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ABSTRACT

Although Model Reference Adaptive Control has been around for sometime,
it has never gained wide recognition especially with industries. This is due
to doubts about its stability and robustness which was particularly high-
lighted by Rohrs (M.I.T.) in his Ph.D. work. As a result of this and others,

since about four years ago there have been new algorithms proposed.

The aims of this work were partly to investigate the stability of these
algorithms and also, by applying them to different laboratory scaled models

of industrial processes, encourage or inspire their use in industries.

As a consequence of these an extension of a single input-single output
(SIS0) algorithm to include MIMO systems control was derived. Also a
comparison could be made of the similarities and differences between the

algorithms used.
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Chapter 1

INTRODUCTION

1.1 HISTORICAL BACKGROUND

Two schemes have attracted much interest in adaptive control, namely
the Model Reference Adaptive Control (M.R.A.C.) and the Self Tuning Regulator.
This thesis is based on the MRAC Scheme, although in [1] it is shown that
both can be treated as special cases of a more general philosophy. or algorithm,
while in [2,3] it is shown that both are quite similar and that they have

common characteristics.

Adaptive control started in the late 50's in relation to Aircraft design,
especially autopiiot design [4] and aircraft pressure dynamics [5]. Model
reference adaptive control was originally proposed by Whitaker et al [5]
in 1958 to solve the problem of an unknown system parameter relating to
dynamic pressure in the control of aircraft dynamics. This led to the establish-

ment of what is known as the M.I.T. rule.

‘The M.I.T. rule is derived by attempting to minimize a performance index,
j.e. the integral squared error. 1Its adjustment law was derived by approxi-
mating a gradient procedure for an integral error squared criterion; but,
unfortunately, in application trials with aircraft dynamics the M.I.T. rule
based adaptive controller led to unpredicted instability due then to the

almost non-existence of supporting theory. Thus, early attempts failed.

From this early effort the theory of adaptive control moved from the
criterion minimization approach to a stability based rational. This led

to the Lyapunov redesign which was originally proposed in [6] but was further



developed by Parks in [7]. Incidentally, the Lyapunov redesign brought the
appearance of Positive Real Conditions in adaptive control. The Lyapunov
redesign adaptive controller was based on selecting design equations to satisfy
conditions derived from Lyapunov's second method, so that stability of the
control system is guaranteed. Again, due to its limitations as proposed

in [7],for example use of derivatives of system output which may be too

noisy, Monopoli brought out another algorithm based on the introduction of
Augmented Error signals for which derivatives of signals were not required

in [8]. Also another adaptive controller based on Hyperstability was proposed
by Landau [9]. This was based on Popov's hyperstability theorems. Comparisons
of the M.I.T. adaptive controller and that based on the Lyapunov redesign

can be seen in [10], while in [11] the Lyapunov and Hyperstability approaches

are compared.

A key question in MRAC concerned the stability of the resulting system,
see [12], which remained an open question for many years but was finally
resolved in the late 70's by the composite work of Narendra and Valavani
[13], Feuer and Morse [14], Egardt [15] and Goodwin et al [16], amongst

others.

Also, it must be noted that most of the early work from the 50's to
the late 70's was mainly in continuous time due to non-availability of say
microcomputers in those days, and partly because computer technology was
stf]] in its infancy; but from the late 70's onwards many discrete time

adaptive control algorithms have also been introduced, i.e. [16-19].

1.2 WHAT IS MRACS?

The basic idea in MRAC schemes is to cause the system or plant to behave
1ike a given reference model as shown below, the reference model specifying

the desired performance of the plant to be controlled.
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Figure 1 Basic MRAC Scheme.

The Model Reference Adaptive Control System (MRACS) can be used [20]

in the solving of basic control problems such as:

(1) on-line and real time parameter identification,
(ii) adaptive state observation,

(iii) adaptive model following control.

In the first two cases above, this involves system identification with the
system to be observed acting as the reference model, while in the third case
the reference model specifies the desired control performances needed from

the system.

There are two broad classes of algorithms which depend on the complexity
of the design calculation block. The two different classes/approaches which
can be used for the solution of the control problem, i.e. the design of the

adaptive controllers required, are:

(a) The Indirect/Explicit Control Design in which the design calculations
are carried out based on the estimated system model, i.e. the plant/
system parameters are estimated on-line and the adaptive controllers and

corresponding feedback laws calculated based on these estimates so that the



overall plant transfer function matches that of the reference model. This
class of algorithms is commonly called "Indirect" because thé evaluation

of the control law is indirectly achieved via the system model. It is also
called the "Explicit" scheme since the design is based on an explicit process

model.

(b) The Direct or Implicit Control Design. In some cases it is possible

to parametrize the system directly, i.e. no effort is made to identify
the plant parameters, but the control parameters are adjusted to minimize
the error between the plant and reference model outputs. This class of
algorithms is called “Direct" because the control law is directly estimated.
It is also called the "Implicit" scheme since the design is based on an

implicit process model.

1.3 ROBUST ADAPTIVE CONTROL

As mentioned in Section 1.1, the failure of the M.I.T. rule based scheme
was due to its instability. Although local stability results were available
it was not globally stable as the Lyapunov and Hyperstability based schemes

were,

The Lyapunov redesign owes much to the Meyer-Kalman-Yacubovich (M.K.Y.)
lemma for the derivation of its global asymptotically stable adaptive systems
for hbsitive real transfer functions (see Appendix Al), whilst the Hyper-
stability concept concerns mainly the stability properties of the feedback
systems which can be split into two blocks consisting of a Linear Time
Invariant (L.T.I.) part and a Nonlinear Time Varying part [20]. The stability
is proven if the feedback blocks satisfy the Popov integral inequality (see

Appendix AV.

The importance of globally stable adaptive schemes cannot be over-

emphasized as they are more likely to perform under real conditions involving



noise, nonlinearities, etc., than localized stable adaptive schemes; but
unfortunately, since the work of Rohrs et al [21] which pointed out that
under certain conditions and circumstances, i.e. mis-modelling or under-
modelling, an unstable control system results, the above has not been
enough. Thus the design of adaptive control systems has taken on the added
condition that it must be robust and this applies to both continuous and

discrete-time design applications.

By robust adaptive control design it is meant that the control scheme
must be stable in spite of disturbances, nonlinearities and reduced order

model1ing or unmodelled plant uncertainties.

There are many papers from different authors in which new robust adaptive

control schemes have been suggested, see [22-29].

1.4 AIM OF THIS WORK

Although there are many adaptive control algorithms about, most of these
are in continuous time; but in view of limitations of hardware and physical
constraints (see [30]), e.g. saturation of analogue computer, this work is
done in discrete time, especially as the advent of modern computer technology
has made available inexpensive but powerful micro-processors with vast

potentials and versatility.

Thus, part of the objectives of this research is to carry out
experimental applications of a few of the discrete-time adaptive algorithms
available on some laboratory rigs. This is because in most of the literature
available the practical implementation of these algorithms seems to have
been neglected, though in some papers digital simulations have been carried

out, while in a few, actual tests on rigs are done.



Due to the large amount of adaptive algorithms/theories about with
different approaches, but all fundamentally the same (see [1,31], it was
felt that no new algorithm should be propounded, although modifications will
be made where necessary; but a multivariable version of one of the algorithms

is derived for use in this work.

The three algorithms chosen, while not being all those available, were
felt to represent a broad view of those available. In the light of the
controversial work in [21] (see also [32]), two of them are robust adaptive
controllers whilst the third is not; though, as will be seen in the course
of this report, exhibits some amount of robustness. The algorithm will be
used on three different laboratory rigs, which represent different industrial
processes. The rigs are in either Single Input Single Output (SIS0)/Scalar
form, or in multivariable form, though it is possible to run the multivariable

rigs as scalar rigs as well.

Another aim of this work is to show in as simple a way as possible the
potentials of MRACS, its robustness in industrial applications, since amongst
criticisms heard about adaptive control is that it is too complex mathematic-
ally, involving a lot of proofs and theorems which make it intimidating to
applicants in the industries. Because of this the algorithms have been written
in BASIC language which, while slowing down the computation, is easy for

most people to follow. It is implemented on the BBC microcomputer.

Thus, by showing that these algorithms work on laboratory rigs in real
time, may be more people/industries might become interested in the application

of MRAC industrially.

1.5 OUTLINE OF THE REPORT

This report is divided into three parts, namely Part I - the introduction,

Part II - the theory, and Part III consisting of applications and tests



carried out on laboratory rigs. In Part II there are two chapters, namely
2and 3. In Chapter 2 the basic general outline of Model Reference Adaptive
Control System is discussed, plus analysis and proof of global asymptotic
stability; while in Chapter 3, the robust adaptive control system is discussed
and how it relates to the two algorithms being used. Modifications of the
basic algorithm in Chapter 2 which makes an adaptive controller robust are
mentioned and explained. Also, it is shown that the three algorithms used

are all related and that the two suggested robust algorithms are quite

similar.

Part III consists of the last few chapters with the first three consisting
of three different laboratory rigs to which the algorithms are applied.
Chapter 4 deals with the Coupled Hydraulic Tank Systems in both SISO and
MIMO configurations. Chapter 5 is on the Coupled Electric Drives system
which can be run also either in SISO or MIMO configurations, while Chapter
6 is on the Heater Bar, a distributed parameter system assumed to be a lumped
one representing a boiler amongst other things. Chapter 7, the last chapter,
consists of conclusions and discussions of the work and results obtained

in the previous chapters.



Chapter 2

BASIC MRAC THEORY FOR THE ALGORITHMS

2.1 INTRODUCTION

Fundamental to Discrete Adaptive Control is the fact that the system
stability and convergence can be analysed based on just its inputs and
outputs. The input-output approach to the stability analysis of feedback
systems has provided a common framework from which many classes of systems
can be studied [33,34]. In [33] it is shown that to behave properly an
input-output system must have two properties, (i) bounded inputs must have
bounded outputs, i.e. the system must be non-explosive, (ii) outputs must
not be critically sensitive to small changes in inputs - changes such as

those caused by noise.

Thus the need for global stability which implies boundedness of the
sequences {y(t)}, {u(t)} for all time t. In this chapter the Basic MRAC
algorithm is explained based on the inputs, outputs of both the reference
model and the system/plant. The proofs of the global convergence/stability
of the algorithm for both SISO and MIMO cases are also derived.

As mentioned earlier, Model Reference Adaptive Control Schemes can be
divided into 2 broad groups, namely: (i) Indirect/Explicit control scheme
or (ii) Direct/Implicit control scheme. In the course of this work the
Direct/Implicit control scheme is used. The main reason for this is because
the tracking of the reference model output by the system output is the
primary aim and thus the convergence of the output/tracking error to zero.
Also, using Direct adaptive controllers meant that the persistency of
excitation of the signals is not of critical importance [31]since it is not

compulsory for the parameters to converge to their true values.



There are various Direct adaptive control schemes around, but it has
been shown in [31] that all these schemes are variations of a general basic
scheme which will be explained in this chapter and whose stability properties
are also analysed. Two popular discrete-time algorithms are those of
Goodwin et al [16] and Narendra and Lim [35). The Narendra-Lim algorithm,
while being stable, is not particularly attractive as it involves the use of
auxiliary inputs which make the scheme appear more complex. It was thus
discarded in favour of the Goodwin scheme which, bearing in mind one of the
aims of the work, is much simpler. Also, a cursory look at the literature

of adaptive control shows how it underlies several different algorithms.

Figure 2.1 shows the block diagram of an adaptive .control system and
the analysis of the scheme starts with the plant/system characteristics and
stability through to the Parameter Estimation algorithm down to the control

law.

Inputs Outputs
L
SYSTEM >

A

" |
Sk

L J ppraerer Lo

—'l ESTIMATOR r——
_dk

DESIGN
CALCULATIONS
] CONTROL
l LAW I

Figure 2.1 Block Diagram of an Adaptive Control System
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In the next three sections the SISO case is outlined, while in the
following two sections the analysis and proof is extended to the MIMO case

and the last section contains some comments on the previous sections.

2.2a THE SYSTEM

The system is assumed to be represented by a Deterministic Auto

Regressive Moving Average (DARMA) model of the form:
-1 = q79 B(q™! 2.1
A{a ")y(t) = q B(g )u(t) (2.2.1)

where {u(t)}, {y(t)} denote the plant input and output sequences respec-

tively. A(q']), B(q'I) are polynomial functions of the unit delay operator

a”’,

AlQ™")
B(q™")

d represents the system time delay.

1+ a]q'] .t anq'“

-1 -m
bo + b]q +...4 bmq b #0

The following assumptions will be made about the system [28]:

1. The time delay d dis known.

2. An upper bound for the orders of the polynomials, i.e. n,m, is known.

3. A1l poles of the inverse of the model (2.2.1), (i.e. the zeros of the
polynomial B(z']), 1ie inside or on the closed unit disk.

4. A1l controllable poles of the inverse of the model (2.2.1), (i.e. the
zeros of the transfer function B(z'1)/A(z'])), lie strictly inside the
unit circle,

5. Any poles of the inverse of the model (2.2.1) on the unit circle have

a Jordan block size of 1,



1

Equation (2.2.1) can be replaced by the d-step ahead predictor:

y(t+d) = a(a”)y(t) + 8(a u(t) (2.2.2)
where a(q']) = oyt <:;1q'1 +o.ot un-]q"’]
B(q-]) = Byt B1q-] to.ot Bm+d-1q-(m+d-])’ By £ O

Here it is assumed that the sign and upper bound on the magnitude of By

is known,

2.2b THE REFERENCE MODEL

The desired output sequence {y;(t)} satisfies the following reference

model :

e i) = H@ () (2.2.3)

with associated transfer function G(z) :

-d

-1
6(z') - 29z ) (2.2.4)

E(z )

where g 1is a constant gain and

Hz™') = hg o+ bzl e b2t =

E(z']) = e, + e]z'] toot ekz"k €y = 1
subject to: (i) E(z']) is stable

(ii) d' =d

(i11) |y;(t)| < m < = forallt.
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The control objective is to achieve:
. *
Tim [y(t) - Yp(t) = 0
1o

Before going further, it must be pointed out that the assumptions made
about the system, i.e. 1-5, cut across almost all of the proposed adaptive
control algorithms in the literature from various authors. One of the very
few exceptions is [36] in which a prioni knowledge of the relative degree n*
of the plant and the sign of the high frequency gain are dispensed with, but

even them an upper bound on the plant order must be known.

2.3 THE ADAPTIVE CONTROL LAW AND ALGORITHM (See [16,31])

Factoring 8o from (2.2.2) yields:

oy(td) = 3 ta(@ T y(t) + - te(a T 1u(t) (2.3.1)
) () ()
where By #0.
= (2.3.1) can be written as:
1 _ 1, =] v, -]
= y(t+d) = o' (@7 )y(e) + 8" (a7 u(t) (2.3.2)
0
a a a
where a'(q)) = %~ a(q) = EE + El g bt _%:l ™1
) o o )
= a' + a.;q-] +...4 ot':’_.‘q"m'.l
o' ey = 1oargly 2o, B - (m+d-1)
(@) = g Ba ) =g +g-a +o+ B 410
0 o ‘o
v =1 - (m+d-1
= 1+ 87y o By qT (M)
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Thus (2.3.2) becomes:

y(t+d) Bo[aéy(t) +...4 a;_]y(t-n+1) + u(t) + B;u(t-T) +...

" s"'Hd_] u(t-m=d+1) (2.3.3)

but e(t+d) y(t+d) - y*(t+d)

output/tracking error

BoLu(t) + e y(t) +...+ ap (y(t-n+1) + Bru(t-1) +...
et B

! g qu(tm-ds1) = o yX(tsd)]
0

(2.3.4)

B Lu(t) - ¢(t)'0)] (2.3.5)

~

where ¢(t) [-Y(t)se e =y (E-n1)5-u(t=1) .00y -u(t-m=d41) ¥ (t4d)]

= regression vector consisting of past values of system
input and output plus projected value of the reference
model output.

o'T

o ° [G;,...,a;_],B{,...,B;+d_], I/Bo] - the parameter vector.

Assuming the values of the parameter vector el(t) are known, it is

obvious that for the tracking error to be made zero then:
T [}
u(t) = ¢(t) % (2.3.6)

but, since e; is unknown, the control law will be recursively estimated.

The Adaptive algorithm will be of the form:
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o(t) £(3(t-1), D(t),t) (see [28],

A

8(t) o(t=1) + M(t-1)¢(t-d)e(t) (2.3.7)

where 8(t-1) = the parameter estimate vector at time t-1
M(t-1) = algorithm gain (possibly a matrix)

¢(t-d)

regression vector of some kind composed of selected
elements of Y(t-d), U(t-d)
d = an integer

e(t) = modelling error of some kind.

In general it is the Orthogonalized Projection Algorithm [31] that is

used for the Adaptive algorithm, i.e.

Step I:
o X P(t-2)6(t-1)
t) = 8(t-1)+ t 2.3.8
S(8) = St Cro(t-1) P(t-2)s(t-1) o(t) (2.3.8)
where e(t) = y(t) - yr(t+d) x
Step II:

.
- P(t-2)e(t-1)o(t-1) P(t-2)

P(t-1) = P(t-2) - 2.3.9

(-1 (t-2) C+o (t-1) P (t-2)¢ (t-1) ( )

with the initial estimate 6(1) given and P(0) =1 .

If C=1 1in the algorithm (2.3.8), (2.3.9) above it becomes the Least
Squares Algorithm, while if P(t) is made a constant matrix then the
algorithm becomes the Projection algorithm with the elimihation of Step II

above, i.e.

*
5(t) = &(t-1) + —-2(t-1) eft) (2.3.10)
C+o (t=1) TP (t-1)
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where P* = al  a constant matrix which allows equation (2.3.10) to become:

5(t-1) + —28(t-1) e(t) (2.3.11)

o) Crad(t-1) o(t-1)

5(t-1 o(t-1)e(t) 2.3.12
AN C+o(t-1) o(t-1) ( )

which is the Projection Algorithm II.

Since part of the aim of this work is to simplify the algorithm used as
much as possible, the Projection Algorithm was used; but it must be stated
that this is the slowest of the three algorithms mentioned above to convergence,
though in terms of computation times it is the fastest due to its relative
simplicity as on-line control computations can be a significant fraction of
the time between samples. Thus, computatian of the Least Squares algorithm
controller might take longer than for the Projection algorithm. Also, since
the Projection algorithm gain does not go to zero, it can automatically
track-time varying parameters whereas for the Least Squares algorithm,
modifications such as covariance modificatiaon or exponential data weighting
or finite data window, need to be made. Therefore the Adaptive algorithm
becomes [16] for systems with time delay d,

B(t) = B(t-d) - - o(t-d)[1 + o(t-d)To(t-d)1 Tet)  (2.3.13)

A

Fo

and the control law hecomes:
- T4
u(t) = ¢(t) o(t) (2.3.14)
where Eo is a fixed constant and 6(t) is a p-vector of reals depending on

d initial values 6(0)...6(d-1).

Note: O < so/éo < 2 for stability and convergence.
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The above forms the basic algorithm used in the course of this work.
Alternatively, another projection algorithm that can be used is also suggested
in [16] called the Projection Algorithm I. This is given below for complete-

ness for the same system and reference model defined in Section 2.2 .
The Projection Algorithm I:

T _
Let 90 = (GO,...’Gn_1 ,BO,...,BnH,d-] )
then  y(t+d) = o(t)'e, (2.3.15)

where

$(t) = (Y(t)s...oy(t-nt1),u(t),...,u(t-m-d+1))

Again e(t+d) y(t+d) - y;(t+d)

o(t)" 0, - yh(ted) (2.3.16)

If u(t) is chosen to satisfy o(t)e, = y*(t+d) "the control objective
will be satisfied, but since 9 is unknown it is estimated at every time

step using an adaptive algorithm of the form below:

5(t) = é(t_l)+a(t)¢(t-d)[y(t)-gt-dféu-m (2.3.17)
1+ ¢(t-d) ¢(t-d)

and  #(t)'8(t) = y¥(t+d) (2.3.18)

The control input wu(t) 1is then computed from (2.3.18) which is the control

law, i.e.

U(t) = 16y (E)Y()-8,(£)y(t-1)=,.00smB ()Y (t-n41),6  Hu(t-1)

~

cyeensd (t-m-d+1 )4y (t+d)] (2.3.19)

n+m+d
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where éj(t) denotes the jth element of 6&(t).
Note that 0 < a(t) <2 . Also, equation (2.3.19) can be compared to
equation (2.3.14) for the Projection Algorithm II. It can be seen that there

are similarities in the two algorithms.

2.4 PROOF OF THE GLOBAL CONVERGENCE OF THE CONTROL ALGORITHM [16,31]

Conditions for the global stability of the Adaptive control system include
global convergence of the tracking error to zero with bounded signals, i.e.

the system inputs and outputs remain bounded for all time.

Essential for the proof of global stability is what is known as the Key
Technical Lemma [16,31] which is used in the convergence analysis of various

adaptive control systems. It will be explained and proved below.

2.4.1 The Key Technical Lemma

Lemma: If the following conditions are satisfied for some given sequences

{s(t)}, {o(t)}, {by(t)} and {by(t)} :

2
T Tim s(t).___ =0 (2.4.1)
tow by (t)4by(t)o(t) o(t)

where {b;(t)},{by(t)} and {s(t)} are real scalar sequences and

{o(t)} is a real (px1) vector sequence.
2. Uniform boundedness condition

0 <by(t) <K< and 0 < by(t) <K< (2.4.2)
for all t > 1

3. Linear boundedness condition

[lo(t)|] < Cqy + Cy X Is()] (2.4.3)

<t
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where 0 < C.l <o and O < C2 < ™

it follows that:
(1) lim s(t) = O
to

(ii)  {l]o(t)]]} 1s bounded.

Proof: If {s(t)} 1is a bounded sequence then by (2.4.3),{||o(t)||} is a
bounded sequence, Then by (2.4.1) and (2.4.2) it follows that

lim s(t) = 0.
too
Now assuming that {s(t)} is unbounded, it follows that there exists a

subsequence {tn} such that

Tim [s(t )] = =
and n

Is(t)] < Is(t)] for t <t

Thus, along the subsequence t

n
s(t,) . NN Is(t)| - using (2.4.2)
[by (£, )+b,(t, )o(t ) o(t,)] [k+K] [o(t,)] )
sty
= KBKE | fo(t,) |
Is(t,)|

v

13 using (2.4.3)
K2+K2[C1+C, s (L) 1)

Hence,
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Tim S(tn) > L > 0
tow | [by(t Jby(t Jo(t ) ot )12 | ~ K3 ,

but this contradicts (2.4.1) and therefore the assumption that ({s(t)} is

unbounded is false and the result follows.

2.4.2 Stability Analysis of the Adaptive Projection Algorithm

For the stability analysis of the algorithm given by equations (2.3.13),
(2.3.14), it is essential to show that the Euclidean norm of the vector
o(t) = o(t) - e; is a non-increasing function along the trajectories of the

algorithm.
Lenma: Along the solutions of (2.3.13) and (2.3.14)

(1) 118(t)[1% - 16(t=d)] 1% < 0

(i) 1im—2ERM) . g
too 1+o(t)To(t) 2

where 6(t) = 6(t) - o .

Proof of (i) using (2.3.13):

116() 1% - 116(t-d)[]?

