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ABSTRACT

Although Model Reference Adaptive Control has been around for sometime, 

it has never gained wide recognition especially with industries. This is due 

to doubts about its stability and robustness which was particularly high­

lighted by Rohrs (M.I.T.) in his Ph.D. work. As a result of this and others, 

since about four years ago there have been new algorithms proposed.

The aims of this work were partly to investigate the stability of these 

algorithms and also, by applying them to different laboratory scaled models 

of industrial processes, encourage or inspire their use in industries.

As a consequence of these an extension of a single input-single output 

(SISO) algorithm to include MIMO systems control was derived. Also a 

comparison could be made of the similarities and differences between the 

algorithms used.
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Chapter 1

INTRODUCTION

1.1 HISTORICAL BACKGROUND

Two schemes have attracted much interest in adaptive control, namely 

the Model Reference Adaptive Control (M.R.A.C.) and the Self Tuning Regulator. 

This thesis is based on the MRAC Scheme, although in [1] it is shown that 

both can be treated as special cases of a more general philosophy, or algorithm, 

while in [2,3] it is shown that both are quite similar and that they have 

common characteristics.

Adaptive control started in the late 50's in relation to Aircraft design, 

especially autopilot design [4] and aircraft pressure dynamics [5]. Model 

reference adaptive control was originally proposed by Whitaker et al [5] 

in 1958 to solve the problem of an unknown system parameter relating to 

dynamic pressure in the control of aircraft dynamics. This led to the establish­

ment of what is known as the M.I.T. rule.

The M.I.T. rule is derived by attempting to minimize a performance index, 

i.e. the integral squared error. Its adjustment law was derived by approxi­

mating a gradient procedure for an integral error squared criterion; but, 

unfortunately, in application trials with aircraft dynamics the M.I.T. rule 

based adaptive controller led to unpredicted instability due then to the 

almost non-existence of supporting theory. Thus, early attempts failed.

From this early effort the theory of adaptive control moved from the 

criterion minimization approach to a stability based rational. This led 

to the Lyapunov redesign which was originally proposed in [6] but was further 



2

developed by Parks in [7]. Incidentally, the Lyapunov redesign brought the 

appearance of Positive Real Conditions in adaptive control. The Lyapunov 

redesign adaptive controller was based on selecting design equations to satisfy 

conditions derived from Lyapunov's second method, so that stability of the 

control system is guaranteed. Again, due to its limitations as proposed 

in [7],for example use of derivatives of system output which may be too 

noisy, Monopoli brought out another algorithm based on the introduction of 

Augmented Error signals for which derivatives of signals were not required 

in [8]. Also another adaptive controller based on Hyperstability was proposed 

by Landau [9]. This was based on Popov's hyperstability theorems. Comparisons 

of the M.I.T. adaptive controller and that based on the Lyapunov redesign 

can be seen in [10], while in [11] the Lyapunov and Hyperstability approaches 

are compared.

A key question in MRAC concerned the stability of the resulting system, 

see [12], which remained an open question for many years but was finally 

resolved in the late 70's by the composite work of Narendra and Valavani 

[13], Feuer and Morse [14], Egardt [15] and Goodwin et al [16], amongst 

others.

Also, it must be noted that most of the early work from the 50's to 

the late 70's was mainly in continuous time due to non-availability of say 

microcomputers in those days, and partly because computer technology was 

still in its infancy; but from the late 70's onwards many discrete time 

adaptive control algorithms have also been introduced, i.e. [16-19].

1.2 WHAT IS MRACS?

The basic idea in MRAC schemes is to cause the system or plant to behave 

like a given reference model as shown below, the reference model specifying 

the desired performance of the plant to be controlled.
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Reference Model

System/Plant

Adaptation 
Mechanism

Figure 1 Basic MRAC Scheme.

The Model Reference Adaptive Control System (MRACS) can be used [20] 

in the solving of basic control problems such as:

(i) on-line and real time parameter identification,

(ii) adaptive state observation, 

(iii) adaptive model following control.

In the first two cases above, this involves system identification with the 

system to be observed acting as the reference model, while in the third case 

the reference model specifies the desired control performances needed from 

the system.

There are two broad classes of algorithms which depend on the complexity 

of the design calculation block. The two different classes/approaches which 

can be used for the solution of the control problem, i.e. the design of the 

adaptive controllers required, are:

(a) The Indirect/Explicit Control Design in which the design calculations 

are carried out based on the estimated system model, i.e. the plant/ 

system parameters are estimated on-line and the adaptive controllers and 

corresponding feedback laws calculated based on these estimates so that the 
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overall plant transfer function matches that of the reference model. This 

class of algorithms is commonly called "Indirect" because the evaluation 

of the control law is indirectly achieved via the system model. It is also 

called the "Explicit" scheme since the design is based on an explicit process 

model.

(b) The Direct or Implicit Control Design. In some cases it is possible 

to parametrize the system directly, i.e. no effort is made to identify 

the plant parameters, but the control parameters are adjusted to minimize 

the error between the plant and reference model outputs. This class of 

algorithms is called “Direct" because the control law is directly estimated. 

It is also called the "Implicit" scheme since the design is based on an 

implicit process model.

1.3 ROBUST ADAPTIVE CONTROL

As mentioned in Section 1.1, the failure of the M.I.T. rule based scheme 

was due to its instability. Although local stability results were available 

it was not globally stable as the Lyapunov and Hyperstability based schemes 

were.

The Lyapunov redesign owes much to the Meyer-Kalman-Yacubovich (M.K.Y.) 

lemma for the derivation of its global asymptotically stable adaptive systems 

for positive real transfer functions (see Appendix Ai), whilst the Hyper­

stability concept concerns mainly the stability properties of the feedback 

systems which can be split into two blocks consisting of a Linear Time 

Invariant (L.T.I.) part and a Nonlinear Time Varying part [20]. The stability 

is proven if the feedback blocks satisfy the Popov integral inequality (see 

Appendix Al).

The importance of globally stable adaptive schemes cannot be over­

emphasized as they are more likely to perform under real conditions involving 



5

noise, nonlinearities, etc., than localized stable adaptive schemes; but 

unfortunately, since the work of Rohrs et al [21] which pointed out that 

under certain conditions and circumstances, i.e. mis-modelling or under­

modelling, an unstable control system results, the above has not been 

enough. Thus the design of adaptive control systems has taken on the added 

condition that it must be robust and this applies to both continuous and 

discrete-time design applications.

By robust adaptive control design it is meant that the control scheme 

must be stable in spite of disturbances, nonlinearities and reduced order 

modelling or unmodelled plant uncertainties.

There are many papers from different authors in which new robust adaptive 

control schemes have been suggested, see [22-29].

1.4 AIM OF THIS WORK

Although there are many adaptive control algorithms about, most of these 

are in continuous time; but in view of limitations of hardware and physical 

constraints (see [30]), e.g. saturation of analogue computer, this work is 

done in discrete time, especially as the advent of modern computer technology 

has made available inexpensive but powerful micro-processors with vast 

potentials and versatility.

Thus, part of the objectives of this research is to carry out 

experimental applications of a few of the discrete-time adaptive algorithms 

available on some laboratory rigs. This is because in most of the literature 

available the practical implementation of these algorithms seems to have 

been neglected, though in some papers digital simulations have been carried 

out, while in a few, actual tests on rigs are done.
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Due to the large amount of adaptive algorithms/theories about with 

different approaches, but all fundamentally the same (see [1,31], it was 

felt that no new algorithm should be propounded, although modifications will 

be made where necessary; but a multivariable version of one of the algorithms 

is derived for use in this work.

The three algorithms chosen, while not being all those available, were 

felt to represent a broad view of those available. In the light of the 

controversial work in [21] (see also [32]), two of them are robust adaptive 

controllers whilst the third is not; though, as will be seen in the course 

of this report, exhibits some amount of robustness. The algorithm will be 

used on three different laboratory rigs, which represent different industrial 

processes. The rigs are in either Single Input Single Output (SISO)/Scalar 

form, or in multivariable form, though it is possible to run the multivariable 

rigs as scalar rigs as well.

Another aim of this work is to show in as simple a way as possible the 

potentials of MRACS, its robustness in industrial applications, since amongst 

criticisms heard about adaptive control is that it is too complex mathematic­

al ly, involving a lot of proofs and theorems which make it intimidating to 

applicants in the industries. Because of this the algorithms have been written 

in BASIC language which, while slowing down the computation, is easy for 

most people to follow. It is implemented on the BBC microcomputer.

Thus, by showing that these algorithms work on laboratory rigs in real 

time, may be more people/industries might become interested in the application 

of MRAC industrially.

1.5 OUTLINE OF THE REPORT

This report is divided into three parts, namely Part I - the introduction, 

Part II - the theory, and Part III consisting of applications and tests 
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carried out on laboratory rigs. In Part II there are two chapters, namely 

2and 3. In Chapter 2 the basic general outline of Model Reference Adaptive 

Control System is discussed, plus analysis and proof of global asymptotic 

stability; while in Chapter 3, the robust adaptive control system is discussed 

and how it relates to the two algorithms being used. Modifications of the 

basic algorithm in Chapter 2 which makes an adaptive controller robust are 

mentioned and explained. Also, it is shown that the three algorithms used 

are all related and that the two suggested robust algorithms are quite 

similar.

Part III consists of the last few chapters with the first three consisting 

of three different laboratory rigs to which the algorithms are applied. 

Chapter 4 deals with the Coupled Hydraulic Tank Systems in both SI SO and 

MIMO configurations. Chapter 5 is on the Coupled Electric Drives system 

which can be run also either in SI SO or MIMO configurations, while Chapter 

6 is on the Heater Bar, a distributed parameter system assumed to be a lumped 

one representing a boiler amongst other things. Chapter 7, the last chapter, 

consists of conclusions and discussions of the work and results obtained 

in the previous chapters.
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Chapter 2

BASIC MRAC THEORY FOR THE ALGORITHMS

2.1 INTRODUCTION

Fundamental to Discrete Adaptive Control is the fact that the system 

stability and convergence can be analysed based on just its inputs and 

outputs. The input-output approach to the stability analysis of feedback 

systems has provided a common framework from which many classes of systems 

can be studied [33,34]. In [33] it is shown that to behave properly an 

input-output system must have two properties, (i) bounded inputs must have 

bounded outputs, i.e. the system must be non-explosive, (ii) outputs must 

not be critically sensitive to small changes in inputs - changes such as 

those caused by noise.

Thus the need for global stability which implies boundedness of the 

sequences (y(t)}, (u(t)} for all time t. In this chapter the Basic MRAC 

algorithm is explained based on the inputs, outputs of both the reference 

model and the system/plant. The proofs of the global convergence/stabil ity 

of the algorithm for both SI SO and MIMO cases are also derived.

As mentioned earlier, Model Reference Adaptive Control Schemes can be 

divided into 2 broad groups, namely: (i) Indirect/Explicit control scheme 

or (ii) Direct/Implicit control scheme. In the course of this work the 

Direct/Implicit control scheme is used. The main reason for this is because 

the tracking of the reference model output by the system output is the 

primary aim and thus the convergence of the output/tracking error to zero. 

Also, using Direct adaptive controllers meant that the persistency of 

excitation of the signals is not of critical importance [31]since it is not 

compulsory for the parameters to converge to their true values.
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There are various Direct adaptive control schemes around, but it has 

been shown in [31] that all these schemes are variations of a general basic 

scheme which will be explained in this chapter and whose stability properties 

are also analysed. Two popular discrete-time algorithms are those of 

Goodwin et al [16] and Narendra and Lim [35]. The Narendra-Lim algorithm, 

while being stable, is not particularly attractive as it involves the use of 

auxiliary inputs which make the scheme appear more complex. It was thus 

discarded in favour of the Goodwin scheme which, bearing in mind one of the 

aims of the work, is much simpler. Also, a cursory look at the literature 

of adaptive control shows how it underlies several different algorithms.

Inputs Outputs

Figure 2.1 shows the block diagram of an adaptive control system and 

the analysis of the scheme starts with the pl ant/system characteristics and 

stability through to the Parameter Estimation algorithm down to the control 

law.

SYSTEM

PARAMETER U
ESTIMATOR iw

CONTROL 
LAW

DESIGN 
CALCULATIONS

Figure 2.1 Block Diagram of an Adaptive Control System
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In the next three sections the SI SO case is outlined, while in the 

following two sections the analysis and proof is extended to the MIMO case 

and the last section contains some comments on the previous sections.

2.2a THE SYSTEM

The system is assumed to be represented by a Deterministic Auto 

Regressive Moving Average (DARMA) model of the form:

A(q-1)y(t) • q"d B^Mt) (2.2.1)

where (u(t)l, {y(t)} denote the plant input and output sequences respec­
tively. A(q~l), B(q"l) are polynomial functions of the unit delay operator

A(q-1) = 1 + a-| q”^ + ...+ anq’n 

B(q-1) • bo + hq"\...+ b^q-m bQ # 0

d represents the system time delay.

The following assumptions will be made about the system [28]:

1. The time delay d is known.

2. An upper bound for the orders of the polynomials, i.e. n,m, is known.

3. All poles of the inverse of the model (2.2.1), (i.e. the zeros of the 
polynomial B(z”^), lie inside or on the closed unit disk.

4. All controllable poles of the inverse of the model (2.2.1 ), (i.e. the 
zeros of the transfer function B(z"^)/A(z"^)), lie strictly inside the 

unit circle.

5. Any poles of the inverse of the model (2.2.1) on the unit circle have 

a Jordan block size of 1.
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Equation (2.2.1 ) can be replaced by the d-step ahead predictor:

y(t+d) = «(q'^yÇt) + B(q-1)u(t) (2.2.2)

where a(q ) = aQ + a^q 1 +...+ o^q" *

B(f') ■ Bo + B1q"1 +...+ Bo # 0

Here it is assumed that the sign and upper bound on the magnitude of 

is known.

2.2b THE REFERENCE MODEL

The desired output sequence (y*(t)) satisfies the following reference 

model :

E(q-1)y*(t) = q‘d H(q-1)r(t) (2.2.3)

with associated transfer function G(z) :

G(z-1) = z (2.2.4)

where g is a constant gain and

H(z'l) = h0 + h^"1 +...+ h^z'1 h0 - 1

= e0 + +...+ ekz'k eQ - 1

subject to: (i) E(z~^) is stable

(i i) d' = d

(iii) |y*(t)| < m1 < « for all t.
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The control objective is to achieve:

lim (y(t) - y*(t)] = 0 
t*» m

Before going further, it must be pointed out that the assumptions made 

about the system, i.e. 1-5, cut across almost all of the proposed adaptive 

control algorithms in the literature from various authors. One of the very 

few exceptions is [36] in which a pfJjonZ knowledge of the relative degree n* 

of the plant and the sign of the high frequency gain are dispensed with, but 

even them an upper bound on the plant order must be known.

2.3 THE ADAPTIVE CONTROL LAW AND ALGORITHM (See [16,31])

Factoring from (2.2.2) yields:

1 y(t+d) = 1- [a(q'1))y(t) + L (B(q-l)Ju(t) (2.3.1) 
0 0 po

where bq 0.

=> (2.3.1) can be written as:

7" y(t+d) = a'(q~1)y(t) + s'(q'1)u(t) (2.3.2)
po

where «'(q"1) = = ?r + T" A +«"+ -r" 9 ^+1
o oo o

= *ô + +-"+ *n-lA~"+1

s' (q"1 ) ' ^q"1 ) = + q-1 +...+ ^d^q"^'1 )

- i + + ^+d-iA-^)
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Thus (2.3.2) becomes:

y ( t+d ) = Bot«/(t) +...+ a^]y(t-n+l ) + u(t) + Bju(t-l) +... 

'- + B^d-1 (2.3.3)

but e(t+d) = y(t+d) - y*(t+d)

= output/tracking error

= B0[u(t) + %y(t) +...+ an.-|y(t-n+l ) + B1'u(t-1) +...

"'+ ^.^(t-m-d+l) - y*(t+d)]
0

(2.3.4)

= %[u(t) - *(t)V] (2.3.5)

where &(t)? = [-y(t),...,-y(t-n+l),-u(t-l),...,-u(t-m-d+l),y*(t+d)]

= regression vector consisting of past values of system 

input and output plus projected value of the reference 

model output.

9oT = ........@m+d-T '^o1 - the parameter vector.

Assuming the values of the parameter vector sl(t) are known, it is 

obvious that for the tracking error to be made zero then:

U(t) = +(t)\ (2.3.6)

but, since 0^ is unknown, the control law will be recursively estimated. 

The Adaptive algorithm will be of the form:
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0(t) = f(0(t-1), D(t),t) (see [28],

e.g.

0(t) = ê(t-l) + M(t-l)*(t-d)e(t) (2.3.7)

where 0(t-l) = the parameter estimate vector at time t-1

M(t-l) = algorithm gain (possibly a matrix)

*(t-d) = regression vector of some kind composed of selected 

elements of Y(t-d), U(t-d)

d = an integer 

e(t) = modelling error of some kind.

In general it is the Orthogonalized Projection Algorithm [31] that is 

used for the Adaptive algorithm, i.e.

Step I:

0(t) = ê(t-l)+-------- ---------------------------e(t) (2.3.8)
C+*(t-l)T P(t-2)*(t-l)

where e(t) = y(t) - y*(t+d) x

Step II:
P(t-l) . P(t-2) - P(t-2)*(t-l)*(t-l)Tp(t-2) (2.3.9)

Cf4(t-l)'P(t-2)*(t-l)

with the initial estimate 0(1) given and P(0) = I .

If C = 1 in the algorithm (2.3.8), (2.3.9) above it becomes the Least 

Squares Algorithm, while if P(t) is made a constant matrix then the 

algorithm becomes the Projection algorithm with the elimination of Step II 

above, i.e.

ê(t) = ê (t-1) + —LlIklLÊlti— (2.3.10)
C-4 (t-1 )TP** (t-1 )
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where P* = al a constant matrix which allows equation (2.3.10) to become:

e(t) = (2.3.11)
C+a^(t-l) 0(t-l)

= 0(t-l) + —-----  (2.3.12)
C +4>(t-l ) 4>(t-l )

which is the Projection Algorithm II.

Since part of the aim of this work is to simplify the algorithm used as 

much as possible, the Projection Algorithm was used ; but it must be stated 

that this is the slowest of the three algorithms mentioned above to convergence, 

though in terms of computation times it is the fastest due to its relative 

simplicity as on-line control computations can be a significant fraction of 

the time between samples. Thus, computation of the Least Squares algorithm 

controller might take longer than for the Projection algorithm. Also, since 

the Projection algorithm gain does not go to zero, it can automatically 

track-time varying parameters whereas for the Least Squares algorithm, 

modifications such as covariance modification or exponential data weighting 

or finite data window, need to be made. Therefore the Adaptive algorithm 

becomes [16] for systems with time delay d,

S(t) = 0(t-d) - L. »(t-d)[l + ^t-d/r^t-d^"^^) (2.3.13)

%

and the control law becomes:

u(t) = *(t)T 0(t) (2.3.14)

where so is a fixed constant and ê(t) is a p-vector of reals depending on 

d initial values e(o)...0(d-l).

Note: 0 < 0Q/êo 2 for stability and convergence.
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The above forms the basic algorithm used in the course of this work. 

Alternatively, another projection algorithm that can be used is also suggested 

in [16] called the Projection Algorithm I. This is given below for complete­

ness for the same system and reference model defined in Section 2.2 .

The Projection Algorithm l:

Let 0O = (a0 »•••*an-]’^0’•’•’^m+d-l>

then y(t+d) = »(t)Te0 (2.3.15)

where

4(t) = (y(t),...,y(t-n+l),u(t)........ u(t-m-d+l))

Again e(t+d) = y(t+d) - y*(t+d)

■ 4t)T e0 - y*(t+d) (2.3.16)

If u(t) is chosen to satisfy *(t)T0 = y*(t+d) the control objective 

will be satisfied, but since ©0 is unknown it is estimated at every time 

step using an adaptive algorithm of the form below:

Ô(t) = ê(t-l) + a.(t).t(t-d)^
1 + $(t-d) ^(t-d)

(2.3.17)

and »(t)Tê(t) = y*(t+d) (2.3.18)

The control input u(t) is then computed from (2.3.18) which is the control 

law, i.e.

u(t) = ------------ [-ê1(t)y(t)-02(t)y(t-l)-,...,-0 (t)y(t-n+i),-0 „u(t-l)
0n+1(t) ' " n

-..••>-9n+ffl+du(t-m-d+l)+y*(t+d)] (2.3.19) 
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where êj(t) denotes the jth element of ê(t).

Note that 0 < a(t) < 2 . Also, equation (2.3.19) can be compared to 

equation (2.3.14) for the Projection Algorithm II. It can be seen that there 

are similarities in the two algorithms.

2.4 PROOF OF THE GLOBAL CONVERGENCE OF THE CONTROL ALGORITHM [16,31]

Conditions for the global stability of the Adaptive control system include 

global convergence of the tracking error to zero with bounded signals, i.e. 

the system inputs and outputs remain bounded for all time.

Essential for the proof of global stability is what is known as the Key 

Technical Lemma [16,31] which is used in the convergence analysis of various 

adaptive control systems. It will be explained and proved below.

2.4.1 The Key Technical Lemma

Lemma: If the following conditions are satisfied for some given sequences 

(s(t)}, {a(t)}, {^(t)} and (b2(t)} :

2
T. 1 im----------- ------------- 1------- = 0 (2.4.1)

t-^ bj(t)+b2(t)a(t) a(t)

where {b-, (t)} ,{b2(t)} and {s(t)} are real scalar sequences and 

{a(t)} is a real (pxl) vector sequence.

2. Uniform boundedness condition

0 < b^t) < K < » and 0 < b2(t) < K < » (2.4.2)

for all t 1

3. Linear boundedness condition 

max |s(t)| 
<T< t

lk(t)|| < C! + C2 (2.4.3)
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where 0 < < ® and 0 < Cg < ®

it follows that:

(i) 1im s(t) = 0
t-x»

(ii) {11o(t)11} is bounded.

Proof: If {s(t)} is a bounded sequence then by (2.4.3) ,{| |a(t) |.|} is a

bounded sequence. Then by (2.4.1) and (2.4.2) it follows that

lim s(t) = 0 . 
t-x»

Now assuming that (s(t)} is unbounded, it follows that there exists a

subsequence {t^} such that

and

Um I s ( tn ) | = ~ 
V"

|s(t)| < |s(tn)| for t < tn

Thus, along the subsequence tn

__________ Mtn)
[b1(tn)+b2(tn)o(tn)Ta(tn)]^

> 1S^n)l
' IK+K||o(tn)|l2]^

- KW||0(tn)||

> x
“ KJ+K5[Cl+C2|s(tn)|]

using (2.4.2)

using (2.4.3)

Hence,
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lim ----------2^------------------------ > 1 > 0
tn- Cbn (tn)+b2(tn)a(tn) *a(tn)] Cg

but this contradicts (2.4.1 ) and therefore the assumption that (s(t)} is 

unbounded is false and the result follows.

2.4.2 Stability Analysis of the Adaptive Projection Algorithm

For the stability analysis of the algorithm given by equations (2.3.13), 

(2.3.14), it is essential to show that the Euclidean norm of the vector 

0(t) = G(t) - @0 is a non-increasing function along the trajectories of the 

algorithm.

Lemma: Along the solutions of (2.3.13) and (2.3.14)

(1) l|è(t)||2 - ||è(t-d)||2 < 0

(il) lim-----. ,■ = 0 
t-*» lf*(t)'*(t) * 

where G(t) = G(t) - G^ .

Proof of (i) using (2.3.13):

I|è(t)||2 - 110(t-d)112

1_ [l/B.6(t-d)T*(t-d)e(t)2 _ Z*(t-d)T0(t-d)e(t)'
Bo [[l+*(t-d)'t(t-d))2 [l+*'(t-d)T$(t-d)J ,

(2.4.4)

but on the R.H.S. there is a term ^(t-d)G(t-d) which can be rearranged, i.e.

