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Abstract

Internal waves around an oscillating source moving in a pycnocline are studied 

using small amplitude theory. The pycnocline dispersion relation is used with ray 

theory to produce the plan-view phase configurations. When the mean velocity of the 

source is small and the oscillatory frequency is low, internal waves move ahead of the 

body, A streamlined body moving and oscillating in a pycnocline, produced in a 

laboratory tank of stratified brine, together with a schlieren system are used to observe 

the plan-view shape of the waves. The theoretical and experimental wave systems 

compare well. The theory is also extended to produce the phase configuration for an 

accelerating and decelerating source.

The dispersion relation for surface gravity waves including surface tension 

effects is used to produce phase configurations of surface and capillary waves and these 

are compared with experiments in the laboratory.

The forces on a NACA 0012 wing with aspect ratio of 1.7, oscillating about its 

quarter chord and moving in a pycnocline, are compared with that of the wing in a 

homogeneous fluid. A semi-conductor type balance capable of measuring forces to one 

hundredth of a Newton has been designed and built for this purpose. When compared 

with a homogeneous fluid the average lift coefficients are lower in the pycnocline while 

the mean drag coefficients are higher.

Pycnocline waves around a moving wing in a wide pycnocline are studied 

experimentally. Both side-view and plan-view schlieren images of the waves are 

observed. The theory derived using the dispersion relation for stratified waves is used 

to explain the physics of the observed wave system.

Plan-view schlieren images of the pycnocline waves around the oscillating wing 

when the wing is at a fixed position in the pycnocline still show waves propagating 

away from the trailing edge even when the oscillatory frequency is higher than the 

natural frequency at the centre of the pycnocline. This is found to be due to the flow 

induced by the oscillation of the wing.

The behaviour of the wing tip vortices are studied experimentally using the 

schlieren system. The development of a vortex dipole due to the horizontal movement 

of the wing is also studied using dye visualisation. More flow visualisation of internal 

waves and the vortices around a wing are provided on the enclosed CD-ROM.

13



Declaration

No portion of the work referred to in the thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or other 

institute of learning.

Copyright

1. Copyright in text of this thesis rests with the Author. Copies (by any process) 

either in full, or of extracts, may be made only in accordance with instructions 

given by the Author and lodged in the John Rylands University Library of 

Manchester. Details may be obtained from the Librarian. This page must form 

pail of any such copies made. Further copies (by any process) of copies made in 

accordance with such instructions may not be made without the permission (in 

writing) of the Author.

2. The ownership of any intellectual property rights which may be described in this 

thesis is vested in the University of Manchester, subject to any prior agreement 

to the contrary, and may not be made available for use by third parties without 

the written permission of the University, which will prescribe the terms and 

conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Head of the Division of Aerospace Engineering.

14



Acknowledgements

The author would like to express his sincere gratitude to Dr. T. N. Stevenson for his 

guidance and advice throughout the period of research.

The author would also like to thank Dr. J. A. G. Aston of Defence Evaluation and 

Research Agency (DERA), Haslar, for instigating this research.

The advice and help from Dr. David Smith, the staff and the technicians at the Goldstein 

Aeronautical Research Laboratory in designing and manufacturing of the equipment for 

the experiments is deeply appreciated.

The discussions with Dr. A. K. O. Law have been very useful in the understanding of 

the research. Dr. Law has provided information from his research which is supported 

by Defence Evaluation and Research Agency (DERA), Farnborough.

The author would also like to acknowledge the Overseas Research Studentship from the 

Committee of Vice-Chancellors and Principals of the Universities of the United 

Kingdom (CVCP), the Postgraduate Research Scholarship from the University of 

Manchester and other financial support secured by Dr. T. N. Stevenson.

This research has been funded by the Defence Evaluation and Research Agency 

(DERA) and their support is gratefully acknowledged.

15



Preface

The author graduated with a First Class B.Eng. Honour's degree in Aerospace 

Engineering at the University of Manchester in July 1995. He started this Ph.D. 

research program with the School of Engineering, Aerospace Division from September 

1995.

16



List of Symbols

a Incidence angle o f  the wing

f3 Non-dimensional frequency o f  wave energy

Pf Non-dimensional oscillatory frequency

Ap Density difference across the pycnocline

At Time interval between data points

s Thickness o f pycnocline

Sx Strain o f  material

<i> Phase o f the wave energy

Equals to (cj) -  (|)o) or ((J)2 -  <J)0 + ©ft) where cj>0 is the initial phase and it is a constant

<j)r Phase shift o f  the wave energy at the caustic

y Defined as ±1

X Wavelength

^cw W avelength o f capillary waves

^ g w W avelength o f  gravity waves

^mws W avelength corresponding to minimum wave speed

Xs The second coefficient o f viscosity

[i Viscosity o f  fluid

Ms Background fluid viscosity + perturbation

0 The angle, measured anticlockwise from the positive x-direction, that the ray path makes with 
the horizontal

P Density o f fluid

P Density perturbation

P i Fluid with lower density, the upper layer o f  a pycnocline

P2 Fluid with higher density, the bottom layer o f a pycnocline

Pc Density at the centre o f pycnocline

Pew Density o f  the fluid at the level o f the wing in a pycnocline

Po Undisturbed background density

Ps Background fluid density p0 + density perturbation p

a Frequency parameter defined as UoVg'

X Surface tension

<; A unit vector vertically upwards

(0 Frequency o f  wave energy

a (o/Nc

CDf Oscillatory frequency

G)r Frequency o f  fluid relative to background for stratified wave theoiy

©rh Frequency o f  fluid relative to background for pycnocline wave theoiy

¥ Stream function

¥ The angle between the energy path and the positive x-direction in x-y plane.

a Acceleration o f  the source

bi Gradient o f  the curve for q0 vs q.

ba Value o f q0 when q, = 0

c Chord length o f  the wing

17



c Phase velocity for surface waves

Cow Phase velocity for capillary waves

C d Drag coefficient

c gw Phase velocity for gravity waves

c L Lift coefficient

d Deceleration o f the source
D Drag

E Non-dimensional parameter, defined as s/c
E Y oung’s M odulus o f  the material

Ea Limit o f  possible error

E 3 rss
Probable error

^Ny Nyquist frequency defined as half the sampling rate
Fr Froude number
Fr, Internal Froude number
cr& Acceleration due to gravity

G Non-dimensional parameter, defined as sN c2/2g

g' Effective acceleration due to gravity

GF Gauge factor or sensitivity o f the strain gauge
h Distance below the centre o f pycnocline

h Depth o f water

I Second moment o f area o f  the cross-section

J Defined as 1 — (yfflf / N j s i n  0 |)

K M agnitude o f wavenumber

K Non-dimensional wavenumber

k W avenumber

k x-component o f wavenumber k

K x Value o f  the x-component o f non-dimensional wavenumber K

K, Magnitude o f  the x-component o f wavenumber k

k 2 Value o f  the y-component o f non-dimensional wavenumber K
k 2 Magnitude o f  the y-component o f wavenumber k

Kf Reduced frequency

1 y-component o f  wavenumber k

L Lift

m Equals to 2n + 1

m z-component o f wavenumber k.

M Non-dimensional parameter, defined as sN c/U

Mx Bending moment

N Local natural frequency

n M ode o f pycnocline oscillation, defined by the number o f  times a vertical velocity profile 
changes sign

Nc Frequency at the centre o f  the pycnocline

N cp Num ber o f calibration points

P Pressure o f  fluid

Po Undisturbed background pressure

Ps Background fluid pressure p0 + pressure perturbation p

Q Velocity o f  source

di True value

18



q 0 Indicated value

R ],2 Distance from the origin

■̂ 1,2,3,4 Resistance o f  each arm o f  the W heatstone bridge circuit
Re Reynolds number

s Span o f  the wing

S q i Standard deviation o f  true value

St Strouhal number

t Time

T Non-dimensional time t

ta Time at which constant acceleration ends

TCR Temperature coefficient o f  resistance, defined as the percentage change in resistance o f  a 
strain gauge per 100 °F

td Time when constant deceleration starts

U Speed o f source

u x-component o f  velocity V

U b g Background velocity near to the trailing edge o f the wing

U c Constant speed

U f Final speed

U 8 Group velocity

U s Horizontal group velocity

us x-component o f group velocity ug

ugr Group velocity relative to the background flow

U gr M agnitude o f  ugr
Ugr x-component o f  group velocity ugr

U i Initial speed

U IUax M aximum speed

V Velocity o f fluid

V y-component o f velocity V

V e Non-dimensional group velocity

v g y-component o f group velocity ug

vin Input voltage

V o u t Output voltage

vp Phase velocity o f pycnocline waves

V p r Phase velocity o f  pycnocline waves relative to background fluid

W z-component o f velocity V

W8 z-component o f group velocity ug

Wgr z-component o f group velocity ugr

X Non-dimensional x

Y Non-dimensional y

19



1. Introduction

CHAPTER 1 

INTRODUCTION

1.1 General Overview
This thesis considers stably stratified fluids where the background density 

decreases with an increase of altitude. When a fluid element is displaced vertically it 

tries to return to its equilibrium position, overshoots and an oscillation is started. This 

oscillation translates into waves and the energy propagates away from the source of the 

disturbance. There are numerous studies of internal waves generated by a disturbance in 

different background stratifications. For two layers of fluid, there is a step change of 

density at the interface on which waves behave similarly to surface gravity waves. As 

the interface widens by diffusion or mixing, it becomes a pycnocline where the density 

distribution can be defined by a hyperbolic function. As the pycnocline continues to 

widen, after a long time, the distribution can approach a lineal' stratification.

The object of the research is to study the behaviour of the vortices and internal 

gravity waves produced by the motion of an oscillating, lifting wing moving in a 

pycnocline. Changes of incidence of the wing and accelerations of the wing in different 

stratifications with pycnoclines will be considered. The motion of the wing produces 

internal waves and the far field wave system can be modelled by a moving oscillating 

point source. The turbulent wake, the collapse of the turbulent wake and the trailing 

vortices can also produce internal waves.

If the incidence of a horizontal finite wing, which is not moving forward, is 

increased and decreased continuously in a homogeneous media then vortices are
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1. Introduction

produced. The work done in changing the incidence of the aerofoil produces the energy 

within the vortices and the energy decays by viscous dissipation. If the fluid is stably 

stratified then vortices will again be generated but will soon collapse to produce a mixed 

turbulent region that will spread out at its equilibrium level producing internal waves in 

the process. Some of the energy decays by viscous dissipation within the collapsed 

turbulent region but the internal waves will carry energy to the far field before the waves 

themselves are dissipated by viscous effect. However there is a further important 

feature. The oscillating aerofoil will produce oscillatory waves moving out from the 

aerofoil, taking away energy that has to be provided by the mechanism which is 

changing the incidence of the aerofoil. If the wing oscillates about the % chord position, 

this results in a small flow moving out from the trailing edge. Because of the Doppler 

effect this means that internal waves can take energy away from the aerofoil even if the 

oscillation frequency is above the natural frequency.

If the aerofoil moves at fixed incidence in a pycnocline, internal waves are 

generated by the collapsing trailing vortices and by the motion of the wing. The waves 

will move with the aerofoil’s body generated waves, and will remain in a wedge shaped 

region behind the aerofoil. If the aerofoil incidence is varying then two sets of 

oscillatory internal waves are generated which take energy to the far field. These 

oscillatory waves are not steady relative to the body and are from (a) the collapsing 

vortices and from (b) the oscillating pressure field. The force to change the incidence of 

the aerofoil would be expected to be higher in the stratified fluid because it is feeding 

energy into the waves of type (b) but it is not obvious that the type (a) waves will 

increase the force. However the drag of a moving body producing wave energy in a 

stratified fluid is not necessarily higher than that o f the same body moving in a 

homogeneous fluid. The drag of a horizontal circular cylinder can be less in a stratified 

fluid. This is a result of the wave system modifying the flow around the cylinder so that 

the boundary layer separation is delayed, resulting in a thinner wake with a lower base 

drag. So that, even though it is losing energy in producing a wave system the work done 

to move the body can be lower (Law 1999).

Impulsive movements of a body in a pycnocline will generate energy which 

propagates in all horizontal directions with a phase configuration, which in the plan- 

view, consists of concentric circles, A small amplitude theory for the phase 

configuration has been developed, hi the limit of the pycnocline becoming infinitely
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1. Introduction

thin, the mode zero pycnocline waves should become the deep water surface waves. 

This is certainly the case for the steady part of the wave system as these produce Kelvin 

ship waves in the limit. The impulsive and oscillatory waves spread out way beyond the 

narrow wedge shaped steady wave system.

1.2 Introduction to the research work

The present work investigates several aspects of internal waves produced by a 

wing moving within a pycnocline. They will be discussed mainly in chapters, 3, 4 and 

5. Chapter 2 reviews some of the important theories and previous work done by other 

authors.

In chapter 3, the pycnocline waves generated by an oscillating and moving body 

will be modelled as a point source. A pycnocline dispersion relation and ray theory will 

be used to plot two-dimensional plan-view wave systems. A vertical schlieren system 

has been set up to visualise the plan-view phase configuration of the waves. A slender 

body was used to generate internal waves in a thin pycnocline. The theoretical plots 

compare well with the experimental results. This theoiy is also extended to an 

accelerating and decelerating source. In the limit of a vanishingly thin pycnocline the 

theoiy produces interfacial gravity waves.

At a veiy high oscillatory frequency and relatively low velocity, surface tension 

waves can be observed experimentally on the free surface by the schlieren system. With 

surface tension included in the theory the agreement between theoiy and experiment is 

veiy good.

When a wing moves and oscillates in a pycnocline, the lift and drag forces acting 

on the wing are different from those of the wing in a constant density media. This is due 

to the presence of internal waves and the effects of stratification on the wing and on the 

trailing vortices generated. Chapter 4 describes how these forces are measured. A strain 

gauge balance attached to an oscillatory mechanism was designed. The voltage outputs 

from the strain gauges were fed into an analogue to digital converter and they are plotted 

onto the screen of a computer. The system is capable of measuring forces to a small 

fraction of a Newton. Due to the sensitivity of the gauges, signal processing using 

Matlab was used to filter off the electronic noise. A set of non-dimensional parameters 

is introduced so that the results can be presented in a meaningful way.
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1. Introduction

In chapter 5, a smaller NACA 0012 wing was manufactured to study the fluid 

motion and the internal waves generated when the wing moves horizontally and 

oscillates in a pycnocline. The way in which the vortices collapse to produce internal 

waves under these varying conditions is studied. Both horizontal and vertical schlieren 

systems were set-up so that both the plan-view and side-view waves could be seen 

simultaneously. One limitation is that the side-view schlieren can only be produced 

when the pycnocline is veiy wide or the density gradient is small. The images of 

internal waves produced by a wing fixed at an incidence angle will be shown. Near to 

the wing, the shapes of the waves are affected by the geometry of the wing. In the far 

field, these waves transform to the herring bone structure similar to the Kelvin ship 

waves except that the cusps along the path of the source do not finish at the source. The 

wing is also allowed to oscillate about its quarter chord with and without a forward 

velocity. For a stationary oscillating wing, in the near field, the side-view energy 

resembles that of a St. Andrew cross-wave centred at the trailing edge of the wing if the 

oscillatory frequency is less than the background natural frequency. The arms of the 

waves are curved due to the nonlinear background density. The plan-view consists of 

circular waves. Above the natural frequency, waves can still be seen emerging from the 

trailing edge of the wing.

The present study focuses on the waves generated by an oscillating moving 

source. Schlieren images are produced with the wing moving at different velocities and 

frequencies. Wavenumber surfaces are presented to predict any forward moving waves. 

For thin pycnoclines, only the plan-view schlieren images can be produced.

There is also a brief attempt to study both wing tip and trailing edge vortices in 

the stratified fluid by using the schlieren system and coloured dye. The vortices can be 

seen collapsing, creating internal waves. A vortex dipole due to the movement of the 

wing is also made visible using the dye. The data for the experimental images which are 

provided on the enclosed CD-ROM are given in table 5.6.

This work was financed by a DERA, Haslar Agreement to look for an instability 

in the flow which would reduce the drag of the oscillating wing. The total drag on a 

wing in stratified fluid has components such as profile drag, wave drag, viscous drag 

and induced drag. A paper by Gaponov-Grekhov et al (1983) indicates that at a high 

Froude number, gravity waves can help to reduce the drag. The paper considers an 

interface with two layers of fluid at different densities and the oscillating body is

23



1. Introduction

travelling horizontally at a vertical distance below the interface. This work was clarified 

by Peake (1996) and by Dr. J. A. G. Aston of DERA Haslar who instigated this 

research. A graph of Froude number against a frequency parameter a  has been provided

will be discussed in chapter 4.

In the next two sections, the fundamental equations, the assumptions and terms 

used throughout the thesis will be discussed.

1.3 The Vaisala-Brunt frequency

The Vaisala-Brunt frequency, N, is the frequency of a vertical harmonic motion 

of a fluid particle. It is also known as the buoyancy or natural frequency.

In an incompressible fluid, a fluid particle of density pG which is initially in 

equilibrium is lifted vertically a distance z. The background density at the new height is

p° + z~ j^ , where z is measured vertically upwards. The subscript o refers to the 

undisturbed background and is negative. The restoring force is,

to identify the unstable region where there is a possibility of a reduction in drag. This

z — x Volume x g 
dz

and results in a (mass x acceleration) term,

pn x Volume x — - .
d t2

Thus d2z __ g dp0 „
. -  z .

dt2 p0 dz

This is a simple harmonic motion with oscillatory frequency

( i .i )

24



1. Introduction

1.4 The equations

The flows are assumed to be on a sufficiently small scale that the effects of the 

earth’s rotation can be neglected. The equation of motion is

Ps i ? =Ps ( i + v -v ) v = - y p s - v a v ^ v ) + v ((2^ v ) - g ? Ps ( i .2)

i D 5  d d d i - - i -where —  = — hu —  + v -----1- w — , ps is the density, V is the velocity, t is the time, ps
Dt dt dx dy dz

the pressure, ps the viscosity, Xs the second coefficient of viscosity, g is the gravitational 

acceleration and q is a unit vector vertically upwards. The last term is the buoyancy 

force per unit volume.

The continuity equation is

^  + p V - V  = 0. (1.3)
Dt

Dps
For an incompressible flow V-V = 0 and equation (1.3) reduces 0= i-e- there is no 

change in density along a particle path.
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CHAPTER 2 

REVIEW OF PREVIOUS WORK

2.1 Introduction

In this chapter, the theory for both stratified waves and pycnocline waves will be 

revisited. Here stratified wave theory refers to the internal waves represented by a 

dispersion relation in the vertical x-z plane while pycnocline wave theory refers to the 

dispersion relation for pycnocline waves in the horizontal x-y plane. In section 2.2 

stratified wave theory results in the St. Andrews cross-wave which is a building block 

for the wave systems around moving bodies. Section 2.3 consists of a bibliographical 

review on stratified waves. The theoiy will be discussed again in chapter 5 together 

with the experimental results from an oscillating wing moving horizontally in a 

pycnocline. The theory and review of previous work on pycnocline waves is in section

2.4 and 2.5 respectively. The ray theoiy by Stevenson (1973) outlined in section 2.6 

will be used extensively with the pycnocline dispersion relation in chapter 3. Other 

dispersion relations related to surface gravity waves are discussed in section 2.7. They 

will also be applied with the ray theoiy to produce the phase configurations for both 

deep water surface waves and capillary waves in chapter 3.

Previous work on an oscillating wing will be reviewed in section 2.8. Most of 

the discussion will be on the various flows and vortices around a wing. This section 

will be relevant to chapter 4 when the forces on an oscillating wing in stratified fluid 

will be compared to those in a constant density fluid. There appeal's to be no previous 

published literature on the forces on wings in a stratified fluid. However some new
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unpublished finite difference results of Law (1999) will be compared with the 

experiments in chapter 4.

2.2 Stratified wave theory

A horizontal cylinder oscillating with frequency co in an incompressible, inviscid 

and non-diffusive stratified fluid with a background natural frequency N will produce a 

St. Andrew’s cross-wave. The wave energy is confined to the four arms which are 

beams of energy inclined at angles of 0 = ± sin_l(co/N) to the horizontal.

The equations are for a stationary fluid without background flow. The 

Boussinesq approximation will be used which neglects changes in the background 

density in the momentum equations except when multiplied by a gravity term. For an 

incompressible flow without solute diffusion there will be no change in density along a 

particle path and the continuity equation reduces to V*V = 0. The momentum equation 

(1.2) reduces to

( d V )
pa - r -  = - v P s-g?P s-  \ d t  J

After subtracting the background hydrostatic relations, and writing the pressure and

density perturbations as p  = ps -  p0 and p — ps -  p0, the momentum equation for a two-

dimensional flow in the x and vertical z directions becomes

du _ dp 
Po a" “  _  9x

. dw dpand p„ —  = - —  - p g .dt dz
The subscript o refers to the unperturbed background conditions. The continuity

du dw 
equation is —  + —— -  0 .

dx dz

The incompressibility equation = 0 reduces to

dp dp0
—  + w - ^ ^ O . 
dt dz
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A stream function \\j is introduced, u = *“  and w = which satisfy the continuity

equation. After the pressure and density gradient terms are eliminated, the momentum 

equation becomes

a 2v|/
v 2^  + n 2 =  0 .

5t2 5x2

A plane wave solution of the form \|/ = vj/0e,(kx+mz_trtt) is sought so that the dispersion 

relation takes the form

'  k 2 ^co2 = N 2
v k 2 + m 2 j

(2 . 1)

or co = ±Nsin0,

where 0 is the angle between the wave number vector and the vertical. The energy

5a) 5co
propagates at the group velocity, = [ug,w ], and forms a St. Andrew’s cross

5k 5m

whose arms are inclined at 0 to the horizontal.

When there is a background flow with a velocity distribution of [U, 0], then the 

velocity u is not necessarily small and is written as u = U + u' where u' is the velocity 

perturbation in the x-direction. The products of terms involving velocity u must 

therefore be retained in the momentum, the incompressibility and the continuity 

equations. The analysis follows that above and the dispersion relation becomes

r k 2((0f + U k )2 = N :
vk 2 + n r

This is the same result as that obtained by using the Doppler relation with the original 

dispersion relation (2 .1).

Nicolaou (1987) described how the three-dimensional dispersion relation with a 

vertically sheared background flow could be derived from the momentum equation to

give

03 -  kUbg + lVbl! + yNbg

k 2 + r
1/2

where y = ± 1
x k 2 + 12 + m 2 y

The two-dimensional version of this equation is used in section 5.3.
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2. Review of previous work

In a pycnocline where the natural frequency N varies with height, the energy 

does not travel in straight lines and reflections occur at a level where N = co. A 

pycnocline can be represented by the exp-tanh density profile

P(z) = P=exp ( - ^ t im l ( f ) (2 .2)

where p(z) is the density distribution, z is measured vertically upwards from the centre 

of the pycnocline where the conditions are denoted by the subscript c. pc is the density 

at the centre of the pycnocline, Ap is the maximum density difference across the 

pycnocline and s is the pycnocline thickness. The background natural frequency can be 

expressed as

where N =

N(z) =

' A V / 2gAp

dPo(Z)
1/2

>0(z) dz
= N„ sech (2.3)

£pc 2

The dispersion relation in equation (2.1) becomes

®2 = , = ( N(z))2sin2(9(z)) k + (m(z))
(2.4)

with k = [k, m(z)] and 0(z)is the angle that the ray path makes with the horizontal in a

frame of reference fixed in the background. 9(z) is measured anticlockwise from the 

positive x-direction.

2.3 Review of works on stratified flow

Mowbray & Rarity (1967) demonstrated that when a horizontal cylinder 

oscillates in a stable stratified fluid, a St Andrew’s cross-wave with the cylinder at its 

centre is produced. The visualisation of the internal wave pattern used a Toepler- 

schlieren system. The system produces a two-dimensional image and waves are 

represented by dark and light bands. Linear theory, which was outlined in the previous 

section, predicts the angle of the waves, but there is no width to the arms of the cross. 

By satisfying the boundary conditions around a finite sized cylinder, Hurley (1969) 

introduced an inviscid theoiy which produced arms of constant width. However this 

does not agree with the experimental image which shows the aims widening away from
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the source. A viscous similarity solution was introduced by Thomas (1971) which 

shows that the waves spread and the velocities are attenuated away from the forcing 

region.

Using Lighthill’s theory for dispersive waves, Stevenson (1968) described the 

internal waves generated by a travelling cylinder in a linearly stratified salt solution. 

Stevenson (1969) extended the experiments and theory to an oscillating body moving 

vertically through the solution. Later in that year, Stevenson & Thomas (1969) 

produced further results of the oscillating cylinder moving both horizontally and also at 

an angle to the horizontal. Stevenson (1973) introduced the ray theory that produced the 

phase configuration for a point source or a two-dimensional source moving in an 

arbitrary path with arbitrary speed using any dispersion relation. This theory will be 

discussed again in section 2 .6 .

Voisin (1994) applied the Green’s function to the generation of internal waves 

by a moving point source. Dupont and Voisin (1996) extended the theory to internal 

Waves generated by a translating and oscillating sphere in a fluid with constant natural 

frequency.

When a horizontal cylinder is oscillating in a pycnocline, internal waves similar 

to the St Andrew’s cross-wave are formed, except that the aims bend towards the 

vertical as the background natural frequency decreases or increases. Reflections occur 

at the caustics where the natural frequency is equal to the wave frequency. Ray theory 

breaks down at the caustics but the problem can be solved by introducing an Airy 

function which shows that a phase shift occurs (Lighthill 1967). Internal waves 

generated by a moving horizontal cylinder in a pycnocline are discussed by Stevenson et 

al (1986). Away from the source, Nicolaou et al (1993) showed how the trapped 

internal waves developed into pycnocline waves. The work was further complicated by 

the introduction of background shear and arbitrary stratification, Nicolaou & Stevenson 

(1997).
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2,4 Pycnocline wave theory

Stratified wave theory follows the energy as it moves through the pycnocline

reflecting at the upper and lower caustics.

These waves may be studied using the dispersion relation

to2 k 2 +  l2

N 2(z )  ~  k 2 +  l 2 +  m 2(z )  (  '5 >

where z is measured vertically upwards, N(z) is the natural frequency distribution and

[k, 1, m] are the [x, y, z] components of the wavenumber k, Bretherton (1966). This

involves following the ray paths as they curve towards the caustics and reflect back

towards the centre of the pycnocline. The horizontal wavenumbers, k and 1, are

constants and the vertical wavenumber m is a function of z, Bretherton (1966).

Alternatively the dispersion relation of Groen (1948) and Krauss (1966) can be used

with the pycnocline density distribution of equation (2 .2) and the expressions for the

natural frequency, equation (2.3).

The pycnocline theory implicitly selects the dominant wave numbers during the

derivation of a dispersion relation and effectively averages all the phase changes at the

caustics which occur in the stratified wave theory. The incompressible, inviscid,

equation for the vertical velocity perturbation w(z) together with the boundary

conditions form a Stium-Liouville system whose solution is in terms of eigenfunctions.

Krauss (1966) and Thorpe (1971) derived solutions for w in terms of hypergeometric

functions using the boundary conditions that co -» 0 as z —» ±oo. Solutions represent

trapped internal waves moving out horizontally and are valid for positive horizontal

wavenumber K which satisfies the dispersion relation

e2(n 2 - co2)k 2 -2tfieco2K - ( » ! 2 - l ) to 2 = 0 ,  (2.6)

where co is the wave frequency, m = (2n + 1) and the oscillation modes, n, are defined by 

the number of times a vertical velocity profile changes sign. The expression can be 

rewritten as

K S =  (l ^ 2 ) [ ” Q ± (Q2 +m2

Both co and K remain constant along a horizontal wave path. The mode zero wave, 

n = 0 , in the limit of the pycnocline becoming infinitely thin becomes an interfacial 

wave; all other modes have no meaning in this limit. The dispersion relation was

where (2.7)
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derived for two-dimensional waves stretching horizontally from - qo to + 0 0 . It will now 

be used to describe the way in which energy disperses in any horizontal direction in a 

pycnocline. The group speed in any horizontal direction from the point disturbance is

Ua mKs + m2-1 3
sNc (Ks)3 

with K being the wave number in that direction.

(2 .8)

2.5 Pycnocline waves around a moving point disturbance

When a pressure disturbance moves close to the interface between two layers of 

fluid with different densities, interfacial waves are generated. Experiments by Ekman 

(1904) showed that these waves which are responsible for the ‘dead water’ phenomenon 

can slow down ships. Hudimac (1961) considered a two layer fluid with a free surface. 

The free surface was represented by a solid boundary. He evaluated die wave drag by 

using a source distribution moving at a constant depth. Crapper (1967) used a pressure 

point moving over a fluid surface in a two layer fluid analysis. Both of them had shown 

that when a body moves in a two layer system the internal wave energy is confined to a 

V-shaped wedge behind the body. The total included angle of the wedge is 

9 = sin”l(l/Fr) where Fr is a Froude number. Many of the studies involving internal 

waves created by moving disturbances with constant horizontal motion assumed an 

inviscid incompressible Boussinesq fluid with diffusion neglected.

Sturova (1978) considered a two layer system with one of the layers stratified. 

Arshanaya & Stetsenko (1988) experimentally included a powered body under the 

stratified layer. The wave amplitudes in the stratified layer due to the disturbance in the 

constant density layer increased as the density step between the two layers was 

increased.

Over time, the step change in density across an interface will diffuse to form a 

pycnocline which will act as a waveguide that traps internal waves. Aksenov et al 

(1985) and Dokuchayev & Dolina (1977) studied trapped waves in a fluid with a 

constant natural frequency, N, bounded by solid horizontal boundaries. This is similar 

to three layers of fluid with a constant N centre layer bounded by constant density
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As the pycnocline thickness approaches zero, the zeroth mode solutions 

approach interfacial waves. This has been shown by Aksenov et al (1987, 1989), 

Dysthe & Trulsen (1989). Miles (1971) and Holliday (1981) use Green’s functions to 

study the three-dimensional waves from a moving body. Miles produced a far field 

solution for the dominant mode when the body is within the pycnocline and Holliday 

produced a solution when the body is at the edge of the pycnocline. When the source is 

within the pycnocline region the disturbances are the strongest. Internal waves of the 

lowest mode tend to dominate the centre while higher modes dominate towards the 

outer edges (Sturova & Sukharev 1981, 1983). Keller & Munk (1970) applied a linear 

asymptotic theoiy to produce the modes 0 and 1 wave shapes around a moving body but 

there are no transverse waves in their solutions.

Using the ray theoiy of Stevenson (1973) and the dispersion relation for 

pycnocline waves (equation 2.7), Nicolaou et al (1995) derived the plan-view phase 

configuration for internal waves generated by an accelerating body. This will be 

extended to an oscillating body in chapter 3.

2.6 Ray theory for a moving point source
Ray theory will be used to determine the waves from an impulsively started 

accelerating source in a pycnocline, Ray theory is a far field theoiy and is therefore 

limited to regions away from the source where non-linear effects are insignificant. 

However, in stratified internal wave problems, where comparisons have been made 

between ray theory solutions and experiments, good agreement was shown over the 

whole field except in the region very close to the body, typically to within three to four 

body lengths.

The theory for moving oscillating waves was provided by Stevenson (1973). 

This is now applied to the waves within a pycnocline.

The dispersion relation relating the frequency to the wavenumber components is 

(D = oo(k, 1, m) where co is the frequency of oscillation of the fluid, not of the source. The

Sco dm dm
group velocity ug is

0k 51 dm
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time ttime t.

lim e  t

vQ (t)

Figure 2.1 Co-ordinate system for ray theory.

Referring to figure 2.1, a body starts to accelerate with velocity Q(t) at time to. 

At time ti, the body will be at position A with velocity Qi. The energy of frequency to 

leaves A with group velocity ug. At a later time, t, the energy will be at position P. The 

distance of position P from the origin is given by r  = Ri + ug ( t - t i ) .

If (Of is a source frequency associated with forced oscillations of the body or 

vortex shedding from the body, then the frequency of oscillation of the fluid is given by 

the Doppler relation co = Of + Q| k. The subscript, refers to time tj, and the phase (j) of 

the energy at position P is given by (j) = (k- ug + (Of -  co)(t — ti) -(Oft + (j>o where k is the 

wave number vector and <j>o is a constant. This is rearranged to give

O
------------------  (2.9)
k - u g — co + (Of

where O = (<j> -  <j>o + (Oft) is a constant and the phase configuration is given by

0U
r = R , + - g-  (2.10)

k-u„ — co + cof

where 0  varies by 27t between successive crests or troughs. The equation for the phase 

configuration may be evaluated once the dispersion relation, group velocity and Q(t) are 

known. The radiation condition requires that t -  ti > 0. If the body experiences more 

than one frequency, then the overall wave system is obtained by superimposing the 

wave system due to each individual value of cof together with the wave system when 

cof = 0 .
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7 7 fii* »*fa/ UWI X(4V%/ TT«4TV^

The dispersion relation for surface waves is (Lamb, 1932)

cd2 = gK 1 +
tK 2

Pg
tanh(K/z), (2.11)

where t  is the surface tension and h is the depth of water of density p.

Deep water waves

When t  = 0 and Kh —> oo the deep water dispersion relation is obtained, co2 -  gK

, • TT dec g and the group speed is, u g = ^ .

Shallow water waves

When t  = 0 and Kh —> 0 the shallow water dispersion relation is co2 = g/?K2 and 

clco ghK
U dK co

Capillary waves

For short wavelengths, less than about 20 mm, gravity may be neglected and

■ , 2 T t 3̂ j t t  dco 3xK2with Kh -»  co, co = — K and UR = 777 = 7  .’ p g dK 2 cop

Woodhead (1983) presented phase configurations of waves from these 

dispersion relations for an accelerating body using the ray tracing method.

2.8 Flow over a finite span wing

There have been experimental, theoretical and numerical studies of unsteady 

flow over an oscillating wing, many of which are related to dynamic stall where the 

wing’s incidence is beyond the stalling angle. The experiments were usually conducted 

in a constant density water tunnel or in a wind tunnel. Various methods were used to 

visualise the flow around the wing. Among them Kim & Park (1988) and Park et al 

(1990) performed smoke wire visualisation of unsteady separation over an oscillating 

aerofoil in a wind tunnel.
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Koochesfahani (1989) investigated the vortical patterns in the wake of an 

oscillating aerofoil. Both sinusoidal and non-sinusoidal oscillations were considered. 

The velocity profiles in the wake were used to study the oscillation amplitude, frequency 

and the drag or thrust of the wing. He concluded that the pitching aerofoil can produce 

thrust at high frequency. The critical frequency at which an oscillating aerofoil will 

have no drag depends on the amplitude of the oscillation. The detail formation of 

vortices in the wake of a pitching aerofoil has also been studied by Wilder et al (1996) 

by measuring the wake of a NACA 0012 aerofoil in a water tunnel using a laser-Doppler 

velocimetry method.

McAlister & Can* (1979) have included a NACA 0012 wing oscillating between 

0 and 5 degrees in their hydrogen bubble visualisation experiments. They concluded 

that the laminar boundary layer in the dynamic case is thinner than the steady case where 

the wing’s incidence was fixed at 5 degrees. From the wake structure, the vortices are 

more pronounced in the dynamic case, indicating an increase in lift. Another related 

work on more advanced aerofoil sections was carried out by McCroskey et al (1981). 

Selected experimental results were further analysed and discussed by McCroskey & 

Pucci (1982). McCroskey (1982) included a general theoretical discussion on unsteady 

aerofoils.

Gad-el-Hak (1986) studied the unsteady flow around an oscillating wing in a 

towing tank using the dye-layer technique, which requires the fluid to be slightly 

stratified such that the layers of dye can stay stable. The wing was made to oscillate 

between 0 and 30 degrees. Rectangular, swept and delta wings, having sharp or blunt 

leading edges were used to study the unsteady flow field. For a NACA 0012 rectangular 

wing, the leading edge separation vortex rolls along the chord and the flow stays close to 

the wing surface. He also studied the effects of frequency on the interaction between the 

leading edge and the trailing edge vortices.

DeLaurier & Harris (1982) have studied oscillating wing propulsion over a 

Reynolds number range of 25,000 to 40,000 in a wind tunnel. The wing had a NACA 

0012 section and was pivoted at mid chord and was oscillated between -30 and 30 

degrees incidence. The single component balance was measuring only thrust using a 

parallelogram-beam strain gauge load cell which can be reoriented to measure lift. This 

arrangement is similar to the balance 2 in chapter 4 of this thesis. The effect of inertial 

force due to the pitching of the wing in their experiments appeared to be negligible. The
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experiments show that the average thrust may increase considerably with pitch 

amplitude and frequency.

