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Abstract

Chip Multiprocessor (CMP) architectures are fast becoming ubiquitous. Their 
widespread adoption has been motivated by three dominant factors; power and 
therm al limits have constrained higher clock frequencies, the memory wall has 
expedited concurrency as a means of maintaining performance, and technology 
advances have increased transistor budgets enabling the integration of multiple 
cores on a single chip. It is anticipated tha t a trend of increasing the number 
of cores with increasing transistor budgets will emerge, and th a t within the next 
decade it will be feasible to integrate up to 128 cores w ithin a single chip archi­
tecture.

This thesis investigates the scaling limitations of current single bus CMP ar­
chitectures and proposes a Chip Multi-Cluster (CMC) architecture as a feasible 
approach for future many-core designs. A novel cache coherence protocol and 
hardware support for maintaining coherence across multiple clusters is presented. 
Additionally, support at the hardware/software interface is provided to allow 
locality-aware thread creation and distribution in order to best utilise the archi­
tecture. Several possible implementations of the CMC architecture are studied 
through cycle accurate simulation using multithreaded benchmarks.
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CHAPTER 1

Introduction

A chip multi-cluster architecture based on a novel multi-level cache coherence 
protocol is presented in this thesis. This architecture supports interleaved multi­
threading and provides facilities for lightweight locality aware thread distribution. 
The architecture is simulated using a novel cycle-level simulation platform and 
is used to evaluate the concepts associated with increasing the number of cores, 
bus contention and wire delay, scaling the memory hierarchy, and locality aware 
task distribution.

1.1 M otiva tion

Over 40 years ago Gordon Moore observed tha t the to tal number of devices in­

tegrated on a chip doubled every 12 months [111]. Based on this observation 
he boldly predicted th a t this trend would continue throughout the 1970s and 
would subsequently slow down to a doubling every 24 months in the 1980s. This 
prediction, commonly referred to as Moore’s Law, triggered a revolution in mi­
croarchitecture innovation and design th a t has delivered enormous increases in 
computing power.
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1.1. Motivation

During the last decade alone, the number of transistors integrated on a single 
die has doubled every 24 months and the relative performance of microprocessors 
when executing SPECint benchmarks has grown by over 75 times [63]. In the 
same period the type of applications processed by microprocessors has diversified 
enormously. W ith further expansion of broadband internet, multimedia, gaming 
and mobile communication the complexity of such application areas continue to 
push a demand for yet more performance increases.

Sustaining this performance growth has, to date, largely been achieved through 
technology scaling. In the last 10 years mainstream semiconductor technology 
has scaled feature sizes down from 350nm to 65nm, enabling operating frequen­
cies to increase from 200MHz to 3.2GHz, on the Intel Pentium  Pro and Pentium 
4 respectively. This frequency increase, of 16 times, has provided the majority of 
the 75 times performance increase, with the remaining increase due to microar­
chitecture innovation and exploiting higher transistor budgets. Both frequency 
increases and exploiting higher transistor budgets are becoming increasingly dif­
ficult in single processor designs.

Until recently increasing transistor budgets have been exploited by increasing the 
pipeline depth, issue width and reorder buffers of single processor superscalar 
architectures. Unfortunately, the performance gained in this manner has been 
diminishing [20] and further small performance gains require discouragingly com­
plex additional hardware. A recent study [53] showed th a t there is a growing 
discrepancy between the increase in area employed by a new microarchitecture 
and the increase in performance, with the increase in performance growing at 
the square root of the increase in area. A productivity gap is also emerging, as 
designers and design tools are not able to keep pace with the increase in com­
plexity of modern designs. This was highlighted by the International Technology 
Roadmap for Semiconductors as a grand challenge [139].

As mentioned previously, the rapid increase in clock frequency, 40 percent per 
year for the past 15 years, has been the dominant factor in microprocessor perfor­
mance increases. This speed increase has come from two sources: smaller, faster 
transistors and deeper pipelines with shorter critical paths. For two reasons this 
increase has diminished in the past few years. Firstly, the rapid increases in speed 
have hastened the emergence of a power wall. Simply put, the power consumed 
by modern microprocessors is becoming too costly for the end user, and more

Chapter 1. Introduction 18



1.2. Microprocessor Design Challenges

im portantly perhaps, the heat dissipated is becoming too expensive to cool [38]. 
Secondly, as feature size decreases transistor switching speed increases, however 
wires are not scaling as quickly [17]. This is leading to wire delay limited circuits, 
where the percentage of the chip accessible in one clock cycle is decreasing per 
generation.

W ith the main techniques responsible for increases in microprocessor performance 
rapidly expiring, a shift towards different design strategies capable of maintaining 
performance increases is currently underway. Although many alternatives were 
initially proposed in a special issue of IEEE Computer [19], parallel architectures, 
in the form of Chip Multiprocessors (CMP) have become the focus of most major 
microprocessors roadmaps [81, 127, 78, 108]. These architectures are able to 
overcome or avoid design challenges of modern microprocessors and at the same 
time continue increasing performance, largely by exploiting parallelism.

The remainder of this chapter introduces and expands on some of the key issues 
facing modern microarchitecture design. This is followed by a discussion of how 
computer architects are innovating in order to overcome these challenges.

1.2 M icroprocessor D esign  C hallenges

As mentioned previously, the application space for general purpose microproces­
sors is vast and is growing as new technologies and application areas are discov­
ered. Applications, whether multimedia, gaming, communications or scientific, 
require microprocessors th a t are capable of processing a variety of tasks, many 
within imposed timing constraints. At the same time computer systems are used 
to run multiple applications concurrently, adding additional complexity to the 
workload of a general purpose microprocessor.

For these purposes it is desirable tha t each successive generation of microprocessor 
is able to face a changing and growing application space, and is able to remain 
capable of processing workloads into the future. At the same time the end user of a 
computer system does not want the cost of ownership to become overly expensive, 
so power consumption is a key concern. The design of processors optimised for 
performance, power and cost requires a carefully balanced architecture which
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1.2. Microprocessor Design Challenges

addresses numerous challenges. This section describes the m ajor challenges tha t 
architects face in designing modern architectures.

1 .2 .1  W ire  D e la y

As semiconductor technology advances, transistors are becoming smaller and 
more transistors can be integrated onto a single silicon die. These transistors 
consume less power and the time taken by them  to switch state, the gate delay, 
decreases. In real terms transistors, and hence logic, on a chip are becoming 
cheaper and faster.

In order to connect transistors as their feature sizes decrease, the width of wires 
writhin a given technology must also decrease. This reduces the cross-sectional 
area of the wires (A), which increases the resistance (R ) per unit of length (L) 
because resistance is inversely proportional to area, Equation 1.1. In the equation 
p is the resistivity constant of the material.

R =  ^  ( i - i )

r  = R C  (1.2)

This means th a t the delay (r) through a wire, Equation 1.2, where C  is wire 
capacitance, will only decrease linearly with its length, which depends on the 
underlying transistor technology [17]. As wire delay is only decreasing linearly 
and gate delay is decreasing more rapidly, circuits are increasingly becoming wire 
delay limited. This happens because the number of gates reachable in a single 
clock cycle is decreasing.

The overall impact th a t this has on a microarchitecture is th a t shrinking a wire 
delay limited circuit will not make it run any faster, as less of the silicon is 
available within one clock cycle [66]. In fact, it was estim ated th a t when the 
semiconductor technology gets down to a 0.1 ̂ m  process, only 16% of the die will 
be reachable within a single clock cycle [104], Figure 1.1.
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1.2. Microprocessor Design Challenges
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1 .2 .2  M em o ry  G ap

In order for a microprocessor to operate efficiently it needs to be fed with a steady 
stream of instructions to process and to have access to the data required by those 
instructions. In today’s architectures access to main memory, to load or store 
instructions and data, is often a bottleneck. This bottleneck is caused by the 
discrepancy in memory and processor speeds. While processor clock speeds have 
increased by approximately 55% per year since 1980, memory performance has 
only been increasing at less than 10%, creating a widening memory gap [62], see 
Figure 1.2.

This increasing memory gap reduces the benefit of increased operating frequen­
cies; whenever a processor requires access to a piece of data  or instruction not 
currently in a local cache it has to wait. Access to memory, in modern micropro­
cessors, takes hundreds of cycles during which time the processor remains idle. 
This gap is especially evident in commercial applications th a t are transaction 
intensive.

In order to alleviate this problem, smaller cache memories are used to keep fre­
quently accessed data local to the processor and most modern architectures now
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F igu re 1.2: A growing gap between memory speed and processor speed leads to bottle­
necks during data intensive workloads [62].

contain at least two levels of cache memory, of which many different configura­
tions have been researched [75, 42]. Complimentary to storing frequently used 
data  are schemes for fetching data  in advance of requirement. These prefetching 
schemes have been attem pted both in software [23, 113] and hardware [28, 162] 
to reduce the impact of the memory wall further.

1 .2 .3  L im its  o f  In str u c tio n  L evel P a ra lle lism

Many modern processors contain hardware support for exploiting instruction level 
parallelism (ILP). ILP exists where multiple instructions are independent from 
each other and can be executed simultaneously. Independent instructions found 
within an instruction stream can be issued to multiple functional units within 
the processor for execution, and modern superscalar architectures are capable of 
dispatching four or more instructions per clock cycle to separate functional units.

Whilst this approach has enabled performance increases, and fundamentally al­
lows more than one instruction to be executed in each clock cycle, it does have 
limitations. In particular instructions within the same thread usually display a
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high degree of dependence, and finding further independent instructions requires 
the ability to look further ahead in the instruction stream, which requires addi­
tional hardware.

A plethora of studies have looked at the limits of ILP [10, 22, 166, 129]. Many 
have shown th a t even in the presence of theoretical perfect caches1, and perfect 
branch prediction, the maximum attainable ILP is still only in the order of 10 
to 100 instructions per cycle (IPC) [62]. In practice ILP very rarely attains 
greater than  4 IPC with relatively complex but manageable hardware. Beyond 
this, the complexity of large instruction fetch windows, broadcast networks which 
suffer from wire delays, multiple functional units and centralised control becomes 
impractical. Some of this hardware, for example register bypass logic, grows 
quadratically [123] when attem pting to exploit further ILP and performance gains 
diminish.

1 .2 .4  P ow er  L im its

Power consumption has gone from being a factor th a t needed to be considered 
when designing a new architecture, to becoming a first order constraint on the 
design of new architectures. The limit to acceptable power consumption is usually 
realised when the ability to dissipate the heat from a processor becomes difficult. 
W ith the recent rapid increases in clock frequency and the continual increase in 
chip transistor density, the heat dissipated by modern high end microprocessors 
is becoming unmanageable.

Power consumption in a processor comprises a static component, called leakage 
power, and a dynamic component, called switching power, Equation 1.3. Tra­
ditionally the static component has been a fraction of the dynamic component, 
however in modern semiconductor technologies this is changing.

Power total =  Power stauc + Power dynamic 
_  v  w T CV2f ciock
~~ ' ^ 1leakage T ^ \L3)

1A theoretical perfect cache would have the property that each access would result in a cache
hit.
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Process Old Architecture Area mm2 New Architecture Area mm2 Area Increase
l.Ojum i386 (compaction) 42.25 i486 (lead) 132.25 3.1
0.7^im i486 (compaction) 90.25 Pentium (lead) 289 3.2
0.5/im Pentium (compaction) 148.84 Pentium Pro (lead) 299.29 2.0

T able 1.1: Growth in area between successive generations o f Intel architectures.

As the feature size decreases with semiconductor technology, the size of the tran­
sistors and hence their capacitance (C ) decreases. This reduced capacitance de­
creases the transistor switch time, or gate delay, leading to increased performance. 
However as the feature size decreases the voltage (V) must be lowered to  reduce 
the interference between the closer components and in order to meet therm al 
requirements for the design.

In order to keep the chip functioning correctly at a reduced operating voltage the 
threshold voltage, the threshold at which the transistor switches state, must be 
decreased. A lower threshold voltage brings it closer to ground which increases the 
static leakage current, leakage> increasing the static power consumption. Recent 
research has focused on techniques to reduce static power consumption [115].

1 .2 .5  D e sig n  C o m p le x ity

Each semiconductor technology generation is allowing more transistors to be inte­
grated onto a single silicon chip, and potentially these additional transistors can 
be incorporated into future microarchitecture designs. Recently Intel released 
the Montecito processor [107], a dual-core, dual-threaded Itanium  architecture, 
which incorporated 1.72 billion transistors in the design, taking silicon chips into 
the era of billion transistor architectures.

Unfortunately, growth in performance in a new microarchitecture is declining in 
subsequent generations and is approximately proportional to  the square root of 
the growth in area of the microarchitecture in any given technology generation. 
Taking the x86 family of architectures as an example, the growth in area of 
approximately 2-3 times, Table 1.1, was accompanied by only a 1.5 - 1.7 times 
increase in performance.

This discrepancy is due to the hardware tha t was added in subsequent genera­
tions of microarchitecture. As previously mentioned, hardware for exploiting ILP
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suffers from diminishing returns, as does adding larger cache memories. At some 
point quadratic increases in the size of the hardware only achieve linear increases 
in performance.
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F igu re 1.3: A growing gap between increases in the complexity o f a chip and produc­
tivity o f design engineers and tools.

Another im portant issue associated with design complexity is designer produc­
tivity. The International Technology Roadmap for the Semiconductor Industry 
(ITRS) 2005 [139] continued to highlight the gap between design complexity, 
measured as the total number of transistors on a chip, and designer productivity 
measured as transistors designed-in per staff member per month, Figure 1.3. The 
number of transistors on-chip is growing at a rate of 58% per year, but design 
productivity is only increasing at a rate of 21% per year. In order to close the 
productivity gap the ITRS stated tha t reuse, testing and verification must all 
improve by over 2 times.
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1.3 D esign  Solu tions

Computer architects have responded, with many novel solutions, to the current 
problems facing microprocessor design. In the following section some of these 
solutions are presented.

1 .3 .1  E x p lo it in g  P a ra lle lism

As increases in the underlying circuit speed decline, due to issues such as power 
density and clock distribution, it appears tha t future performance will need to 
come from doing more work in parallel. As mentioned previously, Section 1.2.3, 
architectural techniques capable of extracting ILP are now reaching practical 
limits, motivating the need to look elsewhere for parallelism.

Just over 40 years ago, a taxonomy was proposed placing all computer architec­
tures into four categories based on the parallelism in both the instruction and data  
streams [48]. This model is still useful for explaining where additional parallelism 
can be found in future microprocessors.

Single In stru ction , S ingle D ata  Stream  (SISD )

This category includes the uniprocessor, where a single instruction stream is 
processed against a single data  stream. As discussed parallelism in SISD ar­
chitectures can be extracted using ILP techniques, as is the case in superscalar 
architectures [123]. In addition to the ILP extracted through complex hardware, 
simpler hardware in combination with complex compiler techniques can be used 
to  define explicitly parallelism in a single instruction stream, as is the case in 
Very Long Instruction Word (VLIW) architectures [45], Both of these techniques 
have reached practical limits and further advances require discouraging expense 
in hardware with low utilisation.

Single Instruction , M ultip le  D ata  Stream  (SIM D )

In SIMD architectures a single instruction is executed by multiple Processing 
Elements (PEs) on different data  streams. SIMD architectures exploit data level
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parallelism (DLP), by applying the same operation to multiple data items in 
parallel. Each PE  has its own da ta  memory, hence multiple data  streams, however 
each PE is driven by the same instruction streams, usually from a single control 
processor responsible for fetching and dispatching each instruction.

For multimedia and scientific applications, which exhibit significant amounts of 
DLP, this approach is very efficient. As these applications have rapidly migrated 
into the desktop space, architectures have incorporated SIMD extensions into the 
instruction set [126, 39, 118] and provided special purpose hardware for executing 
these instructions. SIMD instructions are now ubiquitous in modern general 
purpose architectures, accelerating cryptographic, media encoding and decoding, 
and graphics processing.

The performance of SIMD architectures is limited only by the amount of DLP 
available in any given application, as the addition of further PEs is relatively 
cheap, in comparison to the structures associated with extending superscalar 
techniques.

M ultip le  Instruction , Single D ata  Stream  (M ISD )

MISD architectures process a single data  memory with multiple instruction streams. 
An implementation of a MISD architecture [58] has been shown to be useful for 
very specific tasks, such as fast pattern  matching in large data  streams for which 
there is no efficient index, and hence multiple different search tasks can be exe­
cuted on the same data  in parallel. It appears th a t MISD architectures have not 
shown significant benefits in any general purpose application areas, and as such 
no commercial architecture of this type has been developed.

M ultip le Instruction , M ultip le  D ata  Stream  (M IM D )

In MIMD architectures multiple processors execute independent instruction streams 
on independent da ta  streams. Each processor in a MIMD architecture executes a 
separate thread of control. T hat is, they execute independent instruction streams 
on largely independent2 data streams in parallel. This thread-level parallelism

2In MIMD architectures shared memory coherence, in particular atomic primitives such as 
synchronisation, may prevent the streams from being fully independent.
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(TLP) is far more flexible than DLP and it can be exploited by a larger set of the 
application space of general purpose microprocessors. For this reason TLP is per­
haps the best candidate to achieve future performance gains in general purpose 
microprocessors.

Thread Level Parallelism

Many modern programming languages allow programmers to define, explicitly, 
independent threads of control within a program all of which can be executed 
in parallel. Additionally multi-processing operating systems allow multiple pro­
cesses to be run concurrently. Each of these processes may be run in parallel, and 
in turn  may contain threads th a t can also be run in parallel. Prior to MIMD ar­
chitectures, SISD architectures relied on the operating system software to switch 
among concurrent processes and threads, ensuring th a t each was allowed sufficient 
execution time within the same processor to continue making forward progress, 
Figure 1.4 (a).

In order to accelerate TLP, many modern processors, especially in the server class, 
incorporate hardware tha t allows a single processor to m aintain information for 
multiple threads, switching between each thread at a hardware level and filling 
empty slots in the processor’s pipeline on long latency cache misses, Figure 1.4 
(b). In highly threaded applications, of which the operating system is an example, 
multi-threaded hardware can help with hiding the long idle times associated with 
data and instruction accesses th a t miss local or intermediate caches. Due to the 
increasing memory gap, Section 1.2.2, these idle times can be several hundreds 
of clock cycles during which time, in the absence of m ulti-threading hardware, 
the processor would effectively remain idle. In some data  intensive applications, 
such as database workloads, the idle time in modern microprocessors is as much 
as 75% [90]. A recent study [53], stated tha t adding m ultithreading hardware, 
in the study two threads, to an existing architecture adds approximately 10% 
additional logic to the CPU, increases the maximum power by less than 10% but 
can increase throughput by over 30%.

Another approach to exploiting TLP in hardware is to add additional proces­
sors to the architecture, via an off-chip interconnect at the board or multi-chip 
module (MCM) level, or, with billion transistor budgets, increasingly in the same
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F igure 1.4: Exploiting thread-level parallelism: a) software scheduling, b) m ulti­
threaded hardware, c) multi-processor hardware.

silicon die, Figure 1.4 (c). Additional processors can provide linear increases in 
performance with die size on transactional workloads such as TPC-C [34]. CMPs, 
where multiple processors are integrated on a single chip, can provide performance 
increases even on applications exhibiting fine-grained TLP.

1 .3 .2  P a r tit io n e d  D e sig n s

As mentioned in Section 1.2.1, wire delay is diminishing the area of a chip reach­
able in a single clock cycle with each generation of process technology. This 
motivates the need for designs where cross chip communication is minimised.

A new class of parallel architectures have been designed with wire delay treated as 
a first order design constraint. These communication-centric architectures such 
as RAW [165], Smart Memories [102] and TRIPS [137] keep the length of critical 
paths in the design to within 1 or 2 cycles. Whilst these architectures overcome 
limits due to wire delay they also impose a message-passing [165] or data-flow 
[141] paradigm of programming onto the compiler or software.

CMPs can also be designed to overcome wire delay limits. Each of the many 
small processing cores on CMPs take up a relatively small area on the total chip,
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minimising the size of critical paths within each core. Only infrequently used and 
therefore less latency critical wires, connecting processors and caches, need to be 
long.

1 .3 .3  B r id g in g  th e  M em o ry  G ap

The memory gap, as mentioned in Section 1.2.2, is constantly increasing the 
penalty, in cycles, of memory loads and stores. In modern processors, such as 
the Intel Pentium 4, the cost of accessing main memory can be as large as 200- 
300 cycles. For this reason today’s high performance processors employ multiple 
levels of cache memory to help reduce the performance gap.

Increasing the size of on-chip caches decreases the chance of a memory operation 
in the processor having to go all the way to main memory. In today’s semiconduc­
tor technologies it is possible to integrate extremely large caches on-chip. Indeed, 
Intel’s Montecito [107] processor included nearly 27MB of on chip cache memory, 
improving the performance by almost a factor of 2 over previous generations of 
the same architecture, Figure 1.5.

Cache memories cannot totally close the memory gap, as untouched data, when 
first loaded must always come from main memory unless prefetched in advance 
using hardware [28] or software [23]. It is however possible to improve perfor­
mance even during loads and stores to untouched areas of memory by exploiting 
memory-level parallelism (MLP) [30], MLP can be exploited by overlapping mul­
tiple accesses to main memory during the period tha t the processor is idle waiting 
for the first access to resolve.

To illustrate the potential of MLP as a performance booster, consider a memory- 
bound application th a t spends two-thirds of its execution time in off-chip accesses, 
doubling the MLP can halve the time spent in these accesses and potentially im­
prove performance by 25%. As long latency memory accesses are fairly dynamic, 
occurring when a cache has evicted previously held data  or has not yet seen it, 
hardware schemes are needed to look for memory accesses th a t can be overlapped.

One such scheme is hardware scouting [27]. W hen a processor is forced to stall on a 
memory operation, a scout thread is invoked. The scout th read’s sole purpose is to 
run ahead in the instruction stream and look for memory accesses, while the real

Chapter 1. Introduction 30



1.3. Design Solutions

10 10

6 £

Itanium2 Itanium2 Itanium2 Montecito
(1.0 GHz) (1.5 GHz) (1.7 GHz) Itanium2

Figure 1.5: The effect of increased cache size (M B) on performance (x  ) o f the Itanium  
2 processor [107].

thread is stalled waiting for the initial access to come back. The hardware scout 
can pass control flow operations such as branches and jumps taking whichever 
path is deemed most likely, and can continue scouting for memory accesses many 
hundreds of cycles in advance of the real thread. Obviously when the initial 
memory access is resolved the real thread is switched back in, and continues from 
the point at which it stalled. Any memory accesses tha t were overlapped will have 
been fetched into local caches and the cost for the following accesses is reduced. 
Hardware scouting can be more efficient, in terms of logic area consumed, than 
simply increasing the size of caches, as illustrated in Figure 1.6.

1 .3 .4  D e sig n  A b str a c tio n  and  R e p lica tio n

Two methods by which the design complexity problem can be addressed are 
abstraction and replication. The International Technology Roadmap for Semi­
conductors [139], has continually outlined the need for both of these methods to 
be increased by at least a factor of two in order to bridge the productivity gap.
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Abstraction can be addressed by designing systems at a higher level. Initially 
circuits were designed at the transistor level, then at the gate level using libraries, 
and more recently at the macro block level. With billion transistor budgets the 
abstraction level may have to be raised higher once more, possibly to the processor 
or multiple processor level. Next generation architectures can be composed of 
multiple copies of the previous generations in order to best utilise the increase in 
transistor space.

Replication within an architecture is also necessary. This can already be seen with 
current generation chip multiprocessors. Sun’s Niagara processor [81] contains 8 
identical Sparc in-order cores, IBM’s Power 5 [78] and Intel’s Core Duo [108] 
architectures both contain two identical superscalar processors, and STI’s3 Cell 
processor [127] contains one Power processor and eight synergistic processors. All 
of these architectures have reduced the design time normally associated with a 
new architecture through successful replication and reuse.

3STI - a collaboration by Sony, Toshiba and IBM
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1.4 Sum m ary

In this introduction, the major challenges facing modern microprocessor design 
have been outlined. These challenges and the demand for continual performance 
gains, have motivated research within this area. Moreover some of the solutions to 
these challenges have been discussed, and many come from a shift to parallelism 
as a design paradigm. In this context CMP architectures have been shown to have 
significant potential for future general purpose high performance processors.

1.5 R esearch  A im s

The research presented in this thesis focuses on CMP architectures. An archi­
tecture is presented th a t scales beyond the current generation of CMPs by in­
corporating a multi-level cache hierarchy on a chip, allowing the notion of Chip 
Multiple-Cluster (CMC) architectures. In order to  facilitate this clustering, a 
novel multi-level cache hierarchy is presented as well as a novel cache coherence 
protocol to m aintain shared memory coherency. A scheme allowing locality based 
task distribution is presented, showing th a t in such architectures task isolation 
and task affinity can be used to improve performance.

1.6 C ontributions

The contributions made by the work presented in this thesis are summarised as 
follows:

• A multi-level shared memory cache coherence protocol.

• Cache hardware to support a multi-level shared memory cache coherence 
protocol.

• An instruction set extension and mapping mechanism for exploiting cache 
locality between threads.
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• A simulation platform capable of evaluating, through cycle-level simulation, 
chip multiprocessor and chip multi-cluster architectures containing upto and 
including 128 cores.

• A fully cache coherent study, using real multithreaded applications, of the 
effects and performance of large scale chip multiprocessor and chip multi­
cluster architectures.

1.7 T hesis S tructure

The rest of the thesis is structured as follows:

Chapter 2 reviews the availability of parallelism within software and the exploita­
tion of parallelism within software and architecture design.

Chapter 3 outlines the Jamaica CMP which is the base architecture subsequently 
extended in later chapters. The chapter also presents the simulation platform used 
to investigate and analyse the architecture, and describes the software toolchain 
supporting it.

Chapter 4 introduces a multi-level cache coherence protocol capable of maintain­
ing shared memory coherence across multiple on-chip clusters.

Chapter 5 presents the hardware extensions necessary to implement the coherence 
protocol. In particular a deadlock free queueing mechanism is described.

Chapter 6 introduces an extension to  the instruction set which allows software to 
exploit locality by controlling the affinity of distributed threads.