1 (bea(t-d) o(t-d)e(t)? _ 20(t-d)3(t-d)e(t)) (5 4.4

By L[1+6(t-d) 6 (t-d)1% [+ (t-d)To(t-d)]

but on the R.H.S. there is a term ¢(t-d)o(t-d) which can be rearranged, i.e.

o(t-d)To(t-d) = o(t-d) [6(t-d)-0]

o(t-4) 6 (t-d)-0 (t-d) "o,

ggtz (from equations (2.3.5) and (2.3.14).
0



20

Substituting this back into (2.4.4) and rearranging:

e(t)2

1A T
v 1/8, .6 (t-d) ¢(t-d)
. 2 ~ 2 _1 2 o
t - ‘t—d B ——— | —— :
[16(t)]1° - [lo(t-d)]| 3 By ¥ : 144 (t-d) o (t-d)

| 1o (t-d)' o (t-d)

(2.4.5)

from which the dotted block

1/8,.6(t-d) o (t-d)

1
€ m——
T+ (t-d)To (t-d) By
and if L < -Z
B, 0
Bo
—_ — < -2 which is true (see (2.3.14)).
B
0

Then the whole R.H.S. of (2.4.5) will be zero or negative, hence

A T
- . 1/8_ .6 (t-d) ¢ (t-d) 2
1502117 - 1) ]1? = = |- & s —2—x e(t)
B o l+¢(t-d) ¢(t-d) T+¢ (t-d) ¢ (t-d)
=0 (2.4.6)

For part (ii) of the lemma it is noted from (i) that |[[6(t)[]|% is a
bounded non-increasing function, hence it converges. From equations (2.3.5)

and (2.3.14) :

6(t)o(t) = e(t+d)

thus (ii) becomes:

e(t+d) = 0

1im
tr [144(t) 6 (t)]12
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Noting that

1/8,-9(t-d) s (t-d)
1+4(t-d)Te (t-d)

m)l—l

-2,
B0
(¢}

is bounded away from zero, it is concluded that

2
tin 28 = 0 using (2.4.6)
tow 146 (t) o (t)

and hence

1im —e(trd) = 0.

to [1+4(t)To(t)1%

Alternatively, using the Key Technical Lemma (K.T.L.), condition 1 of K.T.L.
is established with s(t) = e(t), o(t) = ¢(t-d), by(t) =1, bz(t) =1.
Condition 2 is also clearly satisfied. While to establish condition 3,
namely that ||¢(t-d)|| is bounded by e(t), it is noted from [31] that

there exists constants m3 < «» and My < o such that

u(k=d) < m, +m, max |y(t)| forall 1 <k<t
 Myv My ¢ K=

<T<

Therefore, using the definition of ¢(t-d),

He(t-d)|] < pimg+[max(1,m,)] _max ly(z) ]}

l<t<t

where p is thedimension of  ¢(t-d); but

le(t)] > Iy(t)] - Iya(t)] > Iy(t)-my 5 m <= (see Section 2.2b) .

Hence:

He(t-d)I[ =< p{m3+[maX(1,m4)l]max (le(r)[+my)}

<1<t
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= ¢y + Cy max le(t)]
<t<t

0<C1<W,O<C2<eo

and it follows that the linear boundedness condition is also satisfied.

The properties of this adaptive algorithm which is used also include:
~ PS ' -~ ]
(1) l18(t) = egll < [la(t-d) - eyl < 116, - 6pll 5 t>d

N
(1)  Tim e(t)
Nowo t=d T+¢(t-d)Te(t-d)

< [

(ifi)  lim ||8(t) - 6(t~d)|| = 0
N ) )

(iv)  lim § [|8(t) - 8(t-d)[|° < =
t=d

Now

The proofs of these can be seen in [28] and the appendix.

2.5 MIMO SYSTEMS INTRODUCTION

Although a large amount of literature exists on adaptive control, with
few exceptions, e.g., [16,37-42], most have been devoted to SISO problems.
thile attempts have bheen made at extending these SISO algorithms to the
multivariable case, there have been difficulties, i.e. finding equivalent
a priond information similar to those in the SISO algorithms (i.e. (a) know-
ing the upper bounds on the plant order and the relative degree of the plant
transfer function, (b) polarity of the high frequency gain, and lastly (c¢)
the time delay d of the system must be known), and what to do about cross

couplings between system inputs and outputs.

In [37], E11i0ot and Wolovich approached the MIMO control problems using
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linear multivariable system theery and came up with the idea of an interactor
matrix, (this will be defined and explained briefly later), which gives a
measure of the a prionl information on the system. Unfortunately for this
work, their algorithm is in continuous time and it is not strictly speaking

a model reference scheme, However, their work led to Goodwin and Long [38]
extending the results of [16] to a wider class of systems with the introduc-

tion of the system interactor matrix.

In [39] Johannsson went a bit further in deriving a direct adaptive
controller which can tackle some non-minimum phase systems; but although
part of his criticism of [16] includes its being overparametrized, his own
algorithm for the minimum phase system redu;es to a similar algorithm to

that in [16] and [38].

In [40] a robust algorithm is proposed which does not require persistency
of excitation and this will be dealt with in the next chapter, while both
[41,42), though having interesting algorithms, [41] using an Indirect Adaptive
Controller and [42] an algorithm based on the theory of Variable Structured
Systems (V.S.S,) but in continuous time, were not considered due to the frame-

work within which this thesis is based.

Since a simple algorithm is required, the MIMO adaptive algorithm applied
to the rigs in this work was based on that in [38] which as mentioned above

for minimum phase systems is similar to that suggested in [39].

2.5.1 MIMO Systems

For Multi-Input Multi-Output systems described in D.A.R.M.A. form
-1 _ -1
A(a ")y(t) = B(q ")u(t) (2.5.1)

where {u(t)}, {y(t)} denote the rx1 and mx1 input and output vectors
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respectively, the following assumptions are made:

1. The transfer function T(z) AZB(Z-])/A(Z-]) has rank m .
Upper bounds are available for the orders of the polynomial.

The system is stably invertible.

S w N

£(z) (the interactor matrix) is known.

From multivariable theory output tracking is possible only when r >m
and if r > m, some inputs are discarded without loss of generality in the
control law, but for the course of this work all systems and/or rigs have

r =m in their multivariable versions.

2.6.1. The Interactor Matrix .g(z)

A reasonable definition of the interactor matrix ¢g;(z) will be to say

it is the multivariable equivalent of the time delay in the SISO systems.

For any full rank mxm transfer matrix T(z) there exists a unique non-
singular mxm Tower left triangular matrix £, (z) known as the interactor

matrix of the form

f fn
5(z) = Hp(z) diaglz *,...,2 7] (2.6.1)
where
[ 1 ] 0]
{ ?2](2) . . .
Hr(z) = : (unimodular (2.6.2)
ha(2)  ho(z) .o 1 J

and hij(z) is divisible by z or is zero,

and f, > d; é_]gggm dij » and dij is the delay between the jth input and
T the ith output.
In many cases of interest, gT(z) can be taken to have the form of a

diagonal matrix [33], i.e.
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Form 1: ¢(z) = zdI where d = min dij
1J

where d 1is a single delay associated with every output.

Form 2: £(z) = diag[d],...,d where di = min di’

)
m j J

here di represents the delay to the ith output.

Also the interactor matrix satisfies

(i) det £(q) = " where m is an integer
(ii) 1im g(z)T(z) = K where K is a nonsingular matrix
200
(ii1) E(z)'] is a stable operator
(iv) For a strictly proper transfer matrix T(z) then f] to fm in

(2.6.1) are non-zero.

2.6.2 The MIMO Adaptive Algorithm

From the works in [37-39] it becomes obvious that the jnteractor matrix
must be included in the reference model. So in the course of this work the
interactor matrix is taken to be a diagonal matrix consisting of time delays

between each input and output.

Considering the system given in (2.5.1), i.e.

AT )Y(t) = B(qTu(t)

Let £(a) = F(@A@™) +6(a™) (2.6.3)
where Flq) = Foqd +.o..4 Fd'-] q (2.6.4)
-1 -1 -n'
6(a7') = 6 + 697 *...+ G g (2.6.5)
d' = maximum advance in £(q).
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Multiplying (2.5.1) by F(q) gives:
Fa)A@ ™ )y(t) = F(a)B(a™ u(t) (2.6.6)

using (2.6.3)

g(@)y(t) = G(a)y(t) + F(a™)B(a™ Ju(t)
= a(a T )y(t) + 8™ u(t) (2.6.7)
where  y(t) = £(q)y(t) (2.6.8)
and 8 is non-singular.

0

However, the objective is to design an adaptive control law such that
{y(t)} and {u(t)} remain bounded for all time and that {y(t)} asymptotically
tracks a desired reference model output sequence {yg(t)}. Hence, defining

2:(t) = g(q)x;(t) the closed-loop system will be characterized by:

z(q)l 0 ][ y(t) ] _ l £(a) Yp(t) ) (2.6.9)

Ay =By J{ u(t) 0

=%

Now let y(t+d) = y(t) using assumption of £(q), and y;(t+d) =y (t)

where
y(t+dy) yE. (t+dy)
y(ted) = a and yi(ted) = | M
] * '
Yp(t+d) ymm(t+dm)
and defining
ey (t+dy) yq (t+dy) Yo (t+d)
V. = ; - : (2.6.10)
e (t+d ) Y () yh (t+d ) )



1h B = diagonal polynomial matrix
R = upper triangular matrix with zeros in the diagonal

y, = system output

U(t)= control input

y = model output

measured system output

y(t)e yl(t)i where y,

Yz(t)J y, = other measured outputs
* %
TlAm is specified by designer

*
S = a diagonal matrix which contains the _A_zeros of the system

* ‘
T2 is a polynomial _A_ - unimodular matrix
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while from (2.6.7) and (2.6.8)
y(ted) = a(a™)y(t) + 8(a " u(t) (2.6.11)

factoring out g_. from the above, it can be rewritten as (see [16,38])
0

y(t+d) = g tu(t) + D(@™ Ju(t-1) + C(a™ )y(t)) (2.6.12)
where
A A, -
D(a ') = 8, [8(a ') - 1] (2.6.13)
c(a™) = 8 la(a™' )] (2.6.14)

Subtracting yp(t+d) from both sides of (2.6.12) gives:

e(trd) = gfu(t) + D(q™)u(t-1) + C(q7'y(t) - By yn(t+d))

(2.6.15)
e]ft+d]) y;](t+d1)
o | b sfut) + D@ e + ey - 55|
e (t4d ) y;m(t+dm)
(2.6.16)

Note the similarity of this to what obtains in [39] where
ngf = B;[u+Rou+R*u+S*y-T3y]m]
m * %
e(t) = yy(t) -y (L), eg(t) = T{A e(t)
where
TiA, = T and  Tayi(t) = yo(t)
T For explanation of terms used above see opesile page

Equation (2.6.15) can be written in the form:

e(ted) = g fu(t) - o, e(t)) (2.6.17)
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where e; is an mxn' matrix consisting of the coefficients in [C(q']),

D(q-1), B;]], while ¢(t) 1is an n'x1 vector given by
s(t) = [yt amy(t-1) o mu(t-1)Tmu(t-2)T, Lyt (b))

with all these components being measurable.

Analogously to the SISO case this results in the following algorithm:

e, (t+d
5(t+d)T = 8(t) - P 1(: ) () et o) (2.6.18)
em(£+dm)
and the control law:
u(t) = 8(t) e(t) (2.6.19)

n

where d

and P

max(dy,...,d;)

matrix of constants specified a prioni (it represents e;])

b

For global convergence of the adaptive algorithm, defining

T

s(trd)| = S(trd)] -0} and K = Ps

0 -
If KT+K“KTK is positive definite then along the trajectories of equations

(2.6.18) and (2.6.19)

(a) tracel é(t+d)Té(t+d)] - trace[é(t)Té(t)] < 0

Aei(t+d1)
(b) 1lim T T - 0 l<ic<m
tro [T44(t) ¢(t)]

and the algorithm ensures that {y(t)}, {u(t)} are bounded and that

Tim |y, (t) - y;(t)l = 0 for i=1,...,m
£
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The proof of the above is now shown [11].

(a) Rewriting (2.6.17) using (2.6.19) as

e(t+d) = go(t) o(t) (2.6.20)

T

then (2.6.18) becomes by subtracting e; from both sides:

strd)T = 8T(t) - k() e (t)11+a(t) o ()1 Ta(t)T (2.6.21)
and '

trace(5(t+d) 6 (t+d)) - trace(d(t)'5(t))

= -trace| (Kl +K-1K'K] o(t)"s(t) ).(é(t)T¢(t)-¢(t)Té(t)
[1+6(t)To(t)] (46 ()Te (1))

< 0 if K'+K-K'K 1is positive definite.

(b) From the above, it is implied that é(t+d)To(t+d) is a bounded non-

negative, non-increasing function, hence it converges thus:

Tim trace(K'+K-[K'K] ¢(t)T$(t) ). é(t)T¢(t).$(T)Té(t)
o [T+e(t) ¢ (t) D+ (t) o (t)]

n
o

Since K+K-K'K is positive definite, then

in 80000 (0)T8(8) _
toe  [T+9(t) o (t)]

or, using (2.6.20)

(140 (t) o (£)1 7 Loy (t4d) ), (bd Y16 = 0

from which (b) is implied and holds.



2.7

(a)

(i)

(b)

30

COMMENTS

The key conclusions in this chapter for the Model Reference Adaptive

Control Scheme (MRAC) are:

Closed-loop stability is achieved for both SISO and MIMO systems/plants,

i.e.bounded inputs, bounded outputs.

The output tracking error e(t) asymptotically goes to zero as the
time becomes very large, implying that perfect tracking of the reference

model output will be achieved,

Although the algorithms described in this chapter are globally stable
adaptive control schemes, this does not necessarily mean that they are
robustly stable. This has been shown in [21]. The reasons for this

are not far-fetched as it must be realized that the basic algorithm as
it is has been designed for the ideal case where it is assumed that

the plant is a Linear Time Invariant (LTI) system whose dynamics can be
perfectly described by a model and with no consideration for disturbances.
Although Goodwin and Chen [43] have results relating to the adaptive
control of LTI systems having purely deterministic disturbances, such as
sine waves, biases, etc. This shows that the existing algorithms, i.e.
[1€,38] can be applied without modification to systems having purely

deterministic disturbances.

During the course of this work one of the interesting points noted was
the way in which the P-matrix in the MIMO algorithm could be used to
decouple a system, as will be seen later on in Chapter 5 on the Coupled
Electric Drives rig. Experiments carried out on the Coupled Hydraulic
Tanks in Chapter 4 show that an effective choice for the P-matrix is a
diagonal constant matrix of reals, which is interesting as this choice
does not consider the effects of cross coupling and/or interaction.

This seems to support the work of Yang and Lee {44] in which it was found
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that MIMO systems were less sensitive to accuracy of models than SISO
systems, partly because there are a larger number of parameters being

used in the MIMO algorithms.

The robustness problem then leads to the next chapter in which two
different Robust algorithms are explained and during their analysis it is

shown that they both are quite similar.
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Chapter 3

ROBUST MRAC SCHEMES

3.1 INTRODUCTION

In adaptive control the automatic adjustment of feedback laws to control
unknown fixed or slowly varying plants is the fundamental or core element of
the algorithm. The standard means of obtaining this adaptive control is
through the use of a recursive algorithm using the input-output data of the
plant to calculate on-line a feedback control input based on this information.
For the stability and convergence analysis of the schemes, some assumptions
are made, i.e. the controlled system is linear time invariant, of finite
order with a known upper bound on its order n, its relative degree n*

and the sign plus magnitude of the high frequency gain k Also assumed in

most stability analyses of these algorithms is the absencz of noise or
disturbances, But these finite dimensional, linear differential or difference
equations are mathematical tools which, although they have been quite useful
and accurate in the description of physical systems, are merely approximations
of these physical systems - these physical systems being infinite dimensioned
physical phenomena . Thus, in view of all these, difficulties were bound to
crop up in schemes such as MRAC in which the physical system is expected to
match the Reference model (Designer specified) of finite dimension under even
an ideal situation which is noise and disturbance free. This raised the
question of how an adaptive algorithm, which assumes a certain model order,
will function when used on a system of higher order, affected by noisiness

and disturbances. Work done in this area by Rohrs et al [21], loannou and
Kokotovic [45] and Egardt [15] showed that unmodelled dynamics or even small
bounded disturbances could cause most of the algorithms in [13,14,16,11] to

go unstable, even though these algorithms have global stability properties.
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Also, in the case of bounded disturbances, another problem faced was the
possibility of the control parameters drifting and becoming unbounded,
even while the state error between the plant and the model remains bounded,

see [46].

The problems raised above led to a lot of researchers investigating the
robustness properties of adaptive control schemes in [22-29,47-56] amongst
others. By robustness, it means stability of the adaptive control system is
guaranteed even in the presence of unmodelled dynamics and bounded distur-
bances or noise. From the work of various researchers it became clear that
robust properties are achievable for some systems without modifications (see
Cook and Chen [47], Goodwin and Sin [31], Samson [56] amongst others), provided
the magnitude of the disturbance or modelling error is small compared to the
magnitude of the reference signal and model used; but clearly the problems
above indicated a need for modifications in the adaptive algorithms used so
as to make them have robust properties. Amongst the different solutions that
came up are (i) normalization, (ii) dead zones, (iii) persistency of
excitation, (iv) parameter bounds, and (v) the c-modification. These will now

be discussed in the next section.

3.2 MEANS OF ACHIEVING ROBUSTNESS

As mentioned in the previous section, five of the most favoured ways of

achieving robustness in adaptive control are:

(i) Persistency of excitation: This is favoured by people such as Narendra
(24), Anderson [49], Kreisselmeier [53] and Cook [47,48]. What this
means basically is that for robustness the signals, such as the reference and
control inputs have to be persistently exciting so as to nullify the effects

of disturbances and unmodelled dynamics present in the system. Various
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definitions of a persistently exciting signal are available, but they all
generally imply that the signal is defined as persistently exciting if it

is [49] a combination of p distinct frequencies (usually of sinusoids) for
a model of dimension 2p = n+tm. In some papers a signal referred to as being
sufficiently rich implies a persistently exciting signal. Some of the

definitions are given in mathematical form below.

(a) From [24] a bounded vector u : R" > R" is said to be persistently

exciting if constants to, TO and o exist such that

T+t

] 0T1wd‘(‘>€ ¥yt=>t 32]
s T LS >t (3.2.1)

for all unit vectors w € R"
OR

a bounded vector u : Rt + R" is said to be persistently exciting if
positive constants To’ao and €0 exist such that a t, exists with
[ty,t te 1= |t’t+T°| and

)
TO

t2+6o

UT(T)wd't > g ¥t> tO (3.2.2)

ts
for all unit vectors w € R"

(b) From [31,49] another definition is, a scalar input {u(t)} is said to
be strongly persistently exciting of order n if, for all t, there

exists an integer ¢ such that

tep | Uk
il > 1 E (u(ken), .o oou(ke)] > pol (3.2.3)
k=t | )

where P1sPp > 0.

A point of interest is that Astrom [57] stated that part of the reasons
for the results in [21] was the fact that the reference signal used was not

exciting enough to cope with the disturbances and error used, i.e. for
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constant/step reference inputs the persistency is of order 1, which is not
sufficiently exciting to cope with, say, sinusoidal disturbances which are
of order 2. He also points out that unmodelled dynamics will not cause any
difficulties if the frequency of the reference signal is sufficiently low and
sufficiently large in magnitude to overcome destabilizing effects from high

frequency inputs or noise.

A major criticism of the requirements of persistency of excitation is
that the disturbances must be bounded below the exciting signal, otherwise
the disturbance can counteract the excitation and this leads to the persis-
tency of excitation being reviewed continuously to make sure this does not
happen, as there is no specific or standard persistently exciting signal

that can cope with all disturbances.

Also, for direct adaptive control, where exact identification of plant
parameters is not essential, the persistency of excitation condition can be

avoided.

(ii) Dead Zones: Although there are different approaches to this, it
basically means that within certain limits/bounds/thresholds a priori
defined, the adaptation mechanism is switched off. It is mainly used to
tackle bounded disturbances, preventing instability by elimination of the
integral action embedded within the adaptive laws. The logic behind the dead
zone being that when the tracking error is small, compared to a known upper
bound of the amplitude of the disturbance say, the error is no longer useful
in bringing out information for the adaptive control laws. Thus, to continue
using this tracking error within the dead zone region might be to have the
disturbance influencing the adaptation which will have the effect of deterior-
ating the control parameters and consequently affect the adaptive controller
as well. The choice of dead zone is crucial for stability as the larger the

dead zone, the shorter the period of time for adaptation to take place and
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thus the larger the output and parameter errors. Smaller dead zones lead

to smaller output errors and examples of these are shown in Chapter 4. Thus,
for a good choice of dead zone, use must be made of a priori knowledge of the
plant parameters and magnitude of the disturbance. In some papers, effects
of unmodelled dynamics have been manoeuvred to represent disturbances for

which dead zones can be applied, (see, for example, [46,52,271).

(iii) Normalization: The use of a normalizing signal allows the unmodelled
dynamics to be characterised in the form of noise to signal ratio.
Thus, it bounds the modelling error (see Praly [29,54]) and causes the adaptive
law to see the effects of unmodelled dynamics as a bounded disturbance.
Normalizing signals play an important role during the transient by guaranteeing
slow adjustment of the controller parameters where appropriate. The smooth
adjustment of the controller parameters reduces the excitation of the unmodelled
dynamics by the control input and therefore improves the accuracy of adaptation.

Examples of normalizing signals used in the literature are:
From (22]  m = -&m + &, (lul+|y[+1), m(o) > &/8,  (3.2.4)

where do,d] are positive design parameters and

u = input, y = output of system, respectively.

"

From [27] N(t) Y, + m(t)

Q
ooM(t=1) + lu(t-1)[+|y(t-1)] (3.2.5)

=3
-
<t
~

1

0 <gyg <1y, mo)>0

Y, 1s designer chosen.

o]

From [28]  p(t) = ue(t-1) + max(|]|e(t-d)||%,p) (3.2.6)
p >0, ue (0,1), ¢(t) = (u(t),...,u(t-ng),
y(t)s'-.ﬁy(t-nR))T

From [291  S(t) = oS(t-1) + max{|y(t-1)|+]u(t-d}|,S} (3.2.7)
0<o<1, S>0.
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A1l the above can be seen to be of the same form, and later on in

Section 3.5 will be shown to be similar.

(iv) Parameter Bounds: Forms of this include [27,29] in which it is
proposed to keep the estimated parameters inside a chosen sphere using

a projection, while others are of the form in [55,56) where an upper bound

Me for the norm of the controller parameter vector is defined. In the first

case, adaptation takes place only within the chosen set, while in the second

adaptation goes on so long as the norm of the parameter vector does not exceed

Me' Compared to the dead zone modification, this modification guarantees

zero residual tracking error and potential convergence of parameters to their

true values in the ideal case; but the first of the forms, i.e. "projection

sphere" is the best as it eliminates the possibility of burst phenomena

associated with parameter drifts as in [27].

(v) The g-modification: This was first suggested by Ioannou and

Kokotovic [45]. It consists of adding an extra term -00, c >0 to
the adaptive law equation (see also [22]). It is shown that the g-modification
guarantees existence of a large region of attraction from which all signals are
bounded and the tracking error converges to a small residual set. A new form
of this modification has been proposed recently by Narendra and Annaswamy [58]
in which o 1is replaced by a term proportional to |e| where e 1is the
output tracking error. One of the advantages of the g-modification is that it
requires no new a priori information in its design. It also requires no

persistently exciting signals, but it is in continuous-time.

In different papers the various modifications above have been incorporated
to the adaptive algorithms to make it more robust. In.some cases the
modification has been limited to only one, i.e. dead zone in [46] or parameter
bounds in [55], or normalization in [28], while in others it has been a com-
bination of two or more of the above, i.e. [27,29,56,59]1. In the course of

this work, focus was on two particular modified algorithms, namely those
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suggested by Kreisselmeier and Anderson [27) and Ortega et al [28), which are
both in discrete-time, hence suitable for use on a microcomputer. The

description and analysis of the two algorithms now follow in Sections 3.3 and

3.4, respectively.

3.3 THE KREISSELMEIER AND ANDERSON ALGORITHM [27]

This algorithm makes use of a normalizing signal, together with a
relative dead zone and a parameter projection in the adaptive control law to
achieve robust stability of the scheme with respect to unmodelled plant
uncertainties and disturbances. In general, parameter estimates using the
scheme do not converge to their true values, even when no modelling errors
are present due to the use of a relative dead zone, but will converge to a
neighbourhood of the true values. A4 priori information needed includes
knowledge of bounds on the plant and controller parameters plus bounds on the
modelling error, A description of the algorithm and proof of the robustness

now follows,

The plant or system is represented by the equations

B(z ™ Ju(t) +n(t) (3.3.1)

>
—
N
L
~
<
—
<
~r
n

where A(z']) = 1+ a]z'1 +...+anz'"

-d -1
b,z (1+byz * +...+ b z

m
d ']) ; m=n-d

~
n

= boz' B(z
u(t),y(t) are the measurable input and output respectively, and
z'] denotes the unit delay operator; d is the system time delay
with n>d >0,

T(t) » modelling error = A(z™)y(t) - B(z ' )u(t) (3.3.2)

(also contains the disturbances).
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The reference model is chosen as:
Az )y (1) = 2% r(t) (3.3.3)
m m m

where b >0

m
-1, _ -1 ) . .
Am(z ) =1+ am,]z oot am’d ; a strictly stable polynomial
and r(t) » reference input which is bounded in the modulus by a

known constant.