There are some numerical and theoretical approaches carried out by other 

authors. Soviero & Bortolus (1992) introduced a vortex lattice method to calculate the 

unsteady pressure distribution on oscillating rectangular lifting surfaces in subsonic 

flow. Laha (1993) extended the vortex lattice method to several wings in small- 

amplitude oscillations. However both the works are primarily to find the pressure 

distribution on the wing. Mook & Dong (1994) have used panel methods to simulate 

wakes and blade-vortex interaction. This study also included fully attached flow past an 

oscillating two-dimensional NACA 0012 wing. The generated vortices in the wake are 

similar to those produced experimentally by Koochesfahani (1989).

In chapter 4, the work involving the forces on an oscillating wing in a pycnocline 

are primarily experimental. No other similar experimental data has so far been found. 

When a wing moves in a pycnocline, waves are generated by both the body and the 

wake. Sarpkaya (1983) conducted experiments to compare trailing vortices in 

homogeneous and stratified fluids. The results indicated that the vortices in stratified 

fluid rise only to a finite height. They soon decay into turbulence.
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CHAPTER 3 

WAVES FROM AN OSCILLATING AND MOVING 

BODY

3.1 Introduction

The ray theoiy discussed in section 2.6 will now be implemented throughout this 

chapter. Several computer programs were written to plot the phase configurations of 

pycnocline waves and surface waves by incorporating their dispersion relations with the 

ray tracing method. The various dispersion relations are given in section 2.4 and 2.7. 

The theory and its implementation will be discussed fully in section 3.4 and 3.5. 

Section 3,6 presents pycnocline waves obtained using a vertical schlieren system. This 

optical system, which is sensitive to density gradients, will record the waves as dark and 

bright bands. The details of the experimental set-up and the schlieren system will be 

described in section 3.2 and 3.3. The theoretical waves, plotted as dots, will be 

superimposed on the experimental schlieren photographs.

Lighthill (1978), has shown how the shapes of deep water gravity waves 

produced by a point source can be deduced from their wavenumber surfaces. This 

approach will now be extended to pycnocline waves in section 3.7. A new set of non- 

dimensional parameters will be introduced. In the limit where the pycnocline thickness 

approaches zero for the zeroth mode, the wavenumber surfaces will be the same as those 

of Lighthill. Lighthill did not evaluate the shape of the surface waves.

In section 3.8, one of the computer programs will also plot the phase 

configurations of an accelerating and decelerating source. The plots will be based on
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two of the experimental images in section 3.6. These comparisons will enable us to see 

how the phase configurations change by varying the acceleration or deceleration of the 

source.

The vertical schlieren was also used to visualise surface waves where surface 

tension is a dominant restoring force. These images will be compared with the 

theoretical phase configurations in section 3.9. Finally in section 3.10, the effects of 

increasing the source speed on the phase configurations of surface waves will be 

investigated. At low source speed, the wave system is dominated by ripples with 

extremely short wavelengths known as capillary waves. However at higher velocities, 

gravity waves with longer wavelengths will be seen to emerge. Capillary waves are also 

present at higher velocities. Surface tension is the main restoring force for waves with 

short wavelengths; longer waves are primarily gravity waves.

3.2 The experimental set-up

The model is a perspex slender body with a maximum width of 10 mm and a 

length of 27 mm. This streamlined model reduces the vortex shedding from the 

boundary layers. The experiments were in a towing tank of length 4.53 m, width 0.7m 

and depth 0.5m. In chapter 4, this tank will be used again for force measurement over a 

low aspect ratio wing. Both the experimental set-ups share the same oscillatory 

mechanism and trolley. A bent strut linked the model to a mechanism which oscillates 

the model vertically with a total distance of 5 mm. The whole mechanism rests on a 

trolley which runs on two polished metal rails. The trolley is driven by a motor via a 

belt and pulley system and its speed can be varied by a speed controller. The controller 

was calibrated by measuring the time taken for the trolley to move a fixed distance.

Flow visualisations were made using two schlieren systems through the perspex 

sections of the tank. These two systems will be described in section 3.3 although only 

the vertical schlieren system was used to produce the images in this chapter. Still 

images produced by the horizontal schlieren system will be shown in chapter 5 where 

some MPEG video clips of the motion of the waves provided by the enclosed CD-ROM 

will be discussed.
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3.3 Schlieren system

The schlieren system is the primary visualisation method for stratified flow 

because of its sensitivity to density changes. Mowbray used the technique to investigate 

the wave configurations of two-dimensional oscillatory and moving disturbances in 

linearly stratified brine, (Mowbray & Rarity 1967) and (Mowbray 1967). This method 

is now being used for unsteady waves around an oscillating body moving in a 

pycnocline. The steady motion is in a horizontal plane and the oscillation is 

superimposed on this. The two schlieren systems allow the plan-view and side-view 

images to be observed simultaneously.

Video cameras were preferred over still cameras because of their ability to 

demonstrate the motion of the unsteady waves relative to the source. However a 35mm 

still camera would have offered a much better image resolution. The video cameras 

used have a standard PAL resolution of 576 x 768 pixels per frame. Examples from the 

videos are on the enclosed CD-ROM but at a lower resolution.

A ‘C’ computer program, which uses the Mil graphic library supplied by Matrox, 

was written to capture the images via a video capture card installed in a computer. The 

program will allow nine frames to be captured each time at a resolution of 576 x 768 

pixels per frame.

3.3.1 Vertical schlieren

The video images in this chapter were obtained with a vertical schlieren system 

which shows plan-views of the waves. Figure 3.1 illustrates the arrangement of the 

system. From the bottom of the figure, a convex lens is used to condense the light from 

a halogen lamp. Filters must be used to reduce the intensity o f the light beam in order to 

prevent the photo-sensitive cell in the video camera from ‘burning o u f . A concave 

mirror with diameter 0.305 m and focal length 3.05 m reflects the light as a parallel 

beam. The mirror is front silvered to prevent double reflections. The parallel beam of 

light is then reflected upward through the perspex working section by a plane mirror 

with a thickness of 6.4 mm and dimensions of 0.46 m by 0.46 m. Another identical 

plane mirror, placed directly above, reflects the beam to a similar concave mirror which 

then brings the beam to focus on a vertical knife edge. The beam passes straight and 

parallel through the working section. Half the light forming the image on the knife edge
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is cut off and the rest enters the video camera which is focused on the working section 

of the tank. Any disturbance to the fluid, will cause the beam to deflect either onto or 

away from the knife edge and change the illumination of the image of the working 

section. The system will be sensitive to a disturbance which causes the light to bend in 

the directions normal to the knife edge. In the images, waves moving along the path of 

the body are more apparent. Video clip 48 in the CD-ROM shows a streamlined body 

with zero speed oscillating at 6.33 rad/s, circular waves were produced. With a vertical 

knife edge the waves of the same phase moving in opposite directions along the 

centreline of the tank appear opposite in tone. However if the knife edge is horizontal, 

then the waves moving across the tank in opposite directions will appear in opposite 

tone.

The strut that holds the model will produce waves on the free surface between 

the air and the water. Depending on the speed of the strut, either surface gravity waves 

or capillary waves will be produced. The parallel beam that passes through the working 

section will be deflected by both the internal waves and the waves on the free surface. 

The resulting image will have the free surface waves superimposed on the internal 

waves which is undesirable. In order to overcome the problem, a flat piece of perpex 

was positioned on the free surface over an area larger than the frame of observation. 

This eliminates any free surface waves from the image and allows only the internal 

waves to be recorded. If the perspex is not perpendicular- to the light beam, then the 

beam can be refracted. The perspex is levelled using a spirit level placed on its surface. 

The struts have to be bent to bring the model below the perspex. The strut is 

streamlined to reduce its disturbance; the vertical portion of the strut will not cause 

much disturbance unless the speed is high enough for vortex shedding to occur. These 

vortices tend to spread horizontally in a stratified flow and on the schlieren they will be 

superimposed vertically along the whole vertical portion of the strut and will therefore 

appear- strongly. Video clip 64 shows an example of the vortex shedding from the strut. 

The angle of the bend must be small to cause as little disturbance as possible to the 

stratified layers. The horizontal section tends to produce more disturbance to the fluid. 

However once the pycnocline becomes wide, the bent portion of the strut will produce 

internal waves. Examples of these are shown in video clips 50, 51,52, 53, 56 and 57. 

The schlieren experiments are thus limited to low speed and relatively thin pycnoclines.
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3.3.2 Horizontal schlieren

The pictures in chapter 5 were produced using the horizontal schlieren system 

which will show the side-view of the waves. The horizontal schlieren system was more 

difficult to set up due to the uneven bending of the light rays through the pycnocline.

Figure 3.2 shows the arrangement of the horizontal schlieren system. Like the 

vertical system, a convex lens is used to condense the light from a halogen vapour lamp 

onto a flat mirror. The image of the light source on the mirror should be about the same 

size as the filament of the lamp. This image will then act as a single source at the focal 

point of a concave mirror with diameter 0.203 m and focal length 1.83 m which reflects 

the light as a parallel beam. The parallel beam of light passes through the working 

section and is received by another similar concave mirror at the other side of the tank. 

Both mirrors are front silvered to prevent double reflections. If the fluid is linearly 

stratified, then the undisturbed density distribution will deflect the light rays downward 

by the same angle and a parallel beam will emerge. However with a pycnocline, the 

rays are deflected by different angles and this will distort the image. The problem can 

be solved by having a very thin working section or a weak pycnocline. The latter 

approach was adopted and it is common to wait for around three weeks for the 

pycnocline to widen. The waiting time can be reduced by having a smaller density 

difference between the top and bottom layers of the pycnocline when filling the tank. 

The distortion of the images during the experiments were minimal and this can be 

verified from the video clip 140s on the CD-ROM supplied. The second concave mirror 

has to be lowered and tilted to accept the beam. The beam is reflected to another plane 

mirror which then brings the beam to focus on a vertical knife edge. This plane mirror 

is needed due to the constraints on space in the laboratoiy. Like the vertical schlieren 

system, a vertical knife edge was used and half the light on the knife edge is cut off from 

the camera which is focused on the working section of the tank. Any disturbances 

within the working section will bend the light rays from their undisturbed positions and 

change the illumination of the image. This system is also more sensitive to waves 

travelling in the direction of the model motion. The waves of the same phase moving in 

opposite directions horizontally will appear opposite in tone.
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3.4 Theory

The dispersion relation for a pycnocline is given by equation (2.6) as 

£2 ( n 2 -  m2 ) k 2 -  2m£co2K -  (m2 -  l)co2 = 0 

where m = 2n + 1 and n is the mode of oscillation. This is rearranged as

„ (d<-K)‘ , , , (3.1)
(eK) + 2oteK + \m - l )

and the horizontal group speed Ug is

c?co co3 f  m2 —1
9K K 3N 2 ^ e2 + 8 j

(3.2)

When considering a moving body it is assumed that energy propagates from a

point with velocity u g =[ug,v g] and wavenumber k  = [k,l] with K = (k2 + 12)1/2.

From Doppler relation, co = cof + UjKcos^, it is possible for co to be negative when co s^  

is negative.

The co-ordinate system adopted for the phase configurations involves a body 

moving in a straight horizontal path as shown in figure 3.3a. At time t = 0 the body 

starts to move from point A with an initial speed Uj in the x-direction. The origin is at 

the centre of the body and the body moves in a horizontal plane [x , y]. At point B, 

energy of frequency co, radiated from the source travelling at speed U i, satisfies the 

Doppler relation co = cof + U  iKcos yr. From point B, this energy travelling with ug, 

reaches point C at time t2 and the phase at C is given by

<|>2 =  <|>0 +  (K U g -  C0)(t2 -  t i )  -  COftj.

(|)o -  CD ft i is the phase of energy as it leaves the source at B and (K U g -  co)(t2 -  fi) is the 

change of phase over this period. This is rearranged as 

tj>2 = <[)0 + (KUg -  co + cof)(t2 ~ ti) -  coft2 

and the time taken to travel from point B to C is given by

~t. = £ " * ■+<Dft* - (3-DK U  — co + cof

The co-ordinates of C are given by

(<D + toft 2)U8 cosjy (•■u /tvit + (<& + tOft2)U8simy
KU + o f -  co t  “  KU +cof -  co

(3.4)
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where d> = (<j>2 -  (j>o) varies by 2n between successive crests or troughs. The radiation 

condition implies that from equation (3.3),

0  +  CDf t 9
t _ t .   -----------^ — > 0 .
2 1 KUg -co + cu,

The C0ft2 has been retained so that at a later stage the Cauchy-Poisson waves can be 

made consistent with these waves. Referring to figure 3.3b, the speed of the body, U(t), 

and its distance travelled are evaluated during three different stages, (a) during a 

constant acceleration, a, (b) with constant speed, Uc and (c) with a constant deceleration, 

d.

(a) At t = 0, the body moves from origin A with initial velocity Uj, accelerates 

constantly to Uc in time ta. After time ft, when 0 < ti < ta, the velocity U(ti) and 

distance Ri from the A is given by

(  1 ^Tj(ta) = (U{ + aft) , R t = U jftt- —atf where Ri = length AB.
V 2 J

(b) During the constant speed stage, when ta < ti < td,

U(t,) = Uc =(U, +ata) . R ,= ^ t . (u „ + u 1)+u.(t1- t . ) j .

(c) When the body is decelerating, td < ti < t2,

U(tI) = (Uc +d( t1- t d)),

R, = h a(Uc + U i)+ U e(td - t . ) + i ( t ,  - t dX2Uc + d ( t , - td))

where the deceleration d takes a negative value. At time = t2, the body reaches the final 

velocity Uf. The distance of the body from the starting point is

R 2 + u l) + u c(td - t „ ) + i ( t 2 - t dX u c + u f )

where Uc, Uj, Uf, a, d, t2, are known. The time at which the acceleration ends is

ta = and the time when the deceleration starts is t d = — — . The
a d

input values of a and d must not be 0 to avoid any singularity. Ri is the distance of the

li * rbody from the starting point at time ft, i.e. R 1 = Ju(t)dt and similarly R 2 = jU (t)dt.
0 0

Thus the integral in equation (3.4) is R2-R 1.
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If the body starts impulsively, a -»  co and ta 0. For ta < ti < td,

U(ti) = Uc , R i = U ct! 

and for td < ti < %2 ,

U(t,) = (U„ + d(t[ -  td)),

R i = U ctd+ i ( t , - t dX2Uc+d(t1- t d)).

If the body does not decelerate, i.e. Uf = Uc, td = X2 and d 0 then U(ti) = Uc and 

R , = U . t , .

If the source starts impulsively from rest, then Cauchy-Poisson waves are also 

generated. These waves satisfy the dispersion relation, the group velocity equation, the 

radiation relation and are independent of cof, however they do not need to satisfy the 

Doppler relation. Impulsive waves are evaluated with ti = 0 and after time t2, the phase 

is given by (j> — (|>o + (KUg -  co)t2. The waves are circular waves with the centre at point 

A where the source moves impulsively. The radius is given by

—4>0 +a>t2 (tj) tj) q )u g
u gt2 = K KUg - 0)

The phase configuration for Cauchy-Poisson waves is given by

[x»y]=
cDUgCos^ l u ^ t   ̂ ± OUaj n g .

K U „ — co K U „ — co
(3.5)

where O = <j> — <t>o varies by 2n between successive crests and y a is the angle at point A 

measured anti-clockwise from the x-axis. Equation (3.5) can also be expressed as

x +  ju(t)dt9 + y 2 =
v

O U t &
K U „ - t o

\2
(3.6)
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3.5 Implementation of the theory

The dispersion relations of equation (2.6) together with those for surface waves 

in section 2.7 were used to write computer programs in ‘C5 using the ray tracing 

method. These programs allow the wave configurations of the oscillating moving body 

to be plotted and they produce graphic files in tagged image file format (tif), which can 

be edited using any image editor software. All the graphic functions are provided by the 

Matrox Mil graphics library.

Figure 3.4 shows the flow chart for the input parameters of one of the programs. 

The programs can plot deep and shallow water waves with or without considering the 

effects of surface tension, pycnocline waves or capillary waves. Further wave systems 

such as interfacial waves can be included as long as the dispersion relations are known. 

However this may increase the number of input parameters. The background is divided 

into 768 by 576 pixels with the origin at the top left hand comer o f the window. The 

scale of the waves has to be adjusted accordingly for each kind of wave. The capillary 

waves will have the smallest wavelength, followed by surface and pycnocline waves. It 

follows that the wavenumbers for capillary waves will be much higher than pycnocline 

and surface gravity waves. The difference in wavelengths will make it difficult to see 

the capillary waves if they are plotted onto the same scale as the surface gravity waves. 

This problem will be addressed in section 3.10.

Figures 3.5a to 3.5c show the flow charts involving the iterative processes. The 

program will plot oscillatory or non-oscillatory waves or both by altering the values in 

the cof loop. The iteration for the magnitude of the wavenumber, K, form the main loop 

where the frequency of the fluid, co, and the magnitude of the group velocity, Ug, are 

calculated from equations (3.1) and (3.2). The solutions for the pycnocline waves have 

K > 0. This condition arises during the derivation of the dispersion relation as already 

stated. For surface waves the condition is K ^  0.

The next loop is for phase which is set to iterate from -600te to 600tt with steps 

of 2n for pycnocline waves. This range may be much higher for capillary waves. 

Within this loop, Cauchy-Poisson waves are calculated from equation (3.5). They do 

not need to satisfy the Doppler relation and are only calculated once when (Of = 0 to 

prevent repetition.
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Several statements are included in the program to avoid singularities. Such 

statements include to ^  0, Ug ^  0 and (KUg-oo+cof) ^  0. The last statement is necessary 

in calculations from equation (3.3),

The radiation condition implies that, from equation (3.3), — ti) > 0 and tj > 0.

If this is not applied, waves will be evaluated corresponding to energy travelling towards 

the source from infinity. The Doppler relation, co = cof + UiKcosy/, gives the angle, y/s 

between the group velocity vector and the body path. This allows the co-ordinates of 

the energy to be obtained from equation (3.4). These co-ordinates will then have to be 

translated to screen position with the origin at the top left of the window. Any dots that 

are plotted outside the window will be discarded.

The pycnocline waves can have many different modes of oscillation as 

mentioned in section 2,4 while there are only mode 0 surface waves.

3.6 Comparison between experimental and theoretical phase 

configurations of pycnocline waves
The density and natural frequency distributions for the pycnocline are shown in 

figure 3.17. The body is at the centre of the pycnocline. The properties were measured 

at the begimiing of the experiments and they will vary slightly over a period of time 

during the experiments. The experiments were all done within the same day. As the 

pycnocline thickness increases, the time taken for the transition from ‘stratified waves’ 

to ‘pycnoclines waves’ will be increased. The theory uses only the two-dimensional 

horizontal pycnocline dispersion relation, therefore the theoretical and the experimental 

results will agree better if  the thickness of the pycnocline remains as small as possible.

Figures 3.6 to 3.21 show the theoretical phase configurations of pycnocline 

waves superimposed onto the experimental images, obtained from the vertical schlieren 

system described in section 3,3.1. These images are plan-views of an oscillating 

streamlined body moving in a pycnocline. The direction of travel is from left to right as 

indicated by the arrow. The position from which the body starts is shown by the yellow 

outline of the streamline body on the left of each picture. The green represents the 

oscillatory waves and the red are the non-oscillatory waves. Impulsive waves are 

represented by the blue circular waves centred at the point from which the body starts. 

The yellow represents the energy along the body path where the green oscillatory waves
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and the red non-oscillatory waves are superimposed on each other. A vertical knife 

edge was used in the schlieren system, so that if the waves moving towards the right 

appeal- dark then the waves of similar phase moving to the left will be of light tone. All 

the waves in the experiment appear to be mode 0 pycnocline waves.

The still images in the figures 3.6 to 3.21 are obtained from videos which have 

been converted to MPEG video files stored on the enclosed CD-ROM. These video 

clips show the directions and speeds of the waves but are of a lower resolution than the 

original videos. A full list o f the video clips is provided in section 5.10. The video 

clips from which the experimental images were captured, are listed in the table 3.1.

Figure number Video clip number
3.6 66
3.7 67
3.8 61
3.9 62

3.11 63
3.12 68
3.13 69
3,14 70
3.15 71
3.18 75
3.19 76

Table 3.1 The video clips corresponding to figures 3.6 to 3.19.

A typical characteristic of oscillatory pycnocline waves is that the green ‘herring 

bone’ waves are seen moving towards the body for most body velocities and 

frequencies. When one of them reaches the body it opens out as an oval shaped wave 

which grows away from the body. Depending on the speed of the source, some of them 

can move ahead of the source, which means the magnitude of the group velocity is 

higher than the speed of the source in the same direction.

The distance between each phase agrees well with the linear theory. The theory 

is for a point source and so the source position relative to the finite body is 

indeterminate. Moreover, near to the body, there will be vortex shedding and turbulent 

mixing. The theory is only valid in the ‘far field’ but there is certainly a similarity with 

the experimental waves quite close in to the body.
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The ‘steady wave’ system is stationary relative to the body and they are hardly 

visible in most of the pictures. In some of the pictures such as figures 3.10 and 3.11, the 

body reached a speed where some pseudo-steady waves can just be seen. These waves 

are not steady during acceleration. At this speed vortex shedding and turbulent mixing 

in the wake of the body will start to become prominent. To the left of the source another 

wave system, not accountable by the theory, can be seen in figure 3.18. These waves 

with smaller wavelengths are believed to be oscillatory waves generated by the vortices. 

They are relatively weak waves and are not visible in other figures. Some steady wave 

systems are presented on the CD-ROM but the steady case was studied extensively by 

Paonessa (1992).

The green oscillatory waves terminate as tangents to the circular impulsive start 

waves at two points. Transverse waves can be found between the two points replacing 

the impulsive waves. If the body had been travelling for an infinite time then the green 

oscillatory waves instead of terminating would continue out to infinity, except where 

transverse waves are present. One example of this is figure 3.6 where the body was 

given an impulsive start and moved for a relatively long time at a low speed.

The impulsive start waves are very weak and they are only just visible in some of 

the figures such as 3.11, 3,19 and 3.20. There is always a strong bow wave in the 

experiments which is not given by the small amplitude theory. The bow wave happens 

to be of the same shape as the first wave discarded by the radiation condition.

The pycnocline dispersion relation

s 2( n 2 - ( d 2) K 2 -  2w sq )2K  -{m 2 - l )  oo2 = 0 

can be rearranged as

K  = m(a~2 - i f  { 1 ± (m~2 +(l -  m~2) £T2) '1}

where Q = and K  = Ks. Nicolaou et al (1995) used this relation to produce the phase

configurations for a body accelerating in a pycnocline but neglected the negative sign 

because this corresponds to K  < 0. There will be solutions for K when H is both 

negative and positive. In the phase configurations generated by the 4C* program, the 

solutions generated by the negative Q. will appear* mostly in yellow because of the 

superposition of the green oscillatory and red non-oscillatory waves. Most of the green 

oscillatory waves have positive Q. The solutions from the negative part are confined to

49



3. Waves from an oscillating moving body

the narrow wake along the path of the body and the corresponding wavenmnbers are 

much higher. In practice, these waves are not visible in the experiments because they 

were destroyed by the wake of the source which is dominated by vortex shedding and 

turbulent mixing. In section 3.7, another set of non-dimensional parameters will be used 

to produce the wavenumber surfaces of the waves and their corresponding phase 

configurations.

3.7 Wavenumber surfaces and phase configurations

The equations in section 3.4 may be written in another set of non-dimensional 

quantities which will be used to produce wavenumber surfaces and phase configurations 

for pycnocline waves as well as surface waves and interfacial waves. The dispersion 

relation, equation (3.1), can be written as

K  = p

where K=
u 2k
sNt

Uco

m ±

sN,

1 +
m 2 —1 
P2M 2

1 / 2

(3.7)

2 , M = ”fr » P = Pf+ and K* = K lx +K^ where K x and K2U

are non-dimensional wavenumbers in the x and y directions respectively. T will be used

t N 2
for dimensionless time, T = . Equation (3.7) will be used to plot the wavenumber

surfaces with (3f = The value of the non-dimensional group velocity becomes

f  rjn * 2 2 1 A

P3 (3.8)V, =
mKM2 + m 2 - X s

K 3 M 2V

where V

Equation (3.3) becomes T2 — Ti = ~^rT— 7T and the radiation condition requiresA Vg—Aj

T2-T i > 0 where O = ((>2 -  4>o + PfT. If the body has been travelling for an infinite time 

at speed U the phase configuration, from equation (3.4), takes the form

0f  K   ̂X= V„—L- l
K

and Y = V ©
8 K  KVe - K t

(3.9)

(3.10)
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where X and Y have the body as origin and have been made non-dimensional with the

, u U2 length “^ 2 .

The wavenumber surfaces for some of the experimental images in section 3.6 are 

shown in figures 3.22 to 3.25. These wavenumber surfaces correspond to plan-view 

pycnocline waves produced by a body travelling from left to right. The surfaces 

represent only the top half of the wavenumber surfaces. There are at least two surfaces 

for each value of the frequency ratio p f corresponding to the ± p . Some smaller values of 

pf have extra oval surfaces near to the origin where the wavenumbers are small. These 

surfaces are part of the solutions with positive p . The legends show the value of pf. 

The branches on the right hand side of the figures have positive P and those on the left 

hand side have negative p . The regions where energy is to be found are given by 

Lighthill (1978). At a particular value of K, the normal to the dispersion relation 

wavenumber surface pointing towards higher pf, corresponds to the direction from the 

body at which that value of K  is to be found. All the normals toward higher pf point 

from right to left except in a region close to the origin where some curves have a 

component left to right. This indicates that there are waves forward of the body; within 

that closed region, on the K\ axis, the wavenumber surface gives waves directly ahead of 

the body on the x-axis.

The steady wave system has Pf = 0. In this case the two surfaces are symmetrical 

about the K.2 axis. Both surfaces give the same phase configurations which are 

stationary relative to the body. When Pf is not zero the two signs in the dispersion 

relation produce unsteady waves of different shapes which are superimposed on the 

steady wave system. The points of inflexion on the curves represent the cusps of the 

waves. Figures 3.26 to 3.28 showing phase configurations have the bodies travelling for 

a long time. The branches on the left with negative P have narrower wedges of waves 

behind the body. These waves become smaller with increasing M and pf. When the 

phases are negative, there is no wave for negative p because the radiation condition, 

T -  Tt > 0 , has not been satisfied.

The figures 3.22 to 3.25 are arranged in the order of increasing values of M. In 

the limit when M approaches zero, the wavenumber surface will be that of the deep 

water waves. The value of M is affected by the thickness of the pycnocline, the natural
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frequency at the centre of the pycnocline and the speed of the body. In all the cases 

shown here, the values of M are changed only by the speed of the source.

The range of K\ can be established from the condition K  > 0. If m = 1 (n = 0),

2 pequation (3.7) becomes K  -  — ^ — — > 0 , hence 6 ^ 0  and 1 -  (MB)2 > 0. The
1 -  (m  p )

Doppler relation gives (3 = Pf + K\ and Pf > 0. From 1 -  (Mp) > 0, K\ is given by

1
M y

1 A

M
 ---- 1- Pf < K x < -------Pf . For p < 0, Pf + K\ < 0 and K\ < -pf. Similarly for p > 0,

y
f  i

K\ > - p f. Therefore the range of K\ when p < 0 is — —  + pf I < jRT1 < —Pf and for p >
M

( l  \
0, the range is -  pf < AT, <  Pf . Given that K 2 = K? + K * , a range of values for

\M  J

K\ is used to obtain K2 .

3.7.1 Wavenumber surfaces and phase configurations (M = 0)
The wavenumber surfaces for a surface gravity wave generated by a source 

moving and oscillating are given by Lighthill (1978). These have been reproduced

U^K. U
using the non-dimensional terms K = ^  2 , p = 2 and M = 0. In the limit where the

thickness of the pycnocline, s —> 0, Nc —> 00 and sNc2 —> 2g. Hence M —> 0 and for the 

n = 0 mode, the non-dimensional dispersion relation, equation (3.7), with m = 1 reduces

to K  = 2p2 or K  = 0. For K  = 2p2, 002 = ■— = Kg which is the deep water dispersion

U2K
relation. In the definitions of the present non-dimensional wavenumber, K  = ~2g~5 an<̂

the frequency ratio, p = ^j~, there is a factor of two difference compared to Lighthill’s

J X- • • ,U 2k j  XJfo definitions ot ~~~~ and respectively.
& &

The natui'al frequency at the centre of the pycnocline is

n :
r2 gAp

PCg

p2 "h pf
Given pc = 2 Ap = p2 -  pi-
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2s(p2 -  Pi)
e(p2 + p , )  '

KcN2
Substitute this into co2 = ------   to give

2 _ t[-rr(p2 ~ Pi)00 — gR , .
(P2 + Pl)

which is the dispersion relation for interfacial waves Lamb (1932).

Figure 3.22 shows the wavenumber surfaces for a body travelling from left to 

right (in Lighthill’s book, the body is travelling from right to left). Lighthill does not 

show the shape of the waves. The phase configuration for the case when pf =0.125 is 

shown in figure 3.26a and b. Only 5 phases are shown and their values are shown in the 

legends. Broken oval waves with phases 2tt;, 4it and 671 can be seen around the body in 

the far field and they belong to the branches on the right hand side of the wavenumber 

surfaces with positive (3 and Vg. These waves, where energy is spread around the 

source, have high group velocity and large wavelengths. In the near field, there are two 

wedges where two sets of waves are contained. The waves within the larger wedge, 

with phases -4 ti and -2tt, belong to the branch on the right hand side of the 

wavenumber surfaces with positive p and Vg. Waves within the smaller wedge, with 

phases 2n, 4ti and 67t, are from the left branch with negative p and Vg. There is no 

solution for phases - 47t and -2 tt with negative p and Vg because the radiation condition 

has not been satisfied. At higher wavenumbers, the Kelvin ship waves for all phases 

end at the source.

3.7.2 Wavenumber surfaces and phase configurations (M = 14.49)

Figure 3.27a and b show the far and near field phase configurations for the case 

when M — 14.46 and pf = 0.02. The wavenumber surfaces for this value of M are shown 

in figure 3.23. The surfaces on the left have negative K\. They have large values of K  

that form a narrower wedge with tiny waves. These waves are shown in figure 3.27b 

and they have negative p and Vg. At higher values of Pf, these waves would have 

almost disappeared. The angle of this narrow wedge can be verified from the left 

wavenumber branch, which is almost perpendicular to the K\ axis, with its normal at the
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point of inflexion virtually parallel to the K\ axis. Again for this branch, there is no 

solution for waves with negative phases because the radiation condition is not fulfilled.

The waves within the larger wedge belong to the right branch with positive K\ 

and smaller values of K. They have negative phases but positive (3 and Vg. The positive 

phases form fast propagating long oval waves all around the source as shown in figure 

3.27a. They belong to the solutions with small values of K  very near to the origin in the 

wavenumber plot;

At the critical value of pf = 3.96x10~2, the curve crosses itself and above this 

value there are only two branches. There will not be any waves found ahead of the 

source for (3f > 4.15x 10~2.

The non-dimensional approach will allow the solutions with negative |3 to be 

seen more clearly by looking at the near field. As the values of pf increase, the waves 

associated with the branches on the left fill a narrower wedge relative to the wedge 

formed by the waves associated with the surfaces on the right. Figure 3.28a and b show 

the phase configuration for the case of pf = 4.5xl0“2. Comparing figure 3.28a with 

figure 3.27a, the oval waves have broken up. In the near field, figure 3.27b and 3.28b 

show that with increasing pf the relative angle of the two wedges formed by the right 

and left branches is now more prominent. In figure 3.28b, the tiny waves of herring 

bone structure can just be seen behind the source.

Figure 3.28 and figure 3.20 have the same values of M and Pf, except that the 

body in figure 3.28 has been travelling for a long time and the transverse waves are 

missing. Figure 3.28 and figure 3.26 represent an increase in the value of M from 0 to 

14.47. Notice how the relative angle of the wedges formed by the two branches with ±p 

has become significant with increasing M.

3.7.3 Wavenumber surfaces (M = 39.47 and 73.64)

Figure 3.24 and 3.25 are the wavenumber surfaces for M = 39.47 and M = 73.64 

respectively. The range of values of wavenumber, K, for oval branches become smaller 

with increasing M. This indicates that the general wavelengths for these fast 

propagating oval waves increase with M. As the value of M increases, the branches for 

the same values of Pf are displaced nearer to the Ki axis.
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3.7.4 Wavenumber surfaces and phase configurations (M = 0.75 )

A typical pycnocline in the ocean has a thickness of 100 m and a natural 

frequency at the centre of 0.015 rad/s. If a symmetrical body moves along the centre of 

a pycnocline then mode 1 steady waves are produced. However if a body oscillates in a 

vertical plane and moves at a horizontal speed of 2 m/s, then mode 0 pycnocline waves 

could be produced. If Pf < 0.125, then some of the waves will have a component in the 

direction where the body travels. Figure 3.29 shows the wavenumber surfaces for each 

of the cases. Above the critical value of 0.121 for pf, only two branches exist. The 

points of inflection on the curves represent the cusps of the waves (Lighthill 1978). It 

can be seen that the angles o f the wedges associated with the left curves become smaller 

with increasing pf. The angles are also smaller than the wedges associated with the 

curves on the right, except when pf = 0 where the curves are symmetrical and the waves 

are superimposed on each other.

The phase configuration of the waves produced with the body oscillating at 

increasing Pf are shown in figures 3.31. The body has been travelling for a long time 

with its direction of travel indicated by the arrow. The distance across each frame is 20 

km. The blue dots are the steady waves and the red dots are the oscillatory waves.

Figure 3.30 shows the wavenumber surfaces for n = 1. No waves are expected to 

be ahead of the body. The branches for the case of Pf = 0 is symmetrical about the K2 

axis and the branches for higher values of pf appeal* to be nearly symmetrical about the 

other smaller values of K\. The normals at the points of inflection indicate that the 

angle of the wedge formed by the two branches are about the same. An example of the 

kind of waves produced with the body oscillating at pf = 0.125 are shown in figure 3.32a 

and b, which confirm the analysis of the wavenumber surfaces.

3.8 Phase configurations of an accelerating and decelerating source

If the body accelerates slowly, then the pseudo-steady and oscillatory waves may 

be complete waves and not finish tangential to the impulsive waves. The impulsive 

waves can move ahead of the transverse waves. Nicolaou et al (1995) showed how the 

transverse waves developed relative to an accelerating body. However their analysis 

does not include any waves from an oscillating body.

55
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The body starts from rest with a constant acceleration of a = and reaches a
ta

maximum constant speed of Uc or Umax in time ta. Similarly, if the body is travelling at

Uc
Uc, before decelerating to rest after time, td, then d = The non-dimensional

id

acceleration of the body is ^  2, and d is negative.

The condition for the impulsive waves to move ahead of the transverse waves, if 

present, can be established by referring back to figure 3.3. The origin from which the 

impulsive waves spread out is moved to A with the positive x and y directions 

remaining the same as before. Given that equation (3.4) has c o s ^ =  1 and sin y/ = 0, 

with the Doppler relation ©f -  co = -U iK , the energy of the transverse waves along the 

body path can be found at

h y l
(®+ ooft,)U„ .
v ! 2'  f  + fu(t)dt , 0
K(Ue - U , )  J ^

at time = t2. The impulsive waves along the body path, from equation (3.5) with 

cos y/k = ±1 are given by

[x>yL =
ou„

± ------------- , 0
KUg -<o

The condition for the impulsive waves to move farther in the positive x-direction 

from point A than the transverse waves is

(0 + coft,)U„ '*r ®U„
±— 1— fu(t)dt < ----- 8

K (U ,-U ,)  I KU,

and cos y/^ = 1. The value of <f> is in multiples of 2%.

The circular impulsive waves are more likely to move ahead of the transverse 

waves at a low body speed and frequency of oscillation, ©f. Figure 3.33 shows a body 

accelerating from rest to Umax = 2.16x1 O'3 m/s having travelled for a distance of 104 

mm. There should be no impulsive wave for slow acceleration, however the impulsive 

waves are included so that the relative positions of the transverse waves can be seen. 

This kind of situation can happen when there is a jerk before the body starts to 

accelerate. This figure should be compared with the impulsive start case shown in 

figure 3.6 where no transverse waves are observed. The impulsive waves are seen to 

move ahead of the transverse waves at the early stage of the acceleration. Figure 3.34
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shows the case for a body which starts impulsively to U nlax = 2.16x1 O'3 m/s and 

decelerates to rest. The cusps of the waves are seen to be closer together; the circular 

wave near to the body has phase 2n, produced by the body when U f -»  0 m/s. Note that 

no transverse waves are present for a decelerating body. Two further slightly different 

cases are shown in figures 3.35 and 3.36. In figure 3.35, a body starts impulsively from

3 1rest to Umax = 2.16x10 m/s and then decelerates to ^ of its maximum speed. Figure

3.36 shows a body accelerating to U max = 2.16x1 O'3 m/s, travelling at U max for 16,9 s and

U c
then decelerating to . Both the features associated with acceleration and deceleration

can be seen. Figure 3.37 and 3.38 has the body accelerating from rest to U max and then 

decelerating to rest again. In figure 3.37, the body has a higher acceleration and a lower 

deceleration while the opposite case is shown in figure 3.38. The total distance travelled 

and U max remain the same for figures 3.33 to 3.38.