^(t-d)To(t-d) = #(t-d)T[Q(t-d)-Go]

- ^>( t~d )^G (t~d )-^ (t~d )^ô^

- (from equations (2.3.5) and (2.3.14).
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Substituting this back into (2.4.4) and rearranging:

Hè(t)||2 . ||è(t-d)||2 .2- 

Bo

2
6O

1 / Bg .♦ ( t-d )T* (t-d ) 

l+^(t-d)T$(t-d)
____ ejV____  

l+#(t-d) ^(t-d)

(2.4.5)

from which the dotted block

l/BQ.*(t-d)\(t-d) ;

l+*(t-d)T*(t-d) Bq

1 ?
and if — < - ——

Bo " 6O

—> — £ -2 which is true (see (2.3.14)).
Bo

Then the whole R.H.S. of (2.4.5) will be zero or negative, hence

I|o(t)||2 - ||o(t-d)||= ~-
2 1 / Bo. 4> (t-d )^<|> (t-d )

% lf<& (t-d)^# (t-d )
____ _________
If^(t-d) <j>(t-d)

< 0 (2.4.6)

For part (ii) of the lemma it is noted from (i) that ||0(t)||2 is a

bounded non-increasing function, hence it converges. From equations (2.3.5) 

and (2.3.14) :

*(t)G(t) = e(t+d)

thus (ii) becomes:

lim----------ÉB+d) = 0 
t^ (l++(t)'*(t)]*



21

Noting that

1
' 2 l/B°.*(t-d)T*(t-d)

% l+^(t-d)T^(t-d)

is bounded away from zero, it is concluded that

lim—----- = 0 using (2.4.6) 
t-H» ]+(}) (t) 0 (t)

and hence

lim------ ÈÜ+d) = o . 
t*» [l+*(t)'t(t)]*

Alternatively, using the Key Technical Lemma (K.T.L.), condition 1 of K.T.L. 

is established with s(t) = e(t), a(t) = *(t-d), ^(t) = 1, b^(t) = 1 . 

Condition 2 is also clearly satisfied. While to establish condition 3, 

namely that ||*(t-d)|| is bounded by e(t), it is noted from [31] that 

there exists constants m^ < « and m^ < » such that

u(k-d) 5 m^ + m^ max |y(i)| for all 1 < k < t

Therefore, using the definition of *(t-d),

||4>(t-d)|| <_ p{m3+[max(l,m,)] max |y(i)|} 
1 <T< t

where p is the dimension of *(t-d); but

|e(t)| > |y(t)| - |y*(t)| > |y(t)| - m1 ; m, < - (see Section 2.2b) .

Hence:

||f(t-d)|| <_ p{m3+[max(l,m4J max (|e(T)|+m1 )}
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= c, + c9 max |6(t)| 
1 <T<t

0 c-| <oo, 0 < Cg < °°

and it follows that the linear boundedness condition is also satisfied.

The properties of this adaptive algorithm which is used also include:

(i) I|0(t) " ®qIl l 1|S(t-d) ' 0q11 < l|ê0 - Ogll ; t > d

N
( i i ) 1 im ---------- < 00

N-*» t=d lf^(t-d)'#(t-d)

( i i i ) 1 im | |©(t) - 0(W)|| = 0
t^«o

N ,
(iv) lim y ||ê(t) - ê(t-d)|| < ~

N-®-” t=d

The proofs of these can be seen in [28] and the appendix.

2.5 MIMO SYSTEMS INTRODUCTION

Although a large amount of literature exists on adaptive control, with 

few exceptions, e.g. [16,37-42], most have been devoted to SISO problems. 

While attempts have been made at extending these SISO algorithms to the 

multivariable case, there have been difficulties, i.e. finding equivalent 

a pfiMVu, information similar to those in the SISO algorithms (i.e. (a) know­

ing the upper bounds on the plant order and the relative degree of the plant 

transfer function, (b) polarity of the high frequency gain, and lastly (c) 

the time delay d of the system must be known), and what to do about cross 

couplings between system inputs and outputs.

In [37], Elliot and Wolovich approached the MIMO control problems using 
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linear multivariable system theory and came up with the idea of an interactor 

matrix, (this will be defined and explained briefly later), which gives a 

measure of the a pnZoul information on the system. Unfortunately for this 

work, their algorithm is in continuous time and it is not strictly speaking 

a model reference scheme. However, their work led to Goodwin and Long [38] 

extending the results of [16] to a wider class of systems with the introduc­

tion of the system interactor matrix.

In [39] Johannsson went a bit further in deriving a direct adaptive 

controller which can tackle some non-minimum phase systems; but although 

part of his criticism of [16] includes its being overparametrized, his own 

algorithm for the minimum phase system reduces to a similar algorithm to 

that in [16] and [38].

In [40] a robust algorithm is proposed which does not require persistency 

of excitation and this will be dealt with in the next chapter, while both 

[41,42], though having interesting algorithms, [41] using an Indirect Adaptive 

Controller and [42] an algorithm based on the theory of Variable Structured 

Systems (V.S.S.) but in continuous time, were not considered due to the frame­

work within which this thesis is based.

Since a simple algorithm is required, the MIMO adaptive algorithm applied 

to the rigs in this work was based on that in [38] which as mentioned above 

for minimum phase systems is similar to that suggested in [39].

2.5.1 MIMO Systems

For Multi-Input Multi-Output systems described in D.A.R.M.A. form

A(q-1)y(t) = (2.5.1)

where (u(t)}, (y(t)} denote the r*l and mx] input and output vectors 
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respectively, the following assumptions are made:

1. The transfer function T(z) A B(z-1)/A(z"^) has rank m .

2. Upper bounds are available for the orders of the polynomial.

3. The system is stably invertible.

4. ç(z) (the interactor matrix) is known.

From multivariable theory output tracking is possible only when r m 

and if r > m, some inputs are discarded without loss of generality in the 

control law, but for the course of this work all systems and/or rigs have 

r = m in their multivariable versions.

2.6.1 The Interactor Matrix Çy(z)

A reasonable definition of the interactor matrix Çy(z) will be to say 

it is the multivariable equivalent of the time delay in the SI SO systems.

For any full rank mxm transfer matrix T(z) there exists a unique non­

singular mxm lower left triangular matrix 5y(z) known as the interactor

matrix of the form

fi fm
^(z) = Hy(z) diag[z ,...,z ] 

where

' 1 . 0

hni (Z )
Hy(z) = ; • •

^ml(z) ^m2^ ' 1

(unimodular

(2.6.1)

(2.6.2)

and h^j(z) is divisible by z 

and f. > d. & min d.. , and 
=l<j<m

or is zero,

djj is the delay between the jth input and

the ith output.

In many cases of interest, 5y(z) can be taken to have the form of a

diagonal matrix [33], i.e.
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Form 1 : ç(z) = z^I where d = min d.. 
ij J 

where d is a single delay associated with every output.

Form 2: ç(z) = diag[d1,... ,dm] where di = min d^.

here d. represents the delay to the ith output.

Also the interactor matrix satisfies

(i) det ç(q) = qm where m is an integer

(11) 1 1m ç(z)T(z) = K where K is a nonsingular matrix
Z-X”

(iii) t(z)~l is a stable operator

(iv) For a strictly proper transfer matrix T(z) then f^ to f in 

(2.6.1) are non-zero.

2.6.2 The MIMO Adaptive Algorithm

From the works in [37-39] it becomes obvious that the interactor matrix 

must be included in the reference model. So in the course of this work the 

interactor matrix is taken to be a diagonal matrix consisting of time delays 

between each input and output.

Considering the system given in (2.5.1), i.e.

A(q-1)y(t) = B(q'l)u(t)

Let s(q) = F(q)A(q"1) + G(q-1) (2.6.3)

where F(q) - Fo^ Fd'_j q (2.6.4)

Gfq'1) = Gg + G^q 1 +...+ q " (2.6.5)

d' = maximum advance in ç(q).
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Multiplying (2.5.1) by F(q) gives:

F(q)A(q"1)y(t) = F(q)B(q"3)u(t) (2.6.6)

using (2.6.3)

6(q)y(t) = G(q-1)y(t) + F(q-1)B(q-1)u(t)

= a(q"1)y(t) + B(q"3)u(t) (2.6.7)

where ÿ(t) = ç(q)y(t) (2.6.8)

and 60 is non-singular.

However, the objective is to design an adaptive control law such that 

{y(t)} and (u(t)} remain bounded for all time and that {y(t)} asymptotically 

tracks a desired reference model output sequence {y*(t)}. Hence, defining 

y*(t) “ S(q)^(t) the closed-loop system will be characterized by:

’ c(q)
. A(q^)

0 If y(t) '
B(q-1) K u(t) .

C(q) y„(t)
(2.6.9)

Now let y(t+d) = ÿ(t) using assumption of ?(q), and y*(t+d) = y*(t) 

where

y < t+d ) =
' yft+d^

I 
I

. V*+dm)

and y*(t+d) =

and defining

' (t+d,) ' yi(t+d])
I 
I

(t+dm> 
II (2.6.10)



| Bg = diagonal polynomial matrix

Rq = upper triangular matrix with zeros in the diagonal

y2 = system output

U(t)= control input

ym = model output 
1

yCt)^ y^Ct)^ where y^ = measured system output 

y^(t^ y2 = other measured outputs

* *

* .?2 is a polynomial - unimodular matrix

is specified by designer
*

S = a diagonal matrix which contains the zeros of the system
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while from (2.6.7) and (2.6.8)

y(t+d) = a(q"l)y(t) + B(q~l)u(t) (2.6.11)

factoring out bq from the above, it can be rewritten as (see [16,38])

y(t+d) = B0{u(t) + D(q-1)u(t-l) + C(q*')y(t)} (2.6.12)

where
D(q-1) = e^t^q-1) - I] (2.6.13)

C(q-1) = B;1[a(q'1)) (2.6.14)

Subtracting y*(t+d) from both sides of (2.6.12) gives:

e(t+d) = B0{u(t) + D(q-1)u(t-l) + C(q'1y(t) - BÔ1ym(t+d)}

(2.6.15)

Note the similarity of this to what obtains in [39] where 

* B*[u+Rou+R*u+S*y-T3y1m]

e(t) = y,(t) - y^(t), e,(t) = T%e(t)

where

tX ■ 1 and V^(t) = y,m(t)

For explanation of terms used above JPe

Equation (2.6.15) can be written in the form:

e(t+d) = B0(u(t) - e^(t)) (2.6.17)
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where is an mxn* matrix consisting of the coefficients in [C(q-1), 

D(q"l), Bq1] , while *(t) is an n'x] vector given by

♦(t) - [-y(t)T,-y(t-l)T,...,-u(t-l)T,-u(t-2)T,...,y*(t+d)]

with all these components being measurable.

Analogously to the SI SO case this results in the following algorithm: 

e(t+d)T ’ e^t+dp 
। (2.6.18)[i+*(t)T»(t)]'\(t)T

and the control law:

u(t) = (2.6.19) 

where d = max(dp.,.

and P = matrix of constants specified a pnlonX (it represents Bq1)

For global convergence of the adaptive algorithm, defining

0(ttd)T = o(t+d)T - and K = Pbq .

T T
If K +K-K K is positive definite then along the trajectories of equations 

(2.6.18) and (2.6.19)

(a) trace[ 0(t+d)To(t+d)] - trace[0(t)Tê(t)] <_ 0 

e.(t+d.)
(b) lim------ h ■ y ■ i - 0 1 < i < m

t^ M+^(t)^(t)]^

and the algorithm ensures that {y(t)}, (u(t)} are bounded and that

lim ly^t) - y*(t)| = 0 for i = 1,... ,m
t'Xo m
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The proof of the above is now shown [11].

(a) Rewriting (2.6.17) using (2.6.19) as

e(t+d) = Bo0(t)T*(t) (2.6.20)

then (2.6.18) becomes by subtracting 9^ from both sides:

è(t+d)T = eT(t) - Kô(t)^(t)(l^(t)^(t))'^(t)^ (2.6.21)

and
trace(e(t+d)Te(t+d)) - trace(è(t)^ê(t))

-trace (KT+K-[KTK) 4(t)\(t) } (è(t)T*(t).+(t)Të(t) }

[l+*(t)T*(t)] (U*(t)T*(t)] ,

< 0 if K^+K-K^K is positive definite.

- T
(b) From the above, it is implied that e(t+d) e(t+d) is a bounded non­

negative, non-increasing function, hence it converges thus:

1 im trace(KT+K-[KTK] —— )•( )
t^ )l+^(t)^(t)l )l+^(t)^(t))

= 0

Since K^fK-K^K is positive definite, then

1im 0(t)T*(t).+(t)T§(t) = 0
t*. (l+*(t)T*(t)]

or, using (2.6.20)

ll1-'
ej (t+d1 )• 

I [l+*(t)T$(t)l [e](t+dj), - 0

from which (b) is implied and holds.
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2.7 COMMENTS

(a) The key conclusions in this chapter for the Model Reference Adaptive 

Control Scheme (MRAC) are:

(i) Closed-loop stability is achieved for both SI SO and MIMO systems/plants, 

i.e.bounded inputs, bounded outputs.

(ii) The output tracking error e(t) asymptotically goes to zero as the 

time becomes very large, implying that perfect tracking of the reference 

model output will be achieved.

(b) Although the algorithms described in this chapter are globally stable 

adaptive control schemes, this does not necessarily mean that they are 

robustly stable. This has been shown in [21]. The reasons for this 

are not far-fetched as it must be realized that the basic algorithm as 

it is has been designed for the ideal case where it is assumed that 

the plant is a Linear Time Invariant (LTI) system whose dynamics can be 

perfectly described by a model and with no consideration for disturbances. 

Although Goodwin and Chen [43] have results relating to the adaptive 

control of LTI systems having purely deterministic disturbances, such as 

sine waves, biases, etc. This shows that the existing algorithms, i.e. 

06,381 can be applied without modification to systems having purely 

deterministic disturbances.

(c) During the course of this work one of the interesting points noted was 

the way in which the P-matrix in the MIMO algorithm could be used to 

decouple a system, as will be seen later on in Chapter 5 on the Coupled 

Electric Drives rig. Experiments carried out on the Coupled Hydraulic 

Tanks in Chapter 4 show that an effective choice for the P-matrix is a 

diagonal constant matrix of reals, which is interesting as this choice 

does not consider the effects of cross coupling and/or interaction. 

This seems to support the work of Yang and Lee [44] in which it was found 
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that MIMO systems were less sensitive to accuracy of models than SISO 

systems, partly because there are a larger number of parameters being 

used in the MIMO algorithms.

The robustness problem then leads to the next chapter in which two 

different Robust algorithms are explained and during their analysis it is 

shown that they both are quite similar.
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Chapter 3

ROBUST MRAC SCHEMES

3.1 INTRODUCTION

In adaptive control the automatic adjustment of feedback laws to control 

unknown fixed or slowly varying plants is the fundamental or core element of 

the algorithm. The standard means of obtaining this adaptive control is 

through the use of a recursive algorithm using the input-output data of the 

plant to calculate on-line a feedback control input based on this information. 

For the stability and convergence analysis of the schemes, some assumptions 

are made, i.e. the controlled system is linear time invariant, of finite 

order with a known upper bound on its order n, its relative degree n* 

and the sign plus magnitude of the high frequency gain k^ . Also assumed in 

most stability analyses of these algorithms is the absence of noise or 

disturbances. But these finite dimensional, linear differential or difference 

equations are mathematical tools which, although they have been quite useful 

and accurate in the description of physical systems, are merely approximations 

of these physical systems - these physical systems being infinite dimensioned 

physical phenomena . Thus, in view of all these, difficulties were bound to 

crop up in schemes such as MRAC in which the physical system is expected to 

match the Reference model (Designer specified) of finite dimension under even 

an ideal situation which is noise and disturbance free. This raised the 

question of how an adaptive algorithm, which assumes a certain model order, 

will function when used on a system of higher order, affected by noisiness 

and disturbances. Work done in this area by Rohrs et al [21], Ioannou and 

Kokotovic [45] and Egardt [15] showed that unmodelled dynamics or even small 

bounded disturbances could cause most of the algorithms in [13,14,16,11] to 

go unstable, even though these algorithms have global stability properties.
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Also, in the case of bounded disturbances, another problem faced was the 

possibility of the control parameters drifting and becoming unbounded, 

even while the state error between the plant and the model remains bounded, 

see [46].

The problems raised above led to a lot of researchers investigating the 

robustness properties of adaptive control schemes in [22-29,47-56] amongst 

others. By robustness, it means stability of the adaptive control system is 

guaranteed even in the presence of unmodelled dynamics and bounded distur­

bances or noise. From the work of various researchers it became clear that 

robust properties are achievable for some systems without modifications (see 

Cook and Chen [47], Goodwin and Sin [31], Samson [56] amongst others), provided 

the magnitude of the disturbance or modelling error is small compared to the 

magnitude of the reference signal and model used; but clearly the problems 

above indicated a need for modifications in the adaptive algorithms used so 

as to make them have robust properties. Amongst the different solutions that 

came up are (i) normalization, (ii) dead zones, (iii) persistency of 

excitation, (iv) parameter bounds, and (v) the a-modification. These will now 

be discussed in the next section.

3.2 MEANS OF ACHIEVING ROBUSTNESS

As mentioned in the previous section, five of the most favoured ways of 

achieving robustness in adaptive control are:

(i) Persistency of excitation: This is favoured by people such as Narendra 

[24], Anderson [49], Kreisselmeier [53] and Cook [47,48]. What this 

means basically is that for robustness the signals, such as the reference and 

control inputs have to be persistently exciting so as to nullify the effects 

of disturbances and unmodelled dynamics present in the system. Various 
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definitions of a persistently exciting signal are available, but they all 

generally imply that the signal is defined as persistently exciting if it 

is [49] a combination of p distinct frequencies (usually of sinusoids) for 

a model of dimension 2p = n+m. In some papers a signal referred to as being 

sufficiently rich implies a persistently exciting signal. Some of the 

definitions are given in mathematical form below.

(a) From [24] a bounded vector u : R+ * Rn is said to be persistently 

exciting if constants tQ, TQ and eQ exist such that

i t-T j u (T)udt i % V t > (3.2.1)

for all unit vectors w e Rn
OR

a bounded vector u : R"*" Rn is said to be persistently exciting if 

positive constants TQ,60 and eQ exist such that a t2 exists with 

[t2,t2+60]c |t^t+TQ| and

(3.2.2)

for all unit vectors w € Rn

(b) From [31,49] another definition is, a scalar input [u(t)} is said to 

be strongly persistently exciting of order n if, for all t, there 

exists an integer i such that

pj I >
t« [ 

ï : 
k=t ù(k+l) J

[u(k+n),«..,u(k+l)] > P2I (3.2.3)

where ,pg > 0.

A point of interest is that Astrom [57] stated that part of the reasons 

for the results in [21] was the fact that the reference signal used was not 

exciting enough to cope with the disturbances and error used, i.e. for 
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constant/step reference inputs the persistency is of order 1, which is not 

sufficiently exciting to cope with, say, sinusoidal disturbances which are 

of order 2. He also points out that unmodelled dynamics will not cause any 

difficulties if the frequency of the reference signal is sufficiently low and 

sufficiently large in magnitude to overcome destabilizing effects from high 

frequency inputs or noise.

A major criticism of the requirements of persistency of excitation is 

that the disturbances must be bounded below the exciting signal, otherwise 

the disturbance can counteract the excitation and this leads to the persis­

tency of excitation being reviewed continuously to make sure this does not 

happen, as there is no specific or standard persistently exciting signal 

that can cope with all disturbances.

Also, for direct adaptive control, where exact identification of plant 

parameters is not essential, the persistency of excitation condition can be 

avoided.

(ii) Dead Zones: Although there are different approaches to this, it 

basically means that within certain Iimits/bounds/thresholds a priori 

defined, the adaptation mechanism is switched off. It is mainly used to . 

tackle bounded disturbances, preventing instability by elimination of the 

integral action embedded within the adaptive laws. The logic behind the dead 

zone being that when the tracking error is small, compared to a known upper 

bound of the amplitude of the disturbance say, the error is no longer useful 

in bringing out information for the adaptive control laws. Thus, to continue 

using this tracking error within the dead zone region might be to have the 

disturbance influencing the adaptation which will have the effect of deterior­

ating the control parameters and consequently affect the adaptive controller 

as well. The choice of dead zone is crucial for stability as the larger the 

dead zone, the shorter the period of time for adaptation to take place and 
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thus the larger the output and parameter errors. Smaller dead zones lead 

to smaller output errors and examples of these are shown in Chapter 4. Thus, 

for a good choice of dead zone, use must be made of a priori knowledge of the 

plant parameters and magnitude of the disturbance. In some papers, effects 

of unmodelled dynamics have been manoeuvred to represent disturbances for 

which dead zones can be applied, (see, for example, [46,52,27]).

(iii) Normalization: The use of a normalizing signal allows the unmodelled 

dynamics to be characterised in the form of noise to signal ratio.

Thus, it bounds the modelling error (see Praly [29,54]) and causes the adaptive 

law to see the effects of unmodelled dynamics as a bounded disturbance.

Normalizing signals play an important role during the transient by guaranteeing 

slow adjustment of the controller parameters where appropriate. The smooth 

adjustment of the controller parameters reduces the excitation of the unmodelled 

dynamics by the control input and therefore improves the accuracy of adaptation. 

Examples of normalizing signals used in the literature are:

From [22] m « -^m + 6^ |u|+|y|+l ), m(o) (3.2.4)

where are positive design parameters and 

u = input, y = output of system, respectively.

From [27] N(t) = yQ + m(t)

m(t) = aom(t-l) + |u(t-l)|+|y(t-l)| ' (3.2.5)

0 < a0 < 1, m(o) 2 0 .

r is designer chosen.

From [281 p(t) = pp(t-l) + max(||*(t-d)||?,p) (3.2.6)

p > 0, u e (0,1), *(t) = (u(t)........ u(t-ns), 

y(t),...,y(t-nR))T

From [29] S(t) = oS(t-l) + max{|y(t-l)|+1 u(t-d)|,S} (3.2.7) 

0 < o < 1, S > 0.



37

All the above can be seen to be of the same form, and later on in 

Section 3.5 will be shown to be similar.

(iv) Parameter Bounds: Forms of this include [27,29] in which it is 

proposed to keep the estimated parameters inside a chosen sphere using 

a projection, while others are of the form in [55,56] where an upper bound 

for the norm of the controller parameter vector is defined. In the first 

case, adaptation takes place only within the chosen set, while in the second 

adaptation goes on so long as the norm of the parameter vector does not exceed 

M0. Compared to the dead zone modification, this modification guarantees 

zero residual tracking error and potential convergence of parameters to their 

true values in the ideal case; but the first of the forms, i.e. "projection 

sphere" is the best as it eliminates the possibility of burst phenomena 

associated with parameter drifts as in [27].

(v) The a-modification: This was first suggested by Ioannou and

Kokotovic [45]. It consists of adding an extra term -06, o > 0 to 

the adaptive law equation (see also [22]). It is shown that the a-modification 

guarantees existence of a large region of attraction from which all signals are 

bounded and the tracking error converges to a small residual set. A new form 

of this modification has been proposed recently by Narendra and Annaswamy [58] 

in which o is replaced by a term proportional to |e| where e is the 

output tracking error. One of the advantages of the a-modification is that it 

requires no new a priori information in its design. It also requires no 

persistently exciting signals, but it is in continuous-time.

In different papers the various modifications above have been incorporated 

to the adaptive algorithms to make it more robust. In some cases the 

modification has been limited to only one, i.e. dead zone in [46] or parameter 

bounds in [55], or normalization in [28], while in others it has been a com­

bination of two or more of the above, i.e. [27,29,56,59]. In the course of 

this work, focus was on two particular modified algorithms, namely those
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suggested by Kreisselmeier and Anderson [27] and Ortega et al [28], which are 

both in discrete-time, hence suitable for use on a microcomputer. The 

description and analysis of the two algorithms now follow in Sections 3.3 and 

3.4, respectively.

3.3 THE KREISSELMEIER AND ANDERSON ALGORITHM [27]

This algorithm makes use of a normalizing signal, together with a 

relative dead zone and a parameter projection in the adaptive control law to 

achieve robust stability of the scheme with respect to unmodelled plant 

uncertainties and disturbances. In general, parameter estimates using the 

scheme do not converge to their true values, even when no modelling errors 

are present due to the use of a relative dead zone, but will converge to a 

neighbourhood of the true values. A priori information needed includes 

knowledge of bounds on the plant and controller parameters plus bounds on the 

modelling error. A description of the algorithm and proof of the robustness 

now follows.