3.3.1 The Model Reference Adaptive Controller and Adaptive Law

Defining
gT(z']) = 127,272, (3.3.4)
y(t) = gz u(t)
(3.3.5)
Vo(t) = a(z y(t)
(8 = (e (8)p(t) ]
(3.3.6)
o (t) = feg(t),0](t)sep(t)]
then the control law is chosen as:
u(t) = xT(t)Q(t) (3.3.7)

(Notice the similarity of this to the basic algorithm control law in

Chapter 2, i.e. (2.3.14)).
Also defining

m(t) = ogm(t=1) + [u(t-1)] + |y(t-1)] (3.3.8)
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where 0<o, <1, m0)>0

(o}

then the modelling error nM(t) is said to be relatively bounded if there is
a finite u >0 and m(0) > 0 such that
n(t) < wum(t) (3.3.9)
Proof:
Let the true plant satisfy y(t) = f(g(t),t) (3.3.10)

where  £(t) = [Y(t-1),....y(t-R), u(t-1),...,u(t-1)11  (3.3.11)

and n > n
Defining
cizy = 14zt h.. e D (3.3.12a)
(z ) 1 ees Crin .3.
an arbitrary polynomial with
1 s -1
— = 1 vz (3.3.12b)
c(z™") i=0
and property:
T lvsl o' = ¥ < (3.3.12c)
i=0 il %
j.e.  C(z;) = 0 implies |z;| <o, »

combining (3.3.2) and (3.3.10), using C(z']), gives:

iz m(t) = C(2 Az y(t)-B(z ™ u(t)]

= y(t) - p £(t)

where p 1is a constant vector containing the coefficients of the polynomials
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¢z hAz™y -1 and c(z7)B(z7)
- flg(t)et) - p &(t) (3.3.13)
Now let
Ifat) -2 & = eellell, foratlgandt >0
where ||g/|, = 1,21 N (lgg] + lgg,5)) and o€ (0,11

Also, assuming m(0) 3.||g(0)||8. means that m(t) > [|g(t)[[4 for all
0 o
t >0, and it follows that

n

et = 1C 2 ) if(eat) - B g(t)]

| vtfa(e-i),6-1) - pls(e-i]
1=

L]

ef ,20 lvil - ll_i_(t"')lloo

1=

1A

yi| « m(t-i
Ef iéo I ]' ( )

1A

1A

ot Ly Il et i)

-
-

eg Yy m(t) = wum(t) ; hence proved.

1A

Define ©" a constant parameter vector = [9;,9]*T,9;T]T

where 9; = b,/b, and 9;,92* are such that

n-a (2 heaE) - Bz e (2hey = A (2B

and let §jt) = 9(t) - Qf, then the model reference objective is said to be

satisfied if 6(t) =0 and W(t) =0, i.e. if 8(t) =" and v =0.
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The adaptive law containing the dead zone and projection to achieve this

objective using normalization is now defined.
Defining

w(t) = 1(1/b)2% (27 y(t),v] (1) (t)) (3.3.14)

the identification error:

E(t) = w(t-d)o(t) - v' (t-d)o(t-d) (3.3.15)
and normalizing factor N(t) = Yo * m(t) ; Y > 0 (3.3.16)
then the relative error E,(t) = E(t)|N(t) (3.3.17)

The adaptive control parameters are then chosen using the following

adaptive algorithm in two steps:

Step I o(t+1) = o(t) - W(t-dIN(E)D(Ey(t)) (3.3.18a)
YT (E-d)w(t-d)

where D(E,(t)) the relative dead zone (see Figure 3.1) is defined as:

0 if 6] < d
D(E) = § Ey=dy iF Ep > d (3.3.18b)
Eptd,  if B < d

Step II
ei(t+1) Tf ?i,min~i ei(t+]) h ei,max
ei(t+]) = ei,min if ?i(t+]) < ei,min (3.3.18c)
ei,max if ei(t+1) g 0i,max
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D(E;)

-do

/’//’/’ o E1

Figure 3.1 The dead zone function D(E;)

Again, as in the Basic MRAC algorithm (see Section 2.4.2), the adaptive

parameter algorithm used here has the following properties:

(1) [16(t)[| < constant where &(t) = 6(t) - o
(1) limD(Ey(t) = 0

(ii1)  Vim [o(t+1) - o(t)] = O
Tt

Note that the above properties are quite similar to those in Section 2.4.2
with their proofs being derived in a similar manner. Hence the proofs of these

will not be given here (see [27,311).

3.3.2 Proof of Robust Stability [27]

To establish the robust stability of the closed-loop adaptive control

system, a bound on N(t+1)|N(t) 1is derived first.
From (3.3.8), (3.3.16):

N(t+1) = o N(t) + v (T=05) + ly(t)] + lu(t)] (3.3.19)

Rewriting (3.3.2), using (3.3.5), it becomes:
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y(t) = BT yp(t) - al vy(t) + n(t) (3.3.20)
expanding (3.3.7):
u(t) = oG (EIF(E) + B(E)yy(t) + Sp(t)uy(t) (3.3.21)

(3.3.6), (3.3.8), (3.3.16) imply:
Hy ()] + 1y (8] < nool® N(t) (3.3.22)

for some finite t, > t,, it follows that for t > t,

N(t+1) = o + o5 ky + WIN(E) + vg(1=0,) + o, (t)r(t)]
< 00+ o)™ kg + uIN(E) + o (t)r(t)]
< D wall kg +dk o+ KIN(E) = A(dON(E)  (3.3.23)
d
where My = —a——-il—-——j (3.3.24)
I Ipslog’
1=
and k, 2 —3———’—-1 (3.3.25)
izo lpiloo
ky > sup {o(t)r(t)|N(t)} (3.3.26)
t>t,

Rewriting the input and output of the closed-loop system to facilitate

analysis of closed-loop stability in terms of m(t) implies:

y(t) = (bylAL(z" )ILr(t=d) + Ep(tIN(t)|oy ()} (3.3.27)
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[v (£-4)6(t-d) + Ny (£)10, (£)] TepN(t)]
Pz m(t) 5 P(z71) as defined in (271,

where E,(t)

with T (t)

while -d

u(t) = .
B(z™') A (z)

: {r(t)+53(t+d)N(t+d)[l; + _...‘__]}

9 eo(t+d)

L9y
A (27 )B(z"

— n(t) (3.3.28)

)

where Eq(t) = [y_T(t-d)é(t-d)]/{N(t)[1+e;/eo(t)]}

. -d T *, . =
Let the impulse responses of bm/Am’ bmz A/AmB and q Qz/AmB all be

t
c

can be obtained using available prior information. Then noting that

bounded in modulus by Kc°

K

where 0 <o, < 1. Suitable constants Kj.K,,K,,

c*%c
r(t) 1is bounded by a constant, that for arbitrary d1 > d0 there exists

T > t, such that Ez(t).i d] and E3(t+d) < dy; whenever t > T and that

2
N(t), (t < T) 1is bounded, then for t > T equation (3.3.27) reduces to:

t .
ly(t)] < const + igT Kot diN(i)/0, (1)

t-i

Com) (3.3.29)

t
< const + (]/eo,min)chl iET o

and (3.3.27) becomes:

t .
lu(t)] < const + ’ZT Kcoz'1{d1N(i+d)[1/6; + 1/0, (i+d)1+u N(i)}

d
< const + Kthd]A (do)/e

+d K ] E tingi)  (3.3.30)
o,min "0 0" ;2% (3.3.

where  N(t+d) < a%(d N(t) and w < uy < doK,

Equations (3.3.16), (3.3.29), (3.3.30) then yield:

ot m(i) (3.3.31)

Il > o

m(t+1) < ogm(t) + Ky + Ky(dy) 1
i
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where Ko is a constant

and K (dy) = dqK_{[1+22%(d; )1/ K} (3.3.32)

+
o,min 0

Defining

t o,
R(t+1) = o fi(t) + Ky + K (dy) igT oSV m(i) s (t2T)  (3.3.33)

it follows by comparison to (3.3.31) that if m(T) > m(T) then m(t) > m(t)
for all t > T, i.e. m(t) is an upper bound of m(t).

Equation (3.3.33) can also be written as:
(20 i(t) = Ky + (K (d)/(1 = o 2" DA(t) (3.3.34)

which is equivalent to a feedback configuration with a closed-loop character-
istic equation:

1+ [0y + 0+ Km(d])]z'] + oOchz"2 = 0 (3.3.35)

from which stability is obtained if

Kn(dy) < (1 = 95)(1 = o)

where o ,0. lie in (0,1) and K (dy) is positive. This gives rise to the
conclusion that if the dead zone is chosen so that d >0 and K (d;) <

(1 - 0y)(1 - o) then, since K, (+) 1is a continuous function, there always
exists d1_> dO satisfying (3.3.35) which implies stability of the system.
Also, since y(t) - y (t) = [bm/Am(z'])]{Ez(t)N(t)/eo(t)} which is the output
error, where Ez(t) is known to converge to the interval [-do, dol, then

the relative output error [y(t) - yh(t)]/N(t) will be proportional to the

size of the dead zone.
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3.4 THE ORTEGA, PRALY AND LANDAU ALGORITHM [28]

This algorithm is based on the use of normalization in parameter
estimation for the achievement of robustness. The adaptive control system
is assumed to be affected by reduced order modelling and bounded output

disturbances. The description of the algorithm now follows.

The plant is described by:

A(t) = a7 () + et (3.4.1)
where A(q’]) and B(q’]) are polynomials in q'] with
-1, _ -1 “Na
AlQ ') = T+a9 +...+ta q (3.4.2a)
a
-1, -1 "y
B(@ ') = by +byq " 4.4 b.q (3.4.2b)

L

and u(t), y(t), d(t) are the input, output and disturbance sequences.
Note also that d(t), the disturbance, also includes the effects of

unmodelled dynamics.

Defining S(t,q']) and R(t,q'1) as two polynomial functions in q"'l

of degrees ng and ™ respectively, with time varying coefficients, i.e.

S -1 Ns
S(t,a ') = sy(t) + sq(t)a "+t s (t)q
] > (3.4.3)
R(E,GT) = ro(t) + ry(t)a! +..4 Mg (£)0 R
Let the reference model be defined as:
-1 _ a=dy, =1
E(a ")y, (t) = q "H(q ")r(t) (3.4.4)

where r(t) is the reference input, y_(t) the reference model output and

d is the plant time delay.
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For this algorithm the objective is to minimize the filtered tracking error

e(t)

CR(a™ () = yy(t)] (3.4.5)
where CR(q']) is a stable polynomial, the roots of which are the desired
closed-loop potes.

The approach used here is similar to that in pole-assignment in which

one solves

R(t,71 ) (E) + S(6,a7 u(t) = Co(a™ )y (t+d) (3.4.6)
to obtain the control law, but
R(t,a™ Ny (t) + S(t,a  u(t) = o (t)e(t) (3.4.7)
| T
where o(t) = [so(t),...,sns(t),ro(t),...,rnR(t)] (3.4.8)
and B(t) = LU(t)seeesult=ng) ¥ (t)se ooy (t-ng))’ (3.4.9)
thus 0 (t)e(t) = Cp(a™)y,(t+d) (3.4.10)

from which the control input is derived as:

u(t) = 5;%57 L5 (£0(E1) =1 =Sy U(Eong )T (£ (E),m...

ety (£ (teg) ¢ Crla™ hy, (t+d)]
(3.4.11)

Note once again the similarity of this control input to that of the Goodwin
et al projection algorithm 1 [16] which was mentioned in Chapter 2, but here
the parameter adaptive algorithm is different from that in [16]. This is now

described.
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3.4.1 The Parameter Adaptive Algorithm Including Normalization

Defining p(t) the normalization factor,
p(t) = wp(t-1) + max([e(t=d)|%,0) 5 5 >0, ue (0,1) (3.4.12)

where p is a small positive constant that defines a Jower bound to o(t).
The choice of time constant u being a compromise between algorithm alert-
ness and robustness (see Chapter 4). Boundedness of ¢(t) s ensured if
there are ¢(t) independent properties which are obtainable when e(t) and
¢(t) are normalized. Normalized signals will be denoted by (7) and are
defined as:

F(t-d) p o(t)F g(t-d) (3.4.13)

E(t-d) A o(t)? e(t-d) (3.4.13b)

In [28] two algorithms are suggested for implementation:

1. Constant Gain (C.G.) parameter algorithm given by:
o(t) = o(t-d) + F ¢(t-d)e(t) (3.4.14)

where F 1is a scalar constant > 0,

2, Regularized Least Squares (R.L.S.) parameter algorithm given by:
o(t) = o(t-d) + F ¢(t-d)é(t) (3.4.152)

where F 1is a time varying matrix defined as:
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F(t-d)8(t-d)3' (t-d)F(t-d)) , , ;
A+ 8 (t=d)F (t-d)F(t~d) ’

(3.4.15b)

F o= F(t) = (1-a,/2)[F(t-d) -
and Ao <A 3 Agarped being strictly positive scalars.
The eigenvalues of F(t) are contained in the chosen interval [a ,)].

Bearing in mind the simplicity of the algorithm required for this work,

the constant gain parameter adaptive algorithm was chosen.

The proof of the robust stability of the algorithm now follows.

3.4.2 The Proof of Robust Stability [28]

The robust stability of the adaptive control algorithm stated above is
based on sector stability theorem by Zames [33], which involves conic
sectors. This states that the feedback interconnection of two conic bounded
operators is globally stable if one is strictly inside a cone and the inverse
of the other one outside it. Thus, conic sector conditions must be
established for the adaptive algorithm given above. To achieve this a
normalized error model is derived. Direct application of the sector stability
theorems to this model then leads to the derivation of stability conditions
for the normalized signals. These conditions are then translated to the
original signals and operators, Basically stability of the adaptive system
reduces to proving that the regressor vector ¢(t) 1is bounded which ensures
that the normalization factor is used as a multiplier. Lz-stabi]ity, implying
tracking error cancellation for reference inputs and disturbances that are
L2 signals while L_ stability is for arbitrary reference inputs and bounded

output disturbances, will be considered,

Error Equations:
Defining the polynomial

c = SA+q9R"B (3.4.16)
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where R*,S* are constant coefficient polynomial functions in q']

similarly defined as those in (3.4.3), i.e.

-Nn
RY = re + r;q'1 +o.4 T Q R
] R g (3.4.17)
* * * - *
S = So *+ 519 *t...t snsq

and also a polynomial coefficient vector

* * LA *

o A [s;,s;’,...,sns,ro,r1,...,rnR] (3.4.18)

With the above it is assumed that there exists a non-empty set 05 defined

as:
6, a 0" eR" 1 Ca) £0, ¥aeC, [al >uh) po (3.4.19)

where n=ng+np+2 and wue (0,1).

The above assumption will be known as Assumption 1.

Combining (3.4.19) with (3.4.1), using (3.4.9) and manipulating,

Cy(t) = B o*Ta(t-d) + S™d(t) (3.4.20a)

Cu(t) = A o™Te(t) - R* d(t) (3.4.20b)
Defining

b(t) = (o(t-d) = o")Tg(t-q)

= &' (t=d)e(t~d) (3.4.21)

o(t) = oft) - e" ; the difference between stabilizing and

actual parameters.
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Using (3.4.5),(3.4.10,(3.4.20) and (3.4.21), the error model can be

expressed as:

e(t) = -Hy y(t) + e*(t) (3.4.22a)
where  e*(t) = (H,=I)Coy (t) + CaCT'S"d(t) (3.4.22b)
My = CiC7'B (3.4.22c)

Figure 3.2 shows the complete error model with Hy denoting a relationship

defined by the adaptive algorithm, i.e. Hy ¢ e(t) » y(t).

As mentioned earlier, all these signals and operators are normalized

for stability analysis, i.e.

Tt) = o(t)E ut) (3.4.23)

e = o))t 5 1212, (3.4.24)
plus the error &(t) and regressor vector &(t) as shown earlier. It is
assumed that o(t) is such that ||¢(t)|]|_ <1 . Stability of y(t)
assumes that the regressor vector ¢(t) is bounded and consequently p(t)

is bounded under Lz-stabi1ity (see [28]) using multiplier theory.

Equations (3.4.14),(3.4.15) define an operator H, : &(t) » ¥(t),
in addition to which for the RLS/PAA its exponentially weighted counterpart
Ay : €%(t) » $%(t), where the superscript (a) denotes

X*(t) A ot X(t): a>0

will be considered.
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£(t)

Yp(t) v(t)

Figure 3.2 The Error Model.

The input-output properties of these two operators can be summarized

in the following lemma:
Lemma:

1. For the Constant Gain parameter algorithm, if F is given by (3.4.14),
then

ﬁl +<% ECG is passive
for all ECG such that

S 2 FIIE(R(t)]]
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2. For the Recursive Least Squares parameter algorithm, if F 1is given by

(3.4.152), (3.4.15b), then

Hy(t) 1is outside CONE (-1, MN=3pLs)

for « verifying

\ max[%(t)-][F(t'd) - F‘t‘d3$‘t'd)5T(t’dZF“'q)]]'aZd 1
A4+ ¢ (t-d)F(t-d)e(t-d) -

and all ERLS satisfying
] Mé (£28(E)
%RLS 2 -
RL A+x1$Tkt)¢(t)

The proof of this is given in [28].

L, Stability:

2

Given ¢(t) as defined in (3.4.21), (3.4.23), and ¢(t) as in (3.4.9)

which is rewritten as:

plt-d) = Wy y(t) + ¢7(t-d) (3.4.252)
*
o (t=d) = W Coyp (t) + Wyd(t) (3.4.25)
1., - MR, -d, -d-1 -d-ng_ 1
where N] AC ][A,q ]A,...,q RA,q dB,q By...»q Bl
'd'n - «d e "d-ns *
W, A:c"][-q'dR*,-q’d'1R*,...,-q Rp* ,q~9s* ,q7d Ts* .09 S
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then under Assumption 1 if verified
¥(t) € L, = w(t) e L,
Proof: Define the exponentially weighted signals
Xt o= w7t (3.4.26)
from (3.4.12)
W e = p(0) + [1egllf e - o (3.4.27)

Applying the truncated Lz norm to the exponentially weighted version of

(3.4.24) and noting Assumption 1, using Cpy, = ¥,
1 n
163-ally < vaUllypel 1y + T + volldilly (3.4.28a)
where yé, y; are Lz-gains defined as:

Yoty [uda) 1)

Y2

Y2

(3.4.28b)

volHyL(u2q) "1

using (3.4.13), (3.4.27), (3.4.28)

u-N wﬁ

o0y o¥21 w1 (| ype | 15+ W51 gt g *T 15115

2
Loyl ™ >

since y(t) € L, by assumption y(t) >0 so that for all s >0, N
such that for all N > N,
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therefore

u-Nwﬁ 5_6{0(0)+u—No+[Yé]2||yh :H§+2[Y;l |1d¥||§

+ 2[yé12(u'Nwﬁ+llellﬁ_,)}

Choosing & such that 1-26[Yé]2 > u and applying the Bellman Gronwall

lemma yields:

by 2 TRyl + 26(y ['—"_"‘Z' ]
N ! 2" 1-26(v,)
where the term in brackets is smaller than 1 and the series is convergent

and therefore y(t) e L_.

The above implies that if y(t) € Lz’ Yp(t)s d(t) e L and Assumption 1
holds then ¢(t) e L_ and consequently p(t) e L_. The extension to the

L -stability is shown in [28];*”"*'*~w

3.5 SIMILARITIES OF ALGORITHMS

While proofs of robust stability for the different algorithms for robust
adaptive control by different authors vary, in actual fact the underlying
principles are basically the same. Thus, similarities will be shown in this
section of the normalization signals, dead zones, control objectives and the
projection algorithms used for adaptation. These encourage the author to
derive the stability of these algorithms using the fundamental principles of

Chapter 2 in a simpler fashion; but first the similarities.



57

3.5.1 Normalization

The three examples of normalization signals in discrete-time first

mentioned in Section 3.2 will be repeated here and compared.
(i) N(t) = vo+m(t); v,>0
m(t) = om(t-1) + Ju(t-1)] + |y(t-1)] (3.2.5)

mO) >0; 0<ao, <1

(i1) s(t) = os(t-1) + max{|y(t-1)] + |u(t-d)],s}
(3.2.6)
0<o<1, s>0
(1i1)  p(t) = uo(t-1) + max(|]e(t-d)]|%.0)
(3.2.7)

6>0, 0<u<l, o(t)= (U(t),...ou(t-ng),y(t)s...,y(t-ng))"

A cursory look shows the similarity of approach in each of the three.
Comparing (3.2.5) taken from [27] to (3.2.6) taken from [29], it can be seen

that these two are quite similar since

N(t)

Yo * ogm(t-1) + [u(t-1)| + [y(t-1)] (3.5.1)

and s(t)

os(t-1) + max{|y(t-1)| + |u(t-d)|,s}
os(t=1) + |y(t=1)| + |u(t-d)| + K (3.5.2)

where K represents the upper bound of the difference between [|y(t-1)] +
lu(t-d)|1 and s. The only difference between (3.5.1) and (3.5.2) is the

particular delayed value of the contra] input u(t) used.

Likewise, Tooking at (3.2.7) taken from [28] and comparing it to,say,

(3.2.6) one gets:



s(t) os(t-1) + max{|y(t-1)] + |u(t-d)|,s}

o(t) = wo(t-1) + max(||e(t-d)|]%,0)

but from [31], |u(t-d)| < my + m, max [y(r)]

where m3 <o, My <, 1<1<T
and assuming 0maxT ly(r)] = my <=

<T

then (3.5,3) becomes:
lu(t-d)| < my + mym,
also using the definition of ¢(t-d) above, and [16,31],

[{o(t=d)] | =< n.{mg+max(1,m,)Imax|y(c)|}
where n = dimension of ¢(t).
Substituting (3.5.4) into (3.5.6) it becomes:
[fe(t-d)]| < n {my + [max(1,m,)Im,}

then
s(t)

1A

GS(t“]) + max{[[y(t~1)l + (m3+m4m2)];5}
while

p(t) up(t-1) + max{[n(m3+[max(1,m4)]m2)]2,o}

A
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(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)

(3.5.9)

Although it will appear as if (3.5.9) uses a squared version of the

other two as its normalizing factor, this is not true, as was shown in

Section 3,4 ., Since the actual factor turns out to be the square root of

p(t), i.e, p(tfé that is used. Hence,
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o(t)!

up(t-l))i + max{[n(m3+[max(1,m4)m2)]2,o]}é (3.5.10)

(uo (t-1)) + max{n(my (max (1,mm,y)1, o213 (3.5.11)

| A

and using r(t) a o(t)d, r(t-1) ao(t-1)}, ut = v, r =0}, allows (3.5.11)

to be written in the form:
r(t) < yr(t-1) + max{n(m3+ max(1,m4)]m2),r} (3.5.12)
which is similar to (3.5.8).

3.5.2 Dead Zones

Dead zones are also basically the same as they are all usually functions
of prior information, such as bounds on plant input, output and bounds of the
disturbance amplitude (see [27,31,56]), but the one proposed by Kreisselmeir
and Anderson is a bit different in that it is a relative dead zone. An
example of the more typical dead zone [31,56.,46] is given below which may be

compared with that in Section 3.3 , (see Figure 3.3, next page)
Projection algorithm with dead zone [31]:

Let the disturbance (noise, unmodelled dynamics) be a bounded sequence

w(t) such that suplw(t)| <M,, then the algorithm is:

8(t) = b(t-1) + AL o pyr) o Trea1)3(e-1)1)
c+é (t-1)¢(t-1)
where ?(3°5°]3)
1OAF [y(t)=e" (t-1)8(t-1)| > M,
a(t-1) =
0 otherwise )

Let e(t) = y(t) - ¢' (t-1)e(t-1),c > 0 and 6(0) is given.

The diagram of the above dead zone is shown below, but the slope of this
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is different from that in Figure 3.1 since that is a relative dead zone.

