of the kernel benchmarks, for a 2-cluster config­
uration containing 4, 8, 16 and 32 cores per cluster, shown in Figure 7.7, the
maximum percentage of redundant lines in the L2 caches remains below 10%
when shared by four cores, 20% when shared eight cores, 30% when shared by
16, and below 45% when shared by 32 cores. In most configurations the average

1A potential future enhancement to the architecture would be to support tag inclusion.
Storing, in a separate cache structure, only the tags of lines that have been modified by a
lower-level cache. This is not considered further here.

Chapter 7. Results and Analysis 135

7.3. PIMMS Coherence Protocol

6 0 0 8 0 0 1 000 1 200
cycles (106)

1 3 1 0 7 2

1 1 4 6 8 8

to 9 8 3 0 4

| 8 1 9 2 0

| 6 5 5 3 6

E 4 9 1 5 2

° 3 2 7 6 8

1 6 3 8 4

0
0

32768
28672

E 24576
CM

C 20480
:i 16384
8.12288
| 8192

4096
0

0

32768
28672

S 24576
c 20480
i 16384
§.12288
| 8192

4096
0

0

1000 1200 1400

| Pending

■ Modified Stale

I | Modified Shared

[U Modified

| | Valid Shared

□ Valid

H Invalid

1000 1200 1400

| Pending

| Modified Stale

I | Modified Shared

□ Modified

I | Valid Shared

□ Valid

| Invalid

1400

6 0 0 80 0
cycles (106)

600 800
cycles (106)

| Pending

| Modified Sta le

□ Modified Shared

□ Modified

| | Valid Shared

□ Valid

^ Invalid

F igu re 7.6: Cache-line state composition during the execution of the f ib o n a cc i bench­
mark on a 2 cluster x 8 processors CMP.

Chapter 7. Results and Analysis 136

7.3. PIMMS Coherence Protocol

■ L2[0] - avg.
□ L2[0] - m ax.
□ L 2[l] - avg.
I t L2~[l] - m ax.
□ L3 - avg.
■ L3 - m ax.

2x4 2x8 2 x16 2x32 2x4 2x8 2 x 1 6 2x32 2x4 2x8 2 x 1 6 2x32
Configuration: Clusters x Cores per cluster

F igu re 7.7: Cost o f inclusion measured as the percentage o f cache lines containing
redundant copies o f data, for all nine parallel benchmarks in a 2 cluster CMP.

redundancy is far less. In the absence of code and data sharing the percentage of
redundant lines is calculated as 12.5%, 25%, 50% and 100%.

The percentage of redundant lines in the L3 cache for all configurations, how­
ever, peaks far closer to 50%, which is to be expected as essentially a far larger
proportion of the L2 cache lines will contain non-shared data.

7 .3 .7 P r o to c o l R o b u stn e ss

Finally, whilst no formal analysis has been made as to the correct functioning
of the coherence protocol and the architecture under every possible condition,
it should be noted tha t for each configuration of the benchmarks tested, those
tha t did not fail when run using the perfect memory simulator, were also able
to run using the full cycle-level model of the memory hierarchy. Additionally a
significant number of cycles have been executed during the compilation of results,
each simulation of each benchmark executes for many billion cycles. During this
time the memory hierarchy has remained deadlock free.

Chapter 7. Results and Analysis 137

7.4. Single Bus Chip Multiprocessor Architecture

7.4 S ingle B us C M P A rch itectu re

This section looks at the scaling performance of a single bus CMP. Single bus
CMP architectures are attractive to build, primarily because cache coherence
across a single bus is well understood, and thus they have, to date, been the
subject of most CMP studies. However, as introduced in Section 4.2.1, two main
factors limit the scaling of their performance; wire delay and bus contention.

Wire delay is a physical limit and is discussed in detail in Section 1.2.1. Using data
presented in the literature [104] it appears clear tha t connecting many processing
cores to a single bus will inevitably require th a t the bus frequency is reduced
to allow the signal to propagate successfully. As outlined in Section 4.2.1 and
Table 4.1, even connecting 8 processors to a single bus may require the bus speed
to be reduced to \ of the maximum on-chip frequency. Further reductions will
undoubtedly be necessary as the number of cores connected to the bus, and
hence its span increases. Bus contention also increases as the number of cores
added to the bus increases. Contention for the bus, and the subsequent delay
caused to a given core's private cache effectively increases the access latency
to the level 2 cache. This latency affects access to the memory hierarchy in
general, impeding parallel performance gains. Additionally as the number of
cores is increased memory saturation can occur when the to ta l number of requests
generated exceeds the available bandwidth.

To investigate the impact these two factors have on the performance of a sin­
gle bus CMP architecture the jamsim simulation platform was used to combine
the simulation of an increasing number of cores and a range of decreasing bus
frequencies, shown in Figure 7.8.

Each of the nine parallel kernel benchmarks was executed on each configuration
of single bus CMP architecture, with the number of threads created by each
benchmark equal to the number of cores in the architecture.

7 .4 .1 S p eed -u p

The results from these experiments are presented, initially, as speed-up graphs,
Figures 7.9 7.17. On each graph the vertical axis, representing speed-up, is

Chapter 7. Results and Analysis 138

7.4. Single Bus Chip Multiprocessor Architecture

memCont

I t
□Cache

XX
l2Cache

X X
Bus

iCache dCache iCache dCache

proc proc

Memory 200 cycle latency

L3 Cache 4MB, 16-way se t associative,
32-cyde access latency,
4 entry core- and
mem ory-bound queues.

L2 Cache 2MB, 8-way se t associative,
8-cycle access latency,
4 entry core- and
mem ory-bound queues.

Bus [1:1, 1:2, 1:4]
8-cyde split-transaction

1-Cache 16KB 4-way se t associative.
D-Cache 16KB 4-way se t associative.

Cores [1,2,4,8,16,32,64,128]

F igu re 7.8: Single bus CMP configuration.

Chapter 7. Results and Analysis 139

7.4. Single Bus Chip Multiprocessor Architecture

scaled to the maximum attainable speedup using a simulated configuration with
perfect memory2. This scale helps to quantify the parallelism inherent in the
benchmark, against th a t which is achieved by the architecture.

speedup(n) = — (7.5)

Speed-up is calculated using Equation 7.5, where ti is the number of cycles taken
to execute the benchmark with a single core and tn is the number of cycles taken
with n cores. From the speed-up graphs, the benchmarks can be grouped into
three categories. Those tha t scale well with an increasing number of cores, near-
linear’, those th a t scale but realise diminishing returns from an increasing number
of cores, diminishing, and finally those th a t reach a scaling limit and realise no
further returns from an increasing number of cores, limited.

In the near-linear category are the benchmarks f ib o n a c c i, Figure 7.9, and
c ry p t, Figure 7.17. In the diminishing category are the benchmarks m atrixM ult,
Figure 7.10, lu , Figure 7.12, s e r ie s , Figure 7.15, and so r, Figure 7.16. Finally in
the limited category are the benchmarks ja c o b i, Figure 7.11, in te g ra te , Figure
7.13, and m ergeSort, Figure 7.14.

The following sections look at the impact wire delay, bus contention and memory
saturation have on the performance scaling of each of the benchmarks.

2The simulator can be configured with no memory hierarchy, i.e. all memory accesses happen
instantaneously. Coherence locking is simulated using a simple global lock table.

Chapter 7. Results and Analysis 140

7.4. Single Bus Chip Multiprocessor Architecture

fibonacci

bus:core freq

108

96 p erfect m em ory

84

72

60

48

36

24

12

0
641 128

cores

F igu re 7.9: Single bus CMP scaling - f ib o n a c c i .

matrixMult

b u s :c o r e f r e q

p erfec t
m em o ry24

CL
=3

l
|

1 64 128
cores

F igu re 7.10: Single bus CMP scaling - m a trixM u lt.

Chapter 7. Results and Analysis 141

sp
ee

du
p

sp
ee

d-
up

7.4. Single Bus Chip Multiprocessor Architecture

jacobi

busxore freq

72 -

p er fe c t m em o ry63 -

54 -

36 -

27 -

18 -

1 64 128
cores

F igu re 7.11: Single bus CMP scaling - ja c o b i.

lu

bus:core freq
27 -

24 -
p erfec t
memory

18 -

15 -

12 -

1 64 128
cores

F igu re 7.12: Single bus CMP scaling - lu.

Chapter 7. Results and Analysis 142

7.4. Single Bus Chip Multiprocessor Architecture

integrate

bus:core freq

1:4
p erfec t
m em o ry

CL

w 4 4

22

1 64 128
cores

F igu re 7.13: Single bus CMP scaling - in te g r a te .

m ergeS ort

bus.core freq

p erfect
memory

27

1 64 128
cores

F igu re 7.14: Single bus CMP scaling - m ergeSort.

Chapter 7. Results and Analysis 143

7.4. Single Bus Chip Multiprocessor Architecture

series

bus:core freq

72 -
perfect
memory

63 -

54 -

■§ 45 -

36 -

27 -

18 -

1 64 128
cores

F igu re 7.15: Single bus CMP scaling - ser ies .

sor

bus:core freq24 -

perfect
memory

18 -

Q. 15 -

S. 12 -

f r '

1 64 128
cores

F igu re 7.16: Single bus CMP scaling - sor.

Chapter 7. Results and Analysis 144

7.4. Single Bus Chip Multiprocessor Architecture

crypt

bus:core freq
108

96 perfect memory

84

72

60

48

36

24

12

0
1 12864

cores

F igu re 7.17: Single bus CMP scaling - c ry p t.

7 .4 .2 W ire D e la y

Figure 7.18 shows the peak performance of each benchmark where the level 1 bus
clock is set to | and | of the core clock speed, relative to the level 1 bus being
clocked at the same speed as the core.

As might be expected, the peak performance drops for all of the benchmarks. This
is due in part to a decrease in bandwidth, as the total number of transactions
serviced by the bus in any given time period is reduced, and also due to an increase
in the observed access latency to the L2 shared cache and correspondingly any
bus serviced cache-to-cache transfers. In particular the maximum speed-up for
the diminishing benchmarks, m atrixM ult, lu , s e r ie s and so r, decreases by
between 18 and 50% when the bus speed is halved, and between 42 and 73%
when the bus speed is quartered. Most of the performance is lost during slower
accesses made to the L2 shared cache, as the data sets used are sufficiently large
to overflow the private level 1 caches. The near-linear benchmarks, f ib o n a c c i
and c ry p t, are less effected, however, peak performance is still observed to drop
by between 4 and 21%. The limited benchmarks, ja c o b i, in te g and m ergeSort,
are marginally affected by wire-delay, this is because they are more fundamentally

Chapter 7. Results and Analysis 145

7.4. Single Bus Chip Multiprocessor Architecture

o%

-10%

U I/)
I 1 -3 0 %

•t £
§. o -40%

S .1
to -50% to

-60%

-70%

Figure 7.18: Peak performance with the level 1 bus clock set at ^ and | of the clock
speed, relative to the bus clocked at the same speed as the core.

limited by memory saturation.