The plant or system is represented by the equations

A(z^)y(t) = B(z^)u(t) + %(t) (3.3.1)

where A(z^ ) - 1 + a^z^ +...+anz"n

B(zqj = b^O+^z’1 +...+ bmz’m

= bQz"d B(z’l) ; m = n-d 

u(t),y(t) are the measurable input and output respectively, and 
z"1 denotes the unit delay operator; d is the system time delay 

with n >. d > 0.
T^(t) + modelling error = Afz’^yÇt) - B(z-1 )u(t) (3.3.2)

(also contains the disturbances).
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The reference model is chosen as:

" z’Vw (3.3.3)

where b > 0 m 
yz’1) = 1 + am 1z’1 +...+ j ; a strictly stable polynomial

and r(t) reference input which is bounded in the modulus by a

known constant.

3.3.1 The Model Reference Adaptive Controller and Adaptive Law

Defining 
aV1) = (z-\z-2. z-n]

Y^t) = S(z"1)u(t)

y2(t) = a(z-1)y(t)

vT(t) = tr(t)V(t),v^(t) ]
I

eT(t) - ieo(t)4(t),ej(t)]

(3.3.4)

(3.3.5)

(3.3.6)

then the control law is chosen as:

u(t) = vT(t)0(t) (3.3.7)

(Notice the similarity of this to the basic algorithm control law in

Chapter 2, i.e. (2.3.14)).

Also defining

m(t) = aom(t-l ) + |u(t-l)| + |y(t-l)| (3.3.8)
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where O < aQ < 1, m(O) _> 0 

then the modelling error Y^(t) is said to be relatively bounded if there is 

a finite p 0 and m(0) _> 0 such that

l\(t) < pm(t) (3.3.9)

Proof:

Let the true plant satisfy y(t) = f(£(t),t) (3.3.10)

where £(t) = [y(t-l),...,y(t-n), u(t-l),...,u(t-n)]? (3.3.11)

and n > n

Defining

C(z"1) = 1 + CqZ-1 +... c--nzn’n (3.3.12a)

an arbitrary polynomial with

-----L- = Ï (3.3.12b)
C(z ') 1=0 1

and property:

f hjl %1* = y < « (3.3.12c)
i =0

i .e. C(z?l) = 0 implies || < oQ ,

combining (3.3.2) and (3.3.10), using C(z~l), gives:

C(z-1)^(t) = C(z'1)(A(z'1)y(t)-B(z‘1)u(t)]

■ y(t) - bt i(t)

where £ is a constant vector containing the coefficients of the polynomials
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C(z*] )A(z-1 ) - 1 and C(z-1 )B(z-1 )

= A(t) (3.3.13)

Now let

< Efllîll0 for all £ and t > 0 
0

n . ,
where H£||° = » ’(Iql + ki+n|) o « (0,11

Also, assuming m(0) > ||5(0)|| means that m(t) | |^(t)|| for all 
” °o o

t 0, and it follows that

|l\(t)| = |C"\z-l)[f(£,t) - £T £(t)] |

» I I YJf(l(t-i),t-i) - A(t-i)]| 
i«0

< I hi I • lli(W)ll<, 

isO 0

- ef Jo

< ef J hi I • "Ô1 mh) 

1 RU

< ef ? m(t) = ym(t) ; hence proved.

Define 6* a constant parameter vector = t@*,9^,0*']' 

where ©* = bm/b and Gf,G * are such that 
o m o -1 -c

[iVCz^^ilACz"1) - B(z-1 )qT(z-1 • ^(z’1 JBJz'1 )

and let £(t) = £(t) - £*, then the model reference objective is said to be 

satisfied if 8(t) = 0 and ^(t) = 0, i.e. if £(t) = ®* and v = 0.
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The adaptive law containing the dead zone and projection to achieve this 

objective using normalization is now defined.

Defining

wT(t) - [(l/bjz^jz-1 )y(t),vj(t),v^(t)] (3.3.14)

the identification error:

E(t) = wT(t-d)e(t) - (t-d)O(t-d) (3.3.15)

and normalizing factor N(t) = Yo + m(t) ; y0 > 0 (3.3.16)

then the relative error E^(t) - E(t)|H(t) (3.3.17)

The adaptive control parameters are then chosen using the following 

adaptive algorithm in two steps:

Step I e(t+l) = e(t) - w(t~d)N(t)D(E](t)) (3.3.18a)
Y-|+wT(t-d)w(t-d)

where D(E^(t)) the relative dead zone (see Figure 3.1) is defined as:

0
D^) = El^O

I El+dp

lEll < do 
if E, > d0 
if E! < dQ

(3.3.18b)

Step II

ei(t+T) =

' ê,(t+l)

' 6i ,min
0 •i ,max

if ei,min — ei(t+i) — ei,max 
if Gi(t+1) <
if 0i(t+i) * ei .max

(3.3.18c)
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-d

Figure 3.1 The dead zone function D(E^)

Again, as in the Basic MRAC algorithm (see Section 2.4.2), the adaptive 

parameter algorithm used here has the following properties:

(i) ||e(t)|| 5 constant where e(t) = £(t) - e*

(ii) lim D(Eq(t)) = 0 
t-M»

(iii) lim [è(t+l) - ô(t)] » 0
t-*œ

Note that the above properties are quite similar to those in Section 2.4.2 

with their proofs being derived in a similar manner. Hence the proofs of these 

will not be given here (see [27,31]).

3.3.2 Proof of Robust Stability [27]

To establish the robust stability of the closed-loop adaptive control 

system, a bound on N(t+l)|N(t) is derived first.

From (3.3.8), (3.3.16):

N(t*l) = a0H(t) ♦ T0(l-«0) + |y(t)| + Iu(t)| (3.3.19)

Rewriting (3.3.2), using (3.3.5), it becomes:
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y(t) = bT Y1(t) - aT v2(t) + (3.3.20)

expanding (3.3.7):

u(t) = e0(t)r(t) * ejttlv^t) 4 0^(t)v2(t) (3.3.21)

(3.3.6), (3.3.8), (3.3.16) imply:

l|V](t)|| + I |v2(t)| | < n <n N(t) (3.3.22)

for some finite tg > t^, it follows that for t > tg

N(U1) = [oo + k} + u]N(t) + T0(l-o0) + |e0(t)r(t)|

1 n + %n k1 + vlN(t) + |e0(t)r(t)|

< (1 + 0;n k1 + doko + k2)N(t) = A(d0)N(t) (3.3.23)

d
where y_ = -----°-------- (3.3.24)

V u •
il

and k0 > —g----1-------- (3.3.25)

Jo

k, > sup (0 (t)r(t)|N(t)l (3.3.26)
t>t2 °

Rewriting the input and output of the closed-loop system to facilitate 

analysis of closed-loop stability in terms of m(t) implies:

y(t) = tbm|Am(z'1)]{r(t-d) + E2(t)N(t)|e0(t)} (3.3.27)
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where E?(t) = [vT(t-d)è(t-d) + (t)]e0(t)|(e*N(t)]

with (t) = P(z"')t|(t) ; P(z-1) as defined in [271,

while i b _d

+-------.1 / -1 n(t) (3.3.28)
Vz )B(Z ’)

where E3(t) = [vT(t-d)è(t-d)]/{N(t)[l+e*/eo(t)]}

Let the impulse responses of b^/A^, bmz"dA/AmB and S gg/A^B all be 

bounded in modulus by K a* where 0 a < 1. Suitable constants Kq,K^,K. 

Kc,ac can be obtained using available prior information. Then noting that 

r(t) is bounded by a constant, that for arbitrary d^ > dQ there exists 

T > tg such that Eg(t) <_ d^ and Eg(t+d) £ d^ whenever t T and that 

N(t), (t _< T) is bounded, then for t _> T equation (3.3.27) reduces to:

|y(t) | 1 const + f ^c"1 d1N(i)/90(i)

< const + (l/e^)^ jT a™ m(i) (3.3.29)

and (3.3.27) becomes:

t t . *
Iu(t)| < const + J Yc" <d]N(i+d)[l/8Q + l/eo(i+d)]+u N(1)}

< const + Kc[2d1Ad(do)/0Ojm1n+doKo] J a^mfi) (3.3.30)

where N(t+d) <_ Ad(dQ)N(t) and u u0 £ d^

Equations (3.3.16), (3.3.29), (3.3.30) then yield:

m(t+l) < o0m(t) + Ko + ^(dp f m(i)
(3.3.31)
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where IC is a constant 

and Vd1> (3.3.32)

Defining

S(t+1) = aom(t) + Ko + E aJ"1 m(i) ; (t T) (3.3.33)

it follows by comparison to (3.3.31) that if m(T) m(T) then m(t) m(t) 

for all t > T, i.e. m(t) is an upper bound of m(t).

Equation (3.3.33) can also be written as:

Ko + <Km(d])/(l -(z-a0)m(t) (3.3.34)

which is equivalent to a feedback configuration with a closed-loop character­

istic equation:

1 + [a0 + oc + yd^JZ-1 + o0ocZ*2 = 0 (3.3.35)

from which stability is obtained if

IW < (1 -a0)(l - ac)

where aQ,oc lie in (0,1) and ^(d^ ) is positive. This gives rise to the 

conclusion that if the dead zone is chosen so that dQ > 0 and Km(dQ) < 

(1 - aQ)(l - ac) then, since ^(’J is a continuous function, there always 

exists d^ > d0 satisfying (3,3,35) which implies stability of the system. 
Also, since y(t) - ym(t) = ^/A^(z^)l^(t)N(t)/^ which is the output 

error, where E%(t) is known to converge to the interval [-dQ, dQ], then 

the relative output error [y(t) - ym(t)]/N(t) will be proportional to the 

size of the dead zone.
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3.4 THE ORTEGA, PRALY AND LANDAU ALGORITHM [28]

This algorithm is based on the use of normalization in parameter 

estimation for the achievement of robustness. The adaptive control system 

is assumed to be affected by reduced order modelling and bounded output 

disturbances. The description of the algorithm now follows.

The plant is described by:

A(qq)y(t) = q"dB(q’1)u(t) + d(t) (3.4.1)

where A(q'1) and B(q"^ ) are polynomials in q^ with

A(q"l) = 1 + a^’1 +...+ afi q a (3.4.2a)
d

B(q-1 ) = bQ + b^"1 b q b (3.4.2b)

and u(t), y(t), d(t) are the input, output and disturbance sequences. 

Note also that d(t), the disturbance, also includes the effects of 

unmodelled dynamics.

Defining S(t,q^) and R(t,q^ ) as two polynomial functions in q^ 

of degrees n$ and nR respectively, with time varying coefficients, i.e.

S(t,q-1) = sQ(t) + s1(t)q*1 +...+

R(t,q-1) ■ rQ(t) + r^tjq*1 +...+

Let the reference model be defined as:

E(q-1)ym(t) = q~^H(q”^)r(t)

5

(3.4.3)-nR

(3.4.4)

where r(t) is the reference input, ym(t) the reference model output and 

d is the plant time delay.



48

For this algorithm the objective is to minimize the filtered tracking error

e(t) = CR(q-1)[y(t) -ym(t)] (3.4.5)

where C^(q"^) is a stable polynomial, the roots of which are the desired 

closed-loop poles.

The approach used here is similar to that in pole-assignment in which 

one solves

R(t,q-1)y(t) + S(t,q*])u(t) = CR(q-1)ym(t+d) (3.4.6)

to obtain the control law, but

R(t,q-1)y(t) + S(t,q-1)u(t) = eT(t)*(t) (3.4.7)

where 0(t) ~ [s^ft).........Sn (t)»rq(t)........ Fp (t)]
S R

(3.4.8)

and ♦(t) = [u(t),...,u(t-ns),y(t)........ y(t-nR)]T (3.4.9)

thus 0T(tH(t) = CR(q‘1)ym(t+d) (3.4.10)

from which the control input is derived as:

U(t) = [-$■] (t)u(t-l),-... ,-sn$u(t-n$)-r0(t)y(t),-...

* CR(<T1)ym(t*d)J 

(3.4.11)

Note once again the similarity of this control input to that of the Goodwin 

et al projection algorithm 1 [16] which was mentioned in Chapter 2, but here 

the parameter adaptive algorithm is different from that in [16]. This is now 

described.
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3.4.1 The Parameter Adaptive Algorithm Including Normalization

Defining p(t) the normalization factor,

p(t) = pp(t-l) + max(|$(t-d)|2,p) ; p > 0, p e (0,1 ) (3.4.12)

where p is a small positive constant that defines a lower bound to p(t). 

The choice of time constant y being a compromise between algorithm alert­

ness and robustness (see Chapter 4). Boundedness of *(t) is ensured if 

there are $(t) independent properties which are obtainable when e(t) and 

4(t) are normalized. Normalized signals will be denoted by (7) and are 

defined as:

♦ (t-d) & p(t)4 *(W) (3.4.13a)

ê(t-d) a p(t)-4 e(t-d) (3.4.13b)

In [28] two algorithms are suggested for implementation:

1. Constant Gain (C.G. ) parameter algorithm given by:

e(t) = e(t-d) + F *(t-d)e(t) (3.4.14)

where F is a scalar constant > 0.

2. Regularized Least Squares (R.L.S.) parameter algorithm given by:

e(t) = o(t-d) + F *(t-d)e(t) (3.4.15a)

where F is a time varying matrix defined as:
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(i-yx,)[F(t-d) -F = F(t)
A + î (t-d)F(t-d)J(t-d)

(3.4.15b)
and aq < A^ ; AQ,ApA being strictly positive scalars.

The eigenvalues of F(t) are contained in the chosen interval [a tAp.

Bearing in mind the simplicity of the algorithm required for this work, 

the constant gain parameter adaptive algorithm was chosen.

The proof of the robust stability of the algorithm now follows.

3.4.2 The Proof of Robust Stability [28]

The robust stability of the adaptive control algorithm stated above is 

based on sector stability theorem by Zames [33], which involves conic 

sectors. This states that the feedback interconnection of two conic bounded 

operators is globally stable if one is strictly inside a cone and the inverse 

of the other one outside it. Thus, conic sector conditions must be 

established for the adaptive algorithm given above. To achieve this a 

normalized error model is derived. Direct application of the sector stability 

theorems to this model then leads to the derivation of stability conditions 

for the normalized signals. These conditions are then translated to the 

original signals and operators. Basically stability of the adaptive system 

reduces to proving that the regressor vector *(t) is bounded which ensures 

that the normalization factor is used as a multiplier, testability, implying 

tracking error cancellation for reference inputs and disturbances that are 

signals while stability is for arbitrary reference inputs and bounded 

output disturbances, will be considered.

Error Equations:

Defining the polynomial

* *C = S A + q * R B (3.4.16)
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where R*,S* are constant coefficient polynomial functions in q

similarly defined as those in (3.4.3), i.e.

(3.4.17)

and also a polynomial coefficient vector

o* a [s*,s*........ s* ,r*,r*.........r* ] (3.4.18)
S R

With the above it is assumed that there exists a non-empty set 

as:
eLS A {0* e Rn : C(q) f 0, ¥ q e C, |q| > uh { 0

0LS defined

(3.4.19)

where n = n$ + n% + 2 and y e (0,1).

The above assumption will be known as Assumption 1 .

Combining (3.4,19) with (3.4.1 ), using (3.4.9) and manipulating,

Cy(t) * B 0*T*(t-d) + S*d(t) (3.4.20a)

Cu(t) = A 0*T*(t) - R* d(t) (3.4.20b)

Defining
^(t) q (e(t-d) - @*)T^(t-d)

= ëT(t-d)#(t-d) (3.4.21)

e(t) = e(t) - 0* ; the difference between stabilizing and

actual parameters.
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Using (3.4.5),(3.4.10,(3.4.20) and (3.4.21 ), the error model can be 

expressed as:

e(t) = -H2 *(t) + e*(t) (3.4.22a)

where e*(t) = (H2-I)CRym(t) + CRC-1S*d(t) (3.4.22b)

H2 = CrC-1B (3.4.22c)

Figure 3.2 shows the complete error model with denoting a relationship 

defined by the adaptive algorithm, i.e. H-| : e(t) •* *(t).

As mentioned earlier, all these signals and operators are normalized 

for stability analysis, i.e.

*(t) = p(t)"& »(t) (3.4.23)

H. = p(t)-i H^pÇt)1] ; i = 1,2, (3.4.24)

plus the error e(t) and regressor vector 5(t) as shown earlier. It is 

assumed that p(t) is such that ||?(t)|1 . Stability of ^(t) 

assumes that the regressor vector o(t) is bounded and consequently p(t) 

is bounded under -stability (see [28]) using multiplier theory.

Equations (3.4.14),(3.4.15) define an operator : e(t) -* ÿ(t), 

in addition to which for the RLS/PAA its exponentially weighted counterpart 

: ea(t) ■* Ja(t), where the superscript (a) denotes

Xa(t) a1 X(t) : « > 0

will be considered.
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Figure 3.2 The Error Model.

The input-output properties of these two operators can be summarized 

in the following lemma:

Lemma:

1. For the Constant Gain parameter algorithm, if F is given by (3.4.14), 

then

^1 + 7 ^CG 1S Passive

for all ôCG such that

°CG -
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2. For the Recursive Least Squares parameter algorithm, if F is given by

(3.4.15a), (3.4.15b), then

H*(t) is outside CONE (-1, /l-aRLS) 

for a verifying

a max
F(t)*VP(t-d) - F(t-d)j(t-d)f

. A + f (t-d)F(t-d)*(t-d) \
2d*a < 1

and all âRLS satisfying

The proof of this is given in [28].

Lg Stability:

Given ÿ(t) as defined in (3.4.21 ), (3.4.23), and *(t) as in (3.4.9) 

which is rewritten as:

|(t-d) = W-| ^(t) + ^*(t-d) (3.4.25a)

♦*(t-d) = + W2d(t) (3.4.25b)

where W-j é, C [A»q A,... ,q %A,q ^B,q B,...>q B]

W2 AC-h-q’V.-q-^R*



55

then under Assumption 1 if verified

ÏW t Lg => *(t) 6 L„

Proof: Define the exponentially weighted signals

x% = X(t)

from (3.4.12)

(3.4.26)

P(N) < p(0) + ||^||^ ^ - (3.4.27)

Applying the truncated norm to the exponentially weighted version of 

(3.4.24) and noting Assumption 1, using CRym = ym,

I l^-dUn 1 + 11^11^ +^11^11,1 (3.4.28a)

I II
where Yg are ^g-sains defined as:

y2 = Yg{W][(p^q) hl 

y2 - Y2<W2[(v^q)"1]1
• (3.4.28b)

using (3.4.13), (3.4.27), (3.4.28)

-N ,2
2 > p 

since *(t) e L? by assumption *(t) ^0 so that for all 6 > 0, N

such that for all N > NA — o
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.2
*N - *

therefore
u-%* 1 6{p(0)+u"Np+[Yg]2| |ym

Choosing 6 such that l-astv^2 > y and applying the Bellman Gronwal 1 

lemma yields: 

^2 N-l N-t

where the term in brackets is smaller than 1 and the series is convergent 

and therefore ^(t) e Lm.

The above implies that if ^t) e L^, ym(t), d(t) e and Assumption 1 

holds then *(t) e Lm and consequently p(t) e L^. The extension to the 

L -stability is shown in [281,

3.5 SIMILARITIES OF ALGORITHMS

While proofs of robust stability for the different algorithms for robust 

adaptive control by different authors vary, in actual fact the underlying 

principles are basically the same. Thus, similarities will be shown in this 

section of the normalization signals, dead zones, control objectives and the 

projection algorithms used for adaptation. These encourage the author to 

derive the stability of these algorithms using the fundamental principles of 

Chapter 2 in a simpler fashion; but first the similarities.
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3.5.1 Normalization

The three examples of normalization signals in discrete-time first 

mentioned in Section 3.2 will be repeated here and compared.

(i) N(t) = v0 + m(t) ; y0 > 0

m(t) « som(t-l) + |u(t-l)| + |y(t-l)| (3.2.5)

m(0) > 0 ; 0 < aQ < 1

(ii ) s(t) = as(t-l) + max {| y ( t—1 ) | + |u(t-d)|,s}
(3.2.6)

0 < a < 1, S > 0

(iii) p(t) = up(t-l) + max(||*(t-d)||2,p)
(3.2.7)

p > 0, 0 < u < 1, *(t) = (u(t),...,u(t-n$),y(t),...,y(t-nR))T

A cursory look shows the similarity of approach in each of the three. 

Comparing (3.2.5) taken from [27] to (3.2.6) taken from [29], it can be seen 

that these two are quite similar since

N(t) = y0 + o0m(t-l) f |u(t-l)| f |y(t-l)| (3.5.1)

and s(t) = os(t-l) + max{|y(t-l)| + |u(t-d)|,s}

= as(t-l) + |y(t-l)| + |u(t-d)| + K (3.5.2)

where K represents the upper bound of the difference between [|y(t-l)| + 

|u(t-d)|] and s. The only difference between (3.5.1 ) and (3.5.2) is the 

particular delayed value of the control input u(t) used.

Likewise, looking at (3.2.7) taken from [28] and comparing it to,say, 

(3.2.6) one gets:
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s(t) = os(t-l) + max(|y(t-l)| + |u(t-d)| ,s}

O 
p(t) = yp(t-l) + max(||*(t-d)|| »p)

but from [31], |u(t-d)| m^ + max |y(r)| (3.5.3)

where m^ < m^ < 1 < t < T

and assuming max |y(?)| = m? < * (3.5.4)
O^T 4

then (3.5.3) becomes:

|u(t-d)| 1 + m^2 (3.5.5)

also using the definition of *(t-d) above, and [16,31],

||*(t-d)|[ n.{m3+[max(l ,m^)]max|y(T)|} (3.5.6)

where n » dimension of *(t).

Substituting (3.5.4) into (3.5.6) it becomes:

|[*(t-d)|| <_ n {m3 + [max(l,m^)]m2] (3.5.7)

then

s(t) <_ as(t-l ) + max{[|y(t’l )| + (m3+m4m2)] ,s} (3.5.8)

while
2 

p(t) pp(W) + max([n(m3+[max(l ,m4)]m2)] ,p) (3.5.9)

Although it will appear as if (3.5.9) uses a squared version of the 

other two as its normalizing factor, this is not true, as was shown in 

Section 3.4 . Since the actual factor turns out to be the square root of 

p(t), i.e. p(t)^ that is used. Hence,
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p(t)* = yp(t-l))^ + max{[n(m3+[max(l,m4)m2)]2,p](3.5.10)

<_ (yp(t-l))^ + max{ [n(m3+[max(l ,m4)m2)], p^IJ (3.5.11)

and using r(t) 4 p(t)^, r(t-l) ^p(t-l)\ = y, r = p^, allows (3.5.11 )

to be written in the form:

r(t) £ yr(t-l) + max{n(m3+ max(l,m4)]m2),r} (3.5.12)

which is similar to (3.5.8).

3.5.2 Dead Zones

Dead zones are also basically the same as they are all usually functions 

of prior information, such as bounds on plant input, output and bounds of the 

disturbance amplitude (see [27,31 ,56]), but the one proposed by Kreisselmeir 

and Anderson is a bit different in that it is a relative dead zone. An 

example of the more typical dead zone [31,56,46] is given below which may be 

compared with that in Section 3.3 , (see Figure 3.3, next page)

Projection algorithm with dead zone [31]:

Let the disturbance (noise, unmodelled dynamics) be a bounded sequence

u(t) such that sup|w(t)| 2 Mg, then the algorithm is:

where

0(t) =

a(t-l)

+ a(t-l)*(t-l)
c+<j> (t-1 )#(t-l )

[y(t)V(t-i)0(t-i)]l

if |y(tHT(t-l )0(t-l)| > 2Me

otherwise

(3.5.13)

6(t-1)

1

0

Let e(t) = y(t) - <|>^(t-l )©(t-l ) ,c > 0 and 0(0) is given.

The diagram of the above dead zone is shown below, but the slope of this 
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is different from that in Figure 3.1 since that is a relative dead zone.