Figure 3.39 shows a body accelerating slowly to U max = l.lxlO"3 m/s in 19.9 s 

and figure 3.40 is the decelerating case with the body starting impulsively to l.lx lO '3 

m/s and then decelerating to rest in the same time. These figures should be compared to 

figure 3.10 where over the same distance and maximum speed, the body took 3.5 s to 

accelerate from rest. Figure 3.41 shows a body starting impulsively to U max and then

decelerating to in a total of 14.9 s. Figure 3.42 shows the case for a body taking 

4 s to accelerate to U max, travels at U max for 3.5s and then decelerates to in 6 s.

3.9 Waves due to surface tension

The ‘C5 program used to produce the plan-view phase configuration of 

pycnocline waves using the ray tracing method (Stevenson, 1973) can also be used to 

produce ripples, shallow water waves, deep water waves and any other wave system 

provided the dispersion relation is known. Ripples are produced when surface tension is 

more significant than gravity in restoring the flatness of the water surface. They are 

defined as waves with wavelength less than 0.07 m. The ripples with even shorter 

wavelength of less than 4 mm are known as capillary waves. These waves can be
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excited with frequencies of more than 70Hz but are often difficult to see. They have 

extremely high wave speed and suffer rapid attenuation.

Experiments involving ripples produced by an oscillating and moving body are 

presented in figures 3.43 to 3.47. The ripples were generated by a vibrating thin steel 

wire positioned just touching the surface of the water. For experiments involving a 

lower frequency o f oscillation, a slender body on the water surface was attached to the 

end of the wire so that waves of larger wavelength could easily be produced. The wire 

was linked to a 15 watt speaker which was attached to the trolley that moves on two 

metal rails above the tank. This tank is the same tank as that described in section 3.2 for 

the visualisation of pycnocline waves. The oscillatory mechanism previously used to 

generate pycnocline waves was replaced by a frequency generator (TWG 501). The 

generator is capable of generating square, sine and saw-tooth signals, and it has a range 

of 0.01 to 107 Hz. Only sine wave oscillations were used in the experiments. The 

signals from the generator were also fed into a Hewlett Parkard digital oscilloscope in 

order to monitor the actual frequency and the stability of the sine wave patterns. It was 

often more difficult to generate a stable low frequency sine signal due to the frequency 

response of the speaker. However this was later achieved by attaching a heavier body to 

the end of the wire or adding mass such as plasticine to the wire. There was no problem 

achieving frequencies higher than 15 Hz but frequencies close to those associated with 

the movement o f the trolley should be avoided to prevent any resonance.

The same vertical schlieren system as described in section 3.3.1, for the 

visualisation of pycnocline waves, was used to observe the ripples. The only 

modification was to remove the piece of perspex, which previously eliminated the 

surface waves.

The phase configurations generated by the program are shown next to each 

individual experimental image. The distance horizontally across each frame is 0.222 m. 

The total time in seconds, as an input to the program, is 35 x final speed of the source in 

m/s. The source took just 15% of the total time to accelerate constantly to its final 

speed. The depth of the tank is 0.46 m and the density of the water is 998 kg/m3. 

Surface tension for pure water should be 0.074 N/m, but during the experiments, it was 

found that surface contamination has lowered this value considerably. The estimated 

value of the surface tension is 0.048 N/m for figures 3.43 and 3.44. For figures 3,45 to 

3.47, the surface tension is lower at 0.045 N/m.
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The ripples shown in all figures are not pure surface tension waves. The 

dispersion relation used to produce the ripples is for surface waves on water of arbitrary 

but uniform depth. This equation is shown in section 2.7 as

f  - t / 2 A
co2 = gK 1 xKJ1 + -----

v
tanh(K^)

PS .

where t  is the surface tension, p is the equilibrium density, K is the magnitude of the 

wavenumber, co is the frequency experienced by the fluid, g is the acceleration due to 

gravity and h is the height of the tank. For most of the range of wavenumbers

co I xKencountered, Kh -> oo and tanh(K/z) —> 1. The wave speed, ^  + - — . Lighthill

(1978) has illustrated the existence of a minimum wave speed during the transition

271
between capillary waves and gravity waves. Given that the wavelength, X = , it can

GY/2be shown that the minimum wave speed occurs when Xmw =2n\ —  . The subscript
vpgy

‘raws’ stands for minimum wave speed. For pure surface tension waves, the wavelength 

X must be small compared to ^mws. For pure gravity waves X has to be large compared 

with X,mvs- For surface tension of 0.048 N/m and 0.045 N/m, the corresponding A,mws are

13.9 mm and 13.5 mm respectively. In all of the figures, a wide range of wavelengths is 

observed. This means that the experimental phase configurations cannot be accurately 

reproduced by using either the dispersion relation for capillary waves or deep water 

waves alone. Indeed, the range of wavelengths seen is around the transition between 

waves dominated by surface tension and gravity.

The assumption is that the experimental images consist of waves where surface 

tension is the main restoring force, but gravity cannot be totally ignored. This analysis 

has yielded remarkable agreement between the experimental images and the theoretical 

phase configurations. It is now interesting to see how the wave system progressively 

changes from a system dominated by surface tension to waves due to gravity. The next 

section will discuss how the waves produced by a body change with increasing speed; 

they change from capillary waves to surface gravity waves.
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3.10 Surface waves produced by a moving body

When analysing surface waves or interfacial waves, gravity is commonly seen as 

the only restoring force for the fluid elements to return to their equilibrium positions. 

With the addition of surface tension, the deep water dispersion relation is altered and 

waves of very short wavelength known as ‘ripples5 are produced. In fact, the addition of 

surface tension has a similar effect to increasing the acceleration due to gravity. In this 

section, the wave systems of a moving body will be produced by using the following 

two dispersion relations given in section 2.7:

, f  xK2 ^
® = g + - K

P

for deep water waves with surface tension

and co2 - g K

for deep water waves without surface tension.

$CD
From the dispersion relation without surface tension, the group velocity, ~ , is

half the magnitude of the phase velocity, c = ^  . The group velocity for capillary waves

is 1.5 times its wave speed. For a steady moving source without oscillation, the pure 

gravity wave crests can move at the maximum speed, equal to the speed of the source, if 

they are moving along the same path as the source. Otherwise the wave speed is given 

by Ucos y/ where i//is the angle between the direction of propagation of the wave and the 

direction of the source moving at speed U. This means that there can be no pure gravity 

waves ahead of the source. The shortest capillary waves near the body path can be 

moving ahead of the source. It is interesting to note that the fastest moving gravity 

waves have the longest wavelengths while the fastest capillary waves have the shortest 

wavelengths. This implies that for waves with wavelengths somewhere between that of 

pure gravity and capillary waves, there is a wavelength which corresponds to a 

minimum wave speed. The expressions for the wavelengths of gravity waves and

2t c t
capillary waves are X - - — c2 and X —— respectively. The subscripts ‘gw5

g P̂ cw

stands for gravity waves and ‘cw5 means capillary waves. From the Doppler relation,

— = U c o s ^ , and increasing the source speed will increase the maximum wave speed. 
K
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Putting this together with the equations for wavelengths, it can be seen that the 

wavelengths of the gravity waves will become longer while the wavelengths for 

capillary waves will become shorter with increasing source speed.

With the help of the computer program, it is now convenient to investigate the 

significance of the two restoring forces on the wave systems produced by a moving 

source. Wave systems for an oscillating and moving source will also be shown. These 

will differ slightly from the above discussion due to the frequency term in the Doppler 

relation.

The depth considered is 1000 m and the surface tension, when applicable, is 

0.074 N/m. The total time of travel is (4xbody speed) seconds and the distance in 

metres across each frame is 1.2 x body speed(m/s) x total time(s). The acceleration

■ 1 • •  ̂ 4xbody speed . 2
takes up ^ of the total time and is given by —^ ta l time— s' F i g u r e  3.48a to c show

the steady wave systems produced by a point source moving with a speed of 0.5 m/s. 

The directions of travel for all figures are indicated by the arrows. Only the first 20 

waves are shown in 3.48a and b. Figure 3.48a includes the effect of surface tension 

whereas in figure 3.48b, the surface tension is excluded. At this speed, the wave system 

is dominated by ripples and therefore figure 3.48b is an unrealistic representation. As 

the ripples can be very close together for higher wavenumbers, it is necessary to plot 

only one wave out of eveiy 20 waves up to the 400th wave in figure 3.48c to show the 

overall shapes clearly.

When the body speed is increased to l m/s, comparing figure 3.49a and 3.49b, 

this reveals a transition of ripples to Kelvin ship waves, at least for the first 7 waves. 

Figure 3.49c show that the ripples exist for the next 1000 waves, but note that there are 

now 50 waves between every 2 drawn. In figure 3.50a, the waves can be easily 

identified with the Kelvin ship waves shown in figure 3.50b. In figure 3.50b, the waves 

are expected to finish at the source, while in figure 3.50a they are not likely to do so. 

This is not obvious as the ripples are superimposed onto the longer waves, but the same 

effect can be easily seen by comparing figures 3.49a and b. In figure 3.50c, each ripple 

now has 500 waves between them. At 5 m/s, figure 3.51a shows almost identical 

Kelvin ship waves as in figure 3.51b, except for the extra wedge shaped waves near the 

body path which is due to the surface tension effect. Figure 3.51c shows that ripples 

still dominate at higher phases, but they are now more swept back. Figures 3.52a to c
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show the similar cases for U = 15m/s. From figures 3.50 to 3.52, the gravity waves are 

restricted to the first few phases of the wave system.

Impulsive waves are not shown here because the waves are too close together 

near the starting point and cannot be clearly presented using the same scale. The 

transverse waves are superimposed onto the impulsive waves, at least at the early stage 

of the acceleration. If the body starts impulsively, then the steady waves finish at the 

tangent to the circular impulsive waves.

The surface wave systems of an oscillating and moving body differ from the 

steady wave system by the addition of a frequency term in the Doppler relation,

oo = cof + UK cos \f/ . The wave speed is c = — = + U cos and now depends on the
K K

wavenumber, frequency of oscillation and the speed of the source. For lower values of

GOf
jT 9 the wave system will look like the steady wave system. The group velocity for

gravity waves, as mentioned before, is half that of the wave speed. For any gravity 

waves to be ahead of the source, the magnitude of the group velocity must be greater

1 (  ^than the source speed. This is equivalent to U g = — —-  + Ucos^y I > U , hence
2 V K  )

—  > (2 -  cos y/)\J , and along the body path, the condition becomes —  > U . This is 
K K

only possible for very low values of K which correspond to very long waves. Examples

of this kind of wave are the oval waves around the source as seen in figure 3.26a. The

group velocity of capillary waves is 1.5 times the wave velocity, and the corresponding

condition for any waves ahead of the source is ^ L > _ U which will be satisfied at all
K 3

positive K.

Figures 3.53 to 3.57 show the oscillatory waves with the same range of velocities 

as in figures 3.48 to 3.52. The frequency of oscillation is 2 Hz and for each phase there 

appear to be two waves as clearly shown in figure 3.53b and c. This suggests that if 

wavenumber surfaces are to be plotted, there should be two branches for each value of 

(Of and the source speed. Notice that each set of two capillary waves of the same phase 

ahead of the source is closer together as compared to those behind the source. As the 

speed of the source increases, the two waves appeal' to be superimposed onto one
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another and the capillary waves look almost identical to those of the steady capillary 

wave system at the same speed. This phenomenon can be explained from the dispersion

relation c = ~  = —  + U cos w . As the waves ahead of the source are waves of very 
K K

COfhigh wavenumber, the term becomes very small, hence the capillary wave system will

look similar to that of the steady wave system. For waves with smaller wavenumbers, 

especially those that are affected more by gravity than surface tension, each phase gives 

two completely different waves. The wavenumber surfaces for deep water gravity 

waves are shown in figure 3.22. They are the solutions for the pure gravity waves 

shown in figures 3.53b to 3.57b. As the speed of the source increases, pure gravity 

waves with larger wavelengths and pure capillary waves with very short wavelengths are 

produced. This has a de-coupling effect which differentiates the two wave systems as 

seen in figures 3.55a to 3,57a.
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Video or still cam era

Knife edge

C oncave front silverred mirror

C oncave front 
silverred mirror Working section with 

density stratification

Filter to reduce the 
intensity of the light beam Bottom plane 

mirror

Light beam  from a halogen lamp

Convex lens

Figure 3.1 Vertical schlieren system.
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Figure 3.2 Horizontal schlieren system.

65



V
el

oc
ity

 
/m

/s

3. Waves from an oscillating moving body

Start 
at t = 0

body 
at t = t

energy 
c  at t = t,

U(t)
body X 
at t = t2

Figure 3.3a Co-ordinate system for a body moving in a straight horizontal path.

Stage (a), t Stage (b), t Stage (c), t
T im e /s

t

Figure 3 .3 b  Evaluation o f  U (t,)  and R, for an accelerating and decelerating  body
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Input co,, initial velocity, 
constant velocity, final 
velocity, acceleration, 
deceleration, time of 

travel.

Input type of waves Thermocline wave; Surface wave:

rnput depth, 
density, surface 

tension, 
acceleration due 

to gravity.

Input Nc, e, mode 
of oscillation

Input range ofK 
and phase

Input range ofK 
and phase

Input scale and 
size of the source

Input scale and 
size of the source

Input the 
position of the 
source in pixel 

location

Start of program

Figure 3.4 Flow chart for input parameters.
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No, next K

No, next K Is co * 0 ?

Yes

Yes

No, next

Is <of * 0 ?No

Is mode = 0 ? No

Yes
Yes

Is KU - © + co, *  0 ?

Iterate phase

Steady or oscillatory 
waves, iterate cof.

Calculate impulsive 
waves

Iterate K

Plot mode 0 
impulsive waves

Calculate group 
velocity, U

Plot mode 1 
impulsive waves

Calculate co from the 
dispersion relation

Yes, calculate t - 1,

I
Figure 3.5a Flow chart for the main program.
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No Next phase
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No Next phase
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No Next phase
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Is cos  ̂  between -■ 
and 1 ?

Calculate sin y/

Calculate c o s^  from the 
Doppler relation

Calculate U.,, R1 at t, and
R2 2̂*

Calculate t - ^

Iterate ± sin y/

Calculate t,

Calculate x and y

Calculate pixel position 
relative to the top left corner 

of the window

Plot the waves

I

Figure 3.5b Flow chart for the main program.
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Next sign for ±sin^  
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Is m ode = 0 ? No
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Is <of = 0 ?----- No Is to, = 0 ? No
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Plot point for 
oscillatory w a v e s
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Next K
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Plot the start and final 
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Next sign for the ± sign  
in the dispersion relation

Next ph ase

Figure 3.5c Flow chart for the main program.
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Uj =  0 m/s, Uf = 2.16 mm/s. a = 0.22 m/s2, ta = 0.01 s, t2 = 48.2 s. R2 = 104 mm, M =  73.64 and pf = 0.012.

Uj = 0 m/s, Uf = 3.85 mm/s. a = 0.38 m/s2, ta = 0.01s, t2 = 28.4 s. R2 = 106 mm. M = 41.31 and pf = 0.021.

Figures 3.6 and 3.7. Plan-view mode 0 waves produced by an oscillating body moving 
horizontally in a pycnocline. Both pictures show impulsive starts from rest. The blue 
lines are impulsive waves, green lines are oscillatory waves and red & yellow lines are 
steady waves. Nc = 7.23 rad/s, c = 0.022 m, ©f = 6.38 rad/s.
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Uj = 0 m/s, Uf = 4.03 mm/s, a = 2 .0x10‘2 m/s2, ta = 0.2 s, t, =  25.9 s, R; = 104 mm. M =  39.47 and pf = 0.022.
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U, = 0 m/s, U f=  7.6 mm/s, a = 2 .5x10’3 m/s2, ta = 3 s, t2 = 16.8 s, R2 = 116 mm. M = 20.93 and pf = 0.042.

Figures 3.8 and 3.9. Plan-view mode 0 waves produced by an oscillating body moving 
horizontally in a pycnocline. The blue lines are impulsive waves, green lines are 
oscillatory waves. The red lines for figure 3.8 are steady waves but in figure 3.9, they 
are pseudo-steady due to acceleration. Nc = 7.23 rad/s, s = 0.022 m, cof = 6.38 rad/s.
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Uj = 0 m/s, Uf = 11 mm/s. a = 3.1x10° m/s2. ta = 3.5, t2 = 11.7 s, R2 =  109 mm. M = 14.46 and pf = 0.061.

Uj = 0 m/s. Uf = 14.4 mm/s, a = 3.2x10"3 m/s2, ta = 4.5 s, t2 = 11.6 s, R2 = 134 mm. M = 11.05 and pf = 0.08.

Figures 3.10 and 3.11. Plan-view mode 0 waves produced by an oscillating body 
moving horizontally in a pycnocline. The blue lines are impulsive waves, green lines 
are oscillatory waves and red lines are pseudo-steady waves because of acceleration. 
The arrow shows the direction of travel. Nc = 7.23 rad/s, e = 0.022 m, (Of = 6.38 rad/s.
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; *1^1

Ui = 0 m/s, Uf = 2.16 mm/s, a = 2.0x 1 O'3 m/s2, ta = 1.1 s, t2 = 42.1 s, R2 = 90 mm. M = 73.64 and pf = 1,065x 10’2.

Uj = 0 m/s, U f=  3.85 mm/s, a = 1.3x1 O'3 m/s2, ta = 2.9s, t2 = 29.8 s. R2 = 109 mm. M = 41.31 and pf = 1.9x10

Figures 3.12 and 3.13. Plan-view mode 0 waves produced by an oscillating body 
moving horizontally in a pycnocline. The blue lines are impulsive waves, green lines 
are oscillatory waves. The red lines for figure 3.12 are steady waves but they are 
pseudo-steady in figure 3.13. Nc = 7.23 rad/s, 8 = 0.022 m, (Of = 5.67 rad/s.
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Uj = 0 m/s, Uf = 4.5 mm/s, a = 2 .1x10° m/s2, ta = 2.2 s, t2 = 25.1 s, R2 = 108 mm. M =  35.35 and pf = 2.22x10'

&M*'.
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Ui = 0 m/s, Uf = 7.6 mm/s. a = 2.5x1 O'3 m/s2, ta = 3 s, t2 = 15.6 s. R2 = 107 mm. M = 20.93 and pf = 3.75x10'

Figures 3.14 and 3.15. Plan-view mode 0 waves produced by an oscillating body 
moving horizontally in a pycnocline. The blue lines are impulsive waves, green lines 
are oscillatory waves and red lines are pseudo-steady waves. The arrow shows the 
direction of travel. Nc = 7.23 rad/s, 8 = 0.022 m, (Of = 5.67 rad/s.
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mm

Ui = 0 m/s. Uf = 11 mm/s, a = 3 .1 x l0 '3 m/s2, ta = 3.6 s, t2 = 11.1 s, R2 = 103 mm. M = 14.46 and (3f = 0.054.

Figure 3.16. Plan-view mode 0 waves produced by an oscillating body moving 
horizontally in a pycnocline. The blue lines are impulsive waves, green lines are 
oscillatory waves and red lines are pseudo-steady waves. The arrow shows the direction 
of travel. Nc = 7.23 rad/s, 8 = 0.022 m, (Of = 5.67 rad/s.
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Figure 3.17 Density and frequency distributions of a pycnocline.
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Uj = 0 m/s, Uf = 4.5 mm/s, a = 6.4x10'’ m/s2, ta = 0.7 s, t2 = 17.8 s, R2 = 79 mm. M = 35.35 and (3f = 1.86x10'

: ■ y l

Uj = 0 m/s, Uf = 7.8 mm/s, a = 0.39 m/s , ta = 0.2 s, t2 = 15.1 s, R2 = 117 mm. M = 20.39 and pf =  0.032.

Figures 3.18 and 3.19. Plan-view mode 0 waves produced by an oscillating body 
moving horizontally in a pycnocline. The blue lines are impulsive waves, green lines 
are oscillatory waves and red lines are steady waves. The arrow shows the direction of 
travel. Nc = 7.23 rad/s, 8 = 0.022 m, (Of = 4.75 rad/s.
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3. Waves from an oscillating moving body

Uj = 0 m/s. Uf — 11 mm/s. a = 3.7x10 " m/s , ta = 0.3 s, t2 = 8.9 s, R2 = 97 mm, M = 14.46 and pf = 0.045.

Ui = 0 m/s, Uf = 14.4 mm/s, a = 0.32 m/s , ta = 0.45 s, t2 = 7.1 s, R2 = 99 mm. M =  11.05 and pf =  0.059.

Figures 3.20 and 3.21. Plan-view mode 0 waves produced by an oscillating body 
moving horizontally in a pycnocline. The blue lines are impulsive waves, green lines 
are oscillatory waves and red lines are steady waves. The arrow shows the direction of 
travel. Nc = 7.23 rad/s, c = 0.022 m, cof = 4.75 rad/s.
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3. Waves from an oscillating moving body
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FIGURE 3.22 W AVENUM BER SURFACES FOR SURFACE GRAVITY
WAVES

M -> 0, n = 0, eNc2 = 2g, e -> 0 and Nc -► oo .
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FIGURE 3.23 WAVENUM BER SURFACES FOR PYCNOCLINE WAVES 
M = 14.46, n = 0, e = 0.022 m, Nc = 7.23 rad/s and U = 1.1x10*2 m/s.

The legend shows the values of pf.
Each value of pf produces two curves, the right curve has +p while the left curve has -p
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3. Waves from an oscillating moving body
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FIG U R E  3 .2 4  W A V E N U M B E R  SU R F A C E S FOR P Y C N O C L IN E  W A V E S  
M = 39.47, n = 0, e = 0.022 m, Nc = 7.23 rad/s and U = 4.03x1 O'3 m/s.
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FIG U R E  3 .2 5  W A V E N U M B E R  SU R F A C E S FOR P Y C N O C L IN E  W A V E S  

M = 73.64, n = 0, e = 0.022 m, Nc = 7.23 rad/s and U = 2.16x1 O'3 m/s.

The legends show the values of pf.
Each value of pf- produces two curves, the right curve has +p while the left curve has -p.
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3. Waves from an oscillating moving body
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1.5E+15

IH+15

5H+14

-5E +14

>■ i——----1—
-4EH-15 -3.5E+15 -3 Erf 15 -2 .5E +I5 -2 Erf 15

-  -47t, +P 

-271, + p

-  2n, - P

-  4 ti, - p

- 671, - p

I.5E -H 5

FIGURE 3.26b NEAR FIELD PHASE CONFIGURATION

O scilla to ry  su rface  g rav ity  w aves p roduced  by an o sc illa tin g  and  m o v in g  body.
T he legends show  th e  p h ases and  the  sign  o f  (3. T he righ t b ranch  o f  th e  2 w av en u m b er 

su rfaces has +(3 and  th e  left b ranch  has -p .
M = 0, pf = 0.125, eNc2 = 2g m /s2, U= 1 m/s, (Of= 2.54 rad/s and n = 0.
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3. Waves from an oscillating moving body

FIGURE 3.27a FAR FIELD PHASE CONFIGURATION

0.4
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X

FIGURE 3.27b NEAR FIELD PHASE CONFIGURATION
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- 2 k ,  + p

* 2 k, +P

* 4 k, +P

*  6 k ,  + p

-  2 7 t, - p

- 4 k, - p
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O scilla to ry  p y cn o c lin e  w av es p ro d u ced  by an o sc illa tin g  and  m o v in g  body.
T he legends show  the  p h ases and  th e  sign  o f  p . T he righ t b ranch  o f  th e  2 w av en u m b er 

su rfaces has + P  and  the  left b ranch  has -p .
M= 14.46, (3f = 0.02, e = 0.022 m, Nc = 7.23 rad/s, U = 0.011 m/s, cof = 2.09 rad/s and n= 0.
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3. Waves from an oscillating moving body

FIGURE 3.28a FAR FIELD PHASE CONFIGURATION
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FIGURE 3.28b NEAR FIELD PHASE CONFIGURATION

Oscillatory pycnocline waves produced by an oscillating and moving body.
The legends show the phases and the sign of p. The right branch of the 2 wavenumber 
surfaces has +P and the left branch has -p.
M= 14.46, pf = 0.045, e= 0.022 m, Nc = 7.23 rad/s, U= 0.011 m/s, 0*= 4.75 rad/s and n = 0.
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3. Waves from an oscillating moving body
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FIGURE 3.29 W AVENUM BER SURFACES FOR PYCNOCLINE WAVES 
M = 0.75, n = 0, e = 100 m, Nc = 0.015 rad/s and U = 2 m/s.
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FIGURE 3.30 W AVENUM BER SURFACES FOR PYCNOCLINE WAVES 
M = 0.75, n = 1, e = 100 m, Nc = 0.015 rad/s and U = 2 m/s.

The legend shows the values of pf.
Each value of pf produces two curves, the right curve has +p while the left curve has -p.
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3. Waves from an oscillating moving body

©f= 1.125x10° rad/s, pf = 0 . 1. 0 . 12 1 .

Of = 1.406x10° rad/s, Pf = 0.125. ©f = 2.25x10"3 rad/s, Pf = 0.2.

cof = 4.5x10'3 rad/s, Pf = 0.4.

Figure 3.31 Pycnocline waves in the 
ocean.

U = 2 m/s, t = 6000 s, n = 0.
Nc = 0.015 rad/s, e = 100 m.

Pf is defined as ~ "T  and M = ^ r r  = 0.75.r  cNc U

(Or = 1.125x1 O'2 rad/s, pf = 1.0.

The distance across each frame is 
20,000 m. The blue dots are the steady 
waves and the pink dots are the oscillatory 
waves. The arrow shows the direction of 
travel. Impulsive waves are not shown.

(Df= 1.361x10'3 rad/s, Pf =
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3. Waves from an oscillating moving body
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FIGURE 3.32b NEAR FIELD PHASE CONFIGURATION

Oscillatory pycnocline waves produced by an oscillating and moving body.
The legends show the phases and the sign of pf. The right branch of the 2 wavenumber 
surfaces has +P and the left branch has ~p.
M = 0.75, pf= 0.125, Nc = 0.015 rad/s, e = 100 m, U = 2 m/s, o>f= 1.4x1 O'3 rad/s and n = 1.
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3. Waves from an oscillating moving body

Uj = 0 m/s. Very slow acceleration to Uf = 2.16 mm/s in ta = 96.5 s, distance travelled = 104 mm.

Uj = 0 m/s. Impulsive start with a = 2.24 m/s“ to Umax = 2.16 mm/s, slow constant deceleration for 96.5 s 
to Uf = 0 m/s. Total time = 96.5 s, distance travelled = 104 mm.

Figures 3.33 and 3.34. Mode 0 pycnocline waves from an oscillating point source 
travelling horizontally in a pycnocline. The top figure shows an accelerating source and 
the bottom figure shows the decelerating case for the same distance travelled. The blue 
circles are the impulsive waves, the pink dots are the oscillatory waves and the pale blue 
dots are the non-oscillatory waves. Nc = 7.23 rad/s, 8 = 0.022 m, «f = 6.38 rad/s.
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3. Waves from an oscillating moving body

Uj = 0 m/s. Impulsive start with a = 2.24 m/s2 to Umax = 2.16 mm/s, decelerates to Uf = 7.2x1 O'4 m/s in
72.4 s. Total time =72.4 s, distance travelled = 104 mm.

Uj = 0 m/s. Accelerates for 19.3 s to constant Umax = 2.16 mm/s, travels at Umax for 16.9 s, slow constant
deceleration for 28.9 s to Uf = 1 .08xl0 'J m/s. Total time = 65.1 s, distance travelled = 104 mm.

Figures 3.35 and 3.36. Mode 0 pycnocline waves from an oscillating point source 
travelling horizontally in a pycnocline. The top figure shows an impulsive start to U max 
and then decelerates to Uf. The bottom figure shows a constant acceleration to U max, 
stays at U ma\, and then decelerates to Uf. N c =  7.23 rad/s, e =  0 .022 m and Of = 6.38 
rad/s.
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3. Waves from an oscillating moving body

Uj = 0 m/s. Accelerates to Umax = 2.16 mm/s with a = 2.24x10-4 m/s2 in 9.6 s, travels at Umax for 24.max
and decelerates to Uf =0 m/s in 38.6 s. Total time =72.3 s, distance travelled = 104 mm.

Uj = 0 m/s. Accelerates to U max = 2.16 mm/s in 38.6 s, travelled at U max for 24.1 s and decelerates in 9.6 s
to U f  = 0 m/s. Total time = 72.3 s, distance travelled = 104 mm.

Figures 3.37 and 3.38. Both figures show a source accelerating to U max, staying at U max 
and then decelerating to Uf. The time taken for each stage is different. Blue circles are 
the impulsive waves, the pink dots are the oscillatory waves and the pale blue dots are 
the non-oscillatory waves. Nc = 7.23 rad/s, c = 0.022 m, (Of = 6.38 rad/s.
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3. Waves from an oscillating moving body

Uj = 0 m/s, accelerates to Uf = 11 mm/s in ta = 19.9 s.

Uj = 0 m/s, impulsive start to Umax = 11 mm/s and then decelerates to Uf = 0 m/s in td = 19.9 s.

Figures 3.39 and 3.40. Mode 0 pycnocline waves from an oscillating point source 
travelling horizontally in a pycnocline. The top figure shows an accelerating body and 
the bottom figure shows the decelerating case for the same distance travelled. The blue 
circles are the impulsive waves, the pink dots are the oscillatory waves and the pale blue 
dots are the non-oscillatory waves. Nc = 7.23 rad/s, 8 = 0.022 m, total distance travelled 
= 109 mm. Of = 6.38 rad/s.
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3. Waves from an oscillating moving body

Uj = 0 m/s, impulsive start to Umax = 11 mm/s and then decelerates to Uf = 3.66x10 'J m/s in 14.9 s. Total
distance travelled = 109 mm.

-  ♦

Uj = 0 m/s. Accelerates with a= 2.76x10 ’m/s2 in 4 s to Umax = 11 mm/s. Travels at Umax for 3.5s, andmaxmax
decelerates with d = -9.2x1 O^m/s2 in 6 s to Uf =5.49x1 O'3 m/s. Total time = 13.5s. distance travelled =
109 mm.

Figures 3.41 and 3.42. Top figure shows a decelerating body and the bottom figure 
shows a body accelerating, travelling at a constant velocity and then decelerating to Uf. 
The blue circles are the impulsive waves, the pink dots are the oscillatory waves and the 
pale blue dots are the non-oscillatory waves. Nc= 7.23 rad/s, 8= 0.022 m, (Of= 6.38 rad/s.
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3. Waves from an oscillating moving body

Figure 3.43a

Plan-view experimental image of 
surface waves produced by an 
oscillating moving point source. 
U = 0.198 m/s, cof = 20 Hz.

Figure 3.44a

Plan-view experimental image of 
surface waves produced by an 
oscillating moving point source. 
U = 0.227 m/s, cof =20  Hz.

U is the speed of the source in m/s, cof is 
the frequency of oscillation in Hz.

The direction of travel is from left to 
right as indicated by the arrow.

Distance horizontally across each frame 
is 0.222 m.

Figure 3.43b

Plan-view theoretical phase 
configuration of surface waves with 
surface tension produced by an 
oscillating moving point source.
U = 0.198 m/s, o)f = 20 Hz.

Figure 3.44b

Plan-view theoretical phase 
configuration of surface waves with 
surface tension produced by an 
oscillating moving point source.
U = 0.227 m/s, cof =20 Hz.

The common input parameters for each 
case are as followed, (with U in m/s)

Depth of the tank = 0.46 m.
The total time, t = 35 x U seconds. 
Acceleration, a = U/(0.15 x t) m/s2 
The surface tension, x = 0.048 N/m. 
Density, p = 998 kg/m3.
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3. Waves from an oscillating moving body

Figure 3.45b U = 0.195 m/s, o)f= 5.88Hz.Figure 3.45a U = 0.195 m/s, cof = 5.88Hz.

Figure 3.46a U = 0.228 m/s, C0f = 5.88Hz.

Plan-view experimental images of 
surface waves produced by an oscillating 
and moving body.

U is the speed of the body in m/s, (Of is 
the frequency of oscillation in Hz.
The direction of travel is from left to 
right as indicated by the arrow.
Distance horizontally across each frame 
is 0.222 m.

Figure 3.46b U = 0.228 m/s, tOf = 5.88Hz.

Figure 3.47b U = 0.261 m/s, cof = 5.88Hz.

Plan-view theoretical phase 
configurations of surface waves with 
surface tension.

The common input parameters are: 
(with U in m/s)
Depth of tank = 0.46 m.
Surface tension, x = 0.045 N/m. 
Density, p = 998 kg/m3.
Total time taken, t = 35 x U seconds. 
Acceleration, a = U/(0.15 x t) m/s2.

Figure 3.47a U =  0.261 m/s, cof = 5.88Hz.
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3. Waves from an oscillating moving body

Figure 3.48a.

U = 0.5 m/s.
Including surface tension effect.

The figure shows the first 20
waves.

Figure 3.48b.

U = 0.5 m/s.
Excluding surface tension 
effect.

The figure shows the first 20 
waves.

Figure 3.48c.

U = 0.5 m/s.
Including surface tension effect.

The figure shows every 20 
waves up to 400 waves.

Steady deep water surface waves. The source moves from rest with constant 
acceleration to the velocity specified. Total time of travel, t = 4xU seconds with U in 
m/s. The acceleration, a, is given by (4 x U) / 1 m/s2 and the distance across each frame 
is (1.2 x U x t) m.

+
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3. Waves from an oscillating moving body

Figure 3.49a.

U = 1.0 m/s.
Including surface tension effect.

The figure shows the first 20
waves.

Figure 3.49b.

U =  1.0 m/s.
Excluding surface tension 
effect.

The figure shows the first 20 
waves.

Figure 3.49c.

U = 1.0 m/s.
Including surface tension effect.

The figure shows every 50 
waves up to 1,000 waves.

Steady deep water surface waves. The source moves from rest with constant 
acceleration to the speed specified. Total time of travel, t = 4xU seconds with U in m/s. 
The acceleration, a, is given by (4 x U) / 1 m/s2 and the distance across each frame is 
(1.2 x U x t) m.
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3. Waves from an oscillating moving body

Figure 3.50a.

U = 2.0 m/s.
Including surface tension effect.

The figure shows the first 20 
waves.

Figure 3.50b.

U = 2.0 m/s.
Excluding surface tension 
effect.

The figure shows the first 20 
waves.

Figure 3.50c.

U = 2.0 m/s.
Including surface tension effect.

The figure shows every 500 
waves up to 10,000 waves.

Steady deep water surface waves. The source moves from rest with constant 
acceleration to the speed specified. Total time of travel, t = 4xU seconds with U in m/s. 
The acceleration, a, is given by (4 x U) / 1 m/s2 and the distance across each frame is 
(1.2 x U x t) m.
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3. Waves from an oscillating moving body

Figure 3.51a.

U = 5.0 m/s.
Including surface tension effect.

The figure shows the first 20 
waves.

Figure 3.51b.

U = 5.0 m/s.
Excluding surface tension 
effect.

The figure shows the first 20 
waves.

Figure 3.51c.

U = 5.0 m/s.
Including surface tension effect.

The figure shows every 500 
waves up to 10,000 waves.

Steady deep water surface waves. The source moves from rest with constant 
acceleration to the speed specified. Total time of travel, t = 4xU seconds with U in m/s. 
The acceleration, a, is given by (4 x U) / 1 m/s2 and the distance across each frame is 
(1.2 x U x t) m.
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3. Waves from an oscillating moving body

Figure 3.52a.

U =  15.0 m/s.
Including surface tension effect.

The figure shows the first 20 
waves.

Figure 3.52b.

U =  15.0 m/s.
Excluding surface tension 
effect.

The figure shows the first 20 
waves.

Figure 3.52c.

U =  15.0 m/s.
Including surface tension 
effect.

The figure shows every 5.000 
waves up to 100,000 waves.

Steady deep water surface waves. The source moves from rest with constant 
acceleration to the speed specified. Total time of travel, t = 4xU seconds with U in m/s. 
The acceleration, a, is given by (4 x U) / 1 m/s2 and the distance across each frame is 
(1.2 x U x t) m.
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3. Waves from an oscillating moving body

Figure 3.53a.

U = 0.5 m/s.
(Of = 12.57 rad/s

Including surface tension effect.

The figure plots waves with 
phases from -2 0  x 2tc to +20 x 

2n in steps of 27c.

Figure 3.53b.

U = 0.5 m/s.
(Of = 12.57 rad/s

Excluding surface tension 
effect.

