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Abstract

The supersonic flow past axisymmetric bodies is investigated; in particular the as­

sociated laminar boundary-layer flow (i.e. the velocity and temperature field) is 

computed and then analysed from the point of view of linear, temporal, inviscid 

stability theory. The basic, nonaxisymmetric disturbance equations are derived for 

general flows of this class and a so-called ‘triply generalized’ inflexion condition is 

determined for the existence of certain classes of neutral modes of instability. This 

condition is analogous to the well-known generalized inflexion condition found in 

planar compressible flows, although in the present case the condition depends on 

both axial and azimuthal wavenumbers.

Extensive numerical results are presented for the stability problem at freestream 

Mach numbers of M<*, =  2.8 and = 3.8, for the particular cases of a long thin, 

straight circular cylinder, subject to heated, cooled or adiabatic wall conditions, and 

a sharp cone for adiabatic wall conditions, at a range of streamwise locations and 

different azimuthal wavenumbers. The stability analysis reveals that curvature and 

choice of wall temperature conditions both have a significant effect on the stability 

of the flow. These results also reveal that a new mode of instability may occur, 

peculiar to flows of this type involving lateral curvature. This mode occurs at small 

wavenumbers, but under certain circumstances may in fact be the most unstable 

(and hence important) mode.
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Both the asymptotic, large azimuthal wavenumber solution and asymptotic anal­

yses valid close to the tip of the axisymmetric body and far downstream are pre­

sented, and compared with numerical results.

The effects of a viscous linear critical layer and a nonlinear-non-equilibrium crit­

ical layer on the temporal evolution of certain classes of axisymmetric instability 

modes on the compressible axisymmetric boundary layer formed on a thin cylinder, 

are then considered. In the case of the nonlinear critical layer, matching the inner 

solution with the flow outside the critical layer it is shown that the instability wave 

amplitude is governed by an integro-differential equation with a cubic-type nonlin­

earity. Numerical solutions are presented and the wave amplitude is found in each 

case to terminate in a singularity after a finite time evolution for all the calculations 

conducted.

Additionally, the effects of a viscous nonlinear-non-equilibrium critical layer are 

considered and a corresponding amplitude evolution equation is derived.

14



Declaration

No portion of the work referred to in this Thesis has 
been submitted in support of an application for another 
degree or qualification of this or any other University or 
institution of learning.

S. SVqm/
Stephen Shaw

15



Acknowledgem ents

I would like to acknowledge the able help, assistance and guidance of Dr. P.W. Duck 

throughout the duration of this work. I would also like to thank the Department 

of Education, Northern Ireland for their financial support, and Professor J. Blake, 

who made available the time to complete this work.

I would also like to acknowledge my parents and brothers for putting up with 

me all these years and all the DP’s and footy players I have known in my time in 

Manchester. Lastly I would like to thank the 400+ landlords who have made my 

fluids research time in Manchester a rather pleasant one.

The work presented in Chapters 2 and 3 of this thesis has been published in 

Duck and Shaw (1990) and Shaw and Duck (1992) (to appear).

16

V



Chapter 1 

Introduction and Historical 
Background

1.1 Incompressible Stability theory

It is well known from experiment that laminar flows do not persist at very large 

Reynolds numbers, indeed, it is found that most naturally occuring flows are either 

fully or partially turbulent. The process of transition from a laminar to a turbulent 

state has interested research workers for well over a century now. Since turbulent 

flows result in considerably greater skin frictions and heat transfer coefficients than 

corresponding laminar flows, any method by which a boundary layer may be stabi­

lized is worthy of investigation (although in many technological applications, such 

as in turbines, engines, instability is of course desirable as it aids mixing of different 

fluids and enhances heat transfer). It has been found that stability analysis is a 

useful tool to study this process, especially the early stages of transition. The early 

research carried out using stability analysis was conducted on a purely linear basis, 

but later more involved nonlinear stability theories were developed to help try and 

explain more accurately experimential observations.

In the case of linear stability theory, as applied to the laminar boundary layer, 

the problem that is actually solved turns out to be somewhat idealized, physically 

speaking. The laminar flow is assumed to be parallel implying that the basic flow

17
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variables do not change in the flow direction, but only depend on their distance 

from the fixed boundary. The stability analysis is usually treated in terms of the 

small amplitude perturbation method; the disturbance terms, which are linearized, 

axe in the form of travelling .waves whose amplitude varies either with respect to 

time or distance travelled, depending on the approach being used. The mathe­

matical problem is to determine the eigenvalues of the stability problem for a fixed 

Reynolds number (or in the limit of infinite Reynolds numbers for the inviscid stabil­

ity problem), the phase velocity, rate of amplification, and wave number for a range 

of disturbances. Generally, the amplification rates will either be growing, neutral 

or decaying disturbances, although generally it has been found that only damped 

disturbances exist below a critical Reynolds number.

The phenomenon of transition from laminar to turbulent flow was first investi­

gated by Helmholtz (1868), Kelvin (1871), Rayleigh (1880) and Reynolds (1883), at 

the end of the last century. Reynolds (1883) proposed that, based on experimental 

evidence he had determined, transition was only possible if instability was developed 

in the laminar flow.

In a series of papers, Rayleigh (1880, 1887, 1892, 1895, 1913, 1916) produced a 

number of notable results concerning the stability of inviscid flows. Using physical 

reasoning, he determined that if the effect of viscosity is ignored, then the motion of 

rotating fluids is either stable or unstable, depending on whether the square of the 

circulation increases monotonically outwards. He also demonstrated, that if parallel 

flows are to be unstable, then an inflexion point must occur in the velocity profile 

within the flow.

Until this point in time it was commonly thought that viscosity only acted to 

stabilize flows - although Reynolds (1883) did conclude from his experiments that 

viscosity could be a cause of instability. The first .workers to include the effects

18
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of viscosity in stability theory, were Orr (1907)- and Sommerfeld (1908), who in­

dependently derived a single fourth-order differential equation which governs the 

disturbance amplitude in parallel, viscous flow of constant density, and now bears 

their name. Although Taylor (1915) had already indicated that viscosity could be 

a cause of instability, when Prandtl (1921) independently made the same discovery, 

conjecturing that viscous forces are capable of inducing a Reynolds stress, which in 

turn could convert energy from the basic flow into the disturbance, thus inducing 

instability, it set into motion investigations that finally led to a  viscous theory of 

boundary-layer stability, several years later (Tollmien (1929)).

Heisenberg (1924) investigating the stability of plane Poiseuille flow to two- 

dimensional. disturbance terms, deduced that instability did exist for-viscous flow 

at sufficiently high Reynolds numbers, but was unable to determine the critical 

Reynolds number, above which instability began. Heisenberg’s solution of the Orr- 

Sommerfeld equation was based on the method of successive approximations, em­

ploying two different approaches, the first using convergent series and the second 

using asymptotic series. In the first method solutions were obtained in terms of the 

small parameter e =  (oRe)-1/3 (where a  represents the spatial wavenumber and 

Re the Reynolds number), and a fundamental system of four solutions involving 

Hankel functions of order 1/3 are obtained. In the second approach, two asymptotic 

solutions in the small parameter (aRe)-1 are obtained. The initial approximation 

in this method satisfies the inviscid equation which Heisenberg solved by expanding 

in powers of a 2. The resultant integrations in Heisenberg’s solution are required to 

pass under the singularity. *

Using the analysis of Heisenberg (1924) and the work of Tietjens (1925), Tollmien 

(1929) obtained the first solution for the stability of the boundary layer formed on a 

flat plate, by an asymptotic approach. He accounted for the importance of viscosity 

in the neighbourhood of the wall and in a distinct critical layer (the region which

19



exists in the neighbourhood of the point where the mean flow velocity equals the 

wavespeed of the disturbance). Tollmien applied the method of Frobenius to obtain 

two solutions to the inviscid equation about the critical point. The first solution 

.is found to be regular in the neighbourhood of the critical point, but due to the 

presence of a logarithmic term, the second solution will generally be multi-valued. 

In the case of inviscid, neutral disturbances which are inflexional, this logarithmic 

term disappears, resulting in the second solution becoming regular. However, when 

inviscid theory is applied to obtain two of the four solutions in the asymptotic viscous 

theory, inflexional theories are invalid, resulting in an ambiguity regarding which 

branch of the logarithm show be taken for points below the critical point. Tollmien 

resolved this problem by introducing a viscous correction term in the neighbourhood 

of the critical point, which was required to match the solution away from the critical 

layer. This procedure results in the correct jump across the critical layer being ‘+i7r’, 

meaning the path of integration for the inviscid solution must pass under the critical 

point.

A series of papers by Schlichting (1933a, 1933b, 1935, 1940) and a second paper 

by Tollmien (1935) resulted in a fairly well developed viscous theory with a small 

number of numerical results. In his paper, Tollmien (1935) showed that not only 

was the existence of an inflexion point in the velocity profile a necessary condition 

for the existence of inviscid instability, but for certain flows, eg. symmetric profiles 

in a channel and for monotone profiles of the boundary layer, it also provides a 

sufficient condition. However, the sufficiency condition is not valid for all flow types 

as can been seen from the simple counter-example provided by Tollmien of a basic 

flow which has the form sin y*, where y* denotes the transverse coordinate. He 

also determined that for neutral disturbances, the mean flow velocity is equal to 

the wavespeed of the. disturbance term. However, any hopes that instability and 

transition to turbulence are synonymous for the boundary layer, were dashed as

20



a result of the low values of the critical Reynolds number obtained. Tollmien’s 

value for the critical Reynolds number in the case of the Blasius boundary layer was 

60,000, and even in the high turbulence wind tunnels of that time, transition was 

observed to occur between values of 3.5 x 105 and 1 x 106.

Schlichting’s first paper (1933a) contains one of the earliest applications of lin­

ear stability theory to transition predications, in which for the case of the Blasius 

boundary layer, he calculated the amplitude ratio of the most amplified frequency 

as a function of the Reynolds number.

In the above work only two-dimensional disturbances are considered. In 1933 

Squire proved that the problem of three-dimensional disturbances of a plane flow 

is equivalent to a problem with two-dimensional disturbances at a lower Reynolds 

number, so the minimum critical Reynolds number is always given by two dimen­

sional analysis.

Outside of Germany, this early development of stability theory was not met with 

much enthusiasm, and in some quarters with much scepticism, due mainly to the in­

ability to experimentally observe the predicted disturbance waves and mathematical 

obscurities in the theory, particularly in the asymptotic developments. In the back­

ground of this hostile atmosphere, one of the most celebrated of all fluid dynamics 

experiments was carried out by Schubauer and Skramstad (1947). Through their 

experiments they demonstrated that instability waves did indeed exist in bound­

ary layers, demonstrated their connection with turbulence and indicated that the 

theories of Tollmien and Schlichting were correct.

The early unconvincing mathematics of stability theory (namely the asymptotic 

theories), was clarified by Lin (1945) and he presented detailed calculations of the 

neutral stability curve. Tollmien (1929) had argued that in the case of inviscid 

disturbances, since the critical point will be located off the real axis for both growing 

and decaying instabilities, then there will be nothing to hinder integration along the
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real axis. Lin showed that if inviscid solutions are regarded as the infinite number 

limit of viscous solutions, that contrary to the statement made by Tollmien, the 

proper path of integration must be below the critical point, regardless of whether 

this point is above (amplified), on or below (damped) the real axis. This resolved 

ambiguities that existed in considering viscous disturbances in the limit of infinite 

Reynolds numbers, and demonstrated that a consistent inviscid theory could be 

constructed in which damped solutions exist that are not complex conjugates of 

the amplified solutions. The arguments used by Lin were physical and heuristic 

but a more rigorous justification of the results he obtained was given by Wasow 

(1948). Tollmien (1947) presented improved solutions for the neutral stability case, 

for real values of y* (the coordinate normal to the surface). Solutions of a similar 

nature were obtained by Wasow (1953) for complex values of y* and c* (the complex 

wavespeed) and he also gave a complete proof of the construction he used.

Rayleigh’s necessary inflexion condition was strengthened by Fj0rtoft (1950) to 

give a condition which is equivalent to requiring that the modulus of the gradient 

of the streamwise mean velocity term must possess a maximum somewhere in the 

boundary layer for instability to occur.

The above work of Heisenberg (1924), Tollmien (1929, 1947) and Lin (1945, 

1955) gave first approximations to the Orr-Sommerfeld equation for large values of 

Reynolds number by somewhat heuristic methods. Although these approximations 

have been successful for many computational purposes, it has long been recognised 

that heuristic approximations axe not uniformly valid. Subsequent attempts to 

improve on these results have generally been based on either the comparison equation 

method or the method of matched asymptotic expansions.

Comparison equation methods of approximation to the solutions of the Orr- 

Sommerfeld equation have been extensively studied by Wasow (1953), Langer (1957, 

1959), Lin (1957a,b, 1958) and Lin and Rabenstein (1960, 1969). In all these works
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the major aim was to obtain asymptotic approximations which are uniformly valid 

in a bounded domain containing one single turning point and to develop an al­

gorithm by which higher approximations could be obtained systematically. The 

actual method employed seeks to express the solutions of the Orr-Sommerfeld equa­

tion asymptotically in terms of the solutions of an appropriately chosen comparison 

equation. Lakin and Reid (1970) also used the technique to obtain first order ap­

proximations to the Stokes multiplers for the Orr-Sommerfeld equation and hence 

to obtain outer expansions which were complete in the sense of Watson.

The method of matched asymptotic expansions was first applied to the Orr- 

Sommerfeld equation by Graebel (1966). A more systematic application of the 

method, based on the general theory developed by Fraenkel (1969) was later given by 

Eagles (1969). Eagles introduced a new independent variable involving the ‘Langer’ 

variable, which has the important consequence of bringing the Stokes and anti-Stokes 

lines associated with the inner and outer expansions into coincidence. Although a 

preliminary transform of this form is not an important proponent of the theory 

of matched asymptotics, and as Eagles’ work shows, is it strictly necessary, the 

subsequent solution of the central matching problem and formation of composite 

approximations is substantially simplified. The introduction of the ‘Langer’ vari­

able also leads to a larger domain in which matching between the inner and outer 

expansions occurs. A rigorous justification of the results obtained by Eagles has 

been given by De Villers (1975).

The method of matched asymptotics was also used by Reid (1972) to obtain 

composite approximations to the solutions of the Orr-Sommerfeld equation. It was 

customary, in the older work carried out on the Orr-Sommerfeld equation to express 

the inner expansions in terms of modified Hankel functions of order one-third. Reid 

(1972) pointed out the limitations in this approach and instead obtained the ijiner 

expansions, to all orders, in terms of a certain class of generalized Airy functions,
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the resultant expansions being used to derive approximations to the connection for­

mulae. After matching the inner and outer expansions in certain sectors of the 

complex plane, Reid (1972) considered the consequences of combining them to form 

composite expansions, subject to the usual rules (Van Dyke (1964)) for additive or 

multiplicative composition. He determined that the ‘modified’ viscous solutions of 

Tollmien (1947) emerge as first-order composite approximations obtained by multi­

plicative composition and the ‘viscous correction’ to the singular inviscid solutions 

conjectured by Reid (1965) emerge as first order additive composite approxima­

tions, However, because of the completeness requirement, the composite expansions 

are only valid in certain restricted domains containing just one turning point: con­

nection formulae must be used to obtain approximations valid in the complementary 

sectors.