Chapter 7 evaluates the performance of the multi-level coherence protocol, the 
architecture supporting it, and the optimisations using locality aware task distri­
bution.

Chapter 8 concludes the thesis by summarising the contributions made and sug­
gesting future directions of research th a t could be conducted.

Finally, the Appendix includes details of the Jamaica instruction set for reference.
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CHAPTER 2

Application and Architectural Parallelism

W ith the gains available from conventional uniprocessor architecture techniques 
diminishing with each successive generation of processor technology, parallel com­
puter architectures are being embraced by industry and researchers to provide 
scalable, consistent performance increases.

Parallel architectures consist of multiple processing elements th a t cooperate in 
order to solve problems, ideally in a shorter period of time than  solving the 
problem using a single processing element alone. There exist three constraints on 
the performance attainable from a parallel architecture: the available parallelism 
in the application, the parallelism available in the hardware and the efficiency 
and nature of distributing and scheduling parallel work.

2.1 A p p lication  Parallelism

For a parallel computer architecture to realise any speed-up during the execution 
of a given workload, the workload must to some extent be amenable to paralleli- 
sation. The amount of an application th a t can be successfully parallelised and
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executed concurrently on a parallel architecture determines the extent to which 
the parallel architecture is capable of reducing the overall execution time.

2 .1 .1  A m d a h l’s Law

The correlation between the amount of parallelism in a given code and the maxi­
mum speedup from parallel execution is commonly referred to as Ahmdahl’s Law 
[4], and is a demonstration of the law of diminishing returns. The maximum 
theoretical speedup 5, attainable from running an application on N  processors, 
is shown in Equation 2.1, where P  is the percentage of the code th a t can be 
parallelised.

s  (2,1)

W hen Amdahl’s law is applied, as shown in Figure 2.1, applications containing 
large percentages of parallel code sections do not guarantee large performance 
speedups. W hen P  = 0.9, th a t is 90% of the code in a target application is 
amenable to  parallelisation, and assuming no overheads associated with the par­
allel execution of the code, a 16 processor machine realises a speedup of less than 
7. This result may initially appear disappointing, however, for the reasons out­
lined in Section 1.2, it may be infeasible to design and build a processor th a t can 
run at 7 times the clock frequency, whilst remaining inside a given power budget, 
therefore it may be more cost and time effective to replicate multiple processing 
cores from an existing design, in order to achieve the additional performance.

2 .1 .2  Im p lic it  an d  E x p lic it  P a ra lle lism

W ith the amount of parallelism available in an application determing the amount 
of speedup attainable on a parallel architecture, it becomes essential to locate or 
introduce parallelism into an application. Locating parallelism within existing 
code is referred to as exploiting implicit parallelism, introducing or programming- 
in parallel sections of code is referred to as exploiting explicit parallelism.
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F igure 2.1: A m dahl’s Law: Parallel speedup (S ) vs. parallel fraction (P ). 

Im plicit Parallelism

Writing programs without concern for how they map onto a given parallel ar­
chitecture has obvious benefits. However, without explicity marking sections in 
the code as being parallel, a good automated strategy needs to be employed in 
order to decide when to fork parallel computation. Much work has been done in 
this area, with static parallelising compilers [122, 56, 16, 59] and also dynamic 
run-time recompilation techniques [136, 41, 172], ranging from conservative ap­
proaches [37, 121, 120] where all dependencies must be guaranteed before applying 
a given parallelisation technique to liberal speculative techniques [57, 135, 148] 
tha t speculate on dependencies, predict values and roll-back on dependency vio­
lations or value misspredictions.

E xplicit Parallelism

Implicit parallelism, whilst being an attractive approach to locating parallelism, 
often under performs as it either extracts parallelism conservatively, missing po­
tential performance gains, or it extracts parallelism too liberally and then wastes
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time cleaning up speculative state changes. Additionally the performance of im­
plicit techniques are often hard to  reason without a solid understanding of the 
underlying compiler or runtime execution environment.

An alternative approach is for the programmer to  annotate a program in order to 
indicate to the compiler and runtime execution environment th a t parallel com­
putation might be beneficial. Most high-level programming languages support 
abstractions for implementing concurrency such as the concurrency package [94] 
in Java, and the POSIX thread library [21] in C and C + + . Using such libraries 
it is possible for the programmer to abstract away much of the detail of the 
underlying implementation and concentrate on writing parallel applications.

Unfortunately explicit parallelism is often conservative because critical sections of 
code need to be locked, as incorrect locking can result in incorrect program exe­
cution, despite the fact th a t the majority of execution would succeed without the 
locks in place. Much work has been done looking at alleviating the cost of locks 
[133], lock-free synchronisation [86] and data structures [64] and more recently 
a resurgence in transactional memory [65, 61, 5, 134] where locking structures 
are removed entirely and the concept of a transaction is introduced. A transac­
tion is a body of code th a t either completes, in which case all of its changes are 
committed, or fails and therefore none of the changes are committed.

2 .1 .3  G ran u larity  o f  P a ra lle lism

In general whilst parallelism is either implicit or explicity defined in an applica­
tion, there also exists a range of granularity at which parallelism can be defined 
or extracted.

In stru ction  Level Parallelism

Arguably the finest grain of parallelism exploitable in an application is instruction 
level parallelism (ILP). ILP exists where multiple instructions within a sequence 
are independent and can therefore be executed concurrently. Figure 2.2 and 2.3 
show two simple sequences of 3 instructions. In Figure 2.2 all three instructions 
are independent; there are no da ta  dependencies between them, and they could all 
be executed in parallel. In Figure 2.3 however, the instructions must be executed
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in sequence as the second instruction consumes the result of the first, and the 
third instruction consumes the result of the second.

LOAD R l,  3 2 [R2] ADD R3, R3} #1
ADD R3, R3, #1 ADD R4, R3, R2
SUB R4, R4, R3 STORE 0 [ R 4 ] , RO

F igure 2.2: A simple code sequence F igure 2.3: A simple code sequence
amenable to IL P  execution. containing no ILP.

The amount of ILP within an application varies widely depending on the type of 
application. A large amount of research has been done looking a t locating ILP 
in applications [77, 167, 166, 24], and exploiting ILP using both  compile-time 
optimisations [99, 70] and architectural innovations [156, 100].

D ata  Level Parallelism

D ata Level Parallelism (DLP), also referred to  as SIMD [48], exploits parallelism 
in applications where a single operation is applied to multiple data  sets concur­
rently. Scientific applications tha t work on massive vectors or matrices are often 
amenable to data-parallelism optimisations, as are many image and signal pro­
cessing applications [151]. DLP is usually fairly fine-grained, as multiple data  
elements or registers are often processed using a single instruction and as such is 
usually exploited using instruction set extensions. Most modern microarchitec­
tures contain vector specific instructions within their instruction set architecture, 
for example Intel’s MMX [126] and later SSE(l-4), AMD’s 3DNow! [118], Pow­
erPC ’s AltiVec [39], Sun’s VIS [157] and Hewlett-Packard’s MAX-2 [96].

Figure 2.4, presents a loop from the MPEG encoder [110]. The loop is performing 
a sum of absolute differences calculation on the arrays r e f  and cu rr . After scalar 
expansion and loop fission the two loops shown in Figure 2.5 are formed. The first 
loop is then amenable to data  level optimisations, as a subtraction is being applied 
on multiple datasets, in Figure 2.5 it is assumed tha t the underlying architecture 
has the capability to dispatch four substructions concurrently and so the loop 
has an unrolling factor of 4. Exploiting DLP on multimedia applications, such as 
MPEG4 encode/decode and H.264 decode has shown speedups in performance 
by upto 2 times [54, 95].
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f o r ( i = 0 ;  i< 16; i+ = 4 ) {
T [i+ 0 ]  = r e f  [ i+ 0 ]  -  c u r r [ i+ 0 ]  
T [i+ 1 ]  = r e f  [ i+ 1 ]  -  c u r r [ i + l ]  

f o r ( i = 0 ;  i< 16; i+ + ) {  T [i+ 2 ]  = r e f [ i + 2 ]  -  c u r r [ i+ 2 ]
l o c a l d i f f  = r e f  [ i ]  -  c u r r [ i ] ; T [ i+ 3 ]  = r e f [ i + 3 ]  -  c u r r [ i+ 3 ]
d i f f  += a b s ( l o c a l d i f f ) ;  }

>
f o r ( i = 0 ;  i< 1 6 ;  i+ + ) {  

d i f f  += abs(T  [ i ] ) ;
>F igure  2.4: Inner loop o f the motion  

detection algorithm used in M PEG  en­
coding, calculation o f the sum of abso­
lute differences. F igure 2.5: Inner loop after scalar

expansion and loop fission. The first 
loop is now amenable to data level par­
allelism optimisations.

Loop Level Parallelism

Another form of parallelism exploited by both implicit and explicit optimisation 
techniques is Loop Level Parallelism (LLP) [3, 89, 12]. LLP fits into the MIMD 
category in Flynn’s taxonomy [48]; the total iterations of a loop being divided 
amongst the multiple processors in a multiprocessor system, and executed concur­
rently. Until recently gains from LLP were limited because of fine-grain synchro­
nisation and loop-carried dependencies [98], limiting the applicability to loops 
amenable to course-grained division. More recently however the reduction in 
communication latencies between multiple processors, especially those integrated 
in the same chip or multi-chip module, has allowed loop level optimisations to be 
applied on smaller loops exhibiting fine-grained parallelism [172].

T hread Level Parallelism

Perhaps the coarsest grain of parallelism exploitable w ithin applications is Thread 
Level Parallelism (TLP). TLP is the parallelism inherent in an application tha t 
runs multiple threads of execution concurrently. TLP has traditionally been 
exploited in commercial applications, for example databases and web servers, 
where system inpu t/ou tpu t is a generally a limiting factor on performance. By 
running multiple threads in parallel, these applications are able to hide the latency 
incurred by the inpu t/ou tpu t, and therefore increase the overall throughput of

Chapter 2. Parallelism 41



2.2. Architectural Parallelism

the application [85].

More recently with the advent of chip multiprocessors, exploiting TLP has become 
an im portant source of performance gain within the desktop market. Several 
studies have shown th a t upto 1.4 times speedup via TLP exists even amongst 
the threads within common desktop applications [46, 47], however the level of 
TLP present is only sufficient to provide performance speedups on dual or quad 
processor architectures.

Like ILP and LLP, TLP is also limited by data and control flow dependencies. 
In an attem pt to overcome some of these dependencies and hence extract more 
TLP from existing applications much work has been done looking at speculating 
on data  dependencies [148, 119, 146, 147, 173], a technique referred to as Thread 
Level Speculation (TLS). TLS allows sections of code th a t can not be guaran­
teed as independent at compile- or run-time to execute speculatively in parallel. 
S tate changes are locally buffered, and results are only committed when no other 
threads exist th a t can change the state previously seen by a speculative thread. 
Studies have shown the TLS can extract between 1.74-2.1 times speedup for 
floating point applications, and 1.23-1.7 times speed-up for integer applications 
[130, 74],

2.2 A rch itectural P arallelism

Having outlined in the previous section techniques for exploiting parallelism 
within applications, the following sections discuss how parallel execution is sup­
ported in hardware.

2 .2 .1  B it  L evel P a ra lle lism

Of all the hardware techniques th a t exploit parallelism, bit level parallelism is the 
finest-grained and is usually employed inside logic blocks within an architecture. 
Exploiting bit level parallelism, whilst not able to reduce the to tal number of 
cycles required to execute a given application, is often used to reduce the critical 
path and hence allows for increased operating frequencies.
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mux mux

mux

Figure 2.6: 4~bit ripple-carry adder. F igure 2.7: 4~bit carry-select adder.

A simple example would be the implementation of a 4-bit. full-adder which can be 
implemented as a ripple-carry adder, shown in Figure 2.6. In a ripple-carry adder 
all but the first in the sequence of the 1-bit adders must wait for a carry input 
before producing an output. In order to exploit bit level parallelism a carry-select, 
adder can be used as an alternative, shown in Figure 2.7. In a carry-select adder 
two additions are computed for each bit pair, using a carry of 0 and 1. The correct 
result, is later selected and propagated when the true carry value is known.

2 .2 .2  D a ta  L evel P a ra lle lism

As mentioned previously, Section 2.1.3, additional SIMD instructions have been 
added to most, modern microarchitectures to better support common multimedia 
algorithms. These algorithms generally consist of operations on values repre­
sented by 8-, 16-, and 32-bit integer or fixed-point data types, which are typically 
smaller than the maximum datapath  width, 32- or 64-bits or greater. Also men­
tioned in Section 2.1.3, SIMD optimisations can account for 2 times speedup 
within multimedia applications, while the addition of SIMD support in hard­
ware has been shown to require minimal additional logic, in the UltraSparc I this 
additional logic increased the die area by approximately 3% [158].

Figure 2.8 shows a high-level abstraction of the DLP within the data path used 
by the Streaming SIMD Extensions (SSE) instruction psadbw, within compliant
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mm1 mm2
0 63

a8 a5

absolute difference
absolute difference

add 8 pairs

Figure 2.8: Data Level Parallelism: the datapath inside the execution of the psadbw  
SSE2 instruction.

Intel architectures. Eight bytes are packed into each of two 64-bit registers. 
The architecture is then capable of performing the sum of differences calculation 
on all eight pairs of bytes with a 4-cycle latency, replacing 8 subtractions and 
accumulations and handling the absolute value without using branch instructions. 
The loop presented in Figure 2.4, using the SSE2 instructions and associated 
hardware, can be reduced to just two psadbw instructions. W ithin the MPEG 
encoder’s motion detection algorithm this can be used to produce a factor of 2 
speedup [71].

One limitation of DLP support in hardware is tha t it is only invoked by an 
application tha t has already been compiled or coded to include the extended 
SIMD instructions, extracting DLP dynamically at runtime is impractical. This 
means th a t when extensions are added to an instruction set architecture, and 
extra logic blocks are added to the hardware, application code must be rewritten 
or recompiled in order to use it.

2 .2 .3  In str u c tio n  L evel P ara lle lism

Section 2.1.3 introduced a simple sequence of instructions tha t is amenable to ILP. 
In order to illustrate how ILP can be exploited in hardware, it is first necessary 
to introduce a simple pipelined processor.
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Sim ple P ipelin ed  Processor

The simple pipelined processor, shown in Figure 2.9, is a simple MIPS-like [79], 
control-flow, load-store architecture with a 5-stage pipeline. The Fetch stage is 
responsible for loading instructions from memory and maintaining the current 
program counter. The Decode stage decodes the instruction, fetches register 
contents and determines when the instruction can be issued. The Execute stage 
performs the operation. The Memory stage is responsible for loading or storing 
data into the memory hierarchy. Finally the Writeback stage commits the results 
of the operation back into the registers.

Fetch Decode Execute Memory Writeback

Figure 2.9: A simple pipelined architecture: showing pipeline stages, latches and data- 
forwarding paths.

In the simple pipelined processor, shown in Figure 2.9, ILP can not be exploited as 
there is no opportunity to execute multiple instructions concurrently, see Figure 
2 . 1 1 .

Superscalar and V L IW  Processors

In order to exploit ILP a processor must be able to issue and execute multiple 
instructions per cycle from the same instruction stream. Two broad classes of 
architecture, VLIW [45] and superscalar [7, 124, 123] have been designed around 
the concept of multiple-issue pipelines, an example of which is shown in Figure 
2 . 10.

Superscalar processors were originally developed as an alternative to vector pro­
cessors, aimed at achieving vector processor performance but from exploiting ILP 
rather than DLP. In the pipeline of a superscalar processor upto n  instructions can
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be issued each cycle, as illustrated in Figure 2.11, equating to a maximum achiev­
able throughput of n  instructions per cycle. In an architecture where n > 3 and 
where the right functional units were available, all of the instructions in the code 
sequence listed in Figure 2.2 could be issued in a single cycle latency. Achieving 
3 way ILP.

Integer Unit
EX

FP/lnteger multiply
M1 M2 M3 M4 M5 M6 M7

MemoryFetch Decode WriteBack

A2 A3 A4

FP/lnteger divider
D2 D22 D23 D24

F igure 2.10: A multiple-issue pipeline, with multiple functional units.

In order to utilise an n issue superscalar processor efficiently one instruction needs 
to be issued to each functional unit in each cycle. Since the amount of ILP within 
a basic block1 of code is small, instructions must be selected across basic blocks in 
order to keep the functional units busy. Compilers usually employ optimisations 
such as loop unrolling, code motion and register renaming, in order to exploit as 
much ILP as possible.

Slngle-issue scalar piplinaThread A

Multiple-issue VLIW/SuperecalarThread A

Cycles

Figure 2.11: Instruction scheduling within a single-issue and superscalar/VLIW  pro­
cessor.

'A  basic block is a sequence of code that has one entry point, one exit point, and contains 
no jumps or branches.
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Superscalar processors can be subdivided by their scheduling policy. Statically 
scheduled superscalar processors are able to issue multiple instructions from a sin­
gle instruction stream, where dependencies and hazards are resolved in the decode 
stage of the pipeline, such th a t the instructions are issued in the order they ap­
pear in the instruction stream. Dynamically scheduled, out-of-order, superscalar 
processors allow instructions to be issued in any order, as long as dependencies are 
maintained, regardless of whether preceding instructions have been issued. This 
simplifies the job of the compiler as some dependencies can only be determined at 
runtime, it allows the processor to tolerate dynamic cache behaviour and associ­
ated latencies and allows code compiled for a particular pipeline configuration to 
run efficiently on a different pipeline. The flexibility of dynamic scheduling results 
in further exploitation of ILP and therefore higher performance, than statically 
scheduled superscalar or VLIW processors, but requires substantial increases in 
the complexity of the hardware.

This complexity of dependence resolution amongst the inputs into and outputs 
from the multiple functional units tha t form a superscalar architecture increases 
quadratically with the number of functional units. This combined with diminish­
ing returns from attem pting to exploit wide-issue ILP have limited most super­
scalar architectures to between 2- and 8-way issuing.

2 .2 .4  M u ltith re a d in g

In single-issue, VLIW and superscalar architectures multithreading, tha t is switch­
ing between multiple instruction streams, is achieved through software support 
of either cooperative or preemptive scheduling. These scheduling schemes rely 
on either the operating system or the application itself to concede use of the 
processor to another thread at regular intervals. In order for this to happen the 
running thread is required to save all of its current working sta te2 into memory 
before the context can be switched. The replacement context is then required to 
load all of its previous working state into registers prior to continuing its execu­
tion of a thread. These software based context switches take many hundreds of 
cycles to complete and are only invoked once a thread has had many thousands

2The working set includes the registers and context specific state, such as the program count, 
stack pointer.
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of cycles of processor use. The combination of the memory gap, as mentioned 
in Section 1.2.2, and increasingly multithreaded workloads, created the demand 
for processors capable of switching between one thread of execution rapidly to 
hide the memory latency of another. These multithreaded architectures are capa­
ble of issuing instructions from multiple threads, and can therefore exploit TLP 
during otherwise wasted memory delay cycles. The manner in which threads 
are scheduled for execution within a multithreaded processor defines two types 
of multithreading, Interleaved MultiThreading (IMT) and Block MultiThreading 
(BMT).

Interleaved M ultithread ing

IMT, also referred to as fine-grained multithreading, schedules an instruction 
from each of the architecturally supported thread contexts each cycle, see Figure 
2.12, leading to  a context switch delay of zero cycles. Initially the number of 
threads supported by IMT processors was equal to the number of pipeline stages. 
This eliminates control and data  dependencies between pipeline stages and re­
moves the need for complex hardware interlocking or da ta  forwarding. W ithout 
these complex paths the critical paths in the pipeline are reduced and it can 
therefore be clocked at a higher frequency. A disadvantage to the original inter­
leaved m ultithreading scheme as implemented in the HEP architecture [142], is 
th a t single-threaded execution was poor as a thread could only utilise the pipeline 
every n  cycles, where n is the number of hardware supported threads. Two tech­
niques proposed in the literature overcome this limitation, the first dependence 
look-ahead [155] allows the compiler to tag each instruction with a number of bits 
informing the pipeline how many following instructions are independent allowing 
each context to gain more continuous time in the pipeline. The second technique 
Interleaving [92], added data forwarding paths and hardware interlocking allowing 
contexts to be switched on a cycle by cycle basis, but also efficiently supporting 
single-threaded execution. This form of multithreading is implemented in Sun’s 
Niagara architecture [81],
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Thread A --------------- ►

Thread A --------------- ►

A A i A A Single-issue scalar pipline 

Interleaved multithreading (IMT)

Context Switches

M l !
Thread B --------------- ►
Thread C --------------- ► A B C D A B C

Thread D --------------- ►
Context Switch

Thread A --------------- ►
Thread B --------------- ►
Thread C --------------- ► A A g H  B B B B Blocked multithreading (BMT)

Thread D --------------- ►
Cycles

Figure 2.12: Scalar multithreading scheduling schemes.

Block M ultithread ing

BMT, also referred to as coarse-grained multithreading, schedules instructions 
from a fixed context until a specific event triggers a context switch, usually a 
long-latency operation. When only 1 context is runnable no context switches are 
triggered and the context achieves good single-threaded performance. The trigger 
event can either be static or dynamic. A statically triggered BMT processor 
switches contexts when a particular instruction is issued. These instructions can 
either be specific context switch instructions or instructions within the instruction 
set tha t are likely to cause long latency stalls, such as loads, stores and branches. 
Dynamically triggered BMT processors switch context when a dynamic event 
occurs such as a cache miss, see Figure 2.12, an interrupt or after the context has 
run for a given quantum, say a thousand cycles. The advantage of static BMT 
is tha t the cost of the context switch is still minimal, zero or one cycle, whereas 
dynamic multithreading requires the pipeline to be flushed causing multiple delay 
cycles.

In general BMT is less efficient than IMT especially when used in deep pipelines 
[91], due to the cost of flushing pipeline stages following a context switch.
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2 .2 .5  S im u lta n eo u s M u ltith rea d in g

Simultaneous M ultiThreading (SMT) [159] is the natural hybrid formed by in­
cluding multithreading techniques within a superscalar architecture. A SMT 
processor is capable of issuing multiple instructions from multiple threads each 
cycle, as shown in Figure 2.13. Each hardware context can compete each cycle for 
all of the available functional units, allowing both ILP and TLP to be exploited, 
increasing pipeline utilisation and hence overall performance.

___ _
A A A 1 A A Processor 0

B B B B ■ B B Processor 1
Chip Multiprocessor

I n roao  □ ■ w

C C C C
(CMP)

Processor 2

T h read  n  ------------------- D D D D D D D Processor 3

A_ l° l B D C

4-is8ue Simultaneous 
Multithreaded (SMT) 

Processor

Thread A -------------- ►
A C B A C B D

1 i I R k K J  d  w

Thread C -------------- ►
Thread D -------------- ►1 - D A A C | B

D B B D A A A

Cycles

Figure 2.13: Instruction scheduling within an S M T  processor and a CMP.

2 .2 .6  C h ip  M u ltip ro cesso rs

As the number of transistors integrated onto a single silicon chip has increased, 
the ability to integrate multiple complete processors and a memory hierarchy on 
the same chip has become feasible. Many Chip Multiprocessor (CMP) designs 
have been proposed [44, 60, 82, 32, 103, 143, 145, 148, 13] and more recently 
implemented [81, 127, 78].

CMPs initially consisted of multiple single-issue processors, which were able to 
exploit TLP, but could not hide the latency of memory accesses amongst each 
thread. As the technology has allowed, however, the processing cores used have 
become more complex, and now multithreaded and even superscalar cores are
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replicated on a single chip, allowing the architecture as a whole to exploit TLP, 
ILP and even memory level parallelism (MLP).

CMPs have two distinct advantages over a SMT, VLIW and superscalar archi­
tectures capable of exploiting the same level of parallelism. Firstly the design 
is less complex, each processor integrated on the chip can be fairly simple and 
is replicated. If necessary much of the complication of superscalar and SMT ar­
chitectures can be avoided by opting for multithreaded scalar processors. This 
simplicity allows for higher clock frequencies and eases design validation. Sec­
ondly the power requirements within a chip multiprocessor are often far lower 
than the equivalent performing superscalar processor [108].

These advantages are balanced against the necessity to m aintain memory co­
herency across multiple processors, requiring cache coherence protocols and shared 
or distributed memory hierarchies, which increase the complexity of cache control 
logic, however not to the same extent as the additional logic requirements of a 
centralised superscalar wide-issue design.

2.3 Sum m ary

This chapter has reviewed the availability of parallelism within software and the 
exploitation of parallelism within processor and architecture design. ILP has been 
shown to provide benefits in the execution of single-threaded applications but is 
limited by the availability of independent instructions within those applications 
and the poor scalability of the complex control structures required to exploit 
it within processors. TLP, on the other hand, can be explicitly defined and 
extracted at multiple levels of granularity, and as such is easier to exploit and is 
more abundant within modern workloads. Architectures th a t exploit TLP can 
do so by hiding memory latency or by truly executing multiple threads in parallel 
using an SMT or CMP architecture.

The next chapter reviews the Jamaica CMP architecture, introduces the jamsim 
simulation platform developed to simulate it, and briefly describes the software 
environment used to run applications on the Jamaica architecture.
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Jamaica Chip Multiprocessor and Software Environment

In the previous chapter several techniques for extracting parallelism, from appli­
cation code, and methods for exploiting this parallelism within processor archi­
tectures were discussed. This chapter reviews the Jam aica CMP architecture, a 
CMP with multithreaded cores and hardware support for lightweight work distri­
bution. The architecture is able to exploit thread level parallelism and hide the 
latency of memory operations increasing parallel throughput.

The Jam aica CMP architecture provides a base design for the work presented in 
subsequent chapters.