D(e(t))

M e(t)

Figure 3.3

3.5.3 Algorithms and Objectives

Basically the three algorithms (the Basic MRAC, 3.3, 3.4) all have the
same control objective which is mainly the elimination of the tracking error
between the plant and reference model output. Although different error
equations are used, once again they are all derived from the fundamental
error equation in Chapter 2, namely e(t) = y(t)-y,(t). For example, in

Section 3.3 the error equation used is derived from

e(t) = 1/bo Am(z'])[y(t)—ym(t)] (see equation (23) in [27])
and this compares to

e(t) = Cpla™ My(t)-yy(t)]

used in Section 3.4, from-which it can be concluded that these two are merely
filtered versions of the basic error equation given above with the basic

scheme having a filter equal to one.
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The Algorithms

Rewriting equation (3.3.15), using
29l (t) &7 - ¥T(t) g(t - ny(t) = 0,

it becomes

E(t) = W (t-d) O(t) + ny(t) (3.5.14)

using this and the fact that [nmj(t)| < d N(t) (t 2 t;) (see [27]), then
D(E]) which is equation (3.3.18b), can be written as

D(Ey) = a(t)hw (t-d)o(t)/N(t), 0 < a(t) <1 (3.5.15)

This then leads to the adaptive algorithm (3.3.18a) becoming

. a(t)w(t-d)w (t-d)S(t)
} (3.5.16)

é t 1 = |0 t) -
(t+1) { (t) Y+ _V!T(t'd)!‘.(t'd)

(notice the absence of both the normalizing factor and the dead zone),
which is similar to the Basic projection adaptive algorithm defined in

Chapter 2, but which is rewritten and rearranged below for ease of comparison:

178, (t-d) e(t)
1+ ¢ (t-d)é(t-d)

~

6(t) = O(t-d) -

(2.3.13)

Substituting ¢T(t-d)é(t-d) = e(t)/8, for e(t), the above becomes, on

subtracting ©" from both sides: -

6(t-d) - a(t)¢&-d)¢T(t-d)é(t-Q (3.5.17)

o(t
o) 1+ ¢T(t-d)¢(t-d)

where a(t) = 8 /B3 0 < a(t) <2.
o’ Yo -
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This as can be seen is very similar to (3.5.16) above, the differences being
the delayed value of the parameter error vector é(t-d) used in (3.5.17) as

compared to é(t) used in (3.5.16).

Let a(t) =1 and multiply both sides of (3.5.17) by ¢ (t-d) to obtain

$T(t-d)d(t) = ¢ (t-d)o(t-d) - oT(t-d)¢ (t-d)¢T (t-d)8(t-d)
1+ 6 (t-d)o(t-d)

o7 (t-d)8(t-d) (3.5.18)
140" (-d )0 (t-d)

Substituting this into (3.5.17),

O(t) = O(t-d) - ¢(t~d)é" (t-d)O(t) (3.5.19)
This comparable to the Ortega et al algorithm:

O(t) = O(t-d) + F F(t-d)e(t) (3.4.19)
which, using &(t) = ¢1(t-d)(®*-9(t-d)) ; F >0 a scalar, becomes:

o(t) = o(t-d) - F $(t-d)$T(t-d)é(t—d) (3.5.20)

3.5.4 Stability Analysis

Since all the algorithms above can all be expressed in a similar form
then their convergence properties can surely be derived similarly and this
leads to a simplified proof of robust stability. Most of the modifications
mentioned in this chapter are passive modifications [54], except for the
persistency of excitation condition, as a result of which the problem of
robust stability reduces to proving that the regressor vector, i.e. ¢(t) =

Lu(t)s..osu(t-n;),y(t),...,y(t-n,)1 is bounded. Also, u(t), y(t) are
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required to be uniformly bounded. This allows the proof of stability of all
three algorithms used in this work and study to be treated in the same manner.
The proof is now a straightforward use of the principles and theorems used
for the proof of stability of the basic scheme in Chapter 2. As an example,
the robust adaptive algorithm proposed by Kreisselmeier and Anderson is

treated here using the Key Technical Lemma (K.T.L.) defined in Section 2.4.1.

Proof:

In Section 3.3 some properties of the algorithm were given and these
will now be used in the proof of stability. Already it is known that the
parameter vector o(t) is bounded between 9 . and @ while for the

=max’
dead zone DIE(t)]; 1lim D[E,(t)] =0 .
toeo
Using the Key Technical Lemma on

D(E; (t)?)
yptw (t-d)w(t-d)

it is obyious that the first two conditions are satisfied. Thus, all that is
required is to show that the regressor vector w(t-d) is also a bounded

sequence since D(E{(t)) is a bounded sequence as shown in [27].

From the definition of w(t-d) it is possible to show that

|Iw(t=d)|| < pimg + my (max|y,(r)])}

where p is the dimension of w(t-d), 1 <t <t, but yp(t) is a function

of E{(t), which implies that

[lw(t-d)|| < ¢y + ¢, max [Ey(1)]
L 21:@"
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Using {E](t)| < |D(E](t)| + d° (see [60]) in the above equation, it becomes:

|lw(t-d)|]

| A

¢+ 6 max[ID(E1(t)| +d;)

| A

Ky + Ky max |D(E;(t)]

O<K.'<oo, 0<K2<eo

and this implies the linear boundedness of w(t-d).

- - =T -
Similarly for the Ortega et al algorithm, o(t) = o(t-d) + F¢ (t-d)e(t)
with &(t) = o(t) 2e(t); #(t-d) = p(t) 24(t-d) where o(t) is defined as
p(t) = up(t-1) + max(|¢(t-d)]2,p), the algorithm can be rewritten as:

T

o(t) = 6(t-d) +fiuﬁ%}ﬂtl

Noting that p(t) 1is a function of ¢T(t-d)¢(t-d) then the equation becomes:

Fol (t-d)e(t)

0 = 0(t-d
) (t=d) + £Lo! (t-d)o(t-d)}

from which the stability analysis can be obtained using the Key Technical

Lemma,

3.6 MIMO EXTENSION OF THE KREISSELMEIER AND ANDERSON ALGORITHM

From the S.I.S5.0, algorithm and Section 3.5 it can be seen that this
algorithm is quite similar to the Basic algorithm in Chapter 2 except for
the modifications, i.e. the dead zone, normalization and parameter bounds.
This then inspired the derivation of a MIMO version of the robust algorithm
based on the basic MIMO algorithm in Section 2.5 . A generalized form of this

derived robust MIMO algorithm is shown below and an example based on a 2x2
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plant explained. Another work which is in the same direction is in ([40], but

which is based on adaptive regulation.

3.6.1 The Reference Model

This is given by

AZT) g (8) = £(z)By r(t) (3.6.1)

where g(z) = z_dI 3 d=min dij and Am’ Bm are diagonal matrices consist-

ij B
ing of polynomial functions in =z ! of the form:

S |

b, o
An = By = .
. B
L] . mm

! nj

. _1 -ni
Ami = 1+ 3z *... aniz -

-1 i

Bmi = b° + b]z +.00 bmiz

and xm,‘g(t) are the reference model output and input vectors respectively.

For this system n =m, i.e. the output and input vectors are of the same

order.

The Plant

This is assumed to be
Azy(t) = B(z7T)u(t) + () (3.6.2)

where n(t) 1is the disturbance vector (also represents unmodelled dynamics),
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A, B are nxn matrices of polynomial functions, and y(t), u(t), n(t) are

all nx1 vectors.

3.6.2 Structure of the Controller

Defining
v{(t) = [gT(t-l),...,gT(t-n)]
(3.6.3)
vp(t) = Iy (t-1)5e 0.0y (ton)]
then
vi(E) = IeT(8), vI(t), va(t)] (3.6.4)
and
u(t) = ol(t) y(t) (3.6.5)
where
oT(t) = lof(t), o](t), og(t)] (3.6.6)
0qs O1» O are nxn matrices,
The Adaptive Algorithm
As in Section 3.3 define wu(t) as
Toey = pep-le N T Teey oI
wi(t) = [(By e "(2)An(z " Qy(t)) »vq(t),vp(t)] (3.6.7)
Let  E(t) = o (t)w(t-d) - o (t-d)v(t-d) (3.6.8)
Define
mi(t) = ogmy(t=1) + Ju;(t=1)] + |y;(t-1)] (3.6.9)

oo € (0,1)

and
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Ny(t) = 3 Y > 0 (3.6.10)
Yo+mn(t)
then  E(t) = N7 (t)E(t) (3.6.11)
and the algorithm is given by:
T T N(E)D(Ey () (t-d)
o (t+1) = o (t) - T (3.6.12a)
YW (t-d)w(t-d)
where
D(E,(t)) = D E11(t) 3 D(Ejy) = 0 if IEi]l f.doi
5 Ejmdoi 1T Ejy > doy
E,q(t) Ejitdoi 1 Ejp < do;
and (3.6.12b)
- . min _ a a
0;5(t41) = [ 8;5(t+1) if og;" < 8;5(tH1) < e?jx
min . min
04 if %5 < 9 (3.6.12¢)
max .. 0 max
Again, as in [27], it can be shown that
DIE (t)] = a(t)N]' (£)8 (t)w(t-d) (3.6.13)

where &(t) = o(t) - e" ;

0 <

a(t) <1

and this leads to (3.6.12a) becoming, on subtracting o from both sides,

oT(t+1) = o(t) -

a ()8 (t)w(t-d)w (t-d)

ypu! (t=d)w(t-d)

(3.6.14)
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This is similar to equation (2.6.21) in Section 2.6, and the proof of
stability can be treated in a similar manner. The use of w(t) as the
regressor vector leads to a reduction in the number of adaptive parameters,
as will be shown now for a 2x2 system, This was discovered accidentally
during experiments conducted in Chapter 4 (see Figures 4.21 a,b) and it
was this which encouraged the derivation of the above algorithm theoretically

from which the reduction in parameters was also shown to be correct.

3.6.3 Example, 2x2 Plant

The reference model will be:

I N A b

2

with Ami,Bm as defined in Section 3.6.1 .

0]

i
The plant is assumed to be A(z‘])x(t) = B(z'1)g(t) + n(t), where

A,B are 2x2 matrices and y, u(t) are 2x1 vectors as defined earlier.

The control input is given by u(t) = eT(t)x(t) (3.6.5).

Assuming n = 1

VIE) = Irp(), rp(t)s up (1), up(t=1), ¥y (t=1), y,p(t-1)]
and  ©'(t) = [og(t), o1(t), op(t)]

where 0599110, are 2x2 matrices implying that eT(t) = 2x6 matrix; but

using the definition of o = [e;, e;, e;], oF

o is proportional to Bm’

i.e,

which implies that e;z 0;] =0 .
L]
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The above leads to the conclusion that setting 012 = 0 and 991 will lead
to convergence. More details about this will be given in the next chapter,

but as of now this leads to

oty = | 2117 00 O13 P1a Crse Ot ]
L 05 999» @335 9245 9255 O

[ o115 0135 140 9150 ©p ]
[ ©225 9935 B4 9255 O

which is a reduction in parameters by two terms.

3.7 ROBUSTNESS OF THE BASIC MIMO MRAC SCHEME

Just as the similarities in the basic MRAC (SISO) scheme and the robust
adaptive scheme in [27] led to the derivation of the robust MIMO adaptive
scheme proposed in Section 3.6. This also implies that the passive
modifications used for robustness can be easily applied to the Basic MIMO
MRAC scheme, to give it robust stability properties. Goodwin and Sin in [31]
recommended the use of some of these modifications, i.e. dead zone, parameter
bounds, but not together as it is proposed here. The differences between the
modified basic MRAC scheme suggested below and that in Section 3.6 consists
of the use of a different error function and regressor vector (although these

have some common elements) compared to that in Section 3.6 .

3.7.1 The Modified Basic MRAC Algorithm (MIMO version)

The modified Basic (MIMO) MRAC algorithm is simply stated below, but not
proved since the passive modifications made do not alter the proofs already

given in Chapter 2.
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T
8T(ted) = ol (t) - R RIe(trd)ie (t) (3.7.1a)
1+ ¢ (t)e(t)
where
e](t+d])
e(t+d) = 5 s e(t) = yi(t)-ypi(t)
em(t+dm)
B(t) = [y (£)my (81)0eennmT (8-1),muT (£-2) ..oy (14))
P = matrix of real constants specified a prioni
0 if ey (t+ds)| < Mg
Dles(t+d;)) = | ej(tedy)+aM,  if eg(ted;) < M (3.7.1b)

and Mg s an upper bound on the amplitude of the system disturbance,

By5(trd)  if oMM < B, . (t+d) < TN

ij iJ ij
0;5(t+d) = ?}n i éij(t+d) . e?}" (3.7.1¢)
0% if 8;5(t+d) > of3"
Also, the control law is given by
u(t) = ol (t)o(t) (3.7.2)

3.8 COMMENTS

(i) As was shown in this chapter, the three algorithms which will be used
in Part II, the applications section of this work, are quite similar
in composition and nature, These algorithms are those mentioned in
Chapter 2 for both SISO and MIMO systems, plus those of Sections 3.3,
3.4 . Apart from the modifications required for robust stability, it
can be seen from 3.5 that the fundamental principles are basically the

same, the differences being, say, the particular delayed value of a



(1)

"

parameter to use, i.e. o(t), o(t-1) or o(t-d), but this does not
matter much as these vectors tend to become similar and constant as

time goes by, e.g.

lim [le(t) - o(t-1)|]] < O
tim [fo(t) - o(t-d)|| < O
- 1tim |lo(t-1) - o(t-d)|] < 0

which implies that as t » », then o(t) = o(t-1) = o(t-d).
Thus, choice of time delayed value used has no lasting effect on

convergence properties.

The only algorithm which, although having the same fundamental
principles as the others, appears to differ is the Kreisselmeier and
Anderson algorithm. This is due to the composition of its regressor
vector w(t) and error function E(t). But the differences are not
that significant since (a) the regressor vector has common terms with
those of the others, but has a term (1/bm) szm(z'])y(t) which is
different from the others which usually have the term as either r(t)
or y.(t). The term (1/b;) szm(z'])x(t) will be a function, or be
proportional to, r(t) provided y(t) is tracking ym(t), since
r(t) = (17b) 2% (27 )y, (t), hence (1/b)2% (27 )y(t) = r(t) ;
(b) E(t) for this algorithm is known as the identification error and

it is defined as:

E(t) = w (t-d)o(t) - v' (t-d)o(t-d)

(1/b30, (1A (2 ) Iy(t)-y, (£)1+v" (t-d)le(t)-6(t-d)]

A look at the first term on the R.H.S. of the above shows it to be a
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Sort of filtered output tracking error (e(t) = y(t)-ym(t)), i.e.
C.Ly(t)-y,(t)] where C = (1/b )0 (t)A )z™'), while the second term
appears to be a form of input error, since u(t-d) = vT(t-d)e(t-d) the
input d steps back and vT(t-d)e(t) can be said to be a form of

a posterdioni input. This as time goes on becomes zero and reduces E(t)
to a filtered tracking error; but in general one can say E(t) is a
combination of a filtered tracking error and a form of input error.

Again this is not so different when compared to the other schemes.

Although the basic MRAC algorithm has no passive modifications, it
should not be forgotten that persistency of excitation also makes an
algorithm robust. As mentioned earlier, a step input signal is
persistently exciting if just of order one and, as stated earlier,
provided parameter identification is not of real importance then (see
[57]) unmodelled dynamics would not cause any difficulties if the
frequency of the reference signal is sufficiently low and it has a
large enough magnitude to overcome destabilizing effects of these. In
the following chapters these will be seen to be true from the results

obtained using the basic algorithms.
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Chapter 4

THE COUPLED HYDRAULIC TANKS

4.1 INTRODUCTION

Fluid flow and fluid level control problems arise in a 1ot of fluid
dependent systems. Fluid level control is a basic and important problem in

automatic control, with applications to diverse systems such as:

(1) Power generation plants where fluid level and flow control are
essential in the operation of boilers, a vital part of steam
generation for electricity production or level water in dams for the

production of electricity by hydroelectric generation.

(ii) Water resources systems, water distribution networks which also
involve in some cases water levels in dams, reservoirs and tanks for
efficient and reliable distribution of water to consumers, or even

water treatment plants.

(iii) Sewer control systems using detention reservoirs for treatment of

sewage, and lastly

(iv) Chemical process industries which vary from oil to sugar production
in which the control of fluid levels in storage tanks, chemical

blending and reaction vessels is crucial.

Coup]éd hydraulic tanks is a common form of the problems involved in the
above systems. Typical examples of these fluid levels control are ones in-
which it is required to supply fluid to a chemical reactor at a constant
rate QA, to which end a reservoir or hold-up tank may be used with the
dual aim of smoothing variations out of the upstream supply flow Qi and

also ensuring a temporary reactant supply should there be failure of supply
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from the source (i.e. upstream of the hold-up tank), Figure 4.la, or one in
which the fluid of the second tank (see Figure 4.1b) is required to be held
at a constant level H (and thus its total fluid volume), hence the output

of this tank will be a product flowing out at a constant flow rate.

Although the dynamical properties of fluid level systems are well
known, and relatively straightforward, some difficulties exist in terms of
lengthy time constants and nonlinearity of the system as a whole. Also, as
in some other physical processes, fluid level control of the coupled tanks
needs to function at different numbers of process operating points. The
parameters of the linearised process model on which the closed-100p system
is based usually assume such a wide range of values during process
operations that sometimes a single fixed parameter control system proves
inadequate to control the process. As a result of the above, the use of
adaptive controllers in solving these problems will be quite advantageous
and will be more efficient than the classical methods of proportional,
proportional plus integral or even proportional plus integral plus derivative
where logic switching between several fixed parameter controls might have

occurred.

There are two different versions of the rig that were used for the
experiments conducted, namely the MIMO version, consisting of two inputs,
two outputs, and the SISO rig which consists of a single input, single

output. A brief description of these two versions now follows.

4.2 DESCRIPTION OF RIGS

4,2.1 The SISO Tanks

The Single -Input/Single Output system consists [62] of two hold-up tanks
(Figure 4.2) which are coupled by an orifice. The coupled tanks apparatus is

a transparent perspex container measuring 20 cm in length, 10 cm in width and



75

1§

|

Figure 4.,la

Qout

Figure 4,1b
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30 cm in height. A centre partition is used to divide the container into
two equal tanks. Flow between the tanks is by means of a series of holes
drilled at the base of the partition. The holes are situated 2.5 cm above
the base of the tanks and have diameters 1,27 cm, 0.95 cm, 0.635 cm, 0.317 cm.
These holes constitute the orifice between the tanks. The size of the
orifice (and hence the degree of coupling between the tanks) is varied by
plugging and unplugging the holes, using the bungs provided. With all the
bungs removed the apparatus can be considered to be one big tank and thus a
first order system, On the other hand, with the largest three holes plugged,
the remaining hole allows only a weak interaction between the fluid levels
in the two separate tanks. In this case the apparatus constitutes a second

order system,

The input is through a variable speed pump which supplies water to the
first tank. Thus water is pumped from a reservoir into the first tank by
the variable speed pump which is driven by an electric motor. The orifice
allows the water to flow into the second tank and hence out again to the
reservoir. The actual flow rate is measured by a flow meter (see Figure
4,3) which is in the flow line between the pump and tank 1., The depth of
fluid is measured using parallel rod depth sensors stationed in the second
of the tanks. The electrical resistance across this device varies with the
water level in the tank. Changes in resistance are detected and produce an

electrical signal which 1s proportional to the height of water in the tank.

The water which flows into tank 2 is allowed to drain out through an
adjustable tap, and the entire assembly is mounted on a large tray which also
forms the supply reservoir for the pump. Fully open, the drain tap has a
diameter of 0.635 cm. There is an instrumentation box inside which the
motor drive and depth sensor signals are processed, Calibrations inside
the instrumentation box are such that the pump motor may be driven by

voltages between O and 10 volts applied to the pump drive socket. Likewise
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the depth sensor outputs read from the box range in value between 0 and

10 volts.

The depth sensing is prone to noise, and to remove this filters are

provided which may be switched in and out of circuit as required.

\

4.2.2 The MIMO Tanks

The multivariable tank is similar in its description to that of the
scalar system except for some additional items, such as (see Figure 4.4)
an extra pump, motor and flow meter for tank 2, plus an adjustable drain
tap which is fitted to tank 1. Also there is a bigger instrumentation box

for the multivariable rig,

For the two rigs described above the pump motor drives were derived

from the B.B.C, microcomputer used,

4.3 "THE SYSTEM CHARACTERISTICS AND MODEL DERIVATIONS

4.3.1 System Calibration Characteristics

Although the basic control problem is the control of the fluid level in
one of the tanks (SISO case) or control of both fluid levels in the two tanks
for the MIMO system; there is a need to know the characteristics of the rigs
to be used; especially as the pump flow and fluid heights are converted to
input and output voltages respectively by means of transducers in the

instrumentation box.

Using physical measurements of the input voltages and flow rates, the
output voltages and fluid heights, the input and output system calibrations
and characteristic curves were obtained, Shown in Figures 4.5a, 4.5b are the
SISO plots of (i) flow rate Qi against inpuf voltage Vi and (ii) output

voltage V2 against water level H2 which depict the pump characteristic
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and depth sensor calibration of the laboratory rig, respectively. Figures

4.6a-d show the pump and depth sensor calibration of the MIMO laboratory rig.

Passibly due to drifts in the transducers it was observed that the
characteristics do not stay constant, and that if readings were taken at
different times, say days, there would be noticeable differences in the
plots. Examples of these differences are as shown in Figure 4.5a for the
pump characteristics and Figures 4.6b,d for the depth sensor calibration
curves of the MIMO tank. Also apparent is the nonlinearity of the plots
with the worst examples being the three depth sensor calibration curves
for both rigs. Another reason given for this is the fact that the trans-
ducers are affected by the dirt content of the water used and possibly the

ambient temperature,

4.3.2 The SISO Model Derivation

The dynamical equations of the system are derived by taking flow

balances about each tank. Using Figure 4.2, for the first tank:

Rate of change of fluid volume in tank 1:

.dV} dH-l
Q'i ‘Q] =dc - Aa-r (4.3.])
where V] = volume of fluid in tank 1

H] = height of fluid in tank 1
A = cross-sectional area of tank 1
Q1 = flow rate of fluid from tank 1 to tank 2

Qi = pump flow rate.
Similarly for tank 2:

dv, dH
% -Q = g+ = Age (4.3.2)
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where V2 = volume of fluid in tank 2
H2 = the fluid height in tank 2
QO = .flow rate of fluid out of tank 2.

If the inter-tank holes and the drain tap are assumed to behave 1ike
orifices then the following equations arise from characteristic relationships

for orifices:

Q = ch ay v2g(Hy-H,) (4.3.3)
Q = cq, 2 Y29(HyH3) (3.3.4)
where Cd]'cd = discharge coefficients (0.6 for a sharp orifice)
2
H3 = height of drain tap
g = gravitational constant
ay = cross-sectional area of orifice between tanks 1 and 2
a, = cross-sectional area of orifice on tank 2's tap.

Equations (4.3.1) to (4.3.4) describe the system dynamics in their
nonlinear form. For control systems studies the equations are linearised by
considering small variations q; in Qi’ q, in Ql’ % in Qo, h, in Hy and

hZ in H2 . Thus the equations become:

dh,
Age = 95 - Khyhy)
4.3.5
o, (4.3.5)
Age = Kilmrhg) - Kohy
where oy oy
cd]a1 /29 cdza2 v2g
K = ——— ; K, = (4.3.6)

2/Hy =H, 2/H,-H,

Rearranging equation (4,3.5) and using ﬁ = dh/dt, one gets the

following state space model:
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-K]/A K]/A h] 1/A
+ q; (4.3.7)
Ki/A  =(Ky+Kp)/A S hy 0

hy
Thus, taking the Laplace transform of the above, the transfer function is

obtained as:

hy(s) /K

2 - — gt (4.3.8a)
GUS) (/K Ky)s% (A (2K +Ky ) 7K Ky )4
17K, .
. 4.3.8b
(sT1+1)(sT2+l)
where A2 A(2Ky4K,)

T]Tz = 'K.l"KZ' H T]“‘Tz = —'—'R“R‘—‘—‘] 2 (4c3-8C)

The values of Kl and K2 can be calculated using static experiments, i.e.
steady state operating levels, when dH]/dt = dHa/dt = 0 which means
Qi = Q] = QO . Thus, if the flow Qi is measurable (which it is by the

flow meter); then:

| 2 (4.3.9)
o i

Cq 8, ¥23 = ———

dZ 2 4E;q£;

from which K],K2 are then derived.

The above equations show that the rig is a second order system; but the
removal of all the bungs between the two tanks, however, reduces the model
of the apparatus to a first order system. This can easily be proved once

Ky becomes infinity and equation (4.3.8a) reduces to:

hy(s) 17K,
m=m' whereT--Kg
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As mentioned earlier, at different operating points the system dynamics
alter and thus the system model as well. Examples of the different system

equations for different operating points are shown below.