Asymptotic work in connection with the Orr-Sommerfeld equation, has been 

successfully continued by Reid and his collaborators (Lakin, Ng and Reid (1978)).

Smith (1979a), considering the stability of growing boundary layers found that 

for sufficiently high Reynolds numbers, the linear disturbance can be described by 

a triple-deck structure. Triple-deck theory was initially developed to better under­

stand and explain the separation of boundary layers; the initial success of triple-deck 

theory was in dealing with the Goldstein (1930) singularity at the trailing edge of a 

flat plate (see Stewartson (1969), Messiter (1970)), but it has since been applied to 

a wide variety of problems. It should be noted that the raw material for triple-deck 

theory can actually be found in Lin’s (1955) book. Through matching procedures, 

Smith was able to obtain an asymptotic relationship-between the Reynolds number 

and the neutral frequency for both parallel and non-parallel flow types. However his 

analysis was limited to the lower branch of the neutral stability curve. In a second 

paper, Smith (1979b) using asymptotic theory, considered the nonlinear stability of 

small disturbances to the Blasius boundary layer within a rational, high Reynolds
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number framework, for a wide range of disturbance sizes. He found that the nonlin­

ear properties of the small disturbances are profoundly affected by non-parallel flow 

effects.

The book on hydrodynamic stability by Drazin and Reid (1981) explains in 

further detail the methods required for the application of the two asymptotic ap­

proximation approaches described above.

The first application of modern numerical methods was carried out by Pretsch 

(1942), during the war. He provided the only really large body of numerical results 

for exact boundary-layer solutions, before the advent of computers, by calculating 

the stability characteristics of the Falkner-Skan family of velocity profiles. The 

first attem pt to make use of the digital computer in solving a laminar stability 

problem was made by Thomas (1953). Using a finite difference method, Thomas 

investigated the stability of plane Poiseuille flow which Lin (1945) predicated was 

unstable, although other authors thought was stable. Thomas was able to obtain 

16 eigenvalues which confirmed Lin’s p r e d i c t .

Around 1960 the advances in the digital computer field had reached the stage 

where the first direct solution of primary differential equations could be obtained. 

The development of ever sophisticated numerical techniques, coupled with the rapid 

progress of the computer, have made it possible to obtain numerical results for many 

different types of boundary-layer flows.

Brown (1959) was probably the first to apply numerical methods, using the digi­

tal computer to obtain solutions for three-dimensional boundary layers. Using finite 

difference techniques, Kurtz and Crandall (1962) obtained numerical solutions of - 

the Orr-Sommerfeld equation in their study of the stability of the Blasius boundary 

layer and of free convection boundary layers on a vertical heated wall.

Neutral stability curves for the two-dimensional laminar boundary layer on a 

flat plate under zero pressure gradient, have been numerically determined by Kurtz
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(1961), Kaplan (1964), Osborne (1967), Wazzan et al. (1968) and Jordinson (1970). 

Thie results of these calculations, obtained by means of slightly different numerical 

methods, are all sufficiently consistent to justify the statement that the neutral curve 

eigenvalues of the Orr-Sommerfeld equation are now well established. It should be 

noted, however, that since all these workers solved the Orr-Sommerfeld equation, 

then the parallel flow approximation is a key element of their work, but since realis­

tically if any amount of viscosity is present there is no such thing as a parallel flow, 

then their results are inaccurate especially for low Reynolds numbers.

Jordinson (1970) applied the numerical techniques of Osbourne (1967) in his 

study of the spatial stability of the boundary layer for a wide range of values of 

frequency and Reynolds number.

Jordinson (1971), Mack (1976) and Corner, Houston and Ross (1976), using dif­

ferent numerical methods, determined the higher eigenvalues of the Orr-Sommerfeld 

equation for Blasius flow in their studies of discrete stable eigenmodes. Jordinson 

calculated eigenvalues for both spatially and temporally growing or decaying waves 

for a single Reynolds number and a single wavenumber (temporal approach) or a 

single frequency (spatial approach). Mack determined eigenvalues for a number of 

different values of wavenumber and Reynolds number, for the temporal problem 

only. Corner et al. recalculated the spatial modes. All these authors agreed on one 

conclusion - for any Reynolds number there exists only a finite and small spectrum 

of discrete eigenvalues. Grosch and Sal wen (1978) proved the existence of a contin­

uous spectrum of eigenvalues of the Orr-Sommerfeld equation in the case of Blasius 

boundary layers, for both temporal and spatial developments.

More recent work on incompressible flows has focused on three-dimensional 

boundary layers, in response to the renewed interest in laminar-flow control for 

swept wings. Srokowski and Orszag (1977) were the first to apply computational
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numerical techniques to calculate the suction required to avoid transition to turbu­

lence. Mack (1979b), using a three-dimensional stability formulation, which he first 

presented in 1977, studied the three-dimensional Falkner-Skan-Cooke incompressible 

boundary layer.

Using linear stability theory, Lekoudis (1980) examined the effect of wall cooling 

in the leading edge region of a transonic swept wing. For both the temporal and 

spatial cases he determined that wall cooling has a stabilizing effect on cross flow 

disturbances, but that this stabilization is mild in comparison to the stabilizing 

effect wall cooling has on Toflmien-Schlichting waves.

Except for the asymptotic suction boundary layer, it is observed that most 

boundary layers grow in thickness in the downstream direction. Therefore, dis­

crepancies still existed between the existing theoretical predictions of the neutral 

stability curve for the Orr-Sommerfeld equation and the experimental observations 

of Schubauer and Skramstad (1947) and the later work of Ross et al. (1970), espe­

cially for low Reynolds numbers.

The first real attempt to include boundary-layer growth into stability theory was 

made by Barry and Ross (1970) using a somewhat heuristic approach. They obtained 

an estimate of the the effect making the parallel flow assumption had, by performing 

computations on a modified form of the Orr-Sommerfeld equation in which the more 

important terms representing the growth of boundary layer thickness were included. 

The results obtained, however, still over-predicbe<X the experimentally determined 

value for the critical Reynolds number, in the case of Blasius flow, by 25%.

Wazzan et al. (1974) using the Barry-Ross model, calculated the stability of 

Falkner-Skan flows and performed an analysis of the effects boundary-layer growth 

has on the Reynolds number, frequency and pressure gradient.
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Bouthier (1972, 1973), Gaster (1974) and Saxic and Nayfeh (1975) indepen­

dently determined expansions that partially accounted for all non-parallel flow ef­

fects. Gaster (1974) considered the effect boundary-layer growth has on stability 

theory using an iterative method to generate an asymptotic series solution in terms 

of the inverse Reynolds number to the power one half. He obtained neutral-stability 

boundaries given by the first two terms of this series and compared the results with 

existing experimental data. Saric and Nayfeh (1975) used the method of multiple 

scales to analyse the spatial stability of two-dimensional incompressible boundary- 

layer flows, for both Blasius and Falkner-Skan profiles. It was found that for the 

Blasius flow, the non-parallel analytical results were in good agreement with the 

experimental data.

Gaster’s neutral-stability curve calculations for the Blasius boundary layer were 

verified to be correct by Van Stijn and Van de Vooren (1983), and have the added 

advantage of being based on quantities that can be readily measured experimentally.

As previously mentioned, Smith’s (1979a) triple-deck, asymptotic stability anal­

ysis is valid for both parallel and non-parallel flows. Bodonyi and Smith (1981) 

carried out an asymptotic analysis on the upper branch of the neutral stability 

curve using a quintic-deck analysis, which led to an asymptotic result for the neu­

tral frequency, taking into consideration the effect of boundary-layer growth. In 

1985, in an appendix to their paper, Smith and Burggraf considered examples of 

practical importance arising from non-parallel flow effects, for example, breakaway 

separation and flow over surface-mounted obstacles, in an asymptotic study based 

on a two-dimensional triple-deck.
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1.2 Compressible Stability Theory

With the development of high speed flight vehicles interest soon turned to supersonic 

and hypersonic flows. Researchers tried to develop a stability theory for compress­

ible flows, similar to that which had been developed for incompressible flows, and 

determine whether there was any relation between compressible stability theory and 

the important problem of transition to turbulence.

The major difference between incompressible and compressible boundary layers is 

that in the compressible case there will be an appreciable interchange of mechanical 

and thermal energies. Generally it is found in the case of supersonic boundary- 

layer flows that inviscid disturbances are more important (i.e. more unstable) than 

viscous disturbances. Here, we characterise inviscid disturbances as being those with 

wavelengths comparable to the boundary-layer thickness, whilst viscous disturbances 

possess much longer wavelengths; this is probably the broadest definition, although 

the alternative definition in which inviscid disturbances axe characterised as having 

finite growth rates in the limit of large Reynolds number, is equivalent for most 

purposes. This is in contrast to the situation encountered in many incompressible 

boundary-layer flows where viscous instabilities are generally dominant.

Experiments performed by Laufer and Vrebalovich (1960) and Kendall (1967, 

1975) demonstrated the existence of instability waves in supersonic and hypersonic 

boundary layers, but they were unable to show any real connection between linear 

instability and transition. A series of stability experiments with ‘naturally’ occuring 

transition in wind tunnels was carried out by Demetriades (1977) and Stetson et al. 

(1983, 1984), but many of their observations have yet to be explained theoretically. 

Dougherty and Fisher (1980) in a flight experiment obtained probably the best 

evidence yet that transition at supersonic speeds, in a low disturbance environment, 

is caused by linear instability.
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One of the earliest attempts to develop a compressible stability theory was car­

ried out by Kuchemann (1938). In his work, Kuchemann, neglected the effects 

of viscosity, curvature of the velocity profile, and the mean temperature gradient. 

As one would expect, the latter two assumptions were shown to be too restrictive 

to allow for any plausible argument to be developed. The most important early 

theoretical work on the stability of compressible flows, was carried out by Lees 

and Lin (1946). In their rigorous mathematical investigation of the stability of two- 

dimensional boundary layers to two-dimensional linear disturbances, they developed 

an asymptotic theory in close analogy to the incompressible asymptotic work of Lin

(1945), and, in addition, gave detailed consideration to a purely inviscid theory. 

They concluded that for subsonic and slighly supersonic flow, stability characteris­

tics are relatively unaffected by boundary conditions on temperature fluctuations, 

and axe determined by satisfying velocity disturbance boundary conditions.

Lees and Lin (1946) solved the viscous problem using the two methods of solution 

of Heisenberg (1924), namely they determined solutions in terms of convergent series 

and asymptotic series. The initial approximation in the asymptotic series method 

gives the inviscid equation. It is found that the asymptotic solutions appear to be 

multi-valued, but the solutions are only valid for certain regions of the complex plane, 

determined by comparing them with the asymptotic expansions of the convergent 

solutions. Lees and Lin solved the inviscid equation in terms of a power series in a 2, 

the resultant integrations possessing integrands which axe singular at the critical 

layer. Consequently the path of integration must be indented into the complex 

plane in the neighbourhood of the critical point. To determine the correct path of 

integration Lees and Lin obtained two linearly independent solutions in the vicinity 

of the singular point, y* — y*, one of which is regular in (y*—y*), the other possessing 

a logarithmic singularity (where y* denotes the coordinate normal to the surface). 

Since these solutions are restricted to the same regions of complex space as the
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asymptotic solutions, Lees and Lin determined that in passing from Rl(y* — y*) < 0 

to Rl(y* — y*) > 0, the correct path lies below the critical point, y* — y*, where Rl 

denotes the real part. Because the second solution obtained in the neighbourhood 

of the critical point possesses a logarithmic singularity, this solution will undergo a 

phase change of ‘+mt’ going from below the critical point to above. This singularity 

gives rise to strong velocity gradients and has the consequence that viscous (and 

conductivity) effects cannot be neglected in the critical layer.

Extending the Rayleigh/ Tojlmien theorems to compressible flow, Lees and Lin 

found that the quantity g|r[/0*§j£-] (where u* denotes velocity tangential to the sur­

face, and p* the fluid density) plays a role very similar to that of in inviscid 

incompressible theory. In particular, .at the point where the above expression is 

zero (y* =  yj*), termed the generalized inflexion point, then there may exist a neu­

tral mode with wavespeed u*(y*)\ neutral modes are classed as being ‘subsonic’, 

‘sonic’, or ‘supersonic’ depending on how the freestream Mach number is related 

to the wavespeed (Mack (1984)). If the neutral disturbance is subsonic then the 

mode decays in the far-field; supersonic, neutral disturbance modes exhibit an oscil­

latory behaviour in the far-field; a sonic mode occurs at the crossover point between 

subsonic and supersonic cases. Mathematically, these classifications are directly re­

lated to the non-dimensional wavespeed c (defined in Chapter 3 below), and the 

free-stream Mach number, M ^. For subsonic disturbances we have

M0o M o o ’

for sonic disturbances we have

1 , 1 c =  1 — —— or c — I +
-Moo M J
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and for supersonic disturbances we have

c < 1 -  or c > 1 +  — .
jcVx q q  * ™ o o

Arguments relating to generalized inflexion points have no implications for super­

sonic neutral modes.

If the critical point is found to coincide with a generalized inflexion point, the 

second velocity solution obtained by Lees and Lin (1946), valid in the critical layer, 

no longer possesses a logaritmic singularity and thus this solution is now regular.

Lees (1947) considered the effect that wall cooling has on the stability of com­

pressible boundary layers on the basis of asymptotic theory. He predicate.d that 

with sufficient wall cooling the boundary layer could be completely stabilized and 

presented a criterion whereby the ratio of wall temperature to the recovery tem­

perature at which the critical Reynolds number becomes infinite, can be computed. 

Even though Lee’s original work contained numerical errors, subsequent authors in­

cluding Van Driest (1952) and Dunn and Lin (1955) showed that Lee’s predictions 

appeared to be correct.

Van Driest (1952) calculated the cooling required to completely stabilize the 

boundary layer on the flat plate at supersonic speeds with zero pressure gradient. 

Whereas Lee’s investigations were limited to slightly supersonic flows, Van Driest 

predicated that complete stabilization was achieved by wall cooling over a wide range 

of Mach numbers up to hypersonic flow. He found, however, that for Mach numbers 

greater than 9, it is impossible to stabilize the boundary layer with any amount of 

cooling when a Prandtl number of 0.75 and the Sutherland viscosity-temperature 

law are assumed.

The above predications of Lees (1947) and Van Driest (1952) were based on
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the asymptotic theory of two-dimensional disturbances. Dunn and Lin (1955) ex­

tended this work to include three-dimensional disturbances. They determined that 

the conclusion of Lees and Lin regarding boundary conditions on temperature fluc­

tuation terms was invalid for moderately high supersonic flows and in this Mach 

number range they indicated that cooling was indeed an effective method by which 

the boundary layer could be stabilized. Based on their asymptotic analysis, Dunn 

and Lin, however (wrongly) concluded that at supersonic free-stream Mach numbers 

the boundary layer can never be completely stabilized by cooling with respect to all 

three-dimensional disturbances,

Lees and Lin (1946) used an ordering procedure valid in the neighbourhood of 

the critical layer to obtain viscous solutions and then used these solutions to satisfy 

wall conditions. Such a procedure can only be sensibly valid if the critical layer is 

close to the wall. In the Dunn and Lin (1955) ordering procedure, the wall layer 

is assumed to be distinct from the critical layer, which leads to a set of reduced 

equations valid near the wall, but not necessarily valid at the critical layer.