3.1 T he Jam aica C hip M ultiprocessor

The Jam aica1 architecture [170], as shown in Figure 3.1, is a CMP architecture 
consisting of N  cores integrated on a single chip implemented in a cycle accu­
rate simulation platform. Each core has its own Level 1 (LI) instruction and 
data  cache. These private caches are linked by an on-chip bus, employing the

1 Jamaica is an acronym for JA va M achine A nd Integrated Circuit Architecture.

52



3.1. The Jamaica Chip Multiprocessor

MOESI coherence protocol, to a unified Level 2 (L2) cache and on-chip memory 
controllers. Bus snooping is used to implement load-linked and store-conditional 
instructions, as per the Alpha architecture [140], which support the implemen­
tation of critical sections within application code. Several additional features of 
the architecture aid the execution of object-oriented and multithreaded codes.

1$ Instruction cache 
D$ Data cache

External
RAM

i
L2/M em ory
C on tro lle r

Ll Bus**-*---- *
V V

L2
C ach e

1$ D$ 1$ D$ 1$ D$ 1$ D$

co re co re co re ■ ■ ■ co re
0 1 2 n

F igure 3.1: The Jamaica single chip multiprocessor.

3 .1 .1  M u ltith re a d in g

Unlike many other CMP architectures [60, 13] each core within Jam aica is multi­
threaded to improve overall throughput. M ultithreading gives the appearance of 
having multiple virtual processors per core by supporting multiple thread contexts 
in hardware. Each context maintains a set of context specific registers, containing 
register, interrupt and other thread specific state. Each context shares the core 
pipeline and Ll private instruction and data caches, illustrated in Figure 3.2.

The contexts within a core can reside in one of five possible states: runnable, 
stalled, waiting, empty and idle. The transitions between the five states is shown 
in Figure 3.3. The fetch stage of the core pipeline is responsible for fetching 
an instruction for the currently active context, chosen from the list of runnable 
contexts.

Jamaica employs a blocked, switch-on-cache-miss m ultithreading policy [161], 
extended by an additional switch-on-timer policy. The switch-on-timer policy
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Figure 3.2: Jamaica core: Multithreaded pipeline and support structures.
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Figure 3.3: Jamaica core: Context running states.
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triggers a context switch event when a context has been running for 1,024 cycles 
unhindered by cache misses. This maintains forward progress in the presence 
of spin-locks and the absence of an implicit context switch instruction. A round 
robin policy is used to rotate the active context from the list of runnable contexts 
for scheduling into the pipeline. If no contexts are runnable a t a context switch 
event, the core itself becomes idle. A stalled context becomes a candidate for 
scheduling once the stalled memory access is resolved.

Context switching can help to hide memory latency, by keeping the core busy 
executing instructions from a runnable context during the memory stall incurred 
by another context, improving the overall throughput. The policy employed by 
Jamaica is most efficient when contexts suffer regular but not frequent cache 
misses. In the presence of only one runnable thread no context switching occurs.

3 .1 .2  R e g is te r  W in d o w s

To reduce the effects of frequent method calls within modern object-oriented 
languages [160, 36], a large windowed register file is shared between all of the 
contexts in a Jamaica core. The hardware supporting the register file implements 
a register windowing scheme [125, 131, 52], based on the multi-windows proposal 
[138]. The compiler can see 32 registers which are divided into four windows each 
containing eight 32-bit registers.

• (%g0 -  %g7) Global window, shared by all contexts on a core.

• (%xO -  7„x7) Extra window, private per context, statically allocated, non­
volatile across methods calls.

• (°/„10 -  %i7) In  window, private per context, dynamically allocated at each 
method call, volatile across method calls.

• (°/0oO -  °/0o7) Out window, private per context, dynamically allocated at 
each method call, volatile across method calls.
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All the contexts on a core share the Global window, which is mapped directly 
to the bottom  eight physical registers2. Each context has a private Extra win­
dow, mapped into the physical register windows located directly above the Global 
window. The In  and Out window are allocated and released dynamically during 
method calls. W hen a context is in the idle state it consumes only two windows 
in the physical register file for the statically allocated Extra window and the bot­
tom allocated In  window, allowing all other windows to be allocated to runnable 
contexts.

C alling C onvention

Although compiler techniques, based on register colouring [31, 132], can reduce 
the overheads associated with method calls, supporting register windows reduces 
the need to save and restore registers on each call and return, and is still useful for 
simplifying calling conventions. In Jamaica the Out registers of the caller method 
overlap with the In  registers of the callee method and so passing small numbers of 
variables, six or fewer3, is handled implicitly, as illustrated in Figure 3.4. Passing 
more values requires spilling and filling to the stack as per architectures not 
supporting register windows.

R egister M apping

One of the disadvantages of register windows is th a t window indices, in Jam aica a 
5-bit register index encodes the window indices, must be mapped to a register in 
the physical set within the critical path of the decode stage which can prevent the 
pipeline from being clocked at higher frequencies [125]. In Jam aica the register 
operands decoded from an instruction are translated to physical addresses by a 
context Look-Up-Table (LUT), illustrated in Figure 3.5.

Downstream of the decode stage, all register indexes are physical and therefore 
data hazards and forwarding can occur using the same forwarding path and de­
tection logic found in architectures containing flat register files.

2 Additionally %g0 is hardwired to the value 0.
3 Only 6 registers are available for passing values as two registers are explicitly used to pass 

the return PC, and the stack pointer.
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main multiply main
8 0 - 87 8 0 -8 7 8 0- 87

v o i d  m a i n ( )  

{

7 2- 79 7 2- 79 7 2- 79

64-71 64-71 64-71

int a,  b,  c; 56 - 63 5 6- 63 5 6- 63
c  = mul t ip ly(a ,  b);

}
48 - 55 4 8 - 55 4 8 - 55

4 0 - 4 7 1 [out 4 0 - 4 7 4 0 - 47

int m u l t i p o i n t  a ,  int b)  

{

;out 32 - 39 — ►jirT 32- 39 -Xout 3 2- 39

:in 24-31 24-31 iin 24-31

return a  * b; 16 -23 16-23 16-23

} ! extra 0 8- 15 ! extra 08 - 15 [extra 08 - 15

[global 00 - 07 [global 00 - 07 [global 00 - 07

cal l return

F igu re 3.4: Jamaica core: Register windows, call and return overlaps.

global mapping table
Window R a g W w  prav n u t  pH

8 0 -8 7

7 2 -7 9

6 4 -7 1

5 6 -6 3
context

UUT
40  66

4 0 -4 7

outs
ins
extra 1 6 -2 3

virtual reg: 
%\2

physical reg 
34

global 0 8 -1 5

0 0 -0 7

DecodeFetch WritebackExecute Memory

F igu re 3.5: Jamaica core: Register windows; virtual to physical register lookup.
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W indow  M anagem ent

Dynamic allocation of a new Out window occurs during a method call by setting 
a pointer from the previous Out window to a currently free window. The free 
window is then allocated and can not be used until it is released by a return. 
Window allocation is not restricted to contiguous windows and so a backward, 
prev, pointer is stored to trace back to the previous window on a return. A 
forward, next, pointer is also stored. This is necessary as a window can be evicted 
to the stack when all windows are allocated and a context attem pts a call. When 
such an eviction occurs a previous frame present flag (pfp) is cleared to indicate 
th a t the window has been spilled into memory.

These pointers are stored alongside the index mappings in a global mapping table, 
shown in Figure 3.5.

3 .1 .3  L igh tw eigh t T ask  D is tr ib u tio n

A novel feature of the Jamaica architecture is the hardware support for lightweight 
task distribution. This hardware support consists of a ring interconnect connect­
ing all of the processing cores. The ring allows active contexts to locate idle 
contexts to which tasks can then be distributed.

Idling C on texts

W hen an active context exits from the bottom  of its current executing stack, 
detected in hardware by a return from an In  window th a t has no predecessor, 
the context’s state changes from runnable to idle and a token is inserted into the 
sequence of tokens circulating around the ring interconnect. There is no software 
teardown prior to the release of the token, which leaves the resident software stack 
in place in the context specific registers, ready to run when work is distributed 
to the idle context. The token placed onto the ring simply contains the identity, 
a unique co n tex t Id  stored in a hardware fused register, of the context now in 
the idle state.

Two additional instructions within the Jamaica instruction set are used by an ac­
tive context to locate an idle context, by requesting a token from the interconnect
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(4) snoop controller sees “0", context (3) task  data setup in Out window 
0 becom es runnable with task packet THJ bus broadcast "0" and task  packet 
placed in In window (ctxld, method_PC, stack_base, variables

a  i \ L l Bus i k A
\ 1 \ r >r v

a

l$ D$ l$ D$

core ■ ■ ■ core
0 J

Token Ring
A
A

>
(1) context becom es idle 
token "0“ released

(2) context requests token 
TRQ aquires token “0"

F igu re 3.6: Jamaica core: Lightweight task distribution.

using a token request (TRQ), and then to distribute work to th a t context using a 
thread jum p (THJ). The simple calling convention, mentioned in Section 3.1.2, is 
also used during task distribution, the Out window being used to hold task setup 
information as well as task input variables. When the THJ instruction executes, a 
transaction is placed onto the shared bus, and the relevant snoop controller wakes 
up the idle context, see Figure 3.6. If when executing the TRQ no other contexts 
are idle, or a token is not acquired from the ring within a given number of cycles, 
the TRQ instruction fails and the active context processes the work locally.

The average latency to find an idle context, if one is present, on an N  core Ja­
maica architecture is ^  cycles, which for small numbers of N is significantly lower 
than locating idle processors through a shared locked queue stored in memory. 
Additionally the ring interconnect can be accessed in parallel, allowing multiple 
cores to either release or request tokens concurrently.

3 .1 .4  B ran ch  P re d ic tio n

Branch prediction in the Jamaica core is implemented using a simple 2-bit. satu­
rating up/down counter policy [171], indexed from a Least Recently Used (LRU) 
evicted branch history table. The table is accessed during the fetch stage as part 
of the calculation of the next PC. A hit in the branch history table alters the PC
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according to the 2-bit status. The branch is subsequently evaluated in the execute 
stage of the pipeline, where the table is updated accordingly. Miss-predictions 
are handled by flushing the pipeline and setting the PC to the correct branch 
target.

update PC

search PC

Branch
History
Table

update BHT

Fetch Decode Execute Memory Writeback

branch miss 
predict

Exception Bus

F igu re 3.7: Jamaica core: branch prediction.

In the Jam aica core, the delay between speculating on the branch target and 
subsequently calculating the true target is only 2 cycles and so a context switch 
is not triggered during this period. Branch prediction is however essential for 
keeping the pipeline busy between context switches.

3 .1 .5  C oh eren t Shared  M em ory  H ierarch y

The Jamaica CMP has private Ll instruction (1$) and data  caches (D$), con­
nected via a shared bus to a single shared L2 cache. Access to external memory 
is through the integrated L2 cache and memory controller. All caches in the ar­
chitecture maintain sequential consistency to allow for standard shared memory 
programming.

C ache C oherence

All caches in the Jamaica CMP are kept coherent by snooping a shared L1-L2 
bus and cooperatively implementing a version of the Modified, Owned, Exclusive, 
Shared and Invalid (MOESI) cache coherence protocol [153]. A cache line in the 
Modified or Exclusive state is writeable, since it holds the only valid copy of
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data  present in the system, the Modified and Owned states indicate that the 
cache holding the line is responsible for writing the only updated dirty data 
back to memory. The protocol used in Jamaica is based on features taken from 
the Firefly, Dragon [8] and CRAC [154] protocols. In particular Ll cache to 
cache transactions are allowed without updating memory, and ownership can be 
transferred without informing the L2 cache or memory.

L 1-L 2 Shared Bus

All private Ll caches and the shared L2 cache and memory controllers are con­
nected by a shared bus. The bus implements a protocol allowing split, transactions 
and transaction pipelining similar to the SGI Challenge’s Power2 bus [51]. Each 
transaction is split into two distinct phases, request and response, allowing the 
memory hierarchy to service requests during the delay due to a request missing 
in the L2 cache and being serviced from main memory.

Bus Cycle

Request 

Grant

Address, ID, lype 

Data (128 bits)

Found/Excl/Own/Shared 
and MAccept wires

Slave Request 

Slave Grant

8

'-------p

--------

I— r r

o

Transaction 1 

j  Transaction 2

zbcib
------ h,: /------

1  l\

s
JO

i
3Q)
IS

F igu re 3.8: Jamaica: Split transaction bus protocol.

The Jam aica shared bus implements an 8-cycle protocol, illustrated in Figure 
3.8. The protocol allows pipelining of multiple requests, each starting at 1 cycle 
intervals, with the condition tha t two requests for the same address can not occur 
in sequence. This condition is required as the data and tags are in an unstable 
state during cycles 6 and 7, the same cycles in which a subsequent transaction 
would be checking the state of the corresponding cache line.
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Priority on the shared bus is given to requests originating from the L2 cache, all 
other requests for access to the bus are fairly arbitrated by selecting the least 
recently used cache. Requests tha t can not be responded to within the 8-cycle 
protocol, those tha t miss in all Ll caches and the L2 cache, are responded to by 
the L2 cache after the data is fetched from memory. The request and response 
pairs are matched using the ID placed on the bus in cycle 3, a sequential number 
unique to each cache.

Level 1 P rivate C aches

Each Ll private cache is shared by the multiple contexts supported by each core. 
When a memory access misses in an Ll cache a context switch is triggered, as 
mentioned in Section 3.1.1, and an entry is placed in the cache request table, 
shown in Figure 3.9. The request table is responsible for progressing outstanding 
requests onto the shared bus and for handling the responses. A small number of 
buffers are provided for lines requiring writeback in the Owned or Modified state. 
The writeback buffer is also used as a small victim cache when unmodified data 
is evicted.

L1/L2 shared bus

Output Buffer
Bus Controller

Input Buffer

Tags and Data

Core Controller

core

F igu re 3.9: Jamaica: Level 1 private cache.
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L evel 1 A tom ic P rim itives

Atomic primitives, used to enforce critical code sections, are implemented using 
load-linked (LDL_L) and store-conditional (STL„C) pairs, as illustrated by the code 
sequence Figure 3.10. Inside each L l cache a small lock table is maintained, 
containing one address and lock flag per context. The flag is set as part of the 
LDL_L operation. A subsequent STL_C is allowed to  complete, committing the 
data  word and setting an acknowledgement value of 1 in an allocated register, if 
the lock flag is still set. A write to the lock address by any other context in the 
architecture in the intervening period resets the lock flag, and the STL_C fails, 
writing a value 0 into the allocated register.

lo c k _ a q u ir e :
LDL_L °/0i l ,  0(% i0) ! lo a d  lo c k
BNE °/0i l ,  w a it_ r e le a s e  ! w a it  i f  n o n -zer o
ADD °/„g0, 1 , °/0i l
STL„C 70i l ,  0(% i0) ! t r y  t o  a c q u ir e
BEQ “/ o i l ,  lo c k _ a q u ir e  ! t r y  a g a in  i f  s t o r e  f a i l e d
RET

w a i t _ r e l e a s e :
WAIT Iw a it f o r  lo c k  r e le a s e  
BR lo c k _ a q u ir e  !r e t r y  lo c k  a q u ire

F igu re 3.10: Jamaica: Lock acquisition code.

Level 1 Synchronisation

For synchronisation the LDL_L can also be paired, in the Jam aica instruction set, 
with the WAIT operation, also shown in Figure 3.10. After setting the lock flag 
with a LDL_L the WAIT instruction sets the context state to wait. The context 
is unavailable for scheduling until the lock address is w ritten to by another con­
text. In practice the WAIT operation is used sparingly, however, as multithreaded 
applications containing more software threads than hardware supported contexts 
require th a t multiple threads are serviced by each context, and disabling a context 
with a WAIT could lead to starvation and dead-lock.
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Level 2 Shared C ache

In the Jamaica CMP the L2 shared cache is less complex than the Ll caches. 
The L2 cache is unified, and is accessed via the shared L1-L2 bus. The L2 cache 
only responds to bus transactions for which the data is not contained in the Ll 
caches. This occurs when a transaction is in progress and during cycle 5 of the 
bus protocol, see Figure 3.8, the Found  wire is not set high. The L2 cache either 
responds with the data in following cycles by setting the Found  flag and state 
flags (Excd, Owned , Shared) high, or sets the memory accept (M A ccept) flag to 
high in which case the request is forwarded to memory by the L2 controller, see 
Figure 3.11.

RAM

Memory Controller

P i l i
Tags and Data

Bus Controller

L1/L2 shared bus

F igu re 3.11: Jamaica: Shared level 2 cache and memory interface.

If a bus request for a line not in the Ll or L2 caches occurs when the mem­
ory queues are full, then neither the Found  nor the M A ccept wire are set high. 
The Ll cache must subsequently re-attem pt the same request after a subsequent 
successful arbitration for the bus.

3 .1 .6  H ard  and  Soft In terru p ts

Support is provided within Jamaica for handling a limited number of hardware 
and software generated interrupts. Interrupts vector a contexts execution path 
to handler code located at the bottom  of memory, addressed by the type of
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interruption, A software interrupt, SIRQ, can be delivered to any context in the 
runnable, waiting, stalled or empty states. The SIRQ is delivered to  a context by 
the shared bus in a similar manner to the THJ, without a data  payload. Contexts 
in the idle state can only be restarted using a THJ, therefore a SIRQ to an idle 
context is ignored.

Jamaica currently employs a single software interrupt, used to wakeup all contexts 
and vector them to a boot code sequence in order to setup a minimal stack, and 
a single hardware interrupt to trap  on accesses to invalid memory addresses.

3 .1 .7  D e v ic e s

As Jamaica is currently only a simulated architecture, there is no defined device 
interface, and hence no associated device hardware interrupts. The simulation 
of Jamaica enables calls to the underlying operating system, for I/O  operations 
through a set of defined built in operations. These operations are called within 
the architecture by subroutine jumps, JSR, into small negative addresses. The 
simulator recognises this address range and the calls are bypassed through to  the 
underlying operating system upon which the simulation platform is running.

3.2 Jam aica Core R evisions

Having outlined the Jamaica CMP architecture in Section 3.1, this section de­
scribes several revisions tha t this thesis has made to the core to improve and 
simplify the architecture.

3 .2 .1  In ter lea v ed  M u ltith re a d in g

As mentioned in Section 3.1.1 the Jamaica core architecture supports the exe­
cution of multiple hardware-supported contexts within the same pipeline using 
blocked switch-on-cache-miss multithreading. Interleaved execution of multiple 
contexts within the Jamaica architecture has been added providing further sup­
port for the execution of fine-grained threads.
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The IMT policy is similar to the scheme presented by Laudon et al. [92] and the 
scheme implemented in the Niagara (Sparc T l)  architecture [81, 152]. The active 
context is selected for execution every cycle from the set of runnable contexts. 
This allows multiple contexts to inhabit the pipeline concurrently and requires ad­
ditional exception handling logic to  determine the context from which exceptions 
are triggered.

Additionally the policy adds another context state, long -latency s ta ll, similar to 
the LLI state in the T l  architecture [152]. This state inhibits the context from 
being scheduled during operations th a t require multiple cycles. These opera­
tions include TRQ, JSR, BSR and RET. In the execution of the TRQ instruction, a 
configurable number of poll-cycles is included as an instruction operand, dur­
ing which the token interface unit is able to poll the token ring for free context 
tokens. Rather than  stalling the whole pipeline during these poll-cycles, or ex­
ecuting multiple TRQ instructions, a context executing a TRQ instruction is set 
to long-latencystall and only re-scheduled after either a token is located or the 
poll-cycles expire. During this polling period, the pipeline is available to other 
runnable contexts. The following section describes the operation of the JSR, BSR 
and RET operations.

3 .2 .2  W ork in g  S e t an d  R e g ister  W in d o w s

As outlined in Section 3.1.2, the windowing scheme employed by the Jamaica 
architecture adds considerable complexity into the critical path  of the decode 
stage in the pipeline. To reduce this complexity and m aintain compatibility 
with the Jamaica instruction set and associated software, the register windowing 
scheme has been greatly simplified by removing window management and offset 
indexing from the decode stage.

During normal execution a context accesses registers %gO-0/0x7, from a set of 32 
working registers indexed directly. W hen a call (JSR or BSR) or return (RET) 
is decoded in the decode stage the context is placed into the long-latencystall 
state. During the subsequent stall period, window management occurs and other 
runnable contexts can be scheduled into the pipeline. It is anticipated tha t win­
dow management can occur within two-cycles, using a 16-wide register transfer 
port, labelled (1) in Figure 3.12 and (3) in Figure 3.13, and so in the revised
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F igu re 3.12: Window Call: (1) write F igure 3.13: Window Return: (1)
IN  to physical, (2) copy O U T into IN, copy IN  into OUT, (2) decrement win-
(3) increment window pointer. dow pointer, (3) read IN  from  physical.

Jamaica core a JSR, BSR or RET incurs a stall latency of 2 cycles before becoming 
available for rescheduling.

Implementing register windows in this manner has been shown to reduce the 

overall footprint as all but the working set of registers can be implemented in 

compact 6-transistor per bit SRAM cells and decreases the critical access time to 
the working set of registers [81].

3.3 Jam aica Softw are E nvironm ent

As the Jamaica instruction set is significantly different from both the Alpha 
instruction set, from which many of the instruction formats evolved, and from 
other common instruction sets, the Jamaica architecture is supported by a number 
of tools providing a software compilation and execution environment.

3 .3 .1  J a m a ica  A ssem b ler  and C C om p iler

A toolset comprising a C compiler, based on the Princeton LCC compiler [50] 
and an assembler is used in order to generate binary boot images for the Jamaica
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architecture. The C compiler is able to compile a sizeable subset of the C language 
directly to the Jam aica ISA, but support for multithreading is not available, and 
so where required as in the boot procedure, small hand coded Jam aica assembly 
routines supplement the C generated code.

3 .3 .2  J a m a ica  B o o t  P ro ced u re

The Jam aica architecture, in simulation, implements a cold s ta rt protocol whereby 
only a single context, the primordial context, begins the execution of code, all 
other contexts start in the empty state4. Prior to execution, the simulation envi­
ronment loads an ELF binary, containing a boot procedure, into physical memory 
placing code and da ta  segments at addresses detailed by the ELF file. The start 
address is extracted from the ELF file and is used as the initial PC value for the 
primordial context.

The code contained in the boot procedure is responsible for initialising registers 
and memory, including the initialisation of interrupt vectors and loading any other 
required code into physical memory. After this initial phase all auxiliary contexts 
can be woken using a software interrupt, SIRQ. The software interrupt vectors 
execution into an initial wake-up routine tha t sets up a minimal stack for each 
context capable of handling code shipped via the THJ/THB instructions. Upon 
completion of this phase each context releases a token onto the work distribution 
ring and switches to the idle state awaiting incoming work.

3 .3 .3  T h e  J a m a ica  V ir tu a l M ach in e

Software execution is supported on the Jamaica architecture primarily by the 
Jamaica Virtual Machine (JaVM) [40], a port of the Jikes Research Virtual Ma­
chine (RVM) [1] to the Jam aica instruction set. The Jikes RVM compiles and 
optimises Java bytecode to native machine code. The JaVM port allows execution 
of unmodified Java applications on top of the Jamaica architecture.

4Section 3.1.1 discusses the states that contexts can reside in.
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JaV M  B oot Procedure

Supplementary to the standard Jamaica boot procedure, boot strapping JaVM 
ensures tha t the primordial context and all auxiliary contexts are associated with 
a VM_Processor object, and tha t key Java class files are loaded into memory. The 
VM_Processor object maintains a set of queues containing Java threads associated 
with it. These threads are run within the context tha t the VM_Processor is 
attached to, illustrated in Figure 3.14.

LVM—Emcassar #8________ E m c a a so t# 4
f  VM PrnrASsn:#3 1 VM Prnr.ft.ssnr #7

- 1  V M  P m ca sso r #2 
VM P ro cesso r #1

f  VM Prnr.B.saor #6 Branch 
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runQ ueue
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collectorQ ueue
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transferQ ueue
Idle Thread #1 idleQ ueue

collectorQ ueue
Collector 
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T hread  #2
Software
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c o re

F igu re 3.14: JikesRVM  software to Jamaica hardware mapping: Each hardware con­
text is associated with a VM^Processor object.

Idling C ontexts

After the initial boot strapping phase, each context is associated with a VM_Processor 

object. The VM_Processor is responsible for accepting and scheduling any Java 
thread created by the virtual machine or application code for execution on the 
context. In the Jikes RVM a VM .IdleThread resides inside the id leQ u eu e of 
a VM_Processor. The id leT h rea d , a small loop checking for new threads in 
the runQueue, is run whenever the runQueue becomes empty. In the JaVM the 
id leT h rea d  immediately schedules a VM_BranchThread, a thread tha t sets up 
a small stack to handle incoming threads distributed across the shared bus us­
ing the THJ operation. The VM_BranchThread then exits from the bottom of its
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working stack, releasing a token onto the work distribution ring, and freezing the 
hardware context, and therefore the associated VMJProcessor, in the idle state.

W ork D istr ib u tion

When a thread resident on another VM_Processor creates a new VM_Thread ob­
ject, which encapsulates ordinary Java threads, it can attem pt to locate a token 
from the ring using the TRQ operation. If it succeeds the THJ operation is in­
voked, supplying a schedule method as the restart address with the new thread 
as argument. The idle context immediately enters the runnable state and exe­
cutes the method on the VM_BranchThread stack, inserting the new thread into 
the runQueue of the resumed context’s VM_Processor and yielding until the new 
thread exits. W hen the branch thread finally resumes it exits, releasing another 
token. If a VM _Processor is not able to find an idle context to ship the new 
thread to, the thread is placed into the local runQueue.

Using these processes, regular multithreaded Java application code, and the 
threads within the virtual machine which is also w ritten in Java, benefit from the 
work distribution mechanism provided by the Jam aica architecture. Addition­
ally the VM_BranchThread is capable of executing an arbitrary shipped method, 
enabling it to be used to implement lightweight thread distribution.

3.4 Jam aica S im ulation  E nvironm ent

The previous sections of this chapter have discussed the Jam aica CMP architec­
ture and its associated software environment. As Jam aica is a simulated archi­
tecture, this section describes the simulation platform developed as part of this 
thesis to study and extend the architecture, and to provide an environment for 
explorative software development.