MODEL A:
Q_i = IOOOCC/min. H3 = Z.SCm, H2 = 5.0 cm, H-' = 6.70‘“
V2 . 4,7035x107% _ 2.7035x107%
Vi $%40.0657540,0004085  (s+0.126)(s+0.00536)

MODEL B:

Qi = 2000cc/min, H3 = 2.5cm, H2 = 10.lcm, H1 = 15.4cm

V2 __3.0692x107" _ ___3.0692x107%
i $°40,04175+0.000169  (5+0.0372)(s+0.0046)

=

In [63] the relationship between the operating fluid heights and time

constants is shown to be:

T, = (Hy-Hy)'/2

T, = (H,)'/2

4.3,3 The MIMO Model Derivation

In a similar manner to the S.1,S.0. rig derivation the multivariable

tanks system results in the following state-~space model using Figure 4.4:

{ hy ] _ (-(K1+K3)/A Ky/A ][ hy J . { 1A 0 ]{ %1 )
hy K;/A ~(Ky+Kp)/A ) b, o 1A J{ as, J.
(4.3.10a)

where A,’K1,K2 are as defined in Section 4.3.2 and
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cdza2 V29

S (4.3.10b)
ZVHt‘ ‘”3

K3 =

The transfer function matrix relating the inputs qi](s), qiz(s) to

the outputs h](s), hz(s) is found directly from the above equation as

K1+K3 '
hy (s) L st Ky/A 41 (s)
ho(s) Ky/A, s + —x— J{ 945(s)
where
K]+K3
As = determinant of S+ —x— -Ki/A

(4.3.11b)
K.|+K2 ‘

-K]/A s + —x—
The block diagram of the multivariable coupled tanks is shown in
Figure 4.4b. From the above it is seen that the coupling between the two
tank outputs is determined by the coefficient K], which also determines
the influence of both inputs as well. Equation (4.6) shows that K, is
proportional to 2, the cross-sectional area of the orifice between the
two tanks. When all the holes between the tanks are plugged, the two tanks

become two independent first-order systems as K] becomes zero,

4.4 MODEL REFERENCE ADAPTIVE CONTROL OF THE TANKS

4.4.1 Introduction

Basically, during most of the control experiments conducted on the tanks,
an intentional undermodelled reference model was used, i.e, a first-order
reference model, The main reason for this was to allow the study of the
robustness properties of the various algorithms to mismodelling. The first

to be discussed will be the SISO coupled tanks.
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4.4.2 SISO Tanks
Key to the Programs (see Appendix C):

The adaptive parameters:

o(t) = [0g(t),0,(t),04(t)) = [Y(11),Y(12),Y(13)]
The control input:

u(t) = Y(6) u(t=1) = Y(7)
The reference input:

R(t) = R
The reference output:

Yult) = Y(4), Yp(t-1) = Y(19)
The system output:

yp(t) = ¥s, Yp(t-1) = ¥(5)
The tracking error:

e(t) = Y(9), e(t-1) = Y(10)

Three different reference models were used for the experiments based on
the three algorithms which have been discussed in the previous chapters. The
first two were first-order models while the third was a second-order
reference model, The first model was intentionally fast as the main
concern was the convergence time of both the reference and system outputs,
while the second model was much slower to allow observations of how well the
three different algorithms control the system output tracking of the

reference model output.
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The three models are:

0.375

() w0375
(1) 53005
(ii4) . 0.000025

s“+0.006s+0.000025

This also allows the use of different reference time constants, especially
as the plant time constants vary from as small as 2.75 seconds to as high as,

say, 500 seconds,

Due to the undermodelling and the use of a zero-order hold (Z.0.H.)
there are three adaptive parameters used asn=1, m=1,d =1, The
sampling period was chosen as Ts = 4,0 seconds, while a time delay of one

sampling interval was assumed,

Control Hardware and Software:

The output voltage representing the tank output was the input to the
BBC computer used for the schemes and the control input derived from the
computer used to drive the puﬁp. As mentioned earlier, the analogue to
digital (A/D) converter used had a zero-order-hold embedded in it, while
the software for the algorithms was written in BASIC., A listing of these
programs can be seen in the Appendix C. The results were first stored on
floppy discs before being plotted using a Rikadenki plotter in the laboratory

for better result presentation,
Real~Time Control Experiments (the Results):

Using the sampling period of four seconds the reference models were

converted to discrete-time transfer functions used in the programs on the
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BBC microcomputer. The real time control on-line of the tanks using the
different models and algorithms plus their results are now explained and

shown graphically.
(i) Model 1: y.(t) = 0.776€698r(t) + 0.2231301ym(t-1) ; R = 3.0V

A series of experiments were conducted using the three different
algorithms already mentioned in the previous chapters. For the Goodwin
algorithm (Basic MRAC) the initial parameter vector was P = [0, O, 0],
while for the Ortega et al algorithm it was P = [0.1, 0.1, 0.1], and for
the Kresselmeier and Anderson algorithm it was also P = [0.1, 0.1, 0.1].

The results of the runs are shown in the following pages as follows:

(a) The Goodwin algorithm: Figure 4.7a shows the Reference and System
outputs; Figure 4.7b the Control input, while Figure 4.7c shows the

adaptive parameters.

(b) The Ortega et al algorithm: the results of this run are depicted
in Figure 4.8a showing the Reference and System outputs; Figure

4.8b the Control input, and Figure 4.8c the adaptive parameters.

(c) The Kreisselmeier-Anderson algorithm: Figure 4.9a shows the
Reference and System outputs; Figure 4.9b the Control input and

Figure 4.9¢c the adaptive parameters.

By varying the adaptive gains of the Goodwin or Ortega et al algorithms
the convergence time of the system output to the reference model output could
be shortened, but unfortunately this leads to an increase in the amount of
overshoot, Figure 4,10 shows the effect of tripling the adaptive gain value

for the Goodwin algorithm as compared to Figure 4.7a.

As mentioned earlier in Chapter 3, by varying the value of w e (0,1) in
the normalization factor equation (3.4.12) for the Ortega et al algorithm it

can be made to be either more robust or alert, depending on its value. The
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lower it is the more alert it becomes. This is shown by comparison of

Figures 4.11a and b where u = 0.75 and u = 0.15 respectively.
(ii) Model 2: ym(t) = 0.0198013r(t) + 0.9801986yh(t-l) ; R =4,0Volts

Using this model the basic idea was to observe the tracking abilities of
the different algorithms and also look at the control inputs and adaptive
parameters. As before, the experiments start off with (a) the Goodwin
algorithm, with Figures 4.12a,b,c showing the Reference and System outputs,
the Control input and the adaptive parameters, respectively. An adaptive
gain of 0.12 was used; (b) the Ortega et al algorithm; the results are
shown in Figure 4.13a for the Reference and System outputs; Figure 4.13b
the Control input, and lastly in Figure 4.13c the adaptive parameters.

(c) Similar results for the Kreisselmeier and Anderson algorithm are shown in
Figures 4.14a,b,c for the Reference and System outputs, the Control input and

the adaptive parameters respectively,
(iii) Model 3: y,(t) = 0.000413r(t-1) + 1,97589y, (t-1) - 0.9763y,(t-2)

Owing to hardware limitations, i.e, available memory on the BBC micro,
the plots of all the adaptive parameters could not be obtained, thus the
first adaptive parameter Y(11) was plotted for the two algorithms used.
These were the Goodwin and the Ortega et al algorithms. The absence of the
Kreisselmeier and Anderson algorithm is based on its structure, where the
reference model order is the same as that of the system delay, which in this
case is one. Since the reference model used was a second-order system there
was need for a longer period df time for the experimental run so as to allow
adequate tracking and convergence observations, but the sampling period of

four seconds still remained.

(a) The results of the Goodwin algorithm run are shown in Figure 4.15a
which depicts the System and Reference outputs and Figure 4.15b which

shows the control input and an adaptive parameter,
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(b) The Ortega et al algorithm results are shown in Figures 4.15¢ and d
respectively, with the Reference and System outputs shown in Figure
4.15c, while the Control input and the adaptive parameter are shown in

Figure 4.15d.

4.,4,3 The MIMO Tanks

Key to the Programs:

yi(t) = Y(1) 5 y(t-1) = Y(2)
Yp(t) = Y(3),  yp(t-1) = Y(4)
up(t) = Y(47)s  uy(t-1) = Y(5) , uy(t-2) = Y(6)
u,(t) = Y(48), uy(t-1) = Y(7) , uy(t-2) = Y(8)
Yoy(t) = Y(9) 5 ypu(t-1) = Y(10),  y (t-2) = Y(65)

Ypp(8) = YQT), (1) = Y(18),  ypp(t-2) = ¥(66)

e (t) = Y(19)

e,(t) = Y(20)

Piy = Y(27), Py, = Y(28), Py = Y(37), P,, = Y(38)
o(t) =

[[017(t) ©75(t) ©y3(t) 0y4(t) oy5(t) oy4(t) ]
L 0p1(t) 0p5(t) 653(t) 05(t) 055(t) ©pe(t)

= [ Y(11) Y(12) Y(I13) Y(14) Y(15) Y(16) ]
L Y(21) Y(22) Y(23) Y(24) Y(25) Y(26)

For the MIMO tanks, three algorithms were used for the experiments
carried out, The first was the Basic MIMO scheme based on the Goodwin
algorithm, the second was the derived MIMO Kreisselmeier and Anderson aigorithm
of Section 3.6, while the third was a modified Goodwin algorithm mentioned
in Section 3.7.1 . The reference models used were first-order systems with
the coupling between the tanks acting as disturbances to the two tank outputs.
Because the coupling of say input one to output two is second-order, a

second order reference model was also used just for completeness.
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The Real time control experiments (and results):

Due to the faster time responses of the multivariable tanks, a sampling
period Ts of three seconds was used for all the experiments, and a time
delay of one period assumed. The control objective was to independently
control the water level in each tank of the coupled multivariable system by
setting different voltages (and hence heights of water) for the two tanks.
The coupling between the tanks is determined by the size of the orifice
between them. Most of the work was done using a single hole with diameter
0.317 cm, but a few were done using two holes, with the additional orifice
having a diameter of 0.635 cm. Unless otherwise stated, the results given

here should be assumed to be for a single hole.

For each tank there were six adaptive parameters for an assumed first
order transfer function with a zero order hold D/A converter, Unfortunately
the results of only the tank outputs, the reference model outputs and the

control inputs can be shown due to memory 1limitations of the hardware used.

The details of the results now follow, starting with the MIMO Goodwin
algorithm,

(a) The MIMO Goodwin algorithm
(i) Model A for tanks 1,2

Ypp(t) = 0.2231301y o (t-1) + 0.7768698r{(t); R = 5.0V
Ymp(t) = 0.2231301y,,(t-1) + 0.7768698r,(t); RI = 3.0V

Using various P-matrix structures, investigations were carried out into
the effects of this on the control a]gorithm. Of interest was whether a
diagonal P-matrix would suffice or whether a full 2x2 matrix was needed.

The results of the various combinations are shown in Figures 4.16a,b,c.
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For Figure 4.16a P = [0.12 0 ] was used.
0 0.12
For Figure 4.16b P = (0.12 0.04 ) was used.
| 0.04 0.12
For Figure 4.16¢c P = (0.12 -0.04 was used.
-0.04 0.12

From the results the best P-matrix all round would be that for Figure 4.16¢c
which combines a lower overshoot relatively with the others with a fast
convergence time; but for simplicity the diagonal P-matrix was chosen,
although it had a higher overshoot it was faster in converging its system

output to the desired reference output. Using a diagonal P-matrix and

P = (004 O ]
0 0.04

a reduction in overshoot results but at the expense of having a slower

smaller gains, i.e.

convergence time compared with Figure 4.16a.

The effects of increasing the orifice size, and hence the coupling
between the tanks, were also investigated, The results in Figure 4.18 show
that using the same diagonal matrix as in Figure 4.16a the convergence time
had increased for both tanks, but the overshoot for tank 1 was reduced while

that of tank 2 had increased due to the extra coupling between them.

(11) Model B for tanks 1,2 ¥ (t) = 0,9802y,(t-1) + 0.0198r (t); R
Yo (t) = 0.9802y,,(t-1) + 0.0198r,(t); RI

5.0v
3.0v

The results of this, using a diagonal P-matrix, are shown in Figure 4,19,
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(iii) Model C for tanks 1, 2

These are second-order reference models of which there are three of

them. The results for the three models used are shown in:

Figure 4.20a using y_o(t) = 0.000303r,(t-1) + 1.98186y,,(t-1) - 0.98216y, . (t-2)
Ypp(t) = 0.000303r,(t-1) + 1.98186y,,(t=1) = 0.98216y,,(t-2)
R = 5.0V, RI = 3.0V

Figure 4.20b using y o (t) = 0.000413r; (t-1) + 1.97589y,, (t-1) - 0.9763y, (t-2)
Yyp(t) = 0.000413r,(t=1) + 1.97589y,,(t-1) - 0.9763u ,(t-2)
R =4.0V, RI = 3.0V

Figure 4,20c using the same model as in Figure 4.20b with R = 3,0V, RI = 5,0V,

(b) The Extended Xreisselmeier and Anderson algorithm

Initially, when the Kreiss€lmeier and Anderson scheme was first extended,
it was based on the MIMO Goodwin algorithm without any theoretical facts or
proofs. Based on this, six adaptive parameters per tank were used as in the
MIMO Goodwin, but during the experiments the two tank outputs were found not
to be converging to the desired reference outputs. The results in Figure
4 .21a show that there was some form of tracking though. Going back and using
a theoretical approach (see Section 3,6) it was found that two of the adaptive
parameters, namely 015 and 0,1 Were zero in value. Subsequent experiments
without these parameters, see Figure 4.21b, later proved this with the
reduction if not virtuq1 elimination of the offsets. The reference models

used for the tanks were:

(i) Tank 1 Ym () = 0.7768698r1(t) + 0.2231301ym](t—1); R
Tank 2y, »(t) = 0.7768698r,(t) + 0.2231301ym2(t-1); RI

5.0V
3.0v

The importance of smaller dead zones is reflected by comparing the results

shown in Figures 4,22a and b, where two different dead zones were used.
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Figure 4.22a shows the results obtained using do = 0.5, the computed value
for tank 1, and do = 0.4 for tank 2, For Figure 4.22b a reduced dead zone
was used with do = 0,05 for both tanks. Comparisons show how greatly reduced
the tracking error value was, with better tracking and convergence of the

outputs.

5.0V

(i) Model By .(t) = 0.9082y ,(t-1) + 0.0198r,(t) ; R

Yyp(t) = 0.9082y,,(t-1) + 0.0198r,(t) ; RI = 3.0V

The result of using the above model is shown in Figure 4.23, where the graphs

are those of the reference outputs, system outputs and the control inputs.

(¢) The Modified MIMO Goodwin algorithm

A few experiments were carried out using this algorithm, The first
experiment was made without bounds on the adaptive parameters (see Figure
4.24a) so as to have a rough idea of the minimum and maximum values of these
parameters., The same model, Model A, as in the previous algorithms was used.
Using the knowledge gained from this, the bounds were placed on the
parameters and the experiment repeated. The result, shown in Figure 4.24b,
shows the reduction in the amount of overshoot compared to the earlier

figure.

4.4.4 More Robust Considerations

Apart from investigating the robustness of the algorithms to under-
modelling and mismodelling, some other results were obtained for reference
input changes on-line., Also introduced were disturbances to check whether
the algorithms might not cope with these and hence throw the system into

instability.

The test results shown in this section are for the multivariable algorithms

for which the reference models are first-order systems. The same model
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Yp(t) = 0.7768698 r(t) + 0.2231301 ym(t-l) is used for both tanks and for
all tests carried out. Figure 4.25a shows the result of changing the set

points for tank 1 from 5.0 volts to 3.0 volts and tank 2 from 3.0 volts to
4.0 volts, using the MIMO Goodwin algorithm, while Figure 4.25b shows that
of the extended Kresselmeier and Anderson algorithm, changing the setpoints

of tank 1 from 3.0 volts to 5.0 volts and tank 2 from 5.0 volts to 3.0 volts.

Testing the robustness of the algorithms against external disturbances
involved closing the taps on both tanks fully for varying time intervals and
opening them again, or keeping the taps half-closed and observing what
happens.

In Figure 4.26a, using the Goodwin algorithm, the tap on tank 1 was
closed for three sampling periods at 161, while after allowing for the system
to settle down at 267 both taps on the tanks were half-closed, In Figure
4.26b, using the same algorithm still, the tap on tank 2 was closed for
three sampling periods at 150, while the tap on tank 1 was closed for a
sampling period at 267, Using the extended Kresselmeier and Anderson
in Figure 4.26c, the tap on tank 2 was closed for two sampling periods at
177, while the tap on tank 1 was closed first at 250 for three sampling

periods and then again at 304 for eight sampling periods,

4.5 COMMENTS

(i) A lot of problems were confronted during the implementation of these
algorithms on the two rigs, The most recurring problem was that of the

characteristics of the depth sensor which were found to be varying from day

to day during the research work (see Figures 4.6b,d for examples), This

leads to having different results for the same models at different times.

By this it is meant that while in all cases the tracking error ultimately

reduces to zero, the time taken and the peak overshoots for the same

reference outputs were not the same., In a way this shows how suited the
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coupled tanks were to model reference adaptive control since the outputs can

always be kept the same irrespective of the changes.

Another problem was that of quantization due to the A/D and D/A converters
used. For example, in discretization 0 - 255 is equivalent to 0 - 10 volts,
which means 1 = 0.04 volts, but 0,04 volts on the tanks' depth sensor could

be equivalent to 1mim and hence makes convergence more difficult.

(ii) Fast reference models were used in most cases because it was the final

output tracking that the author felt was of importance here, especially
bearing in mind that for processes like those mentioned in Section 4,1 it is
usually the aim to have the system output at a particular height irrespective
of disturbances, say, but for completeness slow reference models were also

investigated,

(iii) Although this is just one system and hence statements about comparisons
of the different algorithms cannot be generalized from these results,
some of the interesting points observed during the experiments cannot but be
mentioned. In particular the Goodwin algorithm proved quite robust as it
compared favourably with the other two algorithms which were implicitly
designed for robustness. Probably the reason for this is the fact that even
though some experiments were carried out with reduced order models (i.e, first
order systems), the coupled tanks while being a second order system could be
approximated by first order models, For example, observing the roots of
the transfer functions in Section 4.,4.2, it can be seen that the two transfer
functions each have a dominant root which can approximate the system model,
while in the case of the MIMO tanks it is the interactions that have second

order transfer functions.

A particular disadvantage of the Kreisselmeier and Anderson algorithm
it was felt was the lack of adaptive gains, unlike the other two which could

be used to speed up the adaptation especially nearer to the desired reference
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outputs. A way of getting round this though is by setting bigger parameters
bounds, but this causes bigger overshoots while not necessarily solving the

problem.

Also discovered was that the MIMO Goodwin coped better with the

quantization error than the derived MIMO Kreisselmeier and Anderson algorithm.

(iv) In conclusion, three different versions of the model reference adaptive
control scheme have been successfully employed to control the height of

fluid in the tanks at different levels, The experimental results indicate the

benefits gained from using M.R.A.C. for this type of system, as the set

points could be changed on-line as well, It is felt that the robustness

properties of these algorithms to mismodelling and disturbances have been

shown.
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Figure 4.15 (a) The Reference and System Outputs for the Goodwin et al
algorithm for a second-order ref. model.
(b) The Control Input u(t) and the adaptive parameters 6(t).
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algorithm for a second-order ref. model.

(c) The Reference and System Outputs for the Ortega et al

(d) The Control Input u(t) and the adaptive parameters 8(t).
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TANK 0/P2
v/ e el v
EEE (/P2
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7.21 : -
5.“"
T W‘M e
> + ﬁ_ - RO OO X —w——
A’//’___\\\~_i CTRL 1/P!
CTRL 1/P2

8 60 . 180 " 240 T =3.0s 400
(b) using 5 adaptive parameters per tank- No. of samp1é8 T,
Figure 4.21 The Reference and System Outputs plus control inputs for Kreisselmeier
and Anderson's multivariable algorithm.
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Fig. 4.22 (a) The reference and system outputs plus control inputs for the
Kreisselmeier & Anderson MIMO algorithm for (a) large dead Zones
d, = 0.5 for Tank 1, d0 = 0.4 for Tank 2, and

(b) small dead zones do = 0.05 for Tank 1, d0 = 0.05 for Tank 2.
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Fig. 4.24 The reference, system outputs plus control inputs for Goodwin's
modified MIMO algorithm.
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Fig. 4.25 The results of changing on-line the reference set points for

(a) Goodwin et al's multivariable algorithm,
(b) Kreisselmeier-Anderson's multivariable algorithm.
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Chapter 5

THE COUPLED ELECTRIC DRIVES SYSTEM

5.1 INTRODUCTION

Another interesting industrial problem involves the control of both speed
and tension. This is particularly true of areas involving production of goods
requiring material handling and transportation. Examples of manufacturing
processes where the control of both speed and tension is of importance include
the cable manufacturing industry where, in the production of say electrically
insulated conductors or cables, the bare wire is unwound by a controlled
tension device, the wire is then fed into a "guider" tube where the insulation
coat is then added. The wire speed is controlled by a capstan at the end of
the 1ine. Other examples include (i) the textiles industry where yarns are
wound from spool to spool, or (iﬁ) the paper mills where reeling of paper
sheets takes place. Here the paper sheet must be pulled on to the wind-up
roll at nearly constant tension. A reduction in tension produces loose rolls
while an increase could result in the paper sheets tearing. If the reel speed
is constant the linear velocity of the paper and tension would increase as the
wind-up roll diameter increases, hence a need for control of both tension and

speed.

Other areas might be in the control of escalators and possibly conveyor

belts at ports.

Unfortunately, as can be seen from these examples, these two variables
influence each other a lot. Hence, the strong interaction between these

variables thus makes it a challenging control problem.

The coupled electric drives apparatus (see Figure 5.1) is a laboratory

scale model with which efforts are made in the study of the control of such
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processes and the problems it entails. A brief description of the coupled

electric drives system now follows.

5.2 DESCRIPTION OF RIG [see 62]

The coupled electric drives system consists of a continuous flexible belt
which 1oops around two drive motor pulleys and over an intermediate jockey
pulley (see Figure 5.2a). The apparatus is controlled by manipulating the
drive torques to these servomotors. The principal system outputs are the
jockey pulley speed and the belt tension, while other outputs that can be
obtained are the drive speeds for motors a and b (see Figure 5.2b). The
Jjockey pulley velocity measurement is derived from a tachogenerator which is

driven directly by an extension to the jockey pulley spindle.

The belt tension is measured indirectly by monitoring the angular
deflection of the pivoted tension arm to which the jockey pulley is attached.
The deflection of this arm is detected by the capacitive transducer mounted
at the end of the tension arm. This deflection is related via the tensioning
spring stiffness and system geometry to the belt tension as it passes over the

Jjockey arm pulley. This gives a bipolar voltage for the values of the tension.

Using the fixing device provided with the apparatus the tension arm can be
locked in a fixed position to facilitate measurement of certain system

characteristics and some other experiments.

Inputs to the system are by drive voltages to the servomotors through the
instrumentation box. All signal processing and part of the transduction take
place in the instrumentation box from which the output voltages are also

measured.
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r-- - - - - - -=----=- L
Simulated : ]
Work-
station ™| |
| Jockey Arml for
| Tension
/ Measuremen
I
: 44"'r “L
! f
Continuous ' Jockey Pulley
flexible —_— e e e
belt_
Drive Drive
— Motor (a) motor (by~a

Figure 5.2a The Coupled Flectric Drive Apparatus.

Drive a Jockey Pulley

Input O— COUPLED ‘ O Speed Output
DRIVE

Drive APPARATUS Jockey Pulley

Input bo__ ———O  Tension Output

——O Drive a Speed Output

————O Drive b Speed Output

Figure 5,2b  Input/Output definitions for the Coupled
Electric Drives Apparatus.
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5.3 THE SYSTEM CHARACTERISTICS AND MODEL

Using the free body diagram of the coupled drives shown in Figure 5.3,
the transfer function of the system can be derived. This is by considering
the apparatus as a combination of subsystems, e.g. the jockey pulley assembly,
the drive pulleys a, b, and lastly the belt sections from which, using force
balance and power conservation principles, the state space equations can be
derived (see Appendix B). It is then from these that the system transfer
function is found and the resulting block diagram in Figure 5.4 depicts this.
The coupling between the inputs and outputs is also shown. The torque inputs

for both drive motors are derived from their respective input voltages as:

T = g_ Vv
2 a3 (5.3.1)
™ T 9% Y

while the output voltages are calculated from the two outputs which are the

jockey pulley speed w(s) and the jockey arm deflection x, (s) as follows:

v

w 9y v

(5.3.2)
VX = 95 X

The constants 9,> 9 are determined by the motor, amplifier characteristics,
while the constants gys 9o are obtained from the transducer characteristics

of the system.