In all of the above asymptotic compressible stability analysis, the authors as­

sumed that the boundary layer was ‘a nearly parallel flow’. In fact, Dunn (1953) 

and Cheng (1953) showed that the mean vertical velocity does not enter until the 

second asymptotic approximation to the viscous solution. Thus, if only the leading 

terms need to be considered the parallel flow approximation is a valid one.

In 1962 Lees and Reshotko presented a more accurate theoretical analysis; the 

ideas developed in this work are presented in more detail in the thesis of the junior 

author, Reshotko (1960). In their work, they considered two-dimensional distur­

bance terms in the two-dimensional boundary layer only, but they do include the 

effect of temperature fluctuations on viscosity and thermal conductivity and also 

introduced the viscous dissipation term that had been previously omitted.. Fol­

lowing the asymptotic expansion method of Heisenberg (1924) to solve the viscous
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disturbance equations, they obtained the inviscid equation in terms of the pressure 

fluctuation amplitude. They showed that instead of solving the inviscid equation in 

terms of a convergent series in powers of a 2, the correct expansion parameter for the 

compressible inviscid solutions is (aTref)2 (where Tref representing

the mean flow temperature in the far-field) or (aM ^)2. The most important result 

they obtained was to show that temperature fluctuations have a marked influence 

on the stability characteristics for compressible flow at Mach numbers greater than 

two, for both the viscous and the more slowly varying inviscid disturbances. Con­

sidering the behaviour of the inviscid disturbance terms in the neighbourhood of 

the critical point, by obtaining series solutions using the method of Frobenius, they 

determined that the temperature fluctuation terms possess an algebraic singularity 

at the critical point, which is independent of whether or not the profiles contained a 

generalized inflexion point. They also found the first indication of higher modes of 

inviscid instability, and determined that instead of being constant, as had previously 

been assumed, the inviscid pressure disturbance amplitude decreases abruptly with 

movement away from the wall for Mach numbers greater than three. The numerical 

examples given compared favourably with the experimental results of Laufer and 

Vrebalovich (1958, 1960) and Demetriades (1958, 1960).

Reshotko (1962) generalized the above analysis, in his study of the stability of 

three-dimensional boundary layer to three-dimensional disturbance terms. Intro­

ducing a suitable transform, he reduced the problem to a two-dimensional system.

Because of the close adherence of Lees and Lin to the incompressible theory 

and inadequacies of the asymptotic methods of Lees and Lin (1946), Dunn and 

Lin (1955) and Lees and Reshotko (1962), which turned out only to be valid up 

to low supersonic Mach numbers, major differences between incompressible and 

compressible stability analyses were not uncovered until extensive calculations had 

been carried out by numerical solution of the differential equations.
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The first numerical calculation of normal mode eigenvalues directly from the 

viscous stability equations was carried out by Brown (1962). In a series of papers 

Mack (1963, 1964, 1965a, 1965b) obtained a large number of numerical results for 

different types of boundary layer. Until Mack’s study it was widely thought that 

there only existed a single unstable inviscid mode. Through his extensive numerical 

work, Mack determined that for an insulated surface, if there exists a region of 

supersonic flow in the boundary layer relative to the phase velocity, then there 

exists multiple unstable modes.

The numerical schemes employed by Mack to solve both the viscous and inviscid 

boundary-layer problems, are explained clearly in his work published under refer­

ence 1965a. In this work he considered two-dimensional disturbances in a parallel 

compressible flow to obtain a system of linearized stability equations. The resulting 

sixth-order system of ordinary differential equations was then written as six first 

order equations to aid numerical integration. These equations were solved numeri­

cally in the free stream at a specified Reynolds number and the three independent 

solutions which decayed as y* —> oo (normal component to the free surface) were 

used as the initial conditions for the numerical integration, which was taken from the 

edge of the boundary layer to the wall. At the wall, all but one of the homogeneous 

boundary conditions can be satisfied for an arbitrary choice of the complex wave 

parameters, a*, /?*, w*, where a* and fl* are the streamwise and spanwise wavenum­

ber components and w* is the frequency. The remaining boundary condition was 

satisfied by a Newton-Raphson eigenvalue search procedure for one of the complex 

wave parameters. Considering the limit of infinite Reynolds number, Mack derived 

a system of equations analogous to those obtained by Lees and Reshotko (1962) 

which he then integrated numerically, deviating the contour of integration into the 

complex ?/-plane in the neighbourhood of the critical point, to deal with problems 

encountered due to the presence of this singularity. The indentation scheme used
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was based on a method developed by Zaat (1958) which Mack (1965a) generalized 

to include compressibility effects.

It soon became evident, however, that two-dimensional stability theory was inad­

equate to. explain the observations of Laufer and Vrebalovich (1960), so the numerical 

method was extended by Mack (1969) to include three-dimensional normal modes. 

The viscous stability equations were written in the tilde-coordinates of Dunn and 

Lin (1955), forming an eighth-order system, but Mack managed to obtain good re­

sults from the eigenvalues of a sixth order system, formed when the single coupling 

term responsible for the increase in order was dropped. In the same work, Mack 

(1969) considered the effects of wall cooling on the corresponding inviscid boundary- 

layer problem. In the light of this study the prediction of Lees (1947) that cooling 

the fixed boundary acts to stabilize the boundary layer, was found to be slightly 

misleading. Mack found that in the case of the first mode of instability, even when 

oblique waves were considered, complete stabilization could be achieved with suf- 

ficent cooling for the Mach numbers he presented, which vindicated Lees (1947) 

predications. However, in the case of the second mode of instability, Mack observed 

that wall cooling had the reverse effect, causing this mode to undergo destabiliza­

tion. Mack determined that the complete stabilization of mode I instabilities was a 

result of sufficient cooling causing the complete eradication of the subsonic gener­

alized inflexion points. The higher modes of instability, being dependent only on a 

relative supersonic region, will remain.

Gill (1965) applied numerical techniques to consider the stability of jets or wakes 

in a compressible fluid for ‘top-hat’ velocity profiles, where the jet of wake is a region 

of uniform velocity separated on either side from the external flow by a vortex sheet. 

Like Mack’s study of the compressible boundary layer, Gill (1965) determined that 

there existed multiple neutral solutions.

In further papers, Mack (1979a, 1982) applied compressible stability theory to

36



sweptback wings. In 1984, Mack conducted a review of previous work carried out 

on the influence of Mach number on viscous and inviscid instabilities of flat plate 

boundary layers, and presented new spatial calculations. He concluded that vis­

cosity only stabilizes two and three dimensional, first mode waves above a Mach 

number of 3.0, but stabilizes all mode II waves for all Mach numbers. In 1985, 

Mack presented a review of inviscid compressible stability theory paying particular 

attention to additional solutions that arise when there is a region of supersonic flow 

relative to the phase velocity. Mack gave an example of viscous multiple solutions, 

along with calculations of higher viscous modes and the compressible counterparts 

of the Squire mode.
bo-sic

In spite of their great practical importance, ̂ flows of the supersonic type, but 

involving lateral curvature, have r&ceivie<L l i t t le ,  Duck and

Hall (1989) showed how, in supersonic flows, curvature interacting with viscosity 

could provoke additional instabilities (axisymmetric in form), provided the body 

radius was below some critical value. Duck and Hall (1990) then went on to show 

how a similar effect occured with non-axisymmetric modes (which, in fact, turn out 

to be generally more unstable than corresponding axisymmetric modes.

Recently, Duck (1990) considered the effects that curvature has on the inviscid, 

axisymmetric linear stability of the boundary layer associated with supersonic flow 

past a thin circular cylinder. Duck determined that curvature has a stabilizing effect, 

causing the first mode of instability to ultimately disappear, and greatly reducing 

the amplification rates of the second mode. Extending the theorems of Lees and Lin

(1946), Duck determined an inflexion condition that includes curvature terms and 

termed it the ‘doubly generalized’ inflexion condition.

In Chapters 2 and 3 of this thesis the work of Duck (1990) is extended to in­

clude non-axisymmetric disturbances which, indeed, turn out to be more important
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than axisymmetric disturbances considered previously. Further, rather than study­

ing/applying our techniques to a thin straight circular cylinder, a somewhat more 

practical configuration, namely that of a sharp cone, is considered. In Chapter 2 the 

boundary-layer flow is determined, whilst in Chapter 3 a full linear stability anayl- 

sis is conducted. Extensive numerical results are presented for both axisymmetric 

and non-axisymmetric disturbances in the compressible boundary layers formed on 

adiabatic, heated and cooled cylindrical surfaces and on adiabatic cones. At the 

end of Chapter 3 asymptotic studies valid for large azimuthal wavenumbers (for the 

cylinder only) and analyses valid close to the tip of the cone and far downstream 

from the cone tip are presented.

Mack (1987b) has performed some computations for the stability of the flow over 

a cone in supersonic flow, at finite Reynolds numbers, but found little difference 

with corresponding planar results. Here, we deliberately allow curvature to occur 

throughout the study, both in the equations governing the basic flow, and in the 

disturbance equations.

1.3 The Effect of Critical Layers

It is well known that for large Reynolds numbers, the Orr-Sommerfeld equation re­

duces in a singular manner to the Rayleigh equation. In addition to the necessity 

of wall boundary layers if no slip boundary conditions are assumed, the Rayleigh 

equation has a singular point, termed the critical point, anywhere in the boundary 

layer where the mean flow velocity is equivalent to the wavespeed of the distur­

bance. Consequently the dynamics in the region surrounding the critical point will 

be expected to differ considerably from those of other regions of the fluid. By the 

method of Frobenius, two solutions of the Rayleigh equation can be obtained in the 

neighbourhood of the critical point, but it is found that in the case of non-inflexional
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profiles the second solution contains a logarithmic singularity of the form log(j/*—y*) 

(where y* denotes the coordinate normal to the surface and y* the critical point). 

To obtain any form of neutral stability curve, connection formulae relating the so­

lutions either side of the critical layer must be determined. Another consequence 

of the logarithmic singularity is that the eigenvalue problem associated with the 

inviscid equation cannot be resolved until it is decided how to express log(y* — y*) 

for y* < y*.

Essentially two theories exist to tackle the difficulties, of the singularity arising 

in the linearized inviscid problem. By re-introducing viscous terms in a small region 

around the critical point of thickness Re-1/3 (where Re represents the Reynolds 

number) - termed the viscous critical layer - Heisenberg (1924)., Tollmien (1929), 

and Lin (1944, 1945) for incompressible flows and Lees and Lin (1946) and Lees 

and Reskohto (1962) for compressible flows, determined that the logarithmic term 

undergoes a jump of ‘-HV crossing the critical layer (where we axe going from below 

to above the critical layer). The correct branch of the logarithmic term, in viscous 

theory, is determined by the range of validity of the Hankel functions found in the 

viscous solutions.

The possibility of an alternative resolution was first mentioned by Lin and Ben- 

ney (1962). In seperate work, Benney and Bergeron (1969) and Davis (1969) ob­

served that the Rayleigh equation was in fact the result of two limiting processes, as 

opposed to just one. They noted that although the Reynolds number is large, the 

stability analysis equations have actually been linearized, insuring the disturbance 

amplitudes are small. Consequently, they suggested that in the neighbourhood of 

the critical layer nonlinear terms could be retained as opposed to viscous terms, to 

resolve the singularity problem. The major result of this analysis is that in nonlinear 

theory the logarithmic phase shift has vanished crossing the critical layer.

Considering two-dimensional disturbance terms, Benney and Bergeron (1969)
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re-introduced nonlinear terms in a critical layer of thickness 0 (ex/2), where e is a 

measure of the perturbation amplitude, and determined that nonlinear theory yields 

an important class of wave-like solutions not found in viscous theory. Assuming that 

the critical layer and the wall layer were asymptotically distinct, they noted that 

though viscosity is small, it could not be completely ignored. It was found that the 

relative importance of nonlinear to viscous effects is measured by the parameter A =  

Re“1e“3/2. Making use of a viscous secularity condition to ensure spatial periodicity, 

together with matching conditions, Benney and Bergeron determined the dominant 

structure in the nonlinear critical layer is the Kelvin cat’s eyes solution, namely a 

shear plus an oscillation. In the case of non-inflexional profiles, discontinuities in 

vorticity occur at the cat’s eye boundaries, which Benney and Bergeron treated by 

restoring viscosity in thin layers around the cell boundaries. Even though they found 

vorticity was discontinuous, Benney and Bergeron derived conditions to ensure the 

velocity is continuous and from these conditions and matching with the far-field 

they determined that the phase change across the critical layer is zero. They also 

briefly considered the possibility of more than one critical point existing and the 

case of oblique modes. Benney and Bergeron’s work only determined neutral waves 

- it was unclear from their work whether ‘near neutral’ solutions would be stable or 

unstable - and they computed c(a) for a variety of velocity profiles.

As noted above, the nonlinear and viscous theories result in different neutral 

modes. Haberman (1972) considering critical layer effects in parallel flows for two 

specific problems - symmetric flows between rigid walls and boundary-layer flows - 

linked the two theories. He showed the leading order flow is indeed the cat’s eyes 

pattern, and at the order which governs the jump conditions across the critical layer 

he included both viscous and nonlinear terms in his analysis, considering the full 

range of the parameter A. Haberman determined that the asymptotic expansions 

of Benney and Bergeron (1969) should be modified due to an 0(e1̂ 2) distortion of
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the mean and fundamental harmonic. This distortion of the mean flow, in the limit 

when nonlinear effects are dominant, results in both the velocity and vorticity being 

continuous across the cat’s eyes, yielding Haberman to conclude that thin viscous 

layers, as introduced by Benney and Bergeron (1969), are not necessary. Haberman 

also determined that provided the critical layer and the wall boundary layer are 

distinct, then the phase shift of the logarithmic term depends on the local vertical 

Reynolds number in the critical layer, varying monotonically from the value of 0 

in nonlinear theory to +27T as determined by viscous theory. Haberman provided 

an argument by which his analysis linking the two theories is valid for long wave 

neutral modes and shorter modes if the critical and wall layers are distinct. In the 

case when the two layers are indistinguishable, the fully nonlinear boundary-layer 

equations must be considered.

During the late 70’s and early 80’s the idea of including nonlinearity in critical 

layer analysis was used by a number of authors to determine evolution equations for 

small disturbance terms in a range of problems. Benney and Maslowe (1975) and 

Huerre and Scott (1980) applied the technique to the problem of homogeneous shear 

flows, while Redekopp (1977), Maslowe and Redekopp (1979, 1980) and Stewartson 

(1981) considered disturbances with large horizontal scale to flows where critical 

layers are present. Stewartson (1978, 1981), Brown and Stewartson (1978a, 1980, 

1982a, b) and Warn and Warn (1978) considered forced disturbances in flows which 

contained critical layers. The problem of stratified shear flows was studied by Brown 

and Stewartson (1978b), and Hickernell (1984) studied the effects of nonlinearity in 

the critical layers in shear flows on the beta-plane of a Rossby wave.