3 .4 .1  S im u la tio n  A ccu ra cy

Architectural simulations are typically a trade-off between speed and accuracy, 
with a complete spectrum ranging from circuit-level timing delay simulations [114]
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through to cycle accurate and functional simulation [18], emulation and dynamic- 
binary translation [14]. The Jam aica simulation platform [67, 68], jamsim, is a 
Java simulation platform th a t has been developed to execute binaries created for 
the Jamaica instruction set. The jamsim platform supports several models of 
simulation. It can be used for fast, functional simulations required for system 
software development as well as cycle-level simulations, which are essential for 
quantitative evaluation of the architecture.

At cycle-level accuracy the simulation platform models the components in suffi­
cient detail to account for effects such as stalls due to pipeline hazards, intercon­
nection bus and queue contention, cache access contention and memory channel 
queueing.

3 .4 .2  S im u la tio n  C on figu ration

The jamsim simulation platform allows architectures to be configured based on 
the Jamaica instruction set. Parameterisable components of the simulated ar­
chitecture, include the number of processing cores, the number of contexts per 
core, the L l, L2 and Level 3 (L3) cache sizes and ways, the size of the branch 
history table, the type of memory hierarchy and the interconnection network, 
either bus-based, crossbar based or a hybrid of both.

The simulation platform is capable of simulating the processor, the interconnect 
and the memory hierarchy both at the cycle-level and at a purely functional level. 
Where it makes sense the simulation platform can be composed of components 
at different levels of modelling. An example of this would be cache simulations, 
where it may not be necessary to use a cycle-level model for the processors as 
a functional model is able to generate the memory access patterns necessary to 
exercise the caches.

Prom scratch this simulator was developed as part of this thesis. The simulation 
platform is a structural simulator and currently consists of over 50 components, 
and some 30,000 lines of Java code. Each hardware component has been mapped 
onto a simulator component, a Java class, using object oriented practices. Addi­
tionally interfaces have been developed to enforce compatibility between multiple 
models of key components within the simulation platform, such as the processors,
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private void initializeArchitectureO {
CycleLevelProcessor [] proc = new CycleLevelProcessor[noProcs];
LICacheController[] iCache = new LICacheController[noProcs];
LICacheController[] dCache = new LICacheController[noProcs];

for(int p = 0; p < noProcs; p++) {
proc[p] = new CycleLevelProcessor(this, noCtxs); 
iCachetp] = new LICacheController(this, Llsize, Llsets); 
dCache[p] = new LICacheController(this, Llsize, Llsets); 
proc[p].connectCaches(iCache, dCache);

>
CacheController 12cache = new CacheController(this, L2size, L2sets);
Bus bus = new Bus(this, 12cache, iCache, dCache);
MemoryController memCont = new MemoryController(this, 12cache);

>

F igu re 3.15: Configuration code fo r  building a CMP architecture in jamsim.

caches, interconnects and memory controllers and to allow simple configuration. 
These interfaces have simplified the process of extending and adapting the current 
architecture models.

The simulation platform can be configured to run Jamaica instruction set binaries 
and Java class files through the JaVM port of the JikesRVM, targetting from 
single-threaded single-core systems, right through to hundreds of cores and multi­
threaded, multi-cluster architectures.

3 .4 .3  S y s te m  S im u la tion

As Jamaica is a simulated architecture and no device interfaces exist, see Section 
3.1.7, complete system simulation is enabled using a special range of built-in 
instructions, refer to Appendix A.3. These instructions, which attem pt a jum p 
subroutine call, JSR, to small negative memory addresses are trapped during 
simulation, and the simulation platform calls out to the underlying operating 
system through the Java virtual machine in which the simulation is running, 
illustrated in Figure 3.17.
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memCont
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l2Cache

X X
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XI I I
iCache dCacheiCache dCache iCache dCache iCache dCache

proc proc proc proc

F igu re 3.16: Connected simulation components for jamsim, consistent with the con­
figuration code listed in Figure 3.15.

File I/O 
System Calls

Compiled Java Jamaica 
Classes Binaries

JaVM

j  a m s lm  

Jam aica  Sim ulator

Execution Environment

Java VM on Host Machine

Simulation Output 
->» Statistics 

Checkpoints

F igu re 3.17: Jamaica Simulation: Java bytecode is executed through the JaV M  by 
jamsim  within a Java virtual machine on top of the host system.
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3.5 Sum m ary

This chapter has outlined the Jam aica CMP architecture as introduced by [170] 
and subsequent revisions made to it for this thesis. Each core contains a simple 5- 
stage RISC pipeline and accesses memory through private LI instruction and data 
caches. Each core maintains sequential consistency and keeps coherent with other 
cores, a shared L2 cache and memory via a split transaction snoopy bus and a 
derivative of the MOESI cache coherence protocol. The architecture is supported 
by a collection of tools allowing both C and Java to execute on the simulated 
architecture. The jamsim simulation platform, developed as part of this thesis, 
was presented as a platform capable of simulating the Jam aica CMP architecture 
at both cycle-level and functional-level accuracies. In the following chapter an 
extension to the architecture is introduced tha t allows multiple CMP clusters to 
coexist within a chip, while still adhering to a shared memory paradigm.
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CHAPTER 4

Multi-level Cache Coherence

As the number of transistors integrated within a single chip continues to grow the 
ability to increase the number of processing cores within a chip becomes possible. 
As more cores are added to a CMP architecture considerable pressure is placed 
on the memory hierarchy. Sufficient bandwidth is required to keep all of the cores 
working efficiently, and low latency is beneficial for inter-core communication.

This chapter briefly reviews alternative schemes for scaling up the memory hier­
archy of CMP architectures. In the context of these schemes the limitations of 
the single shared bus Jam aica architecture are discussed and a novel multi-level 
cache coherence protocol is introduced which extends the memory hierarchy of 
the Jam aica architecture.

4.1 M ultiprocessor O rganisation

Much prior research within the multiprocessor field has looked at scaling archi­
tectures beyond tens of processors. This research established several categories of
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multiprocessor organisation, with respect to both memory access [149, 117] and 
inter-processor communication [105].

4 .1 .1  M em o ry  A ccess

Two categories of memory access in multiprocessor systems exist: distributed 
memory and Symmetric Multiprocessors (SMP). In SMP systems a single global 
shared memory is accessible to all of the processors within the system. The la­
tency of memory access from each of the processors is uniform and as such SMP 
architectures are also referred to as Uniform Memory Access (UMA) architec­
tures. Distributed memory systems, in contrast, usually have multiple memory 
modules each paired with one or more processors, as illustrated in Figure 4.1.

Memory Memory

Memory Memory

I/O
System

Memory

C aches  1 C aches C aches C aches

F igure 4.1: Multiprocessor M emory Access: (a) Shared Memory, (b) Distributed M em ­
ory.

Two variants of distributed memory systems exist. The first, distributed shared 
memory (DSM), also referred to as Non-Uniform Memory Access (NUMA) archi­
tectures, divides the global address space equally amongst the multiple memory 
modules [2, 97]. Access by any processor in the system to an address must be 
directed to the memory module containing tha t portion of the address space, 
usually controlled by a directory based coherence scheme [26]. A DSM multipro­
cessor from a programming perspective appears identical to a SMP, however the 
latency of memory accesses to local memory modules is far less than accesses to 
remote memory modules [80]. The second variant of distributed memory archi­
tectures divides the total address space into multiple private address spaces local
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to each memory module [9]. These private spaces, which are disjoint, are not ac­
cessible by remote processors, in effect each processor-memory pair is essentially 
a separate computer.

In considering the scalability of a multiprocessor architecture, distributed sys­
tems appear to have two key advantages over SMPs. Firstly, if most memory 
accesses can be contained within the address range of the local memory module, 
the memory bandwidth of the architecture scales with the number of memory 
modules. The second advantage of a distributed memory arrangement is a re­
duced memory access latency. This lower latency again is realised if most accesses 
go direct to  the local memory nodes. A disadvantage to a distributed approach 
is th a t additional software complexity is required to balance the memory access 
patterns made by each processor in order to utilise the bandwidth and latency 
benefits. This additional complexity increases the overhead associated with dis­
tributing work to the multiple processors in the system and limits the granularity 
of parallelism th a t can be exploited.

4 .1 .2  In ter -P r o ce sso r  C o m m u n ica tio n

In order for the processors within a multiprocessor system to speed-up the execu­
tion of an application, inter-processor communication is necessary to coordinate 
distribution of the overall workload and to synchronise on shared data. Two 
methods are employed for communicating data amongst the processors in a mul­
tiprocessor system. In shared memory multiprocessors, both SMP and DSM, 
communication occurs through the shared address space. D ata is implicitly ex­
changed through load and store operations within the shared memory space, with 
every processor becoming aware of any changes through cache coherence [149]. 
In distributed memory systems where memory is disjoint and private to each pro­
cessor, communication of data  is achieved by explicitly passing messages amongst 
the processors [105],

A considerable disadvantage of the message-passing paradigm is th a t sharing of 
data must be explicitly annotated within software. This leads to a greater degree 
of software complexity [163] and again these additional overheads often reduce 
the amount of fine-grained thread-level parallelism tha t can be exploited [150].
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4.2 Scaling th e  Jam aica A rch itectu re

The Jamaica architecture [170], discussed in Chapter 3, is a CMP architecture 
consisting of multiple simple processing cores connected via private LI caches to 
a shared bus which in tu rn  is connected to a globally shared L2 cache and an 
on-chip memory controller. A limiting factor to this approach is the shared bus 
tha t connects all of the processing cores.

4 .2 .1  L im ita tio n s  to  B u s S ca lin g

As the transistor budgets of future process technologies increase the viability 
of incorporating more processing cores into the Jam aica architecture becomes 
realistic. However, the single-shared bus within the Jam aica architecture becomes 
a bottleneck to  memory accesses as the number of cores is increased. Figure 4.2 
shows the theoretical peak utilisation of the shared data  bus in the Jamaica 
architecture, assuming high LI instruction and data cache hit rates, 99% and 
98% respectively, a perfect L2 cache hit rate and typical1 RISC code [63], 22% 
loads and 12% stores. As illustrated, depending on the ratio of the bus frequency 
to the core frequency the bus begins to become a bottleneck, even for a relatively 
fast bus clocked at a quarter of the core frequency, the bus becomes saturated 
after 16 cores. Bus utilisation levels of around 80% have been shown to create 
detrim ental increases in access delays largely due to queueing effects [168].

This problem is further exacerbated by wire delay limits, discussed previously in 
Section 1.2.1. If the number of cores connected to a single bus is increased then 
the bus will necessarily have to span further across the chip. As illustrated in 
Figure 1.1, in future process technologies as little as 10% of the die area will be 
accessible within a single clock. To put this into context, consider the parameters 
in Table 4.1.

If the Jamaica core architecture is considered to be of a similar complexity to 
the Alpha 21064 [106], then incorporating 64 cores onto a 65nm technology chip 
requires consideration of both wire-delay and bus scaling. Referring to Table 4.1, 
each core spans approximately 5.5% of the die length in the technology, and a

1SpecInt92 average instruction mix as reported in [63].
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1 2 4 8 16 32 64
Number of Cores

F igu re 4.2: Theoretical bus access limitations, assuming a 98% L I data cache hit rate, 
a 99% L l instruction cache rate, a typical R ISC  code m ix [63] and a perfect L2 cache 
hit rate.

65nm technology 1 billion transistors
14MB cache (6 transistors/bit) 704,643,072
64 (Alpha 21064) cores 179,200,000
Die span per core approx. 5.5%
Die span 8-core bus approx. 22%
Signal propagation 8-core bus 4 clocks
8 core utilisation at 4:1 (see Figure 4.2) 52%
Architecture 8 x 8  core clusters
128 x L l caches (total 2MB) each 16KB (1$ and D$ per core)
8 x L2 cluster caches (total 4MB) each 512KB
1 x L3 cache (total 8MB) each 8MB

T able 4.1: A feasible configuration for scaling a CMP using 1 billion transistors.
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bus connecting all 64 cores, depending on the topology, would be required to 
span the length of some 30 core spans in order to connect them all, requiring 
a stretch some 165% of the die length. This would clearly lead to an infeasible 
design because the signal propagation on the bus would take more than 16 clocks 
(see Figure 1.1), and such a bus would be saturated by only 4 working cores (see 
Figure 4.2). A scalable memory hierarchy is therefore required to utilise the 1 
billion available transistors fully, and as shown in Table 4.1, 8 clusters of 8 cores 
connected by such a hierarchy could provide a feasible design solution.

4 .2 .2  M u lti-L ev e l C ach e H ierarch y

To increase the ability of the Jamaica architecture to scale with the addition of 
more processing cores the single shared bus architecture is replaced by a scalable 
multi-level cache hierarchy. The multi-level hierarchy, illustrated in Figure 4.3, 
maintains shared memory coherence, a pre-reqnisite for efficiently running stan­
dard multi-threaded applications written in high-level languages such as Java.

M em o ry
C ontroller

L2 C ache 12 C ache

F igu re 4.3: Jamaica multi-level cache hierarchy.

The multi-level hierarchy, by dividing the total number of cores into clusters 
each connected through a hierarchy of interconnect networks and caches, can 
allow many more cores to be integrated onto a single chip, whilst maintaining 
shared memory and limiting the span of each interconnect to reduce the effects 
of cross-chip wire delay and bus contention.
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Each intra-cluster network is independently arbitrated and accessed concurrently 
allowing the cores within each cluster to access the larger cluster-shared cache 
with less contention. The additional scalability, however, comes at the expense 
of a more complex cache coherence protocol tha t needs to maintain coherence 
across multiple clusters, and the need to maintain cache inclusion.

A Chip M ulti-Cluster (CMC) architecture, incorporating multiple on-chip clus­
ters each containing multiple cores and multiple levels of shared cache is feasible 
given the transistor budgets of modern process technologies.

4 .2 .3  C ach e In c lu sio n

The Jam aica memory hierarchy, as outlined in Section 3.1.5, allows L l private 
caches to take ownership of cache lines avoiding inclusive L2 caches. Once owner­
ship for a cache line is passed onto an L l cache, the line containing the non-owned 
copy in the L2 cache is redundant and can be freed. This removes the necessity 
for the L2 cache to include the set of all lines contained within the L l caches 
which potentially allows the L l and L2 caches, when combined, to contain more 
data.

In a multi-level hierarchy inclusion is im portant for shielding intra-cluster net­
works from the traffic of inter-cluster networks at each level [11]. W ithout inclu­
sion a multi-level cache hierarchy has no way of shielding inter-cluster coherence 
messages from the intra-cluster networks, and an unnecessarily large amount of 
traffic is generated.

N on-Inclusive W rite R equest

As an example consider a write request, illustrated by Figure 4.4. W hen a write 
request to  address A misses in the L l cache (Ll$[4]) attached to core 4 (P[4])} a 
request is forwarded onto the L2 cache (L2$[2]). W ithout inclusion, the request 
made to L2$[2] must be visible to other L l caches serviced by L2$[2], as they may 
hold a copy of the data  at address A. In a hierarchy of buses the write request 
placed onto the intra-network bus L IN [2] would be snooped by Ll$[5] allowing 
response of the data or an acknowledgement th a t the data  is not present. In a 
network hierarchy an explicit invalidation message would need to be sent directly
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to Ll$[5] and acknowledged with a message before the write request, is propagated 
to the next level in the hierarchy.

F igu re 4.4: In the absence o f inclusion coherence messages m ust be forwarded to each 
and every cache creating unnecessary network traffic, and acknowledgement of each 
invalidation must be received before propagating requests to successive levels.

In the example the data at address A is not present in any cache, so the request 
made to L2$[2] is forwarded onto the inter-cluster network (L2N[0]). Again before 
the request can be forwarded to the memory controller (MC[0]), invalidations 
must be made visible to caches L2$[0] and L2$[l], in turn all caches below them, 
L1$[0]-L1$[3] must receive and acknowledge an invalidation message. Finally 
when the invalidations have successfully been sent and acknowledged by all caches 
the request can be forwarded to the memory controller and a response including 
the data at address A can be returned to Ll$[4] which allows P [4] to continue 
execution.

I n c lu s iv e  W r ite  R e q u e s t

By maintaining inclusion, the same request from core 4 would only generate 
traffic on the networks containing copies of the data at address A. If the data 
is not present in any cache in the system, the network traffic is reduced to the 
propagation of the request and response, as shown in Figure 4.5. Where inclusion 
information exists, messages do not need to be sent to lower level caches. In the 
example, cache Ll$[5] does not need to be sent an invalidation message as L2$[2]
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knows th a t no copies exist in any lower level caches. This is not the case on 
the inter-cluster network L2N[0] as the memory controllers contain no inclusion 
information, and so messages must be sent to both L2$[0] and L2$[l] before 
forwarding the request to MC[0]. The invalidations sent to L2$[0] and L2$[l] are 
simply acknowledged, but 110 change of state is necessary as they do not contain 
the data  at address A, and no messages are forwarded to caches L1$[0]-L1$[3].

L1N[0] I

F igu re 4.5: M aintaining inclusion reduces any unnecessary traffic being generated in
clusters not containing copies o f the requested data.

M aintaining C ache Inclusion

A disadvantage of maintaining cache inclusion is tha t the set of lines in each 
shared cache must be a superset of all of the cache lines contained within the 
caches sharing it. To avoid poor hit rates in shared caches, they need to be 
significantly larger than the sum of all the caches connected below them [168]. 
The space overhead of inclusion can be reduced by allowing certain lines, for 
example those modified in lower level caches, to be cleared from the shared cache, 
if a table of address tags for these lines is maintained and accessed in parallel to 
the main cache tags [13].
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4 .2 .4  L o ca lity  an d  A ffin ity

A further aid to scalability in a multi-level cache hierarchy is the implicit ex­
ploitation of locality. The multi-level hierarchy exploits both  spatial locality and 
parallel locality. Spatial locality is exploited in the same manner as all cache ar­
chitectures, each cache line fetched contains multiple words. Memory references 
made in the near future have a high probability of being near recent past refer­
ences, and therefore multiple references may be made to the same line, removing 
the necessity for multiple memory requests.

Parallel locality is an extension of the effect of spatial locality in the context of 
a parallel program. Future memory accesses by a thread can be predicted by 
recent memory access patterns of related threads, in the same parallel program, 
in addition to its own recent accesses.

Significant levels of spatial and parallel locality are usually present in parallel 
programs [49]. Parallel locality can be increased by explicitly enforcing an affinity 
onto threads, distributing them  in such a manner as to keep related threads 
within a subset of the cache hierarchy. This same process can be used to insulate 
applications, as much as possible, from interference by unrelated threads.

4.3 P IM M S  - a M ulti-L evel C oherence P ro toco l

Having outlined in previous sections the motivation for extending the Jamaica 
architecture to allow a scalable multi-level shared cache hierarchy, this section 
introduces the PIMMS2 protocol, which maintains system wide cache coherence. 
The protocol maintains compatibility with the original Jam aica instruction set 
and as such code written for tha t architecture can run unmodified on the multi­
level hierarchy.

Unless otherwise stated, the examples presented in this chapter assume a hier­
archy of buses connecting the shared level caches. The protocol presented is, 
with minor modifications, capable of maintain coherency additionally across a 
hierarchy of crossbars.

2PIMMS is an acronym for the 4-bits used to encode all states; Pending, Invalid, Modified, 
Modified Stale.
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State Code Description
Invalid I no line present
Valid V read access only
Valid Shared v* as Valid, shared by lower level cache(s)
Modified M read and write access
Modified Shared M* as Modified, shared by lower level cache(s)
Modified Stale MS line stale, modified by lower cache
Pending P operation pending, refuse access

T able 4.2: PIM M S protocol: cache states.

4 .3 .1  C ach e S ta te s

The protocol used is extended from, the family of MOESI protocols [153] with 
additional states to allow multi-level cache hierarchies. Ownership is discarded 
as it is implied by maintaining inclusion. The protocol is similar to those used 
in the KSR-1 [49], Paradigm [29] and Gigamax [168] multiprocessors. Any cache 
line can be in one of seven states listed in Table 4.2, except for lines in private 
L l caches which can only be in the states I, V, or M. Only lines within the 
L l data cache can reside in the Modified state. A cache line in the Modified 
Stale state additionally keeps track of the index number of the cache in the lower 
level tha t currently holds the modified copy. Although similar to the protocol 
states presented by Anderson and Baer [6] for multi-level hierarchies, the seven 
states and index tracking maintained by the PIMMS protocol reduce unnecessary 
coherence messages within the system and allow the protocol to generalise to non­
broadcast networks.

It should be noted tha t the states V* and M*, where the star denotes the line as 
being shared by lower level caches, are weak annotations in a bus based hierarchy. 
W hen a sharer exists the Sharer state is always set, however the state may remain 
set even after a sharing cache has overwritten the shared line, and therefore no 
longer shares th a t line. Infrequently this leads to invalidation messages being sent 
to a cache no longer containing a copy of the line; these messages are ignored.

Where crossbars are used to connect cache levels in a hierarchy the Sharer states, 
V* and M*, must maintain a list of sharers. This list of sharers is used to 
determine the channels within the crossbar tha t must be reserved in order to 
send an invalidate signal.
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Class Code Name Description

memory
bound

SH
MD
MC
WB

Share 
Modified 
Cond. Modified 
Writeback

Request for read access to a line 
Request for write access to a line 
As Modified but from a STLJS 
Writeback/Eviction of a modified line

core
bound

MSH
MMD
INV

DWN
MWB

Mem Shared 
Mem Modified 
Invalidate 
Downgrade 
Mem Writeback

Response with read access and data 
Response with write access and data 
Force invalidation of line 
Force downgrade of line (e.g. M —» V) 
Force writeback of line

T able 4.3: P IM M S protocol: network transactions, mnem onic codes and descriptions.

4 .3 .2  N e tw o r k  T ran saction s

Two classes of transactions are generated in the protocol. Those originating from 
a cache on the core side of an interconnect th a t propagate in the direction of 
memory are referred to as memory-bound transactions. Transactions originating 
from the memory side of the interconnect, propagating towards the core side, are 
referred to as core-bound transactions. In to tal eight types of network transac­
tions exist, listed in Table 4.3.

4 .3 .3  S ta te  T ran sition s

Figure 4.6 shows all of the possible transitions between the seven cache states, 
when network transactions occur on the upper or lower interconnects surrounding 
a cache. The possible state transitions in the L l caches are far fewer as they only 
include the states V, I and M.

4 .3 .4  Four P h a se  T ran saction s

In a single shared bus architecture a request placed on the bus either receives a 
response from another cache holding a copy, or after a delay from memory. In 
both cases all caches th a t either hold a copy or require a copy can alter state 
after snooping a transaction for the same data on the bus. In a multi-level cache 
hierarchy, however, data  can be present in caches tha t are not directly connected
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U:MMD

L.MD

U:INV
,:MD

:WB
U:DWN

:SH
MSU D W N

U:MMD
U:INV

L':MMD U:[DWNIMWB]L:MDL:SHU:MMD

U:WB L:SH L:SH U:MMD

L:SH

U:DWNM*U:MSH

U:INV

l.MWB

:INV

U:MSH

L:WB(U:MWB)

K E Y

U: u p p e r  n e tw o r k

L: lo w e r  n e tw o r k

S H r e q u e s t  r e a d  a c c e s s

M D r e q u e s t  w r i te  a c c e s s

W B w r i te b a c k /e v ic t  lin e

M S H r e s p o n s e  r e a d  a c c e s s  + d a t a

M M D r e s p o n s e  w r i te  a c c e s s  + d a t a

IN V f o r c e  l in e  in v a l id a t io n

D W N f o r c e  d o w n g r a d e  lin e

M W B f o r c e  w r i te b a c k  lin e

[A |B ] A  o r  B

(A ) fo llo w in g  A

* a n y  t r a n s a c t i o n  s e e n

— ► L1 c a c h e  t r a n s i t i o n s

F igu re 4.6: Multi-level cache state transitions for shared level caches. Note that for  
clarity M C  transactions are left off the diagram as apart from  their handling internally
in the cache controller queues, see Section 5.6, the state transitions are identical to 
MD.
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to the same interconnect as the requesting cache. As a result two additional 
scenarios are encountered within the hierarchy:

1. Multiple transactions for the same data can be generated on separate in­
terconnects concurrently.

2. Copies of data may be modified in caches not shared by the requesting 
cache.

The implication of the first scenario is that two requests tha t have started can 
meet a t a shared interconnect both competing for the same data. This is handled 
in much the same way as with a single bus architecture; the requests are handled 
in sequence, after the first transaction is completed the second may progress. The 
second scenario requires an extension from the two phase (request, response) bus 
transactions employed in single shared bus architectures, to four phase transac­
tions (request, action, reaction, response).

L3$[0]

L2N[0]

A: MS[0] A:l

L2$[0] L2$[2]

L1NI

A: M 
L1$[0]

A:l
L1$[1] L1$[2] L1$[3] L1$[4] L1$[5]

F igu re 4.7: Four phase read transaction.
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Four P h ase R ead Transaction

As an example of a four phase transaction consider the scenario illustrated in 
Figure 4.7. Core P[4] issues a read for data at address A, the most upto date 
copy of which resides in L1$[0]. On issuing a read to the interconnect L1N[2] a 
miss is triggered in the cache L2$[2]. L2$[2] forwards the read request and issues 
it on the interconnect L2N[0]. The cache L3$[0] currently holds the line in state 
MS. The modified stale state indicates tha t the line is present in the cluster under 
cache L2$[0], and none of the caches connected to the interconnect L2N[0] can 
supply an up to date copy of the data  because the da ta  has also been modified 
by a cache below L2$[0]. In order to be able to respond to the read request 
made by P [4], the modified data  must first be fetched from L1$[0]. An action, in 
this case downgrade (DWN), is issued to L2$[0] and eventually to L1$[0]. L1$[0] 
downgrades the line and issues a reaction, in this case a writeback (WB) along 
with the data. W hen the WB and data  are issued on the L2N[0] interconnect, a 
response can be forwarded to the original requestor, Ll$[4]. A timing diagram of 
the four phase read transaction, including cache line state transitions, is shown 
in Figure 4.8.