-2M

D(e(t) )

2M e(t )

Figure 3.3

3.5.3 Algorithms and Objectives

Basically the three algorithms (the Basic MRAC, 3.3, 3.4) all have the 

same control objective which is mainly the elimination of the tracking error 

between the plant and reference model output. Although different error 

equations are used, once again they are all derived from the fundamental 

error equation in Chapter 2, namely e(t) = y(t)-ym(t). For example, in 

Section 3.3 the error equation used is derived from

e(t) = l/b0 (see equation (23) in [27] )

and this compares to

e(t) = CR(q-1)[y(t)-ym(t)]

used in Section 3.4, from which it can be concluded that these two are merely 

filtered versions of the basic error equation given above with the basic 

scheme having a filter equal to one.
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The Algorithms

Rewriting equation (3.3.15), using

z-V(t) e* - 7(t) e(t)j - ^(t) = 0 , 

it becomes

E(t) = wT(t-d) ë(t) + n^t) (3.5.14)

using this and the fact that h^t)! < dQN(t) (t t^ ) (see [27] ), then 

D(Ep which is equation (3.3.18b), can be written as

D(E3) = «(t)wT(t-d)4(t)/N(t), 0 < a(t) < 1 (3.5.15)

This then leads to the adaptive algorithm (3.3.18a) becoming

®(t+l) = 9(t) -
a(t)w(t-d)wT(t-d)0(t)

y1 + w (t-d)w(t-d)
(3.5.16)

(notice the absence of both the normalizing factor and the dead zone), 

which is similar to the Basic projection adaptive algorithm defined in 

Chapter 2, but which is rewritten and rearranged below for ease of comparison:

1 + (t-d)4>(t-d)
(2.3.13)

Substituting <^(t-d)ô(t-d) = e(t)/BQ for e(t), the above becomes, on 

subtracting e* from both sides:

0(t) = è(t-d) - f-WlLW)/(3.5.17)

l+4> (t-d )0 (t-d )

where a(t) = eQ/ê0 ; 0 < a(t) <_ 2 .



62

This as can be seen is very similar to (3.5.16) above, the differences being 

the delayed value of the parameter error vector 0(t-d) used in (3.5.17) as 

compared to ®(t) used in (3.5.16).

Let a(t) = 1 and multiply both sides of (3.5.17) by <^(t-d) to obtain

*T(t-d)ë(t) = *T(t-d)è(t-d) - *T(t-d)*(t-d)<(t-d)ë(^ 

1 + ♦’(t-dK(t-d)

!+♦ ( t-d )4> (t-d )

Substituting this into (3.5.17),

è(t) = è(t-d) - *(t-d)*T(t-d)ê(t) (3.5.19)

This comparable to the Ortega et al algorithm:

8(t) = 0(t-d) + F C(t-d)e(t) (3.4.19)

which, using ê(t) = *T(t-d)(O*-0(t-d)) ; F > 0 a scalar, becomes:

- - - J ~
e(t) = 0(t-d) - F ♦(t-d)* (t-d)O(t-d) (3.5.20)

3.5.4 Stabi1ity Analysis

Since all the algorithms above can all be expressed in a similar form 

then their convergence properties can surely be derived similarly and this 

leads to a simplified proof of robust stability. Most of the modifications 

mentioned in this chapter are passive modifications [54], except for the 

persistency of excitation condition, as a result of which the problem of 

robust stability reduces to proving that the regressor vector, i.e. o(t) = 

[u(t),... ,u(t-n*),y(t),...,y(t-nQ)] is bounded. Also, u(t), y(t) are
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required to be uniformly bounded. This allows the proof of stability of all 

three algorithms used in this work and study to be treated in the same manner. 

The proof is now a straightforward use of the principles and theorems used 

for the proof of stability of the basic scheme in Chapter 2. As an example, 

the robust adaptive algorithm proposed by Kreisselmeier and Anderson is 

treated here using the Key Technical Lemma (K.T.L.) defined in Section 2.4.1.

Proof:

In Section 3.3 some properties of the algorithm were given and these 

will now be used in the proof of stability. Already it is known that the 

parameter vector e(t) is bounded between 0^^ and e|nax, while for the 

dead zone D[E^(t)]; Iim D[E^(t)] = 0 . 
t-*»

Using the Key Technical Lemma on

0^1 (t)2)
——T------- --------------------- = 0
Y^+w (t-d)w(t-d)

it is obvious that the first two conditions are satisfied. Thus, all that is 

required is to show that the regressor vector w(t-d) is also a bounded 

sequence since DfE^t)) is a bounded sequence as shown in [27].

From the definition of w(t-d) it is possible to show that

I |w(t-d)| | _< p{m3 + m4 (max|yp(t) | )}

where p is the dimension of w(t-d), 1 < t < t, but yp(t) is a function 

of Ej(t), which implies that

I l«(t-d)| | < c} + c2 max IE^tJI
1 <T< t
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Using {E^(t)| < |D(Ej(t)| + dQ (see [60]) in the above equation, it becomes:

||w(t-d)|| < C] + c2 maxtlDCE^t)! + dQ]

£ + Kg max |D(E^(t)|

0 < K^ < », 0 < Kg < *

and this implies the linear boundedness of w(t-d).

Similarly for the Ortega et al algorithm, 0(t) = ê(t-d) + F^(t-d)e(t) 

with e(t) p(t)'*e(t); ^(t-d) = p(t)"^(t-d) where p(t) is defined as 
o 

p(t) = pp(t-l) + max(|*(t-d)| ,p), the algorithm can be rewritten as:

0(t) - ^-d)

Noting that p(t) is a function of *T(t-d)4(t-d) then the equation becomes:

0(t) » 6(t-d) + F»T(t-d)e(t)-----  
f{* (t-d)*(t-d)}

from which the stability analysis can be obtained using the Key Technical 

Lemma.

3.6 MIMO EXTENSION OF THE KREISSELMEIER AND ANDERSON ALGORITHM

From the S.I.S.O. algorithm and Section 3.5 it can be seen that this 

algorithm is quite similar to the Basic algorithm in Chapter 2 except for 

the modifications, i.e. the dead zone, normalization and parameter bounds. 

This then inspired the derivation of a MIMO version of the robust algorithm 

based on the basic MIMO algorithm in Section 2.5 . A generalized form of this 

derived robust MIMO algorithm is shown below and an example based on a 2x2 
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plant explained. Another work which is in the same direction is in [40], but 

which is based on adaptive regulation.

3.6.1 The Reference Model

This is given by

where ^(z) = z*^! ; d = min . and 
1J .1

ing of polynomial functions in z of

Am, Bm are diagonal matrices consist- 

the form:

Bm,

, -1 "i1 + a,z +... an z 1
1 , "i -m

bo + +-'- bm/ 

and ym, r(t) are the reference model output and input vectors respectively.

For this system n = m, i.e. the output and input vectors are of the same 

order.

The Plant

This is assumed to be

Afz-1)^) = B(z"l)u(t) + n(t) (3.6.2)

where n/t) is the disturbance vector (also represents unmodelled dynamics), 
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A, B are n*n matrices of polynomial functions, and £(t), u/t), n(t) are 

all nxl vectors.

3.6.2 Structure of the Controller

Defining

v{(t) = [uT(t-l),...,ur(t-n)J

Vg(t) = XT(t-n)]

then
vT(t) = lrT(t), v{(t), vj(t)] 

and
u(t) = eT(t) v(t) 

where
0T(t) - e{(t), ej(t)]

(3.6.3)

(3.6.4)

(3.6.5)

(3.6.6)

Qo» 6i> °2 are nxn matrices.

The Adaptive Algorithm

As in Section 3.3 define w(t) as

/(t) - (3.6.7)

Let E(t) = eT(t)w(t-d) - eT(t-d)v(t-d) (3.6.8)

Define

m^t) = aQm1 (t-1 ) + |ui(t-l ) | + ly^t-1)! (3.6.9)

°0 « (0.1)

and
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' vMt)
Nj(t) = Yo > 0 (3.6.10)

Yo+*n(t)

then E^t) = N^(t)E(t) (3.6.11)

and the algorithm is given by:

■ sT(t).
y^+w (t-d)w(t-d) 

where

D(E](t)) = D [ En(t) 
1 1 1

; D(En) =

<

' 0
Eil-<0i

if IE,,| 
if E^

idOi 
* doi

■ È„l(t). Eil+doi if E^ * doi

and (3.6.12b)

= j(t+l) if < êu^+l) < omax
Sij

• if < ®ijn • (3.6.12c)

®1jx 1f % »

Again, as in [27], it can be shown that

DfE^t)] = a(t)N~\t)eT(t)w(t-d)

where e(t) = 9(t) - e* ; 0 a(t) <_ 1

(3.6.13)

and this leads to (3.6.12a) becoming, on subtracting e from both sides,

0T(t+l)
_ a(t)êT(t)w(t-d)wT(t-d)
0 ( t ) *  ------ T----------------------  

y-|+w (t-d)w(t-d)
(3.6.14)
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This is similar to equation (2.6.21) in Section 2.6, and the proof of 

stability can be treated in a similar manner. The use of w(t) as the 

regressor vector leads to a reduction in the number of adaptive parameters, 

as will be shown now for a 2x2 system. This was discovered accidentally 

during experiments conducted in Chapter 4 (see Figures 4.21 a,b) and it 

was this which encouraged the derivation of the above algorithm theoretically 

from which the reduction in parameters was also shown to be correct.

3.6.3 Example, 2x2 Plant

The reference model will be:

\ °1[y<
> 0 ' • ymg - 

u^t) ’ 

u2(t) -

with ,Bm as defined in Section 3.6.1 .

The plant is assumed to be A(z”^ )j((t) = B(z"lyu(t) + n(t), where 

A,8 are 2x2 matrices and y, u(t) are 2xl vectors as defined earlier.

The control input is given by £(t) = 0T(t)y(t) (3.6.5).

Assuming n = 1

vT(t) = [^(t), r2(t), u^t-1), u2(t-l), y^t-1), y2(t-l)]

and ©T(t) = [oT(t), e{(t), o2(t)]

where eQ,e^,02 are 2x2 matrices implying that 0?(t) = 2x6 matrix; but 

using the definition of o* = [o*, ©*, @2], o* is proportional to Bm> 

i .e.

e- . K | % °
° 1 °

which implies that 0^2 = 0 .
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The above leads to the conclusion that setting ~ 0 and ©^ will lead 

to convergence. More details about this will be given in the next chapter, 

but as of now this leads to

... elV °» °13’ 014’ 015’ 016 
9(t) =

‘ °’ 022’ 023’ 024’ 025* 026

= 0n » 013* 014' 015, 016

• 022' 023’ 024* 025’ 026 '

which is a reduction in parameters by two terms.

3.7 ROBUSTNESS OF THE BASIC MIMO MRAC SCHEME

Just as the similarities in the basic MRAC (SISO) scheme and the robust 

adaptive scheme in [27] led to the derivation of the robust MIMO adaptive 

scheme proposed in Section 3.6. This also implies that the passive 

modifications used for robustness can be easily applied to the Basic MIMO 

MRAC scheme, to give it robust stability properties. Goodwin and Sin in [31] 

recommended the use of some of these modifications, i.e. dead zone, parameter 

bounds, but not together as it is proposed here. The differences between the 

modified basic MRAC scheme suggested below and that in Section 3.6 consists 

of the use of a different error function and regressor vector (although these 

have some common elements) compared to that in Section 3.6 .

3.7.1 The Modified Basic MRAC Algorithm (MIMO version)

The modified Basic (MIMO) MRAC algorithm is simply stated below, but not 

proved since the passive modifications made do not alter the proofs already 

given in Chapter 2.
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êT(Ud) - eT(t) . p
1 + *'(t)*(t) 

where

(3.7.1a)

' «](t+d1) '

e<(t) = yi(t)-ym1(t)

♦ (t) - [-XT(t).-/(t-l).........-uT(t-l),-uT(t-2),...,y^(t+d)]

P = matrix of real constants specified a p^co/u.

D^tt+dp) ■ e.(t+di)+2Me 
. e,(t+dp-2Me

if le^t+d^l < 2Mfi 
if e.(t+dp < 2Me 
if e-tt+d^ > 2Me

• (3.7.1b)

and H is an upper bound on the amplitude of the system disturbance,

e,j(t+d)
■ ê^ft+d) if e^n < êjj(t+d) < 9^ 

if ®ij(t+d) < 9^" 

if 0ij(t+d) > Qjj*

. (3.7.1c)

Also, the control law is given by

U(t) = 0T(t)$(t) (3.7.2)

3.8 COMMENTS

(i) As was shown in this chapter, the three algorithms which will be used 

in Part II, the applications section of this work, are quite similar 

in composition and nature. These algorithms are those mentioned in 

Chapter 2 for both SI SO and MIMO systems, plus those of Sections 3.3, 

3.4 . Apart from the modifications required for robust stability, it 

can be seen from 3.5 that the fundamental principles are basically the 

same, the differences being, say, the particular delayed value of a
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parameter to use, i.e. e(t), o(t-l) or e(t-d), but this does not 

matter much as these vectors tend to become similar and constant as 

time goes by, e.g.

lim ||e(t) - e(t—l)|| < 0 
t-H©

lim 110(t) - e(t-d)11 <_ 0 
t-x»

=> lim ||©(t-l) - e(t-d)|| 5 0 
t-X*

which implies that as t + «, then 0(t) = 0(t-1) = e(t-d). 

Thus, choice of time delayed value used has no lasting effect on 

convergence properties.

(ii) The only algorithm which, although having the same fundamental 

principles as the others, appears to differ is the Kreisselmeier and 

Anderson algorithm. This is due to the composition of its regressor 

vector w(t) and error function E(t). But the differences are not 

that significant since (a) the regressor vector has common terms with 

those of the others, but has a term (l/bm) )y(t) which is

different from the others which usually have the term as either r(t) 
or ym(t). The term (l/bm) z^Jz’1 )y(t) will be a function, or be 

proportional to, r(t) provided y(t) is tracking ym(t), since 
r(t) = (Vbm) z^Cz"1)ym(t), hence (l/bm)zdAm(z‘1)y(t) - r(t) ; 

(b) E(t) for this algorithm is known as the identification error and 

it is defined as:

E(t) = wT(t-d)9(t) - vT(t-d)e(t-d)

= (Vbm)eo(t)Am(z"1)[y(t)-y|n(t)]+vT(t-d)[0(t)-e(t-d)]

A look at the first term on the R.H.S. of the above shows it to be a 
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Sort of filtered output tracking error (e(t) = y(t)-ym(t)), i.e. 

C.ty(t)-ym(t)] where C = (Vbm)eo(t)Am)z"1 ), while the second term 

appears to be a form of input error, since u(t-d) = v\t-d)o(t-d) the 

input d steps back and v\t-d)©(t) can be said to be a form of 

a input. This as time goes on becomes zero and reduces E(t)

to a filtered tracking error; but in general one can say E(t) is a 

combination of a filtered tracking error and a form of input error. 

Again this is not so different when compared to the other schemes.

(iii) Although the basic MRAC algorithm has no passive modifications, it 

should not be forgotten that persistency of excitation also makes an 

algorithm robust. As mentioned earlier, a step input signal is 

persistently exciting if just of order one and, as stated earlier, 

provided parameter identification is not of real importance then (see 

[57]) unmodelled dynamics would not cause any difficulties if the 

frequency of the reference signal is sufficiently low and it has a 

large enough magnitude to overcome destabilizing effects of these. In 

the following chapters these will be seen to be true from the results 

obtained using the basic algorithms.
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Chapter 4

THE COUPLED HYDRAULIC TANKS

4.1 INTRODUCTION

Fluid flow and fluid level control problems arise in a lot of fluid 

dependent systems. Fluid level control is a basic and important problem in 

automatic control, with applications to diverse systems such as:

(1) Power generation plants where fluid level and flow control are 

essential in the operation of boilers, a vital part of steam 

generation for electricity production or level water in dams for the 

production of electricity by hydroelectric generation.

(ii) Water resources systems, water distribution networks which also 

involve in some cases water levels in dams, reservoirs and tanks for 

efficient and reliable distribution of water to consumers, or even 

water treatment plants.

(iii) Sewer control systems using detention reservoirs for treatment of 

sewage, and lastly

(iv) Chemical process industries which vary from oil to sugar production 

in which the control of fluid levels in storage tanks, chemical 

blending and reaction vessels is crucial.

Coupled hydraulic tanks is a common form of the problems involved in the 

above systems. Typical examples of these fluid levels control are ones in 

which it is required to supply fluid to a chemical reactor at a constant 

rate Q^, to which end a reservoir or hold-up tank may be used with the 

dual aim of smoothing variations out of the upstream supply flow and 

also ensuring a temporary reactant supply should there be failure of supply 
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from the source (i.e. upstream of the hold-up tank), Figure 4.1a, or one in 

which the fluid of the second tank (see Figure 4.1b) is required to be held 

at a constant level H (and thus its total fluid volume), hence the output 

of this tank will be a product flowing out at a constant flow rate.

Although the dynamical properties of fluid level systems are well 

known, and relatively straightforward, some difficulties exist in terms of 

lengthy time constants and nonlinearity of the system as a whole. Also, as 

in some other physical processes, fluid level control of the coupled tanks 

needs to function at different numbers of process operating points. The 

parameters of the linearised process model on which the closed-loop system 

is based usually assume such a wide range of values during process 

operations that sometimes a single fixed parameter control system proves 

inadequate to control the process. As a result of the above, the use of 

adaptive controllers in solving these problems will be quite advantageous 

and will be more efficient than the classical methods of proportional, 

proportional plus integral or even proportional plus integral plus derivative 

where logic switching between several fixed parameter controls might have 

occurred.

There are two different versions of the rig that were used for the 

experiments conducted, namely the MIMO version, consisting of two inputs, 

two outputs, and the SISO rig which consists of a single input, single 

output. A brief description of these two versions now follows.

4.2 DESCRIPTION OF RIGS

4.2.1: The SISO Tanks

The Single Input/Single Output system consists [62] of two hold-up tanks 

(Figure 4.2) which are coupled by an orifice. The coupled tanks apparatus is 

a transparent perspex container measuring 20 cm in length, 10 cm in width and
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Figure 4.1a

H %ut

Figure 4.1b

1
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30 cm in height. A centre partition is used to divide the container into 

two equal tanks. Flow between the tanks is by means of a series of holes 

drilled at the base of the partition. The holes are situated 2.5 cm above 

the base of the tanks and have diameters 1.27 cm, 0.95 cm, 0.635 cm, 0.317 cm. 

These holes constitute the orifice between the tanks. The size of the 

orifice (and hence the degree of coupling between the tanks) is varied by 

plugging and unplugging the holes, using the bungs provided. With all the 

bungs removed the apparatus can be considered to be one big tank and thus a 

first order system. On the other hand, with the largest three holes plugged, 

the remaining hole allows only a weak interaction between the fluid levels 

in the two separate tanks. In this case the apparatus constitutes a second 

order system.

The input is through a variable speed pump which supplies water to the 

first tank. Thus water is pumped from a reservoir into the first tank by 

the variable speed pump which is driven by an electric motor. The orifice 

allows the water to flow into the second tank and hence out again to the 

reservoir. The actual flow rate is measured by a flow meter (see Figure 

4.3) which is in the flow line between the pump and tank 1. The depth of 

fluid is measured using parallel rod depth sensors stationed in the second 

of the tanks. The electrical resistance across this device varies with the 

water level in the tank. Changes in resistance are detected and produce an 

electrical signal which is proportional to the height of water in the tank.

The water which flows into tank 2 is allowed to drain out through an 

adjustable tap, and the entire assembly is mounted on a large tray which also 

forms the supply reservoir for the pump. Fully open, the drain tap has a 

diameter of 0.635 cm. There is an instrumentation box inside which the 

motor drive and depth sensor signals are processed. Calibrations inside 

the instrumentation box are such that the pump motor may be driven by 

voltages between 0 and 10 volts applied to the pump drive socket. Likewise 



78

the depth sensor outputs read from the box range in value between 0 and 

10 volts.

The depth sensing is prone to noise, and to remove this filters are 

provided which may be switched in and out of circuit as required.

4.2.2 The MIMO Tanks

The multivariable tank is similar in its description to that of the 

scalar system except for some additional items, such as (see Figure 4.4) 

an extra pump, motor and flow meter for tank 2, plus an adjustable drain 

tap which is fitted to tank 1. Also there is a bigger instrumentation box 

for the multivariable rig.

For the two rigs described above the pump motor drives were derived 

from the B.B.C. microcomputer used.

4.3 THE SYSTEM CHARACTERISTICS AND MODEL DERIVATIONS

4.3.1 System Calibration Characteristics

Although the basic control problem is the control of the fluid level in 

one of the tanks (SISO case) or control of both fluid levels in the two tanks 

for the MIMO system, there is a need to know the characteristics of the rigs 

to be used, especially as the pump flow and fluid heights are converted to 

input and output voltages respectively by means of transducers in the 

instrumentation box.

Using physical measurements of the input voltages and flow rates, the 

output voltages and fluid heights, the input and output system calibrations 

and characteristic curves were obtained. Shown in Figures 4.5a, 4.5b are the 

SISO plots of (i) flow rate against input voltage and (ii) output 

voltage V% against water level Hg which depict the pump characteristic
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and depth sensor calibration of the laboratory rig, respectively. Figures 

4.6a-d show the pump and depth sensor calibration of the MIMO laboratory rig.

Possibly due to drifts in the transducers it was observed that the 

characteristics do not stay constant, and that if readings were taken at 

different times, say days, there would be noticeable differences in the 

plots. Examples of these differences are as shown in Figure 4.5a for the 

pump characteristics and Figures 4.6b,d for the depth sensor calibration 

curves of the MIMO tank. Also apparent is the nonlinearity of the plots 

with the worst examples being the three depth sensor calibration curves 

for both rigs. Another reason given for this is the fact that the trans­

ducers are affected by the dirt content of the water used and possibly the 

ambient temperature,

4.3.2 The SISO Model Derivation

The dynamical equations of the system are derived by taking flow 

balances about each tank. Using Figure 4.2, for the first tank:

Rate of change of fluid volume in tank 1 :

dVT dH,
Qi * = err ° & ar (4.3.1 )

where V-| = volume of fluid in tank 1

= height of fluid in tank 1

A = cross-sectional area of tank 1

Q] = flow rate of fluid from tank 1 to tank 2

Q.. = pump flow rate.

Similarly for tank 2:

dV, dH,
Qi ~ % ° ar* ° A ar (4.3.2)
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where Vg = volume of fluid in tank 2

Hg ■ the fluid height in tank 2

Qq = flow rate of fluid out of tank 2.

If the inter-tank holes and the drain tap are assumed to behave like 

orifices then the following equations arise from characteristic relationships

for orifices:

Qi % (4.3.3)

% ° cd2 a2 /ZGfHg-Hs) (4.3.4)

= discharge coefficients (0.6 for a sharp orifice) 

= height of drain tap 

= gravitational constant 

= cross-sectional area of orifice between tanks 1 and 2 

= cross-sectional area of orifice on tank 2's tap.

Equations (4.3.1 ) to (4.3.4) describe the system dynamics in their 

nonlinear form. For control systems studies the equations are linearised by 

considering small variations q. in Qp q^ in Q1, qQ in Qq, h1 in H1 and 

hg in Kg . Thus the equations become: 

dh, 
A (h^-hg)

dh9
A JT = K1 (hr^) ’ 

where =d/l

K] = > Kg =

Rearranging equation (4.3.5) and using h = dh/dt, one gets the

dl %
Ho

9

al

(4.3.5)

cdga2 ^9 

2/H^
(4.3.6)

following state space model :
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' h, 1 f-K1/A ^/A
. h; J K^A -(K,+K;)/A

h ' 1/A
(4.3.7)

Thus, taking the Laplace transform of the above, the transfer function is

obtained as:

h2($) i/k2
(AZ/K^Js2+(A(2i^+^

i/k2
(sT1+1)(sT2+1)

where a2 A(2W
T1T2

(4.3.8a)

(4.3.8b)

(4.3.8c)

The values of and Kg can be calculated using static experiments, i.e. 

steady state operating levels, when dH^/dt « dHg/dt - 0 which means 

Qi a Q1 B % ’ Thus, if the flow is measurable (which it is by the 

flow meter), then:

cdiai /zg

cd2aZ ^9

from which KpKg are then derived.

(4.3.9)

The above equations show that the rig is a second order system; but the 

removal of all the bungs between the two tanks, however, reduces the model 

of the apparatus to a first order system. This can easily be proved once 

becomes infinity and equation (4.3.8a) reduces to:

h2(s) 
=

Vk2 
sT+T where T 2A
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As mentioned earlier, at different operating points the system dynamics 

alter and thus the system model as well. Examples of the different system 

equations for different operating points are shown below.