Due to the coupling between the two inputs and the outputs, there was a
need for the interaction to be reduced for ease of control. Thus the system
characteristics were best obtained under conditions where the interaction is
reduced if not totally eliminated. To do this, it is fairly obvious that the

use of inputs Vgs Vpo as:
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Va(s)

Vb(s)

uy(s) - us(s)
u](s) + Uy(s)

(5.3.3)

in Figure 5.4, would reduce the interactions and thus allow one input to
specifically determine one output only. This is jllustrated by Figure 5.5
with

up(s) - y1(s)

uy(s) - yz(s)

Figure 5.6a depicts the Tachometer calibration with the tension arm locked.
Figure 5.6b shows the Tension transducer calibration, while for the steady
state relationship between input to motors and jockey arm tachogenerator
output see Figure 5.6c, and for that of the jockey arm tension transducer
output the result is shown in Figure 5.6d. Three different curves are shown
in Figure 5.6d because although the recommended Uy voltage was six volts, it
was found to lead to early saturation of both the analogue computer and the
A/D converters, since this leaves only about four volts maximum for the
control input. For most of the experiments and tests carried out, u; was

set at about 3.67 volts,

To obtain the transfer functions of the coupled electric drive system,
it was necessary to decouple the system so as to enable one input control one
output only. Using the decoupler equation (5.3.3) the transfer functions

derived mathematically from the free body diagram in Figure 5.3 were:

(i) for speed control

Iy Uy (s)
w(s) = —p— (5.3.4a)

where I is assumed = 9, = 9 -
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Tpls)

1,(s) 1
ay’ £ ) , * w(s)
Torque drive motor a 4':\]r// 2(sI+b) Jockey Pulley Speed
M
- N
d,f\ 2rkcosa Jockey arm (s)
: RN 2 2 112 - k

Torque drive motor b [2(s mt+sbt+Kt)-(2c05u) KJ(s™1 + sb + 2K (s)) Deflection

Figure 5.4 Block diagram showing the coupling and transfer functions

between the outputs and inputs.

L & ¥is

14(s)
U\l P g?_ g'l
COUPLED
DRIVES
SYSTEM
o Ty(s) %y (s)
[4 Gb hd \ g gz

Figure 5.5 An illustration of "the decoupler" for the Coupled Drives.
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(ii) for tension control

4gmrKc05a uz(s)

(s°I+bs+2K' (s))(2(s M +sb,+K,1=(2c0sa) %K)

X, () (5.3.4b)

where
szmt+sbt+Kt ]

2 2
2[s"my+sb,+K,1-(2c0sa)"K J

K'(s) = Kr2|l + (5.3.4c)

(N.B. This accounts for the jockey arm dynamics.)

and b, = bb b the rotational coefficient assumed same for

both pulleys;

m, Kt’ bt are as shown in Figure 5.3;
rg =Ty ="r the radius of the pulleys assumed to be the same;
Kc = Kd = Ke = K the belt stiffness coefficient assumed to be

the same for the different belt sections.

It should be noted that if the tension arm is damped using the locking

bar, then K'(s) reduces to a constant:

K
K'(s) K' = r? Kg + —c
]+Kc/Kd

3k (5.3.4d)

The versatility of the coupled electric drives apparatus is shown in the
way it could be modified and reduced to a scalar system in which only one

variable is controlled, e.g.

Speed Control alone by using va(s) = u](s), vb(s) uy(s) (5.3.5a)

-uz(s) (5.3.5b)

Tension Control alone by using va(s) uz(s), vb(s)

note, this is for positive tension outpu x,(s), if a negative output is
te, this is f iti t i tput K if ti tput i
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required the signs of the above signals are reversed.)

5.4 MODEL REFERENCE ADAPTIVE CONTROL OF THE ELECTRIC DRIVES

Although the coupled electric drives apparatus is not quite a nonlinear
system it is still a good rig to implement MRAC algorithms on. Tests were
carried out using the different algorithms on the MIMO system consisting of
the inputs to the drive motors and two outputs, namely the jockey pulley
speed and the belt tension. Also carried out were tests on the scalar systems
of tension control and speed control, respectively. For the scalar systems
more emphasis was placed on the tension control since, by virtue of its
transfer function, it makes a more interesting study, especially as regards
reduced order modelling. The discussion of the results now follows, starting

with the scalar systems.

5.4.1 Tension Control

To make the work easier the coupled drive system was decoupleq using the
inputs Va = uz(s), Vp = -uz(s) (for positive tension voltage output yz(s)),
but this was not a recommended approach from the systems manual as it might
result in damage to the circuits of the servo-motors due to large current

build up. Hence, for decoupling the system was connected up with inputs:

v

a Uy + Uy for positive tension outputs yz(s)

Vp T U1 — Yp

The voltage Uy is a constant voltage which was generated from an analogue
computer to keep the drive-motors rotating at a nominal speed, while voltage
u, was derived from the BBC microcomputer as the adaptive control input for

tension control.
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Three different reference models were applied during tests carried out
using the three different algorithms, namely two first-order models and a
second-order model., The sampling period varied for different models but were
either half a second or a second long, with a time delay of one sampling

period interval assumed.

Control Hardware and Software:

The output voltage representing the tension output xk(s) was the input
to the BBC computer from which the control input u, was also derived. The
analogue computer was used to generate Uy and also for both summing and
inverting the voltages, The software used was written in BASIC. The listing
of the programs can be seen in Appendix C. The results were first stored on

floppy disks before being plotted using the Rikadenki plotter.

Real Time Control Experiments (the results):

As mentioned earlier, three different reference models were used, a fast
first-order model, a slow first-order model and a second-order model. The
results of the different MRAC algorithms are now explained, starting with the

Goodwin algorithm,
A. The GOODWIN et al Algorithm:

Key to the program (see Appendix C):

The control input u(t) = Y(6) , u(t-1) Y(7)

The reference input R(t) = R

The reference output y (t) = Y(4) Yplt-1) = Y(19)
The system output yp(t) = YS yp(t-l) = Y(5)
The tracking error e(t) = Y(9) e(t-1) = Y(10)

The adaptive parameters o(t) [0y(t)s 05(t), 65(t)] = [Y(11), vqz), v(13);

[Y(14), Y(15), Y(16)]

o(t-1)
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(i) Model 1 yy(t) = 0.6065y (t-1) + 0.3935r(t)

The initial parameter values were o(0) = [0,0,0] and the results are
shown in Figures 5.7a,b using a gain of 0.39, with Figure 5.7a showing the
reference and system outputs plus the control input, while the adaptive
parameters are shown in Figure 5.7b. As in Chapter 4, the use of a bigger
gain, 0.78, leads to quicker convergence time, though an overshoot also occurs

as depicted in Figure 5.7c.

In pursuit of the robustness of the algorithm, other experiments were
carried out involving changes in the step inputs to see whether the system ‘
output could be destabilized through these changes. Also, disturbances were
intentionally introduced as well to check on the system response. The step
input was changed down as shown in Figure 5,8a, while in others the step input
was changed down and then up as in Figures 5.8b,c (which depict the control
input plus reference and system outputs and the adaptive parameters respec-
tively), or as in Figures 5.8d,e where the set input change was first up and
then down again., From Figures 5.8b,d it can be observed how the control input
goes back to the same value for the same output, thus confirming the adaptive-

ness of the algorithm.

Disturbances to the.system output were introduced in another experiment
by shaking the tension wire up and down after the convergence of both outputs
and then releasing it; later the tension was increased by tightening the belt
which thus changed the output voltage to see whether the algorithm could cope
with this. The results of all these external disturbances are depicted in

Figures 5.9a,b,c,

(i1) Model 2 Yo(t) = 0.0198r(t) + 0.9802y_(t-1)

Using a slower reference model the system was made to track the reference

model output, using a gain of 0.78, with the initial parameter vector the same
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value as in (i) above. The results are shown in Figures 5.10a,b,c.

(111) Model 3a y (t) = 0.000413r(t-1) + 1.97589y, (t-1) - 0.9763y, (t-2)
3b ¥, (t) = 0.0015603r(t-1) + 1.9512y, (t-1) - 0.98334y_(t-2)
3¢y, (t) = 0.000259r(t-1) + 1,98308y, (t-1) - 0.98334y_(t-2)

The above models being second-order functions, the number of adaptive
parameters had to increase due to the increase in model order, but the models
were designed for the same damping factor, even though the natural frequencies
were different. The results of the first model are shown in Figures 5.11a,b
with (a) showing the control input and reference plus system outputs, while
(b) shows the adaptive parameters and the tracking error. The reference and
system outputs for the other two models are shown in Figures 5.11c and d,

respectively.

Comments about all the results and figures will be made at the end of

the chapter.

B. The ORTEGA et al Algorithm

Key to the program is similar to that of (A).

(1) Model 1 Yp(t) = 0.3936r(t) + 0.6065y, (t-1)

Using different gains but the same initial adaptive parameter vector
e(0) = [0.1, 0.1, 0,1], different experiments were carried out on the rig.
In Figure 5.12a the contfol input, reference and system outputs are shown,
while Figure 5.12b shows the adaptive parameters for a gain of 0.62, and
when the gain was increased to 0.78, this led to an overshoot shown in
Figure 5.12c. Amongst other tests done were the changing of the reference

input on-line, the result of which is shown in Figure 5.,13a,b.
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(11) Model 2y (t) = 0.0198r(t) + 0.9802y, (t-1)

The results are shown in Figures 5.14a,b,c for the reference and system
outputs, the control input and the adaptive parameters. For this experiment

an adaptive gain of 1.565 was used.

(111) Model 3y (t) = 0.000413r(t-1) + 1.97589y, (t-1) - 0.9763y, (t-2)

For this reference model a bigger adaptive gain was used because of the
results obtained using the second model above., A gain of 1.96 was used, and

the results are shown in Figures 5.15a,b,c, respectively.

(C) The KREISSELMEIER, ANDERSON Algorithm
(1) Model 1 ¥, (t) = 0.3935r(t) + 0.6065y, (t-1)

The same initial parameter values as in (B) above were used with the
results shown in Figure-5.16a of the reference and system outputs. In
Figures 5.16b,c the results shown are for when the reference input was changed

to a lower value on-line, while Figures 5.16d,e show the results for when the

reference input was changed to a higher value.
(i1) Model 2 ym(t) = 0.0198r(t) + 0.9802ym(t-1)

The results are shown in Figures 5.17a,b,c of the reference and system

outputs, the control input and the adaptive parameters.
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5.4,2 Speed Control

Before moving on to the multivariable system, a couple of experiments
were carried out on the speed control of the coupled electric drives with the
tension output decoupled by the use of the decoupling equation mentioned
earlier. The inputs to the drive motors were the same, namely the control
input u(t) derived from the BBC micro, i.e. V, = u(t), Vy = u(t), as the
use of this decouples the system. Using the Goodwin algorithm, the results
are shown for different gains in Figures 5.18a,b,c. In Figure 5.18a, it is
shown that while theoretically, by the use of the same input to the drives
to decouple, the tension output should be zero, in practice there is still

a bit of interaction probably due to the asymmetricalness of the whole system.

5.4.3 The Multivariable Coupled Electric Drives System

For the multivariable system consisting of the two drive motors as
inputs, the jockey pulley speed and belt tension as outputs, making it a 2x2

system, only two algorithms were tested on it. These were the multivariable

Goodwin algorithm and the derived MIMO Kreisselmeier-Anderson algorithm.

Although there is interaction between the system inputs and outputs,
as mentioned in earlier sections, it is possible to decouple the rig into
two almost independent systems by using the inputs as defined in equation
(5.3.3), but for the two algorithms used here, there was no explicit attempt
at using the decoupler equation mentioned, instead the algorithms were
applied with the aim of achieving independent control of the outputs

irrespective of the interactions.

The algorithms and their results for different tests are now explained

as follows:
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A. The MIMO GOODWIN et al Algorithm

Key to the program (see Appendix C):

Y (£) = ¥(9) Yoy (t-1) = Y(10)
Ypalt) = Y(I7) Ypo(t-1) = Y(18)
Yyge)(t) = Y(1) Yusy(t1) = ¥(@)
Yy (3)(8) = Y03) Yy (s)(t1) = Y8)
u(t) = Y(47) u (t-1) = Y(5) u(t-2) = Y(6)
up(t) = Y(48) up(t-1) = Y(7) up(t-2) = Y(8)
ey (t) = Y(19) e (t) = Y(20)
P]1 P]Z Y(27) Y(28)
P = - :
P Pop Y(37)  Y(38)
) 01 (t) [ ey7(t) 012(t) ©y3(t) eya(t) o5(t) og4(t) |
0 = =
0,(t) [ 091(t) 0p5(t) ©y3(t) 0,5(t) e55(t) 0,6(t) |

(Y1) Y(12)  Y(13)  Y(14) Y(15) Y(16)
Y(21)  Y(22) Y(23) Y(24) Y(25) Y(26) |

A possible way of decoupling the system using the P-matrix was
investigated. This involves using the P-matrix as a decoupler. Basically

what was done could be explained using the definitions of the control inputs,

e.g. u(t) = o(t)f(t).
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From Chapter 2 it 1s known that

o(t) = o(t-1) - ( Pn Pr2 ][ e (t) ][‘+¢T(t)¢(t)l'1¢T(t)

Po1 Paa JL &a(t)
(5.4.1)
= oy(t) = oq(t-1) = [Pyyey(t) + Pp,e ()] K(t)d (t)
(5.4.2)
0p(t) = ©p(t-1) - [Pyreq(t) + Py, (t)] K(t)o! (t)

where  K(t) = [1+ ¢7(t)o(t)]”

For speed control alone (remembering equation (5.3.5a)) one obtains:

oy(t) = 0(t-1) - [Pyyey(t) + 0.e,(t)1 K(t)T(t)
0p(t) = 0,(t-1) = [Pyqe;(t) + 0.e,y(t)]-K(t)o (t)
- o(t) = o(t-1) - [ Pyy O Jl e (t) ] L K(t)e! (t) (5.4.3)
Prp 0 ) ep(t)

Provided the same initial parameter values were used for ©,(t) and o,(t),
i.e. 91(0) = 0,(0), then 0y(t) = 0,(t) for all t and uy(t) = uy(t)

as well.

Similarly for the tension control only (noting equation (5.3.5b)):

o(t) = o(t-1) - [ 0 -P,, ]{ e (t) } K(t)e' (t) (5.4.4)
0 Py, J L ep(t)

for negative tension voltage
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o(t) = o(t-1) - [ 0 Py ][ & (t) } K(t)o (t) (5.4.5)
ey(t)
for positive tension voltage

0 Py

Thus, for independent control of the two outputs one needs:

o(t) = o(t-1) - [ Py Pa ]{ e (t) ] K(t) o' (t) (5.4.6)
Pri ~Paz J1 &p(t)

For all the work carried out using this algorithm the above P-matrix
form was used. There was only one first-order reference model used for the
tests, although with the reference inputs in different variations, i.e.
changing them up or down on-line or with higher reference outputs for either

the tension or speed control.

A sampling time of half a second was used and the reference model with

the results are given below.

The control experiments and results:

Model 1: Y (t)
Ya(t) = 0.3935r,(t) + 0.6)65,,(t-1)

0.3935r; (t) + 0.6065y,, (t-1)

Using a reference input of four volts for the speed control and two volts
for the tension control, the coefficients of the P-matrix used were P]] = 0.1,
P22 = 0.35 . The results are shown in Figure 5.19a for both system outputs
and reference outputs, but because of the long duration of the experiment,
due to the large number of samples, it was only possible to store the results
of these on disk, hence for all the figures there were no control inputs or

adaptive parameters shown.

Also used were a higher reference tension input of three volts and a lower

reference speed input (1.75 volts), the result of which is depicted in
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Figure 5.19b.

Finally the reference inputs were changed on-line to test more adaptive
properties of the algorithm and system reaction. The results of these are

shown in Figure 5.19c.

B. The MIMO KREISSELMEIER-ANDERSON Algorithm
Key to the program (see Appendix )

Y(10)

Y(18)

N(2)  yyqy(t2) = Y(55)
Yu(s)(t3) = Y(57)

Y)Yy (s)(t2) = Y(5H)
Yy, (5)(t3) = V(58)

n
"

Y (8) = V(9) g ()
.sz(t) Y(17) .sz(t'])

yw(s)(t) = Y(1) yw(s)(t‘]>

yxk(s)(t) = Y(3) Yxk(s)(t'l)

up(t) = Y(47) up(t-1) = Y(5) uy(t-2) = Y(6) uy(t-3) = Y(53)
uy(t) = Y(48) Up(t-1) = Y(7) uy(t-3) = Y(8) uy(t-3) = Y(54)
m(t) = X(2) m (t-1) = X(4)
my(t) = X(5) my(t-1) = X(7)

o(t) 077 (t) Oy3(t) 874(t) 015(t) O76(t) ] ) [ Y(11) Y(13) Y(14) Y(15) Y(16)

095 (t) By3(t) 0p4(t) 0,5(t) 0p4(t) | v(22) Y(23) Y(24) Y(25) Y(26)

The same model as the Goodwin algorithm was used, as well as the same
sampling period. Typical of the other experiments using this algorithm was
the need to have a rough idea of the adaptive parameter bounds to be used in
the algorithm. Thfs is usually done by deleting any parameter bounds initially
from the algorithm and conducting experimental runs without them. From these
experiments the minimum and maximum parameter bounds can be determined. An
example of the results of such an experiment is depicted in Figure 5.20a which

leads to the inclusion of parameter bounds in the software. The result in
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Figure 5.20b is that of using the algorithm complete with parameter bounds,

dead zones and normalization.

5.5 COMMENTS

(1)

(1)

(iii)

(iv)

The system was very noisy due to the vibrations of the tensional spring
which is attached to the deflection arm. The vibrations were caused

by the movement of the belt at speed. The lower the speed of the belt,
the greater the vibrations of the deflection arm which reads the
tension output. Due to these vibrations, the tension output tends not
to stgy constant as the results show, although the quantization error

contributed to this as well.

Another problem which also relates to the tension control was the
initial oscillation of the tension output during the beginning of any
experiment, although within 2-4 samples this is normally brought under
control., This led to all the results having shaky beginnings. Different
attempts at stopping this were tried all to no avail, although the

smaller the initial input the smaller these oscillations were.

A1l the algorithms performed quite well on the rig, although once again
the best results came from the Ortega et al algorithm for the SISO
algorithms, with the Kreisselmeier-Anderson algorithm being the worst
of all three, especially when tracking the slower first-order reference
model .

For the multivariable algorithms the Kreisselmeier-Anderson derived
MIMO algorithm proved faster in converging the system outputs to the
desired reference outputs. Comparisons can be made between Figures

5.19a and 5.20b.

When the reference output changed on-line there seemed to be

difficulties in getting the system output to change fast enough, which
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might be due to the mis-modelling of the system order, hence not

allowing the adaptive parameters to converge to the true parameter

values; but better convergence is achieved when changing up than down.
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Chapter 6

THE HEATER BAR

6.1 INTRODUCTION

The heater bar is a scaled down model of an industrial problem, a process
where molten plastic passes through cylindrical heater tubes which were
supposed to be kept at a constant temperature. Due to the slowness of the
process it was quite difficult to control the heater temperature at a constant
enough value .for the molten plastic, as the temperature was found to be either

too hot or too cold for the process.

Another use could be made of the laboratory rig by considering it as a
boiler in power/steam stations which needs to operate at a certain constant

temperature for steam and hence power generation.

It is a distributed parameter system, but which for the course of this
work would be assumed to be finite dimensional Tumped parameter system, hence

with a deterministic transfer function for ease of control.

6.2 SYSTEM DESCRIPTION

The rig (see Figure 6.1) consists of a half mild steel cylinder cone
inside a cylindrical sleeve of the same material. The heater, a metal coil,
is inserted within the core of the steel bar. Basically, heat is transferred
round the system via conduction, radiation and convectional means. The rig
is made up of two halves, one of which contains the heater while the second
half consists of the part whose temperature needs to be controlled. As shown
in Figure 6.1, there are eight, 2.5 cm deep holes along the bar, six of which
are on the second half while two are on the first half. Since the second half

represents the system output, the temperature of which is to be controlled,
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the temperature can be taken from any of its six holes which are in two
parallel rows of three each, at the top and side of the bar. Via thermo-
couples, the temperature is measured and converted to microvolts, which is
then amplified in the control instrumentation box which is apart from the

bar itself. Through the transducers and amplifiers, the relationship between
the temperature output in centigrade (°C) and volts is approximately 1°C to
ImV. Due to the holes it is possible to have the rig used as a Single Input

Multi Output (SIMO) system,

The bar is 30 cm long with each half being 15ecm. It has an outer radius
of 3.44cm and an inner one of 0.5cm for the first half. The mild steel
material has a density of 7849.2 Kg/m3 and a specific heat capacitance of
461 J/KgK. The bar is placed inside a glass case which is perforated and
to which is attached two fans which can be used for cooling. Potentially
these can also be used as an input, but as of now they are only switched on

or off manually.

6.3 SYSTEM CHARACTERISTICS AND MODELLING

From the previous section it becomes apparent that it is a slow
responding rig, hence with a very large time constant. Although a distributed
parameter system with a temperature profile which gradually decreases in value
the further away from the heater coil that one gets along the bar, it is
possible to represent the rig as a first or second order system. The step
response output of the four holes are shown in Figure 6.2 from which it can
be seen that the possibility of approximating the system order as one or two

is certainly correct.

On the assumption of a finite order system, analysis of the system model

“now follows.
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MODEL DERIVATION

The Single-Input, Multi-Output (SIMO) System

Since all the holes on the rig could be used as outputs the system can
be called a SIMO system. Based on this and the modelling ideas in [64], an
analogous electrical system to the rig can be formed as depicted in Figure
6.3a below, from which the system state space model and transfer function

could be derived.

AT
!
l

|

|

l |
|

| 9 Mo, = Ry -

|

|

—l
|
' l
|

L —1st halfof rig — —  1— — — - — — _ _ 2nd half of rig— — — —

— — ——— — m— —

Figure 6.3a The SIMO System

Q; = Heat source; Vy = temperature of core (T;.);
V, = temperature of 1st hole (T;) ; V, = temperature of 2nd hole (T,);
V3 = temperature of 3rd hole (T3) ; R1-R7 = thermal dissipators;

C1-C4 = thermal flow stores.

Although in the above diagram the core temperature is assumed to be Tin
it could easily be represented as another system output as well. It should
also be noted that while the outputs are represented above in terms of
voltages, there is a correlation between the hole temperatures and their

voltages. The relationship is given by 1°C ~ Tmv.

Potentially the temperatures of the three holes on the second half of

the rig, T], T2, T3, can be the different system outputs as indicated above,
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but due to the controllability problems the rig is best treated as a Single-

Input-Single Output (SISO) system.

The Single-Input, Single-Output (SISO) System

The rig, as a SISO system, implies that only one of the three holes
could be used as a system output, which means that only the chosen hole's
temperature could be controlled. The new system diagram therefore changes
from that shown in Figure 6.3a for a SIMO system to that in Figure 6.3b
for a SISO system,

IQ1 QJ cI41 :;

Figure 6.3b The SISO system

%
;

Heat source; T, = temperature of core (1st half);
1 )

p = temperature of any of the holes on the 2nd half of rig;

C],C2 thermal flow stores; Rl-R3 = thermal dissipators.

Using Figure 6.3b the system state space model and transfer function for
any given second half hole as output is now easily derived. The derivation

now follows.
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The heater coil was assumed as the source, with the temperature of the
core assumed as T], while any one of the holes on the second half of the

rig provides the temperature T2 .
Taking T2 as the system output the dynamic equations are:

T T, T,

G = 4 * Qg = R% + ot = —&, (6.3.1)
Q‘|=q]+q2+q3 = R-1—+C]a-£—+'—'R;- (6.3.2)

Rearranging the two equations above and using T = dT/dt, then the state

space model is obtained as:

(Ry+R;) 1

: 1
i - T
1 GRR, TRy 1 ¢
= + Q1
; 1 Ra*R3) |1 - 0
2 C, R, CRR3 7% 72

+ (6.3.3)
and the output is:

T, = [0 1][ T )
Ty

J

Taking the Laplace transform of the above, the system transfer function is:

Ty RyRy
— = = (6.3.4)
Q; s C1C2R]R2R3+(R]RZC]+R]R3C1+R]R3C2+R2R3C2)s+(R]+R2+R3)

Note: If R2 assumes a value of zero the transfer function reduces to a

first order system,

Although the system transfer function was obtained above, because of the

various ways that the heat is transferred, i.e. conduction, radiation and
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convection, the values of the R's and C's above are never constant but change
with the input voltage, hence temperature of the heater coil. So, in a way
it is a variable parameter system which would suit adaptive control. It
should be noted that for the different holes available, there are different
transfer functions obtainable, since the resistance and capacitance values

differ for the various hole positions.

From the system responses shown in Figure 6.2, if the transfer function
should be approximated as a first order function, perhaps it might be as a

time delayed first order system.