The figure plots waves with 
phases from -2 0  x 2n to +20 x 
271 in steps of 27t.

Figure 3.53c.

U = 0.5 m/s.
C0f=  12.57 rad/s

Including surface tension 
effect.

The figure plots waves with 
phases from -400 x 2n to +400 
x 271 in steps of 2 0 x 2 ti.

Oscillatory deep water surface waves. The oscillating source moves from rest with 
constant acceleration to the speed specified. Total time of travel, t = 4xU seconds with 
U in m/s. The acceleration, a, is given by (4 x U) / t m/s2 and the distance across each 
frame is ( 1.2 x U  x  t) m.
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3. Waves from an oscillating moving body

Figure 3.54a.

U =  1.0 m/s. 
cof = 12.57 rad/s

Including surface tension effect.

The figure plots waves with 
phases from -2 0  x 27r to +20 x 
2tt in steps of 27t.

Figure 3.54b.

U = 1.0 m/s.
(Of = 12.57 rad/s

Excluding surface tension 
effect.

The figure plots waves with 
phases from -2 0  x 271 to +20 x 
2n in steps of 27t.

Figure 3.54c.

U = 1.0 m/s.
(0f=  12.57 rad/s

Including surface tension effect.

The figure plots waves with 
phases from - 1,000 x 27t to 
+1,000 x 271 in steps of 50x271.

Oscillatory deep water surface waves. The oscillating source moves from rest with 
constant acceleration to the speed specified. Total time of travel, t = 4xU seconds with 
U in m/s. The acceleration, a, is given by (4 x U) / 1 m/s2 and the distance across each 
frame is (1.2 x U x t) m.
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3. Waves from an oscillating moving body

Figure 3.55a.

U = 2.0 m/s. 
C0f=  12.57 rad/s

Including surface tension effect.

The figure plots waves with 
phases from -2 0  x 2n to +20 x 
2n in steps of 271.

Figure 3.55b.

U = 2.0 m/s. 
cof= 12.57 rad/s

Excluding surface tension 
effect.

The figure plots waves with 
phases from -2 0  x 2n to +20 x 
2n in steps of 271.

Figure 3.55c.

U = 2.0 m/s. 
cof = 12.57 rad/s

Including surface tension 
effect.

The figure plots waves with 
phases from - 10,000 x 2ti to 
+ 10,000 x 2ti in steps of 
500x27t.

Oscillatory deep water surface waves. The oscillating source moves from rest with 
constant acceleration to the speed specified. Total time of travel, t = 4xU seconds with 
U in m/s. The acceleration, a, is given by (4 x U) / t m/s2 and the distance across each 
frame is (1.2 x U x t) m.

ilBH
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3. Waves from an oscillating moving body

Figure 3.56a.

U = 5.0 m/s. 
cof = 12.57 rad/s

Including surface tension effect.

The figure plots waves with 
phases from -40  x 2n to +40 x 
27t in steps of 2 x 2tt.

Figure 3.56b.

U = 5.0 m/s.
(Of = 12.57 rad/s

Excluding surface tension 
effect.

The figure plots waves with 
phases from -40  x 271 to +40 x 
271 in steps of 2 x 2ti.

Figure 3.56c.

U = 5.0 m/s.
(Of = 12.57 rad/s

Including surface tension 
effect.

The figure plots waves with 
phases from - 10.000 x 2tt to 
+ 10.000 x 271 in steps of 
500x271.

Oscillatory deep water surface waves. The oscillating source moves from rest with 
constant acceleration to the speed specified. Total time of travel, t = 4xU seconds with 
U in m/s. The acceleration, a, is given by (4 x U) / t m/s2 and the distance across each 
frame is ( 1.2 x U x t) m.
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3. Waves from an oscillating moving body

Figure 3.57a.

U =  15.0 m/s.
(Of = 12.57 rad/s

Including surface tension effect.

The figure plots waves with 
phases from -100  x 2n to +100 
x 271 in steps of 5 x 2tt.

Figure 3.57b.

U = 15.0 m/s.
(Of = 12.57 rad/s

Excluding surface tension 
effect.

The figure plots waves with 
phases from -100  x 271 to +100 
x 2n in steps of 5 x 271.

Figure 3.57c.

U =  15.0 m/s.
(Of= 12.57 rad/s

Including surface tension 
effect.

The figure plots waves with 
phases from - 100,000 x 27t to 
+ 100,000 x 271 in steps of 
5,000x271.

Oscillatory deep water surface waves. The oscillating source moves from rest with 
constant acceleration to the speed specified. Total time of travel, t = 4xU seconds with 
U in m/s. The acceleration, a, is given by (4 x U) / t m/s2 and the distance across each 
frame is (1.2 x U x t) m.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

CHAPTER 4 

MEASUREMENT OF FORCES ON AN 

OSCILLATING WING MOVING IN A 

PYCNOCLINE

4.1 Introduction
The behaviour of vortices and their effect on a lifting wing when the wing is 

moving through a constant density fluid have been well researched. However if  the 

wing is moving through a pycnocline with a density gradient, it generates vortices 

which tend to collapse. As the vortices collapse and fluid returns to its original level or 

mixes due to turbulence and spreads at its new density level, the flow over the wing is 

expected to change significantly. It is therefore interesting to know how the forces on 

the wing moving through a pycnocline differ from those of a wing in a constant density 

media.

In section 4.2, the set-up for the experiments measuring forces on a low aspect 

ratio NACA 0012 wing, moving through both constant density and stratified fluid, will 

be discussed. The wing will be allowed to oscillate about its quarter chord. Sections 

4.3 to 4.6 will discuss the force transducers and their electrical circuits used for the 

force measurements. Semiconductor strain gauges, which are more sensitive than the 

conventional metallic gauges, were used so that the difference between the wing in a 

constant density media and a stratified fluid can be detected. Noise reduction by signal 

processing will be discussed in section 4.7.
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A dimensional analysis is discussed in section 4.8 and the experimental results 

are presented in section 4.9 and 4.10.

4.2 The experimental set-up
The experiments were in the same towing tank as that for the schlieren 

experiments i.e. length 4.53 m, width 0.7m and depth 0.5m. Figure 4.1 shows a view of 

the tank, looking down along the length. The tank is supported by 12 tyres that isolate it 

from any ground vibrations. The working section is made of perspex through which the 

position o f the wing in the pycnocline can be seen. A trolley which runs on two 

polished metal rails was driven by a motor via a belt and pulley system. These rails are 

built on a separate support from the tank and the movement of the trolley does not 

disturb the fluid in the tank. Figures 4.2 and 4.3 show how the belt is linked to the 

motor by two pulleys at each end of the tank. The tension in the belt can be adjusted. 

To measure the velocity of the trolley, a black disc is attached to the pulley and has 

reflective tapes arranged in a cross. A light source, placed at about 30 mm from the 

disc, has its beam directed perpendicular to the disc at about 45 mm from the centre of 

the disc. The light beam will be reflected 4 times per revolution to a sensor next to the 

source. The signal is fed to a revolution counter which gives the angular velocity of the 

disc in reflections per minute. The diameter of the pulley is 90 mm and the trolley 

velocity in metres per second can be given from the following equation,

.. . . Re flections/min _ 0.091 rolley V elocity = --------------------------------------x 2% x -------
(Re flections / revolution) x 60 2

The accuracy of the system increases as the number of reflections per revolution 

increases. The velocity can also be measured directly from the time taken for the trolley 

to move a fixed distance. A gearbox is used to slow down the rotation speed of the 

motor. The motor and gearbox are bolted to an independent support so that the fluid in 

the tank is isolated from any vibrations. The switches for the oscillatory mechanism 

and the motor for trolley movement are located near to each other so that both switches 

can be switched on at the same time. A speed controller allows the velocity of the 

trolley to be varied. The speed controller has a marked dial of 0 to 10 that varies 

linearly with trolley velocity; figure 4.4 shows the calibration.

The model is a perspex wing with a chord length of 0.09 m and an aspect ratio of 

1.7. The profile is that of a NACA 0012 aerofoil. This gives a wing span of 0.153 m
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compared to the tank width of 0.7 m so that the effects of the wall on the model will be 

minimal. Trip wires with a diameter of 0.404 mm are located 5 mm from the leading 

edge on both top and bottom surfaces. The wing is attached to a strain gauge balance so 

that the forces on the wing can be measured. There are two different balances, one 

which can only measure the forces when the wing’s incidence is fixed while the other is 

also capable of measuring the forces when the wing is oscillating. The way in which 

the balances are attached to the trolley and the model depends on which of the two 

balances is used. The two balances share the same force transducer module which is 

interchangeble. The designs of the two balances will be described in detail in sections 

4.5 and 4.6.

4.2.1 The oscillatory mechanism
The sinusoidal pitching motion of the wing is provided by the mechanism shown 

in figure 4.5. The angular velocity of the motor is being slowed down by 2 gearboxes 

linked by belts and pulleys. The final pulley is linked to a flywheel that transforms the 

circular motion into a vertical motion. The oscillation frequency of the wing can be 

controlled by a dial located on the green gearbox in figure 4.6. The vertical distance 

travelled is 5 mm which will cause the wing to oscillate between 0 and 4.8 degrees.

A slotted opto-switch is used to determine the angle and the oscillation 

frequency of the wing. It is powered by three 1.5 volt batteries. An infra-red beam is 

passed across the slot from the source to a photodetector. The thin aluminium piece 

breaks the beam and causes a voltage drop each time the wing’s incidence is at 4.8 

degree.

4.2.1.1 Vibration control of the oscillatory mechanism

The motor was initially bolted onto a plate which also houses the rest of the 

oscillatory mechanism including the gearboxes. A spectrum analysis was made to 

identify the electric noise due to the oscillatory mechanism which was believed to come 

mostly from the motor and gearboxes. The frequency of the noise originating from the 

motor is very high and it can be easily filtered off. The gearboxes create noise which is 

closer to the frequencies of interest. The amplitude of this noise is however much lower 

than that produced by the motor. The system as a whole produced an unacceptable level 

of noise.
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The objective was then to isolate the motor and the gearboxes since they 

produced most of the noise. Ideally each of the moving parts should be treated 

independently since they move at different frequencies. The motor and gearboxes were 

each attached to a spring and damper system and they were linked by rubber belts. 

Several combinations of spring and dampers were used and the results indicate that the 

use of relatively soft springs alone was most effective. This is due to the high frequency 

of the motor being much higher than the natural frequency of the system. The springs 

used must also be large enough to prevent the moving parts from moving sideways as 

the trolley accelerates. Extra low frequencies were also experienced due to the way in 

which each moving part was inter-linked by the rubber belts. This is undesirable since 

the frequencies may be too near the intended frequencies of oscillation. In order to 

overcome this, the motor and gearboxes were mounted onto a common platform which 

rest on eight springs. This is shown in figure 4.6. The approach has proved to be 

functional although not ideal, the final reduction of noise has still to be done by signal 

processing which will be discussed in section 4.7.

4.2.2 Creation and measurement of density stratification
The density stratification is first produced as a two layer system with fresh water 

above salt water. The density step across the interface quickly becomes a narrow 

pycnocline and the thickness increases with time through salt diffusion. Once the 

experiments start, there will be some mixing which will further change the density 

distribution in the pycnocline. It is possible to use oil and water to produce a two layer 

system, however the difference in viscosity will cause problems. There will also be a 

problem of surface tension between the two layers. The results of the stability analysis 

of Gapanov-Grekhov et al (see Peake 1996) is for an interface and there are several 

attempts to obtain narrower pycnoclines in order to compare the theory with the 

experimental results. Naturally the experiments must be carried out immediately after 

filling the tank with two layers of fluid and the number of runs made will be limited to 

ensure that the pycnocline remains thin. Experiments involving wider pycnoclines can 

start after a few days.

The pycnocline can be produced by several methods. The first method involved 

filling the towing tank with fresh water to a predetermined height. The salt water is 

then fed slowly into the bottom of the tank, displacing the fresh water upwards until the
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overall height is 0.46m from the bottom. The salt solution of a certain density is first 

prepared in a mixing tank. The solution is then sent to two tanks located in the 

temperature controlled laboratory as shown in figure 4.7. Both the tanks have a depth 

of 1.22 m, the tank labelled salt has a diameter of 0.88 m while the tank labelled water 

has a diameter of 0.81 m. In practice, it is necessary to use both tanks to contain the salt 

solution in order to generate the necessary capacity. The fresh water is left in the 

towing tank and the salt water is stored in the two tanks for at least 3 days so that the 

temperatures will converge to the laboratory temperature. The process can be speeded 

up by pumping the salt solution between the two tanks or by using a heater. The salt 

water is sent to the towing tank to complete the filling process. The interface quickly 

diffuses to form a pycnocline. The filling process took about 4 hours and immediately 

after the fill, the pycnocline thickness was around 20 mm. Using this method, it was 

often difficult to initially determine exactly the level of the centre of the pycnocline 

relative to the wing.

An alternative method is to have the towing tank partly filled with salt water. 

Fresh water was then filled horizontally onto the surface via a hose and a piece of 

plywood floating on the surface. The two tanks shown in figure 4.7 now contain water, 

which must be at the correct temperature before it is sent to the towing tank. The initial 

level of the interface relative to the wing can be better determined in this way. The 

minimum pycnocline thickness achieved was more than 20 mm. To reduce the 

thickness, fluid was syphoned from the centre of the pycnocline (Gilreath, 1983) but 

this tended to produce an asymmetrical profile.

The next method used a plastic sheet to separate the brine and the fresh water as 

the tank was being filled, by running water onto the sheet. It was not necessary to run 

the fresh water slowly onto the sheet, in fact the water was allowed to run at full speed. 

Almost the whole tank was covered with the plastic sheet and the velocity of the fresh 

water had slowed down significantly by the time it reached the edges of the sheet. The 

sheet was then withdrawn. This reduced the filling time to less than an hour without 

causing much disturbance to the interface. The result was a much thinner pycnocline 

which was less than 20 mm. The original plan was to have the plastic at the interface in 

order to slow the diffusion process. If the sheet were to be held in position by rollers at 

both ends of the tank, this system would probably have worked even better.

A conductivity probe was used to measure the density distribution of the 

pycnocline. The electrodes are made of platinum and they have to be platinised before
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use. When using the probe, it is essential to make sure that there are no air bubbles 

between the plates causing excessive resistance. The probe has to be calibrated before 

each set of experiments. The process involves dipping the probe into containers of salt 

solutions at different densities as shown in figure 4.8. The probe forms an aim of a 

Wheatstone bridge circuit and the voltage output can be read from either a digital 

oscilloscope or a voltmeter. Figure 4.9 shows a box consisting of 6 Wheatstone bridge 

circuits labelled 6 to 12. Channel 12 has a different gain value from the rest and is used 

exclusively for density measurement. Figure 4.10 shows a typical calibration chart and 

curve fittings are used for each range of voltages. The measured density distributions of 

the pycnoclines are shown in figures 4.99 to 4.103.

4.3 Basic Wheatstone bridge circuits for strain gauges

4.3.1 Normal force measurement

By considering the equilibrium of an element with length 8x within a cantilever 

flexible beam or a flexure, the two fundamental equations necessary to derive the shear 

force are:

dfshear force) 
ax

afbending moment)
and  r ----------- = shear force.ox

The first equation shows that the shear force is constant provided the vertical force acts 

outside the element considered. The second equation indicates that at any section in the 

beam the slope of the moment distribution is equal to the shear. Figure 4.11 shows the 

positions of the strain gauges relative to the forces. The labelled N1 to N4 are the 

gauges measuring normal forces. Those labelled M l to M4 measure the pitching

Mx
Elmoment. The strain, ex = ~^T where I is the second moment of area of the cross-section

where the strain gauge is mounted, E  is the Young’s modulus of the material which in 

this case is stainless steel, M is the bending moment of the material at the position 

where the strain gauge is mounted and y is the distance of the strain gauge to the neutral 

axis of the bending moment which is half the thickness of the cross-section of the 

flexure.

With the Wheatstone bridge arrangement shown in figure 4.12,
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Vout =  ^  X GF X Vin X (si -  s2 + e3 -  8 4 ) ,  (4.1)

Ringel & Levin (1985). si -  82 + 83 -  84 is the total strain in all four arms of the bridge.

The subscripts 1 to 4 correspond to the positions of the gauges on the bridge. GF is the

gauge factor, also known as the sensitivity of the strain gauge. This becomes

1 y
Vout = 4 x GF X Vin X -gj X (Mni -  MN2 + MN3 -  MN4),

where MNx is the bending moments at the positions where the gauges are mounted. 

Given that Ma and Mb are bending moments at horizontal distances xa and Xb from the 

wing’s centre of pressure as shown in figure 4.11. Mni = -M a, Mn2 = -Mb, Mn3 = Mb 

and Mn4 = Ma for a vertical upward force, the minus and plus are the compressions and 

tensions.

Vout = ^ G F x V j n X ^ x  2(Mb -  Ma).

This shows that Vout oc Mb -  Ma, and

, .  dM Mb-M a
shear torce = ~r~  r .ox |xb- x a|

For a particular installation the distance xb-x a will be fixed so that the shear force is 

proportional to Vout.

Ideally, this arrangement should give a voltage output that is proportional to the 

force acting perpendicular to the line joining the two stations even though the point of 

application does not remain fixed. This allows the lift of the wing to be measured 

without having to find the pitching moment. Changes due to temperature or axial load 

will cause equal changes in resistance in both sign and magnitude for all the four strain 

gauges, resulting in zero bridge output.

4.3.2 Moment measurement
The arrangement of the strain gauges on the flexible beams in order to measure 

the pitching moment is basically similar except they are placed close to the centre of the 

beams. Figure 4.11 shows the positions of the strain gauges labelled M l to M4 for 

measuring moments on the flexures. The idea is to measure the bending moment of a 

point in the middle of the two stations with distances xc and Xd from the centre of 

pressure. Figure 4.13 shows the Wheatstone bridge arrangement. The resulting bridge 

output is proportional to the sum of the bending moments. Given
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V o u t  = \ X G F  X V in  x  ( £ 4  -  £1 +  8 3  -  £ 2 )

from equation (4.1) for a the standard Wheatstone bridge, the output voltage in terms of

bending moments is

1 y
Vout =  4  x  G F  x  V in x  - g j  x  (M m 4 -  M M i +  M m 3 -  M n o ) .

M mx are the bending moments at the positions where the gauges are mounted. It is

assumed that Mc is the bending moment experienced by strain gauges Mmi and Mm4, 

and M(] is the bending moment experienced by strain gauges M m 2 and M m 3- If the 

transducer experiences a positive upward force, Mmi = -M c, Mm2 = -Md, Mm3 = Md and 

Mm4 = Mc. Hence,

1 y
V o u t  — q  x  G F  x  V j n x  x  2 ( M C +  M d )

and V o u t  is proportional to the average of the bending moments at the two sections 

where the gauges are mounted. The distance between the two stations should be as 

small as possible. Again the resistance change due to axial loads and temperature are 

cancelled out.

4.3.3 Axial force measurement
Two strain gauges in adjacent arms of a bridge will be used to measure the drag 

and they will be positioned as shown in figure 4.14 and 4.18. The positions of the strain 

gauges are similar to having the gauges on the top and bottom of a cantilever beam with 

a force acting perpendicular to the beam. The strain gauges should be near to the root of 

the beam where the bending moment is a maximum. The thickness of the flexible 

beams for drag are crucial as they have to be sufficiently rigid to minimise the 

interaction effects due to the pitching moment and at the same time thin enough so that 

the strain gauge output is sensitive to the small axial force. There is only enough space 

for two strain gauges and thus only a half-bridge circuit can be used. Figure 4.15 shows 

the Wheatstone bridge circuit. This arrangement differs from that of the normal force 

measurement in that the voltage output will be proportional to the drag provided that the 

point of force application remains unchanged. From equation (4.1) with only two strain 

gauges,

Vout =  \  x  G F  x  V in x  (£1 -  £2).
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The output voltage in terms of bending moments becomes

1 y
Vout = 4 x GF x Vin x x 2Ma

if the strain gauge labelled A1 experiences a tension and A2 experiences a compression 

for a drag as shown in figure 4.14. Vout is proportional to the bending moment Ma, but 

the sensitivity is half that of a full-bridge circuit.

Again, as long as both the strain gauges are subjected to the same strains, either 

temperature or vertical force, the Wheatstone bridge circuit will compensate for the 

errors. However, the moment can instigate strains similar to that of the axial force 

causing a significant output. This can be corrected during the calibration process.

4.3.4 Alternative Wheatstone bridge arrangements
The arrangements of the strain gauges within the Wheatstone bridge circuit for 

measuring normal forces and moments described so far are principally for balance 1 

which will be discussed in section 4.5. For balance 2 where the location of the 

application of the force with respect to the location of the strain gauges is known, the 

strain gauge arrangement for normal force measurement can be used to measure 

moment. The design of balance 2 will be discussed in section 4.6.

Alternative arrangements can also be useful if  one or two of the strain gauges in 

any of the four arms fails. Under this situation, only two strain gauges can be used and 

the arrangement depends on which of the strain gauges fail. For example if strain gauge 

N3 for normal force measurement in figure 4.12 fails, then N4 will have to be discarded 

and both the arms are replaced by two 5.1 kQ, resistors as shown in figure 4,16. Given 

that Ni and N2 experience bending moments of —Ma and —Mb respectively for an 

upward force, the voltage output becomes

1 y
Vout— 4  x GF x V jn x  x  (M b  — Ma),

which is half the previous magnitude. Vout remains proportional to the difference 

between the moments at the 2 stations. The input voltage to the Wheatstone bridge can 

be increased to compensate for the reduction, however it must not exceed the limit of 30 

volt which can cause failure of the strain gauges. Section 4.4.4 will discuss the range of 

values of input voltage for null stability.

If strain gauge M2 in figure 4.13 fails, then there is a choice o f discarding either 

strain gauge M3 or Mi. Figure 4.17a shows the circuit if  M3 is replaced while figure
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4.17b shows the case if Mi is removed. Given that Mmi ”  -M c, Mm3 = Md and Mm4 = 

Mc for a vertical upward force, the voltage outputs for the two circuits become

Figure 4.17a has an arrangement similar to that of the axial force measurement. It is 

preferred over the arrangement in figure 4.17b due to its ability to compensate for any 

strains due to temperature.

4.4 Design of a force transducer module
Prior to finalising the strain gauge balance design, a rough estimation of the lift 

and drag was made using finite wing theory based on properties of symmetrical wing 

sections using vortex sheet thin aerofoil theoiy. Elliptical and Fourier representations of 

the circulation distribution for a symmetrical wing were assumed.

Two types of balances are considered and they both use the force transducer 

module as shown it figure 4.18. The concept of the design was taken from Bradshaw 

(1970) and a NASA designed three-component internal strain gauge balance as 

described by Pope (1984). The NASA design is however intended for an internal 

balance where the transducer is inside a model. With the strain gauges placed in 

positions as shown, this transducer has the ability to measure the normal, axial forces 

and the moment about a point in a vertical plane. Forces perpendicular to the axis of the 

transducer will be termed normal and forces acting along the axis will be the axial 

forces. The forces on the model will be called lift and drag. The concept for the design 

of the drag member is taken from Pope (1965) and it is built separately from the 

transducer and has two thin webs through which all forces are transmitted. These two 

thin webs each have strain gauges installed on the surfaces which will have tension and 

compression stresses. The drag unit is not only sensitive to axial force but also to 

moment. It is therefore important for it to be located as close to the model as possible to 

reduce the interaction effect of the moment. With this arrangement, an adequate strain 

can be experienced by the gauges on the flexures of the parallel-flexure linkage without 

large displacements due to the normal force. The flexures will extend or compress 

under the normal force with the axial force producing a bending moment. The 

horizontal beams of the drag member are thick to minimise the interaction effects from

for figure 4.17a

and
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the normal force. The force member is assembled with the forward and aft portions of 

the transducer body in such a way as to maintain a stiff cross-section for bending 

moments in the normal force and side force planes. One of the critical considerations in 

the design is the method of attachment of the member to the balance body. To overcome 

slippage, a large number of screws or pins are used so that the force holding the parts 

together will be high.

The whole force transducer module is made of stainless steel to withstand the 

corrosive action of brine and to provide enough stiffness to minimise the interactions on 

each of the components. Stainless steel also has an excellent fatigue life. However the 

manufacturing process will be more difficult due to the hardness o f the material and the 

requirement for the precise thickness of the flexures.

4.4.1 Selection of strain gauges
The most important factors being considered when selecting strain gauges for 

the balance are size and sensitivity. Metallic strain gauges have gauge factors that 

typically range from 2 to 3.2 as compared to 55 to 225 for the range of semiconductor 

gauges available. The gauge factor is the strain sensitivity of the strain gauge. 

Naturally, since the forces to be measured are small, semiconductor type gauges are the 

only option. Both the companies Kyowa and Kulite offer strain gauges that are suitable. 

Kyowa’s KSP-2-1000-E4 gauge has a gauge factor of 160 and a resistance of 1000 

ohms with an encapsulated size of 7.5 mm by 4.0 mm. This is compared to Kulite’s 

UHP-5000-060 (0.76 mm by 0.51 mm) and S/UHP-5000-060 (encapsulated 6.4 mm by 

3.6 mm) which have a gauge factor of 175 and a resistance of 5000 ohms. The 

encapsulated gauges have the strain sensitive element sandwiched between layers of 

epoxy-impregnated glass paper. Kulite’s gauges were selected due to their small size, 

higher gauge factors, higher resistance and much lower cost. High resistance allows 

higher output signals with less power dissipation. The Kulite strain gauge has a 

resistance of 5000 ohms and hence a higher input voltage can be used for the 

Wheatstone bridge circuit to obtain higher sensitivity without overheating. The non­

encapsulated or bare gauges are required for the drag member of the force transducer. 

None of the encapsulated gauges reviewed are small enough to position the gauges onto 

the axial force flexures, and still leave room for water-proofing. The encapsulated 

gauges are for the normal force and moment member and there is just enough space for
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them on the double cantilever beams of the force transducer. In most cases, the 

encapsulated gauge is preferred due to the ease of installation. The installation 

procedures will be discussed in section 4.4.4.

Like most semiconductor type gauges, Kulite’s strain gauges are also sensitive 

to temperature change. The strain gauges were selected based on the requirement of 

balance 1 where the gauges are submerged in water and temperature variation is small. 

The temperature in the laboratory is controlled and there is temperature compensation in 

the arrangement of the strain gauges within the Wheatstone bridge circuits. Balance 2 

was later required to measure the forces on the oscillating wing. This balance has two 

force transducers above the water. Further temperature compensation is thus needed 

and this will be discussed in sections 4.4.2 and 4.4.3.

4.4.2 Temperature compensation
Semiconductor strain gauges are generally more sensitive to temperature than 

metallic strain gauges. The resistance of a strain gauge increases with temperature and 

the gauge factor decreases with temperature. Generally the process involves two kinds 

of compensation. The span compensation tackles the drift of gauge factor due to 

temperature. The bridge null and null shift compensations deal with the change of 

gauge resistance due to temperature. The operating temperature in the laboratory is 

controlled and it varies slightly between 19 degree and 21.5 degree Celsius. 

Throughout a typical day the temperature stays stable. As the gauge factor remains 

relatively constant within the range of temperature, the focus is to compensate for the 

change of resistance due to temperature.

4.4.3 Bridge null and null shift compensation
The basic arrangements for a Wheatstone bridge with 4 strain gauges are 

discussed in section 4.3. In figure 4.12, the output voltage will be zero provided that the 

bridge is exactly balanced, this implies R2R4 = R 1R3 . R is the resistance in each of the 

arms denoted by the subscript. However, it is not possible to ensure that the nominal 

resistance of each strain gauge is the same. The null will also shift with temperature 

unless the effective TCR of each arm is identical. The TCR is the temperature 

coefficient of resistance and is defined as the percentage change in resistance of a strain 

gauge per 100 °F. Furthermore the resistance and the TCR of each strain gauge will
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change again once it is bonded to the material. In reality, the voltage output will always 

display a non-zero null and a null shift which can be of either positive or negative sign. 

This problem can be solved by having a shunt resistor and a series resistor in one of the 

arms. These resistors have very low TCR and are independent of temperature change 

within the range of temperature experienced. The shunt resistor effectively reduces the 

resistance and the TCR of that arm while the series resistor will compensate for the loss 

of resistance.

The values of the resistance for the shunt and parallel resistors are determined by 

the following procedures. The temperature of the force module is lowered to a 

temperature slightly below laboratory temperature by placing the module on the surface 

of a flat metal container in which is cold water. The voltage output, Vo and the input 

resistance, R\o are measured. This process is repeated by placing the module on the 

surface of a conventional electric heater with a temperature above the laboratory 

temperature. The voltage output is V T, the input resistance is Rn  and T= To + AT  where 

AT  is the difference between the highest and lowest temperature. These values are then 

used to calculate the required single parallel resistor and a single series resistor needed 

to be placed in one of the arms. In practice the series resistor is replaced by a 

potentiometer of a suitable range of resistance to fine tune the null of the Wheatstone 

bridge. The details and the equations needed for the calculations are supplied by the 

Kulite semiconductor strain gauge manual. The balance condition will be achieved at 

both the temperatures. Provided that the uncompensated null shift is linear with 

temperature, the voltage output will be zero in any temperature within the range. Initial 

concern was that the presence of a parallel resistor will cause the output to be non­

linear. This was proved unfounded as the value of the shunt resistors are all relatively 

large compared to the resistance of the strain gauge. The calibration chart also shows 

that the outputs are linear with the forces. Figure 4.19 shows the actual arrangement of 

the Wheatstone bridge circuits used for the two force transducers.

4.4.4 Strain gauge installation and performance test
Epoxy cement M-Bond 610 from Micro-Measurements is recommended by 

Kulite for the installation of its strain gauges. The cement has an operating temperature 

range of -269 °C to +260 °C. It’s low viscosity means than the glue-lines can be 

extremely thin at less than 0.005 mm, and upon curing they become hard and void-free.
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Glue-lines are the thin adhesive between the strain gauge and the surface on which it is 

mounted. This reduces creep, hysteresis and linearity problems. The curing agent and 

the resin of the adhesive can be kept separately for 9 months. After mixing the adhesive 

it has to be used within 12 weeks before it becomes too viscous. Micro Measurements 

also produces M-Bond 43-B and the viscosity is as low as the M-Bond 610. It is a 

single component and has a storage life of 9 months.

The gauges were installed strictly according to the instructions supplied by 

Micro Measurements instruction bulletin B-130-14. The procedure consists of surface 

preparation, surface cleaning, gauge positioning, adhesive application, clamping, curing 

and post-curing for extra stability. Isopropyl alcohol was used to degrease the surface 

and surface abrasion was done using fine 240 grit emery paper. The cramping pressure 

should be around 105 kN/m2 to maintain thin glue-lines and control the bonded 

resistance of the gauges. The installation was cured at a temperature of 100 °C for 4 

hours. For stress relaxation, the clamps were removed and the installation was post 

cured at 140 °C for 2 hours.

After the installation, the resistance of each gauge was tested. The gauges 

should be completely insulated from the surface. The gauges were connected as a 

Wheatstone bridge circuit as described in section 4.3 and 4.4, and together with the 

analogue to digital converter and the power supply, the system was monitored. The 

input voltage was kept constant at 12 volt and the current at 2 mA. Normally the system 

is left overnight and once there is no null shift, the transducer is loaded to check for 

creep and hysteresis. If the voltage output remains constant throughout the period of 

loading, and, once the load is removed, it returns to its pre-loaded value, then the 

installation is considered successful.

Each strain gauge can sustain power dissipation levels of 10 to 25 mW with 

acceptable null stability, and up to 50mW without damage. In a typical Wheatstone 

bridge with 4 strain gauges shown in section 4.3, the maximum input voltage will be 

about 30 volts without damaging the gauges. It is normally not necessary to have large 

input voltages due to the high gauge factor associated with the semi-conductor type 

gauge. To ensure null stability, the input voltage should be kept below 21 volts which 

corresponds to a power dissipation of 25mW per gauge assuming a bonded resistance of 

4.5 kQ per gauge. Throughout the experiments the input voltage has been kept at 12
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volts and the system is stable after the warming up time of 12 hours. Typically the 

system is on for 3 days before the experiments are started.

4.5 Design of balance 1
The first design shown in figure 4.20 has the transducer arranged as a ‘sting’ 

supporting the model. One force transducer is used and the wing is attached to the 

forward section of the transducer. The aft section is attached to the trolley by a vertical 

streamlined strut. This design is only capable of measuring forces on the wing at a 

fixed incidence. During calibration, the wing will be replaced by a calibration bar with 

notches to allow different moments to be applied.

4.5.1 Water proofing and protection against the effects of salt
The performance of the semiconductor type strain gauge can be easily degraded 

by the effects of moisture. The gauge or bare wires will have to be replaced once in 

contact with brine. Balance 1 is totally submerged in the fluid, thus it is necessary to 

waterproof the whole force transducer module. The materials are supplied by Micro 

Measurements Group and most of the application instructions were carried out 

according to the instruction bulletins. However, due to the space constraint, it was 

impossible to follow the procedures strictly. Several combinations of the suggested 

methods were tried, and a water proofing method was finally adopted. The sensitivity 

of the force transducer is reduced due to the extra coatings needed.

ALUMINUM FOIL

Figure 4.21 First layer of water-immersion coating.

The area around the strain gauges is first cleaned thoroughly with pure isopropyl 

alcohol. The wires leading to the strain gauges are primed with a layer of M-Coat B and 

allowed to air-dry. This coat of M-Coat B will improve bonding ability to other 

coatings. Teflon tape is then carefully placed onto the strain gauges and lead 

connections. This will prevent the strain gauges and any exposed wire from getting in
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contact with the coatings. M-Coat W-l which is a soft microcrystalline wax is heated 

and allowed to drip onto the Teflon tape. A brush or a spatula is used to spread the wax 

while it is still in its semi-liquid state. As soon as the wax hardened, aluminium sticky 

tape was pressed on to prevent moisture from penetrating. This is followed by another 

layer of wax which together acts as the first layer of the water-immersion coating. 

Figure 4.21 shows the cross section of the first coat. The next coat is M-Coat J which is 

a two-part polysulfide liquid polymer compound. This coat acts as the barrier against 

brine and it also protects installations from mechanical damage. Almost the whole force 

transducer will be covered with M-Coat J with special attention paid to ensure the wires 

which are previously primed with M-Coat B, are fully surrounding with M-Coat J. The 

full procedures for the application o f M-Coat J protective coating can be obtained from 

Measurement Group instruction bulletin B-147-4. To further prevent brine from 

attacking the bonding between the stainless steel material and the coatings, a rubber 

balloon covering the whole force transducer is glued to the hardened M-Coat-J coating 

with silicon rubber. The wires should be secured and prevented from moving while 

waiting for each coating to harden. The most common places for the fluid or moisture 

to penetrate are gaps around the wire and the weak bonding of the coatings to the 

stainless steel material. These areas must be checked at every stage.

4.5.2 Calibration
The calibration procedure for balance 1 will differ slightly from balance 2. The 

exact positions of the lift and drag on the model are not known and the calibration of the 

moment will require the normal force to act at several positions away from the strain 

gauges.

The balance has to be mounted on a calibration rig which ensures that the 

transducer is either horizontal or vertical. It is then loaded with the expected range of 

known forces and moments. The Wheatstone bridge outputs of each loading are 

recorded and these results are used in the calibration equations.

The calibration of balance 1 was done with the balance submerged in the water 

and also outside the water. This is to ensure that the strain gauges are subjected to the 

same operating conditions as the actual experiments. However the calibration with the 

transducer outside the water showed little difference. A calibration bar is attached to 

the balance in place of the model so that suitable loads can be applied. Precisely located
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circular notches are cut into the surface for positioning the calibration weights. 

Successive notches allow variations of moment while the normal force is held constant. 

Another horizontal bar is attached perpendicular to the calibration bar to facilitate the 

drag force calibration.

The deflections of the balance due to loading are small and the balance can be 

assumed to be horizontal with the loads applied perpendicular to the balance. The 

compensation for interactions is based on a calibration process that forms simultaneous 

equations. The equations are linear which means that the interactions involving terms 

higher than second order do not exist. Figure 4.22a shows the voltage outputs from the 

moment circuit of the force transducer due to normal force loading at several distances 

from a reference point on the calibration bar. Several weights are used and the graphs 

are extrapolated to locate the zero voltage point when the moment is zero. This point 

should be on the flexures where the strain gauges measuring moment are mounted. The 

distance of this point to the applied normal loads will give the applied moment. Figure 

4.22b shows the results in terms of the moments applied in a clockwise direction about 

the zero-voltage point. The normal circuit output was designed to be insensitive to the 

variation of the position where the normal forces act. Figure 4.23a shows that this is 

true for small normal force loadings. With a 50g load, the normal circuit output appears 

to vary slightly with its position from the reference point. This could be due to the 

deflection of the balance at larger loads. Figure 4.23b shows the normal and moment 

circuit outputs due to the normal force loading at the reference point. Figure 4.24a 

shows the voltage outputs from the axial force circuit due to the normal force acting at 

different distance from the zero-voltage point. This represents the interaction of the 

normal force on the axial circuit outputs. Figure 4.24b shows the axial circuit output 

due to axial force loading. The relative inconsistency of the points is due to the thick 

water proofing material. The equations yield the following 3 x 3  matrix from which the 

drag, lift and moment can be obtained.