MODEL A:

Q. = 1000cc/min, Hg = 2.5cm, Hg = 5.0 cm, = 6.7cm

V2 _ 4.7035x10'4 4.7035x10*4
T7“ " -- ------------- u ' ' ---------- — ~ ------------------
vi s^+0.0657s+0.0004085 (s+0.126){s+0.00536)

MODEL B: 

= 2000cc/m1n, H. = 2.5cm, Hg = 10.1cm, H^ = 15.4cm

V2 _ 3.0692X10’4 _ 3.0692x10*4
sZ+0.0417s+0.000169 (s+0.0372)(s+0.0046)

In [63] the relationship between the operating fluid heights and time 

constants is shown to be:

T, - (Hi-Hg)l/Z 

T2 « (Hg)1/Z

4.3.3 The MIMO Model Derivation

In a similar manner to the S.I.S.O. rig derivation the multivariable 

tanks system results in the following state-space model using Figure 4.4:

’ M _ Hk1+k3)/a

. hg, . K]/A

h/A U h] '

-(K]+Kg)/A hg ,

1/A

0

° I f Ail '

VA , , q^g , 

(4.3.10a)

where A,K^,Kg are as defined in Section 4.3.2 and
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dg 2
K (4.3.10b)

The transfer function matrix relating the inputs q.^(s), q^g(s) to

the outputs h^(s), hg(s) is found directly from the above equation as

Ms)

. Ms>

i
Has

K,+K, r •

s + MA (s)

k,+k2
MA. s + J[ qi2(s)

(4.3.11a)

where

As = determinant of
Ki+K3 

s + -V -YA

K.+K-K^A s + -V
(4.3.11b)

The block diagram of the multivariable coupled tanks is shown in 

Figure 4.4b. From the above it is seen that the coupling between the two 

tank outputs is determined by the coefficient Kp which also determines 

the influence of both inputs as well. Equation (4.6) shows that is 

proportional to a^ the cross-sectional area of the orifice between the 

two tanks. When all the holes between the tanks are plugged, the two tanks 

become two independent first-order systems as becomes zero.

4.4 MODEL REFERENCE ADAPTIVE CONTROL OF THE TANKS

4.4.1 Introduction

Basically, during most of the control experiments conducted on the tanks 

an intentional undermodelled reference model was used, i.e. a first-order 

reference model. The main reason for this was to allow the study of the 

robustness properties of the various algorithms to mismodelling. The first 

to be discussed will be the SISO coupled tanks.
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4.4.2 SISO Tanks

Key to the Programs (see Appendix C):

The adaptive parameters :

0(t) = ^(t)^(t^(t)i = [Y(11),Y(12),Y(13)]

The control input:

u ( t ) = Y ( 6 ) u(t-l) = Y(7)

The reference input:

R(t) = R

The reference output:

ym(t) = Y(4), ym(t-l ) = Y(19)

The system output:

yp(t) = ys , yp(t-i ) = Y(5)

The tracking error:

e(t) = Y(9) , e(t-l) = Y(10)

Three different reference models were used for the experiments based on 

the three algorithms which have been discussed in the previous chapters. The 

first two were first-order models while the third was a second-order 

reference model. The first model was intentionally fast as the main 

concern was the convergence time of both the reference and system outputs, 

while the second model was much slower to allow observations of how well the 

three different algorithms control the system output tracking of the 

reference model output.
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The three models are:

0.375 
s+0375

0.005 
s+OOK 

0.000025 
s2+0.006s+0.000025

This also allows the use of different reference time constants, especially 

as the plant time constants vary from as small as 2.75 seconds to as high as, 

say, 500 seconds.

Due to the undermodelling and the use of a zero-order hold (Z.O.H.) 

there are three adaptive parameters used asn = l,m = l,d = l. The

sampling period was chosen as Ts = 4.0 seconds, while a time delay of one 

sampling interval was assumed.

Control Hardware and Software:

The output voltage representing the tank output was the input to the 

BBC computer used for the schemes and the control input derived from the 

computer used to drive the pump. As mentioned earlier, the analogue to 

digital (A/D) converter used had a zero-order-hold embedded in it, while 

the software for the algorithms was written in BASIC. A listing of these 

programs can be seen in the Appendix C. The results were first stored on 

floppy discs before being plotted using a Rikadenki plotter in the laboratory 

for better result presentation.

Real-Time Control Experiments (the Results):

Using the sampling period of four seconds the reference models were 

converted to discrete-time transfer functions used in the programs on the
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BBC microcomputer. The real time control on-line of the tanks using the 

different models and algorithms plus their results are now explained and 

shown graphically.

(1) Model 1: ym(t) = 0.7768698r(t) + 0.2231301ym(t-1) ; R = 3.0V

A series of experiments were conducted using the three different 

algorithms already mentioned in the previous chapters. For the Goodwin 

algorithm (Basic MRAC) the initial parameter vector was P = [0, 0, 0], 

while for the Ortega et al algorithm it was P = [0.1, 0.1, 0.1], and for 

the Kresselmeier and Anderson algorithm it was also P = [0.1, 0.1, 0.1). 

The results of the runs are shown in the following pages as follows:

(a) The Goodwin algorithm: Figure 4.7a shows the Reference and System 

outputs; Figure 4.7b the Control input, while Figure 4.7c shows the 

adaptive parameters.

(b) The Ortega et al algorithm: the results of this run are depicted 

in Figure 4.8a showing the Reference and System outputs; Figure 

4.8b the Control input, and Figure 4.8c the adaptive parameters.

(c) The Kreisselmeier-Anderson algorithm: Figure 4.9a shows the 

Reference and System outputs; Figure 4-9b the Control input and 

Figure 4.9c the adaptive parameters.

By varying the adaptive gains of the Goodwin or Ortega et al algorithms 

the convergence time of the system output to the reference model output could 

be shortened, but unfortunately this leads to an increase in the amount of 

overshoot. Figure 4.10 shows the effect of tripling the adaptive gain value 

for the Goodwin algorithm as compared to Figure 4.7a.

As mentioned earlier in Chapter 3, by varying the value of y e (0,1) in 

the normalization factor equation (3.4.12) for the Ortega et al algorithm it 

can be made to be either more robust or alert, depending on its value. The 
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lower it is the more alert it becomes. This is shown by comparison of 

Figures 4.11a and b where y = 0.75 and y = 0.15 respectively.

(ii) Model 2: ym(t) = 0.0198013r(t) + 0.9801986ym(t-l) ; R = 4.0 Volts

Using this model the basic idea was to observe the tracking abilities of 

the different algorithms and also look at the control inputs and adaptive 

parameters. As before, the experiments start off with (a) the Goodwin 

algorithm, with Figures 4.12a,b,c showing the Reference and System outputs, 

the Control input and the adaptive parameters, respectively. An adaptive 

gain of 0.12 was used; (b) the Ortega et al algorithm; the results are 

shown in Figure 4.13a for the Reference and System outputs; Figure 4.13b 

the Control input, and lastly in Figure 4.13c the adaptive parameters, 

(c) Similar results for the Kreisselmeier and Anderson algorithm are shown in 

Figures 4.14a,b,c for the Reference and System outputs, the Control input and 

the adaptive parameters respectively.

(iii ) Model 3: y^t) « 0.000413r(W) + 1 .97589ym(t-l ) - 0.9763ym(t-2)

Owing to hardware limitations, i.e. available memory on the BBC micro, 

the plots of all the adaptive parameters could not be obtained, thus the 

first adaptive parameter Y(ll) was plotted for the two algorithms used. 

These were the Goodwin and the Ortega et al algorithms. The absence of the 

Kreisselmeier and Anderson algorithm is based on its structure, where the 

reference model order is the same as that of the system delay, which in this 

case is one. Since the reference model used was a second-order system there 

was need for a longer period of time for the experimental run so as to allow 

adequate tracking and convergence observations, but the sampling period of 

four seconds still remained.

(a) The results of the Goodwin algorithm run are shown in Figure 4.15a 

which depicts the System and Reference outputs and Figure 4.15b which 

shows the control input and an adaptive parameter.
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(b) The Ortega et al algorithm results are shown in Figures 4.15c and d 

respectively, with the Reference and System outputs shown in Figure 

4.15c, while the Control input and the adaptive parameter are shown in

Figure 4.15d.

4.4.3 The MIMO Tanks

Key to the Programs:

yi(t) 

y2(t) 

U](t) 

u2(t)

e^t) 

e2(t)

P11 ° 

e(t) =

= YO) , y^t-1) = Y(2)

= Y(3) , y2(t-l) = Y(4)

= Y(47), - Y(5) , u^t-2) = Y(6)

= Y(48). u2(t-l) = Y(7) , u2(t-2) = Y(8)

- Y(9) , ym1(t-l)= Y(10), yml(t-2) = Y(65)

= Y(17), ym2(t-l ) = Y(18), ym2(t-2) = Y(66)

= Y(19)

= Y(20)

Y(27), P12 = Y(28), P21 = Y(37), P22 = Y(38) 

' ©n(t) 9]2(t) e13(t) 914(t) 015(t) e16(t) ' 
. e2](t) ^(t) 625^^ J

' Y(11 ) Y(12) Y(13) Y(14) Y(15) Y(16)

k Y(21 ) Y(22) Y(23) Y(24) Y(25) Y(26)

For the MIMO tanks, three algorithms were used for the experiments 

carried out. The first was the Basic MIMO scheme based on the Goodwin 

algorithm, the second was the derived MIMO Kreisselmeier and Anderson algorithm 

of Section 3.6, while the third was a modified Goodwin algorithm mentioned 

in Section 3.7.1 . The reference models used were first-order systems with 

the coupling between the tanks acting as disturbances to the two tank outputs. 

Because the coupling of say input one to output two is second-order, a 

second order reference model was also used just for completeness.
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The Real time control experiments (and results):

Due to the faster time responses of the multivariable tanks, a sampling 

period Ts of three seconds was used for all the experiments, and a time 

delay of one period assumed. The control objective was to independently 

control the water level in each tank of the coupled multivariable system by 

setting different voltages (and hence heights of water) for the two tanks. 

The coupling between the tanks is determined by the size of the orifice 

between them. Most of the work was done using a single hole with diameter 

0.317 cm, but a few were done using two holes, with the additional orifice 

having a diameter of 0.635 cm. Unless otherwise stated, the results given 

here should be assumed to be for a single hole.

For each tank there were six adaptive parameters for an assumed first 

order transfer function with a zero order hold D/A converter. Unfortunately 

the results of only the tank outputs, the reference model outputs and the 

control inputs can be shown due to memory limitations of the hardware used.

The details of the results now follow, starting with the MIMO Goodwin 

algorithm.

(a) The MIMO Goodwin algorithm

(i) Model A for tanks 1,2

ym1(t) = 0.2231301ym3(t-l) + 0.7768698^(1); R = 5.0V 

y^(t) - 0.2231301ym2(t-l) + 0.7768698r2(t); RI = 3.0V

Using various P-matrix structures, investigations were carried out into 

the effects of this on the control algorithm. Of interest was whether a 

diagonal P-matrix would suffice or whether a full 2x2 matrix was needed. 

The results of the various combinations are shown in Figures 4.16a,b,c.
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(-0.04 0.12 J

For Figure 4.16a P = ' 0.12

. o

0 ’

0.12 ,

was used.

For Figure 4.16b P = ’ 0.12 0.04 ' was used.

. 0.04 0.12 ,

For Figure 4.16c P = ’ 0.12 -0.04 ' was used.

From the results the best P-matrix all round would be that for Figure 4.16c 

which combines a lower overshoot relatively with the others with a fast 

convergence time; but for simplicity the diagonal P-matrix was chosen, 

although it had a higher overshoot it was faster in converging its system 

output to the desired reference output. Using a diagonal P-matrix and 

smaller gains, i.e.

P = 0.04 0 '

. 0 0.04 ,

a reduction in overshoot results but at the expense of having a slower 

convergence time compared with Figure 4.16a.

The effects of increasing the orifice size, and hence the coupling 

between the tanks, were also investigated. The results in Figure 4.18 show 

that using the same diagonal matrix as in Figure 4.16a the convergence time 

had increased for both tanks, but the overshoot for tank 1 was reduced while 

that of tank 2 had increased due to the extra coupling between them.

(ii) Model B for tanks 1,2 y^(t) « 0.980^(t-1) + 0.0198^(1); R = 5.0V 

ym2(t) = 0.9802ym2(t-l) + 0.0198r2(t); RI = 3.0V

The results of this, using a diagonal P-matrix, are shown in Figure 4.19.
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( i i i ) Model C for tanks 1, 2

These are second-order reference models of which there are three of 

them. The results for the three models used are shown in:

Figure 4.20a using y^(t) = 0.000303^ (t-1 ) + 1 .98186ym] (t-1 ) - 0.98216yml (t-2)

ym2(t) = 0.000303r2(t-l) + 1.98186ym2(t-l) - 0.98216ym2(t-2)

R = 5.0V, RI = 3.0V

Figure 4.20b using y^(t) = 0.000413^ (t-1 ) + 1 .97589yml (t-1 ) - 0.9763yml (t-2)

ym2(t) = 0.000413r2(t-l) + 1.97589ym2(t-l) - 0.9763um2(t-2)

R = 4.0V, RI = 3.0V

Figure 4.20c using the same model as in Figure 4.20b with R = 3.0V, RI = 5.0V.

(b) The Extended Kreisselmeier and Anderson algorithm

Initially, when the Kreisselmeier and Anderson scheme was first extended, 

it was based on the MIMO Goodwin algorithm without any theoretical facts or 

proofs. Based on this, six adaptive parameters per tank were used as in the 

MIMO Goodwin, but during the experiments the two tank outputs were found not 

to be converging to the desired reference outputs. The results in Figure 

4.21a show that there was some form of tracking though. Going back and using 

a theoretical approach (see Section 3.6) it was found that two of the adaptive 

parameters, namely o^2 and , were zero in value. Subsequent experiments 

without these parameters, see Figure 4.21b, later proved this with the 

reduction if not virtual elimination of the offsets. The reference models 

used for the tanks were:

(i) Tank 1 y^(t) = 0.7768698^(1) + 0.2231301y^(t-l); R = 5.0V

Tank 2 ym2(t) = 0.7768698r2(t) + 0.2231301ym2(t-1); RI = 3.0V

The importance of smaller dead zones is reflected by comparing the results 

shown in Figures 4.22a and b, where two different dead zones were used.
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Figure 4.22a shows the results obtained using d = 0.5, the computed value 

for tank 1, and dQ = 0.4 for tank 2. For Figure 4.22b a reduced dead zone 

was used with dQ = 0.05 for both tanks. Comparisons show how greatly reduced 

the tracking error value was, with better tracking and convergence of the 

outputs.

(ii) Model B y^(t) = 0.9082yml (t-1 ) + 0.0198^ (t) ; R = 5.0V

ym2(t) = 0.9082ym2(t-l) + 0.0198r2(t) ; RI = 3.0V

The result of using the above model is shown in Figure 4.23, where the graphs 

are those of the reference outputs, system outputs and the control inputs.

(c) The Modified MIMO Goodwin algorithm

A few experiments were carried out using this algorithm. The first 

experiment was made without bounds on the adaptive parameters (see Figure 

4.24a) so as to have a rough idea of the minimum and maximum values of these 

parameters. The same model, Model A, as in the previous algorithms was used. 

Using the knowledge gained from this, the bounds were placed on the 

parameters and the experiment repeated. The result, shown in Figure 4.24b, 

shows the reduction in the amount of overshoot compared to the earlier 

figure.

4.4.4 More Robust Considerations

Apart from investigating the robustness of the algorithms to under­

modelling and mismodelling, some other results were obtained for reference 

input changes on-line. Also introduced were disturbances to check whether 

the algorithms might not cope with these and hence throw the system into 

instability.

The test results shown in this section are for the multivariable algorithms 

for which the reference models are first-order systems. The same model 
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ym(t) = 0.7768698 r(t) + 0.2231301 ym(t-l) is used for both tanks and for 

all tests carried out. Figure 4.25a shows the result of changing the set 

points for tank 1 from 5.0 volts to 3.0 volts and tank 2 from 3.0 volts to 

4.0 volts, using the MIMO Goodwin algorithm, while Figure 4.25b shows that 

of the extended Kresselmeier and Anderson algorithm, changing the setpoints 

of tank 1 from 3.0 volts to 5.0 volts and tank 2 from 5.0 volts to 3.0 volts.

Testing the robustness of the algorithms against external disturbances 

involved closing the taps on both tanks fully for varying time intervals and 

opening them again, or keeping the taps half-closed and observing what 

happens.

In Figure 4.26a, using the Goodwin algorithm, the tap on tank 1 was 

closed for three sampling periods at 161, while after allowing for the system 

to settle down at 267 both taps on the tanks were half-closed. In Figure 

4.26b, using the same algorithm still, the tap on tank 2 was closed for 

three sampling periods at 150, while the tap on tank 1 was closed for a 

sampling period at 267, Using the extended Kresselmeier and Anderson 

in Figure 4.26c, the tap on tank 2 was closed for two sampling periods at 

177, while the tap on tank 1 was closed first at 250 for three sampling 

periods and then again at 304 for eight sampling periods.

4.5 COMMENTS

(i) A lot of problems were confronted during the implementation of these 

algorithms on the two rigs. The most recurring problem was that of the 

characteristics of the depth sensor which were found to be varying from day 

to day during the research work (see Figures 4.6b,d for examples). This 

leads to having different results for the same models at different times. 

By this it is meant that while in all cases the tracking error ultimately 

reduces to zero, the time taken and the peak overshoots for the same 

reference outputs were not the same. In a way this shows how suited the 
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coupled tanks were to model reference adaptive control since the outputs can 

always be kept the same irrespective of the changes.

Another problem was that of quantization due to the A/D and D/A converters 

used. For example, in discretization 0 - 255 is equivalent to 0 - 10 volts, 

which means 1 = 0.04 volts, but 0.04 volts on the tanks' depth sensor could 

be equivalent to 1 min and hence makes convergence more difficult.

(ii) Fast reference models were used in most cases because it was the final 

output tracking that the author felt was of importance here, especially 

bearing in mind that for processes like those mentioned in Section 4.1 it is 

usually the aim to have the system output at a particular height irrespective 

of disturbances, say, but for completeness slow reference models were also 

investigated.

(iii) Although this is just one system and hence statements about comparisons 

of the different algorithms cannot be generalized from these results, 

some of the interesting points observed during the experiments cannot but be 

mentioned. In particular the Goodwin algorithm proved quite robust as it 

compared favourably with the other two algorithms which were implicitly 

designed for robustness. Probably the reason for this is the fact that even 

though some experiments were carried out with reduced order models (i.e. first 

order systems), the coupled tanks while being a second order system could be 

approximated by first order models. For example, observing the roots of 

the transfer functions in Section 4.4.2, it can be seen that the two transfer 

functions each have a dominant root which can approximate the system model, 

while in the case of the MIMO tanks it is the interactions that have second 

order transfer functions.

A particular disadvantage of the Kreisselmeier and Anderson algorithm 

it was felt was the lack of adaptive gains, unlike the other two which could 

be used to speed up the adaptation especially nearer to the desired reference 
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outputs. A way of getting round this though is by setting bigger parameters 

bounds, but this causes bigger overshoots while not necessarily solving the 

problem.

Also discovered was that the MIMO Goodwin coped better with the 

quantization error than the derived MIMO Kreisselmeier and Anderson algorithm.

(iv) In conclusion, three different versions of the model reference adaptive 

control scheme have been successfully employed to control the height of 

fluid in the tanks at different levels. The experimental results indicate the 

benefits gained from using M.R.A.C. for this type of system, as the set 

points could be changed on-line as well. It is felt that the robustness 

properties of these algorithms to mismodelling and disturbances have been 

shown.
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Figure 4.11 (a) Shows the Reference and System Outputs for the Ortega et al 
algorithm using p = 0.75.

(b) Shows the Reference and System outputs for the Ortega et al 
algorithm using y = 0.15
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(b) The Control Input u(t) and the adaptive parameters 9(t).
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and Anderson's multivariable algorithm.
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Chapter 5

THE COUPLED ELECTRIC DRIVES SYSTEM

5.1 INTRODUCTION

Another interesting industrial problem involves the control of both speed 

and tension. This is particularly true of areas involving production of goods 

requiring material handling and transportation. Examples of manufacturing 

processes where the control of both speed and tension is of importance include 

the cable manufacturing industry where, in the production of say electrically 

insulated conductors or cables, the bare wire is unwound by a controlled 

tension device, the wire is then fed into a "guider” tube where the insulation 

coat is then added. The wire speed is controlled by a capstan at the end of 

the line. Other examples include (i) the textiles industry where yarns are 

wound from spool to spool, or (ii) the paper mills where reeling of paper 

sheets takes place. Here the paper sheet must be pulled on to the wind-up 

roll at nearly constant tension. A reduction in tension produces loose rolls 

while an increase could result in the paper sheets tearing. If the reel speed 

is constant the linear velocity of the paper and tension would increase as the 

wind-up roll diameter increases, hence a need for control of both tension and 

speed.

Other areas might be in the control of escalators and possibly conveyor 

belts at ports.

Unfortunately, as can be seen from these examples, these two variables 

influence each other a lot. Hence, the strong interaction between these 

variables thus makes it a challenging control problem.

The coupled electric drives apparatus (see Figure 5.1) is a laboratory 

scale model with which efforts are made in the study of the control of such
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processes and the problems it entails. A brief description of the coupled 

electric drives system now follows.

5.2 DESCRIPTION OF RIG (see 62]

The coupled electric drives system consists of a continuous flexible belt 

which loops around two drive motor pulleys and over an intermediate jockey 

pulley (see Figure 5.2a). The apparatus is controlled by manipulating the 

drive torques to these servomotors. The principal system outputs are the 

jockey pulley speed and the belt tension, while other outputs that can be 

obtained are the drive speeds for motors a and b (see Figure 5.2b). The 

jockey pulley velocity measurement is derived from a tachogenerator which is 

driven directly by an extension to the jockey pulley spindle.

The belt tension is measured indirectly by monitoring the angular 

deflection of the pivoted tension arm to which the jockey pulley is attached. 

The deflection of this arm is detected by the capacitive transducer mounted 

at the end of the tension arm. This deflection is related via the tensioning 

spring stiffness and system geometry to the belt tension as it passes over the 

jockey arm pulley. This gives a bipolar voltage for the values of the tension.

Using the fixing device provided with the apparatus the tension arm can be 

locked in a fixed position to facilitate measurement of certain system 

characteristics and some other experiments.

Inputs to the system are by drive voltages to the servomotors through the 

instrumentation box. All signal processing and part of the transduction take 

place in the instrumentation box from which the output voltages are also 

measured.
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Continuous 
flexible

Simulated 
Work­
station

Drive 
motor (a)

Figure 5.2a The Coupled Electric Drive Apparatus

t
Jockey Pulley

Drive a 
Input O

Drive 
Input

COUPLED

DRIVE

APPARATUS

jg Jockey Pulley 
Speed Output

Jockey Pulley
Tension Output

■O Drive a Speed Output

O Drive b Speed Output

Figure 5.2b Input/Output definitions for the Coupled 
Electric Drives Apparatus.
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(5.3.1)

5.3 THE SYSTEM CHARACTERISTICS AND MODEL

Using the free body diagram of the coupled drives shown in Figure 5.3, 

the transfer function of the system can be derived. This is by considering 

the apparatus as a combination of subsystems, e.g. the jockey pulley assembly, 

the drive pulleys a, b, and lastly the belt sections from which, using force 

balance and power conservation principles, the state space equations can be 

derived (see Appendix B). It is then from these that the system transfer 

function is found and the resulting block diagram in Figure 5.4 depicts this. 

The coupling between the inputs and outputs is also shown. The torque inputs 

for both drive motors are derived from their respective input voltages as:

Ta " 9a va 

Tb = 9b vb 

while the output voltages are calculated from the two outputs which are the 

jockey pulley speed w(s) and the jockey arm deflection xk(s) as follows:

\ = 9] » 

Vxk ■ 92 xk

The constants g&, g& are determined by the motor, amplifier characteristics, 

while the constants g-|, g^ are obtained from the transducer characteristics 

of the system.