6.4 MRAC APPLICATION TO THE RIG

A 1ot of problems were encountered during the attempts at model
reference adaptive control of the rig which essentially stemmed from the
slowness of the system response. The time constant of the system was found
to be approximately 75 minutes and this coupled with the heat capacitance
of the material, made the system very difficult to work with. Because of
these reasons, all attempts at getting any form of adaptive control of the
rig using the three different SISO algorithms failed. Different ways to
solve the problems faceg proved ineffective, amongst which was the use of
big sampling periods. The basic problem was that due to the large heat
capacitance, it was virtually impossible to control the system output,
because even when the tracking error is greater than zero (i.e. positive) and
the adaptive parameter values and control input were decreasing to counter
this, the temperature, hence the system output voltage just kept on increasing.

This resulted in a badly controlled output Figures 6.4 and 6.5 show the results of
using the Goodwin et al and Kreisselmeier-Anderson algorithms. Due to the
large number of samples taken results are shown for the reference and system

outputs only.
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In the end it was only by switching the adaptation off and on that any
semblance of control was imposed on the system. The results and explanations

now follow.

6.4.2 Results (see appendix for program 1isting)

Basically, what was done was that an error dead zone region was created
within which the adaptive parameters and control input were switched off,
i.e. reduced to zero. In this case the error dead zone was e(t) > 0, but
as soon as the error goes outside this region, which for this particular
problem meant e(t) < 0, the adaptive parameters and the control input were
switched on again. By this means the system output was made to track the

reference model output.

While any of the algorithms could have been used, it was the Goodwin
algorithm that was used, although with various reference models and sampling
times as given below. The three different hole positions on the second half
of the bar were used as outputs on different occasions, though the middle
hole was the one used most frequently. The results now follow for the

different models.

MODEL 1 Yp(t) = 0.3935r(t) + 0.6065y (t-1)

For the middle hole there are two results for two different sampling

periods, i.e.

(i) for T, = 10 seconds (see Fig. 6.6a)

(ii) for T, = 35 seconds. (see Fig. 6.6b)

Since the system is a slow one, it was felt that a slower reference model
would be a more reasonable one to use, hence the reference model was changed

and the larger sampling time above used, unless otherwise stated.
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MODEL 2 Yp(t) = 0.0198r(t) + 0.9802y (t-1)

(a) For the first hole a faster sampling time of eighteen seconds was used,
due to the fact that it had a quicker response than the others, and the

reference input was 0.7 volts. The result is shown in Figure 6.7a.

(b) For the middle hole, using a reference input voltage of one volt, the

result obtained is shown in Figure 6.7b .

(c) For the extreme hole (the last one), two different step input values
of 1.0 volts and 1.3 volts were used with their respective results

depicted in Figures 6.7c and d.

From Figure 6.2 it is obvious that the extreme hole, which is furthest
away from the heater, would have the slowest time response of all, hence a

slower reference model still was used on this hole, i.e.

MODEL 3 ym(t) = 0.00995r(t) + 0.99005ym(t-])

Using the larger sampling period and a reference input of one volt,
the result obtained is shown in Figure 6.8 for both the reference and system

outputs.

6.5 COMMENTS

(i) Apart from the obvious slowness of the heater bar, the most difficult
problems encountered were with the analogue to digital (A/D) converter
used for the experiments, The first problem was that experienced for
all the rigs, i.e. the quantization error for the A/D converter (which
was bigger than for the previous rigs) of about +0.07 volts, the result
of which caused the system output not to be smooth. This caused all
the results obtained to have a lot of ups and downs in the value of the

system output.



Most of the problems encountered in this chapter can be attributed

to errors made in the modelling of the Heater bar rig. The most
fundamental was as a result of using a first order model to represent
the infinite dimensioned system. This is too small a model order for

a good control of the bar temperature and hence the system output.

A confirmation of this can be made from a frequency response analysis
of the system. Ideally for research purposes an eighth or tenth
order system model will be needed of similar configuration to that
shown in fig 6.3 This will be able to cope with the difficulties
in controlling the output temperature since the other heat capacitors
in the system will be a contributive factor to the output and also
the sampling interval can then be made much bigger than that used

in the work here.
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The other problem was that of erroneous spikes in the results also
caused by the A/D converter, since logic dictates that it is almost
impossible to have instantaneous output increments as depicted with

circles in Figure 6.9a .

(ii) While the results show the possibility of controlling the system, it
must be noted that the system output would track the reference output
as much as possible, despite the introduction of the error dead zone
and the switching on or off of the adaptive parameters accordingly,
although the system output would have a slight oscillatory motion
about the reference output as depicted in Figure 6.9b . Depending
on the process to be controlled, the system output can be made to be
as close to the reference output as possible, provided the quantiza-

tion error could be reduced to the very minimum.

(iii) The control problem might be a lot easier if the two fans built into
the system cauld be programmed and adaptively controlled, i.e.
switched on when the desired temperature level is being reached, or
even have their speed, and hence their cooling ability, increased
depending on whether the system output was overshooting the desired
reference output or not, instead of the manually operated on or off

switches used to operate them now.

During all the experiments and results reported here, the fans were not

used for any of them.



171

1]i]

-

-

-

-

ove

o8l

S31dWVS 40 “ON
0cl

"S3[NsaJ wyjiaoble [ 33 uLMpooy OSIS Y} SMOYS

b°9 aunbirg

Lndino”

-
-
-
-
-

“LNdNI

Y

S5°0

£8°D

cll

0y~
1R

SLTI0A



172

Sy

"S3(NSA4 WY3La06|e UOSAIPUY PUR JILAW(ASSLALY QSIS BYI SMOYS  G*9 Bunbiy

s S31dWVS 40 °DN .
. SOT = L :
9GE (9¢ 8| 68 0

—+ 4 + + + ——t 4 4 + + 4 ¢ + + + et e e S— 4 + €2°0

i
+25°0

“LNdNT |
1ndLno~ 7%8°0

Im ..
+11°1
1} A

xa

SL0A



173

082}

*$29S ()

036

= 5] potdsad but|dwes

S3dWVS 40 “ON
ova

® J0) s3Lnsas Ayl (e) 9°9 auanb L4

0ce

-+
-+
-
<+
<+
-
4
<4

-+

-

+

:
L]

-

-
-
-+

i
\J

61°0

99°0

68°0

ElI
1 X

SLTI0A



174

°S93s G€ = S| polJad but|dwes e 40y s3|nsas 8yl (q) 9°9 aunbi4

SIdWYS 40 “ON

008 114 00E 00¢ 00} "0
————— e e+, et .< €2°0
+8r°0
1+ 0£°0
. T
1ndLno~ 1
+ E6°0
M
' UL
_ 1NdNT |
AN

SLT0A



5.28

4 175
800 fooo
Figure 6.7a

1.03 _ .

| TR PTE]

{
g.e3 1t

| INPUT..

~OUTPUT

0.720 1

0.50 1

50 160 240 . 320 400
NC. OF SAMPLES s Figure 6.7b

Figure 6.7 (a) The results for the First hole control.
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400

= 35¢ Figure 6.7c
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Chapter 7

DISCUSSIONS AND CONCLUSIONS

This thesis has been written in a way that permits easy correlation
between the 3 parts, which were the historical background, theory in
Chapters 1-3, and the experimental section in Chapters 4-6 consisting of

practical tests on laboratory rigs.

As mentioned in the first chapter, although Model Reference Adaptive
Control (MRAC) has been around for some time, it still has not got wide
recognition and application of its algorithms in the industry. It is the
author's hope that the work contained in this thesis, which has been made
as simple as possible in every way, might persuade more people to have
confidence in its theory and applications. Part of the problem has been
with the stability of the glgorithms as pointed out by Rohrs et al [21]
amongst others, but with the emergence of new algorithms, two of which were
used in this work, and more investigations into robustness through persis-

tency of excitation, hopefully things will change.

The work has been inspired by all these and the aim was to attract
interest through testing algorithms on rigs by making these as simple as
possible, The BASIC computer language was used throughout, being the simplest
language available, and intentional mismodelling and output disturbances of
the systems were introduced. Three different algorithms by different groups
of people were used and, although at first appeared to differ, were shown in
Chapter 3 to be quite similar with common underlying principles. Though there
are numerous other algorithms, basically the same principles as for the three
used exist in them as well, It was these fundamental similarities which led
to the derivation of a multivariable extension to the scalar algorithm

suggested by Kresselmeier and Anderson [27]. The major benefits of this
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algorithm were in the reduction of overshoot and faster convergence of the
system and reference outputs, even though in terms of tracking there is still

a lot of room for improvement.

The laboratory rigs used were chosen because of the variety they offered
in terms of industrial processes and problems that go with them. In Chapter 4
the attention was on the Coupled Tanks which symbolise chemical processes
amongst others, though the industrial system might be more complex, i.e. in
terms of the number of parameters to be controlled, which in most cases would
include temperature control. A persistent problem on this rig was the drift
of the transducers as a result of which the system parameters at any operating
level or point were never exactly the same but drifted with time. The results

show the efficacy of using MRAC algorithms.

The Coupled Electric Drives apparatus in Chapter 5 represents a lot of
industrial systems, some of which were mentioned in Section 5.1 . Here a new
set of problems was encountered which include strong input-output interactions
(also in the Coupled Tanks but on a much weaker level), and noisiness of the

outputs due to the belt speed which caused the tension output to vibrate.

The last rig was the heater bar based on a temperature control industrial
process. This was a very slow process and the problems met had to do with
this fact. As a result of the slowness of response, all the three scalar
algorithms failed in the attempts at controlling the system temperature. In
the end a radical solution was found by switthing on or off the adaptive

parameters and control input, depending on the tracking error.

Another problem, but one which was encountered with all the rigs, had to
do with the quantization error of the A/D converters. As a result of this,
depending on how large the outputs were, the system output plots might not
be continuously smooth. Also to do with the converters were the spontaneous

spikes experienced from time to time in the results.
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In using different algorithms, comparisons could not be helped of
their performances on the different rigs. Overall, the Ortega et al algorithm
proved to be the best of the SISO algorithms for, while it had larger over-
shoots than the Kreisselmeier-Anderson algorithm, its overshoots were smaller
than those of the Goodwin algorithm; but it had the best tracking ability
of the three, irrespective of the intentional modelling errors. It also
handles external disturbances quite well, thus proving its robustness all
round. The Goodwin algorithm also performed quite well considering that it
was the Qﬁ1y}§ﬁe that was not designed for robustness, since it was pre-Rohrs
et al. It tracks well, but unfortunately the better the tracking the bigger
5ts overshoots which might prove an handicap. Finally, the Kreisselmeier-
Anderson algorithm as mentioned had the lowest overshoots, but its tracking
of the reference outputs was not too good, The author feels that thfs has
to do with its lack of an adaptive gain which could have made a difference
if it existed. Probably modifying the algorithm to include this might improve

its all round performance and robustness.

Similarly, for the multivariable algorithms, the derived extension to
the Kreisselmeier-Anderson algorithm proved better in terms of lower overshoot
and faster convergence times of the reference and system outputs, but once
again, as with the scalar algorithm, was worse off in terms of tracking the

o>

reference outputs compared to the MIMO Goodwin algorithm.

Finally, recommendations for future work. Although it was the robustness
and'effect@veness of the algorithms that were investigated as regards
distugbances and mismodelling, an interesting area to extend the work to would
be model reduction whereby reference models would contain only the essential
and important information necessary for controlling the system. Another
area would be iﬁAthe~m0dification of the Kreisselmeier-Anderson algorithm to
include a variable adaptive speed factor. Though the rigs were scaled down

versions of different industrial processes, it would be nice to see the
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algorithms being used in the industry itself.

Lastly, with the enormous potentials of the computer and the interest of
people in expert systems, there should be ways of incorporating both adaptive
control and expert systems into one large but versatile package. Amongst the
options that should be available in such a package might be different
algorithms to serve various functions such as regulation, identification,
control, or all of these. It should be able to assess a given
system then choose an'optimum sampling time and perhaps decide when to
switch on or off the adaptation according to laid down rules, objectives plus
design criteria or goals. It must also be able to remember or learn from
past problems or systems the similarities of new systems, thus arriving at

the controllers and solutions in quicker times.
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Appendix Al

Theorems of Lyapunov [20]

(a) 1st Theorem of Lyapunov (Stability Theorem)

For a system of the nth order, if a V function of definite sign can be
selected, such that its time derivative W 1is also definite and opposite
in sign, the given system is asymptotically stable in a sufficiently small
region, which includes the origin. If the W function is merely semi-definite
and opposite in sign, the system is stable but not necessarily asymptotically

stable,

(b) 2nd Theorem (Instability Theorem)

For a system with nth order, if there exists a real valued function

V(x],xz,...,xn) with the following properties:

(i) V(x],xz,‘..,xn) is continuous

(ii) the time derivative dV/dt = W is negative definite

then (a) the system is unstable in the finite region for which V is
not positive semi-definite,
(b) the response of the system is unbounded as t > e~ if V is

not globally positive definite

: _odv oy 2V v
Note: W a'f = -—i-i-X] +'§-x—£X2 + (.0t axn n

V(x) 1is positive definite in U if for x in U :

(a) V has continuous partial derivatives
(e) V(0) = 0
(¢) V({x) > 0 if x #0, if (c) is replaced by (d) the function



is positive semi-definite,

(d) Vv(x) > 0.

The Meyer-Kalman-Yacnbovich (MKY) Lemma 17, 8

Let A be a real nxn matrix, all of whose characteristic roots have
negative real parts; let t be a real nonnegative number, and let d,k

be two real n-vectors. If
T(z) = <+ 2k'A(2)d

is a positive real function then there exist two nxn real symmetric matrices

B, D and a real n-vector q such that

(1) A'B+BA = -qq' - D

(2) Bd -k = /g

(3) D 1is positive semi~definite and B is positive definite.
4) xeE":x'Dx = 010 [A',q° = (0}

(5) q'¢ [A,d1° S

(6) If iw, w real, is a zero of 13'A(z)']g_+ YT, then it is

s zero of d'A(-2)T oA(x) o
The Popov Integral Inequality [20] for Figure A.1 is given by:
n(0, t;) & J Viwdt > —Z forall t;>0.
A feedback system of the form given in Figure A.1, when it is globally

(asymptotically) stable for all feedback blocks satisfying the inequality

equation above, is said to be hypernstable,



Linear
Time Invariant
Block

|<

i
Non-Linear y= é

Time Varying
Block

is the input vector

<

is the output vector of the feedback block

omn |z

is a finite positive constant (which does not depend on t1).

Figure A.1 The Standard Nonlinear Feedback System.



Appendix A2

(1) 118(t) - 0gl1 < [18(t-1) = og]] < [16(0) = 6y(15 t>1 (1)

N 2
(i1) Tim e(t) < - (2)
Nowo t 21 cto (t-1)To(t-1)
and this implies:
(a)  lim e(t) = 0 (3)

to=  [cto(t-1)To(t-1)12

g o(t-1)To (t-1)e(t)?

b 1' < o 4
®) Nlﬂ t=1 [c+o(t-1)To(t-1)12 )
N 5 2
(c) Tim J |le(t) - o(t-1)]|" < = (5)
N t=
Nz - 2
(d) Tim J |le(t) - 6(t-k)||® < = (6)
N> t=k
()  lim [16(t) - &(t-k)[| = 0O (7)

for any finite k .

Proof:
(i) Subtracting o, from both sides of (2.3.12) and using (2.3.5) and

(2.3.14) we obtain:

5(t) = o(t-1) - —2¢(t=1) t-1)7 &(t-1
o) °(t-1) c+o(t-1)To(t-1) $(t-1)" o)

Hence using (2.4.4 )



. | . ,
16() 112 - 118(t-1)] 12 = a[-z ¢ 20(t-1) g(t-1) ] e(t)
c+o (t-1)"¢(t-1) c+o(t-1)"e(t-1)

(8)
Now since <a<2,¢c>0, we have:
1) 76 (t-1
al-2 + as(t-1) ¢(t-1) < 0 (9)
c+¢(t-1)T¢(t-1)

and then (1) follows from (8).

(i1) We observe that llé(t)l]2 is a bounded nonincreasing function,

and by summing () we have:

N t . e AT, e 2
16() 12 = |18(0)[1%+ T al-2 + 2003-1) ¢(3-1) e(i)
! el 55‘ C+¢(i-1)T¥(j-l) c+o (3-1)To (3-1)

Since |l§(t)!|2 is nonnegative, and since (1) holds, we can conclude (2).
(a) Equation (3) follows immediately from (2).

(b) Noting that

e(t)? _ Lere(t=1)Te (t-1)1e(t)?
et (t-1)To(t-1) lero (t-1)To(t-1)12

we establish (4) using (2).

(c) Equation (4) immediately implies (5) by noting the form of the
algorithm (' o ).

(d) It is clear that

118(t) - 8(t-k)[|?

n

[lo(t) - &(t-1) + 8(t-1) - 8(t-2) ...
con B(tokt1) - B(t-k)] |2

Then using the Schwarz inequality:



116(t) - 8(t-k)112 < k(1IB(t) - d(t-1)I12 + ...

vt |1B(t-k+1) - B(t-K)||%)

then the result follows immediately from (5) since k 1is infinite.

(e) Equation (7) follows immediately from (6).



Appendix B

Mathematical derivation of the

Coupled Electric Drives Model [62]
To obtain the model the system is divided into three sub-systems. It

i¢ the force, torque and power balancing in these sub-systems that lead to

the model derivation.

Using the free body diagram, Figure 5.3, each sub-system is now

considered, starting with:

(a) The jockey pulley assembly: The pulley is assumed to be light and
rotating frictionless, such that F1'= F2 = F . Vertical resolution
of forces yields:

Fk = 2cosaF (1)
using law of conservation of power

XFx = Flv = vp) (2)
where vy, v, are velocities. This implies

ik(z COs &) = Vy -V, (3)
A force balance on the tension measuring assembly gives:

F = MeXp + KeXg + btik (4)

Note: mtik = p the momemtum of mass m, .



(b) The drive pulleys a and b : A torque balance of the drive pulleys

gives:

Tq * Fary = Fgry = h, + bow, (5)

n

T, * F6rb - Farp ﬁb + byw, (6)
where ha and hb are the drive pulley/motor angular moments,
Iw, (7)
= Ty (8)

<
w
1}
=
<))
-
[«}]
-
<
o
1

(¢) The belt sections: A force balance on the different belt section

gives:

Fy=FpmFy=Fyp=F=Kax =K
(9)
F = Fs = F6 = Kexe

with Xes Xg» Xg the respective belt section lengths,

Using equations (1)-(9) the state space equation matrix can be derived

with the states taken as ha’ hb’ Xes Xgs X and p, thus one obtains:

b \
" - ‘-—g- -
ha = T, ha + rachc raKexe * Ty
. b
hb = - _"'hb bK + rbKexe + Ty
r r
V. c h _b 2cosa
e [ x;] (ha oy v PSS (10)
ra r
. _ _hb
Xe I T hy
X = p/my
. bt
P = 2 cos °'chc - Ktxt - ﬁ; p J




From the above state space equations set, the transfer functions for
the coupled drives system can be derived. To simplify the above state

space equations some assumptions need to be made, i.e.

Also that the pulley radii are the same, and that the belt sections are of

the same length, thus:

Substituting these into the state equations and adding the angular momentum

equations gives:

hy + By = - %-(ha+hb) b kT (1)
0a(8) # up(s) = g (7a(S) + Tp(s)) (12)

Manipulating the state equations gives:

szmt + sbt + Kt

ve(s) = [ ZKJ r(wy(s) - wy(s))  (13)

2[szmt+sbt+Kt]-(2c05a)

Also the angular velocities of the drive pulleys expressed in terms of the

input torques, yield:

2 ' 1
o - [s°1 + sb + K (s) T K (s) T
al®) [(sl+b)(szl+sb+2K'(s))} als) * [(sx+b)(szl+sb+2K'(s)) b(*)

(14)



*b (%) iL;):zL:bf;)('(s))]Tb(s) * [(sI+b)(s§I£:_b%2K'(s)-)-Jra(S)
(15)
where K'(s) = KrP( (s) + 1) (16)
e
t 7ttt
Subtracting (14) from (15):
wp(s) = w(s) = ——> (tp(s) = T,(s)) (18)

s“I+sb+2K' (s)

The angular velocity w of the jockey pulley can be expressed as a

function of the drive pulley angular velocities by manipulations resulting

in:
X (s)cosa
w(s) = wy(s) + Gy(s)luwy(s)-w,(s)] - —F— (19)
or
sXp(s)cosa
w(s) = wy(s)+ Gl(s)[wb(s)-wa(s)] + —— (2)
Adding (19) and (20) gives:
w(s) = glug(s) + wy(s)] (21)

Substituting for wa(s) + wb(s) in the above, using (12), gives:

'r+'rb

m(S) = -Z-a(;lv:;-s)- (22)

From the state space equations the transfer function relating the displace-

ment of the jockey arm to the input drive torques is obtained as:



2rKkeosa(ty(s)=1,(s))

(2(s"m +sby+K, )-(2c0sa) K) (s " I+bs+2K (s))

X (s) =

As mentioned in Chapter 5, equations (22) and (23) show the inter-
actions between the two torque inputs and the outputs. Using equation

(5.3.3), i.e.