^  D 
L 
M

and

~Va "12.527 0 228.69]
Vn = 0 39.547 0
Vm 0 0 629.24]

~D "12.527 0 228.69"
L — 0 39.547 0
M 0 0 629.24

-1 Va

Vn

Vm
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Va, Vn, Vm are the voltage outputs from the axial, normal and moment circuits 

respectively in mV. D, L, M  are the drag, lift and the moment. The position of the 

centre of pressure on the model can be found after the drag, lift and moment are known. 

From figure 4.11, h = zsinB, dl = zcosG and (D x h) + L{dl + 62) = M. Since 0 and 62 

are also known, z can be found and the position of the centre o f pressure can then be 

determined.

There are several problems encountered when using balance 1. The water­

proofing material needed can be thick and hard so that the drag measurement can be 

inconsistent. This can be overcome by having a thinner waterproofing material but the 

balance must be removed from the brine after every experiment. Checks must also be 

done to ensure that there are no gaps in the material. It is also prudent to replace the 

coatings after several experiments. Each time when the waterproofing coatings are 

replaced the balance must be re-calibrated. The coatings will also take sometime to 

harden and thus there can be slight variation in the calibration initially. The forces 

acting on the wing are too far from the transducer which results in too large an 

interaction on the axial circuit output. The distance has since been reduced by having a 

shorter joint between the model and the forward section of the transducer.

4.6 Design of balance 2
The second design uses two of the force transducers with three struts supporting 

the model. The front two struts support the wing at the quarter chord where the lift is 

expected to be the greatest, while the back strut controls the angle of incidence from the 

trailing edge. Figures 4.25a and b and figure 4.29a show the schematic arrangement 

and photographs of the balance. Balance 2 allows the forces on an oscillating wing to 

be measured.

The front transducer holds the two struts via a ball bearing so that there is no 

moment about that point. The other ends of the two struts hold the model via a pin joint 

at the quarter chord so that the wing can swing freely. Since the struts are linked to the 

force transducer at a fixed location, the strain gauges are used to measure the front lift 

of the wing. A third stmt pin jointed at 82.5 mm from the leading edge is connected to 

the second transducer that measures the drag of the wing.
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During oscillation, the output from the axial component of the back force 

transducer will consist of contributions from both the back lift and the input force 

necessary to oscillate the wing. The back lift is expected to be small.

The distance along the chord between the position where the front two struts and 

the back hold the wing is 60 mm. The angle of incidence was varied by lowering the 

drag transducer and the back strut from a reference point where the incidence angle of 

the wing is zero.

4.6.1 Water proofing and protection against the effect of salt
Design 2 has both of the force transducers outside the water and it is only 

necessary to splash proof the strain gauges. Therefore only a layer of Teflon tape 

followed by a layer of crystalline wax (M-Coat B) are needed to protect the 

installations. The wire must be tightly secured to the transducer as the wax offers little 

mechanical protection. This arrangement has proved to be effective, and since there is 

less coating, the force transducer is far more sensitive than the first balance.

In the actual balance arrangement, the force transducer measuring drag uses the 

above protection coatings. However, the force transducer from balance 1 is used as the 

transducer measuring lift in balance 2 as they are interchangeable. The lift force is large 

enough to overcome the extra layers of protective coatings.

4.6.2 Calibration
The calibration procedures for the two force transducers used in balance 2 are 

simpler than for balance 1. This is because the forces to be measured are all at fixed 

positions from the transducers. The force transducer measuring lift was calibrated with 

different weights acting at the position where the transducer is connected to the front 

two stmts of the balance. The force transducer measuring drag was connected to the 

back strut and it was calibrated with different weights acting on the point where the 

back strut holds the model with a pin joint. Figures 4.26 and 4.27 show the calibration 

charts.
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4.6.3 Inertia of the balance
The force modules will record voltage outputs due to the movement of the 

model and the transducers themselves. When a wing oscillates, the front 2 stmts, the 

back strut and the drag transducer will all be subjected to movements and some small 

voltage outputs from both the lift and drag transducers will be expected. When the 

trolley moves, the transducers will be expected to respond to the translation, especially 

the drag transducer which is sensitive to horizontal force. The voltage outputs due to 

these movements must be corrected if they are significant relative to the forces on the 

model.

It is not easy to account for the inertia of the balance and model during 

oscillation. If the wing is oscillating and not moving forwards the strain gauges will be 

recording the forces due to the flow around the wing. Measurements will have to be 

made when the wing is oscillating in air and in the fluid. Theoretical calculations were 

done to access the magnitude of the inertia forces and they are found to be small. 

Figure 4.28 shows the force diagram used to calculate the inertia forces.

C/4

Figure 4.28 Force diagram for inertia force calculation.

The mass moment of inertia of a thin vertical rectangular solid element of mass

8m about an axis through the centroid of the element is

1 2 
Element= Jj, 5m(heiSht of element) .
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By the parallel axis theorem, the moment of inertia of that element about an axis 

through the quarter chord is

1 2
(Ic /4 )e iem en t= Ieiement + Sm(distance of centroid of the element to ^ chord of wing) . 

The total moment of inertia of the wing about an axis along the quarter chord is then

(Ic /4)w ing — /  (Ic /4)element *5x .

This gives a value of Ic/4 -  8.54 x 10"5 kgm2 for the wing with a chord length of 0.09 m 

and an aspect ratio of 1.7. Using the NACA sectional profile equation, the centre of 

gravity of the wing is at 1.522 x 10‘2 m after the quarter chord. The total cross-sectional 

area of the 12% thickness perspex wing is 6.635 x 10"4 m2, the volume is 1.015 x 10"4 

m3 and the mass is 0.127 kg.

The force equations are:

A n -m g sin G -F sin O  = m92h

A t -  m gsinG -FsinO  = mGh 

hmg cos 0 -  rF cos 0 = Ic/40

where At, An are the forces at the quarter chord position where the aerofoil is pivoted 

and F is the applied force required to oscillate the aerofoil.

The lift error is An sin0 -  At cosG -  mg -  F and the drag error is -A n cos0 -  At 

sin0. For an oscillation of 0 = 0 to 4.8 degree with cof = 1.02 rad/s the forces are given 

in tables 4.1 and 4.2. All are in S.I. units.

©ft F/N a „/n A,/N Eerro7l4 Dcrr0I/N

O.OOOE+OO -3.160E-01 3.878E-02 -9.290E-01 1.459E-07 -3.495E-06

6.409E-01 -3.160E-01 6.193E-02 -9.277E-01 5.018E-05 1.097E-06

1.282E+00 -3.160E-01 7.587E-02 -9.267E-01 8.013E-05 6.276E-06

1.923E+00 -3.160E-01 7.51 IE-02 -9.267E-01 7.849E-05 5.945E-06

2.564E+00 -3.160E-01 5.994E-02 -9.278E-01 4.588E-05 5.050E-07

3.204E+00 -3.160E-01 3.634E-02 -9.291E-01 -5.125E-06 -3.687E-06

3.845E+00 -3.159E-0I 1.369E-02 -9.296E-01 -5.422E-05 -2.832E-06

4.486E+00 -3.159E-01 9.882E-04 -9.297E-01 -8.172E-05 -2.628E-07

5.127E+00 -3.159E-01 3.288E-03 -9.297E-01 -7.675E-05 -8.392E-07

5.768E+00 -3.159E-01 1.968E-02 -9.295E-01 -4.125E-05 -3.522E-06

6.409E+00 -3.160E-01 4.363E-02 -9.287E-01 1.066E-05 -2.946E-06

Table 4.1 Inertia forces of aerofoil oscillating in air (aerofoil mass = 0.127 kg).
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C0f t F/N An/N A,/N Lerror/N DcnojTN

0.000E+00 -4.817E-02 5.912E-03 -1.416E-01 2.224E-08 -5.328E-07

6.409E-01 -4.821E-02 9.439E-03 -1.414E-01 7.650E-06 1.672E-07
1.282E+00 -4.823E-02 1.156E-02 -1.412E-01 1.222E-05 9.569E-07

1.923E+00 -4.823E-02 1.145E-02 -1.412E-01 1.197E-05 9.064E-07
2.564E+00 -4.821E-02 9.136E-03 -1.414E-01 6.995E-06 7.699E-08

3.204E+00 -4.817E-02 5.541E-03 -1.416E-01 -7.814E-07 -5.622E-07
3.845E+00 -4.813E-02 2.088E-03 -1.418E-01 -8.267E-06 -4.318E-07

4.486E+00 -4.811E-02 1.507E-04 -1.418E-01 -1.246E-05 -4.006E-08

5.127E+00 -4.812E-02 5.015E-04 -1.418E-01 -1.170E-05 -1.279E-07

5.768E+00 -4.814E-02 3.000E-03 -1.4I7E-01 -6.289E-06 -5.370E-07
6.409E+00 -4.818E-02 6.652E-03 -1.416E-01 1.625E-06 -4.492E-07

Table 4.2 Inertia forces of aerofoil oscillating in water (aerofoil mass = 0.019 kg).

Table 4.1 shows the forces if the aerofoil were oscillated in air. The inertia term 

in the equations has a negligible effect; most of the force is due to the ‘mg’ term. 

Increasing the inertia by two orders of magnitude does not change the forces 

significantly. Table 4.2 shows the inertia forces when the aerofoil weight was reduced 

in the fluid; the weight of the perspex model is almost that of the salt solution it 

displaces. The weight is retained in the inertia term.

The effect of the aerofoil’s inertia is insignificant. However it remains to check 

if oscillations of the aft support affect the lift. It should have no effect on the drag. 

Finally the inertia effects in the balance will have to be checked.

4.6.4 Inertia of the back strut on the drag module voltage output
The wing and the front 2 stmts were removed with only the back strut connected 

to the drag force module. The tank was filled with water up to 0.46 m. With the trolley 

stationary, the back stmt is made to oscillate at a frequency of 2.57 rad/s. This is to 

assess the effect of the oscillation of the drag module and the back strut on the drag 

module voltage outputs. The drag output recorded was negligible. The trolley was then 

made to travel at 0.131 m/s with the strut at a position corresponding to zero wing 

incidence, had the wing been fitted. This is to assess the response of the force outputs 

due to the horizontal trolley movement. Finally in order to find the combined effects, 

the trolley was allowed to travel at 0.131 m/s with the stmt oscillating at 2.567 rad/s. 

The drag output is entirely due to the movement of the trolley and the surface wave drag 

of the back stmt, the correction for this will be discussed in 4.6.6.

125



4. Measurement of forces on an oscillating wing moving in a pycnocline

4.6.5 Inertia of balance with a T-structure replacing the wing
The wing was replaced by a T-structure as shown in figure 4.29b. The tank was 

filled with water to a depth of 0.46 m. This T-structure has a mass of a mere 1.95 g in 

air which is much less than the wing’s 127 g. The wing has a mass of 19 g in water. 

The T-structure was made to oscillate at 7.18 rad/s with the trolley stationary. Since the 

T-structure is much lighter compared to the wing, the inertia of the system should be 

much less than the system with the wing. It is likely that the inertia will be dominated 

by the inertia of the struts since the mass of the T-structure is less than the struts. The 

back strut is expected to contribute most of the inertia force since both the mass and 

distance from the line of rotation are large. The front two stmts, although having 

greater combined mass, will have negligible inertia force since the movement relative to 

the line of rotation is minute. The T-structure has much lower mass but the centre of 

gravity is at some distance from the line of rotation. Figure 4.31 shows the lift and drag 

outputs. The magnitude of the force, including friction in the system and the vortices 

generated by the T-structure, is in the order of the low frequency noise that passes 

filtering.

The trolley was then allowed to move at 0.227 m/s. The drag of the system 

minus the drag of the T-structure and the three struts will give the effects of the inertia 

of the system on the drag module outputs. The outputs appeal' to be dominated by the 

effect of horizontal trolley movement and this will be discussed in section 4.6.6. This 

analysis is also applied to the lift module outputs and they are insignificant.

4.6.6 Voltage outputs due to movement of trolley
The effects of the trolley movement were investigated in a number of ways. The 

trolley was made to move at several velocities with the force modules connected to the 

three stmts holding the wing in both water and air. In the presence of the water, viscous 

drag of both the struts and wing, and drag due to the surface wave produced by the 

stmts increase the voltage outputs from the drag measurements. The stmts are designed 

to produce a purely horizontal flow in the stratified fluid and will not produce 

significant internal waves. The experiments were repeated with the three struts and the 

T-structure, the back strut alone and the back stmt with the T-structure. The trolley was 

also allowed to travel at several velocities with the force modules not connecting to any 

struts and models.
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It was found that the moment of the trolley caused reductions in the voltage 

outputs of the drag even without the model and the struts. The lift outputs were 

unaffected. It is therefore apparent that the strain gauges measuring drag are picking up 

the effect of the horizontal acceleration of the trolley. Since these effects vary with 

time, it is not sufficient to take time averages of the drag of the struts and the T- 

structure. This is particularly true in the case of an oscillating wing as the drag of the 

model also varies with time. Since the sampling rate of the analogue to digital converter 

is fixed, point by point evaluations at each time interval for each stage will be a more 

accurate method. This method is illustrated in figure 4.30. The key in this figure shows 

which voltage outputs correspond to the curves. They are, in order, (1) the wing alone 

which was evaluated from other curves, (2) the output with the three struts and the 

trolley movement after subtracting the effect of the separating structure, (3) the output 

of the T-structure after subtracting the effect of back strut and the trolley movement, 

(4)* the T-structure, trolley movement and three struts, (5)* the back strut, trolley 

movement and T-structure, (6)* the back strut and trolley movement, (7)* the wing with 

the three struts and trolley movement during an oscillation. The starred results are 

direct measurements and the others are evaluated from these. The x-axis shows the time 

after the initial acceleration.

4.6.7 Uncertainty analysis
The previous analysis concerns the dynamic characteristics of the system, the 

static performance will now be studied. The equations from this section can be obtained 

from Doebelin (1990). Consider the drag coefficient which is a function of the drag 

force D, velocity of the wing U, density of the fluid p, span of the wing s and chord of 

the wing c. The uncertainty of Cd consists of possible errors from each of the 

components. The direct errors consist of reading the density from the hydrometer, the 

length for s, c, distance travelled by trolley, the time from the stopwatch, voltage 

reading from digital oscilloscope or voltmeter and the force measurements using dead 

weights. These errors are given in table 4.3.

There are errors associated with reading the calibration charts for D, U and p 

due to curve fitting. The standard deviation, Sqi, from the true value can be obtained the 

following equation,
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where Ncp is the number of calibration points, q0 is indicated value, q; is the true value. 

Assuming that q0 and qi are related by a linear function q0 = b , q i + b 2, bi is the 

gradient of the curve and b2 is the value of q0 when q; = 0. The information needed to 

derive the standard deviations from the true values of p, U and D can be obtained from 

figures 4.4, 4.10, 4.26 and 4.27. They are listed in errors 6 to 9 in table 4.3 with other 

possible errors.

Possible source o f error Uncertainty

1. Reading density p from the hydrometer ± 1.0 kg/m3

2. Reading length s and c ± 0.01 mm

3. Reading time from a stopwatch ± 0.01 s

4. M easurement o f distance travelled by trolley using a rule ± 1.0 mm

5. Velocity measurement using tape and stopwatch (0.26 m/s) ± 0.0043 m/s

6. Calibration chart error for p ± 1.85 kg/m3

7. Calibration chart error for U ± 0 .00117  m/s

8. Calibration chart error for drag, D ± 0.00158 N

9. Calibration chart error for lift, L ± 0.00402 N

Table 4.3 Possible measurement errors.

It is very difficult to quantify the errors associated from source of error 1, 2, 3 and 4. 

For example, error 3 depends on the user’s response time and error 1 may depend on the 

float staying parallel to the fluid level and not too near the surface of the container. 

Error 5 is the result of error 3 and 4. These are random errors and the effects could 

probably cancel out. Errors 6 to 9 are obtained statistically and therefore should cover 

the random errors associated with each parameter.

Assuming D = 0.05 N, p = 1123 kg/m3, c = 0.09 m, s = 0.153 m, U = 0.33 m/s. 

The equation for calculating the absolute limits on the overall error, Ea, is given by

a c n a c n a c n .  3Cn AAc— —AD D + AU D Ap D + As D +
dD a u aP as dc

where AD is the sum of uncertainties for drag force, AU for velocity, Ap for density, As

2D
for span and Ac for chord of the wing. Given CD = ---- -— ,

pU sc
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f  ~  \

(0.00158) 

(0.00117)

(1123X0.33)2 (0.153X0.09) 

-4(0.05)
(l 123X0.33)3 (0.153X0.09)

(1.85) 2(0.05)
(l 123)2 (0.33)2 (0.153X0.09) 

-2(0.05)

+ (O.OOOOl) -2(0.05)
(l 123X0.33)2(0.153)2(0.09)

+ 1(0.00001) ̂  123^ Q 33y  ^  j 53^ 0 Q9y

E„ = (0.00188)+(0.000421)+(0.0000978)+(0.00000388)+(0.0000066) 

and E,, = 0.0024.d

The method of finding the probable errors, E <lra , is according to the root-sum square 

(rss) as given by the following equation,

E„ - AD— 2- 
dD

\ 2
+

f  QC ^ 
AU—— 

d\J

2 /

+ 
v

A p ^
\2

ap
+ A s ^

v as
Ac

SCj
Sc

EIiu = V(0.00188)2 + (0.000421)2 + (0.0000978)2 + (0.00000388)2 + (0.0000066)2 
and E. =0.0019.aras

Using similar arguments and with lift force L = 0.2 N,

Ea = (0.00477)+(0.00168)+(0.00039l)+(0.0000155)+(0.0000264)

Ea = 0.0069 and En = 0.0051.“rss

The error for drag of 0.05 N is possibly as large as 0.0024 N (4.8%) but 

probably not larger than 0.0019 N (3.8%). For lift of 0.2 N, the largest possible error is 

0.0069 N (3.45%) while the largest probable error is 0.0051 N (2.55%). The values of 

lift and drag represent highest typical forces experienced by the wing.

4.7 Signal processing
The force transducer is capable of measuring forces smaller than one hundredth 

of a newton as shown in the calibration charts in sections 4.5 and 4.6. The investigation 

of the inertia force during wing oscillation has shown that their effect is of the order of 

1/100 N. Forces of this magnitude produce electrical signals that are always 

accompanied by noise that can come from many sources having different frequencies
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which must be identified and removed. A few signal processing methods have been 

investigated and they will be presented here,

4.7.1 Identification of noise frequencies
The noise can come from sources such as the analogue to digital converter, the 

electric pickup by the wires, the movement of the trolley and the oscillatory mechanism. 

The different types of noise experienced so far are all high frequency and they can be 

eliminated by a low-pass filter. It is necessary to transform the signal into its frequency 

domain to see the dominant frequencies. This can be done using a 4096 points fast 

Fourier transform. Figure 4.32a shows a typical frequency output from a wing 

travelling at 0.33 m/s and oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The 

frequencies will be expressed in Hz to be consistent with the input parameters of the 

signal processing methods. The peak at 1.2 Hz is the oscillation frequency of the wing 

and the two other high peaks at 9.5 Hz can be 12,5 Hz well above the natural frequency 

of the fluid. No other prominent frequency can be seen near the frequency of oscillation 

and the signals higher than 6.0 Hz can be safely filtered off. The peak very near the 0 

Hz is associated with the cycle involving the start and the end of a rim.

To identify the frequency of the motor, the force transducers were mounted onto 

the oscillatory mechanism without the model. The motor was then switched on with the 

gearboxes linked by rubber belts. The voltage outputs from the strain gauges were 

measured over a period of 30 seconds and the frequency of the motor was found to be at 

50 Hz which was well away from the range of frequencies o f interest. The power 

spectral density associate with this frequency has been greatly reduced by the spring 

system and it is not a prominent frequency.

4.7.2 Noise reduction by a moving average method
A number of ways can be used to reduce the noise. The most straight forward 

method is a moving average. This method has the similar effect of putting a capacitor 

across each input channel. The computer program for data acquisition can be 

programmed to produce a moving average result based on any number of points and the 

results can be plotted directly onto the screen. However this method lacks the precision 

to cut-off unwanted frequencies and can be misleading if the noise frequencies are too 

near to the frequencies of interest. Figure 4.33 illustrates the effect of increasing the
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moving average on a typical signal. The signal has been transformed to its frequency 

domain in order to show how frequencies are being removed. The original signal is 

shown in figure 4.32a. At 25 and 50 averaging points, the power spectrum at 1.2 Hz is 

only slightly reduced. At 75 averaging points, it is being reduced significantly and at 

100 averaging points, it disappears completely. In many cases the amplitude associated 

with important frequencies are often reduced in order to remove the noise. This makes 

it difficult to compare the force measurements as the number of averaging points is now 

an extra factor to consider. However, this method may be applied to cases where the 

voltage outputs are associated with the wing moving at a fixed incidence or with outputs 

associated with strut drag corrections. These outputs are often steady and the only 

important frequency is the cycle involving the start to the end of the runs, which is very 

near to the 0 Hz.

4.7.3 Signal processing using Matlab version 4.2
As an alternative the raw data can be analysed using MatLab’s signal processing 

package. The data are transformed to their frequency domains with a fast Fourier 

transform to identify the prominent frequencies and to determine the range of 

frequencies required. The next step is then to design a filter to screen off unwanted high 

frequency noise. Four different low-pass filters were considered, they are the 

Butterworth, the Elliptic and the Chebyshev type I and II filters. Figure 4.34 shows 

their frequency responses with a cut-off frequency of 2 Hz at two different sampling 

rates. All the responses have the highest possible order to minimise the transition 

width, beyond that limit a singularity may emerge to cause a failure of the filter. The 

transition width of the filters decreases with increasing order. The order determines the 

length of the 2 vectors used to define the filter coefficients. Figure 4.35 shows the 

effect of increasing the order on the transition width of the frequency response of the 

filters. The elliptic filter is the preferred filter because it has the smallest transition 

width, a low enough stopband and a flat passband. One design criteria is that the ripples 

in the passband must be kept to a minimum and the presence of ripples in the stopband 

is compromised in order to achieve this. Chebyshev type I is also acceptable but it has a 

larger transition width. The Butterworth filter has the advantage of being flat in both 

passband and stopband but it seems to act before the cut-off frequency. Both elliptic
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and Chebyshev type I filters have negligible ripples in the passband and the tendency to 

overshoot the cut-off frequency. Chebyshev type II filter is inferior.

The original signal from a wing moving at 0.33 m/s and oscillating at 1.2 Hz in a 

pycnocline with Nc = 0.784 Hz is shown in figure 4.36. The results after filtering 

through various filters are also shown. The cut-off frequency is 1.44 Hz. In this case, 

all the three filters appear to work almost as well. Figures 4.37 to 4.38 show the results 

using different cut-off frequencies and two sampling rates. At the lower sampling rate 

the cut-off frequency must not be less than 2 Hz with oscillating frequency of 1.2 Hz. 

At the high sampling rate the signal is more tolerant to low cut-off frequencies. Figures 

4.39 to 4.40 show similar results for an oscillating frequency of 0.392 Hz.

4.7.4 Using the elliptic filter
The input data is arranged in matrix form with columns separated by tabs. The 

number of data in each column, the Nyquist frequency, the cut-off frequency and the 

order number of the filter are the input parameters. Most of the tasks are done by

Microsoft Excel. The Nyquist frequency is half the sampling rate, ie fNy = where

At is the time interval between the data points. The raw data has to be first transformed 

to its frequency domain using a fast Fourier transform to identify the important 

frequencies and to determine the cut-off frequency. The order number typically starts at 

6 and increases in steps of 1 until the filter fails.

Most of the data will be processed by the elliptic filter. The superiority of the 

filter over the moving average method can be shown by filtering the signal shown in 

figure 4.32a at an order o f 8 and a cut-off frequency as low as 2.4 Hz to give the results 

in figure 4.32b. There seems to be no reduction in the power spectral density associated 

with the oscillation frequency of 1.2 Hz. Corresponding figures with a higher sampling 

rate are shown in figures 4.32c & 4.32d.

Figures 4.41 and 4.42 show the voltage outputs using the elliptic filter and the 

moving average method for two sampling rates. The original signals are shown in (a) of 

both figures. The signal after being filtered by the elliptic filter with a cut-off frequency 

of 1.44 Hz is shown in figure 4.41(c). The other figures are for different moving 

averages.
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4.7.5 Data acquisition and analysis

The data acquisition uses a Microlink 3000 12 bit analogue to digital converter. 

The total number of input channels required depends on the strain gauge balance used. 

Three channels are needed for the sting balance while six channels are used for the 

overhead balance. A channel is normally required for the oscillation of the model while 

an additional channel will be needed for the conductivity probe which detects the 

presence of pycnocline waves.

The digital outputs from the analogue to digital converter are fed into an Acorn 

RiscPC 700 computer. These results are displayed on the screen and are saved as data 

files. Typically an acquisition involving eight channels produces a raw data file of 

280Kbytes, providing 17,500 readings per channel in 35 seconds.

4.8 Dimensional analysis

4.8.1 An oscillating wing in a constant density media.
When a wing moves in a media o f constant density, the lift and drag on the body 

depends on the following parameters.

• Fluid properties, viscosity p and density p.

• Velocity and acceleration of the wing.

• Geometry of the wing: chord c and span s together with the shape.

• The time t and the oscillation frequency cof in rad/s.

• The wing incidence oc and the incidence amplitude oca.

The oscillation is sinusoidal and the circulation and distance between the 

vortices are probably accounted for in the lift L and drag D. If the oscillation is non- 

sinusoidal, then the shape of the pitch waveform will have an effect on the vortical 

patterns in the wake of the wing (Koochesfahani, 1989).

When the wing is moving at a constant speed U, the force coefficients 

2L 2DCL = ----- — and CD = ----- — depend on p, p, a , a a, s, c, t, and Of which form the
pU sc pU sc

dimensionless groups:

Reynolds number Re -

reduced frequency Kf =
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also a , a a, s/c, and ooft together with the wing shape parameters. For geometrically 

similar comparisons, Cl and Cd are functions of Re , Kf, a  and a a only.

4.8.2 With stratification included
The extra parameters are:

• Pycnocline properties: the thickness e, density pc, and natural frequency Nc at the 

centre, density difference across the pycnocline, Ap.

• Pycnocline properties at the level of the wing at 0 degree incidence: N and pcw.

• Distance of the wing from the centre of the pycnocline, h.

• Acceleration due to gravity, g.

Due to the large number of variables involved, it will not be possible to derive a 

sensible set o f non-dimensional quantities without considering the physics of the

, i t x mi . pcwUc N .e cof s  h Ap N U 2 TJ?problem. Eight possible numerics are ——— ,— — and— -. If pc,
p U N c c c pc N c gc

? gAp Ap
Nc and s are known, then Ap is known from N = ----- . This means that can be

p cs  Pc

excluded if Nc is to be retained. The distance, h, from the centre of the pycnocline can

f 2 lT| , , _  N , h .v rJ
Cd and Cl can be a function of

be related by N = N c sec h^— J and only one of the two numerics, and “  is retained.

p^JJc  N £  ^  e h ^ U l
p U N c c c gc

p JQ c  A  £  A a n d U l  3
M U N c o N c gc

where Drag = — pcwU 2scCD, Lift = — pcwU 2scCL and pcw is the density at the centre of
2 2

U2
the wing position. The Froude number Fr = —  can be written in a number of ways,

Fr = eN^ ’ Fr = VCgs/2) ('4 '4-)

and Fr = — where g' = g —— — , Lamb (1932). (4-5)
V g 'h  P2 +P,
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U
Fr = i—— includes the position of the wing in the pycnocline. If the experiments are

Vg'h

carried out at the centre of the pycnocline, and h is not a factor, then Fr = should

be used instead. The internal Froude number is 

U
Fi'i -  ^  where N is the local natural frequency. (4.6)

sN f  p Uc
In chapter 3, M = and =  Y '  ~ ^ —  and the parameters in

eN H-c

equation (4.3) can be written as

CD = f
e N bN ^

Re , M, pf 2- . (4.7)
V. c N c 2g )

which could relate the force measurement to the wave configurations shown in chapter 

3. The last term conveniently approaches unity for interfacial waves and approaches 

zero for a constant density fluid. The internal Froude number in equation (4.6) can be 

brought in at this stage to give
r

CD = f
s U s N ^

(4.8)

Another function for Cd can be derived from parameters in equation (4.2).

c D = f
i -nt2\cof e h  eNr 

R e . M j - S - , - , — f  (4.9)
V N c c c 2g )

eN2 eN2 Ap eN2
The numeric G = — -  can be written as — -  since g' = g —— and g —> g '. — -  can

2g 2g' * 2p B 2g'

U
be replaced with Froude number Fr = - j = . When the wing is moving at a speed U,

Vg'h

2tiU
the wavelength of the natural frequency waves is given by X = — — and hence

c

2rte
M = — which is a ratio of the pycnocline thickness to the wavelength. Note that M

A

2U
has the form of mi inverse Froude number where Fr = . M can be replaced by the

cN c
term c = ~  which is the ratio of the wiug chord to the natural frequency 

2teU a

wavelength. When the wing chord is less or equal to half the wavelength, the energy
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associated with a natural frequency oscillation appeared to be stronger. This is

demonstrated in many of the video clips provided in the CD-ROM, an example for a

steady wing with a forward velocity is shown in clips 83, 84 and 148p. Under this

condition the drag on the wing is expected to be high. Video clips 105, 124 and 163 are

some other examples of an oscillating wing producing waves with wavelength about

CO f ctOf
twice the chord length. The numeric can be replaced with K f  = which is the

reduced frequency commonly used for experiments on wing oscillations in a constant

co)f Kf
density fluid. K f  is also related to the Strouhal number St = = “  ■ Equation (4.9)

can be written as

(4.10)C = fD 1 v X* 1 0 c’VFh,
Peake (1996) considered the force experienced by a sphere oscillating and

U
moving horizontally in a stratified fluid. A graph of Froude number Fr = ,----  against

Vg'h

frequency parameter cr = ^ ° f was produced which defined a region in which one
g'

component of the expression for drag decreased.

The legends in figures 4.91 to 4.98 show

c eN g U U eN?
L = —,M = — ^-,E = —,Fr = —p = ,F r ,  = — ,G =

X ’ U ’ c 5 T g V  1 c N 5 2g 

These definitions will be used throughout the rest of this thesis.

4.8.3 Reynolds number
Two trip wires were used to simulate turbulent flow over the wing on both sides 

of the wing. The critical Reynolds number depends on the size of the trip wire. The trip 

wire used was 0.404 mm which should not alter the shape of the wing significantly. 

The wing was allowed to move at various velocities in fluid of constant density and the 

drag coefficients were recorded. The results indicate that the trip wire is not causing 

transition at velocities below 0.228 m/s or Reynolds numbers below about 22,000.
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4.9 Results of the force measurements

The wing starts to oscillate, accelerates from rest, reaches a constant velocity 

and then decelerates to rest again. All the figures show the force coefficients just after 

the acceleration. As the wing decelerates to rest, the force coefficients can be seen to 

drop to zero. The oscillation is sinusoidal. Force measurements were recorded with 

various frequencies at several velocities. In order to ensure that the boundary layer is 

turbulent, only those with high enough Reynolds numbers are presented.

4.9.1 Force measurements in constant density fluid
Figures 4.43 to 4.64 show the force coefficients of an oscillating wing in a 

constant density fluid. The figures are grouped together according to their velocities or 

Reynolds numbers. Within each group with the same Reynolds number, the figures are 

arranged in increasing oscillatory frequencies. The sinusoidal green lines show the 

position of the wing at any instance, the red and blue lines are for the lift and drag 

measurements of an oscillating wing. Force measurements associated with the wing at 

fixed incidences of 0 and 4.8 degrees are shown as pink and pale blue lines. There is a 

phase shift between the force and the position of the wing. The non-dimensional group 

in equation (4.10) will be used, since the reduced frequency K f is commonly used for 

experiments involving oscillating wings in constant density fluid. Figures 4.43 and 4.44 

show the force measurements of an oscillating wing with U -  0 m/s. In this case, the 

reduced frequency K f is infinite, and the drag can be seen reducing at higher cof. There 

is a very small average lift. When the wing is moving forward, at lower Kf, the lift 

coefficients of the oscillating wing fall within the lift coefficients of the wing fixed at 0 

and 4.8 degrees. This is expected since the incidence angles were well away from the 

stalling angle. However, at K f = 1.49 and K f = 1.32 as shown in figures 4.49a and 

4.54a, the maximum lift coefficients from the oscillating wing were seen to exceed that 

of the C l with a fixed incidence of 4.8 degrees. The minimum lift coefficients were 

also seen to be lower at higher Kf. These observations are consistent with the stronger 

vortices being generated at higher Kf as also seen from the experiments by 

Koochesfahani (1989) and McAlister (1978). From the figures, there is no apparent 

decrease in the mean drag across the range of Kf. Koochesfahani has also shown that 

there is little change in drag at K f under 4.4 and around K f = 6 .8, a wing oscillating
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between ±2 degrees will have no drag. These results, in a constant density fluid, will be 

compared with those where the wing is in a stratified fluid.

4.9.2 Force measurements in stratified fluid
Figures 4.65 to 4.90 show the force coefficients of a wing in a stratified fluid. In 

figure 4.75, the vertical green lines show the position of the wing at 4.8 degrees. This is 

due to the inconsistency in the frequency of oscillation between the first and second 

cycle. There are 5 sets of figures grouped together such that each group has fixed

(see equation 4.8) but have increasing {3f. These figures are arranged in such a manner 

that the information can be conveniently used to plot Cd and C l against K f or (3f later.

It was necessary to allow at least a 15 minute interval between each of the fixed 

incidence and oscillatory runs. The pycnocline properties changed with time as a result 

of the disturbances as well as from diffusion, and the time needed for the waves to settle 

down before the next run make it impossible to make too many runs in a given time. 

The lift coefficients for the wing moving in a stratified fluid are significantly lower and 

the drag coefficients are seen to be slightly higher than in a constant density fluid.

It appears that both Cd and Cl are complicated by the distance of the wing from 

the centre of the pycnocline, h. Without h, parameters in equation (4.10) will be

if the boundary layers were turbulent. Cd can then be plotted against K f with several

appears in two parameters in equation (4,10).

The summary of the results for both stratified and constant density fluid are 

plotted in figures 4.91 to 4.96 showing the variation of force coefficients with Kf. 

Figure 4.91 shows the graph of mean Cd against Kf, the curves associated with a 

constant density fluid have smaller Cd than those in pycnoclines. The variation among

values of the parameters Re, (see equation 4.10). The figures within

s U sN
each group have increasing Kf. Similarly the parameters Re,M,—,— ,— -  are fixed

c cN 2g

g
~ is constant for a particular pycnocline and Reynolds numbers would have little effect c

c
values of ~ . The extra numeric h has added an extra parameter to equation (4.8) and
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the constant density curves indicates the slight Reynolds number effect on CD and it 

shows Cd to be lower at high Reynolds numbers. Among the pycnocline curves, it 

appears that the dominant factor is Fr where higher Fr corresponds to lower Cd. 

However, at L = 0.52, and Fr = 1.09, the mean drag is seen to be much higher. This 

corresponds to the case where the wavelength is twice the chord length of the wing. 

The wave energy associated with this flow is higher as demonstrated in some of the 

video clips 83, 84 and 148p. Even if the wing is oscillating, there will still be a steady 

wave system in addition to the oscillatory wave system. Under this condition the drag 

associated with the steady system will be high.

The graphs of mean Cl against K f are shown in figure 4.92 . The Cl for the

constant density fluid for different Reynolds numbers is around 0.13 to 0.14 which is

much higher than those for the pycnocline. A higher Froude number appears to yield 

higher Cl, except for L = 0.48 and 0.52,

Figure 4.93 shows the graph of maximum Cd against Kf. The sudden increase in 

Cd for L = 0.24, K f = 1.31 is due to the increase in Cd at time = 6s shown in figure 4.85, 

else the value should be around 0.06. The reason for this jump in Cd is unclear. The 

results for maximum Cl against K f are shown in figure 4.94 which indicates an increase 

with K f for both the stratified and constant density cases. The results for the constant 

density are close together showing that the force coefficients are insensitive to the non- 

dimensional terms other than Kf. However the curves for the pycnocline cases have 

indicated the differences that arise in terms of the various parameters.