7 .4 .3 B u s C o n ten tio n

Contention for the level 1 bus increases with the number of cores attached. The
more cores, and hence more private caches tha t there are arbitrating, the longer
any one cache is likely to have to wait until it is granted access to place a transac­
tion on the bus. As mentioned previously, in Section 3.1.5, bus slots are granted
in least recently used order to the LI caches, with overall priority given to the L2
cache.

Figure 7.19, shows the peak and average utilisation of the level 1 shared bus
which, for all of the benchmarks, increases with the number of cores. When the
number of attached cores reaches 64 and 128, for the majority of the benchmarks,
the average bus utilisation is well above 60% and the peak utilisation is over 90%.
This accounts for the performance tail off seen in the diminishing benchmarks, as
increasing the number of cores speeds up the processing of data, but the latency
of access to tha t data also increases. For the near-linear benchmarks the bus
utilisation is very low, c ry p t below 5% and f ib o n a c c i below 15%.

The corresponding utilisation of the channels between the L2 and L3 cache, Figure

fib o n a cc i m atrixM u lt ja co b i in te g r a te m er g e S o r t se r ie s

Chapter 7. Results and Analysis 146

7.4. Single Bus Chip Multiprocessor Architecture

100%
□ Peak
^Average

80%

60%

l! 40%

20%

0%
1 2 4 8 16 32 64 128

Cores

F igu re 7.19: Level 1 bus utilisation, average and peak during the benchmark phase,
in a single bus CMP.

7.20, never peak above 60% for any of the benchmarks, and for the majority the
average utilisation is below 40%. This illustrates tha t the majority of contention
on the LI bus is for access to the shared level 2 cache or for cache-to-cache
transfers.

7 .4 .4 M em o ry S a tu ra tio n

Having looked at wire delay and bus contention, the third factor th a t can impact
on the scaling performance of an architecture is memory saturation. This occurs
when all of the cores are executing a data intensive benchmark leading to a
bottleneck a t the memory controller. This bottleneck leads to queue congestion
and is observable as the number of transactions tha t receive nacks increases.

Such saturation is experienced by the limited benchmarks, ja c o b i, in te g r a te
and m ergeSort. As the number of cores increases past 16 the average bus utilisa­
tion exceeds 90%, however over 80% of these transactions are negatively acknowl­
edged, as shown in Figure 7.21. For this reason, none of the limited benchmarks
are able to achieve greater speed-ups when the number of cores increases past 16.

Chapter 7. Results and Analysis 147

7.4. Single Bus Chip Multiprocessor Architecture

100%

80%c0
fDI/)
1 60% m
"5
>0)

40%<N
"55
>
_i

20%

0%

F igu re 7.20: Utilisation of bandwidth between the L2 and L3 caches, in a single bus
CMP.

I I Peak
^A verage

1 2 4 8 16 32 64 128
Cores

100%

80%

J2
60%

§J 40%

20%

0%

□ Peak
^Average

CSOl — 0)S’ tr « o.S o) c l > ,3 C P w ° <-_ c m i/j u

eM _Qj
8 16

Cores
32 64 128

F igu re 7.21: Peak L I bus nacks.

Chapter 7. Results and Analysis 148

7.5. Cluster Architectures

MC]0]
L3

I
L2$[0]
T

I
L2$[1]
Trrrr

L1$[0) L1$[1) i L1S[2] L1S[3) LIStO]

MC[2]
L3B[2)

MC[3]
L3BJ3]

L2$BIO]L2$B|1JL2SB[2]L2SB[3|

L1S|2) L1S|3]

MC|0] MC|1] MC[2) MC|3)
* ♦ ♦ ♦L3B[0] L3B(1] L3B[2] L3B(3]

r i lN s T

L1$[2] L1$|3] I1S|2] L1$[3)

0 0 0 0 0 0 0 0 0 0 0 0
(«) (b) (c)

F igu re 7.22: Three chip multi-cluster (CMC) architectures are assessed, a) bus-tree,
b) fu ll crossbar and c) a bus-crossbar hybrid.

7.5 C luster A rch itectures

After illustrating the limitations of a single bus CMP, this section looks at divid­
ing the processing cores into multiple on-chip clusters and additionally increasing
the bandwidth to memory. Three architectures are simulated, illustrated in Fig­
ure 7.22, a chip multi-cluster (CMC) connected by a tree of buses, bus-tree, a
CMC connected by crossbar switches, full crossbar, and a CMC connecting the
cores with a shared bus, and connected at the cluster level by a crossbar switch,
bus-crossbar. It should be noted tha t both the full crossbar and bus-crossbar ar­
chitectures introduce three additional banked memory controllers, and therefore
have four times the available bandwidth to memory.

Each architecture maintains the parameters presented in Figure 7.8. Where the
architecture is divided into two and four clusters, the L2 cache size is also divided
by two and four, such tha t the overall on-chip cache remains constant.

Clustering multiple-cores together and then building a hierarchy of clusters pro­
vides yet another level of abstraction at which to build a many-core architecture.
The division into clusters also reduces the number of cores being serviced by
any one shared cache, and so either the bus connecting them can be shorter and
clocked at higher speeds or a smaller crossbar structure can be used. A disad­
vantage to clustering is tha t an additional level of latency is introduced when
multiple cores in different clusters frequently share data.

Chapter 7. Results and Analysis 149

7.5. Cluster Architectures

fibonacci

1 cluster
2cluster
4cluster

full c rossbar
bus-crossbar
bus-tree

108

84
perfect memory

o .3
1
iCfl

48

24

64 1281
cores

F igu re 7.23: CMC scaling - f ib o n a c c i .

7 .5 .1 S p eed -u p

For each of the three architectures the same benchmarks were again executed to
assess their scalability, the benchmark scaling graphs are presented in Figures 7.23
- 7.31. Each architecture was configured in a single cluster configuration, which,
for the bus-tree CMC, is analogous to the single-bus CMP, and two and four
cluster configurations. The clusters are simulated in symmetrical configurations,
such th a t the total number of cores and shared cache is divided equally between
the clusters.

Figure 7.32 shows the peak performance achieved by each of the cluster archi­
tectures for each benchmark normalised to the peak performance of the single
bus CMP architecture, with the bus speed set at the same speed as the core
frequency. This scenario is perhaps unfair because a single bus connecting 128
cores at the core clock speed is considered infeasible, however, it does provide a
best-case single bus to compare each cluster architecture configuration against.

Chapter 7. Results and Analysis 150

7.5. Cluster Architectures

matrixMult

$ 16 -

1 cluster
2cluster
4cl us t er

full crossbar
bus-crossbar
bus-tree

perfect memory

I I t I I I I I I I I I I I I 1 ! I I I I I f I I 1 1 ! 1 t I

1 64 128
cores

F igu re 7.24: CMC scaling - m atrixM ult.

jacobi

1 cluster
2 duster
4cluster

full crossbar
bus-crossbar
bus-tree

perfect memory

I 45

1 64 128
cores

F igu re 7.25: CMC scaling -ja co b i.

Chapter 7. Results and Analysis 151

7.5. Cluster Architectures

lu

27 -

24 -

18 -
Q.13-DQ)
</3

12 -

1 cluster
2cluster
4cluster

full crossbar
bus-crossbar
bus-tree

perfect memory

1 64 128
cores

F igu re 7.26: CMC scaling - lu.

integrate

99 - 1 cluster
2cluster
4cluster

full crossbar
bus-crossbar
bus-tree

88 -

77 -

perfect memory66 -

Q.
55 -

U) 44 -

33 -

22 -

641 128
cores

F igu re 7.27: CMC scaling - in te g r a te .

Chapter 7. Results and Analysis 152

7.5. Cluster Architectures

mergeSort

1 cluster
2cluster
4cluster

full crossbar
bus-crossbar
bus-tree

81

72

63
perfect memory

54

45

36

27

18

9

0
1 64 128

F igu re 7.28: CMC scaling - m ergeSort.

series

1 cluster
2 cluster
4cluster

full crossbar
bus-crossbar
bus-tree

81

72

63
perfect memory

54

45

36

27

18

9

0
1 64 128

cores

F igu re 7.29: CMC scaling - s e r ie s .

Chapter 7. Results and Analysis 153

7.5. Cluster Architectures

sor

1 cluster
2cluster
4cluster

full crossbar
bus-crossbar
bus-tree

24

perfect memory

0 .1 5

1 64 128
cores

F igure 7.30: CMC scaling - sor.

crypt

1 cluster
2duster
4cluster

full crossbar
bus-crossbar
bus-tree

perfect memory

c o r e s

F igu re 7.31: CMC scaling - c ry p t.

Chapter 7. Results and Analysis 154

7.5. Cluster Architectures

7 .5 .2 B u s-T ree C lu ster

Looking first at the performance of the bus-tree cluster architecture, Figure 7.22
(a), the general trend is th a t the introduction of additional clusters decreases the
peak speed-up for most of the benchmarks. As the threads of each benchmark
are spread across multiple clusters, and are sharing data, the additional latency
in accesses to this data is impacting on the performance. The benchmarks tha t
suffer from this increased latency the most are f ib o n a c c i and lu . The peak
performance is reduced by 18 and 27% for two clusters and 24 and 32% for
four clusters respectively. These reductions, however, are compared to the fastest
clocked bus, and referring back to Figure 7.18, f ib o n a c c i performance is reduced
by 21% when wire delay reduces the bus speed to | and lu performance is reduced
by 42%. Taking these wire delay reductions into account for the single cluster
architecture the disparity is reduced to to -6% for f ib o n a c c i and +10% for lu
on a four cluster machine.

Four of the benchmarks, ja c o b i, in te g ra te , m ergeSort and s e r ie s benefit
from the division into multiple clusters. Referring back to Figure 7.19 it is these
four benchmarks th a t have peak and average bus utilisation above 80% when the
number of cores is either 64 or 128. The addition of multiple clusters reduces
the access contention on the level 1 bus, as there are fewer cores attached, and
correspondingly reduces the access latency to the level 2 shared cache. For s e r ie s
and in te g ra te , reduced level 1 bus contention sees the peak performance increase
by 1.5 and 1.85 times. Prior work by Nayfeh et al. [116] looking at the effects of
clustering in small-scale shared-memory multiprocessors also showed a benefit in
performance due to a reduction in bus contention.