Vals) = up(s) - uy(s)
vp(s) Uy (s) + uy(s)

to decouple and substituting into (22) and (23), and also using (5.3.1)
and (5.3.2), one obtains:
9 Uy (s)
wfs) = 177 (24)
sI+b
4gprKeosau,(s)
(s2T+sbr2K’ (s) (20s°m +sb,+K]-(2c0sa)K)

Xe(s) =

where 9% 9% =9 -



APPENDIX C



5
10
20
30
32
40
70

110
130
140
160
120
200
220
230
250
270
280
225
&20
300
310
325
327
330
340
350
30
370
320
370
410
420
430
435
437
440
445
447
450
455
457
460
470
4

430
500
510
520
530
540
550
551
553
560
570
580
520

FRETYPICAL SISO GOODWIN ET-AL ALGORITHM®:®®
DIM X(&)

DIM Y(21)

INPUT"ENTER 1.C7S Y(4),YS8,Y (&), Y(11),y(12),Y(13)":
(30contd)Y(4) ,YS,Y(a),Y(11),Y(12),Y(13)
R=4

Y(7)=Y (&)

Y(2)=YS~Y(4)

Y(5)=YS§

Y(E)=Y(5)

Y(10)=Y (%)

Y(14)=Y(11)

Y(15)=y(12

Y(1&)=Y(13)

Y(17)=Y(7)

(1) =y (=)

Y(19)=Y(4)

count=1

Z=0PENOUT "DAT1"

FOR K=1 TO 30075
Y(4)=(Y(L9)*EXP(~1.5) )+ (R*0.776323693)
Y(5)=YS

Ts=3.0

K=75=Ts

IF K=(count*75) THEN GOTO 350

NEXT

PRINT:PRINT "timez=";K

PRINT

Y(#)=Ys~Y(4)

PRINT"Y(4)=";Y(4)

X(1)=Y (&)

Y(7)=X(1)/255
Y(20)=1/C1+(Y(17)*Y(17)+Y(18) Y (12)+Y(19)*Y(19)))
Y(11)=Y(14)-22.0%(=Y(17))*Y(20)*Y(?)
PRINT"Y(11)="3;Y(11)

YOl=Y(11) /255
Y(12)=Y(15)=-29 .0k (Y (18) Y*Y(20)*Y(?)
PRINT"Y(12)=";Y(12)

YO2=Y(12) /255
Y(13)=Y(1l&)=-2% _ 0%Y (1L9)*Y (20)*Y(9)
PRINT"Y(13)=":Y(13)

YO3=Y(13) /255

Y(21)=( (=Y (2))£Y(11)+{(=Y (7)) Y (12)+Y(4)*Y(13))
Y(&)=Y(21)

Y(17)=Y(7)

Y{(13)=Y (2

Y(10)=Y (%)

Y(14)=Y(11)

Y(15)=Y(12)

Y(1&)=Y(13)

Y(12)=Y(4)

Y{2)=Y(5)

SX=Y (&) /255
PRINTEZ,Y(4),Y5,8X,Y01,Y02,Y03
count=count+l

Yin=&FCCO

Adrs=Yin

?Adrs=0:-



00 X=7Adrs

10 YS=10+X/ 255
620 PRINT "Y&=";:;Y$
&30 Es=YS-Y(4)

G40 PRINT"Es=" ;Ex
50 PRINT"Y(Z)=";Y(7)
S60 SizY (&)

70 PRINT"Si=":51
&E0 PROCDA

&20 NEXT

&wh CLOSE £27

700 END

710REM

720DEF PROCDA
730Uout=&FCC4
740Adrs=Uout
750851d=5S1i
7a07Adrs=5id
770ENDPROC



5
10
20
30
32
40
70

110
12

130
140
160
1=

200
220
230
250
270
25

285
270
300
310
325
327
330
340
350
360
370
350
370
410
420
421

#aTYPICAL ORTEGA ET~AL ALGORITHM#*:#*
DIM X(&)

DIM Y(25)

INPUT"ENTER I.C’S Y(4),YS,Y(&), Y(11),Y(12),Y(13),X(2)";
(30contd)Y(4),YS,Y(&),Y(11),Y(12),Y(13),X(2)
R=3

Y(7)=Y (&)

Y(22)=YS-Y(4)

X(4)=X(2)

Y(5)=YS

Y(2)=Y(5)

Y(10)=Y (22

Y(14)=Y(11)

Y(15)=Y(12)

Y(16)=Y(13)

Y(17)=Y(7)

Y(12)=Y(")

Y{(19)=Y(4)

count=1

Z=0PENOUT"DAT2"

FOR K=1 TO 1000000
Y{(4)=(Y(19)*EXP(—1.5) )+ (R¥0.77638698)
Y(5)=YS

Ts=3.0

K=75=Ts

IF K=(count*75) THEN GOTO 350

NEXT )
PRINT:PRINT "time=";K

PRINT

Y(22)=YS~-Y(4)

PRINT"Y(4)=";Y(4)

X(1)=Y(&)

Y(7)=X(1)/255
Y(20)=Y(17)%Y(17)+Y(E)*Y(2)+Y(7)*Y(7)
IF Y(20)>5.0 THEN Y(21)=Y(20)

422IF Y(20)<¢5.0 THEN Y(21)=5.0

423
424
426
430
435
437
440
445
447
450
455
457
40
430
430
S00
510
520
530
540

PRINT"Y{(21)=";Y(21)
X(2)=X(4)*0.75 + Y(21)
Y(2)=Y(22)/X(2)
Y(11)=Y(14)+9.0%Y(2)*Y (D)
PRINT"Y(11)=";Y(11)
YD1l=Y(11)/255
Y(12)=Y(15)+3.0%Y(7)*Y(?)
PRINT"Y(12)="5;Y(12)
Yo2:=Y(12) /255
Y(13)=Y(1&)+7_0%Y(17)*Y(?)
PRINT"Y(13)=";Y(13)
YO3=Y(13) /255
Y(&)=(Y(4)—(Y(11)*Y(15)+Y(13)*Y(7)))/Y(12)
Y(17)=Y(7)

Y{(18)=Y(2)

Y(10)=Y (%)

Y(14)=Y(11)

Y(15)=Y(12)

Y(1&)=Y(13)

Y(19)=Y(4)



550 Y(2)=Y(5)

551 SX=Y(&)/255
553 PRINT £2,Y(4),YS,S8X,Y01,Y02,Y03
50 count=count+l
570 Yin=&FCCO

580 Adrs=Yin

520 7Adrs=0:

00 X=7Adrs

&10 YS=10+X/255
&20 PRINT "YS=":YS
30 Es=YS-Y(4)

540 PRINT"Es=";Es
&50 PRINT"Y(Z)=":Y(7)
ae0 Si=Y(s)

670 PRINT"Si=";8i
&80 PROCDA

w0 NEXT

£95 CLOSE £2

700 END

710REM

720DEF PROCDA
730Uout=&FCC4
740Adrs=Uout
75081d=Si
7607Adrs=Sid
770ENDPROC



410
420
430

##ETYPICAL KREISSELMEIFER & ANDERSON ALGORITHM#4®
DIM X(&)

DIM Y(25)

INPUT"ENTER I.C°S Y(4),YS,Y(&), Y(11),Y(12),Y(13),X(2)";
(30contd)Y(4),YS,Y(&),Y(11),Y(12),Y(13),X(2)
R=3

Y(4)=Y(4)

Y(ffl):Y<ff:-)

Y(7)=Y (&)

Y(11)=Y(11)

Y(12)=Y(12)

Y(13)=Y(13)

Y(3)=YS-Y(4)

Y(&)=Y (&)

X(4)=X(2)

X(3)=X(2)+1.0

Y(5)=Ys

Y(a)=Y(5)

Y(?)=Y (%)

Y(10)=Y(9)

Y(11)=Y(11)

Y(14)=Y(11)

Y(12)=Y(12)

Y(15)=Y(12)

Y(13)=Y(13)

Y(16)=Y(13)

Y(17)=Y(7)

Y()=y(a)

Y{1a)=y (=)

Y(4)=Y(4)

Y(19)=Y(4)

count=1

Z=0OPENOUT"DAT3"

FOR K=1 TO 45100
Y(4)=(Y(23)+¥EXP(~1.5) )+ (R*0.7762693)
Y(5)=YS

Y{(2)=YS-Y(4)

TS=4.0

K=100=TS

IF K=(count*100) THEM GOTO 350

NEXT

PRINT:PRINT "time=";K

PRINT

X(2)=X(4)*0.75 + ((Y(£)+2797)/1275)+Y(&)
X(3)=X(2)+1.0

Y(9)=Y(22)/X(3)

IF ABS(Y(9))<=0.0041 THEN Y(%)=0

IF Y(9)>0.0061 THEN Y(2)=Y(%)-0.0061
IF Y(2)<0.0061 THEN Y(2)=Y(?)+0.0061
PRINT"Y(4)="3;Y(4)
Y(19)=1.2873%(Y(2)-0.2231%Y (1))
PRINT"Y(19)=";Y(1%)

X(1)=Y (&)

PRINT"X(1)="3;X(1)

Y(7)=X(1)/255 ,
Y(20)=1/(1+(Y(17)%Y(17)+Y(18)*Y(12)+Y(19)%Y(19)))
Y(11)=Y(14)=-Y(12)*Y(20)*Y () *X(3)



431 IF Y(11)<70.00 THEN Y(11)=70.00
432 IF Y(11)>25.00 THEN Y(11)=85.00
433 IF. Y(11)<(=85.00 OR Y(11)>=70.00 THEN Y{(11)=Y(11)
434 YOl=Y(11)/255
435 IF Y(11)<=85_00 OR Y(11)>=70.00 THEN Y(11)=Y(11)
436 PRINT"Y(lL)=";Y(11l)
440 Y(12)=Y(15)=Y(17)+Y{(20)*Y (2)*X(3)
441 IF Y(12)<70.00 THEN Y(12)=70.00
442 IF Y(12)>85.00 THEN Y(12)=85.00
443 IF Y(12)<=85.00 OR Y(12)>=70.00 THEN Y(12)=Y(12)
444 YO2=Y(12) /255
445 IF Y(12)<¢=85.00 OR Y{(12)>=70.00 THEN Y(12)=Y(12)
446 PRINT"Y(12)=";Y(1l2)
450 Y(13)=Y(1&)-Y (18)+Y(20)*Y ()X (3)
451 IF Y(13)<70.00 THEN Y(13)=70.00
452 IF Y(13)>85.00 THEN Y(13)=85.00
453 IF Y(13)<(=35.00 OR Y(13)>=70.00 THEN Y(13)=Y(13)
454 YO3=Y(13) /255
455 IF Y(13)<=85.00 OR Y(13)>=70.00 THEN Y(13)=Y(13)
456 PRINT"Y(13)=";Y(13)
460 Y(21)=(Y (@)%Y (11)+Y (7)Y (12)+Y(4)*Y(13))
466 Y1) =(Y(12)xY(11)+Y(17)*Y(12)+Y(12)%Y(13))
463 vY(22)=(Y{(10)-X{(1))/5
469 PRINT"Y(22)=";Y(22
470 Y(&)=Y{(21)
=30 Y(17)=Y(7)
490 Y(18)=Y (&)
500 X(4)=X(2)
510 Y(14)=Y(11)
520 Y(15)=Y(12)
530 Y(1&)=Y(13)
540 Y(23)=Y(4)
550 Y(&)=Y(5)
551 SX=Y (/) /255
553 PRINT£Z,Y(4),YS,8X,Y(11),Y(12),Y(13)
5640 count=count+l
570 Yin=&FCCO
20 Adrs=Yin
5%0 7Adrs=0:
00 X=7Adrs
610 YS=10#X/255
&20 PRINT "YS=";YS
&30 EszYS~Y(4)
&40 PRINT"Es=":Es
£50 PRINT"Y(7)=";Y(7).
60 Siz=Y (&)
&70 PRINT"Si=":Si
&520 PROCDA
£90 NEXT
700 END
710REM
720DEF PROCDA
730Uout=&FCC4
740Adrs=Uout
7508id=5i
7607Adrs=5id
77CENDPROC



5 #kETYPICAL MIMO GOODWIN ET—AL ALGORITHM#ok®
10 DIM X{(100)
20 DIM Y(300)
30 INPUT"ENTER I.C°S Y(9),Y(47),Y(1),Y(11),Y(12),Y(13),Y(14),Y(15),Y(1le
32 (30 contd)Y(®),Y(47),Y(1),Y(11),Y(12),Y(13),Y(14),Y(15),Y(1&)
35 INPUT"ENTER I.C7'S Y(17),Y(48),Y(3),Y(21),Y(22),Y(23),Y(24),Y(25),Y(Z2
37 (35contd)Y(17),Y(43),Y(3),Y(21),Y(22),Y(23),Y(24),Y(25) ,Y(2&)
40 R=3
45 RI=3
50 Y(10)=Y(?)
51 Y(12)=Y(17)
52 Y(31)=Y(11)
53 Y(32)=Y(12)
54 Y(33)=Y(13)
55 Y(34)=Y(14)
56 Y(35)=Y(15)
57 Y(3&8)=Y(1&)
58 Y(2)=Y(1)
5% Y(4)=Y(3)
&0 Y(al)=Y(21)
61 Y(42)=Y(22)
- 62 Y{(A3)=Y(23) -
63 Y(44)=Y(24)
&4 Y(45)=Y(25)
65 Y(46)=Y(26)
a6 Y(5)=Y(47)
67 Y(&)=Y(5)
&8 Y(7)=Y(48)
&2 Y(R)=Y(7)
70 Y(27)=9%.0
71 Y(33)=9.0
20 count=1
25 Z=0PENOUT"DAT1"
%0 FOR K=1 TO 1000000
100 Y(2)=(Y(LO)#EXP(—-1.5) )+R*0.77626%:3
110 Y(17)=(Y(18)*EXP(~1.5) ) +RI*0. 7762698
120 Y(2)=Y(1)
125 Y(4)=Y(3)
140 Ts=3.0
145 K=75=Ts
150 IF K=(count#*75) THEN GOTO 170
160 NEXT
170 PRINT:PRINT"time=" ;K
180 PRINT
185 PRINT"Y(2)=";:;Y(9),TAB(20),"Y(17)=":;Y(17)
190 Y(19)=Y(1)-Y(?)
200 Y(20)=Y(3)-Y(17)
210 X(1)=Y(47)
220 X(11)=Y(4&)
227 Y(5)=X(1)/255
229 Y(7)=X(11)/255
230 Y(29)=1/(1+(Y(2)*Y(2)+Y (4) %Y (4)+Y (&) *Y (&) +Y () *Y (2)+
235 (230contd)Y(10)*Y (10)+Y (12)*Y(13)))
240 Y(11)=Y(31)-Y(27)*Y (29)+Y(12)*(~-Y(2))
245 Y(21)=Y(41)-Y(32)*Y(29) %Y (20)*(-Y(2))
247 PRINT "Y(11)=";Y(11),TAR(20),"Y(21)=";Y(21)
250 Y(12)=Y(32)-Y(27)*Y(29)*Y(19)*(~Y(4))



J&
370
372
374
376
373
380
322
384
JE&

3 El [}
320
393
395
397
400
410
415
420
425
430
450
455
450
465
470
475
430
485
430
510
315
517

22)= Y(4R)~Y(SH)#Y(°”)*Y( 20) (=Y (4))
PRINT "Y(12)=";Y(12),TAB(20),"Y(22)=";Y(22)
Y(13)=Y(33)-Y(27)+Y(2 W)*Y(IW)*( Y(&))
5 Y(23)=Y(43) =Y (30)+Y (27)*Y (20)* (~Y(&))
PRINT "Y(13)=":;Y(13),TABR(20),"Y(23)=";Y(23)
Y(14)=Y(34)~Y(“7)#Y(QQ)*Y(lQ)*( -y (3))
Y(24)=Y(44)-Y(38)+Y(29)+Y (20)*(-Y(8))
PRINT "Y(14)=":Y(14),TAB(20),"Y(24)=";Y(24)
Y(15)=Y(35)-Y(27)*Y(2%)+Y (19)*Y(10)
Y(25)=Y(45)=-Y(32)+Y (29)*Y (20)*Y (10)
PRINT "Y(15)=";Y(15),TAB(20),"Y(25)=";Y(25)
Y(16)=Y(3&)~Y (2 7)#Y(29)*Y(19)*Y(l 1)
Y(Zé)=Y(46)~Y(3H)*Y(29)*Y(EO)*Y(IH)
PRINT "Y(1&)=":;Y(1l&),TAB(20),"Y(26)=";Y(26)
Y(47)=( (=Y (1)*Y(11))+ (=Y (3)*Y(12))+(~Y(5)*Y(13) )+
(300contd) (=Y(Z)¥Y(14))+Y(15)*Y(2)+Y(1&)*Y(17))
Y(48)=((~Y(1)*Y(21) )+ (-Y(3)*Y(22) )+ (~Y(5)*Y(23) )+
(320contd) (=Y (7)*Y(24))+Y(25)*Y(2)+Y(26)*Y(17))
Y(10)=Y (%)
Y(12)=Y(17)
Y(31)=Y(11)
Y(32)=Y(12)
Y(33)=Y(13)
Y(34)=Y(14)
Y(35)=Y(15)
Y(3&)=Y(1&)
Y{41)=Y(21)
Y(42) =Y (22
Y(43)=Y(23)
Y(44)=Y(24)
Y{(45)=Y(25) -
Y(46)=Y(28&)
Y(2)=Y(1)
Y(4)=Y(3)
Y(2)=y(7)
Y(&)=Y(5)
SX1=Y(47)
SX2=Y (413)
PRINT £2,Y(#),Y(17),Y(1),Y(3),SX1,SX2
count=count+l
Yin=&FCCO
Adrs=Yin
7Adrs=0:
X=7Adrs
Y(1)=10%X/255
Yin=&FCC1
Adrs=Yin
7Adrs=0:
X=7Adrs
Y(3)=10%X/255
PRINT"Y(1)=":Y(1),TAB(20),"Y(3)=";Y(3)
Esl=Y(1)-Y(?)

Es2=Y(3)-Y(17)
PRINT"Esl=";Esl,TAR(20), "Es2=";Es2
Sil=Y(47)

Siz=y(483)
PRINT"Sil=";Sil1,TAB(20),"Si2=";8i2



520 PROCDAL
530 PROCDAZ
540 NEXT

545 CLOSE £27
550 END

S60REM

570DEF PROCDAL
St0Uout=&FCC4
S90Adrs=Uout
00 Sid=Sil
&107Adrs=9Sid
e&20ENDPROC
A&30REM

&40DEF PROCDAZ
&50Uout=&FCCSH
&a0Adrs=Uout
470 Sid=siz2
&£807Adrs=8id
&J0ENDPROC



>L.
5

10

30
31
32
35
36
37
40
45
50
51
52
53
54
55
S6
57
50
59
&0
&1
62
63
&4
&5
&6
&7
&
&9
72
73
74
75
76
77
78
79
30
a5
20
100
110
120
125
140
145
150
160
170
120
125
170
200
201
202
203

#A4:TYPLICAL EXTENDED MIMO KREISSELMEIER & ANDERSON ALGORITHM
DIM X(100)

DIM Y(300) -

INPUT"ENTER T1.C"8 Y(9),Y(47),Y(1),Y(11),Y(13),Y(14),Y(15),Y(16&),
(30contd)Y(51),Y(S2)";Y(9),Y(47),Y(1),Y(11),Y(13),Y(14),Y(15),Y(18),
(3lcontd)Y(51),Y(52)

INPUT"ENTER TI.C’S Y(17),Y(42),Y{(3),Y(22),Y(23),Y(24),Y(25),Y(26),
(35contd) Y(&1),Y(&2) " Y (17),Y(43) ,Y(3),Y(22),Y(23),Y(24),Y(25),Y(28),
(3acontd)Y(&1),Y(&2)

R=4

RI=3

Y{(10) =Y (9)

Y(12)=Y(17)

Y(31)=Y(11)

Y(32)=Y(12)

Y(33)=Y(13)

Y(34)=Y(14)

Y(35)=Y(15)

Y(3&)=Y(18&)

Y(2)=Y(1)

Y(4)=Y(3)

Y(41)=Y(21)

Y (42)=Y(22)

Y(43)=Y(23)

Y(44)=Y(24)

Y(45)=Y(25)

Y(4&)=Y(26&)

Y(5)=Y(47)

Y(&)=Y(5)

Y(7)=y(43)

Y(a)=yY(7)

Y(&5)=Y(10)

Y(&6)=Y(18)

Y(49)=Y(2)

Y(50)=Y(4)

Y(53)=Y(51)

Y(54)=Y(52)

Y(£3)=Y(£1)

Y(&4)=Y(&2)

count=1

Z=0PENOUT"DAT2"

FOR K=1 TO 30075
Y(2)=Y(10)+EXP(~1.5)+R*0. 7768695

Y(17) =Y (12)+EXP(=1_.5)+R¥0. 7763695
Y(2)=Y(1)

Y(4)=Y(3)

T£=3.0

K=75=Ts

IF K=(count*75) THEN GOTO 170

NEXT

PRINT:PRINT" time=":K

PRINT
PRINT"Y(®)=";Y(?),TAB(20),"Y(17)=";Y(17)
Y{(12)=Y(1)-Y (%)

Y(20)=Y(3)-Y(17)

X(2)=X(4)¥0.75 +(Y(47)/255)+Y(2)
X(5)=X(&)%0.75+(Y(48) /255)+Y(4)

X(3)=1.0 + X(2) '



204 X(7)=1.0 + X(5)
207 Y(&3)=Y(al)/X(3)

208 Y(&4)=Y (62)/X(7)

200 IF ABS(Y(&3))<=0.05 THEN Y(&3)=0.0

210 IF ABS(Y(£4))<=0.05 THEN Y(£4)=0.0

211 IF Y(&3)>=0.05 THEN Y(&3)=Y(&3)-0.05

212 IF Y(£4)>=0.05 THEN Y(£4)=Y(£4)-0.05

213 IF Y(&3)<{=-0.05 THEN Y(&3)=Y(&3)+0.05

214 IF Y(&4)<=-0.05 THEN Y{(£4)=Y(£4)+0.05

215 Y(51)=1.2a73%(Y(2)~0.2231%Y(55))

216 Y(52)=1.2a734(Y(2)-0.2231*Y(55))

217 PRINT"Y(&£3)=";Y(&3),TAB(20),"Y(&4)=";Y(£4)

218 X(1)=Y(47)

220 X(11)=Y(4%)

227 Y(5)=X(1)/255

229 Y(7)=X(11)/255

230 Y(29)=1/(1+(Y(2)*Y(2)+Y(4)*Y(4)+Y(49)*Y(49)+Y(50)*Y(50)+
235 (230contd) Y(&)®Y(&)+Y(28)*Y(28)+Y(10)*Y(10)+Y (123)*Y(13)))
240 Y(11)=Y(31)~-Y(27)*Y(29)%Y(19)x(~Y(2))

242 Y(21)=0.0

245 PRINT "Y(11)=":Y(11),TAB(20),"Y(21)=";Y(21)

246 Y(12)=0.0

243 Y(22)=Y(42)-Y(32)+Y(2%)*Y (20)*(~Y(4))

249 PRINT "Y(12)=":Y(12),TAR(20),"Y(22)=";Y(22)

250 Y(51)=Y(53)-Y(27)#Y(22)*Y(19)*(~Y(49))

252 Y(&l)=Y(&3)-Y(32)+Y (22)+Y(20)*(-Y(49))

255 PRINT"Y(51)=":Y(51),TAB(20),"Y(&1)=";Y(&1)

256 Y(52)=Y(54)-Y(27)*Y(22)*Y(19)*(~-Y(50))

258 Y(&2)=Y(64)~-Y(33)xY(29)*Y(20)*+(~-Y(50))

259 PRINT"Y(52)=";Y(52),TAB(20),"Y{&2)=":;Y(&2)

260 Y(13)=Y(33)~Y(27)*«Y(29)*Y(19)* (=Y (&))

265 Y(23)=Y(43)~-Y(32)*Y(29)*Y(20)*(-Y(&))

267 PRINT "Y(13)=";Y(13),TAB(20),"Y(23)=";Y(23)

270 Y{(14)=Y(34)-Y(27)*xY(23)*Y(19)*(-Y(2))

275 Y(24)=Y(44)-Y(32)*Y(29)*Y(20)*(-Y(E))

277 PRINT "Y(14)=";Y(14),TAB(20),"Y(24)=";Y(24)

280 Y(15)=Y(35)-Y(27)%Y(29)*Y(1%)*Y(10)

205 Y(25)=Y(45)-Y(33)*Y (29)*Y (20)*Y (10)

287 PRINT "Y(15)=":;Y(15),TAB(20),"Y(25)=";Y(25)

290 Y(168)=Y(3&)-Y(27)*Y (29) Y (19)*Y (13)

295 Y(2e) =Y (4E)-Y(3I2) &Y (29) Y (20)*Y (13)

297 PRINT "Y(1&)=";Y(1&),TAB(20),"Y(26)=";Y(26)

300 Y(47)=((-Y(1)*Y(11))+(~Y(2)*Y(51))+(-Y(4)*¥Y(52))+(-Y(5)*Y(13))+
305 (300contd) (~Y(Z)*¥Y(14))+Y(1S)*xY(2)+Y(1l&)*xY(17))
320 Y((4e) = (=Y (I3)#Y(22) )+ {-Y(2)*Y (&1))+{(-Y(4) Y (&2) )+ (=Y (5)*Y (23) )+
325 (320contd) (=Y (7)%Y(24))+Y(25)*Y(9)+Y(2e)%Y(17))
342 Y(61)=Y(5%)-X(1)

344 Y(£2)=Y(e0)-X(11)

351 Y&5)=Y(10)

352 Y(s&)=Y(18)

353 Y(10)=Y (%)

356 Y(18)=Y(17)

360 Y(31)=Y(11)

362 Y(32)=Y(12)

363 Y(53)=Y(51)

364 Y(54r=Y(52)

365 Y(33)=Y(13)
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366 Y(34)=Y(14)
368 Y(35)=Y(15)
370 Y(36)=Y(1é)
372 Y(41)=Y(21)
374 Y(42)=Y(22)
375 Y(&3)=Y(&l)
376 Y(64)=Y (&2

377 Y(43)=Y(23)
378 Y(44)=Y(24)
Y(45)=Y(25)
Y(46)=Y(2&)
Y(42)=Y(2)

s

o0

380
30

363

334 Y(2)=Y(1)

385 Y(50)=Y(4)
326 Y(4)=Y(3)

388 Y=Y (7)

370 Y(&)=Y(5)

393 SX1=Y(47) /255

9
EL
Fa

SX2=Y(41) /255
396 PRINF £2,Y(9),YC17)F, Y(1),Y(3) ,SX1-,8X2 « ~--
400 count=count+l

410 Yin=&FCCO

415 Adrs=Yin

420 7Adrs=0:

425 X=7Adrs

430 Y(1)=10%X/255

450 Yin=&FCC1

455 Adrs=Yin

460 7Adrs=0:

465 X=7Adrs

470 Y(3)=10%X/255

475 PRINT"Y(1)=":Y(1),TAB(20),"Y(3)=";Y(3)
20 Esl=Y(1)-Y (%)

425 Es2:=Y(3)~Y(17)

490 PRINT"Esl=";Esl,TAB(20),"Es2=";Es2
510 Sil=Y(47) )

515 Si2=Y(48)

517 PRINT"Sil=";8i1,TAB(20),"Si2=";8i2

520 PROCDA1L

530 PROCDAZ

540 NEXT

545 CLQOSE £7

550 END

S&0REM

570DEF PROCDA1l

S&0Uocut=&FCC4

590Adrs=Uout

&00 Sid=Sil

&107Adrs=8id

&20ENDPROC

&30REM

&40DEF PROCDAZ2

&S0Uout=&FCCS

&&0Adrs=Uout

&70 Sid=siz2

&807Adrs=8id

&D0ENDPROC