Due to the coupling between the two inputs and the outputs, there was a 

need for the interaction to be reduced for ease of control. Thus the system 

characteristics were best obtained under conditions where the interaction is 

reduced if not totally eliminated. To do this, it is fairly obvious that the 

use of inputs va, v^, as:

(5.3.2)
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Vs) ■ U](s) * u?(s) 

vb(s) = U,(s) + Ug(s)
• (5.3.3)

in Figure 5.4, would reduce the interactions and thus allow one input to 

specifically determine one output only. This is illustrated by Figure 5.5 

with

u,(s) + y^s) 

u2(s) * y2(s)

Figure 5.6a depicts the Tachometer calibration with the tension arm locked. 

Figure 5.6b shows the Tension transducer calibration, while for the steady 

state relationship between input to motors and jockey arm tachogenerator 

output see Figure 5.6c, and for that of the jockey arm tension transducer 

output the result is shown in Figure 5.6d. Three different curves are shown 

in Figure 5.6d because although the recommended u^ voltage was six volts, it 

was found to lead to early saturation of both the analogue computer and the 

A/D converters, since this leaves only about four volts maximum for the 

control input. For most of the experiments and tests carried out, u^ was 

set at about 3.67 volts.

To obtain the transfer functions of the coupled electric drive system, 

it was necessary to decouple the system so as to enable one input control one 

output only. Using the decoupler equation (5.3.3) the transfer functions 

derived mathematically from the free body diagram in Figure 5.3 were:

(i) for speed control

u(s)
9m "l(s) 

sI+E (5.3.4a)

where gm is assumed = g& = g&
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[2(s2mt+sbt+Kt)-(2cosa)2Kc](s2I + sb + 2K*(s))

2rKcosa

2(sl+b)

Tbti___________________

Torque drive motor b

Jockey arm

Deflection

TaW___________________

Torque drive motor a
-------------------------------------------- ► w(s 
Jockey Pulley Speed

Figure 5.4 Block diagram showing the coupling and transfer functions 
between the outputs and inputs.

VJs

COUPLED

DRIVES

SYSTEM

xk(S>

'1

Figure 5.5 An illustration of "the decoupler" for the Coupled Drives.
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(1i) for tension control

4g rKeoSa u,(s) 
x (s) = —2----------- ;--------------g-----------------------------g—

K (s^I+bs+2K' (s))(2[s\+sbt+Kt]-(2cosa)<K)
(5.3.4b)

where

K'(s) = Kr2 1 + ------ ----------------------------- -
2[s mt+sbt+Kt]-(2cosa) K ,

(5.3.4c)

(N.B. This accounts for the jockey arm dynamics.)

and ba = b^ = b the rotational coefficient assumed same for 

both pulleys;

mt’ Kt* bt are as shown in Figure 5.3;

ra = ^b = r the radius of the pulleys assumed to be the same;

K = K. = K = K the belt stiffness coefficient assumed to be c d e
the same for the different belt sections.

It should be noted that if the tension arm is damped using the locking 

bar, then K'(s) reduces to a constant:

(5.3.4d)

The versatility of the coupled electric drives apparatus is shown in the

way it could be modified and reduced to a scalar system in which only one

variable is controlled, e.g.

Speed Control alone by using va(s) = u1(s), vb(s) = u^(s) (5.3.5a)

Tension Control alone by using va(s) = u2(s), vb(s) = -u2(s) (5.3.5b)

(note, this is for positive tension output x^s), if a negative output is
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required the signs of the above signals are reversed.)

5.4 MODEL REFERENCE ADAPTIVE CONTROL OF THE ELECTRIC DRIVES

Although the coupled electric drives apparatus is not quite a nonlinear 

system it is still a good rig to implement MRAC algorithms on. Tests were 

carried out using the different algorithms on the MIMO system consisting of 

the inputs to the drive motors and two outputs, namely the jockey pulley 

speed and the belt tension. Also carried out were tests on the scalar systems 

of tension control and speed control, respectively. For the scalar systems 

more emphasis was placed on the tension control since, by virtue of its 

transfer function, it makes a more interesting study, especially as regards 

reduced order modelling. The discussion of the results now follows, starting 

with the scalar systems.

5.4.1 Tension Control

To make the work easier the coupled drive system was decoupled using the 

inputs vg = u^s), vb = -u^s) (for positive tension voltage output y2(s)), 

but this was not a recommended approach from the systems manual as it might 

result in damage to the circuits of the servo-motors due to large current 

build up. Hence, for decoupling the system was connected up with inputs:

vQ = u^ + Ug for positive tension outputs y2(s)

vb = - u2

The voltage is a constant voltage which was generated from an analogue 

computer to keep the drive-motors rotating at a nominal speed, while voltage 

u2 was derived from the BBC microcomputer as the adaptive control input for 

tension control.
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Three different reference models were applied during tests carried out 

using the three different algorithms, namely two first-order models and a 

second-order model. The sampling period varied for different models but were 

either half a second or a second long, with a time delay of one sampling 

period interval assumed.

Control Hardware and Software:

The output voltage representing the tension output xk(s) was the input 

to the BBC computer from which the control input u^ was also derived. The 

analogue computer was used to generate u^ and also for both summing and 

inverting the voltages. The software used was written in BASIC. The listing 

of the programs can be seen in Appendix C. The results were first stored on 

floppy disks before being plotted using the Rikadenki plotter.

Real Time Control Experiments (the results):

As mentioned earlier, three different reference models were used, a fast 

first-order model, a slow first-order model and a second-order model. The 

results of the different MRAC algorithms are now explained, starting with the 

Goodwin algorithm.

A. The GOODWIN et al Algorithm:

Key to the program (see Appendix C):

The control input U(t) = Y(6) , u(t-l) Y(7)

The reference input R(t) = R

The reference output Ym(t) - V(4) ym(t-i) = Y(19)

The system output yp(t) = YS yp(t-i) ■ Y(5)

The tracking error e(t) = Y(9) e(t-l) = Y(10)

The adaptive parameters o(t) = [Qq(t), 02(t), 03(t)] = [Y(ll ), Y(12), Y(13)]

e(t-l) = [Y(14), Y(15), Y(16)]
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(i) Model 1 ym(t) = 0.6065ym(t-l ) + 0.3935r(t)

The initial parameter values were e(0) = [0,0,0] and the results are 

shown in Figures 5.7a,b using a gain of 0.39, with Figure 5.7a showing the 

reference and system outputs plus the control input, while the adaptive 

parameters are shown in Figure 5.7b. As in Chapter 4, the use of a bigger 

gain, 0.78, leads to quicker convergence time, though an overshoot also occurs 

as depicted in Figure 5.7c.

In pursuit of the robustness of the algorithm, other experiments were 

carried out involving changes in the step inputs to see whether the system 

output could be destabilized through these changes. Also, disturbances were 

intentionally introduced as well to check on the system response. The step 

input was changed down as shown in Figure 5.8a, while in others the step input 

was changed down and then up as in Figures 5.8b,c (which depict the control 

input plus reference and system outputs and the adaptive parameters respec­

tively), or as in Figures 5.8d,e where the set input change was first up and 

then down again. From Figures 5.8b ,d it can be observed how the control input 

goes back to the same value for the same output, thus confirming the adaptive­

ness of the algorithm.

Disturbances to the system output were introduced in another experiment 

by shaking the tension wire up and down after the convergence of both outputs 

and then releasing it; later the tension was increased by tightening the belt 

which thus changed the output voltage to see whether the algorithm could cope 

with this. The results of all these external disturbances are depicted in 

Figures 5.9a,b,c.

(ii) Model 2 ym(t) = 0.0198r(t) + 0.9802ym(t-l)

Using a slower reference model the system was made to track the reference 

model output, using a gain of 0.78, with the initial parameter vector the same 
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value as in (i) above. The results are shown in Figures 5.10a,b,c.

(iii) Model 3a ym(t) = 0.000413r(t-1) + 1 .97589ym(t-l) - 0.9763ym(t-2)

3b ym(t) = 0.0015603r(t-l) + 1.9512ym(t-l) - 0.98334ym(t-2)

3c ym(t) = 0.000259r(t-l) + 1.98308ym(t-l) - 0.98334ym(t-2)

The above models being second-order functions, the number of adaptive 

parameters had to increase due to the increase in model order, but the models 

were designed for the same damping factor, even though the natural frequencies 

were different. The results of the first model are shown in Figures 5.11a,b 

with (a) showing the control input and reference plus system outputs, while 

(b) shows the adaptive parameters and the tracking error. The reference and 

system outputs for the other two models are shown in Figures 5.11c and d, 

respectively.

Comments about all the results and figures will be made at the end of 

the chapter.

B. The ORTEGA et al Algorithm

Key to the program is similar to that of (A).

(i) Model 1 ym(t) = 0.3935r(t) + 0.6065ym(t-l)

Using different gains but the same initial adaptive parameter vector 

e(0) = [0.1, 0.1, 0.1], different experiments were carried out on the rig. 

In Figure 5.12a the control input, reference and system outputs are shown, 

while Figure 5.12b shows the adaptive parameters for a gain of 0.62, and 

when the gain was increased to 0.78, this led to an overshoot shown in 

Figure 5.12c. Amongst other tests done were the changing of the reference 

input on-line, the result of which is shown in Figure 5.13a,b.
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(ii) Model 2 y^t) = 0.0198r(t) + 0.9802ym(t-l )

The results are shown in Figures 5.14a,b,c for the reference and system 

outputs, the control input and the adaptive parameters. For this experiment 

an adaptive gain of 1,565 was used.

(iii) Model 3 ym(t) = 0.000413r(t-l) + 1 .97589ym(t-l) - 0.9763ym(t-2)

For this reference model a bigger adaptive gain was used because of the 

results obtained using the second model above. A gain of 1.96 was used, and 

the results are shown in Figures 5.15a,b,c, respectively.

(C) The KREISSELMEIER, ANDERSON Algorithm

(i) Model 1 ym(t) = 0.3935r(t) + 0.6065ym(t-l)

The same initial parameter values as in (B) above were used with the 

results shown in Figure/5.16a of the reference and system outputs. In 

Figures 5.16b,c the results shown are for when the reference input was changed 

to a lower value on-line, while Figures 5.16d,e show the results for when the 

reference input was changed to a higher value.

(ii) Model 2 y^t) = 0.0198r(t) + 0.9802ym(t-l )

The results are shown in Figures 5.17a,b,c of the reference and system 

outputs, the control input and the adaptive parameters.
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5.4.2 Speed Control

Before moving on to the multivariable system, a couple of experiments 

were carried out on the speed control of the coupled electric drives with the 

tension output decoupled by the use of the decoupling equation mentioned 

earlier. The inputs to the drive motors were the same, namely the control 

input u(t) derived from the BBC micro, i.e. Va = u(t), Vb = u(t), as the 

use of this decouples the system. Using the Goodwin algorithm, the results 

are shown for different gains in Figures 5.18a,b,c. In Figure 5.18a, it is 

shown that while theoretically, by the use of the same input to the drives 

to decouple, the tension output should be zero, in practice there is still 

a bit of interaction probably due to the asymmetricalness of the whole system.

5.4.3 The Multivariable Coupled Electric Drives System

For the multivariable system consisting of the two drive motors as 

inputs, the jockey pulley speed and belt tension as outputs, making it a 2x2 

system, only two algorithms were tested on it. These were the multivariable 

Goodwin algorithm and the derived MIMO Krei sselmeier-Anderson algorithm.

Although there is interaction between the system inputs and outputs, 

as mentioned in earlier sections, it is possible to decouple the rig into 

two almost independent systems by using the inputs as defined in equation 

(5.3.3), but for the two algorithms used here, there was no explicit attempt 

at using the decoupler equation mentioned, instead the algorithms were 

applied with the aim of achieving independent control of the outputs 

irrespective of the interactions.

The algorithms and their results for different tests are now explained 

as follows:
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A. The MIMO GOODWIN et al Algorithm

Key to the program (see Appendix C):

W*) ■ ?(9) - Y(10)

W') " ym2(t-n - y08)

y»(s)(t) ' YO) yw(s)(t"1) ' Y(2)

yxk(s)(t> ' V(3) yXm(s)(t-,) = Y(4)

^(t) = Y(47) U1(t-1) = Y ( 5 ) ^(t-2) = Y(6)

u2(t) = Y(48) u2(t-l) = Y(7) ug(t-2) = Y(8)

^(t) = Y(19) e2(t) = Y(20)

pn P12 ' Y(27) Y(28) '

p =

P21 P22 ■ . Y(37) Y(38) .

e(t) =
' e^t) ' ®]](t) ®13(^) ®14(t) 615(f) 616(f)

. e2(t) , . ®2](^) @23(*) ®24^^ 625(f) 625(f) '

’ Y(11 ) Y(12) Y(13) Y(14) Y(15) Y (16 ) '

Y (21 ) Y(22) Y ( 23 ) Y (24) Y(25) Y(26) ,

A possible way of decoupling the system using the P-matrix was 

investigated. This involves using the P-matrix as a decoupler. Basically 

what was done could be explained using the definitions of the control inputs, 

e.g. u(t) = e(t)4(t).
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From Chapter 2 it is known that

9(t) -
( P11 

0(t-l) - "
Pm

P12

P22

' r e1 (t)

e^t) = e^t-l) - [Pnei(t) + P12e2(t)].K(t)j.T(t) " 

e2(t) = e2(t-l) - [P2iei(t) + P22e2(t)]-K(t)»T(t) ,
(5.4.2)

where K(t) = [1 + ♦T(t)»(t)J

For speed control alone (remembering equation (5.3.5a)) one obtains:

e3(t) = - [Plie](t) + O.e2(t)]-K(t)*T(t)

e2(t) = 0;(t-l) - [P33e3(t) + O.e2(t)) K(t)*T(t)

(5.4.3)

Provided the same initial parameter values were used for G^t) and Ggft), 

i.e. e^O) = e2(0), then e^t) = ©2(t) for all t and u^t) = u2(t) 

as wel1.

Similarly for the tension control only (noting equation (5.3.5b)):

e(t) = e(t-l) - 0 -P22 e^t) K(t)J(t) (5.4.4)

. 0 ^22

for negative tension voltage
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e(t) « e(t-1) - 0 22 U *l(t) (5.4.5)P

* "^22 @2^) -

for positive tension voltage

Thus, for independent control of the two outputs one needs:

0(t) o(t-l) - P11

P11

P22 ]f »i(t) K(t)/(t) (5.4.6)

“P22 e2^) '

For all the work carried out using this algorithm the above P-matrix 

form was used. There was only one first-order reference model used for the 

tests, although with the reference inputs in different variations, i.e. 

changing them up or down on-line or with higher reference outputs for either 

the tension or speed control.

A sampling time of half a second was used and the reference model with 

the results are given below.

The control experiments and results:

Model 1: y^(t) = 0.3935^(t) + 0.6065yml(t-1)

ym2(t) = 0.3935r2(t) + 0.6)65ym2(t-l)

Using a reference input of four volts for the speed control and two volts 

for the tension control, the coefficients of the P-matrix used were P^ = 0.1, 

P22 = 0.15 . The results are shown in Figure 5.19a for both system outputs 

and reference outputs, but because of the long duration of the experiment, 

due to the large number of samples, it was only possible to store the results 

of these on disk, hence for all the figures there were no control inputs or 

adaptive parameters shown.

Also used were a higher reference tension input of three volts and a lower 

reference speed input (1.75 volts), the result of which is depicted in
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Figure 5.19b.

Finally the reference inputs were changed on-line to test more adaptive 

properties of the algorithm and system reaction. The results of these are 

shown in Figure 5.19c.

B. The MIMO KREISSELMEIER-ANDERSON Algorithm

Key to the program (see Appendix )

ym1(t) ■ Y(9) ym1 (t-1 ) - Y(10)

y^t) - Y(17) ym2(t-i) = Y(18)

**($)(*) ° Y(1) W yw(s)(t-2) - Y(55)

yw(s)(t-3) = Y(57)

\(s)W= Y(3> YW

\(s)(t-3) = Y(58)

u,(t) = Y(47) u^t-1) = Y(5) u-j (t-2) = Y(6) u,(t-3) = Y(53)

u2(t) = Y(48) u2(t-l) = Y(7) u2(t-3) = Y(8) u2(t-3) = Y(54)

m^t) = X(2) = X(4)

m2(t) = X(5) m2(t-l) = X(7)

' en(t) e13(t) e14(t) e15(t) e16(t) _ ( Y(11) Y(13) Y(14) Y(15) Y(16)' 
. e22(t) e23(t) e24(t) e25(t) e26(t) J " Y(22) Y(23) Y(24) Y(25) Y(26).

The same model as the Goodwin algorithm was used, as well as the same 

sampling period. Typical of the other experiments using this algorithm was 

the need to have a rough idea of the adaptive parameter bounds to be used in 

the algorithm. This is usually done by deleting any parameter bounds initially 

from the algorithm and conducting experimental runs without them. From these 

experiments the minimum and maximum parameter bounds can be determined. An 

example of the results of such an experiment is depicted in Figure 5.20a which 

leads to the inclusion of parameter bounds in the software. The result in
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Figure 5.20b is that of using the algorithm complete with parameter bounds, 

dead zones and normalization.

5.5 COMMENTS

(i) The system was very noisy due to the vibrations of the tensional spring 

which is attached to the deflection arm. The vibrations were caused 

by the movement of the belt at speed. The lower the speed of the belt, 

the greater the vibrations of the deflection arm which reads the 

tension output. Due to these vibrations, the tension output tends not 

to stay constant as the results show, although the quantization error 

contributed to this as well.

(ii ) Another problem which also relates to the tension control was the 

initial oscillation of the tension output during the beginning of any 

experiment, although within 2-4 samples this is normally brought under 

control. This led to all the results having shaky beginnings. Different 

attempts at stopping this were tried all to no avail, although the 

smaller the initial input the smaller these oscillations were.

(iii) All the algorithms performed quite well on the rig, although once again 

the best results came from the Ortega et al algorithm for the SISO 

algorithms, with the Kreisselmeier-Anderson algorithm being the worst 

of all three, especially when tracking the slower first-order reference 

model.

For the multivariable algorithms the Kreisselmeier-Anderson derived 

MIMO algorithm proved faster in converging the system outputs to the 

desired reference outputs. Comparisons can be made between Figures 

5.19a and 5.20b.

(iv) When the reference output changed on-line there seemed to be 

difficulties in getting the system output to change fast enough, which
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might be due to the mis-modelling of the system order, hence not

allowing the adaptive parameters to converge to the true parameter

values; but better convergence is achieved when changing up then down.
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Tg = 1.0s Figure 5.11a

-0.39

0.31

1.02

100

Y(H)

Y(I2)

0/P ERROR

1.73

-1.09
0.

Figure 5,11 (a) The reference and system outputs plus control input for a 
second-order reference model using the Goodwin et al algorithm, 

(b) Showing some of the adaptive parameters 9(t) and the output 
error e(t).
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Figure 5.20 (a) Shows the multivariable control of the drives using the 
_ derived MIMO Kre.issete algorithm without parameter

bounds. .... ’
(b) Shows the multivariable control.of the drives using the derived 

MIMO Kreisselmeier-Anderson algorithm with parameter boynds.
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Chapter 6

THE HEATER BAR

6.1 INTRODUCTION

The heater bar is a scaled down model of an industrial problem, a process 

where molten plastic passes through cylindrical heater tubes which were 

supposed to be kept at a constant temperature. Due to the slowness of the 

process it was quite difficult to control the heater temperature at a constant 

enough value for the molten plastic, as the temperature was found to be either 

too hot or too cold for the process.

Another use could be made of the laboratory rig by considering it as a 

boiler in power/steam stations which needs to operate at a certain constant 

temperature for steam and hence power generation.

It is a distributed parameter system, but which for the course of this 

work would be assumed to be finite dimensional lumped parameter system, hence 

with a deterministic transfer function for ease of control.

6.2 SYSTEM DESCRIPTION

The rig (see Figure 6.1) consists of a half mild steel cylinder cone 

inside a cylindrical sleeve of the same material. The heater, a metal coil, 

is inserted within the core of the steel bar. Basically, heat is transferred 

round the system via conduction, radiation and convectional means. The rig 

is made up of two halves, one of which contains the heater while the second 

half consists of the part whose temperature needs to be controlled. As shown 

in Figure 6.1, there are eight, 2.5 cm deep holes along the bar, six of which 

are on the second half while two are on the first half. Since the second half 

represents the system output, the temperature of which is to be controlled,
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the temperature can be taken from any of its six holes which are in two 

parallel rows of three each, at the top and side of the bar. Via thermo­

couples, the temperature is measured and converted to microvolts, which is 

then amplified in the control instrumentation box which is apart from the 

bar itself. Through the transducers and amplifiers, the relationship between 

the temperature output in centigrade (°C) and volts is approximately 1°C to 

ImV. Due to the holes it is possible to have the rig used as a Single Input 

Multi Output (SIMO) system.

The bar is 30 cm long with each half being 15cm. It has an outer radius 

of 3.44cm and an inner one of 0.5cm for the first half. The mild steel
3 

material has a density of 7849.2 Kg/m and a specific heat capacitance of 

461 J/KgK. The bar is placed inside a glass case which is perforated and 

to which is attached two fans which can be used for cooling. Potentially 

these can also be used as an input, but as of now they are only switched on 

or off manually.

6.3 SYSTEM CHARACTERISTICS AND MODELLING

From the previous section it becomes apparent that it is a slow 

responding rig, hence with a very large time constant. Although a distributed 

parameter system with a temperature profile which gradually decreases in value 

the further away from the heater coil that one gets along the bar, it is 

possible to represent the rig as a first or second order system. The step 

response output of the four holes are shown in Figure 6.2 from which it can 

be seen that the possibility of approximating the system order as one or two 

is certainly correct.

On the assumption of a finite order system, analysis of the system model 

now follows.
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MODEL DERIVATION

The Single-Input, Multi-Output (SIMO) System

Since all the holes on the rig could be used as outputs the system can 

be called a SIMO system. Based on this and the modelling ideas in [64], an 

analogous electrical system to the rig can be formed as depicted in Figure

6.3a below, from which the system state space model and transfer function

2nd half of rigI------1st half of rig

Figure 6.3a The SIMO System

= Heat source; = temperature of core (T^);

Vg = temperature of 1st hole (T^) ; Vg = temperature of 2nd hole (Tg);

V3 = temperature of 3rd hole (Tg) ; -Ry = thermal dissipators;

Cj-C^ = thermal flow stores.

Although in the above diagram the core temperature is assumed to be T^ 

it could easily be represented as another system output as well. It should 

also be noted that while the outputs are represented above in terms of 

voltages, there is a correlation between the hole temperatures and their 

voltages. The relationship is given by 1°C ImV.

Potentially the temperatures of the three holes on the second half of 

the rig, T1, Tg, Tg, can be the different system outputs as indicated above, 
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but due to the controllability problems the rig is best treated as a Single­

Input-Single Output (SISO) system.

The Single-Input, Single-Output (SISO) System

The rig, as a SISO system, implies that only one of the three holes 

could be used as a system output, which means that only the chosen hole’s 

temperature could be controlled. The new system diagram therefore changes 

from that shown in Figure 6.3a for a SIMO system to that in Figure 6.3b 

for a SISO system.

Figure 6.3b The SISO system

R3

= Heat source; T^ = temperature of core (1st half);

Tg = temperature of any of the holes on the 2nd half of rig;

CpCg thermal flow stores; R^-R^ = thermal dissipators.

Using Figure 6.3b the system state space model and transfer function for 

any given second half hole as output is now easily derived. The derivation 

now follows.



166

The heater coil was assumed as the source, with the temperature of the 

core assumed as Tp while any one of the holes on the second half of the 

rig provides the temperature .

Taking Tg as the system output the dynamic equations are:

T2 dT2 T}-T2
q3 = + q5 = ^ + c2 -gf • —jç-

Ti dTl Tl *T2
Q. = q] + q2 + q3 = + —Rp

Rearranging the two equations above and using T = dT/dt, 

(6.3.1)

(6.3.2)

then the state

space model is obtained as:

T1 C1Y2

C2 R2

1 "2
Qi

2

(6.3.3)

and the output is:

[0 in t1

T2

Taking the Laplace transform of the above the system transfer function is:

2

; ;

Tg
— = -7--------------------------------------- —---------------------------------------- (6.3.4)
Qi s^ CgR] RgR3+ (R] RgC]+R1 R3C] fR^ R^+RgR^g ) s+ (R^ +Rg+R3 )

Note: If Rg assumes a value of zero the transfer function reduces to a 

first order system.