7 .5 .3 C rossb ar C lu ster

The second architecture presented, the crossbar architecture, Figure 7.22 (b), is
simulated with a full n x 4 crossbar, where n is the number of cores in each
cluster, and 4 is the number of banks in the shared L2 cache. Each L2 cache
is connected by a (c x 4) x n crossbar, c being the number of clusters, to an
L3 cache which is also divided into 4-banks. Each L3 bank is connected to a
separate memory controller. The addresses are divided into the four banks at the
cache-line, 32-byte, granularity using the offset and mask show in Equation 7.6.

Chapter 7. Results and Analysis 155

7.5. Cluster Architectures

b u s-tree(l)
bus-tree(2)

□~bus:treeT4)
□ crossb ar(l)
P crossbar(2)

crossbar(4)
hybrid(l)

IHhybrid(2)_
□ hybrid(4)

HEJ fi l l I I Ml
f ib o n a cc i m atrixM u lt ja co b i in te g r a te m e r g e S o r t s e r ie s cry p t

F igure 7.32: Peak speed-up achieved, by the three CMC architectures, normalised to
the performance o f bus-tree(l)(the single bus CMP).

bank = ((address » > 5) Sz 3) (7-6)

Dividing the L2 and L3 caches into banks and increasing the number of memory
controllers to 4, provides a fourfold increase in the available memory hierarchy
bandwidth. Additionally the full crossbar between the cores and the banks of the
L2 cache provides an approximately fourfold increase in the number of coherence
transactions tha t can be processed3. In the single cluster configuration, this
architecture closely resembles the Niagara architecture [81] with the addition of
L3 caches.

This has a significant impact on the scaling of the benchmarks ja c o b i, in teg ,
and m ergeSort which, as mentioned previously in Section 7.4.4, are limited in a
single bus CMP due to memory bandwidth saturation. In particular the in te g
peak speed-up is increased by over 6 times, shown in Figure 7.32. This is due to
both a combination of a fourfold increase in the memory bandwidth but also the
reduction in level 1 bus contention. m ergeSort and ja c o b i also see greater than
two-fold increases in peak performance.

3The increase in coherence transactions that can be processed across the crossbar peaks at
four times the amount across the bus, however in certain cases additional queueing is necessary.
In particular to achieve a broadcast, for invalidation say, requires the ability to send a signal
to all cores holding the line, or failing that stall until the relevant channels inside the crossbar
are free.

Chapter 7. Results and Analysis 156

7.5. Cluster Architectures

The additional latency associated with sharing data across clusters decreases the
performance, by as much as 40%, for m ergeSort, as the to ta l number of cores is
divided into four clusters.

7 .5 .4 H y b r id B u s-C ro ssb a r C lu ster

The third simulated cluster architecture, the bus-crossbar 7.22 (c), connects the
private LI caches to the four banks of a shared L2 cache using a single bus,
and connects the L2 caches to the L3 cache banks and memory controllers using
full crossbar switches. The bus arbitration is modified, so th a t while priority is
generally given to the L2 cache, each bank is selected in least recently used (LRU)
order.

The hybrid architecture was simulated for two reasons. First, it enables distinc­
tion between the benefit of additional memory bandwidth and th a t of increased
transaction throughput. By maintaining a bus to connect the private LI caches
to the L2 caches, bus contention in the absence of memory saturation can be more
readily observed. Secondly, the cost of a full crossbar interconnect in terms of
area has been shown to reduce chip real-estate otherwise available for additional
cores or cache [84]. The performance achieved using the hybrid bus-crossbar
architecture can therefore be compared to th a t of the full crossbar architecture.

The s e r ie s benchmark running on the hybrid bus-crossbar architecture clearly
demonstrates th a t even though the memory bandwidth is quadrupled beyond the
L2 cache, the primary limiting factor to performance gains over the single bus
CMP is contention between the LI caches and the shared L2 cache. Dividing
the number of cores between two clusters provides a 1.8 times increase in peak
performance, and division into four clusters a 2.7 times increase. Even though
the primary limiting factor is bus contention, the hybrid architecture provides an
additional 80% speed-up over the clustered bus-tree architecture.

In general the peak performance achieved using the hybrid bus-crossbar cluster
outperforms th a t of the bus-tree architecture and is within 10% of th a t of the full
crossbar architecture. Assuming th a t larger caches could be added in the absence
of full crossbars between the LI and L2 caches, the performance discrepancy
between a crossbar and hybrid CMC architectures will likely drop further. Where

Chapter 7. Results and Analysis 157

7.6. Locality Aware Task Distribution

the performance drops, as the cores are divided amongst additional clusters, for
both the full crossbar and the hybrid bus-crossbar architectures the decrease is
less than th a t of the respective decreases in the bus-tree architecture.

7.6 L ocality A w are Task D istr ib u tion

As outlined in Chapter 6, dividing the total number of cores in a CMP architecture
into multiple clusters, where each cluster contains at least one shared level of
cache, introduces an additional form of locality. Cluster locality, the notion of
sharing data internally within a cluster, can be exploited to utilise the shared level
of caches within each cluster efficiently. To investigate the benefits of exploiting
this, the locality-aware task distribution mechanism described in Section 6.2.4
was implemented within the cycle-level simulation platform.

Three experiments were used to assess the benefits of locality-aware task distribu­
tion with respect to synchronisation, isolation and affinity. A simple framework
implemented within the Jamaica port of the Jikes RVM was developed to allow
software to assign a cluster affinity to each application thread generated during
the execution of a benchmark. These application threads are either distributed
using Jam aica’s token ring task distribution mechanism, as described in Section
3.1.3, or distributed based on the cluster affinity assigned to them. Cluster affinity
is assigned to a Java thread by calling the method s e tC lu s te r A f f in i ty , as listed
in Figure 7.33. This call instructs the virtual machine to pass an affinity value
along with the token request TRQ instruction whenever the thread is scheduled
on to another VM _Processor. On execution of the TRQ instruction the hardware
attem pts to locate a token inside the required cluster. For each set of experiments
the simulated architectures were configured to assess the effects of locality-aware
task distribution over a range of both clusters and cores per cluster.

7 .6 .1 S y n ch ro n isa tio n L oca lity

To assess the cost of synchronisation in a chip multi-cluster architecture the low-
level b a rrie rB en ch benchmark is used. Two cluster architectures are assessed,
the bus-crossbar hybrid CMC and the full crossbar CMC. For each architecture

Chapter 7. Results and Analysis 158

7.6. Locality Aware Task Distribution

int level = 2 ; //look for clusters below the L3 cache,
int numberOfClusters = VM.Scheduler.getClusters(level);

for(int i = 0; i < 16; i++) {
int clusterld = i '/, numberOf Clusters; //divide the threads amongst the clusters
th[i] = new Thread(benchmarkRunner[i]);
VM_Scheduler.setClusterAffinity(th[i], clusterld);

>

F igu re 7.33: Setting a cluster affinity to Java threads.

the task distribution mechanism is either configured to distribute tasks based on
the cache-distance metric passed through a TRQ instruction, locality-aware dis­
tribution, or to distribute tasks to any idle contexts within the system, default
distribution. For each simulation several instances of the b a rr ierB en ch bench­
mark are invoked, such tha t the number of instances is equal to the number of
clusters. Figure 7.34 shows the results from these experiments.

■ crossbar using locality-aware distribution
□ hybrid using locality-aware distribution

2x4 2x8 2x16 4x4 4x8 8x4
Architecture configuration

(Clusters x Cores per cluster)

F igu re 7.34: The effect on overall performance running multiple instances of the
b a rrierB en ch benchmark across multiple cluster architectures using locality-aware dis­
tribution.

Restricting each b a rr ierB en ch instance into a single cluster increases the overall
performance by a factor of up to 2. This improvement, using the locality aware
distribution scheme, is achieved as almost all synchronisation in the benchmark
occurs within a cluster and so the latency of access is reduced.

Chapter 7. Results and Analysis 159

7.6. Locality Aware Task Distribution

7 .6 .2 A p p lica tio n Iso la tio n

A potential benefit of dividing the on-chip caches and cores into clusters is that
applications can be isolated within a single cluster. Potentially this can improve
cache performance as all cores within a cluster can benefit from locality of applica­
tion code and data. The effects of deconstructive sharing from other application
threads can also be eliminated. To assess the effect of isolating applications the
hybrid and full-crossbar CMC architectures were once again used in simulation.
For each cluster in the architecture a separate instance of the so r benchmark
is invoked, each thread generated by the application is restricted, through the
locality-aware distribution mechanism, to run inside the cluster of the initial so r
application thread. The work of each so r benchmark is divided into a number of
threads, such tha t there is a thread for each core inside the cluster. Figure 7.35
shows the results from these experiments.

1.4x
■ crossbar using locality-aware distribution
□ hybrid using locality-aware distribution

1.3x

I § 1.2x
1 fE 5 o £ c <0
V T3 1.1x

2 JE ® o "o° 1x<D —
CL

0.9x

0.8x
2x4 2x8 2x16 4x4 4x8 4x16

Architecture configuration
(Clusters x Cores per cluster)

Figure 7.35: The effect on overall performance running multiple instances of the sor
benchmark across multiple cluster architectures using locality-aware distribution.

As was shown in Section 7.6.1, isolating applications into clusters can improve
performance as the shared synchronised data was confined in each clusters shared
L2 cache. By confining each instance of the so r application into a separate cluster,
and each instance’s threads within tha t same cluster, data sharing in the L2
caches is improved and inter-cluster coherence traffic is reduced. This improves

Chapter 7. Results and Analysis 160

7.6. Locality Aware Task Distribution

the performance of multiple so r applications running on the CMC architectures
by up to 1.29 times.

7 .6 .3 A p p lica tio n R e str u c tu r in g

Although isolating an application within a single cluster in a CMC architecture
can improve performance, by increasing the cache efficiency and reducing access
latencies to shared data, there will be occasions when a single application should
be executed across multiple clusters or indeed the whole chip to maximise perfor­
mance. As shown in Figure 7.32 there is an associated decrease in performance
for most benchmarks as the number of clusters is increased. This performance
decrease is mainly caused by the additional latency when accessing shared data
across clusters. However, when careful consideration is given to the distribution
of work inside a benchmark the latency of accessing shared data across multiple
clusters can be significantly reduced. Most data sharing between threads can be
confined to the cluster they share, reducing the access latency and increasing the
performance.