The minimum Cd and C l tend to decrease with increase of K f and this is 

reflected in figures 4.95 and 4.96. The graphs for Cd vs K f are more volatile due to the 

variations between different peaks and troughs associated with the drag output. It is 

therefore more appropriate to put the emphasis on the trend rather than each individual 

point during a comparison.

4.10 Other possible explanation for results
The lift coefficient is affected by the freestream velocity, the local fluid density 

and the incidence angle. The results attained have shown that the lift coefficients are 

lower when the wing is in a stratified fluid in both steady and dynamic cases. In cases 

of lower Reynolds numbers or wing velocities, the lift coefficients can be negative 

during parts of the oscillation. There are few explanations for the observation.
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Consider a two-dimensional aerofoil at constant incidence in a stratified fluid at low 

Reynolds numbers, there will be an upstream wake producing a high drag. With the 

range of Reynolds numbers considered, this upstream influence is unlikely to be a 

complete blocking. Nevertheless, at lower Reynolds numbers, the flow is expected to 

slow down considerably ahead of the aerofoil. This results in lower lift compared with 

a wing in an unstratified fluid. Hurdis & Pao (1976) showed that with a vertical plate 

moving horizontally in the centre of a pycnocline, there is an internal solitary wave in 

front of the upstream disturbance. This wave could be caused by the impulsive start of 

the plate. The upstream influence becomes weaker as the Reynolds numbers or Froude 

numbers increase.

For a finite wing this reduction in lift and increase in drag would still be present 

to a smaller degree but flow can now move around the sides of the wing rather than over 

the top or below the wing. This will have the effect of reducing the lift and the form 

drag. But the form drag can still be higher than in the non-stratified case. The induced 

drag will probably be lower, and internal waves are produced so that there is now a 

wave drag contribution. The experimental results show that the total drag is higher than 

in the non-stratified case. At higher Froude numbers, the stratified fluid is more likely 

to be displaced over the wing hence generating more lift and less drag. This is clearly 

shown in figures 4.91 and 4.92.

A velocity deficit is expected in the downstream flow close to the trailing edge 

of the wing, unless the frequency of oscillation is high enough to generate a reverse jet 

in the wake. However, with a non-oscillating vertical plate, Hurdis & Pao (1976) had 

also observed a reverse jet further downstream. This lee jet appeal's to exist between the 

wake of the wing and the lee waves. When the fluid is displaced vertically, the 

streamlines were constricted between the obstacle and the adjacent stratified fluid strata, 

which is reluctant to move upward. This constricted fluid accelerated over the obstacle 

and returned to its equilibrium position with enough momentum to create the reverse jet. 

The jet is replaced by lee waves further downstream. It is unclear how this jet will 

change the forces on the wing. The lift distribution is likely to be different from that of 

the constant density case due to the accelerated flow over the surface o f the wing.

The maximum lift coefficients are shown to increase as the frequencies of 

oscillation increase. McAlister et al (1978) have shown that the vortices associated with 

the dynamic increase in incidence angle of an oscillating aerofoil moving in a constant 

density media is more dominant than the steady case, and there will be a dynamic
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increase in lift. The figures of lift outputs for a wing moving in constant density media 

indicate that the lift coefficients in part of the cycle can be more than that for the steady 

cases if  Kf > 1.103 for U = 0.228 m/s, figure 4.48. Similarly the minimum lift 

coefficients become lower than the steady cases for the respective values of K f. In 

stratified fluid, the vortex does not roll-up as readily as the constant density case. The 

upward movement of the vortex lines parallel to the trailing edge are restricted by the 

stratification and the vortices quickly collapse before the fluid returns to its equilibrium 

position. This may be an indication that the lift will be lower in the stratified fluid. 

Clips 93 to 100 in the enclosed CD-ROM show the vortex roll-up in the wake of an 

oscillating wing moving in a pycnocline. Clips 95 and 99 are cases with higher 

frequency of oscillation where several vortices can be seen and the lift is expected to be 

higher. The schlieren images are shown in clips 164s, 165s and 166s where the vortices 

can be seen to collapse and internal waves are generated.
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Figure 4.1 The towing tank.

Figure 4.2 Speed controller and the motor.

K cllcc liw  t.ipc on - 
n M K I t

Figure 4.3 The belt and pulley system used to drive the trolley.
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Figure 4.5 The oscillatory mechanism for the pitching motion of the wing.
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Figure 4.6 The spring system supporting the oscillatory mechanism

Figure 4.7 The two tanks used to contain fluid before filling the towing tank
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Figure 4.8 The conductivity probe is Figure 4.9 Equipment for density
dipped into the bottles containing salt measurement,
solutions of different densities to obtain the 
voltage output for each density.

.18

.16
Density = -0.932(Voltage)3 + 5.257(Voltage)2 - 9.966(Voltage) + 7.464

.14

.12

.02

Voltage /V

FIGURE 4.10 CALIBRATION CHART FOR THE CONDUCTIVITY PROBE
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Figure 4.11 Positions of strain gauges relative to the forces.

v,in

Figure 4.12 Wheatstone bridge circuit for normal force measurement.

v,in

out

Figure 4.13 Wheatstone bridge circuit for moment measurement.
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Figure 4.14 Positions of strain gauges measuring drag.
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Figure 4.15 Wheatstone bridge circuit for drag measurement.
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Figure 4.16 Half bridge circuit for normal force measurement.
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Figure 4.17a Figure 4.17b

Half bridge circuits for moment measurement.

Drag module
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Figure 4.18 Force transducer module.
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Figure 4.19 Arrangement of Wheatstone bridge circuits for the 2 force transducers
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Calibration bar

B alan ce  attachm ent to the trolley

Drag unit
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Figure 4.20a

Force  t ransducer
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Figure 4.20b

Components of balance 1.
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Distance from reference point /m

Figure 4.22a Moment circuit output due to normal force loadings at 
several positions from the reference point.

V = 629.24M + 0.303

-10
Moment /Nm

Figure 4.22b Moment circuit output due to moment about the zero
voltage point.

The top graph shows the variation of voltage output from the moment circuit by varying
the positions of the normal force. The reference point is 0.163m from the zero voltage 
point. The bottom figure represents the result in terms of the moment about the zero 
voltage point.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

V = -30.544x + 19.286

>
E

o>

V = -9.593x + 7.946

V = -5.607x + 4.276

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

♦  50g

■  20g

▲ 10g

——■■■ Linear
(20g)

Linear
(10g)

Linear
(50g)

Distance from reference point /m

Figure 4.23a Normal circuit output due to normal force loadings at 
several positions from the reference point.

V =  104 .99F -0.107

Normal
circuit

Moment
circuit

Linear
(Normal
circuit)

V = 39.547F - 0.162

11 Linear 
(Moment 
circuit)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Force /N

Figure 4.23b Voltage outputs due to normal force loadings at the
reference point.

The top graph shows the voltage outputs from the lift circuit by varying the position of the 
normal force. The bottom graph shows the outputs from the lift and moment circuits due 
to normal force loadings at the reference point.
The reference point is 0.163m from the zero voltage point.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

V = 228.69M -0 .279

X  Axial 
circuit

Linear
(Axial
circuit)

0.06

Moment /Nm

Figure 4.24a Axial circuit output due to applied moment.

4.5

V =  12.527F + 0.088

X  Axial 
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% 2.5
«9)S
o> "1 Linear 

(Axial 
circuit)

0.5

0.350.30 0.05 0.1 0.15 0.2 0.25

Force /N

Figure 4.24b Axial circuit output due to axial force loadings.

The top graph shows the voltage outputs from the axial circuit by varying the position of 
the normal force. The reference point is 0.163m from the zero voltage point.
The bottom graph shows the outputs from the axial circuit due to axial force loadings.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

present strain g a u g e  
balance r e co r d s :
(A) lift
(B) m oment
(C) drag

I

(A) forward lift + strut and balance Inertia

(B) m om ent of (A)

(C) pert of drag and inertia of strut

A force transducer is used in balance 1

support strut

For steady conditions W hen oscillating
(A) will record
drag of wing and part of
strut drag + forward strut inertia

(B) m oment of (A)
(C) rear lift + inertia of rear strut and balance  

O  THESE ARE HINGES

Two force transducers are used in balance 2

Figure 4.25a

Figure 4.25b

Components of balance 2.

154



4. Measurement of forces on an oscillating wing moving in a pycnocline

V -  0.029F

V = 0 .0 19F

-0.005

-0.015

♦  Lift 1

■  Lift 2

Linear 
(Lift 1)

Linear 
(Lift 2)

Force /N

Figure 4.26a Calibration chart for normal force loadings.

V = 0.008

o> 0.6
•.001

Force /N

▲ Axial

Linear
(Axial)

Figure 4.26b Calibration chart for axial force loadings.

Calibration charts for the force tranducer measuring lift.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

♦  Drag 1

■  Drag 2

Linear 
(Drag 1)

■■ ■ Linear 
(Drag 2)

♦  Axial

6 “■ Linear
(Axial)

Calibration charts for the force tranducer measuring drag.

V = 0.029F

>
4J
5
o> 0.4

Force /N

Figure 4.27b Calibration chart for axial force loadings.

V = 0.046F

V = 0.044F

>
& ~0 n
O>

0.15-0.15-0|25 -0.2 0.1

Force /N

Figure 4.27a Calibration chart for normal force loadings.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

Figure 4.29a Figure 4.29b

The 3 struts holding the wing and the T-structure.

Wing

3 struts+ Trolley 
movement

T-structure

3 struts+ T-
structure+
Trolley
movement
T-structure+
Back strut+
Trolley
movement
Back strut+
Trolley
movement

Wing+ 3 struts+
Trolley
movement
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4. Measurement of forces on an oscillating wing moving in a pycnocline

Force - 
Oscillations 
between 0 
and 4.8 deg

Wing
position

Force - 
Oscillations 
between 0 
and 4.8 deg

Wing
position

FORCE EXPERIENCED BY THE LIFT TRANSDUCER
(U = 0 m/s, cof = 7.18 rad/s)
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?
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Figures 4.31 a & b The lift and drag of the T-structure oscillating in water.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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S am p lin g  freq u en cy  o f  488 .3  H z and  filte red  w ith  a  c u t-o f f  freq u en cy  o f  2 .4  Hz.

Figure 4.32 The power spectral density of a typical signal from an oscillating wing 
moving in a pycnocline. The data was sampled at 2 different frequencies and an elliptic 
filter was used to reduce the high frequency noise. Figures from the right column are 
the close-up of the figures on the left.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.33 The effect of averaging points on frequencies associated with a typical 
signal from an oscillating wing moving in a pycnocline. Figures from the right column 
are the close-up of the figures on the left. The sampling rate for the data is 122.1 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.34a & b The frequency responses of the various filters at two different 
sampling rates.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(b) Chebyshev type 1 filter

Figure 4.35a & b The effects of increasing the order on the transition width of the 
filters. The sampling rate is 122.1 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(c) Chebyshev type 2 filter
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Figure 4.35c & d The effects of increasing the order on the transition width of the 
filters. The sampling rate is 122.1 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.36a & b The voltage outputs using various filters for a wing moving at 0.33 
m/s and oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(b) Cut-off frequency = 2 Hz.

Figure 4.37a & b The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered with 
the elliptic filter at various cut-off frequencies. The sampling frequency is 122.1 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.37c & d The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered with 
the elliptic filter at various cut-off frequencies. The sampling frequency is 122.1 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(b) Cut-off frequency = 2 Hz.

Figure 4.38a & b The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered with 
the elliptic filter at various cut-off frequencies. The sampling frequency is 488.3 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.38c & d The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered with 
the elliptic filter at various cut-off frequencies. The sampling frequency is 488.3 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(b) Cut-off frequency = 0.6 Hz.

Figure 4.39a & b The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 0.392 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered 
with the elliptic filter at various cut-off frequencies. The sampling frequency is 122.1
Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(d) Cut-off frequency = 2.4 Hz.

Figure 4.39c & d The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 0.392 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered 
with the elliptic filter at various cut-off frequencies. The sampling frequency is 122.1 
Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.40a & b The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 0.392 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered 
with the elliptic filter at various cut-off frequencies. The sampling frequency is 488.3 
Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.40c & d The voltage outputs from a wing moving at 0.33 m/s and 
oscillating at 0.392 Hz in a pycnocline with Nc = 0.784 Hz. The outputs were filtered 
with the elliptic filter at various cut-off frequencies. The sampling frequency is 488.3 
Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.41a to d The voltage outputs for the lift of a wing moving at 0.33 m/s and 
oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The graphs on the right 
column were filtered using a moving average and the sampling rate was 122.1 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figure 4.42a to f  The voltage outputs for the lift of a wing moving at 0.33 m/s and 
oscillating at 1.2 Hz in a pycnocline with Nc = 0.784 Hz. The data were filtered with the 
moving average and the sampling rate was 488.3 Hz.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.43a & b The lift and drag of a NACA 0012 wing with aspect ratio 1.7
oscillating in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.44a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 oscillating in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.45a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.46a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.47a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.48a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.49a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.50a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.51 a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.52a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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Figures 4.53a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.54a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.55a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.56a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.58a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.

190
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Figures 4.59a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.60a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.

192



4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.61 a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.62a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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Figures 4.63a & b The lift and drag coefficients of a N AC A 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.64a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a constant density fluid.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.65a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.99.

197



4. Measurement of forces on an oscillating wing moving in a pycnocline
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(Re= 23,965, M= 0.878, pf = 0.435, Kf = 0.63, Fr= 1.092, Fr,= 12.578, L= 0.52, G= 0.085)

Figures 4.66a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.99.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.67a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.99.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.68a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.99.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.69a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.99.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

0.25

0 15

O  0 1

0.05

-0.05

Force - 
Oscillations 
between 0  

and 4 8  deg 
0  deg

4 8  deg

Wing
position

Time Is

LIFT COEFFICIENTS OF A WING IN A PYCNOCLINE
(U  = 0.228 m/s, to, = 2.49 rad/s, Nc = 4.01 rad/s, c = 0.104 m, p cw =  1162 kg/m3, h= 0.059 m) 
(Re = 24,596, M = 1.828, pf = 0 34, K, = 0 491, Fr = 1.03, Fr, = 1 085, L = 0.25, G = 0 085)

0

0 2 4 6  8  10 12 14 16

Time Is

DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U = 0.228 m/s, <»,= 2 49 rad/s. Nc = 4 01 rad/s, r. = 0 104 m, Pcw = 1162 kg/m3, h= 0 059 m) 

(Re = 24,596, M = 1 828, P, = 0.34, Kf = 0.491, Fr = 1.03, Fr, = 1.085, L = 0.25, G = 0.085)

4  --------Force -
Oscillations 

3  5  between 0

and 4 8  deg
o ------- 0  deg

25 I«o -------- 4 8  deg

•Wing
position

Figures 4.70a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.100.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.71a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.100.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.72a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.100.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.73a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.100.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.74a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.100.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.75a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.101.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.76a & b The lift and drag coefficients of a NACA 0012 wing
with aspect ratio 1.7 moving in a pycnocline. The density
distribution of the pycnocline is shown in figure 4.101.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(Re= 22,832, M= 0.803, p,= 0.398, Kf = 0.481, Fr= 1.478, Fr, = 2.953, L= 0.48, G= 0.071)

Figures 4.77a & b The lift and drag coefficients of a NACA 0012 wing
with aspect ratio 1.7 moving in a pycnocline. The density
distribution of the pycnocline is shown in figure 4.101.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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Figures 4.78a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline properties is shown in figure 4.101.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(U= 0.228 m/s, wf = 6  494 rad/s, Nc = 7.628 rad/s, e =  0.024 m, Pc* = 1139 kg/m3, h= 0.035) 
(Re = 22,832, M = 0.803, pf = 1.06, Kf = 1.282, Fr = 1.478, Fr, = 2.953, L = 0.48, G = 0.071)
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Figures 4.79a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.101.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(Re = 26,147, M = 1.438, P, = 0.24, Kf = 0.263, Fr = 1.61, Fr* = 1.02, L = 0.24, G = 0.084)
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DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.26 m/s, (t)f = 1.52 rad/s, Nc = 4.4 rad/s, e  = 0.085 m, p c w =  1123 kg/m3, h = 0.038 m) 
(Re =  26,147, M = 1.438, p ,  =  0.24, Kf =  0.263, Fr =  1.61, Ft, = 1.02, L = 0.24, G = 0.084)

Figures 4.80a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.102.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(U = 0.26 m/s, (of = 2.31 rad/s, Nc = 4.4 rad/s, e = 0.085 m, Pc* = 1123 Kg/m3, h = 0.038 m) 

(Re = 26,147, M = 1.438, p( = 0.365, K, = 0.4. Fr= 1.61, Fr, = 1.02, L = 0.24, G = 0 084)
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(Re = 26,147, M= 1.438, 3, = 0.365, K, = 0.4, Fr= 1.61. Fr, = 1.02, L = 0.24, G = 0.084)
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Figures 4.8 la & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.102.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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LIFT COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.26 m/s, ©,= 3.08 rad/s, Nc = 4.4 rad/s, e = 0.085 m, pcw= 1123 kg/m3, h= 0.038 m) 
(Re = 26,147, M = 1.438, pf = 0.487, Kf = 0.533, Fr =1.61, Fr, = 1.02, L= 0.24, G= 0.084)
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DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.26 m/s, « ,=  3.08 rad/s, Nc = 4.4 rad/s, e = 0.085 m, pcw= 1123 kg/m3, h= 0.038 m) 
(Re = 26,147, M = 1.438, pf = 0.487, Kf = 0.533, Fr = 1.61, Fr( = 1.02, L= 0.24, G= 0.084)

Figures 4.82a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.102.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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between 0  

and 4 8  deg 
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LIFT COEFFICIENTS OF A WING IN A PYCNOCLINE
(U = 0.26 m/s, Of — 4.0 rad/s, Nc = 4.4 rad/s, e = 0.085 m, 1123 kg/m3, h= 0.038 m) 
(Re= 26,147, M = 1.438, pf = 0.632, Kt = 0.692, Fr = 1.61, Fr, = 1.02, L= 0.24, G= 0.084)
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DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U = 0.26 m/s, cof = 4.0 rad/s, Nc = 4.4 rad/s, e = 0.085 m, pcw= 1123 kg/m3, h= 0.038 m) 
(Re= 26,147, M = 1.438, pf = 0.632, K, = 0.692, Fr = 1.61, Fr( = 1.02, L= 0.24, G= 0.084)

Figures 4.83a & b The lift and drag coefficients of a NACA 0012 wing
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.102.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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r? 0.05

/

3 5

6

Time Is

DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.26 m/s, (Of= 6.96 rad/s, Nc = 4.4 rad/s, e= 0.085 m, pcw= 1123 kg/m3, h= 0.038 m) 

(Re = 26,147, M = 1.438, p,= 1.1, K,= 1.2, Fr = 1.61, Fr, = 1.02, L = 0.24, G = 0.084)
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Figures 4.84a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.102.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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LIFT COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.26 m/s, top 7.57 rad/s, Nc= 4.4 rad/s, e= 0.085 m, 1123 kg/m3, h= 0.038 m) 
(Re= 26,147, M = 1.438, pf = 1.196, Kf = 1.31, Fr= 1.606, Fr, = 1.02, L= 0.24, G= 0.084)
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(U= 0.26 m/s, (of = 7.57 rad/s, Nc = 4.4 rad/s, e= 0.085 m, pcw= 1123 kg/m3, h= 0.038 m) 
(Re= 26,147, M= 1.438, p ,= 1.196, K,= 1.31, Fr= 1.606, F r^  1.02, L= 0.24, G= 0.084)

Figures 4.85a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.102.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(Re= 33,335, M= 0.866, pf = 0.355, K, = 0.206, Fr = 2.11, Fn = 1.387, L= 0.21, G= 0.072)
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Figures 4.86a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.103.
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(U=0.33 m/s, (of1 1.514 rad/s, Nc= 4.927 rad/s, e=0.058 m, Pcw= 1128 kg/m3, h=0.036 m) 
(Re= 33,335, M= 0.866, pf = 0.355, Kf = 0.206, Fr = 2.11, Frs = 1.387, L= 0.21, G= 0.072)
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(11=0.33 m/s, (0 ,= 2.463 rad/s, Nc= 4.927 rad/s, e=0.058 m, 1128 kg/m3, h=0.036 m) 
(Re= 33,335, M= 0.866, pf = 0.577, K, = 0.336, Fr = 2.11, F  ̂= 1.387, L= 0.21, G= 0.072)
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Figures 4.87a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.103.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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(U= 0.33 m/s, wf= 4.12 rad/s, Nc = 4.927 rad/s, e= 0.058 m, Pcw = 1128 kg/m3, h= 0.036 m) 
(Re = 33,335, M = 0 8 6 6 , p ,  = 0.966, Kt = 0.562, Fr = 2.11, Fr* = 1 387, L = 0.21, G = 0.072)

■ Force - 
Oscillations 
between 0  

and 4 8  deg 
• 0  deg

4 8  deg

■Wing
position

-0.05
Time Is

0
0 1  2 3 4 5 6 7 8 9

Time Is

DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.33 m/s, (0 ,*= 4.12 rad/s, Nc= 4.927 rad/s, e= 0.058 m, Pcw = 1128 kg/m3, h= 0.036 m) 
(Re = 33,335, M = 0 866, P, = 0.966, K, = 0.562, Fr = 2.11, Fr, = 1.387, L = 0.21, G = 0.072)
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Figures 4.88a & b The lift and drag coefficients of a NACA 0012 wing with aspect
ratio 1.7 moving in a pycnocline. The density distribution of the
pycnocline is shown in figure 4.103.
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4. Measurement of forces on an oscillating wing moving in a pycnocline

Force - 
Oscillations 
between 0  

and 4.8 deg 
0  deg

4.8 deg

Wing
position

1

0.5

  0
Time /s

LIFT COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.33 m/s, rap 5.33 rad/s, Nc= 4.927 rad/s, e =  0.058 m, 1128 kg/m3, h=0.036 m) 
(Re= 33,335, M= 0.866, pf = 1.249, Kf = 0.727, Fr = 2.11, Fr, = 1.387, L= 0.21, G= 0.072)

0.25

Force - 
Oscillations 
between 0  

and 4 8  deg
0  deg

4.8 deg

Wing
position

0
0 1 2 3 4 5 6 7 8 9

Time Is

DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U= 0.33 m/s, cop 5.33 rad/s, Nc= 4 927 rad/s, e= 0.058 m, Pcw= 1128 kg/m3, h=0.036 m) 
(Re= 33,335, M= 0.866, p,= 1.249, Kf = 0.727, Fr = 2.11, Frs = 1.387, L= 0.21, G= 0.072)

Figures 4.89a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.103.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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DRAG COEFFICIENTS OF A WING IN A PYCNOCLINE
(U=0.33 m/s, (0 ,= 7.535 rad/s, Nc= 4.927 rad/s, e=0.058 m, Pc*= 1128 kg/m3, h=0.036 m) 
(Re= 33,335, M= 0.866, p, = 1.766, Kf = 1.028, Fr = 2.11, Ft, = 1.387, L= 0.21, G= 0.072)

Figures 4.90a & b The lift and drag coefficients of a NACA 0012 wing with
aspect ratio 1.7 moving in a pycnocline. The density distribution
of the pycnocline is shown in figure 4.103.
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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FIGURE 4.99 D ENSITY A ND FREQ U EN CY  DISTRIBU TIO N S
Nc = 8.342 rad/s, e = 0.024 m, Ap = 184.5 kg/m3, pc = 1084 kg/m3, h = 0.053 m 

Wing's position, height = 0 m, p ^  = 1181 kg/m3
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FIGURE 4.100 D ENSITY AND FREQUENCY D ISTRIBU TIO N S
Nc = 4.01 rad/s, e  = 0.104 m, Ap = 184.5 kg/m3, pc = 1084 kg/m3, h = 0.059 m 

Wing's position, height = 0.061 m, pw  = 1162 kg/m3
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4. Measurement of forces on an oscillating wing moving in a pycnocline
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5. Generation of internal waves by a low aspect ratio wing

CHAPTER 5 

GENERATION OF INTERNAL WAVES BY A LOW 

ASPECT RATIO WING

5.1 Introduction

The measurement of the forces on an oscillating wing in a pycnocline has been 

studied in chapter 4. The results reflect the presence of internal waves and vortices on 

the low aspect ratio NACA 0012 wing. In order to improve the understanding of the 

force readings, it is necessary to see the behaviour of fluid motion induced by the wing. 

Several wings of different scales but with the same section and aspect ratio will be used 

to study the flow.

Section 5.2 describes the experiments involving visualisations of both the plan- 

view and the side-view waves. The vertical and horizontal schlieren systems, as 

described in section 3.3, are used. Some modification to the experimental set-up as 

described in chapter 4 will be necessary to allow the smaller wing to oscillate about its 

quarter chord.

Stevenson et al (1986) have produced theory and experiments involving a 

cylinder moving in a pycnocline. Nicolaou & Stevenson (1997) have the theoiy for an 

oscillating source moving in a fluid with arbitrary stratification and background shear 

flow and presented some theoretical side-view phase configurations o f an oscillating and 

moving point source in a constant natural frequency fluid. Section 5.3 will discuss the 

theory for side-view internal waves around a wing moving horizontally in a pycnocline. 

This theory is that produced by Stevenson et al (1986) and Nicolaou & Stevenson
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5. Generation of internal waves by a low aspect ratio wing

(1997).

In section 5.4, the steady wave system in a wide pycnocline is studied. The side- 

view waves produced resemble those produced by a cylinder, Stevenson et al (1986). 

The plan-views show lee waves near to the wing. Away from the wing where the 

geometry of the source has less influence on the wave shapes, there is a gradual 

transformation to the ‘herring bone’ waves. The velocity deficit in the wake is an 

important consideration if  the wing is travelling at high velocity.

The oscillatory waves in a wide pycnocline with and without the wing moving 

are studied in section 5.5. When the wing is not moving forward, the side-view waves 

produced look like those produced by an oscillating cylinder (Nicolaou et al 1993). 

There are two sources, the primary source will be the vertical displacement at the 

trailing edge while the movement at the leading edge will be a weaker source. With the 

wing moving, near the source the waves look like those theoretical phase configurations 

for constant N  produced by Nicolaou & Stevenson (1997). These stratified waves soon 

become pycnocline waves away from the wing. The theory for pycnocline waves has 

been discussed in section 3.4.

Section 5.6 discusses the waves in a thin pycnocline. Any background flow due 

to the movement and the oscillatory motion of the wing will affect the whole 

pycnocline. The transition from stratified to pycnocline waves will be very near the 

source and hence it is sufficient to apply the pycnocline dispersion relation alone. As in 

section 3.6, the oscillatory waves were not steady relative to the source. Some of these 

waves are natural frequency waves and they have zero group velocity. Together with 

the experimental results, their phase velocities will be deduced.

In section 5.7, there is a description of some experiments on wing tip vortices 

produced in a pycnocline. The vortices produced during an impulsive start and those 

from the wing travelling for a long time are studied. There are some general 

comparisons with the case for a constant density fluid.

When there is a change o f incidence, vortices are shed downstream of the wing. 

McAlister and Carr (1978) have studied the vortices from an oscillating wing, with the 

wing in a constant density fluid. The behaviour of the vortices depends on the 

frequency of oscillation and the velocity of the wing. Koochesfahani (1989) has 

investigated the velocity in the wake of the wing at several frequencies and the 

formation of the corresponding vortices. The video clips in section 5.8 will show some
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5. Generation of internal waves by a low aspect ratio wing

trailing edge vortices from the oscillating wing in a stratified fluid. The vortices in the 

stratified fluid were seen to collapse quickly compared to the constant density case. 

Both the dye method and schlieren systems will be used to visualise the vortices.

The behaviour* of a vortex dipole in a horizontal plane produced by a horizontal 

jet in a stratified fluid has been studied extensively by Voropayev & Afanasyev (1994). 

In a stratified fluid, a vortex dipole is almost two-dimensional since any vertical fluid 

motion will be impeded by gravity. As a result, the vortex dipole can spread to many 

times the size of the source. The velocity in the wake of the wing has a profile similar 

to those produced by a horizontal jet. The resulting dipole varies according to how the 

wing moves. In section 5.9, a vortex pattern produced by a move-stop-move movement 

of the wing will be demonstrated. The visualisation was done using colour dye.

Section 5.10 gives a summary of the important parameters for most of the video 

clips in the enclosed CD-ROM.

5.2 The experiments
The wing is attached to the same oscillatory mechanism as described in section 

4.2.1. The model is a NACA 0012 wing with a chord length of 0.02 m and an aspect 

ratio of 1.7. The vertical displacement at the trailing edge remains at 5 mm and it 

causes the wing to oscillate through incidence angles of plus and minus 10 degrees. 

This range of incidence angles is well away from stall and is apparently necessary to 

cause enough disturbance for the pycnocline waves to be visible through the schlieren 

systems. The amplitude of the oscillation will not change the wave pattern in the far 

field. However it will increase the size of the mixing region dominated by non-linear 

and viscous effects. A smaller amplitude of oscillation would cause less disturbance 

and produce better agreement with the ray theory nearer to the body.

The wing is pin jointed at its quarter chord to a bent strut and a second similar 

strut oscillates the wing through another pin joint near the trailing edge. Both struts are 

hinged at the mid-span of the wing. The plan and side-view image of the waves can be 

visualized by having the vertical and horizontal schlieren systems operating 

simultaneously. These two systems have been described in sections 3.3.1 and 3.3.2. 

The knife edge was vertical so that the systems were sensitive to change of density in 

the horizontal direction. All the pictures are stills from the video and they are taken 

through the perspex sides of a tank of stratified brine. Looking from the top of the tank,
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the two dark lines at the bottom of the pictures are the bent portion of the struts holding 

the wing. From the side views, the struts can be seen as dark columns from the top edge 

of the pictures.

Some of the images in this report were recorded a day after the tank had first 

been filled with two layers of fluid with a density difference of 168 kg/m3. The 

pycnocline density and natural frequency distribution are shown in figure 5.1. The 

profile of the pycnocline a month later is shown in figure 5.2. More videos were also 

produced with this profile. There is still some light distortion but it does not affect the 

results significantly.

5.3 Theory

The stratified wave theory for the side-view phase configuration of a steady 

wave system from a body moving in a pycnocline has been presented by Stevenson et al 

(1986). Nicolaou & Stevenson (1997) have extended the theoiy to an oscillating 

moving disturbance in a flow with arbitrary stratification and background shear. The 

natural frequency and the shear flow velocity are functions of the vertical co-ordinate z. 

Their experimental results include two-dimensional schlieren images for steady waves 

from a moving source in an arbitrary stratification with background shear. The theory is 

capable of producing a three-dimensional wave system, but only two-dimensional 

results comparable with the experimental images were produced. In this section, a 

simplified two-dimensional version of the theoiy which is applicable to the current 

experimental results will be discussed.

When a wing moves horizontally in a pycnocline, the fluid in the wake of the 

wing will move in the direction of the wing motion. If the wing oscillates about its 

quarter chord, the fluid near the trailing edge is being pushed in the opposite direction 

away from the wing. The net direction of the fluid movement in the wake of the wing 

depends on the frequency of oscillation and the velocity of the wing. This background 

flow velocity of the fluid relative to space that exists only in the wake of the wing is 

termed Ubg. Ubg should be a function of x, z, and t, but in the theory discussed in this 

section, Ubg is a function of z only.

Near to the wing, the side-view wave patterns can be compared with the two- 

dimensional theoretical phase configurations of an oscillating point source moving in a 

constant buoyancy frequency fluid, Nicolaou & Stevenson (1997). The ray tracing
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method described in section 2.6 and implemented in section 3.4 can be adopted to find 

the phase configurations of waves moving in a vertical plane. Instead of the pycnocline 

dispersion relation (equation 2.6), the stratified dispersion relation (equation 2.4) for 

two-dimensional inviscid incompressible waves in a vertical plane [x , z] will be used. 

The dispersion relation with natural frequency, N (z), and velocity Ubg(z) near to the 

trailing edge of the wing is given by

“  = kU b8(z)+y(N(z)W  + m̂(z)y  = kUb6(z)+ oor (5.1)

where [k, m(z)] are the x and z components of wavenumber k, y = ±1 and cor is the 

frequency of the fluid relative to the background. The horizontal wavenumber, k, and co, 

remain constant along a ray path but cor varies along the path. Ubg is the background 

velocity of the fluid in the positive x-direction and is a function of the vertical 

coordinate z.

If sin(0(z)) = *
V k + (m(z))

and cos(0(z)) = m(zl
■Jk2 + (m(z))2

then co = kUbg(z)+y(N(z))|sin(e(z))| (5.2)

where 0(z) is the angle between the phase velocity vector and the vertical. 0(z) is also 

the angle the ray path makes with the horizontal and is measured anticlockwise from the 

positive x-direction. N(z), 0(z) and the vertical wavenumber component m(z), are 

functions of z only. If the source were travelling horizontally with velocity, U, in the 

positive x-direction as shown in figure 5.3 then the frequency of the energy as it leaves 

the source satisfies the Doppler relation,

0  = cof+Uk (5.3)

where ©f is the frequency of oscillation.

Equations (5.2) and (5.3) give

cor = y(N(z))|sin(0(z))| = oof + (u -  U bg(z))k. (5.4)

The group velocity relative to the background flow is given by

Ugr =
den dcor
dk dm

r ] N (z)2km r
' g r ’ gr

mr(k2 + m 2)2
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or [ug,., w ^ ] = U [cos9,sin0] = — [cos2 0,sin0cos9]. (5.5)

( 2 2 W 2u gr + w gr J . The group velocity relative to space is then

u ff,w B| = |u gr,w gr| + u be,o (5.6)

I
I
II

A u
A x  (x „  z , j  d

Figure 5.3 The side view co-ordinate system for stratified waves

Referring to figure 5.3, at time to, the body moves with speed U from the origin to 

position D in (t2 -  to) seconds. A t any time ti, such that to < ti < t2, energy of frequency 

co leaves the source at B and reaches point C at t2 with its phase given by

^2 = ^0 (f) _ t o)+ I  + f  (5-7)■*1 Dt

where <j)0 -c o f(tj - 10) is the phase at ti and <|>r is the total of the phase shift that occur

1 * 1  1 *• DcJ) a«|> dfy a<j) . , j,each time the energy reaches the caustics. —-  -  — + u„ —  + w „—  is the rate 01
Dt St 8 0x 8 0z

change of phase of the energy in the x-z plane as it propagates along its ray. The phase 

at any instant is <|> = (kx + mz -  cot) and hence

a<i> , 0+ d$ r.co = — - ,  k = — , m = — . (5.8)
at ax az

Equations 5.6 and 5.8 give

D<|>
Dt

The relative group velocity vector and the wavenumber vector are mutually

= -to  + (ugr+ U bg)k + w 8rm . (5.9)

239



5. Generation of internal waves by a low aspect ratio wing

perpendicular, i.e. ugr k  = 0. From equation (5.1), equation (5.9) can be written as

™  =-a> + Ub„k = -(or. (5.10)Dt be

Hence from equation (5.7), the phase at t2 is given by

<t>2 =  <l>0 - t o ) - * -  j [ 2 ( - G > r ) d t  +  < | > r ,  C5 ' 1 1 )

where | 2 ( -  cor )dt =  ~  J*2 (tof +  k(u -  U bg ))dt is the phase shift that occurs as the energy

moves along the ray path in time t2 — ti. The shape of the ray path depends on Ubg. The 

phase equation can be re-arranged to give

<(•2 = <f>o +4>r - t 0) - J [ 2k ( u - U be)dt . (5.12)

Each value of horizontal wavenumber k remains unchanged along a ray path,

dx = ug dt = (ugr+Ubg)dt, dz = wg dt = Wgr dt (5.13)

dx Ugr + U b
and —  = — ------  . (5.14)

dz Wgr

Now

and

i 2 - ‘ i = f — A — (5-15>cor sm0cos0

x 2 - X j  = M  cot0 +
U J k

cor sin 9 cos 0 y
dz. (5.16)

To integrate the phase equation with z, from equations (5.12) and (5.15),

*t>2 =  <t>0 +4>, - ® f ( * 2  - t o ) - 7 k 2 f  MI ■ U ' U ? ---- Q32 ('5 '17)*1 N |sm 0|sm 0cos0

or <t>2 = + tt)r — o)f (t2 — t 0) - k  f 2 dz (5.18)
•h cos0sm0

where J = 1— '|C°f . . (5.19)
N|sin0|

The position of the energy relative to the body, Xb, can be found from equation (5.16)

x. = f 2 cot 0dz -  yk f 2 —j-;— :---- —-------d z . (5.20)
*1 N |sin0|sin0cos0

Any energy that leaves the body will have to satisfy the two conditions, the magnitude 

of k > 0 and dt > 0. From equation (5.4), the first condition becomes 

1: yN|sin 6| — cof  ̂ Q
u - u b6
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In terms of J,

(5.21)

u - u b8

From equations (5.4) and (5.13), the second condition, dt > 0 gives

and since NlsinBl > 0 . the first condition simnlifies to + 

dt = 7---------- r  dz > 0 .
(U -  U bg jsin 0 cos 0

(5.22)

Along a ray, t -t  > 0 and the second condition becomes 
sin0

T------------v------- > 0 .
( u - u j c o s e

Equation (5.18) gives the time taken for the energy to move along the ray and 

equation (5.20) gives the x-position of that energy. These equations will be used when 

looking at the side view pictures of the waves around an oscillating wing. The energy 

travels into a background flow induced by the moving wing.