The work of Benney and Bergeron (1969) and Haberman (1972) deals exclusively 

with steady waves, for which at most the time dependence involves simple transla­

tions of the wave in the direction of propagation. Benney and Maslowe (1975) con­

sidered extending the nonlinear critical-layer analysis to include time dependence.
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Prior to their study a time-dependent finite amplitude analysis existed which was 

valid for A > >  1, i.e. a viscous critical layer, namely the weakly nonlinear Stuart- 

Watson theory (1960), but no such amplitude equation exists for nonlinear critical 

layers (A «  1). Treating a wave that evolves both spatially and temporally, Ben­

ney and Maslowe applied the technique of multiple scales to obtain an amplitude 

equation valid for A <<  1, and determined that to the order considered no phase 

change occurs across the critical layer. If nonlinear effects are to produce any phase 

change, then, the slow time dependence must have some relation to the viscous scale. 

In their analysis, since their inhomogeneous operator equation is singular at the crit­

ical level, they employed a modified solvability condition (which involves the correct 

matching conditions at the boundaries) to determine the Landau constant. Based 

on their analysis, they concluded that in order to obtain instability either the ef­

fects of viscosity at a lower order or alternately a stronger time dependence must be 

employed in the theory.

Using the temporal nonlinear stability approach of Schade (1964), Huerre (1980) 

considered the temporal and spatial evolution of weakly amplified waves in shear 

flow, considering a critical layer where viscosity is incorporated to smooth the sin­

gularity. To successively apply the method of matched asymptotic expansions, he 

determined that the effect of viscosity could not be neglected in the outer layer, 

resulting in mean flow distortion. To counteract viscous diffusion of the basic flow, 

he found it necessary to apply an artificial body force. Huerre determined that for 

large Reynolds numbers and A > >  1, the weakly amplified waves do not approach an 

equilibrium amplitude as time evolves or with movement downstream. He concluded 

that this instability was not a result of introducing the artificial body force, since 

in all previous studies this was implicitly present, and consequently for sufficiently 

small amplitudes the waves will not be stabilized by weakly nonlinear interactions, 

but as the wave amplitude grows, A becomes smaller and nonlinear effects become
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important in the critical layer.

In light of Huerre’s work (1980), Huerre and Scott (1980) considered the case 

where both viscous and nonlinear effects are important in the critical layer for the 

same problem. They derived an amplitude equation representative of these combined 

effects which they also determined to be dependent upon the phase shift in the 

logarithmic singularity, as determined in the work of Haberman (1972). Huerre 

and Scott observed that growth of the instability waves results in the critical layer 

gradually spreading, the thickness varying as the square of the amplitude. They also 

determined that wave amplification increases the importance of nonlinear effects (as 

noted by Huerre (1980)) which in turn, for the particular case of spatial growth, 

causes the wave growth rates to gradually decrease resulting in the high amplitude 

fluctuations only having algebraic growth. They note, however, that these temporal 

and spatial changes will occur slowly when compared to the time scale of Stewartson 

(1978) and Warn and Warn (1978), resulting in their quasi-steady approach being 

self-consistent.

Warn and Warn (1978) considered the evolution of inviscid Rossby waves on a 

parallel flow in the presence of a critical layer, whose source corresponds to a switch- 

on forcing at a lateral boundary at time, t =  0, and they determined that for earlier 

times the waves will be governed by linear inviscid stability theory. For all finite 

times they assumed that a layer of transient fluid exists in the neighbourhood of the 

critical point which diminishes in thickness as time increases; note that the outer 

solution will be steady. By t — 0(e~1̂ 2) the transient layer thickness is reduced to 

0 (e1/2) and nonlinearity is found to be significant at leading order in the critical 

layer. Warn and Warn determined that at this time, the regular expansion in e from 

which the linear inviscid equations are obtained, is now non-uniform in t, yielding 

a situation similar to the steady nonlinear solutions of Benney and Bergeron (1969)
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and Haberman (1972). Thus, the domain of validity of the expansion must be ex­

tended to the nonlinear regime. This is achieved using a combination of the methods 

of multiple scales and matched asymptotic expansions, resulting in a nonlinear criti­

cal layer which when solved numerically yields the connection formulae as functions 

of time.

In his study of the finite amplitude free disturbances of an inviscid shear flow 

on the beta-plane of a Rossby wave, Hickernell (1984) applied perturbation theory 

and the method of matched asymptotics to obtain an evolution amplitude equation 

of a singular neutral mode of the Kuo equation. Hickernell’s critical-layer analysis 

included the effects of time-dependence, nonlinearity and viscosity and he deter­

mined that as time evolves the effects of small viscosity and nonlinearity become 

important much earlier inside the critical layer, than outside. Three distinguishing 

features of Hickernell’s analysis are that his vorticity equation depends explicitly on 

time, the flow inside the critical layer is determined to be weakly nonlinear in that 

nonlinear terms enter as non-homogeneities, and nonlinear (>£ are stronger

inside the critical layer than outside. Hickernell determined a governing equation for 

the evolution of the amplitude in which the nonlinear term is a type of convolution 

integral as opposed to a simple polynomial. He postulated that the nonlinearity is 

of this form because the equation for the critical-layer flow is first order in time and 

nonhomogeneous. Hickernell also stated that any problem where the critical layer is 

described by a first or higher order differential equation in time and where nonlinear 

interactions are stronger within the critical layer than outside, will possess a similar 

form of singularity.

Over recent years research with regard to nonlinear critical layers and their effects 

on the stability of flows has been carried out by three main groups, who we shall 

term the ‘Goldstein’ group, the ‘Gajjar’ group and the ‘Russian’ group.

Goldstein and his group have studied the effects of a nonlinear critical layer

44



for a number of different problems - spatial growth of Tollmien-Schlichting waves 

(Goldstein and Durbin (1986)); the roll-up of vorticity in adverse-pressure-gradient 

boundary layers (Goldstein, Durbin and Leib (1987)); spatial evolution of waves 

on shear layers (Goldstein and Hultgren (1988), Goldstein and Leib (1988, 1989), 

Goldstein and Choi (1989) and Leib (1991)); and spatial evolution of waves on 

hypersonic boundary layers (Goldstein and Wundrow (1990)).

The first work of this type carried out by Goldstein and his group was conducted 

by Goldstein and Durbin (1986). Considering the effects of a nonlinear viscous 

critical layer on the spatial growth of a time harmonic Tollmien- Schlichting wave, 

they determined that nonlinearity acted to alter the linear disturbance terms through 

its effect on the instabilities phase jump across the critical layer. This phase jump 

could be determined from the Haberman result, provided the Haberman parameter 

was interpreted correctly. Thus they determined that nonlinearity drives the phase 

jump to zero. Nonlinearity was also found to eliminate the upper branch of the 

neutral stability curve in the Blasius boundary layer.

Goldstein et al. (1987) considered the mutual effects of critical-layer nonlinear­

ity and adverse-pressure-gradients on the spatial growth of time periodic inviscid 

instability waves in boundary-layer flows. Adjusting the appropriate scalings on the 

pressure gradient and the instability wave amplitude to ensure that the growth rate 

and nonlinear terms occuring within the critical-layer vorticity equation are of the 

same order of magnitude, the critical layer is found to be both nonlinear and un­

steady. Matching the outer and critical layers, they determined that the instability 

wave amplitude now appears as a variable coefficient rather than as a parameter, 

as occurs in the Haberman problem. Consequently the critical-layer vorticity equa­

tion must be solved simultaneously with the external instability wave amplitude 

equation. They achieved this by employing a spectral method to solve the system 

numerically. Goldstein et al. find that even though the critical-layer dynamics are
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quite different from that determined by Goldstein and Durbin (1986), nonlinearity 

still causes the scaled velocity jump to be driven toward zero. They also determined 

that nonlinearity causes the instability wave to be ultimately stabilized, even though 

the adverse pressure gradient is strong enough to cause the linear wave to grow in­

definitely. This is in constrast to the model studied by Goldstein and Durbin, who 

determined that nonlinearity caused the indefinite growth of the disturbance term 

for the Blasius boundary layer. The reason for the difference they concluded lay in 

the sign of the vorticity gradient at the critical layer; a positive value causes the 

phase jump to result in unstable growth whilst a negative value causes stabilization. 

Since nonlinearity drives the phase jump to zero in both cases, anyway, ultimately 

both effects will be eliminated if nonlinear effects are sufficiently large.

The first work conducted on shear layers by the Goldstein group was carried out 

by Goldstein and Leib (1987). In an effort to account for the ‘roll-up’ of shear layers 

in the neighbourhood of the linear stability point, Goldstein and Leib developed a 

nonlinear solution which is valid in the neighbourhood of the linear stability point, 

and which they also required to match onto the upstream linear (but weakly non­

parallel) instability wave solution. For this to be achieved, they noted that there 

must exist an overlap domain where the two solutions could match correctly in an 

asymptotic sense. Because of the necessity of introducing an artificial body force 

term to counteract viscous spreading in the Stuart (1960) - Watson (1960) - Landau 

theory approach (where nonlinear terms are introduced by means of a multiple 

scales method), Goldstein and Leib instead opted for the nonlinear critical-layer 

approach. Considering the position where the local Strouhal number (or normalized 

frequency) differs from its neutral value by 0(ea/2), they derived an inviscid critical- 

layer vorticity equation which contained both nonlinear and non-equilibrium terms, 

and this choice of scaling also allowed for the correct matching with the upstream 

linear instability wave. Comparing their work with Robinson’s (1974), they noted
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that since Robinson considered the case where the normalized frequency differed 

from the neutral value by 0(e), then his solution will not match with the strictly 

linear solution. Solving the critical layer vorticity equation, which represents a 

balance of spatial evolution and (linear and nonlinear) convection terms, by means 

of a spectral decomposition, they determined that nonlinearity in this case acts to 

reduce the growth rates to zero over a very short streamwise distance, well upstream 

of the linear neutral stability point, but with the final instability wave amplitude 

oscillating about a finite non-zero value. They could not determine whether or 

not a final equilibrium solution was reached, although the numerical observations 

suggested that the critical-layer vorticity equation continues to develop smaller and 

smaller lengthscales. Goldstein and Leib noted the close similarity between their 

results and the related Rossby wave critical-layer solution obtained by Stewartson 

(1978) and Warn and. Warn (1978).

Based on the observations of Stewartson (1978, 1981) that even a very small 

amount of viscosity causes the nonlinear critical-layer Rossby wave solutions to 

evolve into an equilibrium critical layer of the Benney and Bergeron (1969) type, 

Goldstein and Hultgren (1988) introduced a small amount of viscosity into the work 

of Goldstein and Leib (1987). They assumed that viscous effects are of the same 

order as the spatial evolution and nonlinear convection terms, noting that outside 

the critical layer viscous effects are still unimportant. Consequently, the lowest 

order growth rate that they determined {0{elI2)) is much larger than the corre­

sponding equilibrium critical-layer (0(e3//2)) solution as determined by Huerre and 

Scott (1980). As had been determined previously by the Goldstein group, Goldstein 

and Hultgren noted that since the instability growth rates axe proportional to the 

phase jump across the critical layer and nonlinearity drives the phase jump to zero, 

then clearly nonlinearity can be seen to force the growth rates to zero, i.e. cause

47



stabilization. However, since viscosity prevents the phase jump from being erad­

icated entirely, then the growth rates of the disturbance increase asymptotically 

downstream. They determined that even though this growth is weak - algebraic 

now as opposed to exponential - nonlinear terms within the critical layer can be­

come unbounded, resulting in a new dominant critical layer balance between linear 

and nonlinear convection terms. On the face of it, it appears that Goldstein and 

Hultgren have arrived at the Benney and Bergeron (1969) state. However, through 

careful analysis, Goldstein and Hultgren demonstrated that because of rapid spatial 

development, viscosity is not given a chance to fully act on the flow. Consequently, 

the vorticity in the closed streamline region within the cat’s eye boundary is vari­

able. Making use of a generalized Prandtl-Batchelor theorem, obtained from their 

non-equilibrium critical-layer vorticity equation, they showed how singular eigenso- 

lutions^can be precluded, while there is variable vorticity at the cat’s eye. Since the 

instability wave is now growing slowly, the mean flow will diverge noticeably, result­

ing in the critical-layer structure being altered and the 0(1) amplitude instability 

never being reached. Goldstein and Hultgren determined that mean-flow spreading 

ultimately dominates nonlineaxity, forcing the growth rates towards zero, and then 

the wave begins to decay. Nonlinearity is found not to effect the location of the 

neutral stability point.

In his linear work on the effects of compressiblity in shear layers, Gropengeisser 

(1969) determined that oblique modes grow faster than two-dimensional modes. He 

also determined that due to calculated reductions in the linear growth rates as the 

Mach number is increased, then for supersonic flows, nonlinear critical layers have an 

increased importance. Consequently, Goldstein and Leib (1989) extended their in­

compressible work into the compressible regime and treated the more general case of 

three-dimensional disturbances, although to simplify their analysis they employed 

Squire transforms. They determined that the inclusion of compressibility causes
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critical-layer nonlinearity to behave quite differently. The major reason for this dif­

ference is that the temperature disturbance terms possess an algebraic singularity in 

the critical layer (as first noted by Reshotko (I960)) resulting in these terms being 

very large relative to velocity components. Consequently, critical-layer nonlinear­

ity is found to occur at much smaller amplitudes than in analogous subsonic flows. 

Goldstein and Leib determined that nonlinearity effects will first become important 

when the instability wave growth rate is 0(e2/5). As a result, the critical-layer flow 

is governed by linear dynamics to lowest order, nonlinearity effects only entering 

through the higher-order (inhomogeneous) terms. They showed that the instabil­

ity wave amplitude is governed by an integro-differential equation, similar to that 

derived by Hickernell (1984), the coefficients of which are determined numerically 

from the linear solution. Solving the inviscid amplitude equation numerically, Gold­

stein and Leib determined that it terminates in a singularity at a finite downstream 

distance. The reason why a blow up occurs in the compressible case is because the 

Hickernell type amplitude equation is a form of convolution integral, implying that 

history effects are important. It is these cumulative history effects which eventually 

cause the amplitude to grow and terminate in a singularity. Restoring viscosity in 

the critical layer only (although taking into account possible mean-flow spreading 

over this lengthscale), Goldstein and Leib determined a generalized amplitude evo­

lution equation where the additional viscous effects are contained solely within an 

exponential factor whose argument is always negative. They determined that the 

viscous amplitude equation admits an equilibrium solution if the amplitude equation 

coefficients lie in certain regions of determined parameter space. In these parame­

ter space regions it is found that the history effects of the convolution integral are 

damped by the exponential term, resulting in the solution being a more local one.