To dem onstrate this the so r benchmark is restructured to minimise sharing of
data between threads on different clusters. The initial so r algorithm divides the
grid, over which the successive over relaxation is calculated, into equal sized strips
such th a t one strip is given to each worker thread, see Figure 7.36 (a). During
each step of the algorithm, either the red or black elements are calculated by
reading the values of the four nearest neighbours and the element itself. Given
a sufficiently large sized grid, good parallelism can be achieved. Each thread is
only modifying the black (red) elements in one strip and the value is calculated
from the four nearest red (black) neighbours which are not being modified.

In a CMC architecture a naive distribution may place adjacent strips into separate
clusters, Figure 7.36 (b). Accessing the updated values of neighbouring elements
for all strips requires communication across the top level network, which has
increased latency and lower bandwidth. However, by structuring the application
such tha t, as far as possible, adjacent strips remain on cores within the same
cluster, Figure 7.36 (c), access to data across the slowest communication paths
in the architecture is reduced.

Chapter 7. Results and Analysis 161

7.6. Locality Aware Task Distribution

0 1 2 3 4 5 6 7
grid divided between B threads

_____________ (a)_______________
worst case division

(b)
best case division

(c)

F igu re 7.36: The sor benchmark: (a) the grid is split into strips each o f which is
distributed to a worker thread (b) pathological distribution can see all threads having to
communicate across the higher latency bus to access data in another thread, (c) optimal
division o f the adjacent threads into cores within the same cluster. Communication
across the top-level bus is restricted to the overlapping data shared between threads 3
and 4-

Figure 7.37 shows the relative increase in performance using locality-aware thread
distribution, compared with using the default distribution scheme. The locality-
aware scheme first attem pts to distribute threads to cores th a t are idle within
a defined cluster. If a core within the defined cluster is not found the default
distribution is employed. In the default distribution threads are distributed to
any idle core, or in the presence of no idle cores are executed on the context
attem pting the distribution.

For all of the cluster configurations simulated, the locality-aware thread distribu­
tion scheme decreases the total execution time of the benchmark. The relative
performance of the scheme increases as the number of cores per cluster is in­
creased. This is an expected result, as increasing the cores, and hence the threads
in the benchmark, also increases the likelihood in the default scheme tha t adjacent
threads, in the algorithm of the so r benchmark, will be distributed to separate
clusters. D ata sharing between clusters suffers from an increased communica­
tion latency and reduced bandwidth and becomes a performance bottleneck if
significant.

Table 7.3 lists the total coherence traffic, the total number of four-phase transac­
tions and the average thread distribution distance4 for the inter-cluster network

4The average sharing level distance that threads are distributed to. The average is calculated

Chapter 7. Results and Analysis 162

7.6. Locality Aware Task Distribution

> a

X X
c: o

XXX lO N 3 G 1-H CM

X X
0 5 C5o o

x x x x
X IO 30 CO
CO 1—I G t—I

X x
O 05 CM rH

05 i—i CO 'Ct‘ CO
Q ° CM h- CMCM o oo m»g' o CM r-Tl< O CM 0505 OO
d d

S~
d -1rH 05

d
C-
d

r-H CM
CM lO rH CM O S' ID CM 05 0 0
d d

O ' O l N C CM CD r-H O TT
rH S ' G■** 1-t C

X X X XS iO in
O 00

ei io s

X X Xt- CM 05 CD rH N-
t—'* CM

X X X
O CO CO
ifO 0 5 T f
h W U5

00 0 5 CD

CM CD

X X X X XX XX XX Xco3 CM 05 CO CM05COs- smi-H O m 05 05 s- oo CD
mmCOCM COin CM -t*

2 w 2 io
i2 ^ S g t s R.-2 s

CO 0 0 CM Tj» C OO CM ID D lO U5 Tf C H rf 0 5

£

oo CO CD
co■rf §§ 8s- 05 00co
CD 05 00CM rH CM

CM CM
CO lO CO

m CO CO CO CM EJ
e co o R2
115 H N ! 2 co h u5 i;
O H U5 H
m s - s - 5_J

cm ^ oo J2

CM CM CM CM

T able 7.3: Locality-aware task distribution: reduction in coherence traffic, four phase
transactions and the average distribution o f threads.

Chapter 7. Results and Analysis 163

7.7. Chip Multi-Cluster Design Considerations

 1----------- 1----------- 1----------- 1----------- 1----------- 1----------- 1----------- 1----------- r
■ crossbar using locality-aware distribution
□ hybrid using locality-aware distribution

2x4 2x8 2x16 2x32 4x2 4x4 4x8 4x16 8x2 8x4 8x8
Architecture configuration

(Clusters x Cores per cluster)

Figure 7.37: The effect on overall performance running multiple instances of the sor
benchmark across multiple clusters using locality-aware distribution.

in the full-crossbar cluster architecture, shown in Figure 7.22 (b). The results
are shown for both the default and the locality-aware distribution scheme. The
difference, Diff., column shows the reduction achieved using the locality-aware
scheme.

Using the locality-aware distribution, a reduction in total coherence traffic and
four phase transactions is observed on the inter-cluster bus for all configura­
tions. Correspondingly a reduction in the average thread distribution distance
is observed at each processor on executing a TRQ instruction. These two factors
account for the improved performance using the locality-aware scheme.

7.7 C hip M u lti-C luster D esign C onsiderations

The previous section presented results showing tha t performance increases are
achievable through restructuring of an application and use of a locality aware
thread distribution scheme. However, Section 7.5 illustrated th a t increasing the
number of clusters often leads to decreased performance when data is frequently

over all TRQ operations. A value of 0 is added to the cumulative value if the thread remains in
the same context, 1 if the threads remain in the same processor, 2 in the same cluster, 3 outside
the cluster. Further explanation can be found in Chapter 6.

Chapter 7. Results and Analysis 164

7.7. Chip Multi-Cluster Design Considerations

shared across clusters. Equally, for some configurations where the number of
cores is small, a CMC architecture may actually perform worse than a single bus
CMP architecture.

In order to gain some insight into the design considerations required for utilising
CMC architectures, the performance of a single cluster bus-crossbar architecture,
see Figure 7.22 (c), is compared to the performance of a set of full-crossbar and
hybrid bus-crossbar CMC architectures, see Figure 7.22 (b) and (c). Each archi­
tecture is configured with an equal number of on-chip memory controllers, and
an equal amount of total cache. For the single cluster bus-crossbar architecture,
the inter-core bus is clocked at \ of the core clock.4

Single Bus CMP
bus) cycles

Configuration Hybrid Full Crossbar
cluster cores cycles speed-up cycles speed-up

180520129 2 4 196444747 0 .92x 196803387 0 .92x
104599844 2 8 90385345 1.15x 91011825 1.15x
88412428 2 16 53418809 1.66x 54501857 1.62x
92687948 2 32 26846465 3.45 x 26732865 3.47x
180520129 4 2 305976453 0.59x 306313453 0 .59x
104599844 4 4 116654491 0.89x 116536067 0.90x
88412428 4 8 56110859 1.57x 54547371 1.62x
92687948 4 16 43739515 2.11x 39954355 2.32x
104599844 8 2 171528459 0.61 x 170192259 0.61 x
88412428 8 4 65979083 1.34x 66460291 1.33x
92687948 8 8 40100163 2.31 x 39831179 2 .33x

T able 7.4: Performance comparison between the locality-aware optimized sor bench­
mark running on the fu ll crossbar CMC architecture, and the sor benchmark running
on a single inter-core bus CMP, with 4 memory controllers: a single cluster version of
the bus-crossbar hybrid (see Figure 7.22 (c)).

The so r benchmark is executed on each architecture. The results presented
in Table 7.4, compare the execution of the optimized so r benchmark on each
clustered architecture against the execution on the single cluster bus-crossbar
hybrid architecture, containing the same total number of cores.

Where the total number of cores is 8 or 16 the single bus architecture generally
out performs the CMC architecture, for the so r benchmark. There are several
design considerations here. Access latency to shared data is uniform for all of the
cores in the single bus architecture. Additionally bus contention is less than 40%,
see Figure 7.19, and is therefore not a limiting factor. The CMC architectures
perform poorly as latency to shared data is increased when sharing occurs across

Chapter 7. Results and Analysis 165

7.8. Summary

clusters.

For 32 and 64 cores, however, the CMC architectures always out perform the
single bus architecture. The increased latency of access to the level 2 cache,
reduced bus bandwidth and high bus contention levels, when the bus speed is
reduced, impact on the performance attainable from the so r benchmark in the
single bus CMP.

Recent studies have shown tha t there is also a need to consider the cost in area of
on-chip interconnects [84] and the efficiency of cache configurations [72, 69] when
trying to optimise CMP performance.

7.8 Sum m ary

This chapter has evaluated, through cycle-level simulation, the coherence protocol
introduced in Chapter 4 implemented using the hardware support introduced in
Chapter 5. The architecture and protocol have been exercised using 10 represen­
tative parallel benchmarks. A single bus CMP was simulated and dem onstrated
tha t wire delay and bus contention both inhibit scaling in large, greater than 32
core, configurations.

Three CMC architectures were simulated, demonstrating the protocol and ar­
chitecture’s capability of maintaining coherence across multiple clusters. The
architectures are able to exploit more parallelism from the benchmarks than the
single-bus CMP. The architectures reduce the effect of wire delay by decreasing
the span of the inter-core bus or crossbar. Bus contention is also reduced as the
number of cores connected to each inter-core bus, or to the banked cache in a
crossbar, decreases. The cluster architectures also dem onstrated the necessity for
multiple memory controllers in order to avoid memory saturation.

Finally a locality-aware thread distribution scheme, introduced in Chapter 6,
was dem onstrated to reduce the cost of synchronisation and deconstructive cache
sharing by isolating separate applications inside separate clusters. Furthermore
restructuring the so r benchmark demonstrated the ability to increase perfor­
mance by introducing simple locality-aware optimisations into the benchmark.
These optimisations enable up to 3.4 times improvement in performance, when

Chapter 7. Results and Analysis 166

7.8. Summary

executing a restructured benchmark on a CMC architecture, over th a t of a wire
delay limited single bus CMP.

Chapter 7. Results and Analysis 167

CH APTER 8

Conclusions

As the number of transistors integrated onto a silicon chip continues to grow, so
the potential to incorporate more processing cores becomes a reality. Current
CMP architectures contain a relatively small number of processing cores, up to
eight, and hardware support for up to 32 concurrent threads. I t is realistic, then,
to expect th a t a trend of increasing the number of processing cores will emerge
in an attem pt to maximise both the power and performance efficiency of the
increasing single chip transistor budget.