Nicolaou et al (1995) have also shown how the plan-view phase configurations 

can be obtained from the stratified dispersion relation (5.1) by evaluating average group 

velocities in a horizontal plane at the centre of the pycnocline when there is no shear.

When an oscillating body moves horizontally very slowly the side view of the 

oscillatory waves are slightly modified arms of the St. Andrew’s cross-wave. The initial 

width of the arms depends on the amplitude of oscillation and the size of the body. 

Away from the source, the aims curve due to the change in background natural 

frequency and widen because of viscous effects. Eventually, the energy will fill the 

whole pycnocline in the form of pycnocline waves. This transition is a combined result 

of viscosity, wave path curvature and the superposition of waves, and the details have 

been discussed by Nicolaou et al (1993). Far away from the source, the plan-view 

waves can be obtained by the method used in section 3.4.
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5.4 Steady waves in a wide pycnocline, G)f = 0

Figures 5.4 to 5.7 show plan and side-views of the steady waves produced by a 

wing, with an incidence angle fixed at 10 degrees, moving from left to right at various 

velocities. The narrow wake from the wing can be seen in all figures showing the side- 

view waves. Notice that the side-view steady wave system is not exactly symmetrical 

about the centre of the pycnocline which may suggest that the wing was slightly above 

the centre of the pycnocline. However, the positive incidence angle could have 

contributed to this effect. Figure 5.4 shows the side-view waves with the wing 

travelling at U = 4.03 mm/s, the steady waves are hardly visible. Above U = 7.57 mm/s, 

the side-view wave shapes have many of the features found in the waves around a 

moving horizontal cylinder (Stevenson et al 1986). For a horizontal cylinder which is 

veiy small compared with the thickness of the pycnocline, the waves close to the 

cylinder are almost semicircular as predicted by theory. However, in the wake region 

the semi-circle is dented towards the body. The size of the dent increases as the ratio of 

body diameter to wave diameter increases. This effect is particularly noticeable in the 

wing side-view photographs where the wake from the wing at 10 degrees incidence is 

fairly strong at speed of U = 7.57 mm/s and above. Looking at the plan-view waves, it 

appears that the struts are modifying the waves slightly. The plan-view images also 

show how the lee waves near the wing finally transform into far field waves having the 

‘herring bone’ shape. This is shown clearly in figures 5.6a and 5.7a. This 

transformation can complicate the side-view waves as each span-wise cross sectional 

vertical plane is no longer the same. If the wing has a higher aspect ratio, then the lee 

waves should continue for a longer distance after the wing and the side-view waves will 

look closer to those produced by Stevenson et al (1986). The plan-view images also 

show that the lee waves are veiy much confined within the span of the wing.

The still images in figures 5.6 and 5.7 are also presented in video clips as listed 

in table 5.1.

Figure number Video clip number Velocity o f wing (m/s)
5.6 150 1.44x1 O'2
5.7 148 0.021

Table 5.1 Video clips in the CD-ROM corresponding to figures 5.6 and 5.7.
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5.5 Oscillatory waves in the wide pycnocline of figure 5.2

5.5.1 Without forward velocity

The wing was made to oscillate at 2.29 rad/s about its quarter chord. Figure 5.8a

still images, some of which are available in video clips 138p, 138s, 141p, 141s, 142p, 

142s. The *p’ indicates plan-view and ‘s’ indicates side-view. The motion represents 

vertical oscillations at the leading and trailing edges. The top-views show circular 

waves of slightly longer wavelength near to the wing and constant wavelength further 

away. If the vertical disturbance was at the centre of the pycnocline, the mode of 

oscillation should be even. The cross-wave from the trailing edge was stronger than the 

one from the leading edge because of its larger amplitude. Initially the leading edge 

cross waves could just be seen but they soon appeared to be overwhelmed by the 

widening of the trailing edge cross-waves. This can be clearly seen in video clips 138s 

and 142s. The inviscid theory described in section 5.3 with U = 0 cannot account for 

the width of the cross-wave. The figures show that the arms tend to widen away from 

the source as explained by the viscous theory provided by Thomas & Stevenson (1972) 

for a St Andrew’s cross-wave. In a pycnocline, the natural frequency N varies with 

height so that the beams are curved. The angle of the beam to the horizontal is given by

from equation (5.2) with co = cof and a negligible Ubg. 0(z) is measured anticlockwise 

from the positive x-direction. Near the caustics, the beams bend towards the vertical. 

At the caustics, where the reflection of the waves occurs, (Df is equal to the local 

background natural frequency. There will be a phase shift in time of n il  lag in the 

vertical velocity component and a tc/2 lead in the horizontal velocity component, 

Lighthill (1978). For each frequency of oscillation, the horizontal wavenumber k and 

the frequency of the fluid oscillations co remain constant along the arms. Figure 5.11, 

which is from figure 5.8b, shows the directions of the phase velocities as indicated by 

the red arrows. The intermediate region consists of a transition to pycnocline waves 

which can be treated with ray theoiy. The far field can also be dealt with by either the 

ray theoiy or the simplified dispersion relation discussed in section 3.4.

The distance between the successive crests or troughs are slightly larger near to

& b show the top and side-views. The figures described in this section are collections of
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the wing and transition to pycnocline waves took place about 3 to 4 chord lengths away. 

Nicolaou et al (1993) have shown in detail how stratified waves produced by an 

oscillating cylinder develop into pycnocline waves.

Figures 5.9 and 5.10 show the side-views of the wing oscillating at 1.56 rad/s 

and 2.48 rad/s. The angle 9 between the arms of the cross-waves and the horizontal 

increases with the frequency of oscillation a>f. Video clips 151 to 156 show the plan- 

view and side-view waves produced at several different frequencies of oscillation.

Clip number Frequency of oscillation (rad/s)
15 lp  &s 2.82
152p & s 2.63
153p & s 2.44
154p & s 2.29
155p & s 1.87
156p & s 5.66

Table 5.2 Frequencies of oscillations for video clips 151 to 156.

Video clip 151s shows an oscillation veiy near to the background natural 

frequency where 9 is seen to be almost tc/2. The theory for a stationary oscillating 

source tell us that there is no solution with frequency higher than the background natural 

frequency. However due to the nature of the wing oscillation about its quarter chord, 

there was a small negative background velocity, -Ubg, at the trailing edge of the wing. 

For a constant density fluid, the velocity profile of Ubg can be described by a sech 

function, but with stratified fluid there will be an extra vertical velocity component due 

to gravity. With U = 0, the arms make an angle 9 measured anti-clockwise from 

positive x-direction and is given by equation (5.4),

The background velocity effectively reduces the value of the numerator such that it is 

less than N. However, since this oscillation induced background flow is only confined 

to a narrow region approximately equal to the vertical displacement of the trailing edge, 

the waves cannot travel far above this region. Away from the wing, the magnitude of 

Ubg also tends to fall off rapidly and the wavelength of the train o f waves will decrease
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before disappearing completely when
a>f - U J c

N
> 1. Video clip 151p shows the plan-

view image which gives a clearer indication of the waves vanishing as the magnitude of 

Ubg is reduced.

Video clip 156p & s shows a train of waves confined within a thin wake behind 

an oscillating wing at a frequency well above the background natural frequency. These 

waves appear to be present because of -U b g, but were further complicated by the effects 

of turbulence. The net background flow remains a function o f the frequency of 

oscillation and the properties of the pycnocline.

5.5.2 With forward wing velocity, U ^ 0

The experiments were repeated with an oscillating wing moving in the direction 

shown by the black arrows in figures 5.12 to 5.17. The plan-view figures show waves 

that have many features similar to those found in section 3.6. However the transition to 

pycnocline waves took place over a larger distance due to the wider pycnocline and also 

the near field waves were modified by the geometry of the wing. Within the frame of 

observation, there will be transitions from stratified waves to pycnocline waves near to 

the source. This transition normally takes place over 3 to 5 body lengths away from the 

source depending on the thickness of the pycnocline, the velocity and the oscillation 

frequency of the source. The pycnocline wave theory should show good agreement in 

the far field.

Figures 5.12 shows the side-view of the waves produced by an oscillating wing 

when the velocity was 2,16 mm/s. Both the plan-view and side-view images are shown 

together in figures 5.13a and b. There are forward moving waves and this is verified by 

the plan-view wavenumber surfaces shown in figure 5.18 with M = 234 and pf =3.48 x 

10"3. The surfaces are produced by the same approach as described in section 3.7. 

There are two surfaces for each value of Pf, the left surface has - p  while the right 

branch has +p. Figure 5.18 plots only the branch with +p since this is where the 

solutions for the waves observed in the image are found. With this relatively large value 

of M, the waves associate with -p  will be extremely tiny. The effect of increasing M on 

the size of the waves with - p  can be seen by comparing figures 3.26b and 3.27b. The 

forward moving waves all around the source belong to the oval near to the origin. These
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waves have veiy small wavenumbers and large wavelengths with high group velocities 

and cannot be easily identified from the still image and are best seen in motion from 

video clip 144p and 144s.

The positions of the energy relative to the source at any one time can also be 

deduced from the two conditions stated in section 5.3, equations (5.21 and 5.22). The 

two conditions are that the magnitude of the horizontal wavenumber is greater than zero,

hence ±  ----- > 0 , and the radiation condition must be satisfied,

radiation diagrams have been presented by Nicolaou & Stevenson (1997) for a constant 

N fluid. All the experimental images in figures 5.12 to 5.17 correspond to the case for y

CQf
= +1 and iq < 1 where y is the ± sign in equation (5.19). The side-view phase

configurations were also provided by Nicolaou & Stevenson (1997) for constant N. 

Very near to the source, before the energy is reflected at the caustics, the general 

positions of the energy for the pycnocline case should resemble those of the constant N 

case. However each ray of energy does bend according to the background natural 

frequency.

CDf
Figure 5.13a and b have ^ “ =0,815 and most of the energy seen has a positive

relative frequency. From the stratified wave theoiy, these waves have y = +1, and away 

from the body they become pycnocline waves with +p. The waves with y = -1 near the 

narrow wake of the source are either destroyed by turbulent mixing or simply are too 

weak to be seen. These are waves with negative relative frequency, corresponding to 

the pycnocline waves with -p . Figure 5.12 illustrates the directions in which the energy 

radiated for the case when U = 2.16 mm/s and Of = 2.29 rad/s. The energy with phase 

velocities indicated by the green arrows have J > 0 and cosO > 0, whereas those shown 

by the red arrows have J < 0 and cos0 < 0. All the energy shown here has U > 0, y -  +1

CDf
and jq < 1 • Further to the left of figure 5.12 is the transition to pycnocline waves where 

the theory in section 3.4 can be applied. The steady wave system is too weak to be seen.

7---------- t------ > u . iNoie max Ubg is non-zero oniy near me trailing eage or me wmg
( U - U b JcosG

and ( U - U b ) > 0 for a body moving in positive x-direction. The results in the form of

> 0. Note that Ubg is non-zero only near the trailing edge of the wing
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At U = 4.03 mm/s, again forward moving waves could be seen, figure 5.14a and 

b. The corresponding video clips are 143p and 143s. This observation is verified by the 

wavenumber surface corresponding to pf = 6.5xl0'3 shown in figure 5.19. The 

directions in which the energy radiates remain the same as the case in figure 5.12.

Figures 5.15 to 5.17 show the oscillating wing travelling at U = 7.60 mm/s, 11.0 

mm/s and 14.4 mm/s. These figures show strong steady waves but no forward moving 

oscillatory waves. The side-view transverse waves fail to move ahead of the wing. 

Figures 5.20 and 5.21 show the wavenumber surface for U = 7.60 mm/s and 14.4 mm/s. 

The waves in figure 5.15 correspond to the branch with Pf = 1.22xl0“2 in figure 5.20 

and those in figure 5.17 have Pf = 2.32x10~2 in figure 5.21. Unlike the first two cases 

with Pf = 3.48xl0~3 in figure 5.18 and pf = 6.5xl0-3 in figure 5.19, where one of the 

wave number surfaces for the appropriate value of Pf was cylindrical, no such surface 

occurs for the conditions of figures 5.15 and 5.17. Again the experimental wave system 

is in agreement with the theoretical wave number surfaces.

Table 5.3 lists all the figures in this section corresponding to their video clips 

and velocities. The frequency of oscillation, o>f is 2.29 rad/s, Nc = 2.81 rad/s and s = 

0.18 m for all cases.

Figure number Video clip number Velocity of wing (mm/s)
5.13a & b 144p & s 2.16
5.14a & b 143p & s 4.03
5.15a & b 145p & s 7.57
5.16a & b 146p & s 11.0
5.17a & b 147p & s 14.4

Table 5.3 Video clips in the CD-ROM corresponding to figures 5.13 to 5.17.

The directions in which the energy radiates for constant N and high frequency of

(Of
oscillation, such that ^  >1, are given by Nicolaou & Stevenson (1997). However, there 

can be no waves if, from equation (5.4),

©f + ( u - U bg)k
isin 0| or

y(n )
> 1,

Neat' to 1, the waves will be confined to a narrow wake similar to those shown in video 

clips 151s and 156s. This is because the waves cannot extend outside the region where 

there is no background flow.
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5.6 Oscillatory waves in the thin pycnocline of figure 5.1

If the pycnocline thickness is thin, the transition to pycnocline waves can be very 

near to the source and pycnocline theory as discussed in section (3.4) can be applied. 

The dispersion relation is given by

co = U bgK c o s ^  + corh (5.23)

where Ubg is the background velocity in the positive x-direction at the trailing edge of 

the wing and it is a function of y. y/ is the angle made by the horizontal group velocity 

and the positive x-direction as defined in figure 3.3 and <Dri, is the frequency of the fluid 

relative to the background fluid. From equation (3.1),

T(eN cK)
CO* = (5.24)

■ /̂(sK)2 + 2msK + (m2 - 1) 

where y = ±1 and K is the magnitude of the horizontal wavenumber. m is equal to 2n+l 

where n is the mode of the pycnocline oscillation, s is the pycnocline thickness and Nc 

the natural frequency at the centre of the pycnocline. The Doppler relation is 

co = oof + UK cos yr where cof is the oscillatory frequency of the wing, and U is the 

velocity of the source. Hence the two equations yield

corh =  cof + (U -  U bg jfC cos^. (5.25)

271
Taking cos y/ = 1 for waves travelling parallel to the path of the source and as K =

X

the wavelength X is given by 

X =
2ti(u  -  U bg)

00, GO
(5.26)

The phase velocity relative to the background fluid is

Xa>, U - U

2ti

bg

1 -
CO (5.27)

GO.

and relative to space, the phase velocity is

1
(Vp)space

VPr+U bg= 7
1 -

co,
f ® r lu - r u bB
' “  rl, ^

(5.28)

For natural frequency oscillations relative to the background fluid, G0rh = Nc and 

X and Vpr from equations (5.26), (5.27) and (5.28) become
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(5.29)

(5.30)

and ( V p ) ,space,rorh=Nc = V + TJv  Pr ^  u  bg

When the wing is moving without oscillation, ©f = 0 and Ubg is the velocity 

deficit in the wake of the wing. In stratified fluid, the presence of Ubg when ©f = 0 is

wake of the wing, the majority of the flow field is not affected by the presence of Ubg 

and hence from equation ( 5 .3 0 ) ,  V p r is equal to the wing velocity U .  In the wake, the 

phase velocity relative to space is given by ( V p) spaCe =  V p r +  U b g. With © f  =  0 ,  ( V p) spa ce=  

U  and the wave crests move at the same speed as the wing. This analysis is verified by 

video clip 8 3 .

© f
If oof 5* 0  and < 1 , the mean magnitude of U b g relative to U  depends on factors

such as (Of, and its distance away from the wing, but is certainly less than U .  Hence it 

can be shown from equation (5.31) that ( V p) space >  U  and the wave crests move toward 

the wing. Examples of these phenomena are shown in video clips 121 and 122. The 

group velocity relative to the background fluid is zero so these natural frequency waves 

do not appear in front o f the wing. The waves moving ahead of the wing are part of the 

oscillatory wave system at frequencies other than Nc and the directions in which the 

energy travels can be determined by the wavenumber surface approach as discussed in 

section 3.7.

© f
For high © f  such that 1 , then U b g can be in the direction opposite to U .

( V p)space is negative and hence the wave crests can move away from the wing in the 

opposite direction to U. Two very good examples are video clip 164p and 165p, where

CGf COf
^  = 1.3. Video clip 166 has the same value of ̂ , but the wave system is complicated

only confined to a horizontal plane with a width equivalent to the span of the wing. Any 

vertical motion of the fluid will be limited by the effect of gravity. Other than in the
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by the presence of the steady wave system.

If ©f = Nc both Vp and X are infinite so that the schlieren system will not show 

the waves. Note that the existence of Ubg is only confined to a narrow wake 

approximately the span of the wing with an initial height equal to the vertical 

displacement of the trailing edge during oscillation. Outside this region the phase 

velocity is only sensitive to the velocity of the wing, U. However with a thin 

pycnocline, the disturbance will produce a background flow which is significant 

compared to the pycnocline thickness.

5.6.1 Without forward wing velocity

Figure 5.22a to h show a series of images with increasing frequency of 

oscillation when the wing is not moving forward. The wing was made to oscillate at 

each frequency for a short while for the waves to develop. Figures 5.22a to 5.22f have 

cof below Nc and figure 5.22f has (Of = 8.13 rad/s which is just below Nc at 8.19 rad/s. 

Note that only those with oscillation frequencies less than 6.3 rad/s have waves in front 

of the wing. For a stationary oscillating streamline body there are waves all around the 

source. Video clips 31 and 48 show plan-view images. For a thin pycnocline these 

waves can be described by the dispersion relation in equation (5.24) and no waves 

appeal' when Of > Nc.

In the case of a wing the waves are affected by the geometry. The circular 

oscillatory wave system appears to become weaker as ©f -> Nc and the wavelength as 

predicted by theory approaches zero. However the schlieren system is less sensitive to 

veiy small wavelengths. As the circular waves become weaker a different wave system 

dominates. If these waves are natural frequency waves then the wavelength from 

equation (5.29) is

X =
2 tcU bg

CO. ■N,
(5.32)

and from equation (5.31)

(Vp),
u,

space,o i rll= N c N r
(5.33)

Waves are also present when the oscillatory frequency is above Nc. Small
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amplitude theory tells us that no wave energy will leave the source and therefore no 

waves will be visible when ©f > Nc. What is happening is that the wing oscillation 

about its quarter chord is producing a small flow of velocity Ubg from the trailing edge 

from right to left in the pictures. An example of this is in video clip 156p with Nc = 2.7

COf
rad/s and COf = 5 . 6 6  rad/s. ^ _> 1 , Ubg is negative and Vp in this case is also negative

which indicates a velocity from right to left. Observation from the clip suggests that the 

phase velocity, (Vp)Space, a chord length to the left of the wing’s trailing edge is about 

10.3 mm/s. From equation (5.33), Ubg = 5.4 mm/s and the wavelength X = 11.5 mm 

from equation (5.32). By direct measurement from the still o f the video clip, the 

wavelength is 12.3 mm. Further away from the trailing edge, Ubg becomes smaller and 

the wavelength decreases accordingly. There are no waves when Ubg becomes zero.

Figure 5.22i to 5.22o show stills from a run in which there was a continuous 

decrease in the frequency of oscillation, except at o>f- 13.14 rad/s, 6.64 rad/s and 6.14 

rad/s where the wing was allowed to oscillate at a fixed frequency for a short while.

5.6.2 With forward wing velocity

When the body is moving with a forward velocity U, the natural frequency 

waves have their wavelength and phase velocity described by equations (5.29) and 

(5.31). There will be a velocity deficit in the wake of the wing, unless the frequency of 

oscillation is so high as to cause a flow in the opposite direction. When this happens, 

the wing will have a thrust rather than a drag. Regardless of the flow direction, waves in 

the wake of the source will be subjected to a background flow which will modify their 

shape from those which are outside the wake. The background flow velocity is relative 

to the free stream velocity. Near to the trailing edge, the background flow will be the 

strongest and away from the wing, will weaken until it virtually disappears altogether. 

There will be shear due to the velocity gradient between fluid in the wake and that 

outside the wake. Near- to the wing, there will be wing tip vortices and turbulence in the 

wake which will eventually disappear by viscous dissipation, however the net velocity 

flow remains dependent on the frequency of oscillation and the velocity of the source. 

A good example of the wave pattern produced is video clip 104. Near to the wing, there 

are lee waves in the wake which are subjected to the background flow. There is a 

discontinuity between the waves in the wake near to the wing and the ‘herring bone’
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wave structure outside the wake. The theoretical herring bone system is produced by a 

point source. At this velocity, it appears that the pressure difference is too weak to 

cause the roll-up of the wing tip vortices. Further away from the wing where the 

velocity deficit is reduced significantly, the waves in the wake join with those outside 

the wake. There are still some other waves in the path of the source and they appear to 

come from the struts supporting the wing.

Other examples of the waves in and outside the wake of the wing are shown in 

video clips 77 to 88. Video clips 77, 81 and 82 show a stalled wing with the vortex 

shedding at the trailing edge of a wing travelling at 29 mm/s. The frequency of the 

vortex shedding appears to be higher than the natural frequency, hence producing 

oscillatory waves moving away from the wing. Similar evidence can also be found at 

higher velocities o f 47 mm/s, 65 mm/s and 87 mm/s, video clips 78, 79 and 80 

respectively are similar cases with the wing moving at higher velocities. In video clips 

83 to 88, the wing was in a slightly wider pycnocline.

In figure 5.23a to c, the wing is moving at 7.8 mm/s with 3 different frequencies 

of oscillation ranging from 3.58 to 7.88 rad/s. Forward moving waves can be seen in 

figure 5.23a but they are not obvious in figure 5.23b. The waves in figure 5.23c are 

moving left relative to the wing. Figures 5.25a and b show the wave number surfaces 

for mode 0 and mode 1 oscillations for U = 7.8 mm/s. The branches which correspond 

to each value of Pf can be found in the legend box. Both the experiments in figure 5.23 

and 5.24 were in the pycnocline as shown in figure 5.1. The wing is slightly above the 

centre of the pycnocline, but since the disturbance is large relative to the pycnocline 

thickness, the mode of oscillation is predominantly mode zero.

In figure 5.24a to c, the wing travels from left to right at 14.4 mm/s with 3 

different frequencies. In the video, the case as shown in figure 5.24a as a still, will show 

some signs of forward moving waves. In figure 5.24c, the waves are clearly travelling 

to the left. The wave number surfaces for this velocity are shown in figures 5.26a and b.

The small amplitude theoiy cannot be expected to produce good results for the 

phase configuration when the amplitude of oscillation is large and the frequency is high 

unless the background flow is included in the evaluation. As soon as there is a small 

local background flow the phase configuration of internal waves is obviously changed. 

What must be remembered is that the wave pattern developed by a moving body 

depends on the relative velocity between the body and the background flow.

252



5. Generation of internal waves by a low aspect ratio wing

5.7 Wing tip vortices

Figures 5.27a & b show the impulsive start of a wing. The wing was 

accelerating from left to right reaching a maximum velocity of 0.33 m/s. The wing tip 

vortices can clearly be seen. The image of vortex shedding from the struts holding the 

wing is superimposed vertically. The effect of the vortex shedding from the struts was 

greatly reduced in experiments involving lower velocities.

Figure 5.27a Figure 5.27b

Figures 5.27a and b were stills from the video clip 132. A closer view of the 

plan-view vortices around the wing can be seen in the video clips as listed in table 5.4. 

The pycnocline properties are shown in figure 5.34.

It is not easy to generate wing tip vortices in stratified fluid as the vertical 

motion of the fluid will be impeded by the force of gravity. Even if the vortices are 

generated they can collapse quickly, producing internal waves. The distance between 

the wing and the position where the vortex rotation ceases increases as Nc decreases.

Video clips 89 to 91 show some wing tip vortices from a NACA 0012 wing 

travelling in a constant density fluid. The wing chord length is 45 mm and the velocity 

was 18 mm/s in video clip 89, 34 mm/s for 90 and 91. The dye used was an emulsion of 

milk and methanol. Methanol is used to adjust the specific weight of the dye to that of 

the background density. The emulsion was released from two small holes near the wing 

tip. The exit velocity of the emulsion was controlled by a dye supply system similar in 

principle to the one used by Voropayev & Afanasyev (1994). This system consists of a 

constant reservoir level container with an overflow outlet. The volume flow rate can be 

controlled accurately by varying the difference between the water level in the towing
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tank and that of the reservoir. The light source was a 100W photo floodlight and the 

flow field was illuminated vertically from below by a 0.01 m wide plane light sheet. 

The axis of the camera was perpendicular to the illuminated plane. The light source and 

the camera were fixed to the towing tank. The background was blackened with 

cardboard to eliminate any shadows in the flow field. Heat transfer from the light 

source to the perspex surface of the working section must be kept to a minimum.

This system is limited to a small range o f Reynolds number up to 1500 based on 

the chord of the wing to prevent the dye lines from becoming turbulent. The difficulty 

with this system is ensuring that the emulsion is of the same density as the background 

fluid. While the video clips show that it is sufficiently accurate for constant density 

fluid, it proved veiy difficult for stratified fluid.

Video clip Maximum U (m/s) COf (rad/s) Nc (rad/s) s(m )
101 0.0078 3.02 7.01 0.02
102 0.0144 3.02 7.01 0.02
103 0.031 0 7.01 0.02
104 0.031 0 7.01 0.02
105 0.047 3.02 7.01 0.02
106 0.031 3.02 7.01 0.02
107 0.064 0 7.01 0.02
108 0.064 0 7.01 0.02
109 0.080 3.02 7.01 0.02
110 0.080 0 7.01 0.02
111 0.097 0 7.01 0.02
112 0.097 0 7.01 0.02
113 0.163 0 7.01 0.02
114 0.33 0 7.01 0.02
117 0.0076 5.87 7.01 0.02
118 0 5.87 7.01 0.02
162p 0.08 3.023 7.01 0.02
163p 0.047 3.023 7.01 0.02

Table 5.4 Video clips showing plan-view vortices around the wing.
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5.8 Vortical patterns in the wake of a wing in a pycnocline

The general magnitude of the circulation around a wing in an unstratified fluid is 

determined by the strength of the vortices which are shed in the initial stages of the 

motion or at any time when the speed or incidence angle is changed. In addition this is 

subject to a small fluctuation due to the vorticity of the boundary layer which passes 

down stream in a vortex wake and develops into a Karman vortex street, McAlister & 

Carr (1978). Presumably there will be a resonance when the Strouhal frequency 

coincides with the oscillatory frequency of the wing. When the flow is stratified the 

vortices eventually cease to rotate and go into a wave motion. Yet another frequency is 

then present, the Brunt-Vaisala frequency.

5.8.1 Visualisation using dye

Some visualisations were made of the vortices produced by a wing in a 

pycnocline. The wing was painted with coloured dye and was then allowed to dry 

overnight. It was then lowered into the pycnocline when the solid dye started to 

dissolve. The rate at which the solid dye dissolves depends very much on the density of 

the fluid; the denser the surrounding fluid the slower it dissolves. When the disturbance 

had settled down after about fifteen minutes, the wing was then set into motion. By now 

the wing was surrounded by coloured fluid. In these experiments, the quality of the 

video clips were not good due to the difficulties in controlling the density but the 

vortices can be seen. Video clips 92 to 100 show the wing oscillating at various 

frequencies. The wing in the clips has a chord length of 90 mm.

The wake patterns of a wing in a pycnocline were observed. Only at 0° fixed 

incidence was there no vortex shedding. There is evidence of a small upstream wake 

which will reduce the velocities on the upper surface of the wing close to the leading 

edge. This possibly accounts for the lower lifts achieved with the stratified fluid (see 

chapter 4). Usually the vortex street collapses quickly but its character depends on the 

frequency of oscillation. The strength and the distance between the vortices depend on 

both frequency and velocity.

The wing was set to oscillate at various frequencies with a fixed amplitude of 0 

to 4.8 degrees and different forward velocities were used. The flow could be divided 

into 4 different basic patterns. At a very low frequency of oscillation a succession of
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vortices with weak circulation are produced but they quickly settle to their equilibrium 

level and collapse, video clip 92.

If the frequency of oscillation is increased, a stronger vortex with positive 

circulation was produced. The vortex with negative circulation can barely be seen. The 

pair of vortices soon collapsed before the next vortex was produced. See video clips 93, 

94, 96, 97, 98 and 100.

Video clips 95 and 99 show the wing with a further increase in frequency of 

oscillation. It was observed that the vortex with positive circulation tends to swirl 

downward. As the incidence angle decreases the vortex of opposite circulation was also 

produced. The next vortex with positive circulation was soon formed as the incidence 

angle was increased again and the process is repeated. The vortices were later seen to 

return to their equilibrium position before collapsing. The vorticity was clearly much 

stronger than before

The frequency of oscillation was again increased. Both the vortices with 

positive and negative circulation were veiy close together. The mean velocity in the 

wake was clearly seen to move away from the aerofoil which means that the wing will 

have thrust instead of drag. Koochesfahani (1989) studied a similar problem in a 

uniform fluid.

5.8.2 Visualisation using the schlieren system
Visualisation of the vortices was also done with the horizontal schlieren system. 

The optical lens was changed from a 135mm to 300mm lens to get a closer side-view of 

the vortices. The vertical schlieren system was also available to visualise the plan-view 

of the vortices. The optical lens was changed from a 105 to 200 mm. The wing was set 

to oscillate at 4.08 rad/s, travelling at 3 different velocities. The roll-up of the vortices 

can be seen to be limited by the stratification and the fluid quickly returned to the 

equilibrium position. The following table lists the video clips and their parameters.

Video clip Velocity (mm/s) cof (rad/s) Nc (rad/s) e(m )
164 4.03 4.083 3.143 0.105
165 11.1 4.083 3.143 0.105
166 21 4.083 3.143 0.105

Table 5.5 Video clips showing roll-up of the vortices.
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5.9 Vortex dipole produced by a wing

The fluid behind a stationary wing at an incidence angle of 2.5 degrees was 

made visible with potassium permanganate. Figures 5.28a to i show the plan-views of 

the wing and the coloured fluid. The wing was allowed to travel at a constant velocity 

of 8.3 mm/s for a long time before it was brought to rest as shown in figure 5.28a. The 

dyed fluid, which followed behind the wing, could be seen hitting the wing. The 

incidence angle was then changed to 0 degree (figure 5.28b). The wing started to move 

again 30 seconds later at 2.7 mm/s. Figure 5.28d to i show the formation of the vortex 

dipole for the next 60 seconds.

The dipole is essentially two-dimensional since the vertical motion of the fluid is 

prevented by gravity. The dipole behaviour is sensitive to the way in which the wing is 

moved. For example, if  the wing remains at rest without change of incidence angle in 

figure 5.28b, the jet following the wing will collide with the wing, forming a dipole in 

the opposite direction. These phenomena have been shown by Voropayev & Afanasyev 

(1994) in chapters on collision of a dipole with a small body and on the symmetric 

collision of a dipole with a wall. They used a jet from a thin horizontal nozzle in a 

stratified fluid. This produces a horizontal vortex pair similar to that from the wing. 

The mean velocity profile in the wake of a fixed incidence NACA 0012 wing and also 

in the wake of a sinusoidally pitching aerofoil in a homogeneous media are given by 

Koochesfahani (1989). The velocity profile for the fixed incidence is like a jet flowing 

in the direction of the wing velocity but with a mean velocity slower than the wing 

velocity. This shows the usual momentum defect. As the frequency increases, the 

velocity in the wake changes until the velocity of the fluid in the wake is the same as the 

free stream velocity which means the wing will have no drag at all. A further increase 

in the frequency of the oscillation will yield a jet in the reverse direction, that is, the 

wing will propel itself forward. When the wing oscillates in a pycnocline, the velocity 

profile of the fluid in the wake will behave in the same manner, but will be modified by 

the presence of internal waves and the vertical velocities will be suppressed. This is like 

a thin horizontal nozzle sending a jet in a direction depending on the frequency of 

oscillation, hence acting as a source for producing a vortex dipole.
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5.10 Summary of video clips in the CD-ROM

Video clip information regarding the pycnocline and the positions of the wing 

are given in the table 5.6. The pycnocline properties for the experiments seen in clips 1 

to 31 are not available. However they were all done in thin pycnoclines with thickness 

of around 20 mm and a natural frequency at the centre of the pycnocline of about 7 to 8 

rad/s.

Two optical lenses were used for the vertical schlieren systems providing the 

plan-view images. The lens with a focal length of 105 mm gives a view of 222 mm 

horizontally across each frame in the video clip. The enlarged view given by the 

200mm lens has 117 mm across each frame and was used for video clips 101 to 114, 

117, 118, 162p to 166p. The horizontal schlieren system has 135 mm and 300 mm 

lenses, which give 173 mm and 78 mm respectively across the frames. Only video clips 

164s to 166s have the 78 mm view across the frames. Video clips 92 to 100 have a 

zoom lens, so that the distance across the frames is variable. However the chord length 

of the perspex wing is 90 mm. The chord length of the wing in clips 89 to 91 is 45 mm. 

Clips 77 to 88 show the waves produced by a stalling wing.