In the above work, the unsteady flow was assumed to evolve from a single oblique 

mode growing in its propagation direction, thus allowing Squire transforms to be
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employed. Goldstein and Choi (1989), considering the same overall problem, instead 

assumed an initial instability wave growing in the streamwise direction. In order to 

represent a fixed spanwise structure, they suppose that there are two oblique modes 

with the same frequency and steamwise wavenumber but with equal and opposite 

(real) spanwise wavenumbers. It is found that cross-flow velocity fluctuations, which 

possess the same form of algebraic singularity in the critical layer as the temperature 

disturbance terms, couple with the velocity fluctuations in the plane of the wave, 

causing critical-layer nonlinearity to be more important at smaller amplitudes than 

in the corresponding incompressible two-dimensional case. Goldstein and Choi also 

observed that nonlinear oblique-mode interaction causes nonlinear critical layer ef­

fects to occur at even smaller amplitudes than in the single mode compressible case 

- nonlinearity becomes important when the instability wave growth rate is 0(e1/f3) 

as opposed to 0(e2/5), as explained in the preceeding paragraph. Because the non- 

linearity in this case is due to oblique mode interaction, the nonlinear critical-layer 

dynamics will be unaffected by compressibility effects, and consequently Goldstein 

and Choi conducted their analysis for the incompressible case only. They obtained 

an integro-differential equation with a cubic nonlinearity governing the instability 

amplitude, similar to that obtained by Goldstein and Leib (1989) (although the 

structure of the nonlinear kernel function is somewhat different), which is valid also 

for supersonic shear layers. As in the single oblique mode case, nonlinearity causes 

the amplitude to grow rapidly, terminating in a finite downstream distance.

In their analysis Goldstein and Leib (1989) considered oblique subsonic modes 

where the critical point coincides with a generalized inflexion point, thus allowing 

them to assume the Lees and Lin (1946) generalized inflexion condition. This re­

sults in the critical point being a regular singular point for the compressible Rayleigh 

equation. Leib (1991) generalized the above analysis to the case of supersonic modes, 

where it is found that a generalized inflexion condition can no longer be assumed,
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resulting in the outer Frobenius solutions containing logarithmic terms. Leib also 

removed the restrictions of unit Prandtl number and linear viscosity-temperature 

relation, as assumed by Goldstein and Leib (1989), and derived an integral condi­

tion for the coefficients appearing in the amplitude equation based on the modified 

solvability condition of Redekopp (1977). Leib conducted his analysis for a non­

equilibrium nonlinear viscous critical layer and determined a Hickernell type ampli­

tude evolution equation similar to that corresponding to Goldstein and Leib’s (1989) 

generalized amplitude evolution equation, and containing terms that accounted for 

all the subsequent generalizations made by Leib. As before, Leib determined that all 

the inviscid solutions terminate in a singularity at a finite downstream location. In 

the case of the viscous solutions, he derived a necessary condition for the existence 

of an equilibrium solution, which is found to depend upon the Prandtl number, vis­

cosity law, the viscous parameter and a real parameter derived from linear inviscid 

stability theory. Prom numerical observations, Leib determined that an equilibrium 

solution could not be achieved for subsonic modes unless the temperature ratio of 

the low-to high-speed streams exceeds a critical value, whilst in the case of the 

most rapidly growing supersonic modes, equilibrium solutions exist over most of the 

parameter range studied.

In their study of the spatial evolution of nonlinear acoustic mode instabilities 

on the hypersonic boundary layer, Goldstein and Wundrow (1990) determined that 

nonlinearity is important when the amplitude of the pressure disturbance terms 

is 0 (1 /M ^  lnM^,), where denotes the freestream Mach number. The linear 

inviscid disturbance terms outside the critical layer are found by extending the 

asymptotic analysis of Cowley and Hall (1990) into the nonlinear regime. Gold­

stein and Wundrow determined that this flow has a triple-layer structure, while the 

critical layer is contained in an adjacent outer layer, which they termed the edge 

layer. The resultant critical-layer nonlinearity is found to be strong in that it enters
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through a coefficient in the lowest order equations (similar to the incompressible 

work of Goldstein et a l (1987)) and by employing a variable change, Goldstein 

and Wundrow were able to express the critical-layer vorticity equation (along with 

the energy equation) in a similar form as that determined by the Goldstein group 

in the incompressible shear-layer case. The coupled set of nonlinear critical layer 

equations was then solved using a numerical method based on the method of char­

acteristics. Unlike the incompressible work of Goldstein et al. (1987), it is found 

here that when nonlinear effects first become important the instability wave growth 

rates continue to increase, which is attributable to the effects of compressibility - 

as in the work of Goldstein and Leib (1989). As the amplitude continues to grow, 

however, transverse convection effects eventually become dominant, resulting in the 

growth rates decreasing and eventually oscillating about zero. This is similar to the 

incompressible work of Goldstein et al., where again critical-layer vorticity roll-up 

generates smaller and smaller lengthscaies resulting in viscous effects becoming im­

portant. Goldstein and Wundrow also noted that transverse convection effects must 

be strong enough to counter the growth enhancing features of compressibility, before 

the singularity of Goldstein and Leib (1989) (and Leib (1991)) is encountered. They 

concluded that the vorticity roll-up of this fully nonlinear solution must be strong 

enough to reverse the growth build up of the weakly nonlinear compressible theory 

before the singularity has a chance to form.

Making use of self-consistent asymptotic methods based on multi-deck ideas, 

Gajjar and co-workers have been successful in introducing nonlinear effects due to 

the presence of a critical layer, into a number of problems from the mid-eighties 

onwards - Bodonyi, Smith and Gajjar (1983), Gajjar and Smith (1983), Bassom 

and Gajjar (1988), Gajjar and Cole (1989) and Gajjar (1991a, 1991b).

In their work, Gajjar and Smith (1985) considered the problem of global non­

linear growth/decay, from both a spatial and temporal approach, of an unsteady
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non-neutral, small disturbance in the presence of a nonlinear viscous critical layer. 

The problem they treated may be regarded as global in the sense that previous 

studies assumed that outside the critical-layer travelling waves are neutral, with the 

nonlinear growth or decay being treated with respect to motion within the critical 

layer only - this is akin to a fixed critical layer. Gajjar and Smith removed this 

restriction, considering instead a disturbance whose amplitude varies over the whole 

flowfield. Considering three types of basic flow - steady quasi-parallel channel flow, 

boundary-layer flow and liquid-layer flow - at high Reynolds number, i.e. the flows 

considered have small but non-zero viscosities, they determined that assuming un­

steadiness is important in the problem, then the effects due to the slowly moving 

critical layer (which moves to counter the divergence effect of viscosity) are more 

important, generally, with regard to the evolution of the instability wave, than corre­

sponding effects developed within .the critical layer due to unsteadiness factor. This 

is because the critical layer being considered in this regime is relatively thin and 

consequently the actual movement of this critical layer causes changes to the inter­

nal flow properties which are larger than those induced by the internal unsteadiness. 

Coupled with this slow movement of the critical layer, instability wave amplitudes 

are found to respond nonlinearly on faster space and time scales, both inside and 

outside the critical layer, i.e. physically speaking, the slow movement of the criti­

cal layer forces the disturbance to vary on much faster scales with respect to time 

or space. For the special case of fixed frequency disturbances, Gajjar and Smith 

determined that for initial disturbances whose amplitude is either above or below 

a certain subcritical threshold value, then these waves will be amplified/stabilized, 

respectively, by nonlinear effects at later times, further downstream. In the case of 

amplification, the instability waves become unbounded until they are governed by a 

new subsequent structure. For the case of the general moving time-dependent non­

linear critical layer, unlike the corresponding fixed equation, there is no significant
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jump in the mean vorticity across the critical layer possible, implying that no large 

mean flow disturbances can be induced outside.

In the incompressible shear layer problem treated by Goldstein and Hultgren 

(1988), the final region they study where both critical-layer nonlinearity and viscous 

spreading of the mean flow are important, they observed that this region corresponds 

to a regime similar to that studied by Gajjar and Smith (1985), where their critical 

layer moves across the shear layer to maintain the quasi-equilibrium state against 

changes in mean flow. Of course both effects of viscosity and nonlinearity see the 

ultimate downfall of the wave growth rates.

In dynamical situations where cross flow vortices arise, there exists the possibility 

of more than one critical point occuring in the basic profile. In their study of the 

stability of non-stationary cross flow vortices in three-dimensional boundary-layer 

flows, Bassom and .Gajjar (1988) assumed that the basic flow was modelled by the 

Von-Karman solution. The Von-Karman solution only allows two critical points 

at most, but Bassom and Gajjar stated that their results are easily generalized 

to the Ekman boundary-layer flows solution, where an infinite number of critical 

points may exist (Lilly (1966)). Starting with the linear theory, Bassom and Gajjar 

demonstrated that if both critical points are present, then one will exist very close 

to the wall while the other occurs in the main part of the boundary layer, and 

balancing the critical layer jumps with the Stokes’ layer shift yields a eigensolution 

for neutral modes. They also showed that the linear non-stationary modes they 

considered only exist for a limited range of wave numbers between 10.6° and 39.6°, 

but on including nonlinearity the wave angle range is significantly increased, since 

nonlinearity results in the lower limit now being amplitude dependent.

Considering the stability of compressible boundary layers for the specific ex­

amples of a pressure gradient boundary layer (subject to both heat transfer and 

insulated wall gradients) and the Blasius boundary layer (subject to insulated wall
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conditions only), Gajjar and Cole (1989), noting that in the compressible case invis­

cid disturbances are generally more important, conducted a multi-deck asymptotic 

study for upper-branch stability. They conducted the work for neutral states only, 

and hence equilibrium critical layers, but noted that their work provides the ba­

sis for a study with respect to growing modes, as conducted by Gajjar and Smith 

(1985) and, of course, the Goldstein group. After determining the linear structure, 

they introduced nonlinear terms through the action of a nonlinear viscous critical 

layer. Through their analysis, they derived a nonlinear viscous compressible crit­

ical equation for the neutral modes, noting that it differs from the incompressible 

Haberman (1972) result due to the addition of a forcing term resulting from large 

density fluctuations in the neighbourhood of the critical layer. It is found, however, 

if the fixed boundary is subject to insulated conditions then th e  >̂roVleM to W 

rescaled . The dominance of the density disturbance terms (and temperature in­

stability terms) in the neighbourhood of the critical layer is a result of introducing 

compressibility into the critical layer, of course, and is akin to the observations of 

Reshotko (1960, 1962) and Goldstein and Leib (1989) regarding temperature dis­

turbance terms. Through their analysis, Gajjar and Cole determined that another 

effect of compressibility is that the phase shift across the critical layer becomes pos­

itive for certain parameter values (where Gajjar and Cole considered crossing the 

critical layer from above to below), which they determined. Considering the limit of 

when the critical layer becomes strongly nonlinear they noted the necessity of vis­

cous critical layers in the cat’s eye boundaries due to discontinuities in the vorticity 

gradient, which are found to be even stronger in this case due to heat transfer.

Another problem to which Gajjar (1991b) has applied nonlinear critical layer the­

ory to is the problem of the nonlinear evolution of Travelling Wave Flutter (TWF) 

modes in the boundary-layer flow over isotropic compliant surfaces. Using the linear 

work of Carpenter and Gajjar (1990), Gajjar (1991b) introduced nonlinear effects by
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means of an unsteady nonlinear critical layer. He obtained two equations governing 

the amplitude evolution of the TWF mode which axe very similar to equations deter­

mined by Goldstein and Wundrow (1990) in their work on the hypersonic boundary 

layer. The main result of Gaj jar’s analysis is that nonlineaxity drives the jump in 

the Reynolds stress across the critical layer to zero, and since this is directly related 

to the instability wave’s growth rates, then the growth rates of the TWF mode are 

reduced as it evolves downstream resulting in the roll up of vorticity within the crit­

ical layer and the generation of harmonics. Unlike the shear flow results, however, 

the wave amplitude oscillates about a non-zero value implying that the wave am­

plitude is still growing. Gajjar noted that the path to vorticity roll-up is the same 

as that described by Goldstein and Leib (1987) and Goldstein and Hultgren (1988), 

although he points out that their work is in terms of transformed coordinates and 

it is found that the picture is somewhat distorted in terms of physical coordinates. 

However, regions of thin and intense shear layers will still be present.

Applying multi-deck theory to the problem of the nonlinear evolution of slowly 

growing modes in the compressible boundary layer, Gajjar (1991a) obtained a pair of 

coupled unsteady nonlinear equations that govern the amplitude evolution, which 

again closely resemble those obtained by Goldstein and Wundow (1990) for the 

hypersonic limit. Examining the linear growth rate he noted how wall heating can 

destabilize the boundary layer. Carrying out a preliminary numerical study, Gajjar 

determined that the nonlinear growth rates behaviour is dependent upon whether 

the wall conditions are heated, cooled or adiabatic.

Over the last few years a number of Russians have been considering the effect of 

nonlinear critical layers on fluid dynamical problems. Churilov and Shukhman (1987, 

1988) and Troitskaya (1991) have considered the nonlinear stability of a weakly 

supercritical shear flow with vertical temperature stratification, whilst Shukhman 

(1989, 1991) has considered nonlinear effects on the stability of the shear layer in a
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rotating fluid for both the incompressible (1989) and compressible (1991) cases.

In the approach adopted by Churilov and Shukhman (1987), they specified the 

relevant scales for viscous, unsteady and nonlinear effects to be individually im­

portant in the critical layer and noted that the critical layer will be characterised 

by which of these scales is the largest. They presented a diagram of the various 

critical-layer regimes on the amplitude-supercriticality plane at a fixed Reynolds 

number, showing clearly the viscous, unsteady and nonlinear regions, with the rel­

evant boundaries marked showing where more than one effect will be important. 

Considering the case of a viscous critical layer and assuming that the instability 

wave amplitude and supercriticality are small enough, Churilov and Shukhman 

(1987) determined an evolution equation .which is governed by the Landau equa­

tion (Landau and Lifshitz (1959)), and showed that higher order amplitude terms 

will only be important in very narrow regions in the neighbourhood of where the 

Prandtl number, <r, is one. Through interactions of harmonics in the critical layer, 

they determined that the Landau constant is directly proportional to the Reynolds 

number, changing its sign when a =  1. Nonlinearity is found to substantially affect 

the disturbance terms causing them to be stabilized for cr < 1, while for a > 1 it 

causes destabilization.

In a second paper, Churilov and Shukhman (1988) considered the case where the 

critical layer is unsteady as opposed to viscous. They determined that, with respect 

to their critical layer region diagram, a viscous critical layer is adjacent only to a re­

gion of an unsteady critical layer, so therefore unlike the situation described in their 

first paper, a nonlinear critical layer would not exist just above a viscous critical 

layer, in their diagram. Through their analysis, Churilov and Shukhman derived an 

evolution equation which is a form of integro-differential equation possessing both 

cubic and quintic nonlinearity terms. They noted that Hickernell (1984) equations
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(although, as already stated above, Hickernell’s equation only possesses a cubic non- 

linearity term) of this type will arise in situations with unsteady critical layers where 

nonlinearity is competitive. Churilov and Shukhman showed that if the amplitude 

of the wave is small then the cubic term will dominate, but if it becomes of order the 

inverse of the square root of the Reynolds number, then the quintic term dominates 

resulting in explosive growth of the wave. This explosive growth is attributable to 

the convolution integral form of the nonlinear terms, where of course past histories 

will matter, and eventually accumulate.