Although the system transfer function was obtained above, because of the 

various ways that the heat is transferred, i.e. conduction, radiation and 
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convection, the values of the R's and C's above are never constant but change 

with the input voltage, hence temperature of the heater coil. So, in a way 

it is a variable parameter system which would suit adaptive control. It 

should be noted that for the different holes available, there are different 

transfer functions obtainable, since the resistance and capacitance values 

differ for the various hole positions.

From the system responses shown in Figure 6.2, if the transfer function 

should be approximated as a first order function, perhaps it might be as a 

time delayed first order system.

6.4 MRAC APPLICATION TO THE RIG

A lot of problems were encountered during the attempts at model 

reference adaptive control of the rig which essentially stemmed from the 

slowness of the system response. The time constant of the system was found 

to be approximately 75 minutes and this coupled with the heat capacitance 

of the material, made the system very difficult to work with. Because of 

these reasons, all attempts at getting any form of adaptive control of the 

rig using the three different SISO algorithms failed. Different ways to 

solve the problems faced proved ineffective, amongst which was the use of 

big sampling periods. The basic problem was that due to the large heat 

capacitance, it was virtually impossible to control the system output, 

because even when the tracking error is greater than zero (i.e. positive) and 

the adaptive parameter values and control input were decreasing to counter 

this, the temperature, hence the system output voltage just kept on increasing. 

This resulted in a badly controlled output ngures 6.4 and 6.5 shOw the results of 

using the Goodwin et al and Kreisselmeier-Anderson algorithms. Due to the 

large number of samples taken results are shown for the reference and system 

outputs only.
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In the end it was only by switching the adaptation off and on that any 

semblance of control was imposed on the system. The results and explanations 

now follow.

6.4.2 Results (see appendix for program listing)

Basically, what was done was that an error dead zone region was created 

within which the adaptive parameters and control input were switched off, 

i.e. reduced to zero. In this case the error dead zone was e(t) > 0, but 

as soon as the error goes outside this region, which for this particular 

problem meant e(t) < 0, the adaptive parameters and the control input were 

switched on again. By this means the system output was made to track the 

reference model output.

While any of the algorithms could have been used, it was the Goodwin 

algorithm that was used, although with various reference models and sampling 

times as given below. The three different hole positions on the second half 

of the bar were used as outputs on different occasions, though the middle 

hole was the one used most frequently. The results now follow for the 

different models.

MODEL 1 ym(t) = 0.3935r(t) + 0.6065ym(t-l)

For the middle hole there are two results for two different sampling 

periods, i.e.

(i) for Ts = 10 seconds (see Fig. 6.6a)

(ii) for Ts = 35 seconds. (see Fig. 6.6b)

Since the system is a slow one, it was felt that a slower reference model 

would be a more reasonable one to use, hence the reference model was changed 

and the larger sampling time above used, unless otherwise stated.
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MODEL 2 ym(t) = 0.0198r(t) + 0.9802ym(t-1)

(a) For the first hole a faster sampling time of eighteen seconds was used, 

due to the fact that it had a quicker response than the others, and the 

reference input was 0.7 volts. The result is shown in Figure 6.7a.

(b) For the middle hole, using a reference input voltage of one volt, the 

result obtained is shown in Figure 6.7b .

(c) For the extreme hole (the last one), two different step input values 

of 1.0 volts and 1.3 volts were used with their respective results 

depicted in Figures 6.7c and d.

From Figure 6.2 it is obvious that the extreme hole, which is furthest 

away from the heater, would have the slowest time response of all, hence a 

slower reference model still was used on this hole, i.e.

MODEL 3 ym(t) = 0.00995r(t) + 0.99005ym(t-1 )

Using the larger sampling period and a reference input of one volt, 

the result obtained is shown in Figure 6.8 for both the reference and system 

outputs.

6.5 COMMENTS

(i) Apart from the obvious slowness of the heater bar, the most difficult 

problems encountered were with the analogue to digital (A/D) converter 

used for the experiments. The first problem was that experienced for 

all the rigs, i.e. the quantization error for the A/D converter (which 

was bigger than for the previous rigs) of about +0.07 volts, the result 

of which caused the system output not to be smooth. This caused all 

the results obtained to have a lot of ups and downs in the value of the 

system output.



Most of the problems encountered in this chapter can be attributed 

to errors made in the modelling of the Heater bar rig. The most 

fundamental was as a result of using a first order model to represent 

the infinite dimensioned system. This is too small a model order for 

a good control of the bar temperature and hence the system output.

A confirmation of this can be made from a frequency response analysis 

of the system. Ideally for research purposes an eighth or tenth 

order system model will be needed of similar configuration to that 

shown in fig 6. 3k This will be able to cope with the difficulties 

in controlling the output temperature since the other heat capacitors 

in the system will be a contributive factor to the output and also 

the sampling interval can then be made much bigger than that used 

in the work here.
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The other problem was that of erroneous spikes in the results also 

caused by the A/D converter, since logic dictates that it is almost 

impossible to have instantaneous output increments as depicted with 

circles in Figure 6.9a .

(11) While the results show the possibility of controlling the system, it 

must be noted that the system output would track the reference output 

as much as possible, despite the introduction of the error dead zone 

and the switching on or off of the adaptive parameters accordingly, 

although the system output would have a slight oscillatory motion 

about the reference output as depicted in Figure 6.9b . Depending 

on the process to be controlled, the system output can be made to be 

as close to the reference output as possible, provided the quantiza­

tion error could be reduced to the very minimum.

(iii) The control problem might be a lot easier if the two fans built into 

the system could be programmed and adaptively controlled, i.e. 

switched on when the desired temperature level is being reached, or 

even have their speed, and hence their cooling ability, increased 

depending on whether the system output was overshooting the desired 

reference output or not, instead of the manually operated on or off 

switches used to operate them now.

During all the experiments and results reported here, the fans were not 

used for any of them.
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Chapter 7

DISCUSSIONS AND CONCLUSIONS

This thesis has been written in a way that permits easy correlation 

between the 3 parts, which were the historical background, theory in 

Chapters 1-3, and the experimental section in Chapters 4-6 consisting of 

practical tests on laboratory rigs.

As mentioned in the first chapter, although Model Reference Adaptive 

Control (MRAC) has been around for some time, it still has not got wide 

recognition and application of its algorithms in the industry. It is the 

author's hope that the work contained in this thesis, which has been made 

as simple as possible in every way, might persuade more people to have 

confidence in its theory and applications. Part of the problem has been 

with the stability of the algorithms as pointed out by Rohrs et al [21] 

amongst others, but with the emergence of new algorithms, two of which were 

used in this work, and more investigations into robustness through persis­

tency of excitation, hopefully things will change.

The work has been inspired by all these and the aim was to attract 

interest through testing algorithms on rigs by making these as simple as 

possible. The BASIC computer language was used throughout, being the simplest 

language available, and intentional mismodelling and output disturbances of 

the systems were introduced. Three different algorithms by different groups 

of people were used and, although at first appeared to differ, were shown in 

Chapter 3 to be quite similar with common underlying principles. Though there 

are numerous other algorithms, basically the same principles as for the three 

used exist in them as well. It was these fundamental similarities which led 

to the derivation of a multivariable extension to the scalar algorithm 

suggested by Kresselmeier and Anderson [27]. The major benefits of this 
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algorithm were in the reduction of overshoot and faster convergence of the 

system and reference outputs, even though in terms of tracking there is still 

a lot of room for improvement.

The laboratory rigs used were chosen because of the variety they offered 

in terms of industrial processes and problems that go with them. In Chapter 4 

the attention was on the Coupled Tanks which symbolise chemical processes 

amongst others, though the industrial system might be more complex, i.e. in 

terms of the number of parameters to be controlled, which in most cases would 

include temperature control. A persistent problem on this rig was the drift 

of the transducers as a result of which the system parameters at any operating 

level or point were never exactly the same but drifted with time. The results 

show the efficacy of using MRAC algorithms.

The Coupled Electric Drives apparatus in Chapter 5 represents a lot of 

industrial systems, some of which were mentioned in Section 5.1 . Here a new 

set of problems was encountered which include strong input-output interactions 

(also in the Coupled Tanks but on a much weaker level), and noisiness of the 

outputs due to the belt speed which caused the tension output to vibrate.

The last rig was the heater bar based on a temperature control industrial 

process. This was a very slow process and the problems met had to do with 

this fact. As a result of the slowness of response, all the three scalar 

algorithms failed in the attempts at controlling the system temperature. In 

the end a radical solution was found by switching on or off the adaptive 

parameters and control input, depending on the tracking error.

Another problem, but one which was encountered with all the rigs, had to 

do with the quantization error of the A/D converters. As a result of this, 

depending on how large the outputs were, the system output plots might not 

be continuously smooth. Also to do with the converters were the spontaneous 

spikes experienced from time to time in the results.



182

In using different algorithms, comparisons could not be helped of 

their performances on the different rigs. Overall, the Ortega et al algorithm 

proved to be the best of the SI50 algorithms for, while it had larger over­

shoots than the Kreisselmeier-Anderson algorithm, its overshoots were smaller 

than those of the Goodwin algorithm; but it had the best tracking ability 

of the three, irrespective of the intentional modelling errors. It also 

handles external disturbances quite well, thus proving its robustness all 

round. The Goodwin algorithm also performed quite well considering that it 

was the only one that was not designed for robustness, since it was pre-Rohrs 

et al. It tracks well, but unfortunately the better the tracking the bigger 

its overshoots which might prove an handicap. Finally, the Kreisselmeier- 

Anderson algorithm as mentioned had the lowest overshoots, but its tracking 

of the reference outputs was not too good. The author feels that this has 

to do with its lack of an adaptive gain which could have made a difference 

if it existed. Probably modifying the algorithm to include this might improve 

its all round performance and robustness.

Similarly, for the multivariable algorithms, the derived extension to 

the Kreisselmeier-Anderson algorithm proved better in terms of lower overshoot 

and faster convergence times of the reference and system outputs, but once 

again, as with the scalar algorithm, was worse off in terms of tracking the 

reference outputs compared to the MIMO Goodwin algorithm.

Finally, recommendations for future work. Although it was the robustness 

and effectiveness of the algorithms that were investigated as regards 

disturbances and mismodelling, an interesting area to extend the work to would 

be model reduction whereby reference models would contain only the essential 

and important information necessary for controlling the system. Another 

area would be in the modification of the Kreisselmeier-Anderson algorithm to 

include a variable adaptive speed factor. Though the rigs were scaled down 

versions of different industrial processes, it would be nice to see the
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algorithms being used in the industry itself.

Lastly, with the enormous potentials of the computer and the interest of 

people in expert systems, there should be ways of incorporating both adaptive 

control and expert systems into one large but versatile package. Amongst the 

options that should be available in such a package might be different 

algorithms to serve various functions such as regulation, identification, 

control, or all of these. It should be able to assess a given 

system then choose an optimum sampling time and perhaps decide when to 

switch on or off the adaptation according to laid down rules, objectives plus 

design criteria or goals. It must also be able to remember or learn from 

past problems or systems the similarities of new systems, thus arriving at 

the controllers and solutions in quicker times.
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Appendix Al

Theorems of Lyapunov [20]

(a) 1st Theorem of Lyapunov (Stability Theorem)

For a system of the nth order, if a V function of definite sign can be 

selected, such that its time derivative W is also definite and opposite 

in sign, the given system is asymptotically stable in a sufficiently small 

region, which includes the origin. If the W function is merely semi-definite 

and opposite in sign, the system is stable but not necessarily asymptotically 

stable.

(b) 2nd Theorem (Instability Theorem)

For a system with nth order, if there exists a real valued function 

V(XpXg,...,Xn) with the following properties:

(i) V(xpXg,...,Xn) is continuous

(ii) the time derivative dV/dt = W is negative definite

then (a) the system is unstable in the finite region for which V is 

not positive semi-definite,

(b) the response of the system is unbounded as t • if V is 

not globally positive definite

Note: W = X, + + ... +

V(x) is positive definite in U if for x in U :

(a) V has continuous partial derivatives

(b) V(0) = 0

(c) V(x) > 0 if x / 0, if (c) is replaced by (d) the function



is positive semi-défi ni te,

(d) V(x) > 0 .

The Meyer-Kalman-Yacnbovich (MKY) Lemma [7,8]

Let A be a real nxn matrix, all of whose characteristic roots have 

negative real parts; let t be a real nonnegative number, and let d,jc 

be two real n-vectors. If

T(z) = T + Zk'ACzf’d 

is a positive real function then there exist two nxn real symmetric matrices 

B, D and a real n-vector £ such that

(1) a'b + BA = -gg' - D

(2) Bd - k = Ag

(3) 0 is positive semi-definite and B is positive definite.

(4) {x e En : x ' D x = 0} 0 [A\g]° « {0}

(5) ai [A,d]°

(6) If iw, w real, is a zero of + Æ, then it is
• - — - . — . .. . > w .. . . v « - -  ———— •     »... "

a zero of d’A(-z)”^ DA(z)’ d^ .

The Popov Integral Inequality [20] for Figure A.l is given by:

n(0, tp
f 1 T 2

à ]o V w dt > -Yq for all t-j j> 0 .

A feedback system of the form given in Figure A.l, when it is globally 

(asymptotically) stable for all feedback blocks satisfying the inequality 

equation above, is said to be hypeMtabte,.



Non-Linear 
Time Varying 

Block

Linear 
Time Invariant 

Block

y is the input vector

w is the output vector of the feedback block 
2

Yq is a finite positive constant (which does not depend on t^).

Figure A.1 The Standard Nonlinear Feedback System.



Appendix A2

(1) llê(t) -e0|| < ||ê(t-l) -e0|| < ||ê(0) -e0||j t > 1 (1)

N eft)2
(ii) Um I --------5111----------- < . (2)

N-x» t =1

and this implies:

(a) 11m ----------- ----------------r = 0 (3)
t-X* [Cf^(t-l) #(t-l)]2

(b) 11m I . (4)
N*» t=l [cf*(t-l)'*(t-l)]<

(c) lim [ ||ê(t) - ê(t-l)|/ < » (5)
N-x» t=l

N . A p
(d) 11m I ||e(t) - e(t-k)|p < » (6)

N-*» t=k

(e) lim ||9(t) - e(t-k)|| = 0 (7)
t-x» 

for any finite k .

Proof:

(i) Subtracting eQ from both sides of (2.3.12) and using (2.3.5) and 

(2.3.14) we obtain:

9(t) = G(t-l)--------- ?iCt-lJ------- *(t-1)T G(t-l) 
c+e(t-l )Te(t-l)

Hence using (2.4.4 )



I|ë(t)|I2 - ||§(t-l)||z » a -2 +
c++ (t-1 )^+ (t-1 ),

e(t)2 
c++(t-1)T+(t-l)

(8)

Now since < a < 2, c > 0, we have:

a -2 + q"y 1- XV i 
c+*(t-i) *(t-iy

< 0 (9)

and then (1) follows from (8). 

~ o
(ii) We observe that ||o(t)|| is a bounded nonincreasing function, 

and by summing (8) we have:

| |e(t) 112 = | |§(0)| |2 + Z a -2 + --------
j=l I c++(j-l)' + (j-l)j c++(j-l)T+(j-l)

Since ||ô(t)|is nonnegative, and since (1) holds, we can conclude (2).

(a) Equation (3) follows immediately from (2).

(b) Noting that

e(t)2 s [c++(t-1)T+(t-l)]e(t)2 
c++(t-1 )T+(t-l ) (c++(t-1 )T+(t-l )]2

we establish (4) using (2).

(c) Equation (4) immediately implies (5) by noting the form of the 

algorithm ( ),

(d) It is clear that

||©(t) - O(t-k)||2 s ||o(t) - 0(t-l) + 0(t^l) * O(t~2) ...

... ê(t-k+l) - ê(t-k)||2

Then using the Schwarz inequality:



||ê(t) - ê(t-k)|I2 < k(||ê(t) - ê(t-l)||2 + ...

...+ ||ô(t-k+1) — 0(t—k)||2)

then the result follows immediately from (5) since k is infinite.

(e) Equation (7) follows immediately from (6).



Appendix B

Mathematical derivation of the 

Coupled Electric Drives Model [62]

To obtain the model the system is divided into three sub-systems. It 

is the force, torque and power balancing in these sub-systems that lead to 

the model derivation.

Using the free body diagram, Figure 5.3, each sub-system is now 

considered, starting with:

(a) The jockey pulley assembly: The pulley is assumed to be light and 

rotating frictionless, such that Fy = Fg = F . Vertical resolution 

of forces yields:

F^ = 2 cos « F (1 )

using law of conservation of power

^Fk " F<vl - v2> (2)

where Vp Vg are velocities. This implies

xk(2 cos %) = v^ - Vg (3)

A force balance on the tension measuring assembly gives:

Fk - Vk + ktxk + W

Note: mfxk = p the momemtum of mass mf .



(b) The drive pulleys a and b A torque balance of the drive pulleys

gives:

Ta + * Fs^a = ^a + bawa W

Tb + F6rb * F4rb = hb + bbwb (6)

where h^ and h^ are the drive pulley/motor angular moments, 

with ha = Iawa, hb = Ibwb (7)

v3 = wara- vb ' rbwb (8)

(c) The belt sections: A force balance on the different belt section

gives:

F] = F2 = F3 = F4 = F = Kcxe = Kdxd

(9)
I

F = Fg = F6 = Kexe

with xc, xd, x@ the respective belt section lengths.

Using equations (l)-(9) the state space equation matrix can be derived

with the states taken as h&, h&, xc, xe, x^ and p, thus one obtains:

fib

ba
" " ï; ha + ^a^\ ' + Ta

^b
■ - hb - rbKc\ + rbW + Tb

■ T + (-h,^+hb^+p^
(10)

Xk = P/m%

• b.
p = 2 cos o.Kcxc - - jjj- p



From the above state space equations set, the transfer functions for 

the coupled drives system can be derived. To simplify the 

space equations some assumptions need to be made, i.e.

'a = 'b = I

ba = bb = b

Also that the pulley radii are the same, and that the belt 

above state

sections are of

the same length, thus:

ra rb = r

Kc Kd ' Ke

Substituting these into the state equations and adding the angular momentum

K

equations gives:

a T "b T (ha+hb) + Ta + Tb (11)

“a(s) * Mb(s) = sI+E (^a(*) + Tfa(s^ (12)

Manipulating the state equations gives:

vc(s) ' "'t t ^t______  
,2[s2mt+sbt+Kt)-(2cosa)2K «•(%(*) - wa(s)) (13)

Also the angular velocities of the drive pulleys expressed in terms of the

input torques, yield:

"a(s)
■s2I + sb + K'(s) 
(sI+b)(s2I+sb+2K'(s))

_______ Kl(sj_______  
(sI+b)(s2I+sb+2K'(s)) Tb<s)a

(14)



“b(s)
s2I + sb + k'(s) '
(sI+b)(s2I+sb+2K'(s)) Tb(s) _______ ____________

(sI+b)(szI+sb+2K' (s ) ),
Ta(s)

(15)

where k'(s) = Kr2(G3(s) + 1) (16)
2 

s mu + sb. + K.
with G^s) = ----- 1-------- - ------ - ----------- (17)

2(sSt+sbt+Kt]-(2cosa)dK

Subtracting (14) from (15):

The angular velocity w of the jockey pulley can be expressed as a 

function of the drive pulley angular velocities by manipulations resulting 

in:

sx.(s)cosa
w(s) = «a(s) + fi1(s)[Wb(s)-«a(s)] --i--------- (19)

or
SXbls)C0Sa

w(s) = œb(s) + G-|(s)[wb(s)-wa(s)] + -------- -------- (2 )

Adding (19) and (20) gives:

u(s) = |[œa(s) + u>b(s)] (21)

Substituting for ^a(s) + ub(s) in the above, using (12), gives:

"(:) ’ ÿsTTEJ (22)

From the state space equations the transfer function relating the displace­

ment of the jockey arm to the input drive torques is obtained as:



\(s) =
2rKcosa(Tb(s)-Tg(s)) 

------ ?----------------------------- 5------ 5------------ i------- (2(s<mt+sbt+Kt)-(2cosa)^K)(s'l+bs+2K (s))
(23)

As mentioned in Chapter 5, equations (22) and (23) show the inter­

actions between the two torque inputs and the outputs. Using equation

(5.3.3), i.e.

va(s) = u1(s)-u2(s) 

vb($) • u3(s) + u2(s)

to decouple and substituting into (22) and (23), and also using (5.3.1)

and (5.3.2), one obtains:

u(s)
9m "](=) 

si + b
(24)

4gmrKcosau2(s) 
x. s J =  x------------ -—'— ----T--------------------------- X 

K (s^I+sb+2K (s)(2[s mt+sbt+K^-(2cosa)^K) 

where 9a = 9b = 9m .