Video Cilp U (Of Nc s Pycnocline properties
32 0.0041 5.96 8.7 0.017 Figure 5.29
33 0.0075 5.96 8.7 0.017 Figure 5.29
34 0.0111 5.96 8.7 0.017 Figure 5.29
35 0.0144 5.96 8.7 0.017 Figure 5.29
36 0.0075 8.96 8.7 0.017 Figure 5.29
37 0.0111 8.96 8.7 0.017 Figure 5.29
38 0.0176 8.96 8.7 0.017 Figure 5.29
39 0.0245 12.85 8.7 0.017 Figure 5.29
40 0.0471 12.85 8.7 0.017 Figure 5.29
41 0.0144 3.85 8.7 0.017 Figure 5.29
42 0.0176 3.85 8.7 0.017 Figure 5.29
43 0.00216 6.33 8.7 0.017 Figure 5.29
44 0.0041 5.11 8.7 0.017 Figure 5.29
45 0.0111 5.11 8.7 0.017 Figure 5.29
46 - - - - Plan-view grid
47 NA NA NA NA NA
48 0 6.33 7.97 0.019 Figure 5.30
49 0.0041 6.33 7.97 0.019 Figure 5.30
50 0.0075 6.33 7.97 0.019 Figure 5.30
51 0.0111 6.33 7.97 0.019 Figure 5.30
52 0.0144 6.33 7.97 0.019 Figure 5.30
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Video Cilp U COf Nc s Pycnocline properties
53 0.0176 6.33 7.97 0.019 Figure 5.30
54 start & stop Figure 5.30
55 0.0572 0 7.97 0.019 Figure 5.30
56 0.0652 0 7.97 0.019 Figure 5.30
57 0.0802 0 7.97 0.019 Figure 5.30
58 0 4.398 7.97 0.019 Figure 5.30
59 0.0075 4.57 7.97 0.019 Figure 5.30
60 0.0111 4.833 7.97 0.019 Figure 5.30
61 0.0041 6.378 7.23 0.022 Figure 3.17
62 0.0075 6.378 7.23 0.022 Figure 3.17
63 0.0144 6.378 7.23 0.022 Figure 3.17
64 0.0374 6.378 7.23 0.022 Figure 3.17
65 0 6.378 7.23 0.022 Figure 3.17
66 0.0021 6.378 7.23 0.022 Figure 3.17
67 0.0038 6.378 7.23 0.022 Figure 3.17
68 0.0021 5.67 7.23 0.022 Figure 3.17
69 0.0038 5.67 7.23 0.022 Figure 3.17
70 0.0041 5.67 7.23 0.022 Figure 3.17
71 0.0075 5.67 7.23 0.022 Figure 3.17
72 0.0243 0 7.23 0.022 Figure 3.17
73 0.0374 0 7.23 0.022 Figure 3.17
74 0.0652 0 7.23 0.022 _ Figure 3.17
75 0.0041 4.75 7.23 0.022 Figure 3.17
76 0.0075 4.75 7.23 0.022 Figure 3.17
77 0.029 Stalled wing NA NA NA
78 0.047 Stalled wing NA NA NA
79 0.065 Stalled wing NA NA NA
80 0.087 Stalled wing NA NA NA
81 0.029 Stalled wing NA NA NA
82 0.029 Stalled wing NA NA NA
83 0.029 Stalled wing NA NA NA
84 0.047 Stalled wing NA NA NA
85 0.065 Stalled wing NA NA NA
86 0.074 Stalled wing NA NA NA
87 0.089 Stalled wing NA NA NA
88 0.131 Stalled wing NA NA NA
89 0.018 0 0 - Constant density
90 0.034 0 0 - Constant density
91 0.034 0 0 - Constant density
92 0.006 2.1 NA NA NA
93 0.0098 3.38 NA NA NA
94 0.0098 3.45 NA NA NA
95 0.031 12.57 NA NA NA
96 0.013 3.43 NA NA NA
97 NA 3.38 NA NA NA
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5. Generation of internal waves by a low aspect ratio wing

Video Cilp U COf Nc s Pycnocline properties
98 NA 3.49 NA NA NA
99 0.031 13.61 NA NA NA
100 0.013 3.77 NA NA NA
101 0.0078 3.02 7.01 0.02 Figure 5.34
102 0.0144 3.02 7.01 0.02 Figure 5.34
103 0.031 0 7.01 0.02 Figure 5.34
104 0.031 0 7.01 0.02 Figure 5.34
105 0.047 3.02 7.01 0.02 Figure 5.34
106 0.031 3.02 7.01 0.02 Figure 5.34
107 0.064 0 7.01 0.02 Figure 5.34
108 0.064 0 7.01 0.02 Figure 5.34
109 0.080 3.02 7.01 0.02 Figure 5.34
110 0.080 0 7.01 0.02 Figure 5.34
111 0.097 0 7.01 0.02 Figure 5.34
112 0.097 0 7.01 0.02 Figure 5.34
113 0.163 L 0 7.01 0.02 Figure 5.34
114 0.33 0 7.01 0.02 Figure 5.34
115 l.lOxlO'2 0 2.81 0.18 Figure 5.2
116 0 2.29 2.81 0,18 Figure 5.2
117 0.0076 5.87 7.01 0.02 Figure 5.31
118 0 5.87 7.01 0.02 Figure 5.31
119 7.57x10'3 4.5 7.15 0.032 Figure 5.31
120 7.57x10"3 4.5 7.15 0.032 Figure 5.31
121 l.lOxlO"2 4.5 7.15 0.032 Figure 5.31
122 l.lOxlO'2 4.5 7.15 0.032 Figure 5.31
123 1 . 1 0 x 1 0 “* 4.5 7.15 0.032 Figure 5.31
124 1.44x10'3 4.5 7.15 0.032 Figure 5.31
125 1.44x1 O'3 4.5 7.15 0.032 Figure 5.31
126 2.1xl0“2 4,5 7.15 0.032 Figure 5.31
127 0.034 4.5 7.15 0,032 Figure 5.31
128 0.064 4.5 7.15 0.032 Figure 5.31
129 0.064 0 7.15 0.032 Figure 5.31
130 0.080 0 7.15 0.032 Figure 5.31
131 0.080 0 7.15 0.032 Figure 5.31
132 0.080 0 7.15 0.032 Figure 5.31
133 0.097 4.5 7.15 0.032 Figure 5.31
134 0.097 0 7.15 0.032 Figure 5.31
135 0.0 4.5 7.15 0.032 Figure 5.31
136 0.163 7.15 0.032 Figure 5.31
137 0.064 4.5 7.15 0.032 Figure 5.31

138p & s 0 2.29 2.81 0.18 Figure 5.2
139p & s 0.011 0 2.81 0.18 Figure 5.2

140 - - - - Figure 5.2
141p & s 0 2.29 2.81 0.18 Figure 5.2
142p & s 0 2.29 2.81 0.18 Figure 5.2
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5. Generation of internal waves by a low aspect ratio wing

Video Cilp U COf Nc 8 Pycnocline properties
143p & s 4.03x1 O'3 2.29 2.81 0.18 Figure 5.2
144p & s 2.16x1 O'3 2.29 2.81 0.18 Figure 5.2
145p & s 7.57x10̂ 3 2.29 2.81 0.18 Figure 5.2
146p & s l.lOxlO'2 2.29 2.81 0.18 Figure 5.2
147p & s 1.44x1 O'4 2.29 2.81 0.18 Figure 5.2

148 0.021 0 2.81 0.18 Figure 5.2
149 0.031 0 2.81 0.18 Figure 5.2
150 1.44xl0“3 0 2.81 0.18 Figure 5.2

151p & s 0 2.82 2.7 0.18 Figure 5.36
152p & s 0 2.63 2.7 0.18 Figure 5.36
153p & s 0 2.44 2.7 0.18 Figure 5.36
154p & s 0 2.29 2.7 0.18 Figure 5.36
155p & s 0 1.87 2.7 0.18 Figure 5.36
156p & s 0 5.66 2.7 0.18 Figure 5.36
157p & s 4.03xl0~3 2,57 2.54 0.196 Figure 5.32
158p & s 0.0144 2.57 2.54 0.196 Figure 5.32
159p & s 0.021 2.57 2.54 0.196 Figure 5.32
160p & s 2.16x10‘3 1.9 2.13 0.277 Figure 5.33

162p 0.08 3.023 7.01 0.02 Figure 5.34
163p 0.047 3.023 7.01 0.02 Figure 5.34
164 4.03 x l0 “3 4.083 3.143 0.105 Figure 5.35
165 l.l lx lO -2 4.083 3.143 0.105 Figure 5.35
166 2.1xl0~2 4.083 3.143 0.105 Figure 5.35

p - plan-view, s - side-view and NA - Information not available.

Table 5.6 Parameters concerning video clips in the CD-ROM.
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5. Generation of internal waves by a low aspect ratio wing

clip 001 clip 002

clip 005 clip 006

UN m
clip 009 clip 010

f l i

clip 013 clip 014

clip 004

clip 008

clip O il clip 012

clip 015 clip 016

clip 003

clip 007

clip 018

clip 021 clip 022 d ip  023 clip 024

Stills from the video clips 1 to 24 on the enclosed CD-ROM

All are plan views
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5. Generation of internal waves by a low aspect ratio wing

clip 025 clip 026 clip 027 clip 028

clip 029 clip 030 clip 0 3 1 clip 032

clip 033 clip 034 clip 035 clip 036

clip 037 clip 038 clip 039 clip 040

clip 041 clip 042 clip 043 clip 044

clip 045 clip 046 clip 047 clip 048

Stills from the video clips 25 to 48 on the enclosed CD-ROM

All are plan views
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5. Generation of internal waves by a low aspect ratio wing

clip 049 clip 050 clip 051 clip 052

clip 053 clip 054 clip 055 clip 056

clip 057 clip 058 clip 059 clip 060

clip 061 clip 062 clip 063

clip 065 clip 066 clip 067 clip 068

clip 064

clip 069 clip 070 clip 071 clip 072

Stills from the video clips 49 to 72 on the enclosed CD-ROM

All are plan views
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5. Generation of internal waves by a low aspect ratio wing

clip 073 clip 074 clip 075 clip 076

clip 077 clip 078 clip 079 clip 080

clip 081 clip 082 clip 083 clip 084

clip 085

clip 089

clip 086 clip 087 clip 088

clip 093 clip 094 clip 095 clip 096

Stills ffom the video clips 73 to 96 on the enclosed CD-ROM

Up to clip 88 are plan views. Clips 89 to 96 are side views.
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5. Generation of internal waves by a low aspect ratio wing

clip 097 clip 098 clip 099 clip 100

clip 101 clip 102 clip 103 clip 104

clip 105

clip 113

clip 117 clip 118 clip 119 clip 120

Stills ffom the video clips 97 to 120 on the enclosed CD-ROM 

Clips 97 to 100 are side views, the rest are plan views.
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5. Generation of internal waves by a low aspect ratio wing

clip 121

clip 125

clip 133

d ip  130 clip 131 clip 132

clip 138s

Stills ffom the video clips 121 to 142 on the enclosed CD-ROM

All are plan views except those with a 's' which are side views.

clip I39p clip 139s clip 140s
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5. Generation of internal waves by a low aspect ratio wing

clip 143p

clip 145s

clip 148s clip 0149s

clip 143s clip 144p clip 144s
-1 r------— ....... ■ .

clip 146s
-------------------------------- - I

clip 147s clip 148pKzaB a
clip 150p clip 150s

clip 15 lp  clip 151s clip 152p clip 152s

clip 153s clip 154p clip 154s clip 155s

clip 156s clip 157s clip 158s clip 159p

Stills from the video clips 143 to 159 on the enclosed CD-ROM

’p* refers to plan view and 's' indicates a side view.

268



5. Generation of internal waves by a low aspect ratio wing

clip 159s clip 160p clip 160s clip 162p

clip 163p clip 164p clip 164s

clip 165p clip 165s clip 166p clip 166s

Stills from the video clips 159s to 166 on the enclosed CD-ROM 

'p' refers to plan view and 's' indicates a side view.
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5. Generation of internal waves by a low aspect ratio wing
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FIGURE 5.1 DENSITY AND FREQUENCY DISTRIBUTIONS 
( e = 22.7 mm, Nc = 8.19 rad/s, pc = 1082 kg/m3, = 1027 kg/m3, Ap = 168 kg/m3 ) 

Wing's position, height = 0.038 m
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FIGURE 5.2 DENSITY AND FREQUENCY DISTRIBUTIONS 
( e = 0.18 m, Nc = 2.81 rad/s, pc = 1078 kg/m2, p , ^  = 1075 kg/m2, Ap = 156 kg/m3 ) 

Wing's position, height = 0.193 m
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5. Generation of internal waves by a low aspect ratio wing

Figure 5.4 Steady wave system from a wing at 10 degrees incidence travelling 
horizontally in a pycnocline.

U = 4.03 mm/s, Nc = 2.81 rad/s and e = 0.18 m. At this velocity, the side-view steady

waves are just about visible with the horizontal schlieren system while the vertical

schlieren system was not sensitive enough to record any waves. The density distribution

of the pycnocline is shown in figure 5.2. The grey arrow shows the direction of travel.

The two vertical lines are the struts holding the wing.

Figures 5.5a and b The top figure shows the plan-view and the bottom figure shows 
the side-view wave system from a wing at 10 degrees incidence 
travelling horizontally in a pycnocline.

U = 7.57 mm/s, Nc = 2.81 rad/s and s = 0.18 m. Both the plan and side-view 

steady waves are clearly visible under the two schlieren systems. The density 

distribution of the pycnocline is shown in figure 5.2. The black arrows show the 

directions of travel.
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. 
G

en
er

at
io

n 
of 

in
te

rn
al

 w
av

es
 

by 
a 

low
 

as
pe

ct
 r

ati
o 

w
in

g
£
OEc3
C<uuH 
00 .

£0
1

^ O 
<U 03

•5 xi
X  X

3  X  
03 c.a |
C O  .5 x- C/55/3OJ #C/5
C/5 — 
<L) <U

*■5 « *5 2
^  £  
«  o

co xC C/5
^  ( U

© ^ r~ 3"V5 00
C/5 ^  
<L> r- 
00 C 
03 O

.5  o  
c ^<u CDc~QJ 33

ccJ
< N  c/5  —; D 
*A5 X
T 3  c/5  
C —03 0/

C— 3—« 00 
»vS X

C/5  C -
0/  O  J—' +-*

. 1 ^
Uh [—1

* ■ •  C J'c/i O 
C C
CCS o  r*~lH a.

>>a.

a>JO

Hi
ooTD 73
CD O
>*rv C/5M) o
.5 <u 
^■6

c/5
H  o3

27
6



. 
G

en
er

at
io

n 
of 

in
te

rn
al

 w
av

es
 

by 
a 

low
 

as
pe

ct
 r

ati
o 

w
in

g ooc
g

cdcoO
Gcd
X-O
D00
c d

co
G <D 
5  CDi—i
CD 0 0x  g

X

"  2
£ O 
<D ^
> o
c d  . 2 2

3  CD55 ^
<D G 

X  <3 
~  (D 
CO CD 
£  G « G
J  s
CO CD 
ID . £
G3) © 

** & 
I ^O s-
£  W 
G X
*© PD
■S g
T 3  X  
G O
c d

D
OG
CD>>D-
c d

G-
G  X  4= 2  G
c o  O

£ N 
G b  43 G 
c o  4 3

0D 0 0b c
00 D
ex 2O +3 

00 D C 
XH £

oc
uS

G—
G
00X

c
so

4 3
c o

CO

DD
c£i-l

G
CO
J -D40
£
GG
D>
G

£
D

4 3H

x
oo■G-

CO.
Tfm(N

£
oo

G

00
(N

CO

G
i—

ON(N
(N

r-r-(N

D
>
G
c -

•4—>X-O
C
DDG

G
D

4 3
4-*

£O
4 3

C/D

C/D

£o
t
G

XD
G

CD
4 3P
r i
uS
DG
G
00X

D
73oc

CD
«-**>cx
D

4 3

Xm
cri
G
C
G

Gm
uS
COD
i -
G
00

co

£
£
x
(N

GX

G
•«-»

c o
CD

"G
D

XH



. 
G

en
er

at
io

n 
of 

in
te

rn
al

 w
av

es
 b

y 
a 

low
 

as
pe

ct
 r

ati
o 

w
in

g 00
.£

0 5

"ocn O

Vh.O
<L>
00

J
c
p0)

<u <u E 
00 
<D

8 2
£ 2  

• g o
I C/3 <D • —

rs .2
'55 'Ho
w s
+-> <u
C/3 y  

C /3  O

« .S
f a  c+ _
3 o00

uotS .O X3 x> H 
<u

-C
T3 ;

£<u
’>I
c
ccj

<Do
Tj
o
co
a.
cs
c

Oh

2<D ,0 H—>
C /3

£
o

hC

c
o
N

•e
_  o
c / 3  - O  

(U op
o VO 
00*S £
O h g
O  £  

00 <U cJC .»
H £

-0T5‘
in
"O
C3
cd

l/S
C /1<D
s -
300

O
»—1
I T 3

<L>*-H
3
00

tG
c

■p

o
X=

C /3

C /3
•  ■—

<uCJ
*6
3
C /3
u.<D •

X) d)
£ >

33 Hc H—1
<+-<D> o
c

£ .2
<U

hC u
H l-H

*o
<u

1
O

J C
H—>

X £
o o
in x:

C /3
NO C /3

II £
<*_ o

CO. E
3

I T )
(N x*:u3
II X

s <u
X

£ p
oo <N
© in

I I <L>II E
CO 3

00
c/T to

C
c d •
V h c

<— i

OO o
(N hC

C /3
II C /3

u . 1 — 1

z <u
C

c/T to
o
oai— co

ON >,
<N a.
<N a>

x=II H—>
C * H

3 O
c

C /3 o
l 3
£ jO

C 3
’C

-i— >
© C /3

"3-
II

D " c / 3
C
0)

T3
U

X=
H

oor-"
( N



. 
Ge

ne
ra

tio
n 

of 
in

ter
na

l 
wa

ve
s 

by 
a 

low
 

as
pe

ct 
rat

io 
w

in
g

t o

ooc
cd

cd
C /3
O
c
cd

<4-H
O
CD
SP

.§

S  2
£  2  

• g o
I C /3  <U • —

T3 _cd 
‘55 ’5b

33 cd 
CD 

on y

J  3
C /3  O

<D .S
00

6o

CD
00
§«-
CD

CD 
33

T3
§
£

'> 
c

_2 . 3
D* ^3
£  «  •*-*

<Da
I doc
CD

CL
cd

c
cd
CD
C /3

CD
-O

§
CD

s
CD +-»C/5

<u
>cd
£

T 3
cd
CD•*->
C /3

CD
33H

x
<N
<N

B
oo

CO

cA 

cd

C /3  O oo

*  -C  o  *r
(N

33  2
C /3  X

II

CD Gp-  3
O

£
3  33  00 — c/T

^3
9 r 2

3s-o  -*-*
'*"* 00  w c

O
(N

X  • -
H  £

oi
II

CDc
I doc
CD
CL
CD

33

CCL t -
TD C 
C • -
cd c

CD>
cd
■4-*

O
c_o
CD
CD

CD
33•*-*

o
C /5

£o
t
cd

03
CD
cd

X)
to H
to
T3
C
cd
cdto

t o

(N

3
00«3

3
00

c
£o

X

2
7

9



. 
Ge

ne
ra

tio
n 

of 
in

ter
na

l 
wa

ve
s 

by 
a 

low
 

as
pe

ct 
rat

io 
w

in
g

cd

oc/5O
G
c d

<4-,o
1)00
c d

5  60
. 5  4>

x  ^
8  2
£ 2
> °  

i  c /3  0) • — 
" O  4>

4 )  5X 08 
' 4>

co a
O T3* 7̂  
c / 3  O

23
00

<4-1o
«  8) 
E §o »-
—j  4 )o X 

F<D-C OJ 
^  G

c d

4 )

O
o  
GO>4
o .

*T c d

§ .s
4 )  *73X 2c
C /3  O

*  - r© SX 2
c / 3  X
D 00>- G3 ;3 00 — <c "
§ -g

00 
£  .9 
f  £

X)
VO

*3C
c d

c d
vO

3
00

c
4 )
4 )
C /3

4 )
X)

C
c d4>

C /3

T3
cd
4 )

4->
C /3

4>

c —o>

4 )X
4—>

£oX
C /3

C /3

£o
g
cd

Xo
c d

4>X
F

<N
IT3
4 )G3
00

1C

'55 "ob 2  —

co.
T3

VO3"

E
00

CO

C/T

1
s -

OO
(N

C /3

3>-
Ov<N
CN

XO

o
X

c /3

4>C
T>oGo
C-
4>X

4—*

<4-o
G

.2  
*4—>

3X•G

G
4>
Q

4 )
4—>
C /3>4
C /3

4 )>3
£

4 )
X

GO
”3

4 )
C /3Oex

4 )
CX
3
C /3

28
0



. 
Ge

ne
ra

tio
n 

of 
in

ter
na

l 
wa

ve
s 

by 
a 

low
 

as
pe

ct 
rat

io 
w

in
g

T')

0 0 3 72
c 4>

oa
4>
72 4)

3
4)

o X 4)
oC/2

O 3
3

3
4>

c 4) >%
OJ

£
CL

4-1 4>
O +-» X
4>

C/3
4—

0 0
cd

C/3 o

J
72

<D
>
cd

3
O

c
o
s-

. 2
x

4>
4) £

4 —> 
3Li

CO X
4>

T 3
T 3
3
4»

‘CI—> 
72

O -»->
72 - 5

£
2

* >i
4)

O■*-»
o
72

4>

£

(N
1

■*—> 
"Ea  
3  
4)

Q
T3 - 2
*crt 'o b o __*
4) 

X  -*—>

3
3
4>

X
<N
c n

CN
IT2

C/2
£

4)
3
4)

<N 4>—
3

O
4 2
72

r s
o
c

II
<«-

c a .

0 0
4 2

4> _ 3
>- 4 -i T 3

O § 3
< 3 4> £

0 0 U-) o
6

3
3

m X
72

o l. II
3
o

4 2

4)

f S

72

<D
4)

4)
4 2 4) £ c £X.i—» 3 0 0 3
- a *"^ 72

§ O
o o Li

4)

£
a>

3
4)
> »

II X
£

CL 10 3
■ 3 c/T 3

" a .
. 5

4 ^

'O
3L.

4)
>
3
£

4)
4 2 3 0 0 4>■*->
C/2

3
O (N X

H
£ N II
O

4 2
C/2

• e
o

X
o

z £
4>

4) 0 0 •4—»
C/3J-

3
3

C/3
0 0 3 <D

>4 3 4>
>

Li

a ,
o

3s-■*-<
O n
<N

cd
*-♦->

4>
0 0
a

<N

II4 2 o
H

3

C/T

■«->
_ 3

*4>
72

X £ O

(N
1
o

4>
X

u S I—* o
- a X

•3"
3 ;

1—1
3
O

3 X - a
r - 4)

II 72
o

ir i X CL
72 B4>— c
3 4>
o p CL

3
t u 72

OO
<N

4>
>
3>-■>->

O
c

.2  ■*—> o
ID

4> 
X  <—>

£
O

XC/3
C/3
£o
fc
o3

Xo
03

4>
X
H

(N
iri
4>3
300

42
e
c
£o

X
72



5. Generation of internal waves by a low aspect ratio wing

 o
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FIGURE 5.18 W AVENUM BER SURFACES FOR PYCNOCLINE WAVES
M = 234. n = 0. e = 0.18 m. Nc = 2.81 rad/s and U = 2.16 x 10'3 m/s.
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FIGURE 5.19 W AVENUM BER SURFACES FOR PYCNOCLINE WAVES 

M = 125. n = 0. e = 0.18 m. Nc = 2.81 rad/s and U = 4.03 x 10° m/s.

The legend shows the values of pf.
Each value of pf produces two curves, only the right curve with +p is shown.
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5. Generation of internal waves by a low aspect ratio wing

o
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FIGURE 5.20 W AVENUM BER SURFACES FOR PYCNOCLINE WAVES 
M = 67.n = 0 ,e  = 0.18 m, Nc = 2.81 rad/s and U = 7.57 x 10'3 m/s.
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FIGURE 5.21 W AVENUM BER SURFACES FOR PYCNOCLINE WAVES
M = 35, n = 0. e = 0 .18 m. Nc = 2.81 rad/s and U = 1.44 x 10'3 m/s.

The legend shows the values of pf.
Each value of pf produces two curves, only the right curve with +p is shown.
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5. Generation of internal waves by a low aspect ratio wing

Figure 5.22a. o)f= 3.58 rad/s.

Figure 5.22b. (Of = 6.0 rad/s.

Figure 5.22c. (Of = 6.3 rad/s.

Figure 5.22d. cof = 6.73 rad/s.

Figure 5.22e. (Of= 7.04 rad/s.

Figure 5.22f. «f = 8.13 rad/s.

Figure 5.22g. (Of = 9.42 rad/s.

Figure 5.22h. cof = 10.22 rad/s.

Figure 5.22 continues on the next page.
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5. Generation of internal waves by a low aspect ratio wing

Figure 5.22i. cof = 13.14 rad/s. Figure 5.22m. Decreasing o)f.

Figure 5.22j. Decreasing cof. Figure 5.22n. Decreasing (Of further.

Swlfe

Figure 5.22k. Decreasing (Of further. Figure 5.22o. cof = 6.14 rad/s.

Figure 5.221. (Of = 6.64 rad/s.

Figure 5.22 A wing at U = 0 m/s 
oscillating with 
increasing to decreasing 
(Of. The profile of the 
pycnocline is shown in 
figure 5.1.
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5. Generation of internal waves by a low aspect ratio wing

Figure 5.23a.
cof = 3.58 rad/s, pf = 0.0183.

Figure 5.24a.
cof = 3.58 rad/s, pf = 0.0339.

Figure 5.23b.
Of = 6.04 rad/s, pf = 0.0309.

Figure 5.24b.
(Of = 6.04 rad/s, pf = 0.057.

Figure 5.23c.
(Of = 7.88 rad/s, pf = 0.0403.

Figure 5.24c.
(Of = 7.88 rad/s, Pf = 0.075.

A wing oscillating and moving from left A wing oscillating and moving from left
to right at U = 7.8x 10J m/s. M = 24. to right at U = 1.44x 1 O'2 m/s. M = 13.
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5. Generation of internal waves by a low aspect ratio wing
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FIGURE 5.25a WAVENUMBER SURFACES
M = 24, n = 0, e = 22.7 mm. Nc = 8.19 rad/s and U = 7.8 x 1 O' m/s.
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FIGURE 5.25b WAVENUMBER SURFACES
M = 24. n = 1,8 = 22.7 mm. Nc = 8.19 rad/s and U = 7.8 x 10'3 m/s.

•0

■0.0183

-0.026

•0.0273

■0.0284

0.0295

-0.0309

0.035

0.0403

Wavenumber surfaces for figures 5.23a to c. The legend shows the values of pf.
Each value of pf produces two curves, the right curve has +p while the left curve has -p.
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5. Generation of internal waves by a low aspect ratio wing
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FIGURE 5.26a WAVENUMBER SURFACES
M = 13. n = 0. £ = 22.7 mm, Nc = 8.19 rad/s and U = 1.44 x 10‘3 m/s.
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FIGURE 5.26b WAVENUMBER SURFACES

M = 13, n = 1. 8 = 22.7 mm. Nc = 8.19 rad/s and U = 1.44 x 10'J m/s.

Wavenumber surfaces for figures 5.24a to c. The legend shows the values of pf.
Each value of pf produces two curves, the right curve has +p while the left curve has -p.
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5. Generation of internal waves by a low aspect ratio wing

* 11
(a) The wing comes to a 
halt after travelling for a 
long time at a constant 
velocity of 8.3 mm/s. The 
angle of incidence is 2.5 
degrees .

(b) 20s later, the 
incidence angle is 
changed to 0 degree.

(c) 30s later and the 
wing starts to move 
to the left again at 
2.7 mm/s.

(e) 50s later. (f) 60s later.

(g) 70s later

w
(h) 80s later. (i) 90s later.

Figure 5.28.
The evolution of a vortex dipole. 
Wing travelling from right to left.

(d) 40s later.
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5. Generation of internal waves by a low aspect ratio wing

Natural Frequency /rad/s 
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FIGURE 5.29 DENSITY AND FREQUENCY DISTRIBUTIONS 
( e = 17 mm, Nc = 8.7 rad/s, p c = 1074 kg/m3, A p = 141 kg/m3, p ^  = 1073 kg/m3) 

Wing's position, height = 0.018 m

.  j anh profile

X Experimental

Natural
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FIGURE 5.30 DENSITY AND FREQUENCY DISTRIBUTIONS 
( e  = 19 mm, Nc = 7.97 rad/s, p c = 1072 kg/m3, A p = 132 kg/m3, p w  = 1072 kg/m3) 

Wing's position, height = 0.017 m

1" Tanh profile

X  Experimental

111 ■" Natural 
frequency
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5. Generation of internal waves by a low aspect ratio wing

Natural Frequency /rad/s 

3 4 5
0.07 0.07

0.06 0.06

0.05 0.05

E 0.04

jz
00

' 5
1  0.03

4------------------1— 0.04

0.03

0.02 0.02

0.01 0.01

0
980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

■ ■' Tanh Profile

X  Experimental

Natural
Frequency

Density /kg/m
FIG U R E 5.31 D EN SITY  A N D  FR EQ U EN C Y  D IST R IB U T IO N S 

( Nc = 7.15 rad/s, e  = 0.032 m, Ap = 181 kg/m3, pc = 1086 kg/m2, p ^  = 1075 kg/m2) 
Wing's position, height = 0.043 m

0.3

0.25

“ ““ ■"Tanh Profile

0.2
X Experimental
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Frequency

0.1
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E 02
Jcop
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FIG U R E 5.32 D EN SITY  A N D  FR EQ U EN C Y  D IST R IB U T IO N S 
( Nc = 2.54 rad/s, e  = 0.196 m, Ap = 137 kg/m3, pc = 1064 kg/m2, p ^  = 1065 kg/m2 ) 

Wing's position, height = 0.18 m

291



5. Generation of internal waves by a low aspect ratio wing

Natural Frequency /rad/s
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FIG U R E  5.33 D EN SITY  A N D  FR EQ U EN C Y  D IST R IB U T IO N S 
( Nc = 2.13 rad/s, e = 0.277 m, Ap = 136 kg/m3, pc = 1062 kg/m2, p ^  = 1072 kg/m2 ) 

Wing's position, height = 0.225 m

10801000
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FIG U R E 5.34 D EN SITY  A N D  FR EQ U EN C Y  D IST R IB U T IO N S 
( Nc = 7.01 rad/s, e = 0.02 m, Ap = 105 kg/m3, pc = 1051 kg/m2, p ^  = 1051 kg/m2 ) 

Wing's position, height = 0.024 m
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5. Generation of internal waves by a low aspect ratio wing
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FIG U R E 5.35 D EN SITY  A N D  FR EQ U EN C Y  D IST R IB U T IO N S 
( Nc = 3.14 rad/s, e  = 0.105 m, Ap = 111 kg/m3, pc = 1050 kg/m2, p ^  = 1029 kg/m2 ) 

Wing's position, height = 0.141 m
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FIG U R E 5.36 D EN SITY  A ND  FR EQ U EN C Y  D IST R IB U T IO N S 

( Nc = 2.7 rad/s, e = 0.18 m, Ap = 142 kg/m3, pc = pew = 1066 kg/m2 ) 
Wing's position, height = 0.149 m
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6. Conclusion and future work

CHAPTER 6 

CONCLUSION AND FUTURE WORK

6.1 General conclusions and suggestions for future work

Wave systems from moving oscillating streamlined bodies have been studied 

experimentally and by small amplitude wave theory. The flow around a moving 

oscillating finite aerofoil has been studied experimentally.

The first experiment involved oscillating a small streamlined body which was at 

a fixed position in the tank. The body could slide along a stretched wire fastened to 

both ends of the tank. The body was attached to another wire which spanned the length 

of the tank and was moved so that the body oscillated backwards and forwards on the 

stretched wire. The body was at the centre of a pycnocline. At some frequencies this 

produces circular waves propagating away from the body along the pycnocline. A 

vertical schlieren system was used to view the waves. The circular waves were 

expected because a pycnocline behaves in some way like a free surface. However at 

other frequencies interspersed with those producing circular waves, the wave pattern 

was very different, with waves moving away from the body on the pycnocline in 

particular directions. The body oscillation was far from simple harmonic. Later 

experiments have shown that these waves exist on jets of fluid moving horizontally and 

were obviously due to peculiar body oscillations. These waves are shown in several of 

the video sequences on the CD-ROM presented with this thesis.

The shape of oscillatory pycnocline waves has been derived using Krauss’s 

dispersion relation and Stevenson’s ray theory for a moving oscillating body. The
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6, Conclusion and future work

theory for the zeroth mode reduces to surface waves or interfacial waves when the 

thickness of the pycnocline approaches zero and the centreline natural frequency 

approaches infinity in such a way that eNc2 —» 2g.

Lighthill (1978) looked at surface waves from a moving oscillating body and 

plotted the wavenumber surfaces, showing that under certain circumstances waves could 

move ahead of the body, unlike the steady Kelvin ship waves which are always behind 

the body. However he did not calculate the shape of the waves. The present analysis in 

the thin pycnocline limit confirms Lighthill’s results and the wave shapes are analysed.

In order to confirm the theoiy the vertical schlieren system was used to observe 

waves from a streamlined body oscillating as it moved, accelerating to a constant speed. 

The agreement between theory and experiment is good. When the body moved steadily 

the waves were the same as those studied by Paonessa (1992)

The small amplitude theoiy has been used to show the phase configuration for an 

accelerating or decelerating oscillating body. Other than the few accelerating cases seen 

so far, there appear to be no published experimental results available. To fully verify 

the theory with experiment, a mechanism that can accurately vary the acceleration and 

deceleration will be required as part of the future work.

Interesting experimental images of surface waves dominated by surface tension 

were observed with the vertical schlieren system. A vibrating thin wire just touching the 

water surface was used as the point source. A theoretical study uses the dispersion 

relation of surface waves with surface tension effects included. The comparison 

between experiment and theory shows reasonable agreement. Lighthill (1978) discussed 

the transition between capillary waves and gravity waves, however no phase 

configurations were provided. The theoiy and experiments in this thesis demonstrate 

that at low source velocities, the surface waves cannot be realistically produced by either 

the surface gravity wave or the capillary wave dispersion relation alone. At higher 

velocities, the wavelengths for surface tension waves become smaller and those for 

surface gravity waves become longer. This allows the surface tension waves to be 

differentiated from the gravity waves.

The DERA Agreement was to measure the forces on an oscillating finite wing. 

The forces involved were small and of the order of 0.01 N. Two strain gauge balances 

were designed by the author and constructed by the technicians in the department 

workshop.
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6. Conclusion and future work

The NACA 0012 wing with an aspect ratio of 1.7 could oscillate about its 

quarter chord position. These were specified by DERA. The frequency of interest is 

much lower than the frequencies of the noise associated with the oscillatory mechanism. 

These unwanted frequencies are removed in two ways. Firstly, the whole oscillatory 

mechanism was mounted on a spring and damper system so that the magnitude of the 

noise was reduced. Secondly, signal processing employed a low pass filter to eliminate 

the higher frequency noise.

In a pycnocline, the drag of a wing is made up from profile drag, wave drag, 

induced drag and viscous drag. The profile drag can be less if the flow over the surface 

is attached longer at the rear of the wing. Law (1999) has shown that separation occurs 

later for flow over a cylinder in a stratified fluid. This reduces the base drag of the 

cylinder causing the overall drag to be less than that in a homogeneous fluid even 

though internal waves were radiating from the cylinder. Thus the reduction in profile 

drag was greater than the wave drag. For a NACA 0012 wing at a low incidence angle, 

the reduction in profile drag is probably not as much as the increase in viscous drag if 

the flow remains attached for a longer distance. Wave drag is expected to have a 

positive contribution to the overall drag.

Peake (1996) gave an analysis of the anomalous behaviour whereby the wave 

drag of a sphere due to oscillatory waves can reduce at certain Froude numbers. The 

sphere is moving and oscillating horizontally. However the analysis has a condition that 

the wavelengths are much greater than the amplitude of the sphere oscillation this 

cannot be satisfied using the current experimental set-up. For steady waves, when the 

wavelength of the wave is twice the length of the wing chord, the wave energy is seen to 

be strongest and the wave drag will be high. Even if the oscillatory waves produce a 

wave thrust, it may not be sufficient to overcome the wave drag due to the steady waves. 

Induced drag can be less than in a homogeneous fluid as the fluid is reluctant to move 

upward over the wing tips and the lift is also less than in a homogeneous fluid. The net 

result is that the overall drag is unlikely to reduce when the wing is oscillating from 0 to 

5 degrees incidence. However this analysis may change if the incidence angle is high.

A later paper by Peake (1998) for the case of a continuous density stratification

suggests that the radiation instability of a plunging sphere occurs when ^  > 0.3D where 

D is the cylinder diameter and is independent of the frequency of oscillation. The
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6. Conclusion and future work

present experiments span this condition with D equivalent to either the wing chord or 

thickness. In the experiments the wing oscillates about its quarter chord. The result will 

probably be closer to the theoretical analysis of Peake if a plunging wing was used 

instead. No instabilities or reductions in drag were observed.

The results from the force measurements indicate that the mean drag coefficients 

during the oscillations are higher in a pycnocline than in the homogeneous fluid. The 

mean lift coefficients are lower in a pycnocline than in the homogeneous fluid. These 

results vindicate the analysis above, however it is not conclusive enough. The forces 

can vary when any of the parameters are changed thereby making comparisons difficult. 

Future experiments can be improved by varying only one parameter at a time and while 

keeping the rest constant. This too may prove to be difficult as the pycnocline 

properties can change with time.

Visualisation of both the side-view and plan-view internal waves around a low 

aspect ratio wing used the vertical and horizontal schlieren systems. The theory which 

is used to explain the wave shapes is a two-dimensional version of that given by 

Nicolaou & Stevenson (1997), When the wing moves at a high enough velocity, the 

velocity deficit along the path of the wing becomes an important consideration. This is 

clearly demonstrated in figure 5.7a where a discontinuity can be seen in the ‘herring 

bone5 structure of the steady wave systems further away from the wing. Nearer to the 

wing, there is a transformation from the lee waves close to the wing to the ‘herring 

bone’ waves. When the wing oscillates without forward velocity the side-view 

resembles that of the even mode pycnocline waves shown by Nicolaou et al (1993), 

except that the primary source is the trailing edge of the wing and the ratio of the 

frequency of oscillation to the background natural frequency is smaller. At higher 

velocities, the steady wave systems can be seen superimposed onto the oscillatory 

systems. The observations of the experimental results agree with the wavenumber 

surface predictions.

The transition from trapped stratified waves to pycnocline waves take place 

closer to the source as the ratio of the wavelength to the pycnocline thickness increases. 

In a thin pycnocline, the velocity deficit or surplus at the trailing edge of the wing can 

cover the whole pycnocline. With no forward velocity, small amplitude theory states 

that no waves will be produced at oscillatory frequencies higher than the background 

frequency. However when the wing is oscillating at above the background natural
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6. Conclusion and future work

frequency, waves are produced due to the background velocity produced at the trailing 

edge. These waves disappear away from the wing as the velocity decreases. When the 

wing is moving at a constant velocity, then both Doppler relation and the background 

velocity are applicable.

Some visualisation of the trailing edge and wing tip vortices were made using 

dye and the schlieren system. These vortices tend to collapse rapidly forming internal 

waves. A horizontal dipole was also produced by the velocity deficit in the wake of the 

wing.
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CD-ROM
This CD-ROM is a standard ISO-9660 disc formatted with Joliet extension and can be 

used on any system that supports this format, including Windows 95, Windows 98 and 

Windows NT. It is packed with MPEG video clips of schlieren images and dye 

visualisations. Some of the stills of these clips can be found in this thesis.
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