Considering the problem of the nonlinear stability of a weakly supercritical mix­

ing layer in a rotating fluid, Shukhman (1989) conducted a study of the waves’ 

nonlinear evolution for the. different critical-layer regimes of viscous, nonlinear and 

unsteady scalings. Extending these theories into the compressible regime, Shukhman 

(1991) conducted a study of the nonlinear evolution of spiral density waves generated 

by the instability of the shear layer in a rotating compressible fluid, with particular 

application to the problem of the structure of spiral galaxies. Considering distur­

bances which he regarded as acoustic waves in the far-field, it is found necessary to 

impose a far-field radiation boundary condition. Also, because of the form of the 

disturbances he treated, the critical point no longer coincides with a compressible 

inflexion point as in the work of Goldstein and Leib (1989). Consequently, the outer 

solutions contain logarithmic terms which will be singular at the critical point at the 

same ordering as those determined by Leib (1991). However, because of the partic­

ular model being treated, Shukhman assumed that the temperature terms will be 

homogeneous, i.e. T^(y) =  0, where To represents the temperature field, resulting in 

a much simplified energy equation. A more major consequence of this assumption is 

Shukhman’s temperature disturbance term will not be singular at the critical point. 

In Shukhman’s case it is the logarithmic terms which determine the critical-layer 

dynamics, resulting in quite a different critical-layer structure from that determined
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by Goldstein and Leib (1989) (and Leib (1991)). Remarkably, however, the resultant 

evolution equation governing the instability wave amplitude possesses a nonlinear 

term which only differs from that determined by Goldstein and Leib (1989) in the 

form of the coefficient term. Considering seperately the cases of a viscous critical 

layer and an unsteady critical layer, Shukhman provided conditions on the amplitude 

for explosive growth for both cases.

Troitskaya (1991) considered the problem of a viscous-diffusion nonlinear critical 

layer in a stratified shear flow. Considering stationary finite amplitude wave dis­

turbances, he introduced nonlinearity through the action of a critical layer whose 

structure depends upon nonlinearity, viscosity and a new factor that he introduced, 

thermal conductivity.

In Chapter 4 of this thesis the effects of the critical layer on the linear stability 

analysis conducted in Chapter 3 is studied. It should be noted that all the work in 

this Chapter is conducted for the case of a straight cylinder subject to axisymmetric 

disturbance terms only. We begin by determining the effects curvature has on the 

linear compressible viscous theory as determined by Lees and Lin (1946). Nonlinear­

ity is then introduced into the inviscid problem by means of the instability wave’s 

interaction with nonlinear effects developed within the critical layer. The actual 

method employed is based on the method developed by Goldstein and Leib (1989) 

and allows us to consider near-neutral amplified disturbance terms. This study 

will be conducted from a temporal basis, i.e. waves periodic in space but growing 

in time are treated, and the aim is to determine the effects curvature has on the 

Goldstein/Leib results. In the last Chapter of this thesis, the full non-equilibrium, 

nonlinear viscous critical layer amplitude equation is determined for the compress­

ible boundary layer formed on a straight circular cylinder subject to axisymmetric 

disturbances. Again the aim of this study is to see the effects curvature has on the 

critical-layer dynamics and the resultant evolution equation governing the instability
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Chapter 2 

Basic Flow

2.1 Equations of M otion and State

The general layout of the problem is shown in Figure 2.1. The z* axis lies along 

the cone axis, r* denotes the radial coordinate, and 0 the azimuthal coordinate. 

The velocity vector v* has components uj, uj, uj in the r*, 0, and z* directions, 

respectively. The temperature field is represented by T*. Throughout it is assumed 

that the basic flow is independent of 6, and the mean azimuthal velocity component, 

t?2 , is zero, although when we go on to consider the stability of the flow, we shall be 

concerned with non-axisymmetric disturbances.

In the cylindrical polar coordinate system as defined above, the full equations of 

continuity, momentum, and energy take on the following forms (Thompson (1972)):

%  + + ̂ §e(p'v'2) + + ^  t2-1)

* _  K ) ! l  _  dp* dEr*r* 1 d£ r*z* s r. r. — £$$ , .
^  L D i.* r*  i  f ir *  f ir*  r*  f id  f lv*  <p* ’

D v 2*  1  d p *  r * d ^ e e  d £ 6z*

DP + r* ae +  +  U r  + ~d^~  +  2_^ ’ <“ >
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mDv 3 dp* 5Ez*r. 1 d h x*o E*.r*
P TTT-  =  —7TT H 7TZ 1 T—777----1---- 7T~Z-----1---------Dt' dz* dr* dS dz*

( 2 . 4 )

D (r T*V _  E £  -  r* 4 . 1 A  ( Kv* J -  *. (/<-* " H u  A  r ^
'  p  '  D f  ~  r *  O r *  V d r *  '  +  ( r * ) J  9 #  V 9 0  '  9 z *  ^  9 z *  > '

( 2 . 5 )

Z><

Here />* is the density of the fluid, p* is the pressure, Cp is the specific heat (at 

constant pressure), and K* is the coefficient of heat conduction. The Eulerian 

operator is defined as

D d „ d v% d d 
Dt* dt* dr* ^  r* dO Vs dz* ’

(2.6)

and the viscous stress components, assuming Newtonian flow, are defined to be

dv*
^ t - = 2 ^  +  A*V.v% (2.7)

* r 1 d v o „
+;£]+A V ' v * (2.8)

dv
S ^ = 2 ^  +  A*V.v*, (2.9)

“  P r*d0  dr* 'r* 'D
(2.10)

_  _ *\dvo 1 dvl
Sfe. -  s.*« -  n [q p  +  — j , (2.11)

_  _ *\dvZ dv i
=  S r.z. =  ,L [ ^ 7  +  ^ 7 (2.12)

The dissipation function T* in (2.5) is given by
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r  =  2li"{D%r. + Dl(l + Dl.x.+2Dl.()+2D].e+2Dl.T. } + ( y - 2-fi')(V-w'f. (2.13)

Here the ‘D’ terms are the components of the rate-of-deformation tensor, and are 

given by,

dv{
Dr r-  =  (2-14)

J>" =  t S  +  4 -  (2.15)r* dv r*

D , ,  =  g ,  (2.16)

0 , . , .  =  I  [£ *  +  * £
2 '■dz* dr*

(2.17)

The coefficients p* and A* above denote the first coefficient of viscosity and bulk 

viscosity, respectively (which are assumed to be functions of temperature only) and 

\* = fi*-\- |^ * 5 where ywj is the second coefficient of viscosity.

The equation of state is taken to be that which models a perfect gas, i.e.,

p* =  p*R*T\ (2.20)

where R* is the gas constant.
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With reference to Figure 2.1, the surface of the cone is taken to lie along r* =  

a* +  2 * > 0 (later, important assumptions regarding the size of the slope

parameter will be made), and so on this surface we require

=  v* =  „* = 0. (2.21)

If the surface of the cone is insulated, then the following boundary condition 

must also be imposed:

(where n* denotes an outwards normal to the wall). In the case of heated/cooled 

walls, then the condition

T *= T * , (2.23)

must be imposed at the surface.

We now specify conditions at z* =  0. In this problem the overall intention is to 

investigate the effects of curvature, in particular how curvature changes planar re­

sults. Thus, at the cone tip it is assumed that the boundary layer has zero thickness, 

enabling planar conditions to be imposed at this position. This progressive intro­

duction of curvature, starting from planar conditions, is a sensible way of explicity 

studying its effects. A similar assumption was made by Seban and Bond (1951) for 

the laminar boundary layer formed on a cylinder in axial incompressible flow and 

their comments regarding this assumption are found to be valid here. Following 

previous authors, such as Mack (1984), the effect of any shock that may occur is 

ignored. This is also expected to be important in the vicinity of the tip (i.e. for 

z*/a* =  0(1) where z* is a much longer lengthscale than a*), the significance of 

this region for our model being discussed above. Further, it is expected that for
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moderate Mach numbers (such as considered throughout this thesis) downstream of 

the tip, the chosen ‘thinness’ of the boundary layer is such that the shock wave will 

be located well outside of the boundary layer. Since our analysis focuses attention 

primarily on the boundary layer, the effects of the shock are assumed to be negligible 

(see also the work of Chang et al (1990) which confirms this in the case of planar 

flows).

Assuming the cone to be slender, then the far-field conditions are taken to be 

uniform, to leading order, with

= t>; =  0, (2.24)

”3* =  C&, (2.25)

/t i *  __  /y i*
^ OO"

Subscript oo denotes free-stream conditions.

We next go on to derive the basic (boundary-layer) 

cone, assuming curvature plays a key role in the physics

2.2 The Boundary-Layer Flow

We define our Reynolds number on the tip radius of the cone, a*, as follows:

U* a*p*
R e  = (2.27)

and this will be assumed to be large throughout, thus allowing us to make the
A

steady boundary-layer approximation. A key element in this work is the inclusion of 

curvature terms in the governing equations to leading order. To achieve this the tip 

radius of the cone is assumed to be generally of the same order as the boundary-layer
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thickness (a similar approach was adopted by Seban and Bond (1951), Stewartson 

(1955), Bush (1976), Duck and Bodonyi (1986) and Duck (1990) for cylindrical 

bodies), except at the tip of the cone where, as already mentioned, the boundary 

layer is assumed to have zero thickness. As already noted the z* lengthscale is much 

longer than the body radius (z* — 0(a*i2e), generally) and so the ‘tip eifects’ of the

cO A B on the mean flow will be expected to be confined to z*/a* =  0(1).

With the formation of a thin boundary layer, (comparable in thickness to the 

body radius) the following classical assumptions are expected to hold

•S— »  -S— and Do > >  uj, (2.28)dr* dz* 3 1 v '

(these orders will be made more precise shortly). We also must have

Xi =  R e -1 A, (2.29)

where

A =  0(1), (2.30)

implying a slender cone.

As noted previously, the basic flow is taken to be independent of 6, and has no az­

imuthal velocity component (i.e., uj =  0). Introducing non-dimensional parameters 

as follows:

„ m . /Jxev, r z ± p il \ .___ .
. (2.31)

then the leading-order governing equations may be written (assuming Re —> oo)
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1  =  0, (2.33)

dv3 dy3 T d r dv3]
t,1a r  +  U3a 7  =  7 ^ 1 7 1 '  {2'34)

dT dT  r^ 3 12 T d ir/id T i , .
v' f r + v > a; = llT^ - V M~\.-fr} + 7 * h a d '  (2-35)

where the result

P = f ,  (2-36)

has been used and is a consequence of applying equation (2.33) to the equation of

state, in non-dimensional form; 7 denotes the ratio of specific heats, <7 is the Prandtl 

number, namely

* =  (2-37)

(which is assumed to be a constant in this problem), and M00 is the freestream Mach 

number, namely

U* '
Moo = > „ (2.38)

(7 R * T ^ y / 2 v '

The boundary conditions are

Uj = v3 = 0 on r  =  1 +  A z, (2.39)

v3 —> 1, T —> 1, as 1— > 00, (2.40)

together with a wall temperature condition; in the case of insulated walls (to leading 

order)
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whilst in the case of heated/cooled surfaces

T  = TW on r = 1 +  Ajbt. (2.42)

All that remains is for us to specify a viscosity/temperature law. For the purpose 

of this work we assume the linear Chapman law (Stewartson (1964)), namely

p =  CT, (2.43)

where C is taken to be constant (although, here, conceptually, there would be no

difficulty in taking more complex variations of viscosity with temperature).

If we write

vi = Cvu  

z = C - 'z ,

A =  CA, (2.44)

whilst retaining other terms, then the system (2.32) - (2.35) becomes



dTOl  O l  rt . <y f  C7l?3 \ I  1  O

Vll h  35 i  =  ^ + 7 a ^

whilst the wall boundary conditions are to be applied on

T  d r T d T ,
a dr -I ’

(2.48)

r = 1 + A z.

As described previously, it is assumed that as z —► 0 the solution approaches 

planar conditions and at the cone tip the boundary layer is taken to have zero 

thickness. The problem is thus singular at z(= z) =  0, and consequently scaled 

variables must be introduced in order to solve (numerically) the system (2.45) - 

(2.48) accurately. Specifically we write

«i = C 'fiifo.C).

V3 =  h(ri ,C) ,

r = iW), (2.49)

where

^ -1/2C - z (2.50)

and

7]  =
r -  1 -  AC2

C
(2.51)

The ‘hatted’ quantities are expected to behave regularly as f  —■> 0, approaching 

the planar solution. Equations (2.45) - (2.48) now take the following form:

(2.52)
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dp
di] =  0 , (2.53)

a dv3 (v$dv3
V idv + 2 d(

dv3 _  T d r ^ d v 3 
dr} r drj'- drj

(2.54)

dT  (v3 dT dvz\2 T  dC 1>3 O l A r . .  V -101  a 2 N, , o / C ; t ; 3 \ 2  i

_t,3I ~ (7“  ̂ +7dt} '  r dt] er d p J
r T d T

1, (2-55)

where

r — 1 +  Af2 + £?/.

The boundary conditions in terms of the new variables are

(2.56)

=  £3 =  0 on 7} =  0 , (2.57)

V3 —* 1 , T —> 1 as 7} —> oo.

In the case of insulated walls, the additional surface condition is

(2.58)

dT
dr}

=  0 on 7} =  0 ,

whilst for heated/cooled walls

(2.59)

T  = Tw on 7] = 0. (2.60)

On examination of the system of equations (2.52) - (2.55) it is found that un­

like the planar case, the introduction a Howarth-Dorodnitsyn (Stewartson (1951), 

Moore (1951)) transformation does not simplify matters; in fact the equations be­

come rather untidy in an algebraic sense. Therefore it is found necessary to seek
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a numerical solution to vj, v3, and T  directly. Setting (  =  0 in equations (2.52),

(2.54) and (2.55), the problem just reduces to the planar case, namely the ordinary 

differential system

Vitft ~  viTn — -f ~v3Tff — 0, (2.61)

-  |*3«3, =  TTnv3n +  f H 3m, (2.62)

fiif, -  = f 2( l  -  l)M lv l„  +  ^  +  (2.63)£ o <y

(subject to conditions (2.57), (2.58) and (2.59) or (2.60)).

Defining the variables

A 1 A«3 = V3rl,

T l = f,„ (2.64)

the system (2.61) - (2.63) together with (2.64) can be written as a first-order system 

of ordinary differential equations, namely

f 6 1, - 6 1f ’1- | r 6 ‘ +  |T '163 =  0, (2.65)

«i«3 -  =  T H l,  + T f ' v l ,  (2.66)

v3 =  vsn, (2.67)

«i f 1 -  \ v 3T 1 =  T 2(7 -  l )M l( v l )2 +  (2.68)
I  O O'
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subject to

T 1 =  T„ (2.69)

jT1 =  0 on 7/ =  0, or T z o a  ■'*z. ~ O

= £3 — 0 on r) =  0,

T* —► 1 as 7] —► 0 0 , .

£3 —> 1 as 7/ —» 0 0 . (2.70)

This system of equations is now treated numerically by approximating each term

by a second order finite difference scheme and the resultant truncated system is

solved by means of a Newton iteration. At each iteration level, the algebraic system 

was of block-diagonal form, with each block comprising 10 x 5 elements.