Four P h ase C oncurrent W rite

The potential for two concurrent requests for the same data  to  arrive at a shared 
bus concurrently is illustrated in Figure 4.9. Both core P[4] and P[0] are attem pt­
ing to  gain write privileges to data  at address A. Both private L l data  caches, 
L1$[0] and Ll$[4], only contain the data  in the valid state and therefore prop­
agate MD requests up the hierarchy to the L2N[0] network in order to acquire 
the line in a modified state from the L3$[0]. Assuming both requests arrive at 
the interconnect L2N[0] concurrently, one of the requests is given priority, in this 
case the request originating from L1$[0].

As outlined in the timing diagram, Figure 4.10, as the MD request from L1$[0] 
is responded to with a MMD, an invalidate is triggered in the L2$ [2] cluster to 
invalidate its copy of the data. After the initial MD request has cleared from the 
interconnect the second MD request can be issued. During this phase the second 
MD request triggers a MWB to fetch the data from the cluster beneath cache 
L2$[0]. It is possible th a t the original MMD is still propagating towards L1$[0],
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L 1 $ [ 4 P

L1N[2]
Stfl:A

L 2 $ [2 > -

L2N[0] Ll N [ 0 ]

SI-fcA

DWKl:A

W 8:A

W $:A *l_2$[0]

M5|H:A

MSiH:A •L2 $ 12 ]

S ta te  Transitions

L 3 $ [0 ]  MS to  P 

L 2 $ [0 ]  MS to  P 

L 1 $ [0 ] M to  V 

L 2 $ [0 ] P t o  V* 

L 3 $ [0 ]  P to  V* 

L 2 $ [2 ] I  to  V* 

L l$ [ 4 ]  I to  V

F igu re 4.8: Four phase read transaction, timeline.

L2N[0]

L3$[0]
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L2$[0] L2$[1]
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L1$[0] L1$[1] L1$[2] L1$[3]

A:V*

L2S[2]

l i

L1N 2] I
l

A:V
L1$[4] L1$[5]

F igu re 4.9: Four phase concurrent write transactions.
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and the network must ensure ordering so tha t the original request is responded 
to and has time to commit the write before the data is w ritten back in response 
to the MWB. Following the writeback the data  is sent with modified permissions 
to the cache Ll$[4]. As can be seen concurrently writing to the same location 
from cores in separate clusters generates considerable network activity.

L1N[2] L2N[0]

L1$[4]«-----— ►

. Md:A

L1N[0]
Mti:A

1 L2$[0]

MMb:A

INV:A • L2$[2] L2$[0]« MMp:A

L2$[2]« M? :A

MWB:A

L2$[0]« MW

WB:A

B:A

Wft:A > L2$[0]

MI^D:A

MMD:A > L2$[2]

’ L1$[0]

L1$[0]

S ta te  T ransitions

L3$[0] M* to MS

L2$[0] V* to MS L2$[2] V* to I

L1$[0] V to M L1$[4] V* to I

L3$[0] MS to P

L2$[0] MS to P

L1$[0] M to I

L2$[0] P to I

L3$[0] P to MS

L2$[2] I to MS

L1$[4] I to M

F igu re 4.10: Four phase concurrent write transaction, timeline.

P end ing S ta te

A potential difficulty with the four phase transaction is that while an action is in 
progress, within a cluster, another transaction outside of the cluster may request 
the data  involved. In the read example, from the point at which the downgrade 
(DWN) is issued until the point tha t the line is written back (WB), the state of 
line A is in flux. If the state of line A in L3$[0] is left as modified stale (MS) during 
this period a read request from a cache above the L3$[0] would cause the L3$[0] 
to issue a downgrade (DWN) onto the L2N[0] interconnect. This downgrade 
would be issued into the L2N[0] network. This would not only cause unnecessary 
network traffic, but has the potential to generate a downgrade to a cache that 
has already downgraded the line. To prevent occurrences of such transactions, a
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line is set in the Pending state (P) while an action is in progress. Any request to 
the line is negatively acknowledged and must be retried after regaining access to 
the network.

4.4 Sum m ary

This chapter has outlined the scaling limitations of the single shared bus design 
currently employed by Jam aica and several other CMP architectures [60, 108, 
80, 83]. In order to fully increasing transistor budgets fully the integration of 
many more cores on-chip will be desirable. At the same time maintaining a 
shared memory hierarchy simplifies the implementation of parallel applications 
and allows exploitation of finer grained parallelism.

Furthermore, this chapter introduced the concept of a CMC architecture and a 
protocol based on four phase transactions, th a t is able to keep a CMCs multi­
level cache hierarchy coherent. A novel aspect of the protocol is the Pending state 
which prevents unnecessary inter-cluster traffic entering a cluster while the data 
requested is being altered by another four phase transaction.

In the next chapter the hardware support required to implement the multi-level 
PIMMS coherence protocol is introduced.
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CHAPTER 5

Multi-level Cache Hardware

The introduction of a multi-*level cache hierarchy into the Jam aica CMP archi­
tecture requires significant changes to the cache hardware. Moving from a single 
shared bus to a hierarchy of buses or other interconnects introduces networking 
issues which must be handled by the caches. M ultithreaded cores and the addi­
tion of the four-phase coherence protocol allow many outstanding transactions to 
be in transit in the multi-level hierarchy at once. The cache hardware must be 
able to support these transactions, prevent the hierarchy from becoming easily 
saturated and avoid deadlock. This chapter describes the cache hardware, used to 
implement the coherence protocol described in the previous chapter. The cache 
hardware has been implemented, through detailed simulation, for a hierarchy of 
buses, crossbar switches and a hybrid of both.

5.1 C ache O rganisation

The multi-level cache hierarchy consists of two types of cache, the private Ll data 
caches and a number of shared caches depending on the depth of the hierarchy. 
The organisation of both types of cache is outlined in the following sections.
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5 .1 .1  L evel 1 P r iv a te  C aches

As mentioned in Section 3.1.5 the Ll caches are shared by multiple contexts 
within each of the processing cores. Each context is stalled on both an instruction 
cache and data cache miss, restricting the number of outstanding operations in the 
cache hierarchy to two per context. This restriction also ensures tha t the memory 
accesses made by each context remain sequentially consistent [87], despite any 
reordering tha t may occur higher up in the cache hierarchy.

The Ll caches in the multi-level hierarchy, shown in Figure 5.1, differ little from 
those in the single shared bus architecture. When a memory operation misses 
in the Ll cache an entry is made into the cache request table which holds one 
request per context. On gaining access to the interconnect, the interconnect side 
controller issues a request from the request table or writes back a line from the 
writeback buffer. Writeback buffer entries are given priority over entries in the 
request table.

Interconnect

Output Buffer
Interconnect Controller

Input Buffer

Tags and Data

Core Controller

core

F igu re 5.1: Level 1 cache.

Responses, invalidations or writeback requests originating from higher level caches 
in the hierarchy are also handled by the interconnect controller. As both the core 
and the interconnect controllers share a single access port to the tag and data 
array in the Ll caches, contention between the two can occur and is resolved 
by giving priority to the interconnect controller. Should queue congestion occur, 
which is possible in the data  cache, the interconnect controller is able to block or
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negatively acknowledge incoming writeback requests until a slot in the writeback 
buffer is freed.

5 .1 .2  S h ared  L evel C aches

The second type of caches in the multi-level hierarchy are shared level caches. 
Shared level caches are generally shared by multiple lower-level caches. Although 
this is not a strict requirement, they are generally larger than the sum of all the 
caches directly sharing them, and are necessarily slower to access. Importantly 
the shared level caches act as a bridge between two levels in the hierarchy and 
are connected to two interconnects, see Figure 5.2.

interconnect

^ u tp u tB u ff e i^ ^ «

l i s

xInput Buffer Bu h

In te rco n n e c t C ontroller

Tags an d  D ata

In te rco n n e c t C ontroller

Interconnect

1
Inpu t Buffer J

O u tp u t Buffer

F igu re 5.2: Shared level cache.

As mentioned previously, in Section 4.3.2, two classes of network transactions ex­
ist, memory-bound transactions and core-bound transactions. The shared level 
cache, in bridging two interconnects, is required to accept and process memory- 
bound and core-bound transactions, update the cache tags and data, and forward 
the requests or responses to either higher or lower level caches. A separate queue­
ing channel is implemented for each class of transaction, and a separate controller 
is required for the lower and upper interconnects. Again access to the cache tags 
is shared by both the upper and lower interconnect controller, with the upper 
controller having priority when contention arises.
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5.2 C oherence M essages and T ransactions

In the following discussions of flow control and deadlock avoidance within a multi­
level cache hierarchy the terms coherence message and transaction are used.

A coherence message is used to mean the actual physical message sent through 
the hierarchy. In the multi-level hierarchy this coherence message consists of the 
request or response type, the address and optionally the data. The memory- 
and core-bound request queues, illustrated in Figure 5.2, are required to store 
coherence messages.

A transaction simply refers to the process of delivering a coherence message across 
the interconnect in a multi-level hierarchy. An incoming transaction, for example, 
refers to a coherence message being sent across the interconnect and arriving at 
a cache’s interconnect controller.

5.3 F low  C ontrol

In the multi-level cache hierarchy requests and responses may potentially propa­
gate through multiple interconnects and caches; requiring buffering into queues at 
each level. These queues can overflow due to interconnect saturation, and to pre­
vent the loss of transactions a mechanism is required which guarantees message 
delivery. Additionally, in the process of maintaining coherency, a single incoming 
transaction can trigger multiple outgoing transactions; for example, upgrading a 
line in one cache and concurrently invalidating all sharers of the same line. In 
such cases the incoming transaction cannot be removed from a buffer until all of 
the outgoing transactions have been delivered.

To handle flow control in the multi-level cache hierarchy, each shared level cache is 
encapsulated by a core-bound and memory-bound FIFO based queue system, see 
Figure 5.2. Incoming coherence messages are buffered into the input buffer and 
then processed by the interconnect controllers which also m aintain the coherence 
protocol logic. As previously mentioned, access conflicts by the interconnect 
controllers to the cache tags are resolved by giving priority to the higher level 
interconnect controller, the one closer to memory and generally running at a lower 
frequency.
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The interconnect controllers are also responsible for forwarding coherence mes­
sages between levels when required by copying the messages from the input buffers 
into the request queues. W hen an incoming transaction simply requires tha t the 
shared level cache changes state, for example a writeback meeting a modified stale 
line, the coherence message is consumed by the interconnect controller and is not 
forwarded. W hen a transaction triggers responses or actions the interconnect 
controller is responsible for generating and issuing them.

5 .3 .1  B lo ck in g  and  N e g a tiv e  A ck n o w led g m en ts

W hen an incoming transaction requires th a t the shared level cache generates a 
coherence message, for either a response or action, there is a possibility that 
the message may be blocked by the destination cache. This can occur when the 
destination cache is no longer accepting incoming transactions as the relevant 
request queue has reached or is approaching capacity.

When such an event occurs the original incoming transaction is either negatively 
acknowledged (Nack’d), where the interconnect is a bus, or the transaction is left 
within the buffer slot it occupies in a crossbar fabric. In both  cases the transaction 
is subsequently rescheduled. Rescheduling occurs until the transaction is able 
to complete because the relevant destination cache’s request queue is no longer 
blocked. Simulations done for this thesis have shown th a t queue blocking does 
occur frequently in larger many core architectures.

In order to avoid deadlock, particularly when the memory-side cache controller 
has a blocked transaction, and to avoid rescheduling repeatedly blocked core-side 
caches an exponentially increasing, 7-bit saturating block counter is used. Each 
cache controller only arbitrates for the interconnect when the block counter is 0. 
If a transaction is nack’d then the block counter is incremented in powers of 2, 
until it saturates at 128. The block counter is decremented by 1 for each missed 
arbitration slot, until reaching zero and retrying the transaction.
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5.4 D eadlock  A voidance

In multi-level cache hierarchies, in particular in the interconnect and queues that 
connect them, deadlock can occur. This is because all four conditions required 
for deadlock to occur [33] are present. In particular deadlock can arise in multi­
level hierarchies between the memory-bound and core-bound queues leading to a 
circular chain of dependencies [109], an example scenario is shown in Figure 5.3. 
Both the write request (MD A) in the memory bound queue and the writeback 
request (MWB B) in the core bound queue are blocked as they both generate 
responses, which cannot be buffered in the cache’s core and memory bound queues 
and deadlock arises.

interconni q u e u e  full 
can  not a ccep t  
MMD A

MMD AMD A

O u tp u t  Buffj
In terconnect Controller

In p u t B ufferT3
•o<1) 3 3 <DWB J

Tags and Data
MSH C 
INV Fc MWB

In p u t B uffer

[x
q u eu e  full 
can  not a ccep t  
WB B

Interconnect Controller
i tp u t  B uffer

WB B MWB BInterconnect

F igu re 5.3: A circular dependence between the queues leading to deadlock.

To overcome deadlocks arising from circular dependencies the queueing system 
within the shared level caches is extended in a similar manner to the NUMAchine 
architecture [101, 55]. The request queue is divided into two separate physical 
queues handling different classes of coherence messages. For queueing purposes 
two classes of coherence messages exist.

5 .4 .1  S in kab le  M essa g es

Sinkable messages are coherence messages tha t do not elicit a response back 
into the interconnect. In the PIMMS protocol these messages include writebacks
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(WB) and invalidations (INV). Neither of these messages generate additional 
coherence messages back into the network which generated them. The messages 
are either consumed or forwarded by a shared level cache.

5 .4 .2  N o n -S in k a b le  M essa g es

Non-sinkable messages are coherence messages tha t do elicit responses back into 
the interconnect. In the PIMMS protocol these messages include read requests 
(SH), write requests (MD and MC), downgrade requests (DWN), writeback re­
quests (MWB) and additionally read and write responses (MSH and MMD). The 
responses are included in the list of non-sinkable coherence messages as, due to 
the lazy allocation of cache lines, a response can evict a modified line generating 
a writeback.

Interconnect

O u tp u t B uffer
In te rc o n n e c t  C on tro ller

Input Buffer I

Tags and  D ata

Input B uffer

In te rc o n n e c t  C on tro ller
O u tp u t Buffer

interconnect

F igu re 5.4: Shared cache request queues divided into sinkable and non-sinkable en­
tities. Non-sinkable queue divided further into passive and active queues allowing re­
ordering.

5 .4 .3  S in kab le  and N on -S in k ab le  Q u eu es an d  P r io r itie s

The queueing structure resulting from splitting the input queues into sinkable 
and non-sinkable queues is shown in Figure 5.4. The dependencies leading to 
deadlock in the previous scenario, illustrated in Figure 5.3, are now avoided. 
The writeback (WB B), generated by the core bound memory writeback request 
(MWB B), is now guaranteed to find space in the memory-bound sinkable queue.
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This in turn  frees a slot in the core-bound non-sinkable queue which then allows 
the write request (MD A) to be issued.

In general deadlock is avoided by ensuring three rules are adhered to by all of the 
coherence messages in the multi-level hierarchy:

1. sinkable messages remain ordered,

2. sinkable messages are guaranteed to propagate, and

3. sinkable messages are always given priority over non-sinkable messages.

5 .4 .4  P a ss iv e  and  A c t iv e  N on -S in k ab le  M essa g es

Unlike the scheme developed by Grindley et al [55] for the NUMAchine architec­
ture, the queue containing non-sinkable coherence messages is additionally split 
into two further queues, a passive and an active queue, again refer to Figure 5.4. 
The passive queue is used to hold coherence messages prior to gaining access to 
the interconnect network for issuing. The active queue is used to maintain a 
copy of non-sinkable coherence messages currently in the process of being issued 
across the interconnect. W hen a coherence message has been issued the entry is 
removed from the active queue. If during the issuing the interconnect controller 
determines th a t a non-sinkable coherence message can not complete, then the 
entry is removed from the active queue and inserted back into the passive queue. 
Upon reaching the head of the passive FIFO the coherence message is retried.

Allowing non-sinkable messages to become re-ordered in the passive and active 
queues allows the processing of coherence messages to be pipelined and prevents a 
single message from unnecessarily blocking the progress of other messages in the 
queue. Each message, in the simulated implementation, can only be re-ordered 
twice, at which point the message gains blocking priority over the non-sinkable 
passive queue. Limiting re-ordering ensures tha t eventually each message will 
make forward progress.
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C oherence M essage R eordering

Figure 5.5 illustrates the function of passive and active queues when connected 
to a bus-based interconnect. Five snapshots of the memory-bound input queues 
for a shared level cache are shown. For clarity it is assumed th a t no other cache 
is competing for the bus during the period shown. The non-sinkable and sinkable 
queues contain three read requests and a single writeback request respectively. 
Following the deadlock avoidance rules, mentioned in Section 5.4.3, the writeback 
takes precedence over the three read requests and is issued first. At cycle 3, the 
writeback transaction is placed on the bus, freeing the non-sinkable queues to 
arbitrate for access to the bus. At cycle 5 the first read request is issued on the 
bus for address B, and a copy of the coherence message is placed in the active 
queue. At cycle 7 the second read request, this time for address C, is issued. A 
copy is placed in the active queue, and the data for the writeback is transferred 
on the da ta  bus. During the same cycle, however, the upper level cache triggers a 
Nack for address B, signalling a blocked queue. The interconnect controller raises 
the retry signal, and the coherence message (SH B) is re-entered into the passive 
queue. At cycle 9 the third read request is issued. No Nack is triggered during 
this cycle so the copy of the coherence message for the second read request is 
cleared from the queue. Finally during cycle 11 the initial read request (SH B) 
is re-issued.

As the queue was blocked during the issue of the first read request the final 
ordering of the requests sent across the network is WB A, SH C, SH D and SH B. 
Were the three read requests being sent to a multiple banked cache, where each 
address was contained within separate banks, the blocking of address B would 
not significantly delay the progress made by the other requests. Re-ordering is 
also beneficial when a shared cache is issuing core-bound transactions to multiple 
cores or clusters. A coherence message being sent to a cluster or core tha t is 
blocking incoming transactions will not unnecessarily delay subsequent messages 
to other cores or clusters.
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F igu re 5.5: Passive/Active queue reordering.
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5.5 A ddress B locking

To reduce the number of coherence messages propagating through the multi-level 
hierarchy, and to simplify the protocol logic, each interconnect in the hierarchy 
implements address blocking. A small table of addresses is stored at the lower 
interconnect controller within each shared level cache, as shown in Figure 5.6. 
When a coherence message is propagated up to a higher level in the cache hierar­
chy the address is stored in the address blocking table. Should another coherence 
message for the same address arrive at the lower level interconnect controller 
it is blocked, and rescheduled as previously described in Section 5.3.1. The ad­
dress blocking table also prevents multiple transactions for the same address from 
entering the same shared level cache concurrently. When the address blocking 
table is full, subsequent transactions tha t require propagation to higher levels are 
blocked.

Tags and Data

addr
Input BufferAddress

blocking
table

O utput BufferInterconnect Controller

Interconnect

F igu re 5.6: Multi-level address blocking table.

The address blocking table also stores the identifier of the cache that issued the 
transaction onto the interconnect. This id is subsequently used when a response 
is generated in order to route the coherence messages back through the hierarchy.

5 .5 .1  L ocal T ran saction s

The address blocking table is implemented as a separate structure to the cache 
tags and as such the size is necessarily limited to allow fast access. The table can 
therefore become full if many coherence messages all for different addresses are
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sent to the upper levels of the hierarchy. During periods of significant activity 
locally contained transactions, those not requiring any further propagation, are 
still allowed access to the shared level cache. Local transactions may complete if 
no coherence messages are triggered to higher levels in the hierarchy by a change 
of cache state.

If the number of entries in the address blocking table is fewer than the total 
number of core side caches attached to the network, a portion of the address 
blocking table is reserved. This reserved section ensures throughput from local 
transactions is always maintained. When a local transaction completes its entry 
is removed from the address blocking table.

5 .5 .2  D ea d lo ck  A v o id a n ce

The address blocking table is im portant for routing responses back to the original 
requesting caches, however it also introduces another possible deadlock scenario. 
Should the address blocking table block all coherence messages then it can easily 
become deadlocked, as illustrated in Figure 5.7.

Tags and Data MMD AMD A

addr
In p u t B uffer IAddress

blocking
table In terconnect Controller

INV Athe invalidate, which must 
precede the write response, ♦  
can not proceed because the 
write request has an entry for 
address A in the addresblocking table

F igu re 5.7: Multi-level deadlock arising in the address blocking table.

By applying the same rules outlined in Section 5.4, in particular guaranteeing the 
propagation of sinkable messages by not blocking them, deadlock can be avoided. 
Sinkable messages share the reserved portion of the blocking table with local 
transactions so tha t they can always propagate across the interconnect.
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5.6 M ulti-L evel Synchronisation

Extending the cache hierarchy to multiple shared levels has implications when 
providing synchronisation instructions using the load-linked and store-conditional 
pair. Multiple processors can execute a load-linked instruction and subsequently 
attem pt a store-conditional instruction, illustrated in Figure 5.8.

MC[n]

L2N[0]

MDC MDC

L2$[0] L2$[1]

L1N

M M D S INV  
L1$[2]L1$[1] L1$[3]

lock A lock A

s t l_ c  s u c c e e d s ,  c o n t in u e s t l_ c  fa ils , retry

F igu re 5.8: Load-linked and store-conditional synchronisation in a multi-cluster ar­
chitecture.

The store-conditional instruction generates a store-conditional, MC bus transac­
tion, which can be in flight for multiple processors concurrently. Arbitration for 
the top level bus will ensure tha t only one of the MC transaction succeeds, proces­
sor P [0] in Figure 5.8. A MMD response is generated towards processor P [0], and 
because P [2] ’s cache holds the line shared, an INV transaction is generated. The 
invalidate transaction is also required to remove any in-flight store-conditional 
transactions for the same address from all memory bound buffers th a t the in­
validate signal passes. When the invalidate signal reaches the cache attached to 
P [2] the context waiting for the store-conditional to complete is woken and the 
store-conditional fails. Software routines, such as the one outlined in Figure 3.10, 
are responsible for a subsequent reattem pt to enter the critical section of code.
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This cancellation process is necessary to stop a subsequent MC generating an 
INV response which could reach the processor before the store response1. In such 
a scenario both store-conditional transactions would arrive at the processors with 
both sets of locks reset, and so would fail and need to be reattem pted. Such a 
scenario can lead to livelock.

In the presence of multiple levels of shared cache it may be more appropriate to 
use the compare and swap primitive for certain concurrent algorithms to avoid the 
potential for ping-ponging between multiple load-linked/store-conditional pairs.

5.7 L azy C ache-L ine A llocation

Both the private and shared level caches within the multi-level hierarchy imple­
ment a write-back policy, and can therefore hold the only up to date copy of a 
given cache line. Write-back caches are advantageous in multi-level hierarchies as 
they generate less write traffic when compared to write-through caches [76], with 
only evictions generating transactions on the interconnect.

A lazy cache line allocation policy is implemented within the multi-level hierarchy. 
W hen a cache miss occurs a coherence message is generated and propagated 
into the network w ithout allocating a line to hold the response. This occurs at 
each successive level in the hierarchy and no line is allocated until a response 
transaction is received.

When a response is received by a cache, the least recently used set for each line
mapping is selected as an allocation candidate for the incoming cache line. If the
candidate line is Valid the line is simply overwritten, if the line is Valid Shared
the line is overwritten and invalidations are generated for the sharing caches. If
the candidate line is Modified a writeback is generated, if it is Modified Shared
a writeback and invalidations are generated. If the candidate is Modified Stale a
writeback request is generated to fetch the latest data  into the cache and the line
is set Pending, however the response is delayed and must be rescheduled. The
response is rescheduled until the candidate line is no longer in the Pending state
and the line in the Modified state can be written back and overwritten.

BN V  and W B are examples of sinkable transactions which are able to overtake other trans­
actions due to the split-channels described in Section 5.4.3.
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This policy ensures tha t when a line is finally allocated, after the response is 
received back at each level, the least recently used set in each cache is selected 
for eviction. Additionally during the period from a request being generated to 
a response being received no lines within the cache are reserved, which would 
reduce cache utilisation. Furthermore, lazy allocation prevents requests from 
being blocked when a particular mapping in the cache has been allocated across 
all of the sets for outstanding transactions.

5.8 Sum m ary

This chapter has presented the cache hardware required to implement the cache 
coherence protocol presented in Chapter 4. The hardware implementation of 
shared level caches within the hierarchy was discussed, in particular the core- and 
memory-bound queueing systems were outlined. The addition of multiple levels 
of shared cache introduces networking issues such as flow control and deadlock.

Deadlock within the multi-level hierarchy is prevented by dividing the coher­
ence messages into sinkable and non-sinkable messages and providing separate 
queueing channels for each. A novel passive and active queueing mechanism was 
presented th a t allows reordering of non-sinkable messages and prevents head of 
queue blocking. Finally lazy cache line allocation was introduced.

In the next chapter distribution and optimisation schemes are discussed th a t best 
utilise the multi-cluster architecture.
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CHAPTER 6

Multi-level Task Locality

The extension of the Jam aica CMP architecture to a CMC architecture presents 
several challenges and opportunities for software applications. The ability to in­
tegrate many more cores within a single chip shared-memory architecture, poten­
tially allows for greater performance but also increases inter-processor communi­
cation. If clustering is a possible direction for next generation CMP architectures 
then both application restructuring and scheduling to take advantage of locality 
of reference must be carefully considered.

This chapter discusses locality within the CMC architecture outlined in Chapters 
4 and 5, presents a novel extension to  the work distribution mechanism and the 
instruction set and discusses the use of this scheme to implement both application 
restructuring and scheduling.

6.1 C lusters and C ache L ocality

In a multi-level cache hierarchy multiple levels of sharing exist; the contexts 
within a core share the LI cache, all cores within a cluster share the L2 cache,
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and all L2-clusters share the L3 cache or memory, as illustrated in Figure 6.1. 
This sharing continues to extend in deeper hierarchies as more cache or index1 
levels are added.

MC[0] MC[n]

level 2 locality sharing i

L2$[0] 

L1N[0] I

L2$[1]

L1N — — « — —   N
i level 1 locality sharing^

L1S[1) I

5 E *
L1$[3] IL1$[0] L1$[2]

; level 0 locality sharing >

P[0] P[1] P[2] P(3]

F igure 6.1: The multi-cache hierarchy implicitly exhibits a hierarchy o f locality of
reference within each shared level working cache set.