Currently, however, there is a limited understanding of the effects tha t incorpo­
rating tens of processing cores will have on the cache, memory and interconnect
within a single chip architecture. This thesis represents an investigation into
the effects th a t scaling, into the hundreds of cores, has on cache efficiency, in­
terconnect utilisation and memory saturation. W ith the limits imposed through
wire-delay in modern process technologies, and the need to bridge the growing
design complexity gap, a chip multi-cluster (CMC) architecture is proposed as a
viable design solution.

The caches in the CMC architecture maintain coherency using a multi-level cache
coherence protocol, presented in Chapter 4 and hardware extensions introduced

168

8.1. Contributions

in Chapter 5. An extension to the instruction set architecture, Chapter 6, enables
software optimisations tha t are able to distribute work across a CMC architecture
to exploit locality.

8.1 C ontributions

The thesis outlined five contributions to knowledge:

A M u lti-level C oherence P rotoco l

A protocol capable of maintaining shared memory cache coherence over multiple
levels of on-chip shared cache was presented. The protocol is based on four-
phase transactions; request, action, reaction, response. It generalises sufficiently
to maintain coherence across both bus and crossbar interconnects. An explicit
pending state in the protocol is used to prevent unnecessary coherence traffic
propagating onto lower level buses while four-phase transactions are in flight.

H ardw are Support for M ulti-L evel C oherence

Cache hardware required to support a multi-level coherence protocol was pre­
sented. In particular a core- and memory-bound queueing systems, necessary
at each shared cache, were outlined. The addition of multiple levels of shared
cache introduces flow control and deadlock issues into the cache hierarchy. Using
dual-channel, sinkable and non-sinkable queues, deadlock is avoided by breaking
circular chains of dependence. A novel passive and active queueing mechanism
was presented th a t allows reordering of non-sinkable messages to prevent head of
queue blocking.

L ocality-A w are Task D istribution

An extension to the instruction set architecture was introduced allowing software
to exploit cache locality by controlling the affinity of distributed tasks. The
extension allows software to distribute threads to a core anywhere within the

Chapter 8. Conclusions 169

8.1. Contributions

architecture based on a cache-distance metric and token identifier. The token
identifiers are used to encode the cache-distance metric providing a simple method
by which threads can be distributed across the chip.

C M P /C M C Sim ulation P latform

A simulation platform was developed in order to undertake the work contained
within this thesis. The simulation platform is capable of simulating CMP and
CMC architectures, interconnected by bus or crossbar interconnects, containing
multiple cache levels, and many hundreds of cores or contexts.

Cycle-level implementations of the coherence protocol, the cache hardware sup­
port and the locality aware task distribution scheme were incorporated into the
simulation platform to enable the experimental analysis undertaken in this thesis.

Fully Cache C oherent, M ultithreaded S tudy

Finally, while other research has explored the area of large-scale CMP architec­
tures [72, 69] these studies have focused on exploration and trade-offs specifically
in the cache design space. The studies were based on statistical analysis using
synthetic trace-driven simulations. In contrast the investigation undertaken in
this thesis studies effects on cache utilisation, memory saturation, and intercon­
nect utilisation. The performance of the simulated large-scale CMPs and CMCs
is attained using real multi-threaded Java applications each of which is run to
completion, maintaining complete cache coherence.

The study has shown tha t CMC architectures provide a feasible approach to the
design of future many-core architectures. Multiple CMPs can be replicated across
a chip providing another level of abstraction in the design of an architecture.
CMC architectures are also able, using task distribution optimisations, to out
perform wire delay limited single bus architectures.

Chapter 8. Conclusions 170

8.2, Future Work

8.2 Future W ork

The design space for CMP and CMC architectures is vast and the work conducted
as part of this thesis has only been able to address a small portion of it, creating
many opportunities for future research. The following are some areas where future
research projects might be conducted.

Cache and P ro toco l O ptim isations

The multi-level coherence protocol could benefit from several optimisations. Re­
moving the necessity for line inclusion by maintaining a tag-only cache or using
Bloom filters [15] for lines tha t are either stale or shared would reduce the level
of redundant lines stored in each cache, potentially improving their efficiency.
Support for asymmetric block sizes between levels could better utilise memory
bandwidth especially when the number of cores increases, however the impact
this would have in an inclusive cache hierarchy is unclear.

In a large multi-level, CMC architecture there is even more potential for exploit­
ing dynamic cache partitioning [128] to utilise each level of shared cache more
efficiently. A more thorough investigation into the cost of inclusion through ex­
ploration of the cache size, associativity and degree of banking in a coherent
environment could lead to a better understanding of the best configurations for
constructing multi-level cache hierarchies.

Course grained coherence tracking [112, 25] could be introduced to the system
in order to reduce the amount of inclusion within the higher level shared caches.
Such a scheme may allow higher level caches to maintain state associated with
larger blocks of memory reducing the amount of information stored at each level.
The scheme would clearly need to be adaptive to avoid mass invalidations.

Adaptive coherence protocols [35] which attem pt to identify migratory data, data
which is consistently read and then written, may provide additional benefits in
multi-level hierarchies. D ata identified as being migratory can be tracked by
additional states in the cache and on the initial read the line is serviced in a
modified state. This reduces the traffic as the initial downgrade of the line is
avoided.

Chapter 8. Conclusions 171

8.2. Future Work

Additionally a more rigorous proof of the coherence protocol and hardware using
a formal specification language, such as TLA +[88], would help to test and check
the correctness of the system.

D ynam ic E xp lo ita tion o f L ocality-A w are D istr ib u tion

Utilising locality-aware task distribution within a dynamic execution environ­
ment, such as a virtual machine, could provide a more optimal utilisation of the
shared caches and interconnect within a CMC, without the need for application
restructuring.

The work in this thesis has only evaluated symmetric homogeneous multi-cluster
architectures. Prior research has shown the benefit of heterogenous CMPs [83],
this work could be extended in the context of CMC architectures by studying
both heterogeneous cores and heterogeneous clusters. Dynamic scheduling utilis­
ing locality-aware task distribution could be used to distribute simple loop level
parallelism to smaller simpler cores under small shared caches, and distribute
complex sequential code to more complex cores with larger caches.

H ardw are Support for Transactional M em ory

Work extending the current simulation models of the architecture to support
transactional memory (TM) [65] is currently ongoing. Supporting TM in a multi­
cluster hierarchy is an area of research tha t has not currently been explored, most
hardware TM systems extend single bus snooping protocols. However the same
limitations imposed by wire-delay within single bus CMP architectures will apply
to the scaling of TM architectures relying on single bus snooping protocols.

Chapter 8. Conclusions 172

Bibliography

[1] Jikes™ Research Virtual Machine website, Accessed last 2007. http://jikesrvm .org.

[2] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B.H. Lim,
G. Maa, and D. Nussbaum. The MIT Alewife machine: A Large-Scale Distributed-
Memory Multiprocessor. In Workshop on Scalable Shared Memory Multiprocessors, 1991.

[3] A. Aiken and A. Nicolau. Optimal loop parallelization. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 308-317, 1988.

[4] G. Amdahl. Validity of the single-processor approach to achieving large-scale computer
capabilities. In AFIPS Spring Joint Computer Conference, volume 30, pages 483-485,
1967.

[5] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S. Lie. Unbounded
transactional memory. In International Symposium on High-Performance Computer Ar­
chitecture, pages 316-327, 2005.

[6] C. Anderson and J.L. Baer. A multi-level hierarchical cache coherence protocol for mul­
tiprocessors. In International Parallel Processing Symposium, pages 142-148, 1993.

[7] D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo. The IBM System /360 Model 91: Ma­
chine Philosophy and Instruction-Handling. IBM Journal of Research and Development,
11(1):8—24, 1967.

[8] J. Archibald and J.L. Baer. Cache Coherence Protocols: Evaluation Using a Multipro­
cessor Simulation Model. ACM Transactions on Computer Systems, 4(4):273-298, 1986.

[9] W.C. Athas and C.L. Seitz. Multicomputers: message-passing concurrent computers.
IEEE Computer, 21(8):9-24, 1988.

173

http://jikesrvm.org

[10] T.M Austin and G.S Sohi. Dynamic dependency analysis of ordinary programs.
SIGARCH Computer Architecture News, 20(2):342~351, 1992.

[11] J.L. Baer and W.H. Wang. On the inclusion properties for multi-level cache hierarchies.
In International Symposium on Computer Architecture, pages 73-80, 1988.

[12] U.K. Banerjee. Loop Parallelization. Kluwer Academic Publishers Norwell, MA, USA,
1994.

[13] L.A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: a scalable architecture based on single-chip

multiprocessing. In International Symposium on Computer Architecture, pages 282-293,
2000 .

[14] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Tech­
nical Conference, FREENIX Track, pages 41-46, 2005.

[15] B.H. Bloom. Space/tim e trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422-426, 1970.

[16] W. Blume and R. Eigenmann. Performance Analysis of Parallelizing Compilers on the
Perfect Benchmarks Programs. IEEE Transactions on Parallel and Distributed Systems,
3(6):643-656, 1992.

[17] M.T. Bohr. Interconnect scaling-the real limiter to high performance ULSI. In Interna­
tional Electron Devices Meeting, pages 241-244, 1995.

[18] D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0. ACM SIGARCH
Computer Architecture News, 25(3):13-25, 1997.

[19] D. Burger and J.R. Goodman. Billion-Transistor Architectures. IEEE Computer,
30(9): 22-28, 1997.

[20] D. Burger and J.R. Goodman. Billion-Transistor Architectures: There and Back Again.
IEEE Computer, 37(3):22-28, 2004.

[21] D.R. Butenhof. Programming with Posix @Threads, Addison-Wesley Professional, 1997.

[22] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow. Single instruc­
tion stream parallelism is greater than two. In International Symposium on Computer
Architecture, pages 276-286, 1991.

[23] D. Callahan, K. Kennedy, and K. Porterfield. Software prefetching. In International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 40-52, 1991.

[24] T.J. Callahan and J. Wawrzynek. Instruction-Level Parallelism for Reconfigurable Com­
puting. In International Workshop on Field-Programmable Logic and Applications, pages
248-257, 1998.

[25] J.F. Cantin, J.E. Smith. M.H. Lipasti, A. Moshovos, and B. Falsafi, Coarse-Grain Coher­
ence Tracking: RegionScout and Region Coherence Arrays. IEEE Micro, pages 70-79,
2006.

Bibliography 174

[26] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. Directory-based cache coherence in
large-scale multiprocessors. IEEE Computer, 23(6):49-58, 1990.

[27] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-Performance Throughput Com­
puting. IEEE Micro, 25(3):32-45, 2005.