The finite difference scheme employed is the central difference analogue which 

for a function u(a;) has the form

% = hi +^ -  + ° ^ '  2̂-71̂
where h is the step size and is determined by the fineness of the grid. The grid has 

the form

—  h -+
---------- 1--------- 1--------- 1--------- 1--------- 1---------   ► ^-direction

x — h x x + h

In this problem, to make the scheme more compact, instead of evaluating at 

successive grid points, all functions and finite differences are evaluated at a point 

half-way between the mesh points, although we still step up in amounts equivalent 

to the mesh size. In effect we are evaluating the functions and finite differences at
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two successive mesh points and then averaging the resultant. Note, the accuracy 

will still be the same as the error term is 0 (h 2). Therefore the mesh employed to 

solve the ODE system under consideration has the form

*~Ai]
-X X X  -----► 77-direction

where j  — |  is the point where the central differencing is carried out. The central 

difference expansion for a function v(r]), in terms of the new grid, has the form

(2, 2)

where A77 represents the step size.

Applying the central difference expansion (2.72) to the differential quantities in 

the ODE system (2.65) - (2.69) the following finite difference approximations are 

obtained. f 0c t W  tL\$£ecervtioA

t o w ,

. _  V3{j) -  V3(j -  1)
”  An------------ '  V ”

1 v l ( j ) - v l ( j ~ l )  A 1 . 
’3„ = ---------^ ----------+  0(Aif ),

Tn = T(3) ^  1} +  0(Ar,%

f i  =  T \ j )  T \ } 1) +  0(Aj?2) (2  J3 )
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To apply the Newton iteration to the truncated finite difference system, at the 

(n -f l)th  iteration level we write

f +I( i)  =  /"(j') +  W ) ,  .(2.74)

with the understanding that terms of 0(S2) and higher are neglected. Substituting 

(2.74) into the truncated finite difference system, and collecting S f  terms on one 

side of the system of equations, the resultant system can be expressed in the matrix 

form

A X  = B, (2.75)

where A is the cofficient term matrix, B contains the matrix element's to be deter­

mined, and X contains the S f  terms having the form

( 6h ( l)  \

8vi(j ~  1 
Sv3(j - 1  
6vl (j -  1 
ST(j - 1  
8Tl (j - 1  

^ i ( i )  
<^3(j)

8T(j)
tT 'U )

X  =

 ̂ S ^Q m a x )  j

where jm ax  represents the grid point where the far-field conditions axe satisfied. 

The Sf ' s  are evaluated repeatedly until suitable convergence at a given j  station is 

achieved.
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The banded matrix system (2.75) is then solved using Gaussian elimination and 

banded matrices. Finally a relaxation condition is applied at each iteration level to 

speed up calculations.

Once obtained the solution to the ODE system then provides the initial condi­

tions for a (straightforward) Crank-Nicolson scheme in (  to solve equations (2.52) 

- (2.55). Values are determined for all 77-stations along a row of ^-stations and we 

march forward in determining each new row of 77 stations. Overall, this may be 

described as an implicit scheme.

The mesh used to approximate equations (2.52) - (2.55) has the following form

direction of 77

i  +  i-

i
j  - 1

i n ­

\ ( \

X
> (

i -- 2  i~-1  i i - -1 i - -2

direction of (

where X marks the point (i — j  — | )  about which the central differencing is carried 

out. The central difference expansion for a function U^j in the 77-direction has the 

form

dUj,j _  Ujj ~  Uj,j - i  +  Uj-i ,j —
dr] 2Ar]

whilst in the ^-direction it takes the form

(2.76)

9Ui,j U.,i +  U ij- i  -  V i - u  -  U i - i j - i  
d(  2AC

(2.77)

where A77 and A ( represent the respective step sizes.

Applying (2.76) and (2.77) to the various differential quantities in the system of
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equations (2.52) - (2.55), yields the following Crank-Nicolson approximations

dvx + - 1 )  , / A  2,
dr] 2Arj +  (A?? ),

d h  v3(z, j )  — t>3(«,i — 1) -h t)3(z — 1 , 7 ) — v3(z — 1 , j  — 1) 2

*T = -------------------------------2Aij-------------------------------+ {AV }l

= --------------------------------2At;-------------------------------+  (A,?

dT  _  T ( i J ) - f ( i J - l )  + f ( i - l , j ) - f ( i - l J  -  1) 2.
~  2A»j +  (An h

dT1 -  P ( i , j  -  1) +  T \ i  -  1 , j )  -  T \ i  -  1, j  - 1 )  , , A _2n_  =    + (Al, ),

dfi3 _  %(*', j )  -  i>3(i -  l , i )  +  -  l ) - t j 3( > - l , j - l )  +
d(  2AC

_ 1  ̂ _  T(j _  1 j _  1 ^
+  (A f2). (2.78)

a f  T( i , j )  — T(i  — l , j )  + T( i , j  — 1) — T(i  — 1,j  — 1) , , a a 2

dC 2A C

The first set of mean flow results presented corresponds to a straight circular 

cylinder (i.e. A =  0 ) subject to adiabatic wall conditions and are the same as those 

presented by Duck (1990). Distributions of wall temperature with axial coordinate
t*

f (=  j 1/2) for Mach numbers of ~  2 .8  and M,«, =  3.8, denoted by curves (1) 

and (2 ) respectively, are shown in Figure 2 .2 ; the corresponding distributions of 

wall shear £3 , ^ - 0  are shown in Figure 2.3. The fluid constants are assumed to have 

values of cr =  0.72 and 7  =  1.4. Results are only presented up to an axial location 

of 10.0  as it is found that as we integrate downstream it becomes more difficult to 

determine accurate numerical solutions. The reason for this is that when the scaled 

radial mesh size, A 77, is expressed in terms of the unsealed variables, namely the 

radial coordinate r, we have A r =  Arfz1!2. Clearly the further downstream the 

integration proceeds in the axial direction, then the larger A r becomes resulting in 

the radial integration becoming increasingly inaccurate. Studying Figure 2.2, the
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wall temperatures are observed to decline slightly from their planar values at £ =  0 , 

for both Mach numbers presented, whilst the wall shear increases monotonically with 

movement downstream. Note, at £ =  0 , the wall shears have small but non-zero 

positive values, for both Mach numbers.

Duck (1990) carried out a far downstream study of the basic flow following 

the incompressible work of Glauert and Lighthill (1955), Stewartson (1955) and 

Bush (1976). He determined that, in the limit of large £, there are two important 

radial lengthscales, namely r =  0(1) and r =  0 ( z lf2). Matching between these 

respective layers and applying suitable boundary conditions, Duck determined that 

for adiabatic wall conditions,

T U  =  l +  i<7(7 - l ) A &  + 0(<:), (2.79)

and

dr L i  1 +  1(t(7 -  1 ) M l  + ° (e2)’ (2'8°)

where e =  (Inf ) ” 1 and the expansions for T  and v3 are valid in the inner layer, only. 

For cooled/heated surfaces matching yields

dT
dr

and

e
r=1 =  ^-[1  +  2»(7 -  m l  -  a y  +  0(e2), (2.81)

3U3L  = f +  0(£2), (2.82)dr

where Tw corresponds to the wall temperature.

The adiabatic asymptotic temperature results (i.e. (2.79) for respective Mach 

numbers) are displayed as broken lines in Figure 2 .2 . .The wall shear as defined by 

expansion (2.80), in terms of the scaled coordinates t? and £ has the form
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Plots of £_1v3 |̂^=o against £ as determined numerically, are displayed in Figure 2.4, 

where the broken lines, again, represent asymptotically determined results. The 

agreement is satisfactory given the relative ‘largeness’ of the small parameter e. If 

we precede further downstream it is found that the inner layer, i.e. the r  =  0 (1) 

layer, which can be regarded as an inner boundary layer, retains its thickness whilst 

the outer layer spreads due to the action of viscosity. As a result, comparison 

between asymptotically determined results and numerically determined solutions 

will become increasingly less accurate. This provides another reason why a mean 

flow study beyond £ =  10.0 is not conducted.

Examining Figure 2.4, it is noted that the £- 1U3n|rj=o distribution is singular 

in the planar limit as £ —» 0 and then appears to (slowly) fall continuously as £ 

increases, for both Mach numbers considered.

Figure 2.5 displays variations of wall shear, u3^|^=o, with £ for both heated and 

cooled wall surfaces. It is apparent that cooling causes the wall shear to increase 

more sharply with movement downstream, whilst heating causes the converse effect. 

It also appears that wall heating causes the wall shear variation with £ gradient to 

be asymptoting to some undetermined value.

Turning our attention to the boundary layer formed on a cone, we now present 

a few results for mean flow variations subject to adiabatic wall conditions only. It 

should be noted that in the case of the cone, the surface of the cone occurs at 

increasingly larger radii as we move downstream, as defined by (.2.56), i.e. 0 ( z ) } 

but the far-field point used in the numerical integration is held fixed. It is found 

that the effect of body divergence conteracts the divergence of radial mesh size, Ar, 

as observed in the case of cylindrical bodies and the boundary layer growth, both 

of which are 0(5r1/2), thus making it possible to present results for relatively large 

downstream locations, with a high degree of accuracy.

Distributions of wall temperature with axial location £ are shown in Figure 2.6

78



(Mao — 2 .8) and Figure 2.7 (M0Q =  3.8), and the corresponding distributions of 

wall shear u3r, |^ =0 are shown in Figure 2.8  (M00 =  2 .8 ) and Figure 2.9 (M ^ — 3.8), 

for the slope parameter values as shown. In all cases, these distributions are quite 

different to the corresponding A =  0 distributions, as presented above, with the 

wall temperatures no longer undergoing monotonic decrease, and the wall shears no 

longer increasing monotonically. It is also quite clear that the results evolve from 

the planar case to the far downstream limit, as predicted by the Mangier transform 

(Mangier (1946), Stewartson (1955)), namely

T\ . (2.83)
l»7= 0,C -*-oo l i j= 0 ,C = 0

In the next chapter we investigate the stability of flows of this type, subject to 

small amplitude inviscid disturbances.
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Figure 2.1: Layout
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Figure 2.2: Axial wall temperature distributions for adiabatic cylinder.
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Figure 2.3: Axial distributions of vajq-o for adiabatic cylinder.
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Figure 2.5: Axial distributions of t>3f, |,,=o for heated/cooled cylinder.
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Chapter 3 

Linear Stability Theory

3.1 Inviscid Stability of the Flow

In order to study the stability of the basic flow determined in the previous chapter, 

we now investigate the effects of small amplitude disturbances. As mentioned in 

Chapter 1, for the supersonic boundary layer, inviscid disturbances are generally 

found to be more important (i.e. more unstable) than viscous disturbances. There­

fore, the limit of infinite Reynolds numbers is assumed. It is also assumed that the 

disturbance wavelength is generally comparable to the boundary-layer thickness and 

therefore also of the (tip) radius of the cone (0(a*)), in which case the parallel flow 

approximation is asymptotically correct, a. t o f  SmcxW,

At a fixed z station the flow parameters of velocity, pressure, temperature and 

density are expressed as the sum of a mean flow term plus a small, first order 

disturbance term, i.e.

«* =  S a U ^ v ^ E  + 0 (6%  

v ^ 6 U^v2(r)E  + 0 (6 %

= O « o ( r )  +  +  0 (6 %

T' = T [̂T0(r) + 6 f(r)E ]  + O(6 %
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/  =  + W £ ] + 0 ( £ 2),■r0(r)
p ' =  + Spi(r)E] + 0(S2), (3.1)

where

E  =  exp[m(£ — ct) +  in0], (3.2)

and 6 is the scale of the disturbance (taken to be diminishingly small), whilst

U*
* = & Ka

zz — -  
a

^o(r) =  £3(r,2),

T0(r) = f{ r ,z ) ,  (3.3)

where u3 and T  are determined from the computations in the previous section, a  

is the non-dimensional spatial wavenumber, c the non-dimensional wavespeed and 

n the azimuthal wavenumber. We note the z =  0(1) (<& 2 * =  0(a*)) scale is very- 

much shorter than the basic flow scale ^ =  0(1) ( ^  j  = 0(1) z* = 0(a*Re)).

Substitution of the flow parameters into the full system of equations of continuity, 

momenta, energy and state (as defined in Chapter 2), discarding 0 (6 2) terms and 

all but the largest terms in i?e, yields the following linear system

. . .WqVz „ w0r ip
7jTv3 +  — i- Vi-Tfr = ---- 775-» (3.5)
i o  1 0  T o  7  M *

ic „ .W0V2 mp
-  7PTV2 +    (3.6)2q 2o 7MAar
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.a2c„ \a 2w0Vi
T0 T0 7A /£’

-^-[-icT  +  iw0T  -f viT0r] +  ( - — ^)(icp  -  iw0p) =  0,
i 0  \ 7  /

p  -  T 0 p  +  — .
io

Writing

/■a -  aVi =  (0, a  = - ,

where £ is defined by (2.50), after some algebra and using (2.56) we obtain

* , +  =-------_____ a - J U S * . * , ____ 2®____
1 +  AC2 +  (tf w0 -  c jM ^ w o  — c) ’

together with

ia2(w0 -  c ) ±  = - - f e - ,  
To 7 « J

where

$ r °[1 + aJ(l +  AC 2 + Cj))21 JW“ û'° c^ '  

Equations (3.11) and (3.12) can be combined, eliminating p, to give

d f (w0 ~  c) ! [<j>rj +  (C/(l +  K 2 +  O?))0] “  won4>\ a 2
d ij i  * --------------------------- 1 =  2 ^ °  “  ^

Alternatively <f> may be eliminated to give

T T W ^ I ^  -  <■» -

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

87



Equation (3.14) is very similar to the planar, inviscid, compressible disturbance 

equation, as obtained by Lees and Lin (1946), Lees and Reshotko (1962) and Mack 

(1984), the only difference being the inclusion of a non-axisymmetric term and a 

curvature term on the left-hand-side of the equation, in our case. Indeed, in the 

limit C —» 0 , the planar result can be recovered. We also observe that setting n ~  0 

(i.e. axisymmetric disturbances) and A =  0 (zero cone angle), equations (3.14) and 

(3.15) reduce to those considered by Duck (1990). Similar results are to be found 

in the work on the stability of jets by Michalke (1971).

To close the problem appropriate boundary conditions need to be determined. 

On the surface of the cO ^S, we shall prescribe the impermeability condition, i.e.

0 =  p,, =  0 on 7] — 0. (3.16)

The second condition is that 0 be bounded as 77 —> 0 0 . This is achieved by consid­

ering equation (3.14) in this limit, i.e.

+ v-Txeuv ~ ( i W + c  #  = “2[1 -  M~{1 ~ ^  (3-17)
which has the solution

0 =  i0oo{ifn+iW) +  RT|„_i |(j?)}, (3.18)

where

7}  =  ±o;[l -  M ^ (  1 -  c)2]1/2( i  +  AC 4- 7?), (3.19)

and K n(fj) denotes the modified Bessel function of order n, the argument of which 

(i.e. the appropriate sign in (3.19)) is chosen to ensure boundedness in the far- 

field. 0QO is a constant. Substituting equation (3.18) into (3.12) gives the far-field 

boundary condition for the pressure disturbance term, namely
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p *  [ i  -  j w r * ,( i  -  c ) J] i /2  ■
In this problem, attention is focused on temporal stability for which the growth 

rate is a c where-c,- is the imaginary part of the wavespeed (most related work 

has also been temporal in nature, although there is no conceptual difficulty with 

the treatment of spatial stability). If q  > 0 then the disturbance grows, if q  =  0 

the disturbance is neutral and if c; < 0  the disturbance decays. The system of 

equations (3.11), (3,12) was solved using a fourth-order Runge-Kutta scheme for 

the eigenvalue c (generally complex), given n and a  (real), subject to the boundary 

conditions (3.16), (3.18) and (3.20).