Ideally application tasks or threads should be distributed across the processing 
cores in an attem pt to best exploit the locality between associated tasks. Bal­
ancing tasks in this manner reduces the bandwith requirements of higher level 
interconnects, reduces the visible memory latency, and avoids unnecessary con­
gestion within the network.

6.2 Task D istr ib u tion

The Jamaica architecture, outlined in Chapter 3, provides hardware support for 
fine-grained parallelism by means of a token distribution ring, outlined in Section 
3.1.3. The ring allows tasks to be distributed from a running thread maintained 
within one hardware context to any other idle hardware context within the CMP.

1 Maintaining a cache at every level in the hierarchy is not strictly necessary, higher levels 
within the system can be coordinated using tag matrices [49], to reduce the transistor require­
ments.
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Given a single bus CMP architecture the distribution of tasks is arbitrary and 
each idle context is given an equal weighting as a candidate for task distribution. 
This scheme works well as all contexts within a single bus CMP share a single 
L2 cache and any LI cache can transfer data to any other LI cache, because 
all shared data  is accessed across the single shared bus. Some advantage can be 
gained from distributing two associated tasks to two idle contexts within the same 
processing core, as there will be some benefit from the sharing of data within a 
LI cache, but can also be a disadvantage when another free context resides in a 
wholly idle core somewhere else on the chip.

6 .2 .1  L o ca lity  A w are T ask D is tr ib u tio n

Extending the architecture to a multi-cluster CMP extends the access possibilities 
for data  shared between multiple contexts. D ata may be shared, and subsequently 
modified, by a context within a different cluster. Successive modifications to the 
same data  by two contexts in two separate clusters will incur significant delays 
due to the latency of continually passing updated copies of the data  across higher 
level interconnects and invalidating and moving the data  through multiple levels 
of cache, as illustrated in Figure 6.2.

Minimising the level at which data is shared by associated tasks can significantly 
reduce the access latency to shared data by those tasks and, as a consequence, 
improve the performance of a parallel application.

Synchronisation also benefits from locating coordinated tasks within a cluster 
where possible. This ensures th a t data regions used to implement atomic primi­
tives remain as close to the context attem pting synchronisation as possible, min­
imising the latency of each synchronisation.

6 .2 .2  T ok en  R e q u e sts

In the original single shared bus Jamaica architecture a token-request instruction, 
TRQ, is executed during the process of forking a task. The token-request either 
returns an integer value, uniquely associated with an idle-context somewhere 
on the chip, or after polling unsuccessfully for a software set number of cycles,
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MC[0]

L2N[0]

L2$[0] L2$[2]L2$[1]

L1N[2]d(L2) d(L2)

L1$[0] L1$[2] L1$[3]

d(L1) d(L1) d(L1)d(L1)

P[ 5]P[2]

cluster 2cluster 0 cluster 1

Intra-cluster sharingInter-cluster sharing

Figure 6.2: Two contexts operating on the same data per/own more efficiently if that
data can be kept within the same cluster, intra-cluster sharing, as opposed to sharing 
between clusters, inter-cluster sharing.

returns 0 informing the context executing the token-request th a t no idle context 
was available during the polling period.

When an idle context identifier is returned by the execution of a token-request, 
task setup data  is sent across the single shared bus along with the idle context’s 
unique identifier using the thread jump, THJ, instruction. The idle context, as 
part of constant normal cache snooping, recognises the identifier and reads the 
task data, eight 32-bit values, off the data  bus and into the context’s In register 
window2, before beginning execution of the forked task. Part of the task data 
includes a value uniquely identifying the parent thread, which is required when 
notification is later sent back to the parent thread informing it tha t one of its 
forked tasks has completed.

In order to maintain this lightweight thread-shipping mechanism within a multi­
cluster architecture the token-request instruction has been extended to encode 
information about the cache locality of each context.

2 Register windows are discussed in Section 3.1.2.
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6 .2 .3  L o ca lity  A w are  T oken R eq u est E x te n s io n s

The CMC architecture exhibits a number of levels of cache locality, shown in 
Figure 6.1. Two contexts within a CMC architecture can either cohabit a cluster 
or exist in separate clusters at each level of cache locality. As an example all 
contexts within the processing core P [0 ] , in Figure 6.1, cohabit a level 0 cluster. 
A context in P [0] and a context in P [1] cohabit a level 1 cluster, but exist in 
different level 0 clusters. The minimum locality level at which two contexts share 
a common cache will be referred to as the cache-distance between them.

The cache-distance can be used to distribute tasks to contexts either within a 
locality level, or outside of a locality level. In order to calculate the cache-distance 
between two contexts, the token distribution mechanism is extended such tha t 
cluster information is encoded into the unique-identifiers.

6 .2 .4  C a ch e -D ista n ce  Id en tifiers

The CMC architecture and coherence protocol, introduced in Chapters 4 and 5, 
allow for an arbitrary configuration of the multi-cluster hierarchy. A CMC archi­
tecture can be configured in a balanced tree-like topology, as shown in Figures 
6.1 and 6.2, or in an unbalanced topology, as shown in Figure 6.3.

By assuming th a t an architect may want to build or analyse the performance of 
both balanced and unbalanced cluster configurations the cache-distance identifier 
is encoded with sufficient information to determine the minimum level at which 
two contexts share data  by comparison with another context’s cache-distance 
identifier.

A lg o rith m  X Cache-distance encoding.
1: cache-distance id =  0
2: fo r I = top sharing level down-to 0 do
3: components =  max number of sharing components at level I
4: bit_shift =  bits needed to express the number of components
5: bit_mask =  index of the component the context is connected under at level

I o r  index of component itself o r  0 
6: cache-distance id — cache-distance id | bit_mask
7: cache-distance id = cache-distance id «  bit .shift
8: en d  for
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MC[0] MC[n]

L2N[01

L2$[0] L2$[1] L2$[2]

L1N[1]L1N0]

L1$[2]L1$[0] L1$[1] L1$[3] L1$[5]L1$[4]

F igu re 6.3: An example of an unbalanced multi-cluster configuration.

Each cache-distance identifier is a bit-mask which is composed of the encoded 
locality of each context, defined by the algorithm listed in Algorithm 1. The bit 
mask is stored in a context specific register, discussed in Section 3.1.1, and can be 
accessed by the LI cache logic as well as by privileged software. To illustrate how 
the cache-distance identifiers are allocated consider the unbalanced architecture 
shown in Figure 6.4.

Starting with the top level of sharing, level 2, the number of connected compo­
nents, in the example comprising three L2 caches, is counted in order to derive the 
number of bits required to represent all components at the same level. For each 
context the level 2 bitmap is the binary representation of the level 2 component 
which is above it in the hierarchy, using left to right indexing. In the example 
all contexts connected to processor P [0] have 00 as the level 2 bitmap, contexts 
connected to P [1] and P [2] have 01 as the level 2 bitmap. This trivial process 
is repeated at each level of sharing. It should be noted th a t all cache-distance 
identifiers must be of the same length, even when the hierarchy is unbalanced, as 
illustrated by P [0] in Figure 6.4.
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MC[0] MC[n]
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F igu re 6.4: The allocation of cache-distance identifiers to contexts in an unbalanced 
multi-cluster architecture.

6 .2 .5  H ard w are S u p p o rt for L oca lity

In order to support lightweight threading within the CMC architecture it must 
be possible to locate idle contexts across the whole chip, and then be able to 
distribute tasks to available idle contexts.

Locating Idle C ontexts

Locating idle contexts within the CMC architecture is done using the same ring 
structure found in the single bus architecture. Each core on the chip is connected 
to two neighbouring cores creating a single ring network. When contexts become 
idle the cache-distance identifier is placed onto the ring or, if no space exists on 
the ring, into a local token pool. Idle contexts, as previously mentioned in Section 
3.1.3, are located by polling the ring network for tokens using the TRQ instruction.

A single ring network has two major disadvantages when connecting all of the 
processing cores in a CMC architecture. Firstly the latency for a cache-distance 
token to complete a rotation of the ring is equal to the number of cores connected 
to the ring. W ith the possibility of integrating hundreds of cores this latency can
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be significant, however, the actual latency is dependant 011 the requirements of 
the token request instruction. The second disadvantage is th a t the ring is not 
fault tolerant. Any damage to the structure during manufacturing will remove 
the ability to locate idle contexts using the ring. The ring does however provide a 
simple mechanism th a t allows multiple cores to poll for and release idle contexts 
concurrently and is retained for this reason within the CMC architecture.

D istrib u tin g  Tasks

To support task distribution within the CMC architecture each shared cache must 
be able to forward task-setup data  either up or down the hierarchy so th a t an idle 
context, even in a different cluster, can receive it. Each level of shared cache in 
the architecture contains logic to make a simple comparison of the cache-distance 
identifier within the task-setup data, and tha t stored in the caches test mask. 
The task-setup data is forwarded up the hierarchy until the test mask matches 
the cache-distance identifier, the task is then moved down the hierarchy of caches 
based on the values in each successive bitmap within the cache-distance identifier.

Suppose core P [ l ] ,  in Figure 6.4, upon executing a TRQ instruction receives the 
cache-distance identifier [101101]. The forking code executing on the core pack­
ages the task-setup data  into registers oO -  o7, and executes a THJ instruction. 
The LI cache logic checks th a t the cache-distance identifier is not within its local 
group of contexts, using the test mask [0100—], and, in a similar manner to 
load/store instructions missing in the LI cache, arbitrates for access to the bus, 
LIN [0]. The task data, consisting of 8 32-bit registers, matches the size of a 
cache line, and so task distribution reuses the logic already required for cache 
coherence.

W hen the interconnect network is a bus, a THJ transaction can be snooped by 
all the caches and consumed by a cache where the test mask matches the cache- 
distance identifier. W hen the interconnect network is a crossbar, the THJ transac­
tion must be forwarded to the higher level shared cache, where logic then deter­
mines if the THJ should be forwarded up or down the hierarchy. In this example 
the L2 cache, L2$ [1] buffers the THJ transaction and the task-setup data, as the
cache-distance identifier [101101] does not match the test mask [01------ ] and
so the transaction must be passed onto the next level bus, L2N [0].
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W hen the THJ transaction is placed onto the top level bus, L2N [0], the L2 cache, 
L2$ [2] , is able to match the cache-distance identifier [101101] with the test mask
[10-] . The THJ transaction is subsequently forwarded down the hierarchy,
using the same process, until it arrives on bus L1N[1] and is consumed by the LI 
cache Ll$ [5]. The cache is then able to wake the relevant context in core P [6] 
which becomes runnable, and will begin processing the distrubuted task when 
the context is next scheduled.

The delay associated with shipping a task across the chip is related to the distance 
th a t the task is being shipped. A longer delay will be associated with shipping 
a task to a core in a remote cluster when compared to shipping a task within 
the same cluster. This delay is acceptable however as distributing the task to a 
remote core is reserved for tasks tha t exhibit poor locality or th a t are sufficiently 
independent to achieve benefits from running in separate caches.

6 .2 .6  S o ftw are  S u p p o rt for L oca lity

The lightweight task distribution mechanism is exposed to  software via the TRQ 
instruction so th a t parallel applications can be optimised to best utilise the CMC 
architecture.

Token R equest Sem antics

The TRQ instruction has been modified to allow programs to express a preference 
for how near or far away in the cache hierarchy a shipped task should be dis­
tributed. The TRQ instruction is of the register form, see Appendix A .1.1, which 
is composed of two input operands Ra and Rb and a result register Rc. The first 
operand is used to define the number of cycles tha t the TRQ operation is allowed 
to poll for a token. The TRQ operation returns either a token, containing the 
cache-distance identifier, or -1 in the result register depending on whether a suit­
able token is found or not. The second operand is used to define the preferences 
for selection of a token, and is composed as shown in Figure 6.5.

The operand can be interpreted as either a mandatory or preferential set of 
arguments. The TRQ instruction will try  to satisfy the arguments of the operand 
during the poll cycles supplied within the first operand. If no token of any sort is
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preference (0) or mandatory (1).

match level(OO), or cache-identifier(11), or 
given level-identifier at level(10).

less than (0) or greater than or equal (1) bit

level cache-identifier or level-identifier
j  i i i i i i i ' i i i i i i

31 30 29 28 27 23 22

F igu re 6.5: The TRQ semantics allow preferences for token selection which are exposed 
within the preference operand (Rb)

available it will return -1. As soon as a token matching the preferences is found 
tha t token is returned, curtailing the polling period. If other tokens are found 
during the polling period and the arguments are supplied as preferential, then 
each token is held until another is found, at which point the newly found token 
is held and the previously held token is released back onto the token ring. If 
no matching tokens are found when the polling period expires the held token is 
returned.

The semantics allow software to select tokens tha t are related to a given cache- 
distance identifier, th a t are a given level distance from the executing context’s 
cache-distance, or tha t are in a particular cluster at a given level. Because the 
TRQ instruction stores the resulting cache-distance identifier in register Rc, the 
software can use this value in future distribution operations. However, the soft­
ware can not generate a cache-distance token to distribute a task to, the returned 
identifier is stored in a privileged internal register which is used by the following 
THJ or THB instruction. Additional instructions within the instruction set allow 
software to enquire about the number of levels of sharing and the number of com­
ponents at each level, relative to the context executing the instruction. These 
values are hardwired into control registers within each processor.

To utilise the token semantics two initial distribution methods were developed; 
cluster affinity and remote-local distribution. Using the TRQ semantics it is also 
possible th a t other scheduling schemes described in the literature could be imple­
mented within software, in particular balance-set scheduling [43] and sampling- 
based and electron-based policies [164] and go some way to approaching quality- 
of-service schemes [73].
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R em o te -L o ca l D is tr ib u tio n

Remote-local distribution is a simple policy tha t allows a thread distributing work 
to decide whether the task should be forked to a local context, within a cluster at 
a given sharing level to improve data  locality, or to a remote context in a remote 
cluster at a given sharing level to improve load-balancing. This scheme is used 
by software to keep threads either local, for example when dividing work on a 
shared array of data, or to ship threads away from the distributing thread to avoid 
unnecessary cache interference th a t may delay the progress of the distributing 
thread.

A disadvantage to the remote-local distribution policy is th a t remote tasks are 
sent to arbitrary remote clusters, based on the order they are acquired using the 
token-request TRQ instruction. This can lead to work imbalance, where a number 
of remote tasks are distributed to the same cluster and potentially clusters remain 
idle. The remote-local scheduling is best used when a large number of worker 
threads need to be distributed by a single distributing thread. The distributing 
thread can therefore opt to distribute tasks to remote clusters or cores to allow 
itself to progress without being impeded by time-sharing a core’s pipeline.

remote ship call 4 
remote ship call 3

local ship 
call

© ©

F igu re 6.6: Remote-local distribution allows a program to fork a task to a context 
within either a local or a remote cluster. Even though four remote threads are forked 
there is no guarantee all clusters will receive work.
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C lu s te r  A ffin ity

Cluster affinity distribution allows a program to ship tasks to a context within 
a specified cluster of processors at a given sharing level. The policy enables 
software to distribute tasks to all clusters at a given sharing level, ensuring that 
all clusters are utilised within an architecture leading to a better load-balance, 
see Figure 6.7. Additionally this is beneficial when running multiple independent 
application threads. By running each application in isolation, each restricted to 
a separate cluster, cache interference can be avoided within the smaller, lower 
level, shared caches whenever possible.

shlpto 
cluster 0

ship to duster 3
ship to duster 2
ship to duster 1

o  0

12$

~ r

o o
Cluster 0 Cluster 1

0 0
Cluster 2

0 0
Cluster 3

F igu re 6.7: Cluster affinity allows a task to be distributed to a specified cluster at a
given sharing level.

Software can also use cluster affinity as a means of keeping a thread within the 
same cluster throughout its lifecycle. On a heavily loaded system, many threads 
will be competing for a limited number of hardware contexts to execute on. 
A global thread scheduler is responsible for ensuring all threads make forward 
progress, and when required will force threads to yield. When those threads 
are subsequently rescheduled cluster affinity can be used to ensure tha t they are 
rescheduled within the same cluster in order to benefit from previously cached 
data.
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6.3 Sum m ary

This chapter has described how locality can be exploited within a CMC architec­
ture. In particular an extension to the TRQ instruction was presented tha t allows 
software to exploit locality by controlling the affinity of distributed tasks. Two 
simple examples of the use of the extended TRQ instruction for locality based task 
distribution were presented.

The next chapter presents and analyses results from experimentation using the 
coherence protocol introduced in Chapter 4, the hardware support introduced in 
Chapter 5. and finally locality aware task distribution introduced in this chapter.
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CHAPTER 7

Results and Analysis

Previous chapters have introduced a cache coherence protocol for multiple levels 
of shared cache, a CMC architecture built to support this protocol and locality 
based task distribution to take advantage of cache locality within the architecture. 
This chapter analyses the architecture, protocol and distribution mechanism by 
exercising a cycle-level simulated system using parallel benchmarks.

7.1 E xp erim en ta l M eth od

Accurately evaluating the performance of the CMC architecture, the coherence 
protocol and the locality distribution mechanism requires a way of simulating 
the system and exercising its components with workloads likely to reflect those 
used in real parallel systems. In this section the simulation environment and the 
benchmark applications used in this study are described.
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7.1 .1  S im u la tion  E n v iro n m en t

To evaluate both the protocol and the architecture built to support it, the jamsim 
framework was extended with additional components. These components include 
a modified cache component, able to express the seven states of the PIMMS 
protocol, see Table 4.2, and both a bus and crossbar based interconnect able to 
implement the protocol transitions.

For each simulation the architecture is configured with, unless otherwise stated, 
the parameters listed in Table 7.1. The processor, the interconnect and the 
memory hierarchy are simulated using cycle-level models to account for, and al­
low further analysis of, the many interactions, stalls, queue delays and blocking 
associated with the architecture. Additionally the simulation platform has been 
extensively instrumented to extract statistical data  from each of the studied com­
ponents and overall performance metrics.

Component Parameters
LI caches 16KB, 4-way set-associative, access 1 cycle, 

4 entry core- & memory-bound queues.
L2 cache 2MB, 8-way set-associative, access 8 cycles, 

4 entry core- & memory-bound queues.
L3 cache 4MB, 16-way set-associative, access 32 cycles 

4 entry core- & memory-bound queues.
Off-chip Memory 2GB, access 100 cycles
L1-L2 bus 8 phase, memory led split-transaction protocol, L2 clock
L2-L3 bus 8 phase, memory led split-transaction protocol, L3 clock

T able 7.1: Configuration o f the simulated cache hierarchy.

The Java benchmark applications selected are executed within the ported version 
of the Jikes RVM which is hosted natively on the simulator. The use of the JaVM 
allows Java threads to be mapped onto the underlying hardware thread distri­
bution mechanism. The benchmark applications are statically compiled into the 
Jikes RVM bootimage using the highest level of optimisation (-02). This avoids 
the cost of dynamic compilation and optimisation of the benchmark classes dur­
ing execution and as a consequence reduces the impact of noise and interruptions 
by JaVM threads to the application threads at runtime, allowing a more intuitive 
reasoning about the performance.
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7.2 B enchm ark D escrip tions

In order to exercise the architecture and stress the coherence protocol a set of 
multi-threaded applications were selected from two benchmark suites: Doug Lea’s 
Fork/Join package [93] and the JavaGrande Forum benchmark suite [144]. The 
param eters used for each benchmark have been chosen to avoid the side-effects of 
garbage collection during execution, again avoiding unnecessary JaVM activity.

7 .2 .1  F o r k /J o in  B en ch m ark s

The fork/join benchmarks have been selected from a set of nine demonstration 
applications used to study parallel application performance using a Java work- 
stealing framework. Out of the nine benchmark applications three were discarded, 
Microscope because the code was heavily interleaved with a graphical user inter­
face, Heat because standard parameters consumed too large a simulation time, 
and NQueens because results and timings are non-deterministic, due to the nature 
of its multiple solution strategy.

The fork/join benchmarks are supplied at runtime with the number of threads 
available to process tasks; for each simulation configuration this is set to the 
number of hardware supported contexts. The following sections briefly introduce 
the six benchmarks selected.

F ibonacci

The f  ib o n acc i benchmark calculates the nth fibonacci number by recursive par­
allel decomposition. The initial number is decomposed into two parallel tasks to 
calculate the ( n — 1) and (n — 2) numbers. This decomposition is done recursively 
until the value of n  falls below a threshold, at which point it is calculated se­
quentially. The results of the decomposed values are then successively combined 
to form the to tal result. Each task of the decomposed pair, (n — 1) and (n — 2), 
must wait for the other to complete before combining the results and completing 
the n task th a t they themselves were recursively divided from.
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M atrixM ult

The m atrixM ult benchmark performs a parallel divide-and-conquer m atrix mul­
tiplication. The matrices A  and B  are divided into quadrants and then multiplied 
using Equation 7.1.

( >U,i ^ 1 , 2  \ y  ( Bi,i \ __ / (Ai,ixBi,i) (Ai,!x£?i,2 ) \ . / (Ai^xi^.i) ( A i ^ x i ^ ^ D  in -1 \
\  ^ 2 ,1  ^ 2 , 2 /  \  £?2,1 Z?2,2 /  \  ( ^ 2 , 1  X i 3 l , i  ) ( A 2 , 1 X 2 ? 2 ,1 ) 1 \  ( ^ 2 , 2  X i ? 2 , 1 )  ( ^ 2 , 2  X i? 2 ,2 )  '  ^ ’ '

The matrices on the right hand side are recursively divided into smaller quad­
rants until reaching the threshold set in the benchmark, at which point the leaf 
multiplications are calculated using sequential code. Synchronisation is required 
to recombine all the quadrant results in order to produce the result matrix.

Jacobi

The ja c o b i benchmark performs iterative relaxation on a m atrix mesh. The 
initial mesh is configured with the value 1 in all edge elements and 0 in all other 
elements. The complete mesh is represented internally as a tree structure and 
relaxation is carried out on each of the leaf nodes within the tree. Each leaf node 
contains a subsection of the mesh upon which nearest neighbour averaging is 
carried out sequentially. Leaf nodes are processed in parallel tasks, with synchro­
nisation occurring where edge elements overlap two leaf nodes. A defined number 
of nearest neighbour averaging iterations is performed over the to tal mesh, until 
the number of iterations expires or the result converges.

LU

The lu  benchmark performs a m atrix decomposition of a randomly filled matrix, 
into the product of two triangular matrices, Lower and Upper, and is a Java 
version of the well known Linpack benchmark. The actual composition of the 
algorithm is beyond the scope of this study, suffice to say th a t the decomposition 
is calculated again in a divide and conquer manner. Eventually the division 
creates sub-matrices whose granularity falls under a threshold, at which point
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the LU decomposition is calculated sequentially inside th a t m atrix, and multiple 
calculations are performed in parallel.

Integrate

The in te g r a te  benchmark computes integrals using a recursive Gaussian quadra­
ture. Essentially this calculates the area under a curve using a finite approxima­
tion, by dividing the area into sections and calculating rectangular areas. The
function of the curve, for which the integral is being calculated is listed in Equa­
tion 7.2.

(2i -  l)x^2i- l) (7.2)

M ergeSort

The m ergeSort benchmark performs a parallel merge/quick-sort of a set of inte­
gers. The complete array of integers is recursively subdivided into smaller sets 
of integers, until the set size falls below a threshold at which point the standard 
quick-sort algorithm is applied. Quick-sort of multiple sets occur in parallel, and 
the results are then merged into larger sets until the whole array has been sorted.

7 .2 .2  M u ltith re a d e d  JavaG ran d e B en ch m ark s

The JavaGrande m ultithreaded benchmark suite consists of three sets of bench­
marks; low-level, kernel, and application codes designed to evaluate parallel ap­
proaches to standard computationally intensive problems. From these three sets, 
one low-level and three kernel tests were selected. The benchmarks have largely 
been re-programmed with reference to  the sequential JavaGrande benchmarks, 
which in tu rn  were re-coded versions of the Splash-2 benchmark suite [169]. Par­
allel work is distributed statically to the number of threads passed to the bench­
marks as a parameter. Unlike the fork/join benchmarks, no work stealing occurs, 
and so each thread completes the whole portion of the work given to it.
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B arrierB ench

The b a rr ie rB en ch  benchmark is a low-level benchmark designed to measure 
the performance of barrier synchronisation. Internally the benchmark creates 
a number of threads which loop for a given number of iterations and attem pt 
to synchronise on two types of barrier, a simple shared counter and a lock-free 
tournam ent barrier.

Series

The s e r ie s  benchmark calculates the first n Fourier coefficients of the function 
listed in Equation 7.3, over the interval [0, 2]. The benchmark consists of a large 
loop over the Fourier coefficients, however, each iteration of the loop is indepen­
dent of every other iteration and the work is simply divided and distributed to 
the parallel threads.

f ( x )  = (x +  l ) x (7.3)

SO R

The so r benchmark performs 100 iterations of successive over relaxation on a 
N  x TV grid. The benchmark contains three loops, the outer iteration loop and 
two inner loops over the row elements to process the relaxation. In order to 
parallelise the algorithm the elements in the grid are processed using a “red- 
black” ordering scheme, which allows the inner loops to be partitioned between 
the threads. Synchronisation occurs at the end of each iteration to ensure th a t all 
red (black) elements have been updated before attem pting to update the black 
(red) elements.

C rypt

The c ry p t benchmark performs IDEA (International D ata Encryption Algo­
rithm) encryption and decryption on an array of N  bytes. The benchmark con­
tains two principle loops whose iterations are independent and can therefore be
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partitioned between the threads in a block fashion.

7 .2 .3  B en ch m ark  P a ra m eters

For completeness the parameters used for each benchmark, unless otherwise 
stated alongside results, are listed in Table 7.2. Each benchmark was run us­
ing N  threads, where N  equals the number of hardware contexts supported by 
the architecture being simulated.

Benchmark Type Parameters
barrierBench low-level size = 0
fibonacci kernel number =  39, threshold =  20
matrixMultiply kernel matrix =  1024x1024, granularity = 128
jacobi kernel matrix =  1024x1024, steps =  128
lu kernel matrix = 512x512
integrate kernel low =  1, high =  42, exponential =  5, tolerance =  0.001
mergeSort kernel sort array = 5,000,000 integers
ser ie s kernel size =  100
sor kernel matrix = 256x256
crypt kernel 500,000 bytes

T able 7.2: Benchmark parameters used during experimentation.