[28] T. Chen. An effective programmable prefetch engine for on-chip caches. In International
Symposium on Microarchitecture, pages 237-242, 1995.

[29] D.R. Cheriton, H.A. Goosen, and P.D. Boyle. Paradigm: a highly scalable shared-memory
multicomputer architecture. IEEE Computer, 24(2):33-46, 1991.

[30] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for exploiting
memory-level parallelism. In International Symposium on Computer Architecture, pages
76-87, 2004.

[31] F. Chow and J. Hennessy. Register allocation by priority-based coloring. In SIGPLAN
Symposium on Compiler Construction, pages 222-232, 1984.

[32] L. Codrescu, D.S. Wills, and J. Meindl. Architecture of the Atlas Chip-Multiprocessor:
Dynamically Parallelizing Irregular Applications. IEEE Transactions on Computers,
50(l):67-82, 2001.

[33] E.G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Computing Sur­
veys, 3(2):67-78, 1971.

[34] T.P.P. Council. TPC Benchmark C Specification, 2005.

[35] A.L. Cox and R. J. Fowler. Adaptive cache coherency for detecting migratory shared data.
In International Symposium on Computer Architecture, pages 98-108, 1993.

[36] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko. Compiling
Java just in time. IEEE Micro, 17(3):36-43, 1997.

[37] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In International Confer­
ence on Parallel Processing, pages 836-844, 1986.

[38] V. De and S. Borkar. Technology and design challenges for low power and high per­
formance. In International Symposium on Low Power Electronics and Design, pages
163-168, 1999.

[39] K. Diefendorff, P.K. Dubey, R. Hochsprung. and H. Scale. AltiVec extension to PowerPC
accelerates media processing. IEEE Micro, 20(2):85-95, 2000.

[40] A. Dinn, I. Watson, K. Kirkham, and A. El-Mahdy. The Jamaica Virtual Machine: A
Chip Multiprocessor Parallel Execution Environment. Technical report, University of
Manchester, 2005.

[41] K. Ebcioglu, E.R. Altman, Y. Heights, and N. York. DAISY: Dynamic Compilation for
100% Architectural Compatibility. In International Symposium on Computer Architec­
ture, pages 26-37, 1997.

Bibliography 175

[42] M. Farrens, G. Tyson, and A.R, Pleszkun. A study of single-chip processor/cache or­
ganizations for large numbers of transistors. In International Symposium on Computer
Architecture, pages 338-347, 1994.

[43] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance of multithreaded
chip multiprocessors and implications for operating system design. In USENIX Annual
Technical Conference, pages 26-40, 2005.

[44] M. Fillo, S.W. Keckler, W.J. Dally, N.P. Carter, A. Chang, Y. Gurevich, and W.S. Lee.
The M-Machine multicomputer. In International Symposium on Microarchitecture, pages
146-156, 1995.

[45] J.A. Fisher. Very Long Instruction Word architectures and the ELI-512. In International
Symposium on Computer Architecture, pages 140-150, 1983.

[46] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-level parallelism and in­
teractive performance of desktop applications. ACM SIGPLAN Notices, 35(11):129-138,
2000.

[47] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-level parallelism of desktop
applications. In Workshop on Multi-threaded, Execution, Architecture and Compilation,
2000.

[48] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901—
1909, 1966.

[49] S. Frank, H. Burkhardt III, and J. Rothnie. The KSR 1: bridging the gap between shared
memory and MPPs. In IEEE Computer Society International Conference, pages 285-294,
1993.

[50] C.W. Fraser. A retargetable compiler for ANSI C. ACM SIGPLAN Notices, 26(10):29-43,
1991.

[51] M. Galles and E. Williams. Performance optimizations, implementation, and verification

of the SGI Challenge multiprocessor. In Hawaii International Conference on System
Sciences, volume 1 , 1994.

[52] R.B Garner, A. Agrawal, F. Briggs, E.W Brown, D. Hough, B. Joy, S. Kleiman, S. Much-
nick, M. Namjoo, and D. Patterson. The scalable processor architecture (SPARC). In

IEEE Computer Society International Conference, pages 278-283, 1988.

[53] P.P. Gelsinger. Microprocessors for the New Millenium: Challenges, Opportunites and
New Frontiers. In IEEE Solid-State Circuits Conference, pages 22-25, 2001.

[54] J. Goodacre and A.N. Sloss. Parallelism and the ARM instruction set architecture. IEEE
Computer, 38(7):42-50, 2005.

[55] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B. Gamsa, A. Grbic,
M. Gusat, R. Ho, and O. Krieger. The NUMAchine Multiprocessor. Technical Report
TR324, University of Toronto, 2000.

Bibliography 176

[56] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning Techniques
for Parallelizing Compilers on Multicomputers. IEEE Transactions on Parallel and Dis­
tributed Systems, 3(2):179-193, 1992.

[57] M. Gupta and R. Nim. Techniques for Speculative Run-Time Parallelization of Loops.
In IEEE/ACM Conference on Supercomputing, pages 1- 12 , 1998.

[58] A. Halaas, B. Svingen, M. Nedland, P. Saetrom, O. Snove Jr., and O.R. Birkeland. A
recursive MISD architecture for pattern matching. IEEE Transactions on Very Large
Scale Integration Systems, 12(7):727-734, 2004.

[59] M.W. Hall, S.P. Amarasinghe, B.R. Murphy, S. Liao, and M.S. Lam. Detecting coarse-
grain parallelism using an interprocedural parallelizing compiler. In Proceedings of Su-
percomputing, 1995.

[60] L. Hammond, B.A. Hubbert, M. Siu, M.K. Prabhu, M. Chen, and K. Olultotun. The
Stanford Hydra CMP. IEEE Micro, 20(2):71-84, 2000.

[61] L. Hammond, K. Olukotun, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg,
M.K. Prabhu, H. Wijaya, and C. Kozyrakis. Transactional Memory Coherence and Con­
sistency. ACM SIGARCH Computer Architecture News, 32(2):102, 2004.

[62] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach
(Third Edition). Morgan Kaufmann, 2003.

[63] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach
(Fourth Edition). Morgan Kaufmann, 2006.

[64] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, 15(5):745-770, 1993.

[65] M. Herlihy, J. Eliot, and B. Moss. Transactional Memory: Architectural Support For
Lock-free D ata Structures. In International Symposium on Computer Architecture, pages

289-300, 1993.

[66] R. Ho, K.W. Mai, and M.A. Horowitz. The future of wires. Proceedings of the IEEE,
89(4):490-504, 2001.

[67] M. Horsneil. Cycle-Accurate, Distributed Chip Multiprocessor Simulation. In EPSRC
Postgraduate Research in Engineering and Physical Sciences (PREP)., 2004.

[68] M. Horsneil. Harnessing Java for Novel Chip Multiprocessor Architecture Simulations.
In EPSRC Postgraduate Research in Engineering and Physical Sciences (PREP)., 2005.

[69] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell. Exploring the cache design
space for large scale CMPs. ACM SIGARCH Computer Architecture News, 33(4):24-33,
2005.

[70] W.M.W. Hwu, S.A. Mahlke, W .Y. Chen, P.P. Chang, N.J. Warter, R.A. Bringmann,
R.G. Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G Holm, and D.M Lavery. The
superblock: An effective technique for VLIW and superscalar compilation. Journal of
Supercomputing, 7(1):229~248, 1993.

Bibliography 177

[71] Intel. Block-Matching In Motion Estimation Algorithms Using Streaming SIMD Exten­
sions 3. Intel Application Note, December 2003. w w w .in te l.c o m /c d /id s /d e v e lo p e r /
asm o~ n a /en g /d c/p en tiu m 4/op tim iza tion /66775 .htm accessed last 2007.

[72] R. Iyer, M. Bhat, L. Zhao, R. Illiklcal, S. Makineni, M. Jones, K. Shiv, and D. Newell.
Exploring Small-Scale and Large-Scale CMP Architectures for Commercial Java Servers.
In IEEE International Symposium on Workload Characterization, pages 191-200, 2006.

[73] R. Iyer, L. Zhao, F. Guo, R. Illiklcal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and
S. Reinhardt. QoS policies and architecture for cache/memory in CMP platforms. In
ACM SIGMETRICS International Conference on Measurement and Modeling of Com­
puter Systems, pages 25-36, 2007.

[74] T.A. Johnson, R. Eigenmann, and T.N. Vijaykumar. Min-cut program decomposition

for thread-level speculation. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 59-70, 2004.

[75] N.P. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully-a,ssocia.tive cache and prefetch buffers. SIGARCH Computer Architecture News,
18 (3a): 364-373, 1990.

[76] N.P. Jouppi. Cache write policies and performance. In International Symposium on
Computer Architecture, pages 191-201, 1993.

[77] N.P. Jouppi and D.W . Wall. Available instruction-level parallelism for superscalar and
superpipelined machines. In International Conference on Architectural Support for Pro­
gramming Languages and Operating Systems, pages 272-282, 1989.

[78] R. Kalla, B. Sinharoy, and J.M. Tendler. IBM Power5 chip: A dual-core multithreaded
processor. IEEE Micro, 24(2):40-47, 2004.

[79] G. Kane and J. Heinrich. MIPS RISC architectures. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1992.

[80] C.N. Keltcher, K.J. McGrath, A. Ahmed, P. Conway, and A.M. Devices. The AMD
Opteron processor for multiprocessor servers. IEEE Micro, 23(2):66—76, 2003.

[81] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way multithreaded Sparc
processor. IEEE Micro, 25(2):21-29, 2005.

[82] V. Krishnan and J. Torrelias. Hardware and Software Support for Speculative Execu­
tion of Sequential Binaries on a Chip-multiprocessor. In International Conference on
Supercomputing, pages 85-92, 1998.

[83] R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Heterogeneous chip multi­
processors. IEEE Computer, 38(ll):32-38 , 2005.

[84] R. Kumar, V. Zyuban, and D.M. Tullsen. Interconnections in Multi-core Architectures:
Understanding Mechanisms, Overheads and Scaling. In International Symposium on
Computer Architecture, pages 408-419, 2005.

Bibliography 178

http://www.intel.com/cd/ids/developer/

[85] S.R. Kunkel, R.J. Eickemeyer, M.H. Lipasti, T.J. Mullins, B. O’Krafka, H. Rosenberg,
S.P. VanderWiel, P.L. Vitale, and L.D. Whitley. A performance methodology for com­
mercial servers. IBM Journal of Research and Development, 44(6):851-872, 2000.

[86] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806—
811, 1977.