APPENDIX C



b
10
20
30
40
70

110
130
140
160
180
200
220
230
250
270
280
285
290
300
310
325
327
330
340
350
360
370
380
390
410
420
430
435
437
440
445
447
450
455
457
460
470
480
490
500
510
520
530
540
550
551
553
560
570
580
590

***TYPICAL SISU GOODWIN ET-AL ALGORITHM*** 
DIM X(6) 
DIM Y(21) 
INPUT"ENTER I.C’S Y(4),YS,Y(6), Y(il)» Y(12),Y(13)"; 
(30contd)Y(4),YS,Y(6),Y(11),Y(12),Y(13) 
R = 4 
Y(7)=Y(6) 
Y(9)=YS—Y(4) 
Y(5)=YS 
Y ( 8 ) = Y ( 5 ) 
Y ( 10 ) = Y ( 9 ) 
Y(14)=Y(11) 
Y(15)=Y(12) 
Y(16)=Y(13) 
Y(17)=Y(7) 
Y(18)=Y(8)
Y(19)=Y(4) 
count=l
Z=OPENOUT "DAT1" 
FOR K=1 TO 30075 
Y(4)=(Y(19)*EXP(-1.5))+(R*0.7768698) 
Y(5)=YS 
Ts=3.0 
K=75=Ts 
IF K=(count*75) THEN GOTO 350 
NEXT 
PRINT:PRINT "time=";K 
PRINT 
Y(9)=YS~Y(4) 
PRINT"Y(4)=";Y(4) 
X(1)=Y(6)
Y(7)=X(l)/255
Y(20)=1/(1+(Y(17)*Y(17)+Y(18)*Y(18)+Y(19)*Y(19))) 
Y(11)=Y(14)-29.0*(-Y(17))*Y(20)*Y(9) 
PRINT"Y(11)=";Y(11)
Y01=Y(ll)/255
Y(12)=Y(15)-29.0*(-Y(18))*Y(20)*Y(9)
PRINT"Y(12) = ”; Y(12)
Y02=Y(12)/255
Y(13)=Y(16)-29.0*Y(19)*Y(20)*Y(9)
PRINT"Y(13)=";Y(13)
Y03=Y(13)/255
Y(21)=((-Y(8))*Y(ll)+(-Y(7))*Y(12)+Y(4)*Y(13))
Y (6)=Y(21)
Y(17)=Y(7)
Y (18)=Ÿ(8)
Y (10)=Y(9)
Y (14)=Y(11)
Y(15)=Y(12)
Y(16)=Y(13)
Y(19)=Y(4)
Y(8)=Y(5)
SX=Y(6)/255
PRINTSZ,Y(4),YS,SX,Y01,Y02,Y03 
count=count+l
Yin=&FCC0 
Adrs=Yin 
?Adrs=0:



600
610
620
630
640
650
660
670
680
690
695
700

X=?Adrs 
YS=10*X/255 
PRINT "YS=";YS 
Es=YS~Y(4) 
PRINT"Es=";Es 
PRINT"Y(7)=";Y(7) 
Si=Y(6)
PRINT"Si = "; Si 
PROCDA
NEXT
CLOSE 2Z 
END

71OREM 
720DEF PROODA 
730Uout=&FCC4 
740Adrs=Uout 
750Sid=Si 
760?Adrs=Sid 
770ENDPR0C



5 ***TYPICAL ORTEGA ET-AL ALGORITHM***
10 DIM X(6)
20 DIM Y(25)
30 INPUT"ENTER I.C’S Y(4),YS,Y(6), Y(11),Y(12),Y(13),X(2)
32 (30contd)Y(4),YS,Y(6),Y(11),Y(12),Y(13),X(2)
40 R=3
70 Y(7)=Y(6)

110 Y(22)-YS”Y(4)
120 X(4)=X(2)
130 Y(5)=YS
140 Y(8)=Y(5)
160 Y(10)=Y(22)
180 Y(14)=Y(11)
200 Y(15)=Y(12)
220 Y(16)=Y(13)
230 Y(17)=Y(7)
250 Y(18)=Y(8)
270 Y(19)=Y(4)
280 count=l
285 Z=0PEN0UT"DAT2"
290 FOR K=1 TO 1000000
300 Y(4)=(Y(19)*EXP(-1.5))+(R*0.7768698)
310 Y(5)=YS
325 Ts=3.0
327 K=75=Ts
330 IF K=(count*75) THEN GOTO 350
340 NEXT '
350 PRINT:PRINT "time=";K
360 PRINT
370 Y(22)=YS-Y(4)
380 PRINT"Y(4)=";Y(4)
390 X(1)=Y(6)
410 Y(7)=X(l)/255
420 Y(20)= Y(17)*Y(17)+Y(8)*Y(8)+Y(7)*Y(7)
421 IF Y(20)>5.0 THEN Y(21)=Y(20)
422IF Y(20)<5.0 THEN Y(21)=5.0
423 PRINT"Y(21)=";Y(21)
424 X(2)=X(4)*0.75 + Y(21)
426 Y(9)=Y(22)/X(2)
430 Y(ll)=Y(14)+9.0*Y(8)*Y(9)
435 PRINT"Y(11)=";Y(11)
437 Y01=Y(ll)/255
440 Y ( 12 ) ='Y ( 15 ) +9.0*Y ( 7 ) *Y ( 9 )
445 PRINT"Y(12)=";Y(12)
447 Y02=Y(12)/255
450 Y(13)=Y(16)+9.0*Y(17)*Y(9)
455 PRINT"Y(13)=";Y(13)
457 Y03=Y(13)/255
460 Y(6)=(Y(4)~(Y(ll)*Y(15)+Y(13)*Y(7)))/Y(12)
480 Y(17)=Y(7)
490 Y(18)= Y(8)
500 Y(10)=Y(9)
510 Y(14)=Y(11)
520 Y(15)=Y(12)
530 Y(16)=Y(13)
540 Y(19)=Y(4)



550 Y(8)= Y(5)
551 SX=Y(6)/255
553 PRINT £Z,Y(4),YS,SX,YO1,Y02,Y0
560 count=count+l
570 Yin=&FCCO
580 Adrs=Yin
590 ?Adrs=0:
600 X=?Adrs
610 YS=10*X/255
620 PRINT "YS=";YS
630 Es=YS-Y(4)
640 PRINT"Es=";Es
650 PRINT”Y(7)=";Y(7)
660 Si=Y(6)
670 PRINT"Si = ,,;Si
680 PROODA
690 NEXT
695 CLOSE £Z
700 END
710REM
720DEF PROCDA
730Uout=&FCC4
740Adrs=Uout
750Sid=Si
760?Adrs=Sid
770ENDPR0C



>L „
5 ***TYPICAL KREISSELMEIER & ANDERSON ALGORITHM***

10 DIM X(6)
20 DIM Y(25)
30 INPUT"ENTER I.C’S Y(4),YS,Y(6), Y(11),Y(12),Y(13),X(2)
32 (30contd)Y(4),YS,Y(6),Y(11),Y(12),Y(13),X(2)
40 R = 3
50 Y(4)=Y(4)
60 Y(6)= Y(6)
70 Y(7)=Y(6)
80 Y(11)=Y(11)
90 Y(12)=Y(12)

100 Y(13)=Y(13)
110 Y(9)=YS-Y(4)
120 Y(6)=Y(6)
125 X(4)=X(2)
128 X(3)=X(2)+1.0
130 Y(5)=YS
140 Y(8)=Y(5)
150 Y(9)= Y(9)
160 Y(10)=Y(9)
170 Y(11)=Y(11)
180 Y(14)=Y(11)
190 Y(12)=Y(12)
200 Y(15)=Y(12)
210 Y(13)=Y(13)
220 Y(16)=Y(13)
230 Y(17)=Y(7)
240 Y(8)= Y(8)
250 Y(18)=Y(8)
260 Y(4)=Y(4)
270 Y(19)=Y(4)
280 count=l
285 Z = OPENOUT"DAT3"
290 FOR K=1 TO 45100
300 Y(4)-(Y(23)*EXP(-l.5))+(R*0.7768698)
310 Y(5)=YS
320 Y(9)=YS“Y(4)
325 TS=4.0
327 K = 100 = TS
330 IF K=(count*100) THEM GOTO 350
340 NEXT
350 PRINT:PRINT "time=";K
360 PRINT
362 X(2)=X(4)*0.75 + ((Y(6)+2797)/1275)+Y(8)
364 X(3)=X(2)+1.0
370 Y(9)=Y(22)/X(3)
371 IF ABS(Y(9))<=0.0061 THEN Y(9)=0
372 IF Y(9)>0.0061 THEN Y(9)=Y(9)-0.0061
373 IF Y(9)<0.0061 THEN Y(9)=Y(9)+0.0061
380 PRINT"Y(4)=";Y(4)
385 Y(19)=1.2873*(Y(8)-0.2231*Y(18))
387 PRINT"Y(19) = ”; Y(19)
390 X(1)=Y(6)
395 PRINT"X(1)=";X(1)
410 Y(7)=X(l)/255
420 Y(20)=1/(1+(Y(17)*Y(17)+Y(18)*Y(18)+Y(19)*Y(19)))
430 Y(11)=Y(14)-Y(19)*Y(2O)*Y(9)*X(3)



431 IF Y(ll)<70.00 THEM Y(ll)=70.00
432 IF Y(ll)>85.00 THEN Y(11)=85.00
433 IF. Y(ll)<=85.00 OR Y(11)>=70.00 THEN Y(11)= Y(1J)
434 Y01=Y(11)/255
435 IF Y(ll)<=85.00 OR Y(ll)>=70.00 THEN Y(11)=Y(11)
436 PRINT"Y(11)=";Y(11)
440 Y(12)=Y(15)-Y(17)*Y(20)*Y(9)*X(3)
441 IF Y(12)<70.00 THEN Y(12)=70.00
442 IF Y(12)>85.00 THEN Y(12)=85.00
443 IF Y(12)<=85.00 OR Y(12)>=70.00 THEN Y(12)=Y(12)
444 Y02=Y(12)/255
445 IF Y(12)<=85.00 OR Y(12)>=70.00 THEN Y(12)=Y(12)
446 PRINT"Y(12)=”;Y(12)
450 Y(13)=Y(16)-Y(18)*Y(20)*Y(9)*X(3)
451 IF Y(13)<70.00 THEN Y(13)=70.00
452 IF Y(13)>85.00 THEN Y(13)=85.00
453 IF Y(13)<=85.00 OR Y(13)>=70.00 THEN Y(13)=Y(13)
454 Y03=Y(13)/255
455 IF Y(13)<=85.00 OR Y(13)>=70.00 THEN Y(13)=Y(13)
456 PRINT"Y(13)=";Y(13)
460 Y(21)=(Y(8)*Y(11)+Y(7)*Y(12)+Y(4)*Y(13))
466 Y(10)=(Y(19)*Y(ll)+Y(17)*Y(12)+Y(18)*Y(13))
468 Y(22)=(Y(1O)-X(1))/5
469 PRINT"Y(22) = "; Y(22)
470 Y(6)=Y(21)
480 Y(17)=Y(7)
490 Y(18)= Y(8)
500 X(4)=X(2)
510 Y(14)=Y(11)
520 Y(15)=Y(12)
530 Y(16)=Y(13)
540 Y(23)=Y(4)
550 Y(8)=Y(5)
551 SX=Y(6)/255
553 PRINT£Z,Y(4),YS,SX,Y(11),Y(12),Y(13)
560 count=count+l
570 Yin=&FCCO
580 Adrs=Yin
590 ?Adrs=O:
600 X=?Adrs
610 YS=10+X/255
620 PRINT "YS=";YS
630 Es=YS-Y(4)
640 PRINT"Es=";Es
650 PRINT"Y(7)=";Y(7)
660 Si=Y(6)
670 PRINT"Si=";Si
680 PROCDA
690 NEXT
700 END
710REM
720DEF PROCDA
730Uout=&FCC4
740Adrs=Uout
750Sid=Si
760?Adrs=Sid
77OENDPROC



5 ***TYPICAL MIMO GOODWIN ET-AL ALGORITHM***
10 DIM X(100)
20 DIM Y(300)
30 INPUT"ENTER I.C’S Y(9),Y(47),Y(1),Y(11),Y(12),Y(13),Y(14),Y(15),Y(1É
32 (30 contd)Y(9),Y(47),Y(1),Y(11),Y(12),Y(13),Y(14),Y(15),Y(16)
35 INPUT"ENTER I.C’S Y(17),Y(48),Y(3),Y(21),Y(22),Y(23),Y(24),Y(25),Y(2
37 (35contd)Y(17),Y(48),Y(3),Y(21),Y(22),Y(23),Y(24),Y(25),Y(26)
40 R=3
45 RI=3
50 Y(10)=Y(9)
51 Y(18)=Y(17)
52 Y(31)=Y(11)
53 Y(32)=Y(12)
54 Y(33)=Y(13)
55 Y(34)=Y(14)
56 Y(35)=Y(15)
57 Y(36)=Y(16)
58 Y(2)=Y(1)
59 Y(4)=Y(3)
60 Y(41)=Y(21)
61 Y(42)=Y(22)

' 62 Y(43)=Y(23)
63 Y(44)=Y(24)
64 Y(45)=Y(25)
65 Y(46)=Y(26)
66 Y(5)=Y(47)
67 Y(6)=Y(5)
68 Y(7)= Y(48)
69 Y(8)=Y(7)
70 Y(27)=9.0
71 Y(38)=9.0
80 count=l
85 Z=OPENOUT"DAT1"
90 FOR K=1 TO 1000000
100 Y(9) = (Y(10)*EXP(-1.5))+ R*0.7768698
110 Y(17)=(Y(18)*EXP(-1.5))+RI*O.7768698
120 Y(2)=Y(1)
125 Y(4)=Y(3)
140 Ts=3.0
145 K=75=Ts
150 IF K=(count*75) THEN GOTO 170
160 NEXT
170 PRINT: PRINT"time="; K
180 PRINT
185 PRINT"Y(9) = ";Y(9),TAB(20),"Y(17) = "; Y(17)
190 Y(19)=Y(1)-Y(9)
200 Y(20)=Y(3)—Y(17)
210 X(1)=Y(47)
220 X(11)=Y(48)
227 Y(5)=X(1)/255
229 Y(7)=X(ll)/255
230 Y(29)=1/(1+(Y(2)*Y(2)+Y(4)*Y(4)+Y(6)*Y(6)+Y(8)*Y(8)+
235 (230contd)Y(10)*Y(10)+Y(18)*Y(18)))
240 Y(11)=Y(31)-Y(27)*Y(29)*Y(19)*(—Y(2))
245 Y(21)=Y(41)-Y(38)*Y(29)*Y(20)*(—Y(2))
247 PRINT "Y(ll)=";Y(11),TAB(20),"Y(21)=";Y(21)
250 Y(12)=Y(32)-Y(27)*Y(29)*Y(19)*(—Y(4))



255 Y(22)=Y(42)-Y(38)*Y(29)#Y(20)+(-Y(4))
257 PRINT "Y(12) = ";Y(12),TAB(20),"Y(22) = "; Y(22)
260 Y(13)=Y(33)-Y(27)*Y(29)*Y(19)*(-Y(6))
265 Y(23)=Y(43)-Y(38)*Y(29)*Y(20)*(~Y(6))
267 PRINT "Y(13)=";Y(13),TAB(20),"Y(23)=";Y(23)
270 Y(14)=Y(34)-Y(27)*Y(29)*Y(19)*(-Y(8))
275 Y(24)=Y(44)-Y(38)*Y(29)*Y(20)*(-Y(8))
277 PRINT "Y(14)=";Y(14),TAB(20),"Y(24)=";Y(24)
280 Y(15)= Y(35)-Y(27)*Y(29)*Y(19)*Y(10)
285 Y(25)= Y(45)-Y(38)*Y(29)*Y(20)*Y(10)
287 PRINT "Y(15)=";Y(15),TAB(20),"Y(25)=";Y(25)
290 Y(16)=Y(36)-Y(27)*Y(29)*Y(19)*Y(18)
295 Y(26)=Y(46)-Y(38)*Y(29)*Y(20)*Y(18)
297 PRINT "Y(16)=";Y(16),TAB(20),"Y(26)=";Y(26)
300 Y(47)=((-Y(1)*Y(11))+(-Y(3)*Y(12))+(-Y(5)*Y(13))+
305 (300contd) (-Y(7)*Y(14))+Y(15)*Y(9)+Y(16)*Y(17))
320 Y(48)=((“Y(1)*Y(21))+(-Y(3)*Y(22))+(-Y(5)*Y(23))+
325 (320contd) (-Y(7)+Y(24))+Y(25)*Y(9)+Y(26)*Y(17))
353 Y(10)=Y(9)
356 Y(18)=Y(17)
360 Y(31)=Y(11)
362 Y(32)=Y(12)
364 Y(33)=Y(13)
366 Y(34)=Y(14)
368 Y(35)=Y(15)
370 Y(36)=Y(16)
372 Y(41)=Y(21)
374 Y(42)=Y(22)
376 Y(43)=Y(23)
378 Y(44)=Y(24)
380 Y(45)=Y(25) '
382 Y(46)=Y(26)
384 Y(2)=Y(1)
386 Y(4)=Y(3)
388 Y(8)=Y(7)
390 Y(6)=Y(5)
393 SX1=Y(47)
395 3X2=Y(48)
397 PRINT £Z,Y(9),Y(17),Y(1),Y(3),SX1,3X2
400 count=count+l
410 Yin=&FCCO
415 Adrs=Yin
420 ?Adrs=0:
425 X=?Adrs
430 Y(1)=10*X/255
450 Yin=&FCCl
455 Adrs=Yin
460 ?Adrs=0:
465 X=?Adrs
470 Y(3)=10*X/255
475 PRINT"Y(1)=";Y(1),TAB(20),"Y(3)=";Y(3)
480 Esl=Y(1)-Y(9)
485 Es2=Y(3)-Y(17)
490 PRINT"ES1=";Esl,TAB(20),"Es2=";Es2
510 Sil=Y(47)
515 Si2-Y(48)
517 PRINT"Si1 = ";3i1,TAB(20),"Si2=";Si2



520
530
540
545
550

PROCDAl 
PROCDA2 
NEXT
CLOSE SZ 
END

560REM 
570DEF PROCDAl 
580Uout=&FCC4 
590Adrs=Uout 
600 Sid=Sil 
610?Adrs=Sid 
620ENDPR0C 
630REM
640DEF PR0CDA2 
650Uout=&FCC5 
660Adrs=Uout
670 Sid=Si2 
680?Adrs=Sid 
690ENDPR0C



>L.
5 ***TYPICAL EXTENDED MIMO KREISSELMEIER & ANDERSON ALGORITHM

10 DIM X(100)
20 DIM Y (-300) -
30 INPUT"ENTER I.C'S Y(9),Y(47),Y(1),Y(11),Y(13),Y(14),Y(15),Y(16),
31 (30contd)Y(51),Y(52)";Y(9),Y(47),Y(1),Y(11),Y(13),Y(14),Y(15),Y(16),
32 (31c on td)Y(51),Y ( 52 )
35 INPUT"ENTER I.C’S Y(17),Y(48),Y(3),Y(22),Y(23),Y(24),Y(25),Y(26),
36 (35contd)Y(61),Y(62)";Y(17),Y(48),Y(3),Y(22),Y(23),Y(24),Y(25),Y(26),
37 (36contd)Y(61) , Y ( 62 )
40 R = 4
45 RI=3
50 Y(10)=Y(9)
51 Y(18)=Y(17)
52 Y(31)=Y(11)
53 Y(32)=Y(12)
54 Y(33)=Y(13)
55 Y(34)=Y(14)
56 Y(35)=Y(15)
57 Y(36)= Y(16)
58 Y(2)=Y(1)
59 Y(4)=Y(3)
60 Y(41)=Y(21)
61 Y(42)=Y(22)
62 Y(43)=Y(23)
63 Y(44)=Y(24)
64 Y(45)=Y(25)
65 Y(46)=Y(26)
66 Y(5)=Y(47)
67 Y(6)=Y(5)
60 Y(7)=Y(40)
69 Y(8)=Y(7)
72 Y(65)=Y(10)
73 Y(66)=Y(18)
74 Y(49)=Y(2)
75 Y(50)=Y(4)
76 Y(53)=Y(51)
77 Y(54)=Y(52)
78 Y(63)= Y(61)
79 Y(64)=Y(62)
80 count=l
85 Z=0PEN0UT"DAT2"
90 FOR K=1 TO 30075
100 Y(9)= Y(10)*EXP(-1.5)+ R*0.7768698
110 Y(17)=Y(18)*EXP(-1.5)+R*0.7768698
120 Y(2)=Y(1)
125 Y(4)=Y(3)
140 Ts=3.0
145 K=75=Ts
150 IF K=(count*75) THEN GOTO 170
160 NEXT
170 PRINT: PRINT"time=";K
180 PRINT
185 PRINT"Y(9) = "; Y(9),TAB(20),"Y(17) = "; Y(17)
190 Y(19)=Y(1)-Y(9)
200 Y(20)=Y(3)-Y(17)
201 X(2)=X(4)*0.75 +(Y(47)/255)+Y(2)
202 X(5)=X(6)*0.75+(Y(48)/255)+Y(4)
203 X(3)=1.0 + X(2) ‘



204 
207 
208 
209

J* 0 
211 
212 
213 
214 
215 
216 
217 
218 
220 
227 
229 
230 
235 
240 
242 
245 
246 
248 
249 
250 
252 
255 
256 
258 
259 
260 
265 
267 
270 
275 
277 
280 
285 
287 
290 
295 
297 
300 
305 
320 
325 
342 
344 
351 
352 
353 
356 
360 
362 
363 
364 
365

X ( 7 ) ~ 1 _ 0 + X ( 5 )
Y(63)=Y(61)/X(3)
Y(64)=Y(62)/X(7)
IF ABS(Y(63))<=0.05 THEN Y(63)=0.0
IF ABS(Y(64))<=0.05 THEN Y(64)=0.0
IF Y(63)>=0.05 THEN Y(63)=Y(63)-0.05
IF Y(64)>=0.05 THEN Y(64)=Y(64)-0.05
IF Y(63)< =-0.05 THEN Y(63)=Y(63)+0.05
IF Y(64)<=-0.05 THEN Y(64)=Y(64)+0.05
Y (51)=1.2873*(Y(2)-0.2231*Y(55))
Y (52)=1.2873*(Y(2)-0.2231*Y(55))
PRINT"Y(63) = ";Y(63),TAB(20),"Y(64) = "; Y(64)
X(1)=Y(47)
X(11)=Y(48)
Y(5)=X(l)/255
Y(7)=X(ll)/255
Y (29)=1/(1+(Y(2)*Y(2)+Y(4)*Y(4)+Y(49)*Y(49)+Y(50)*Y(50)+
(230contd) Y(6)*Y(6)+Y(8)*Y(8)+Y(lO)*Y(lO)+Y(l8)*Y(l8)))
Y (11)=Y(31)-Y(27)*Y(29)*Y(19)*(-Y(2))
Y (21)=0.0
PRINT "Y(ll) = ";Y(11),TAB(20),"Y(21) = "; Y(21)
Y (12)=0.0
Y(22)=Y(42)-Y(38)*Y(29)*Y(20)*(—Y(4))
PRINT "Y(12)=";Y(12),TAB(20),"Y(22)=";Y(22)
Y(51)=Y(53)—Y(27)*Y(29)*Y(19)*(—Y(49))
Y(61)=Y(63)-Y(38)*Y(29)*Y(20)*(-Y(49))
PRINT"Y(51) = "; Y(51),TAB(20),"Y(61) = "; Y(61)
Y (52)=Y(54)~Y(27)*Y(29)*Y(19)*(~Y(50))
Y (62)= Y(64)~Y(38)*Y(29)*Y(20)*(-Y(50))
PRINT"Y(52) = "; Y(52),TAB(20),"Y(62) = "; Y(62)
Y (13)=Y(33)-Y(27)*Y(29)*Y(19)*(—Y(6))
Y (23) =Y (43) -Y (38) *Y (29) *Y (20) * (—Y (6) )
PRINT "Y(13) = "; Y(13),TAB(20),"Y(23) = "; Y(23)
Y (14)=Y(34)-Y(27)*Y(29)*Y(19)*(—Y(8))
Y (24)=Y(44)-Y(38)*Y(29)*Y(20)*(-Y(8))
PRINT "Y(14) = "; Y(14),TAB(20),"Y(24)="; Y(24)
Y (15)=Y(35)-Y(27)*Y(29)*Y(19)*Y(10)
Y (25)=Y(45)-Y(38)*Y(29)*Y(20)*Y(10)
PRINT "Y(15) = "; Y(15),TAB(20),"Y(25) = "; Y(25)
Y (16)=Y(36)-Y(27)*Y(29)*Y(19)*Y(18)
Y (26)=Y(46)-Y(38)*Y(29)*Y(20)*Y(18)
PRINT "Y(16)=";Y(16),TAB(20),"Y(26) = "; Y(26)
Y (47) = ( (—Y(1)*Y(11)) + (—Y(2)*Y(51)) + (—Y(4)*Y(52)) + (—Y(5)*Y(13)) +
(300contd) (—Y(7)*Y(14))+Y(15)*Y(9)+Y(16)*Y(17))
Y (48)=(—Y(3)*Y(22))+(-Y(2)*Y(61))+(-Y(4)*Y(62))+(-Y(5)*Y(23))+ 
(320contd) (-Y(7)*Y(24))+Y(25)*Y(9)+Y(26)*Y(17))
Y (61)=Y(59)~X(1)
Y (62)= Y(60)-X(11)
Y(65)=Y(10)
Y(66)=Y(18)
Y(10)=Y(9)
Y (18)=Y(17)
Y(31)=Y(11)
Y (32)= Y(12)
Y (53)=Y(51)
Y (54*> = Y (52)
Y (33)= Y(13)



366 Y(34)=Y(14)
368 Y(35)=Y(15)
370 Y(36)"Y(16)
372 Y(41)=Y(21)
374 Y(42)=Y(22)
375 Y(63)=Y(61)
376 Y(64)=Y(62)
377 Y(43)=Y(23)
378 Y(44)=Y(24)
380 Y(45)=Y(25)
382 Y(46)=Y(26)
383 Y(49)=Y(2)
384 Y(2)=Y(1)
385 Y(50)=Y(4)
386 Y(4)=Y(3)
388 Y(8)=Y(7)
390 Y(6)=Y(5)
393 SXl=Y(47)/255
394 SX2=Y(48)/255
396 PRINT Y (9> , Yfl7h Y(1 > , Y (3) , 5X1,5X2
400 c oun t=coun t+1
410 Yin=&FCCO
415 Adrs=Yin
420 ?Adrs=O:
425 X=?Adrs
430 Y(l)=10+X/255
450 Yin=&FCCl
455 Adrs=Yin
460 ?Adrs=O:
465 X=?Adrs
470 Y(3)=10*X/255 ’
475 PRINT"Y(1)=";Y(1),TAB(20),"Y(3)=";Y(3)
480 Esl=Y(1)-Y(9)
485 Es2=Y(3)-Y(17)
490 PRINT"ES1=";Esl,TAB(20),"Es2=";Es2
510 Sil=Y(47)
515 5i2=Y(48)
517 PRINT"5il=";Sil,TAB(20),"Si2=";Si2
520 PROCDAl
530 PR0CDA2
540 NEXT
545 CLOSE 2Z
550 END
560REM
570DEF PROCDAl
580Uout=&FCC4
590Ad rs=Uout
600 Sid=Sil
610?Adrs=Sid
620ENDPR0C
630REM
640DEF PR0CDA2
650Uout=&FCC5
660Adrs=Uout
670 Sid=Si2
680?Adrs=Sid
690ENDPR0C
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