7.3 P IM M S C oherence P rotoco l

Having outlined the simulation configurations and the benchmarks used to ex­
ercise the architecture and the coherence protocol, this section looks at various 
aspects of the protocol, working under simulation, to assess its correct function.

7 .3 .1  C o h eren ce  T ran saction s

As mentioned in Section 4.3.2, nine coherence transactions coordinate all of the 
on-chip shared memory coherence. Coherence messages propagate both up and 
down the multi-level cache hierarchy to ensure that the cached representation of 
memory seen by all contexts is consistent.
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Coherence transactions are tracked during simulation when they appear in the 
interconnect. This tracking provides an insight into both the composition of 
the coherence traffic and the peak utilisation of the interconnect. Figure 7.1, 

shows this utilisation, during execution of the lu  benchmark. As the system is 
configured as a two cluster CMC. there are two bus networks, LIN [0] and LIN [1] , 

connecting the LI private caches of the 64 cores within each cluster and a higher 
level bus network, L2N, connecting the two L2 caches.
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F igu re 7.1: Bus utilisation during execution of the lu  benchmark. The architecture is 
configured as a sym m etric 2 cluster x 64 processors x 1 context CMP.

The area under the utilisation curve is divided, by percentage, into the constituent 
coherence message types. SH, MD, MC and WB are memory-bound transactions,

Chapter 7. Results and Analysis 128



7.3. PIMMS Coherence Protocol

MSH, MMD, INV, DWN and MWB are core-bound, and are described fully in 
Section 4.3.2.

As the benchmarks are Java classes, the period during which the JaVM is booted 
and all supporting classes are loaded is significant, in Figure 7.1 this period lasts 
until cycle 975,590,490. After this point the benchmark execution begins and the 
coherence traffic increases significantly. The benchmark executes on all of the 
processors, and the bus utilisation increases to peak at 95.02% on the LIN [1] 
bus.

The coherence traffic on buses LIN [0] and LIN [1] mainly consists of transactions 
satisfied either by a load from the L2 cache or a transfer of ownership/permissions 
from another LI cache. This is noticeable as the number of the SH, MD and MC 
request transactions far exceeds the corresponding memory oriented responses.

7 .3 .2  F ou r-p h ase  T ran saction s

As mentioned in Section 4.3.4, four-phase transactions are necessary in order 
to m aintain coherence across the cache hierarchies in a CMC architecture. The 
number of four-phase transactions can be calculated from the combination of 
MWB and DWN transactions, which are only triggered during the action phase 
of a four-phase transaction.

In Figure 7.1 the number of four-phase transactions peaks a t around 10% of 
the to tal transactions seen on the level 2 bus, some 130,711 MWB and DWN 
transactions during a period of 10 million cycles, in which 1.25 million level 2 bus 
slots are available.

The lu  benchmark, the execution of which generated Figure 7.1, performs syn­
chronisation as it combines results of sub-matrix decomposition to  form the whole. 
During this process synchron ized  methods inside the benchmark ensure tha t 
locks are gained on the results prior to combining them, so some four-phase 
transactions are generated. Figure 7.2, however, better illustrates the four-phase 
transactions, this time generated during execution of the b a rrie rB en ch  bench­
mark. As the benchmark is simply attem pting to  synchronise on barriers a larger 
portion of the coherence traffic visible on all buses is related to four-phase trans­
actions.
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F ig u re  7.2: Coherence traffic generated during the JavaGrande barrierBench bench- 
mark, on a symmetric 2 cluster x 8 processors CMP.
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7 .3 .3  In terco n n ect L a ten cy

Another factor which is introduced with the extension to multiple clusters is the 
effect tha t memory sharing across clusters has on the latency of the interconnect. 
The graph, Figure 7.3, shows the average network latency during discrete periods 
of 1 million cycles on each of the shared buses in a two cluster architecture during 
execution of the lu  benchmark. The latency of each transaction is calculated from 
the time th a t the request arbitrates for the bus to the point at which the response 
is received.

Prior to execution of the benchmark, denoted by the dashed line, the average 
latency on all of the buses is fairly erratic as the architecture is booting the 
JaVM and loading and compiling all necessary classes, requiring frequent calls to 
memory. Immediately before the benchmark is invoked the latency increases sig­
nificantly for a period of around 160 million cycles. This increase in latency, upto 
240 cycles and 160 cycles on the level 2 and level 1 buses respectively is caused 
by memory allocation as the benchmark begins to create data  structures. Once 
the benchmark is executing however, the average latency decreases to around 10 
cycles on the level 1 buses and 40 cycles on the level 2 bus. These latencies are 
almost as low as is feasible, given tha t the minimum time for a single transaction 
to  complete is 8 cycles on the level 1 bus and 32 on the level 2 bus.

The observed latency is related to the distance tha t each transaction is required 
to travel in the hierarchy in order to gather the requested data. In this example, 
most requests are being satisfied directly from the shared cache without having 
to traverse the inter-cluster bus.

7 .3 .4  N e g a tiv e  A ck n o w led g m en t

During periods of heavy coherence traffic on the interconnects, transactions may 
not be able to commit, which can occur when transaction queues are at their 
capacity. A negative acknowledgment signal is sent to the cache attem pting the 
transaction, and the cache must subsequently re-attem pt the transaction.

Figure 7.4 shows the percentage of the total bus slots negatively acknowledged 
over the execution of the f ib o n a c c i benchmark on a 16 core CMP.
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7 .3 .5  N on -S in k ab le  Q u eu e R o ta tio n

As introduced in Section 5.4.4, each cache’s non-sinkable transaction queue is 
split into a passive and active sub-queue. This allows requests in the non-sinkable 
queue to be re-ordered when a transaction at the head of the queue is blocked 
due to address locking or resource contention.
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Figure 7.5: Non-sinkable passive/active queue reordering (per 10 million cycles) for 
both L2 caches, in a 2 cluster x 64 processors CMP, executing the in tegra te  bench­
mark.

Figure 7.5, shows the number of reordering events between the sinkable and non- 
sinkable queues, during the execution of the in te g r a te  benchmark on a single 
cluster CMP with 128 cores. These events are counted when a transaction success­
fully commits tha t was behind an aborting transaction tha t has been reordered.
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7 .3 .6  E ffect o f  In c lu sio n

A limitation in the current implementation of the PIMMS coherence protocol 
is th a t each shared level cache in the multi-level hierarchy maintains cache-line 
inclusion1. This introduces redundancy within the shared level caches and reduces 
their efficiency. Lines in the Valid Shared, Modified Shared, and Modified Stale 
states are redundant in each shared-level cache.

Figure 7.6 illustrates the state of the lines within each of the shared caches, at 1 
million cycle intervals, during execution of the f  ib o n acc i benchmark. The archi­
tecture is configured as a 2 cluster CMP where each cluster contains a 1MB level 
2 shared cache, and 8 processing cores connected to  16KB instruction and data 
caches. A 4MB level 3 cache is shared by both clusters. During the benchmark 
phase, from around 750 million cycles, when all of the cores are executing code, 
on average 12.5% of the L2 cache’s lines are redundant, and 40-45% of the L3 
cache lines are redundant. In the absence of any code or da ta  sharing between 
contexts the redundancy in the caches is directly proportional to the size of the 
caches directly below, and can be calculated, using Equation 7.4, where Si is the 
size of the larger shared cache, Ss is the size of the smaller caches, and R  is the 
percentage of redundant lines in the larger cache due to inclusion.

R  = 100 x (7.4)

Using this calculation the expected redundancy, in the absence of sharing is 25% 
in the L2 caches and 50% in the L3 cache. The discrepancy between expected and 
actual redundancy is primarily due to code sharing in the f ib o n a c c i benchmark 
and the small amount of data  th a t is shared between the threads.

Looking at inclusion across all of the kernel benchmarks, for a 2-cluster config­
uration containing 4, 8, 16 and 32 cores per cluster, shown in Figure 7.7, the 
maximum percentage of redundant lines in the L2 caches remains below 10% 
when shared by four cores, 20% when shared eight cores, 30% when shared by 
16, and below 45% when shared by 32 cores. In most configurations the average

1A potential future enhancement to the architecture would be to support tag inclusion. 
Storing, in a separate cache structure, only the tags of lines that have been modified by a 
lower-level cache. This is not considered further here.
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F igu re 7.6: Cache-line state composition during the execution of the f  ib o n a cc i bench­
mark on a 2 cluster x 8 processors CMP.
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F igu re 7.7: Cost o f inclusion measured as the percentage o f cache lines containing 
redundant copies o f data, for all nine parallel benchmarks in a 2 cluster CMP.

redundancy is far less. In the absence of code and data sharing the percentage of 
redundant lines is calculated as 12.5%, 25%, 50% and 100%.

The percentage of redundant lines in the L3 cache for all configurations, how­
ever, peaks far closer to 50%, which is to be expected as essentially a far larger 
proportion of the L2 cache lines will contain non-shared data.

7 .3 .7  P r o to c o l R o b u stn e ss

Finally, whilst no formal analysis has been made as to the correct functioning 
of the coherence protocol and the architecture under every possible condition, 
it should be noted tha t for each configuration of the benchmarks tested, those 
tha t did not fail when run using the perfect memory simulator, were also able 
to run using the full cycle-level model of the memory hierarchy. Additionally a 
significant number of cycles have been executed during the compilation of results, 
each simulation of each benchmark executes for many billion cycles. During this 
time the memory hierarchy has remained deadlock free.

Chapter 7. Results and Analysis 137



7.4. Single Bus Chip Multiprocessor Architecture

7.4 S ingle B us C M P  A rch itectu re

This section looks at the scaling performance of a single bus CMP. Single bus 
CMP architectures are attractive to build, primarily because cache coherence 
across a single bus is well understood, and thus they have, to date, been the 
subject of most CMP studies. However, as introduced in Section 4.2.1, two main 
factors limit the scaling of their performance; wire delay and bus contention.

Wire delay is a physical limit and is discussed in detail in Section 1.2.1. Using data 
presented in the literature [104] it appears clear tha t connecting many processing 
cores to a single bus will inevitably require th a t the bus frequency is reduced 
to allow the signal to  propagate successfully. As outlined in Section 4.2.1 and 
Table 4.1, even connecting 8 processors to a single bus may require the bus speed 
to be reduced to \  of the maximum on-chip frequency. Further reductions will 
undoubtedly be necessary as the number of cores connected to the bus, and 
hence its span increases. Bus contention also increases as the number of cores 
added to the bus increases. Contention for the bus, and the subsequent delay 
caused to a given core's private cache effectively increases the access latency 
to the level 2 cache. This latency affects access to the memory hierarchy in 
general, impeding parallel performance gains. Additionally as the number of 
cores is increased memory saturation can occur when the to ta l number of requests 
generated exceeds the available bandwidth.

To investigate the impact these two factors have on the performance of a sin­
gle bus CMP architecture the jamsim simulation platform was used to combine 
the simulation of an increasing number of cores and a range of decreasing bus 
frequencies, shown in Figure 7.8.

Each of the nine parallel kernel benchmarks was executed on each configuration 
of single bus CMP architecture, with the number of threads created by each 
benchmark equal to the number of cores in the architecture.

7 .4 .1  S p eed -u p

The results from these experiments are presented, initially, as speed-up graphs, 
Figures 7.9 7.17. On each graph the vertical axis, representing speed-up, is
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scaled to the maximum attainable speedup using a simulated configuration with 
perfect memory2. This scale helps to quantify the parallelism inherent in the 
benchmark, against th a t which is achieved by the architecture.

speedup(n) =  — (7.5)

Speed-up is calculated using Equation 7.5, where ti is the number of cycles taken 
to execute the benchmark with a single core and tn is the number of cycles taken 
with n  cores. From the speed-up graphs, the benchmarks can be grouped into 
three categories. Those tha t scale well with an increasing number of cores, near- 
linear’, those th a t scale but realise diminishing returns from an increasing number 
of cores, diminishing, and finally those th a t reach a scaling limit and realise no 
further returns from an increasing number of cores, limited.

In the near-linear category are the benchmarks f ib o n a c c i, Figure 7.9, and 
c ry p t, Figure 7.17. In the diminishing category are the benchmarks m atrixM ult, 
Figure 7.10, lu , Figure 7.12, s e r ie s ,  Figure 7.15, and so r, Figure 7.16. Finally in 
the limited category are the benchmarks ja c o b i, Figure 7.11, in te g ra te ,  Figure 
7.13, and m ergeSort, Figure 7.14.

The following sections look at the impact wire delay, bus contention and memory 
saturation have on the performance scaling of each of the benchmarks.

2The simulator can be configured with no memory hierarchy, i.e. all memory accesses happen 
instantaneously. Coherence locking is simulated using a simple global lock table.
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F igu re 7.17: Single bus CMP scaling - c ry p t.

7 .4 .2  W ire  D e la y

Figure 7.18 shows the peak performance of each benchmark where the level 1 bus 
clock is set to |  and |  of the core clock speed, relative to the level 1 bus being 
clocked at the same speed as the core.

As might be expected, the peak performance drops for all of the benchmarks. This 
is due in part to a decrease in bandwidth, as the total number of transactions 
serviced by the bus in any given time period is reduced, and also due to an increase 
in the observed access latency to the L2 shared cache and correspondingly any 
bus serviced cache-to-cache transfers. In particular the maximum speed-up for 
the diminishing benchmarks, m atrixM ult, lu , s e r ie s  and so r, decreases by 
between 18 and 50% when the bus speed is halved, and between 42 and 73% 
when the bus speed is quartered. Most of the performance is lost during slower 
accesses made to the L2 shared cache, as the data sets used are sufficiently large 
to overflow the private level 1 caches. The near-linear benchmarks, f ib o n a c c i 
and c ry p t, are less effected, however, peak performance is still observed to drop 
by between 4 and 21%. The limited benchmarks, ja c o b i, in te g  and m ergeSort, 
are marginally affected by wire-delay, this is because they are more fundamentally
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Figure 7.18: Peak performance with the level 1 bus clock set at ^ and |  of the clock 
speed, relative to the bus clocked at the same speed as the core.

limited by memory saturation.

7 .4 .3  B u s C o n ten tio n

Contention for the level 1 bus increases with the number of cores attached. The 
more cores, and hence more private caches tha t there are arbitrating, the longer 
any one cache is likely to have to wait until it is granted access to place a transac­
tion on the bus. As mentioned previously, in Section 3.1.5, bus slots are granted 
in least recently used order to the LI caches, with overall priority given to the L2 
cache.

Figure 7.19, shows the peak and average utilisation of the level 1 shared bus 
which, for all of the benchmarks, increases with the number of cores. When the 
number of attached cores reaches 64 and 128, for the majority of the benchmarks, 
the average bus utilisation is well above 60% and the peak utilisation is over 90%. 
This accounts for the performance tail off seen in the diminishing benchmarks, as 
increasing the number of cores speeds up the processing of data, but the latency 
of access to tha t data also increases. For the near-linear benchmarks the bus 
utilisation is very low, c ry p t below 5% and f ib o n a c c i below 15%.

The corresponding utilisation of the channels between the L2 and L3 cache, Figure

fib o n a cc i m atrixM u lt ja co b i in te g r a te  m er g e S o r t se r ie s
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F igu re 7.19: Level 1 bus utilisation, average and peak during the benchmark phase, 
in a single bus CMP.

7.20, never peak above 60% for any of the benchmarks, and for the majority the 
average utilisation is below 40%. This illustrates tha t the majority of contention 
on the LI bus is for access to the shared level 2 cache or for cache-to-cache 
transfers.

7 .4 .4  M em o ry  S a tu ra tio n

Having looked at wire delay and bus contention, the third factor th a t can impact 
on the scaling performance of an architecture is memory saturation. This occurs 
when all of the cores are executing a data  intensive benchmark leading to a 
bottleneck a t the memory controller. This bottleneck leads to queue congestion 
and is observable as the number of transactions tha t receive nacks increases.

Such saturation is experienced by the limited benchmarks, ja c o b i, in te g r a te  
and m ergeSort. As the number of cores increases past 16 the average bus utilisa­
tion exceeds 90%, however over 80% of these transactions are negatively acknowl­
edged, as shown in Figure 7.21. For this reason, none of the limited benchmarks 
are able to achieve greater speed-ups when the number of cores increases past 16.
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F igu re 7.22: Three chip multi-cluster (CMC) architectures are assessed, a) bus-tree, 
b) fu ll crossbar and c) a bus-crossbar hybrid.

7.5 C luster A rch itectures

After illustrating the limitations of a single bus CMP, this section looks at divid­
ing the processing cores into multiple on-chip clusters and additionally increasing 
the bandwidth to memory. Three architectures are simulated, illustrated in Fig­
ure 7.22, a chip multi-cluster (CMC) connected by a tree of buses, bus-tree, a 
CMC connected by crossbar switches, full crossbar, and a CMC connecting the 
cores with a shared bus, and connected at the cluster level by a crossbar switch, 
bus-crossbar. It should be noted tha t both the full crossbar and bus-crossbar ar­
chitectures introduce three additional banked memory controllers, and therefore 
have four times the available bandwidth to memory.

Each architecture maintains the parameters presented in Figure 7.8. Where the 
architecture is divided into two and four clusters, the L2 cache size is also divided 
by two and four, such tha t the overall on-chip cache remains constant.

Clustering multiple-cores together and then building a hierarchy of clusters pro­
vides yet another level of abstraction at which to build a many-core architecture. 
The division into clusters also reduces the number of cores being serviced by 
any one shared cache, and so either the bus connecting them can be shorter and 
clocked at higher speeds or a smaller crossbar structure can be used. A disad­
vantage to clustering is tha t an additional level of latency is introduced when 
multiple cores in different clusters frequently share data.
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F igu re 7.23: CMC scaling - f ib o n a c c i .

7 .5 .1  S p eed -u p

For each of the three architectures the same benchmarks were again executed to 
assess their scalability, the benchmark scaling graphs are presented in Figures 7.23 
-  7.31. Each architecture was configured in a single cluster configuration, which, 
for the bus-tree CMC, is analogous to the single-bus CMP, and two and four 
cluster configurations. The clusters are simulated in symmetrical configurations, 
such th a t the total number of cores and shared cache is divided equally between 
the clusters.

Figure 7.32 shows the peak performance achieved by each of the cluster archi­
tectures for each benchmark normalised to the peak performance of the single 
bus CMP architecture, with the bus speed set at the same speed as the core 
frequency. This scenario is perhaps unfair because a single bus connecting 128 
cores at the core clock speed is considered infeasible, however, it does provide a 
best-case single bus to compare each cluster architecture configuration against.
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7 .5 .2  B u s-T ree  C lu ster

Looking first at the performance of the bus-tree cluster architecture, Figure 7.22 
(a), the general trend is th a t the introduction of additional clusters decreases the 
peak speed-up for most of the benchmarks. As the threads of each benchmark 
are spread across multiple clusters, and are sharing data, the additional latency 
in accesses to this data  is impacting on the performance. The benchmarks tha t 
suffer from this increased latency the most are f ib o n a c c i and lu . The peak 
performance is reduced by 18 and 27% for two clusters and 24 and 32% for 
four clusters respectively. These reductions, however, are compared to the fastest 
clocked bus, and referring back to Figure 7.18, f ib o n a c c i performance is reduced 
by 21% when wire delay reduces the bus speed to |  and lu  performance is reduced 
by 42%. Taking these wire delay reductions into account for the single cluster 
architecture the disparity is reduced to to -6% for f ib o n a c c i and +10% for lu  
on a four cluster machine.

Four of the benchmarks, ja c o b i, in te g ra te ,  m ergeSort and s e r ie s  benefit 
from the division into multiple clusters. Referring back to  Figure 7.19 it is these 
four benchmarks th a t have peak and average bus utilisation above 80% when the 
number of cores is either 64 or 128. The addition of multiple clusters reduces 
the access contention on the level 1 bus, as there are fewer cores attached, and 
correspondingly reduces the access latency to the level 2 shared cache. For s e r ie s  
and in te g ra te ,  reduced level 1 bus contention sees the peak performance increase 
by 1.5 and 1.85 times. Prior work by Nayfeh et al. [116] looking at the effects of 
clustering in small-scale shared-memory multiprocessors also showed a benefit in 
performance due to a reduction in bus contention.

7 .5 .3  C rossb ar C lu ster

The second architecture presented, the crossbar architecture, Figure 7.22 (b), is 
simulated with a full n  x  4 crossbar, where n is the number of cores in each 
cluster, and 4 is the number of banks in the shared L2 cache. Each L2 cache 
is connected by a (c x 4) x n  crossbar, c being the number of clusters, to an 
L3 cache which is also divided into 4-banks. Each L3 bank is connected to a 
separate memory controller. The addresses are divided into the four banks at the 
cache-line, 32-byte, granularity using the offset and mask show in Equation 7.6.
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F igure 7.32: Peak speed-up achieved, by the three CMC architectures, normalised to 
the performance o f bus-tree(l)(the single bus CMP).

bank = ((address » >  5) Sz 3) (7-6)

Dividing the L2 and L3 caches into banks and increasing the number of memory 
controllers to 4, provides a fourfold increase in the available memory hierarchy 
bandwidth. Additionally the full crossbar between the cores and the banks of the 
L2 cache provides an approximately fourfold increase in the number of coherence 
transactions tha t can be processed3. In the single cluster configuration, this 
architecture closely resembles the Niagara architecture [81] with the addition of 
L3 caches.

This has a significant impact on the scaling of the benchmarks ja c o b i, in teg , 
and m ergeSort which, as mentioned previously in Section 7.4.4, are limited in a 
single bus CMP due to memory bandwidth saturation. In particular the in te g  
peak speed-up is increased by over 6 times, shown in Figure 7.32. This is due to 
both a combination of a fourfold increase in the memory bandwidth but also the 
reduction in level 1 bus contention. m ergeSort and ja c o b i also see greater than 
two-fold increases in peak performance.

3The increase in coherence transactions that can be processed across the crossbar peaks at 
four times the amount across the bus, however in certain cases additional queueing is necessary. 
In particular to achieve a broadcast, for invalidation say, requires the ability to send a signal 
to all cores holding the line, or failing that stall until the relevant channels inside the crossbar 
are free.
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The additional latency associated with sharing data  across clusters decreases the 
performance, by as much as 40%, for m ergeSort, as the to ta l number of cores is 
divided into four clusters.

7 .5 .4  H y b r id  B u s-C ro ssb a r  C lu ster

The third simulated cluster architecture, the bus-crossbar 7.22 (c), connects the 
private LI caches to the four banks of a shared L2 cache using a single bus, 
and connects the L2 caches to the L3 cache banks and memory controllers using 
full crossbar switches. The bus arbitration is modified, so th a t while priority is 
generally given to the L2 cache, each bank is selected in least recently used (LRU) 
order.

The hybrid architecture was simulated for two reasons. First, it enables distinc­
tion between the benefit of additional memory bandwidth and th a t of increased 
transaction throughput. By maintaining a bus to connect the private LI caches 
to the L2 caches, bus contention in the absence of memory saturation can be more 
readily observed. Secondly, the cost of a full crossbar interconnect in terms of 
area has been shown to reduce chip real-estate otherwise available for additional 
cores or cache [84]. The performance achieved using the hybrid bus-crossbar 
architecture can therefore be compared to th a t of the full crossbar architecture.

The s e r ie s  benchmark running on the hybrid bus-crossbar architecture clearly 
demonstrates th a t even though the memory bandwidth is quadrupled beyond the 
L2 cache, the primary limiting factor to performance gains over the single bus 
CMP is contention between the LI caches and the shared L2 cache. Dividing 
the number of cores between two clusters provides a 1.8 times increase in peak 
performance, and division into four clusters a 2.7 times increase. Even though 
the primary limiting factor is bus contention, the hybrid architecture provides an 
additional 80% speed-up over the clustered bus-tree architecture.

In general the peak performance achieved using the hybrid bus-crossbar cluster 
outperforms th a t of the bus-tree architecture and is within 10% of th a t of the full 
crossbar architecture. Assuming th a t larger caches could be added in the absence 
of full crossbars between the LI and L2 caches, the performance discrepancy 
between a crossbar and hybrid CMC architectures will likely drop further. Where
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the performance drops, as the cores are divided amongst additional clusters, for 
both  the full crossbar and the hybrid bus-crossbar architectures the decrease is 
less than th a t of the respective decreases in the bus-tree architecture.

7.6 L ocality  A w are Task D istr ib u tion

As outlined in Chapter 6, dividing the total number of cores in a CMP architecture 
into multiple clusters, where each cluster contains at least one shared level of 
cache, introduces an additional form of locality. Cluster locality, the notion of 
sharing data  internally within a cluster, can be exploited to  utilise the shared level 
of caches within each cluster efficiently. To investigate the benefits of exploiting 
this, the locality-aware task distribution mechanism described in Section 6.2.4 
was implemented within the cycle-level simulation platform.

Three experiments were used to assess the benefits of locality-aware task distribu­
tion with respect to synchronisation, isolation and affinity. A simple framework 
implemented within the Jamaica port of the Jikes RVM was developed to allow 
software to assign a cluster affinity to each application thread generated during 
the execution of a benchmark. These application threads are either distributed 
using Jam aica’s token ring task distribution mechanism, as described in Section 
3.1.3, or distributed based on the cluster affinity assigned to them. Cluster affinity 
is assigned to a Java thread by calling the method s e tC lu s te r A f f  in i ty ,  as listed 
in Figure 7.33. This call instructs the virtual machine to pass an affinity value 
along with the token request TRQ instruction whenever the thread is scheduled 
on to another VM _Processor. On execution of the TRQ instruction the hardware 
attem pts to  locate a token inside the required cluster. For each set of experiments 
the simulated architectures were configured to assess the effects of locality-aware 
task distribution over a range of both clusters and cores per cluster.