[87] L. Lamport. How to make a correct multiprocess program execute correctly on a multi­
processor. IEEE Transactions on Computers, 46(7):779-782, 1997.

[88] L. Lamport. Specifying concurrent systems with TL A +. Calculational System Design,
1999.

[89] J.R. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE Transactions
on Parallel and Distributed Systems, 4(7):812—826, 1993.

[90] J. Laudon. Performance/Watt: the new server focus. ACM SIGARCH Computer Archi­
tecture News, 33(4):5-13, 2005.

[91] J. Laudon. A. Gupta, and M. Horowitz. Architectural and Implementation Tradeoffs in
the Design of Multiple-Context Processors. In International Symposium on Computer
Architecture, pages 435-435, 1992.

[92] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading technique tar­
geting multiprocessors and workstations. In International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 308-318, 1994.

[93] D. Lea. A Java fork/join framework. In ACM Conference on Java Grande, pages 36-43,
2000 .

[94] D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-
Wesley, 2000.

[95] J. Lee, S. Moon, and W. Sung. H.264 decoder optimization exploiting SIMD instructions.
In IEEE Asia-Pacific Conference on Circuits and Systems, pages 1149-1152, 2004.

[96] R.B. Lee. Subword parallelism with MAX-2. IEEE Micro, l6(4):51-59, 1996.

[97] D. Lenoski, J. Laudon, K. Gharachorloo, W .D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M.S. Lam. The Stanford Dash multiprocessor. IEEE Computer,
25(3):63-79, 1992.

[98] D.J. Lilja. Exploiting the parallelism available in loops. IEEE Computer, 27(2):13-26,
1994.

[99] J.L. Lo and S.J. Eggers. Improving balanced scheduling with compiler optimizations that
increase instruction-level parallelism. ACM SIGPLAN Notices, 30(6):151—162, 1995.

[100] J.L. Lo, J.S Emer, H.M. Levy, R.L Stamm, D.M Tullsen, and S.J. Eggers. Converting
thread-level parallelism to instruct ion-level parallelism via simultaneous multithreading.
ACM Transactions on Computer Systems., 15(3):322-354, 1997.

Bibliography 179

101] K.W. Loveless. The Implementation of Flexible Interconnect in the NUMAchine Multipro­
cessor. Master’s thesis, Department of Electrical and Computer Engineering, University

of Toronto, 1996.

102] K. Mai, T. Paaske, N. Jayasena, R. Ho, W .J. Dally, and M. Horowitz. Smart Memo­
ries: a modular reconfigurable architecture. In International Symposium on Computer
Architecture, pages 161-171, 2000.

103] P. Marcuello, A. Gonzalez, and J. Tubella. Speculative multithreaded processors. In
International Conference on Supercomputing, pages 77-84, 1998.

104] D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer,
30(9):37-39, 1997.

105] O.A. McBryan. An overview of message passing environments. Parallel Computing,
20:417-443, 1994.

106] E. McLellan. The Alpha AXP Architecture and 21064 Processor. IEEE Micro, 13(3):36-
47, 1993.

107] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium Processor.
IEEE Micro, 25(2):10-20, 2005.

108] A. Mendelson, J. Mandelblat, S. Gochman, A. Shemer, R. Chabukswar, E. Niemeyer, and
A. Kumar. CMP Implementation in Systems based on the Intel® C ore™ D uo Processor.
IntelJ@ Technology Journal, 10(2):99-108, May 2006.

109] P. Merlin and P. Schweitzer. Deadlock Avoidance in Storc-and-Forward Networks-I:
Store-and-Forward Deadlock. IEEE Transactions on Communications, 28(3):345-354,
1980.

110] J.L. Mitchell, W .B. Pennebaker, C.E. Fogg, and D.J. Legall. MPEG Video Compression
Standard. Chapman & Hall, Ltd. London, UK, 1996.

111] G.E Moore. Cramming more components onto integrated circuits. Electronics, 38(8): 114—
117, 1965.

112] A. Moshovos. RegionScout: exploiting coarse grain sharing in snoop-based coherence. In

International Symposium on Computer Architecture, pages 234-245, 2005.

113] T. Mowry and A. Gupta. Tolerating latency through software-controlled prefetching
in shared-memory multiprocessors. Journal of Parallel and Distributed Computing,
12(2) :87—106, 1991.

114] L.W. Nagel and D.O. Pederson. Simulation Program with Integrated Circuit Emphasis.
In Midwest Symposium on Circuit Theory, volume 23, 1973.

115] V. Narayanan, V.K. Paruchuri, E. Cartier, B.P. Linder, N. Bojarczuk, S. Guha, S.L.
Brown, Y. Wang, M. Copel, and T.C. Chen. Recent advances and current challenges in the
search for high mobility band-edge high-k/metal gate stacks. Microelectronic Engineering,
84(9-10): 1853-1856, 2007.

Bibliography 180

[116] B. A. Nayfeh, K. Olukotun, and J.P. Singh. The impact of shared-cache clustering in small-
scale shared-memorymultiprocessors. In International Symposium, on High-Performance
Computer Architecture, pages 74-84, 1996.

[117] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algorithms.
IEEE Computer, 24(8):52-60, 1991.

[118] S. Oberman, G. Favor, and F. Weber. AMD 3DNow! technology: architecture and
implementations. IEEE Micro, 19(2):37-48, 1999.

[119] J.T. Oplinger, D.L. Heine, and M.S. Lam. In Search of Speculative Thread-Level Paral­
lelism. In International Conference on Parallel Architectures and Compilation Techniques,
pages 303-313, 1999.

[120] G. Ottoni, R. Rangan, A. Stoler, M.J. Bridges, and D.I. August. From Sequential Pro­
grams to Concurrent Threads. IEEE Computer Architecture Letters, 5(1), 2006.

[121] D.A. Padua, D.J. Kuck, and D.H. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Transactions on Computers, 29:763-776, 1980.

[122] D.A. Padua and M.J. Wolfe. Advanced compiler optimizations for supercomputers. Com­
munications of the ACM, 29(12):1184-1201, 1986.

[123] S. Palacharla, N.P. Jouppi. and J.E. Smith. Complexity-effective superscalar processors.
In International Symposium on Computer Architecture, pages 206-218, 1997.

[124] Y.N. Patt, W.M. Hwu, and M. Shebanow. HPS, a new microarchitecture: rationale and
introduction. In Annual Workshop on Microprogramming, pages 103-108, 1985.

[125] D.A. Patterson. Reduced instruction set computers. Communications of the ACM,
28(1):8-21, 1985.

[126] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture. IEEE
Micro, 16(4):42-50, 1996.

[127] D. Pham, S. Asano, M. Bolliger, M.N Day, H.P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa. The de­
sign and implementation of a first-generation CELL processor - a multi-core SoC. In
International Conference on Integrated Circuit Design and Technology, pages 49-52, May
2005.

[128] M. Planas, F. Cazorla, A. Ramirez, and M. Valero. Explaining Dynamic Cache Parti­
tioning Speed Ups. IEEE Computer Architecture Letters, 6(1), 2007.

[129] M.A Postiff, D.A. Greene, G.S Tyson, and T.N. Mudge. The limits of instruction level
parallelism in SPEC95 applications. SIGARCH Computure Architecture News, 27(1):31-
34, 1999.

[130] M.K. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual paral-
lelization. In International Symposium on Principles and Practice of Parallel Program­
ming, pages 1-12, 2003.

Bibliography 181

[131] D.J. Quammen, D.R. Miller, and D. Tabak. Register window management for a real-time
multitasking RISC. In Hawaii International Conference on System Sciences, volume 1 ,
1989.

[132] G. Radin. The 801 minicomputer. In International Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 39-47, 1982.

[133] R. Rajwar and J.R. Goodman. Speculative lock elision: Enabling highly concurrent
multithreaded execution. In International Symposium on Microarchitecture, pages 01-05,
2001 .

[134] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In International
Symposium on Computer Architecture, pages 494-505, 2005.

[135] L. Rauchwerger and D.A. Padua. The LRPD test: speculative run-time parallelization
of loops with privatization and reduction parallelization. IEEE Transactions on Parallel
and Distributed Systems, 10(2): 160-180, 1999.

[136] J.H. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization and scheduling
of loops. IEEE Transactions on Computers, 40(5):603-612, 1991.

[137] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S.W. Keckler, and
C.R. Moore. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.
SIGARCH Computer Architecture News, 31(2):422-433, 2003.

[138] T. Scholz and M. Schafers. An Improved Dynamic Register Array Concept for High-
Performance RISC Processors. In Hawaii International Conference on System Sciences,
1995.

[139] Semiconductor Industry Association. The International Technology Roadmap for Semi­
conductors, 2005.

[140] R.L. Sites. Alpha Architecture Reference Manual. Digital Press, 1998.

[141] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K.S McKinle, and
J. Burrill. Compiling for EDGE Architectures. In International Symposium on Code
Generation and Optimization, pages 185-195, 2006.

[142] B.J. Smith. Architecture and applications of the HEP multiprocessor computer system.
Real-time signal processing IV, pages 241-248, 1982.

[143] J.E. Smith and S. Vajapeyam. Trace processors: moving to fourth-generation microar­
chitectures. IEEE Computer, 30(9):68-74, 1997.

[144] L.A. Smith, J.M. Bull, and J. Obdrzalek. A Parallel Java Grande Benchmark Suite. In

ACM /IEEE Conference on Supercomputing, 2001.

[145] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar processors. In International
Symposium on Computer Architecture, pages 414-425, 1995.

[146] J.G. Steffan, C.B. Colohan. A. Zhai, and T.C. Mowry. A scalable approach to thread-level
speculation. In International Symposium on Computer Architecture, pages 1-12, 2000.

Bibliography 182

[147] J.G. Steffan, C.B. Colohan. A. Zhai, and T.C. Mowry. Improving value communication
for thread-level speculation. In International Symposium on High-Performance Computer
Architecture, pages 65-75, 2002.

[148] J.G. Steffan and T. Mowry. The Potential for Using Thread-Level Data Speculation to

Facilitate Automatic Parallelization. In International Symposium on High-Performance
Computer Architecture, volume 15, 1998.

[149] P. Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE Computer,
23(6):12-24, 1990.

[150] P. Stenstrom, E. Hagersten, D.J. Lilja, M. Martonosi, and M. Venugopal. Trends in
shared memory multiprocessing. IEEE Computer, 30(12):44-50, 1997.

[151] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In ACM Symposium on Parallel Algorithms and Architectures, pages 62-71,
1996.

[152] Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
OpenSPARC™ Tl Microarchitecture Specification, Revision A edition, August 2006.