7 .6 .1  S y n ch ro n isa tio n  L oca lity

To assess the cost of synchronisation in a chip multi-cluster architecture the low- 
level b a rrie rB en ch  benchmark is used. Two cluster architectures are assessed, 
the bus-crossbar hybrid CMC and the full crossbar CMC. For each architecture
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int level = 2 ;  //look for clusters below the L3 cache, 
int numberOfClusters = VM.Scheduler.getClusters(level);

for(int i = 0; i < 16; i++) {
int clusterld = i '/, numberOf Clusters; //divide the threads amongst the clusters 
th[i] = new Thread(benchmarkRunner[i]);
VM_Scheduler.setClusterAffinity(th[i], clusterld);

>

F igu re 7.33: Setting a cluster affinity to Java threads.

the task distribution mechanism is either configured to distribute tasks based on 
the cache-distance metric passed through a TRQ instruction, locality-aware dis­
tribution, or to distribute tasks to any idle contexts within the system, default 
distribution. For each simulation several instances of the b a rr ierB en ch  bench­
mark are invoked, such tha t the number of instances is equal to the number of 
clusters. Figure 7.34 shows the results from these experiments.

■  crossbar using locality-aware distribution 
□  hybrid using locality-aware distribution

2x4 2x8 2x16 4x4 4x8 8x4
Architecture configuration 

(Clusters x Cores per cluster)

F igu re 7.34: The effect on overall performance running multiple instances of the
b a rrierB en ch  benchmark across multiple cluster architectures using locality-aware dis­
tribution.

Restricting each b a rr ierB en ch  instance into a single cluster increases the overall 
performance by a factor of up to 2. This improvement, using the locality aware 
distribution scheme, is achieved as almost all synchronisation in the benchmark 
occurs within a cluster and so the latency of access is reduced.
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7 .6 .2  A p p lica tio n  Iso la tio n

A potential benefit of dividing the on-chip caches and cores into clusters is that 
applications can be isolated within a single cluster. Potentially this can improve 
cache performance as all cores within a cluster can benefit from locality of applica­
tion code and data. The effects of deconstructive sharing from other application 
threads can also be eliminated. To assess the effect of isolating applications the 
hybrid and full-crossbar CMC architectures were once again used in simulation. 
For each cluster in the architecture a separate instance of the so r benchmark 
is invoked, each thread generated by the application is restricted, through the 
locality-aware distribution mechanism, to run inside the cluster of the initial so r 
application thread. The work of each so r benchmark is divided into a number of 
threads, such tha t there is a thread for each core inside the cluster. Figure 7.35 
shows the results from these experiments.

1.4x
■  crossbar using locality-aware distribution 
□  hybrid using locality-aware distribution

1.3x

I § 1.2x
1 fE 5  o £  c  <0
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2x4 2x8 2x16 4x4 4x8 4x16

Architecture configuration 
(Clusters x Cores per cluster)

Figure 7.35: The effect on overall performance running multiple instances of the sor
benchmark across multiple cluster architectures using locality-aware distribution.

As was shown in Section 7.6.1, isolating applications into clusters can improve 
performance as the shared synchronised data  was confined in each clusters shared 
L2 cache. By confining each instance of the so r application into a separate cluster, 
and each instance’s threads within tha t same cluster, data  sharing in the L2 
caches is improved and inter-cluster coherence traffic is reduced. This improves
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the performance of multiple so r applications running on the CMC architectures 
by up to 1.29 times.

7 .6 .3  A p p lica tio n  R e str u c tu r in g

Although isolating an application within a single cluster in a CMC architecture 
can improve performance, by increasing the cache efficiency and reducing access 
latencies to shared data, there will be occasions when a single application should 
be executed across multiple clusters or indeed the whole chip to  maximise perfor­
mance. As shown in Figure 7.32 there is an associated decrease in performance 
for most benchmarks as the number of clusters is increased. This performance 
decrease is mainly caused by the additional latency when accessing shared data 
across clusters. However, when careful consideration is given to the distribution 
of work inside a benchmark the latency of accessing shared data  across multiple 
clusters can be significantly reduced. Most data sharing between threads can be 
confined to the cluster they share, reducing the access latency and increasing the 
performance.

To dem onstrate this the so r  benchmark is restructured to minimise sharing of 
data between threads on different clusters. The initial so r  algorithm divides the 
grid, over which the successive over relaxation is calculated, into equal sized strips 
such th a t one strip is given to each worker thread, see Figure 7.36 (a). During 
each step of the algorithm, either the red or black elements are calculated by 
reading the values of the four nearest neighbours and the element itself. Given 
a sufficiently large sized grid, good parallelism can be achieved. Each thread is 
only modifying the black (red) elements in one strip and the value is calculated 
from the four nearest red (black) neighbours which are not being modified.

In a CMC architecture a naive distribution may place adjacent strips into separate 
clusters, Figure 7.36 (b). Accessing the updated values of neighbouring elements 
for all strips requires communication across the top level network, which has 
increased latency and lower bandwidth. However, by structuring the application 
such tha t, as far as possible, adjacent strips remain on cores within the same 
cluster, Figure 7.36 (c), access to data  across the slowest communication paths 
in the architecture is reduced.
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0 1 2 3 4 5 6 7  
grid divided between B threads 

_____________ (a)_______________
worst case division 

(b)
best case division 

(c)

F igu re 7.36: The sor benchmark: (a) the grid is split into strips each o f which is
distributed to a worker thread (b) pathological distribution can see all threads having to 
communicate across the higher latency bus to access data in another thread, (c) optimal 
division o f the adjacent threads into cores within the same cluster. Communication  
across the top-level bus is restricted to the overlapping data shared between threads 3 
and 4-

Figure 7.37 shows the relative increase in performance using locality-aware thread 
distribution, compared with using the default distribution scheme. The locality- 
aware scheme first attem pts to distribute threads to cores th a t are idle within 
a defined cluster. If a core within the defined cluster is not found the default 
distribution is employed. In the default distribution threads are distributed to 
any idle core, or in the presence of no idle cores are executed on the context 
attem pting the distribution.

For all of the cluster configurations simulated, the locality-aware thread distribu­
tion scheme decreases the total execution time of the benchmark. The relative 
performance of the scheme increases as the number of cores per cluster is in­
creased. This is an expected result, as increasing the cores, and hence the threads 
in the benchmark, also increases the likelihood in the default scheme tha t adjacent 
threads, in the algorithm of the so r  benchmark, will be distributed to separate 
clusters. D ata sharing between clusters suffers from an increased communica­
tion latency and reduced bandwidth and becomes a performance bottleneck if 
significant.

Table 7.3 lists the total coherence traffic, the total number of four-phase transac­
tions and the average thread distribution distance4 for the inter-cluster network

4The average sharing level distance that threads are distributed to. The average is calculated
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 1----------- 1----------- 1----------- 1----------- 1----------- 1----------- 1----------- 1----------- r
■  crossbar using locality-aware distribution 
□  hybrid using locality-aware distribution

2x4 2x8 2x16 2x32 4x2 4x4 4x8 4x16 8x2 8x4 8x8
Architecture configuration 

(Clusters x Cores per cluster)

Figure 7.37: The effect on overall performance running multiple instances of the sor
benchmark across multiple clusters using locality-aware distribution.

in the full-crossbar cluster architecture, shown in Figure 7.22 (b). The results 
are shown for both the default and the locality-aware distribution scheme. The 
difference, Diff., column shows the reduction achieved using the locality-aware 
scheme.

Using the locality-aware distribution, a reduction in total coherence traffic and 
four phase transactions is observed on the inter-cluster bus for all configura­
tions. Correspondingly a reduction in the average thread distribution distance 
is observed at each processor on executing a TRQ instruction. These two factors 
account for the improved performance using the locality-aware scheme.

7.7 C hip M u lti-C luster  D esign  C onsiderations

The previous section presented results showing tha t performance increases are 
achievable through restructuring of an application and use of a locality aware 
thread distribution scheme. However, Section 7.5 illustrated th a t increasing the 
number of clusters often leads to decreased performance when data  is frequently

over all TRQ operations. A value of 0 is added to the cumulative value if the thread remains in 
the same context, 1 if the threads remain in the same processor, 2 in the same cluster, 3 outside 
the cluster. Further explanation can be found in Chapter 6.
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shared across clusters. Equally, for some configurations where the number of 
cores is small, a CMC architecture may actually perform worse than a single bus 
CMP architecture.

In order to gain some insight into the design considerations required for utilising 
CMC architectures, the performance of a single cluster bus-crossbar architecture, 
see Figure 7.22 (c), is compared to the performance of a set of full-crossbar and 
hybrid bus-crossbar CMC architectures, see Figure 7.22 (b) and (c). Each archi­
tecture is configured with an equal number of on-chip memory controllers, and 
an equal amount of total cache. For the single cluster bus-crossbar architecture, 
the inter-core bus is clocked at \  of the core clock.4

Single Bus CMP 
bus) cycles

Configuration Hybrid Full Crossbar
cluster cores cycles speed-up cycles speed-up

180520129 2 4 196444747 0 .92x 196803387 0 .92x
104599844 2 8 90385345 1.15x 91011825 1.15x
88412428 2 16 53418809 1.66x 54501857 1.62x
92687948 2 32 26846465 3.45 x 26732865 3.47x
180520129 4 2 305976453 0.59x 306313453 0 .59x
104599844 4 4 116654491 0.89x 116536067 0.90x
88412428 4 8 56110859 1.57x 54547371 1.62x
92687948 4 16 43739515 2.11x 39954355 2.32x
104599844 8 2 171528459 0.61 x 170192259 0.61 x
88412428 8 4 65979083 1.34x 66460291 1.33x
92687948 8 8 40100163 2.31 x 39831179 2 .33x

T able 7.4: Performance comparison between the locality-aware optimized sor bench­
mark running on the fu ll crossbar CMC architecture, and the sor benchmark running 
on a single inter-core bus CMP, with 4 memory controllers: a single cluster version of 
the bus-crossbar hybrid (see Figure 7.22 (c)).

The so r  benchmark is executed on each architecture. The results presented 
in Table 7.4, compare the execution of the optimized so r  benchmark on each 
clustered architecture against the execution on the single cluster bus-crossbar 
hybrid architecture, containing the same total number of cores.

Where the total number of cores is 8 or 16 the single bus architecture generally 
out performs the CMC architecture, for the so r  benchmark. There are several 
design considerations here. Access latency to shared data is uniform for all of the 
cores in the single bus architecture. Additionally bus contention is less than 40%, 
see Figure 7.19, and is therefore not a limiting factor. The CMC architectures 
perform poorly as latency to shared data  is increased when sharing occurs across
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clusters.

For 32 and 64 cores, however, the CMC architectures always out perform the 
single bus architecture. The increased latency of access to  the level 2 cache, 
reduced bus bandwidth and high bus contention levels, when the bus speed is 
reduced, impact on the performance attainable from the so r  benchmark in the 
single bus CMP.

Recent studies have shown tha t there is also a need to  consider the cost in area of 
on-chip interconnects [84] and the efficiency of cache configurations [72, 69] when 
trying to  optimise CMP performance.

7.8 Sum m ary

This chapter has evaluated, through cycle-level simulation, the coherence protocol 
introduced in Chapter 4 implemented using the hardware support introduced in 
Chapter 5. The architecture and protocol have been exercised using 10 represen­
tative parallel benchmarks. A single bus CMP was simulated and dem onstrated 
tha t wire delay and bus contention both inhibit scaling in large, greater than 32 
core, configurations.

Three CMC architectures were simulated, demonstrating the protocol and ar­
chitecture’s capability of maintaining coherence across multiple clusters. The 
architectures are able to exploit more parallelism from the benchmarks than the 
single-bus CMP. The architectures reduce the effect of wire delay by decreasing 
the span of the inter-core bus or crossbar. Bus contention is also reduced as the 
number of cores connected to each inter-core bus, or to  the banked cache in a 
crossbar, decreases. The cluster architectures also dem onstrated the necessity for 
multiple memory controllers in order to avoid memory saturation.

Finally a locality-aware thread distribution scheme, introduced in Chapter 6, 
was dem onstrated to reduce the cost of synchronisation and deconstructive cache 
sharing by isolating separate applications inside separate clusters. Furthermore 
restructuring the so r  benchmark demonstrated the ability to increase perfor­
mance by introducing simple locality-aware optimisations into the benchmark. 
These optimisations enable up to 3.4 times improvement in performance, when
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executing a restructured benchmark on a CMC architecture, over th a t of a wire 
delay limited single bus CMP.
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CH APTER 8

Conclusions

As the number of transistors integrated onto a silicon chip continues to  grow, so 
the potential to incorporate more processing cores becomes a reality. Current 
CMP architectures contain a relatively small number of processing cores, up to 
eight, and hardware support for up to 32 concurrent threads. I t is realistic, then, 
to expect th a t a trend of increasing the number of processing cores will emerge 
in an attem pt to maximise both the power and performance efficiency of the 
increasing single chip transistor budget.

Currently, however, there is a limited understanding of the effects tha t incorpo­
rating tens of processing cores will have on the cache, memory and interconnect 
within a single chip architecture. This thesis represents an investigation into 
the effects th a t scaling, into the hundreds of cores, has on cache efficiency, in­
terconnect utilisation and memory saturation. W ith the limits imposed through 
wire-delay in modern process technologies, and the need to  bridge the growing 
design complexity gap, a chip multi-cluster (CMC) architecture is proposed as a 
viable design solution.

The caches in the CMC architecture maintain coherency using a multi-level cache 
coherence protocol, presented in Chapter 4 and hardware extensions introduced
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in Chapter 5. An extension to  the instruction set architecture, Chapter 6, enables 
software optimisations tha t are able to distribute work across a CMC architecture 
to exploit locality.

8.1 C ontributions

The thesis outlined five contributions to knowledge:

A  M u lti-level C oherence P rotoco l

A protocol capable of maintaining shared memory cache coherence over multiple 
levels of on-chip shared cache was presented. The protocol is based on four- 
phase transactions; request, action, reaction, response. It generalises sufficiently 
to maintain coherence across both bus and crossbar interconnects. An explicit 
pending state in the protocol is used to prevent unnecessary coherence traffic 
propagating onto lower level buses while four-phase transactions are in flight.

H ardw are Support for M ulti-L evel C oherence

Cache hardware required to support a multi-level coherence protocol was pre­
sented. In particular a core- and memory-bound queueing systems, necessary 
at each shared cache, were outlined. The addition of multiple levels of shared 
cache introduces flow control and deadlock issues into the cache hierarchy. Using 
dual-channel, sinkable and non-sinkable queues, deadlock is avoided by breaking 
circular chains of dependence. A novel passive and active queueing mechanism 
was presented th a t allows reordering of non-sinkable messages to prevent head of 
queue blocking.

L ocality-A w are Task D istribution

An extension to the instruction set architecture was introduced allowing software 
to exploit cache locality by controlling the affinity of distributed tasks. The 
extension allows software to distribute threads to a core anywhere within the
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architecture based on a cache-distance metric and token identifier. The token 
identifiers are used to  encode the cache-distance metric providing a simple method 
by which threads can be distributed across the chip.

C M P /C M C  Sim ulation  P latform

A simulation platform was developed in order to undertake the work contained 
within this thesis. The simulation platform is capable of simulating CMP and 
CMC architectures, interconnected by bus or crossbar interconnects, containing 
multiple cache levels, and many hundreds of cores or contexts.

Cycle-level implementations of the coherence protocol, the cache hardware sup­
port and the locality aware task distribution scheme were incorporated into the 
simulation platform to enable the experimental analysis undertaken in this thesis.

Fully Cache C oherent, M ultithreaded  S tudy

Finally, while other research has explored the area of large-scale CMP architec­
tures [72, 69] these studies have focused on exploration and trade-offs specifically 
in the cache design space. The studies were based on statistical analysis using 
synthetic trace-driven simulations. In contrast the investigation undertaken in 
this thesis studies effects on cache utilisation, memory saturation, and intercon­
nect utilisation. The performance of the simulated large-scale CMPs and CMCs 
is attained using real multi-threaded Java applications each of which is run to 
completion, maintaining complete cache coherence.

The study has shown tha t CMC architectures provide a feasible approach to the 
design of future many-core architectures. Multiple CMPs can be replicated across 
a chip providing another level of abstraction in the design of an architecture. 
CMC architectures are also able, using task distribution optimisations, to out 
perform wire delay limited single bus architectures.
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8.2 Future W ork

The design space for CMP and CMC architectures is vast and the work conducted 
as part of this thesis has only been able to address a small portion of it, creating 
many opportunities for future research. The following are some areas where future 
research projects might be conducted.

Cache and P ro toco l O ptim isations

The multi-level coherence protocol could benefit from several optimisations. Re­
moving the necessity for line inclusion by maintaining a tag-only cache or using 
Bloom filters [15] for lines tha t are either stale or shared would reduce the level 
of redundant lines stored in each cache, potentially improving their efficiency. 
Support for asymmetric block sizes between levels could better utilise memory 
bandwidth especially when the number of cores increases, however the impact 
this would have in an inclusive cache hierarchy is unclear.

In a large multi-level, CMC architecture there is even more potential for exploit­
ing dynamic cache partitioning [128] to utilise each level of shared cache more 
efficiently. A more thorough investigation into the cost of inclusion through ex­
ploration of the cache size, associativity and degree of banking in a coherent 
environment could lead to a better understanding of the best configurations for 
constructing multi-level cache hierarchies.

Course grained coherence tracking [112, 25] could be introduced to the system 
in order to reduce the amount of inclusion within the higher level shared caches. 
Such a scheme may allow higher level caches to maintain state associated with 
larger blocks of memory reducing the amount of information stored at each level. 
The scheme would clearly need to be adaptive to avoid mass invalidations.

Adaptive coherence protocols [35] which attem pt to  identify migratory data, data 
which is consistently read and then written, may provide additional benefits in 
multi-level hierarchies. D ata identified as being migratory can be tracked by 
additional states in the cache and on the initial read the line is serviced in a 
modified state. This reduces the traffic as the initial downgrade of the line is 
avoided.

Chapter 8. Conclusions 171



8.2. Future Work

Additionally a more rigorous proof of the coherence protocol and hardware using 
a formal specification language, such as TLA +[88], would help to test and check 
the correctness of the system.

D ynam ic E xp lo ita tion  o f L ocality-A w are D istr ib u tion

Utilising locality-aware task distribution within a dynamic execution environ­
ment, such as a virtual machine, could provide a more optimal utilisation of the 
shared caches and interconnect within a CMC, without the need for application 
restructuring.

The work in this thesis has only evaluated symmetric homogeneous multi-cluster 
architectures. Prior research has shown the benefit of heterogenous CMPs [83], 
this work could be extended in the context of CMC architectures by studying 
both heterogeneous cores and heterogeneous clusters. Dynamic scheduling utilis­
ing locality-aware task distribution could be used to distribute simple loop level 
parallelism to smaller simpler cores under small shared caches, and distribute 
complex sequential code to more complex cores with larger caches.

H ardw are Support for Transactional M em ory

Work extending the current simulation models of the architecture to support 
transactional memory (TM) [65] is currently ongoing. Supporting TM in a multi­
cluster hierarchy is an area of research tha t has not currently been explored, most 
hardware TM systems extend single bus snooping protocols. However the same 
limitations imposed by wire-delay within single bus CMP architectures will apply 
to the scaling of TM architectures relying on single bus snooping protocols.
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A P P E N D IX  A

Jamaica - Instruction Set  Architecture

The Jam aica instruction set borrows some of its instruction formats from the 
Digital Alpha 32-bit instruction set architecture [140], but is not binary compat­
ible.

A . l  In stru ction  Form ats

The architecture supports four distinct instruction formats, register form (Figure 
A .l), immediate form (Figure A.2), branch form (Figure A.3) and memory form 
(Figure A.4).
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A . 1.1 R e g ister  Form

O p c o d e
1 1 1 1 1

R a
i i i i

R b
i i i i

0 
i i

0 O p c o d e 2
i i i i i i

R c

31 26 25 21 20 16 15 13 12 11 5 4 0

Figure A .l:  R egister fo rm  Rc « —  Ra op Rb-

A . 1.2 Im m e d ia te  Form

O p c o d e
1 1 1 1 1

R a
i . ,

Im m
■ i i i i i i

1 O p c o d e 2
i i i i i i

R c

31 26 25 21 20 13 12 11 5 4 0

Figure A .2: R egister  im m edia te  fo rm  Rc <—  Ra op Rb.

A . 1.3 B ran ch  Form

O p c o d e
, i  i i i . .i

R a
. - - L. . !

D isp
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 26 25 21 20 0

Figure A .3: B ranch form .

A . 1.4 M em o ry  Form

O p c o d e

_ i  i i i i
R a

1 L 1 1
R b

-- 1 — I-- L _1—
D isp

i i i i i i i i i i i i i i i 1----- 1----- 1----- 1----- L
31

Figure A .4: M em ory form .
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A .2 In stru ction  Set

A .2.1  A r ith m e tic /L o g ic a l In stru c tio n s

Register Form: DP Ra, Rb, Rc 

Register Immediate Form: R0, Imm, Rc

ADD R c  R a  +  R b

SUB R c  ̂ R a  R b

CMPEQ R c <—  ( R a  =  R b )

CMPLE Rc <— (R„ < =  Rh)
CMPLT R c <— ( R a  <  R b )

CMPULE R c «- ( R a  < =  R b )

CMPULT R c  ( R a  <  R b )

S4ADD R c *- (4xR a +  R b)

S8ADD Rc <- (8xR a +  Rb)
S4SUB Rc (4xR a — Rb)
S8SUB Rc <- (8xR a -  Rb)
AND R c  1—  ( R a  & R b )

BIC R c  «— ( R a  & ^  R b )

BIS R c  <— ( R a  | R b )

EQV R c +— ( R a  H  R b )

ORNOT R c  <—  ( R a  H  R b )

XOR R c <—  ( R a A  R b )

SLL R c <— ( R a  <  R b )

SRL R c  <- ( R a  R b )

SRA R c <- ( R a  »  R b )

CMOVEQ i f ( R a =  0) R c < -  R b

CMOVGE i f ( R a ^  0) R c +— R b

CMOVGT i f ( R a >  0) R c <- R b

CMOVLBC i f ( ( R a  a 1 )  =  0 )  R c  R b

CMOVLBS i f ( ( R a A 0) =  0) Rc <— R b

CMOVLE i f ( R a  <  o )  R c < -  R b

CMOVLT if(Ra < 0) Rc <— R b

CMOVNE i f ( R a ^  0) R c * Rb
MUL R c  <- R a  X  Rb
TRQ see Section 6.2.2
RCR Rc <— CReg[R6]
WCR CReg[Ri]<— Ra
CAS single word compare and swap
SIRQ Send I R Q  R b  to thread with ID R a

EVICT Evict a frame; Rc +— 1 or 0

T a b le  A . l :  J a m a ic a  in s tr u c t io n  se t:  a r i th m e tic /lo g ic a l in s tru c t io n s .
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A .2.2  C o n tro l T ransfer In stru c tio n s

Branch Form: OP Ra , d isp  21-bit signed displacement

BEQ Branch if Ra =  0
BGE Branch if Ra > 0
BGT Branch if Ra > 0
BLBC Branch if Ra&l = 0
BLBS Branch if Ra&0 = 0
BLE Branch if Ra < 0
BLT Branch if Ra < 0
BNE Branch if Ra 7  ̂ 0
BR Branch
BSR Branch to subroutine
THB Thread branch (following TRQ)

Table A .2: Jamaica instruction set: branch form control instructions. 

Memory Form: OP Ra> d isp  16-bit signed displacement

JSR Jump to subroutine
JMP Jump
RET Return (takes address from 7, i7)
THJ Thread jump (following TRQ)
RTI Return from interrupt

Table A .3: Jamaica instruction set: memory form control instructions.
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A .2.3  M em o ry  In stru c tio n s

Memory Form: OP Ra , d is p , Kb 16-bit signed displacement

LDA Ra <— disp 4- Rj,
LDAH Ra +- disp <  16 +  R6
LDL Ra <— Mem[disp +  R*]
STL Mem[disp +  Rt] Ra
LDB Ra <— Mem [disp +  Rb], 

byte, sign-extended
LDBU Ra <— Mem [disp +  RJ, 

byte, zero-extended
STB Mem[disp +  Rb] <— Ra, byte
LDL_L Ra +— Mem [disp +  Rb], 

set lock_base, set lock_flag
STL_C if(lock-flag) {Mem[disp +  Rb] <— R„; R„ •<— 

1} else { Ra 0}
WAIT Sleep until lock-flag is cleared

Table A .4: Jamaica instruction set: memory instructions.
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A .3 B u ilt ln  In stru ctions

Trap address Builtln Description
OxfffTOOdO contextReplace switch context registers with 

memory
0xffff00d4 printT imeStamp prints processor and context id 

with cycle count
0xffff00d8 getCycleCount returns cycle count in register %o0
OxffffOKM fstat unix fstat equivalent
0xffff0144 copyMemory copy block of memory at %o0 to 

%ol, %o2 bytes
0xffff0148 setMemory set block of memory at %o0 to 

value %ol, %o2 bytes
0xffff0160 zeroCtxStats zero statistics for a given processor 

context
0xffff0164 reportCtxStats report statistics for a given proces­

sor context
0xffff012c fflush. unix fflush equivalent
OxffffOOOO simExit forceably quit the sim
0xfffF0008 fopen unix fopen equivalent
OxfffFOOOc fputc unix fputc equivalent
OxflfFOOlO fgetc unix fgetc equivalent
0xffff0018 ungetc unix ungetc equivalent
OxffffOOeO zeroPerf zero all statistic counters
OxffffOOee getNumProcs return total number of processors 

(deprecated)
Oxflfl'OOfO getNumCtxs returns number of contexts
0xffff0108 open unix open equivalent
0xffff0124 lseek unix lseek equivalent
OxfffFOllc read unix read equivalent
0xffff014c reportPerf report all statistic counters
0xffff0120 write unix write equivalent
0xffff0128 getTimeOfDay get unix time
OxffffOlOc close unix close equivalent
0xffff0138 notifyDebugger notify the debugger of object up­

dates in VM
0xffff0200 switchCaches switch to cycle-level cache models
0xffff0300 utilityCall 2 integer inputs, 1 integer output 

utility call

Table A .5: Jamaica instruction set: builtin instructions.
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