[153] P. Sweazey and A.J. Smith. A class of compatible cache consistency protocols and their
support by the IEEE futurebus. In International Symposium on Computer Architecture,
pages 414-423, 1986.

[154] M. Takahashi, H. Takano, E. Kaneko, and S. Suzuki. A shared-bus control mechanism and
a cache coherence protocol for ahigh-performance on-chip multiprocessor. In International
Symposium on High-Performance Computer Architecture, pages 314-322, 1996.

[155] M.R. Thistle and B.J. Smith. A processor architecture for horizon. IEEE Computer
Society Press Los Alamitos, CA, USA, 1988.

[156] R.M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal of Research and Development, 11 (1):25—33, 1967.

[157] M. Tremblay, J.M. Narayanan, and V.L. He. VIS speeds new media processing. IEEE
Micro, 16(4):10-20, 1996.

[158] M. Tremblay and J.M. O’Connor. UltraSparc I: a four-issue processor supporting multi-
media. IEEE Micro, 16(2):42-50, 1996.

[159] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: maximizing on-
chip parallelism. In International Symposium on Computer Architecture, pages 392-403,
1995.

[160] D.M. Ungar. The design and evaluation of a high performance Smalltalk system. MIT
Press Cambridge, MA, USA, 1987.

[161] T. Ungerer, B. Robic, and J. Silc. A survey of processors with explicit multithreading.
ACM Computing Surveys, 35(l):29-63, 2003.

Bibliography 183

[162] S.P. VanderWiel and D.J Lilja. Data prefetch mechanisms. A C M C om puting S urveys ,
32(2):174-199, 2000.

[163] S.P. VanderWiel, D. Nathanson, and D.J. Lilja. Complexity and performance in parallel
programming languages. In In tern ational W orkshop on H igh-Level Program m ing Models

and Supportive E nvironm en ts , pages 3-12, 1997.

[164] D. Vuyst, R. Kumar, and D.M. Tullsen. Exploiting unbalanced thread scheduling for
energy and performance on a CMP of SMT processors. In P arallel and D istribu ted P ro­

cessing Sym posium , page 10, 2006.

[165] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Prank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All to Software:
Raw Machines. IE E E C om puter , 30(9):86-93, 1997.

[166] D.W. Wall. Limits of Instruction Level Parallelism. Technical report, Digital - Western
Research Laboratory, 1993.

[167] D.W . Wall. Speculative execution and instruction-level parallelism. Technical report,
Digital - Western Research Laboratory, 1994.

[168] A.W. Wilson Jr. Hierarchical cache/bus architecture for shared memory multiprocessors.
In In tern ation al Sym posium on C om pu ter A rchitecture , pages 244-252, 1987.

[169] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In In tern a tion a l Sym posium on C om ­

p u te r A rch itecture , pages 24-36, 1995.

[170] Greg M. Wright. A single chip m ulti-processor architecture w ith hardware thread support.

PhD thesis, School of Computer Science, University of Manchester, 2001.

[171] T.Y. Yeh and Y.N. Patt. Two-level adaptive branch prediction. In In tern ation al Sym po­

sium and W orkshop on M icroarchitecture , 1991.

[172] J. Zhao, I. Rogers, C. Kirkham, and I. Watson. Loop Parallelisation for the Jikes RVM.
In In tern a tion a l Conference on P arallel and D istribu ted C om puting, A pplications and

Technologies, pages 35-39, 2005.

[173] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In In ternational

Sym posium on C om puter A rch itecture , pages 2-13, 2001.

Bibliography 184

A P P E N D IX A

Jamaica - Instruction Set Architecture

The Jam aica instruction set borrows some of its instruction formats from the
Digital Alpha 32-bit instruction set architecture [140], but is not binary compat­
ible.

A . l In stru ction Form ats

The architecture supports four distinct instruction formats, register form (Figure
A .l), immediate form (Figure A.2), branch form (Figure A.3) and memory form
(Figure A.4).

185

A . 1.1 R e g ister Form

O p c o d e
1 1 1 1 1

R a
i i i i

R b
i i i i

0
i i

0 O p c o d e 2
i i i i i i

R c

31 26 25 21 20 16 15 13 12 11 5 4 0

Figure A .l: R egister fo rm Rc « — Ra op Rb-

A . 1.2 Im m e d ia te Form

O p c o d e
1 1 1 1 1

R a
i . ,

Im m
■ i i i i i i

1 O p c o d e 2
i i i i i i

R c

31 26 25 21 20 13 12 11 5 4 0

Figure A .2: R egister im m edia te fo rm Rc <— Ra op Rb.

A . 1.3 B ran ch Form

O p c o d e
, i i i i . .i

R a
. - - L. . !

D isp
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 26 25 21 20 0

Figure A .3: B ranch form .

A . 1.4 M em o ry Form

O p c o d e

_ i i i i i
R a

1 L 1 1
R b

-- 1 — I-- L _1—
D isp

i i i i i i i i i i i i i i i 1----- 1----- 1----- 1----- L
31

Figure A .4: M em ory form .

Appendix A. Jamaica - Instruction Set Architecture 186

A .2 In stru ction Set

A .2.1 A r ith m e tic /L o g ic a l In stru c tio n s

Register Form: DP Ra, Rb, Rc

Register Immediate Form: R0, Imm, Rc

ADD R c R a + R b

SUB R c ̂ R a R b

CMPEQ R c <— (R a = R b)

CMPLE Rc <— (R„ < = Rh)
CMPLT R c <— (R a < R b)

CMPULE R c «- (R a < = R b)

CMPULT R c (R a < R b)

S4ADD R c *- (4xR a + R b)

S8ADD Rc <- (8xR a + Rb)
S4SUB Rc (4xR a — Rb)
S8SUB Rc <- (8xR a - Rb)
AND R c 1— (R a & R b)

BIC R c «— (R a & ^ R b)

BIS R c <— (R a | R b)

EQV R c +— (R a H R b)

ORNOT R c <— (R a H R b)

XOR R c <— (R a A R b)

SLL R c <— (R a < R b)

SRL R c <- (R a R b)

SRA R c <- (R a » R b)

CMOVEQ i f (R a = 0) R c < - R b

CMOVGE i f (R a ^ 0) R c +— R b

CMOVGT i f (R a > 0) R c <- R b

CMOVLBC i f ((R a a 1) = 0) R c R b

CMOVLBS i f ((R a A 0) = 0) Rc <— R b

CMOVLE i f (R a < o) R c < - R b

CMOVLT if(Ra < 0) Rc <— R b

CMOVNE i f (R a ^ 0) R c * Rb
MUL R c <- R a X Rb
TRQ see Section 6.2.2
RCR Rc <— CReg[R6]
WCR CReg[Ri]<— Ra
CAS single word compare and swap
SIRQ Send I R Q R b to thread with ID R a

EVICT Evict a frame; Rc +— 1 or 0

T a b le A . l : J a m a ic a in s tr u c t io n se t: a r i th m e tic /lo g ic a l in s tru c t io n s .

Appendix A. Jamaica - Instruction Set Architecture 187

A .2.2 C o n tro l T ransfer In stru c tio n s

Branch Form: OP Ra , d isp 21-bit signed displacement

BEQ Branch if Ra = 0
BGE Branch if Ra > 0
BGT Branch if Ra > 0
BLBC Branch if Ra&l = 0
BLBS Branch if Ra&0 = 0
BLE Branch if Ra < 0
BLT Branch if Ra < 0
BNE Branch if Ra 7 ̂ 0
BR Branch
BSR Branch to subroutine
THB Thread branch (following TRQ)

Table A .2: Jamaica instruction set: branch form control instructions.

Memory Form: OP Ra> d isp 16-bit signed displacement

JSR Jump to subroutine
JMP Jump
RET Return (takes address from 7, i7)
THJ Thread jump (following TRQ)
RTI Return from interrupt

Table A .3: Jamaica instruction set: memory form control instructions.

Appendix A. Jamaica - Instruction Set Architecture 188

A .2.3 M em o ry In stru c tio n s

Memory Form: OP Ra , d is p , Kb 16-bit signed displacement

LDA Ra <— disp 4- Rj,
LDAH Ra +- disp < 16 + R6
LDL Ra <— Mem[disp + R*]
STL Mem[disp + Rt] Ra
LDB Ra <— Mem [disp + Rb],

byte, sign-extended
LDBU Ra <— Mem [disp + RJ,

byte, zero-extended
STB Mem[disp + Rb] <— Ra, byte
LDL_L Ra +— Mem [disp + Rb],

set lock_base, set lock_flag
STL_C if(lock-flag) {Mem[disp + Rb] <— R„; R„ •<—

1} else { Ra 0}
WAIT Sleep until lock-flag is cleared

Table A .4: Jamaica instruction set: memory instructions.

Appendix A. Jamaica - Instruction Set Architecture 189

A .3 B u ilt ln In stru ctions

Trap address Builtln Description
OxfffTOOdO contextReplace switch context registers with

memory
0xffff00d4 printT imeStamp prints processor and context id

with cycle count
0xffff00d8 getCycleCount returns cycle count in register %o0
OxffffOKM fstat unix fstat equivalent
0xffff0144 copyMemory copy block of memory at %o0 to

%ol, %o2 bytes
0xffff0148 setMemory set block of memory at %o0 to

value %ol, %o2 bytes
0xffff0160 zeroCtxStats zero statistics for a given processor

context
0xffff0164 reportCtxStats report statistics for a given proces­

sor context
0xffff012c fflush. unix fflush equivalent
OxffffOOOO simExit forceably quit the sim
0xfffF0008 fopen unix fopen equivalent
OxfffFOOOc fputc unix fputc equivalent
OxflfFOOlO fgetc unix fgetc equivalent
0xffff0018 ungetc unix ungetc equivalent
OxffffOOeO zeroPerf zero all statistic counters
OxffffOOee getNumProcs return total number of processors

(deprecated)
Oxflfl'OOfO getNumCtxs returns number of contexts
0xffff0108 open unix open equivalent
0xffff0124 lseek unix lseek equivalent
OxfffFOllc read unix read equivalent
0xffff014c reportPerf report all statistic counters
0xffff0120 write unix write equivalent
0xffff0128 getTimeOfDay get unix time
OxffffOlOc close unix close equivalent
0xffff0138 notifyDebugger notify the debugger of object up­

dates in VM
0xffff0200 switchCaches switch to cycle-level cache models
0xffff0300 utilityCall 2 integer inputs, 1 integer output

utility call

Table A .5: Jamaica instruction set: builtin instructions.

Appendix A. Jam aica - Instruction Set Architecture 190