Consider a first order differential equation of the form

^  = f (x , y) .  - (3.21)

The fourth-order numerical approximation to this equation using a Runge-Kutta 

scheme is

J / n + l  — Vn +  2 ^ 2  + 2&3 +  £4), (3.22)

where

h  = f ( x m yn), fc2 =/(® n +  ~,yn +  ^&l),

h h
f fan “1“ ^  ”i* ^^3)? (3.23)

and h represents the step size, which in our case is At/.

We apply this method to the re-arranged equations

1 _  won<l>________ i<t> , *P® 9 .v
^  W n - C  1 +  AC2 4- Cv ^  vM Kwn -  cY K }
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ta 2(u)0 -  c) 2 .P„ = -------------------------------------------------------- (3.25)
-to

where shooting begins at a suitably large value of 77 - where conditions (3.18) and 

(3.20) are applied - and the computation proceeds inwards towards 77 ~  0. A suitable 

value of c is chosen in order to satisfy the impermeability condition on the surface of 

the cone. This is achieved by making a sensible initial guess for c and then by means 

of a Newton iteration scheme, the shooting process is repeated until the difference

in c, between successive iterations, is sufficiently small to warrant convergence.

It should be noted that (3.24) possesses a simple pole at the point in the boundary 

layer where wQ ~  c, i.e. at the the critical point. Since w0 is real this implies that
A

the singularity will lie on the real axis in the complex 77 plane for neutral disturbance 

terms, i.e. c; =  0 . However, owing to the smallness of c,- in a number of the numerical 

calculations it is found necessary to divert the computation below the real 77-axis (for 

neutral and damped disturbances only) in the neighbourhood of the critical layer. 

The technique used is based on the methods of Zaat (1958) and Mack (1965a).

To continue the mean flow terms u>0, w0r? and T0 onto the indented contour, these 

are expressed as truncated power series, i.e. they are written in the form

Wo  =  Wc +  w ' ( ? ?  -  7?c) +  -  Vc)2 +  j |> c ' ( 7 ?  -  r j c f  +  0 ( ( t ]  -  Tjc)4) ,

Won =  w c +  ^"C 7? “  *?c) +  ^ c ' C 7? ~  V c f  +  0 ( ( i ]  -  ?7C)3 ) ,

To = TC + Z ( v -  Vc) + -  Vcf  +  I j f fo -  ncf  + 0 (0 , -  Vcf),  (3.26)

where the contour of integration has the form
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*7,»

w0 =  c

The integration is started at some suitable point in the far-field 77̂  and continues 

inward on the real axis to rja. We then follow the rectangular indentation below the 

real 77 axis to the point 77̂ , where the integration proceeds to 77 =  0 along the real 

axis once more. This method is found to be highly accurate.

Before carrying out a detailed numerical study of the eigenvalue problem posed 

above, we shall derive an important necessary condition for the possible existence 

of unstable modes, using the method of Lees and Lin (1946).

3.2 The ‘Triply Generalized Inflexion Condition’

In stability theory, great emphasis is placed on the condition for the existence of 

neutral disturbance terms. Lord Rayleigh (1880), derived a condition for the ex­

istence of a neutral term in the case of incompressible flow, which he termed the 

‘inflexional condition’, namely

^Orjrjl == 0, (3.27)

(where 77; denotes the critical point) which Tollmien (1929) later demonstrated was 

also a sufficiency condition. It is also found that if the incompressible flow is to be 

unstable to disturbances, a point of inflexion must exist in the velocity profile at 

some point within the flow, i.e. (3.27) must be satisfied.

91



A series of authors, including Lees and Lin (1946)

generalized the inflexion condition to give a condition for the existence 

of neutral disturbance terms in compressible planar flows, namely

A & l  = 0 . (3.28)
drj *• To J n=*?<

Equation (3.28) also provides a necessary condition for the existence of subsonic 

amplified disturbance terms in the supersonic planar boundary layer.

In 1990, Duck generalized the inflexion condition further to include curvature 

terms, in the case of supersonic flow along a thin cylinder, determining an axisym- 

metric generalized condition (or ‘doubly generalized’ inflexion condition) of the form

«>0r,
T- W i T  (3-29)dr] lT 0( l  +  rj(yn=m

We now wish to determine a corresponding condition for non-axisymmetric 

modes in the case of supersonic flow past a sharp cone. Multiplying equation (3.14) 

by <j>*/(wo — c) (where an asterisk denotes a complex conjugate) yields

^  d f K  ~ CX6> + -want'l ,3 30n
To w0 - c d i ] ^  x  ** '

where we have written

X =  T0{l +  ^ 2 ^ 2  } -  ^ L ( wo -  c)2, (3.31)

and

_ 1 +  AC2 d" Cv
R  =  — ---- —. (3.32)

Subtracting the complex conjugate of equation (3.30) from itself gives
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4>* d f (w0 - c ) ^ - ^  (1/R)<f>)-w0n(l>'i _  
wo — c drj  ̂ x  *

4> d r (wp -  c*)(<j>; +  (1 /R)4>*) -  w0t1<p .
Wo — c*dijI x*

After some algebra, (3.33) can be written

}
1 d 1

wq — cdrf w0 - IS*]}- (3.34)

Writing

c = cr +  ic;, (3.35)

then for neutral disturbances we consider the limit c* —» 0 . In this limit we can 

automatically deduce X — X*> since n and a  are both real by the temporal approach 

being considered. However, the limit must be applied with more care on the right- 

hand-side of the equation. We re-write equation (3.34) in the form

1  d  r R[<f>*(<j>n  +  ( l / R ) < / > )  -  +  ( l / i f y f t * ) h  _  9 . R \ 4 > \ 2 C i d  r w Q n \

R d ^  x '  K - c | 2< V x .R J ’ { }

In the limit ct- —> 0, the left-hand-side of equation (3.36) will tend to zero, 

except possibly at the point ??,•, where w0 = c, i.e. at the critical point. By the 

impermeability condition the term inside the parenthesis must be zero at the wall 

(77 =  0 ) and asymptote to zero at infinity if the wave under consideration is to 

be subsonic, as this form of wave must be bounded in the far-field (Lees and Lin 

(1946)). Since the derivative term is always zero (except possibly at the critical
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point), then the term inside the parenthesis must be constant and by the form of 

the boundary conditions this constant must be zero.

Examining the right-hand-side of equation (3.36) again, it is noted that this acts

as a delta function as c, 0. This implies that the term in parentheses on the left-

hand-side of (3.36) undergoes a finite jump. This clearly leads to contradication, 

unless the right-hand-side is zero at the critical point. This requires (re-casting the 

equation in terms of the original variables)

JL-I______________________________  \  — q (3 371
drj 1T0[1 + AC2 +  fi?][l + n2( 2/(a 2(l +  Af2 +  O?)2)] Jn=m ^  J

This result represents a further generalization of the so-called ‘doubly generalized

inflexion condition’ as determined by Duck(1990); setting n =  A =  0 retrieves Duck’s

results. It should be noted that the general inflexion condition for any shape of cone

surface described by

r = 1 + A/(C), (3.38)

is easily determined by replacing ‘A£2’ in (3.37) by ‘A /(£)\

We now move on to numerically solve the eigenvalue problem in the next section.

3.3 Numerical Results

Clearly there are many choices of parameter that can be made in this study. The 

strategy here is to carry out a detailed study for one choice of Prandtl number (0.72), 

ratio of specific heats (1.4) and in the case of the cone, one cone angle (A =  1). We 

begin the study by considering the stability of the compressible boundary layer 

formed on a cylinder, subject to adiabatic wall conditions, for a Mach number of 3.8 

(Figs 3.1 - 3.22). Extensive results are given in this subsection for a range of values 

of n, at fixed values of (. At the end of the subsection we present some results
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for Mtx, — 2.8, for comparison (Figs 3.23 - 3.26). Most of subsection 3.3.2 will 

be devoted to the effects of wall-cooling on the stability of compressible boundary 

layers and its interaction with curvature as these conditions are likely to be of 

interest in important applications (for example, in the case of high-speed flight 

vehicles frictional forces result in metal heating which in turn causes buckling and 

corrosion). Note that here, we shall refer to the term ‘wall cooling’ as being relative 

to the adiabatic wall temperature. The main body of results presented are for a 

Mach number, Moo — .3.8 (Figs 3.27 - 3.41), although we also present a number of 

results for Moo =  2.8 (Figs 3.42 - 3.49) for comparison. At the end of this subsection 

we shall give some heated wall results (Figs 3.50 - 3.55) which exhibit additional 

interesting physical features. - In the last subsection, the stability characteristics of 

supersonic flow along a somewhat more practical configuration, namely a sharp cone, 

are presented (Figs 3.56 - 3.71). For this stability problem, the results presented are 

for one Mach number (M00 =  3.8) and for insulated wall conditions.

All numerical computations were carried out on the Amdahl VP 1100. All the 

results may be regarded as being independent of numerical grid. Generally, two 

grid sizes were used to check consistency, namely Ar/ =  0.0046875 extending out 

to T) =  30, together with A7/ =  0.00234375 extending out to r) =  15. For the far 

downstream results (for example, (  =  20.0 and (  = 75.0), the grid in (  is coarser 

than nearer the cone tip due to the maximum limit of 300 minutes CPU time allowed 

on the Amdahl VP1100, . For £ < 20.0, A£ =  0.0005, while for £ =  20.0, A£ =  0.0125 

and for (  =  75.0, A ( =  0.0395.

3.3.1 Adiabatic Cylinder Results

We begin by attempting to numerically determine the existence of non-axisymmetric 

generalized inflexion points. In section 3.2 a condition was derived for the existence 

of the so called ‘triply generalized’ inflexion points. In the case of the cylinder the
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1-1©©II a m u>i w2
n =  1 0.139165 0.8349 0.0854 8.2513 0.8440

0.398645 0.8388 0.0858 8.2507 0.8440
n =  3 0.140835 0.8014 0.0820 8.2566 0.8445

0.399315 0.8345 0.0853 8.2514 0.8440
n = 5 0.143525 0.7447 0.0762 8.2655 0,8453

0.400665 0.8259 0.0845 8.2527 0.8442
n = 8 0.147715 0.6417 0.0657 8.2820 0.8467

0.403995 0.8063 0.0825 8.2558 0.8444

Table 3.1: Triply Generalized Inflexion Points at £ =  0.01 

non-axisymmetric inflexion condition has the reduced form (A =  0)

^ f W0tj ' "I
dr) *■ r 0(l H- vC)[l +  (rc2C2/ a 2(l +  r}()2)] K=m 

In previous works (Duck (1990), for example) numerical solutions of the mean 

flow yielded continuous plots of the radial position, at which inflexion points 

occur, against (  and these plots clearly demonstrate the existence and behaviour of 

the inflexion points. However, for non-axisymmetric disturbances it can be clearly 

seen that due to the inter-dependence of the variables n, a  and it is difficult to 

forecast, prior to any numerical investigation of the stability equations, the existence 

of neutral stability points of this kind. Equation (3.39) could be solved in a idealistic 

manner where for given mean flow characteristics, values of the ratio n /a  which 

satisfy (3.39) could be determined. However, if solutions do exist, the value of a  (for 

a given n) must still be determined by a full numerical solution of the disturbance 

equations. This has been conducted for the adiabatic cylinder case, although it is 

found that due to the discrete and almost unique form of the results, these are best 

presented in tabular form.

Table 3.1 shows the radial position of the non-axisymmetric inflexion points 

and the corresponding values of u>o(*?»)> at the location (  = 0.01, for the displayed
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c =  0.05 a m wx V2 w2
n =  1 0.127125 2.7123 0.3231 7.2544 0.8218

0.517785 3.0499 0.3620 7.1936 0.8160
n =  3 0.152865 1.5936 0.1927 7.4410 0.8393

0.529265 2.8776 0.3422 7.2251 0.8190
n =  5 0.155735 0.8283 0.1015 7.5777 0.8518

0.553865 2.6111 0.3114 7.2720 0.8235
n =  8 0.086265 0.1198 0.0149 7.7411 0.8662

0.614795 2.2237 0.2665 7.3371 0.8297

Table 3.2: Triply Generalized Inflexion Points at £ =  0.05

II © a Vi Wi m W'2
n =  1 0.123635 3.0902 0.4126 6.5532 0.8091

0.740695 4.4630 0.5781 6.1450 0.7672
n =  3 0.163505 1.0607 0.1507 6.9524 0.8477

0.752825 4.0859 0.5334 6.2864 0.7820
n — 5 0.118255 0.2071 0.0305 7.1895 0.8692

0.810095 3.5914 0.4739 6.4330 0.7970

Table 3.3: Triply Generalized Inflexion Points at (  =  0.1
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azimuthal wavenumbers. For each value of n we observe that there are two values of 

a  for which e,- = 0 (where c = cr +  ic,). Note that a third neutral mode exists where 

the generalized inflexion condition is satisfied trivially, namely c =  1: this mode 

shall be considered more fully when the eigenvalue problem is treated. As in the 

axisymmetric work of Duck (1990), the non-axisymmetric points occur in pairs, the 

upper points (772) being an extension of the doubly generalized inflexion condition. 

In light of our earlier comments, we do have an additional condition for the existence 

of neutral subsonic disturbances, namely that

. 1- ^ <c<1+i -  (3-4°)
This has direct implications on the first mode of instability as this generally requires 

the presence of a generalized inflexion point in the profile satisfying (3.40). There­

fore, we note, that for all the azimuthal numbers presented at this axial location, 

subsonic generalized inflexional modes of instability will occur.

It is observed that an increase in n causes the lower inflexion point (771) to 

approach the surface of the cylinder for both values of a, while the upper inflexion 

points occur at increasingly large radii. From numerical evaluations carried out for 

higher azimuthal wavenumbers (not displayed here), it is observed that subsonic 

generalized inflexion points occur for azimuthal wavenumbers as high as n — 29, for 

this axial location.

Moving along the cylinder to the axial position, (  =  0.05, Table 3 .2  displays 

values of 77,- and 7/7(77,•) for the non-axisymmetric generalized inflexion points corre­

sponding to same set of azimuthal wavenumbers. Again, it is found that for each 

value of n there exists two neutral modes, each corresponding to a pair of generalized 

inflexion points. Movement downstream has resulted in the lower generalized inflex­

ion points occuring further from the wall, except for tlie n ~  8 lower inflexion point
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corresponding to the smaller value of a , whilst the upper points occur at smaller 

radii; this effect which is due to curvature was also noted by Duck (1990) for the 

axisymmetric case. At this location, an increase in n, again, causes the inflexion 

points to diverge. This divergence is so marked for the lower inflexion points corre­

sponding to the smaller values of o, that the effect dominants the convergence effect 

of curvature for the n =  8 generalized inflexional point, causing this point to occur 

closer to the cylinder surface than in the corresponding (  =  0.01 case, as previously 

observed. For azimuthal wavenumbers higher than n — 8, the triply generalized 

inflexional points are found to disappear. Consequently, it is expected mode I type 

instabilities will only be present for n < 9.

The final set of non-axisymmetric generalized inflexion point results presented 

are for the position £ =  0,1. The same trends as before axe observed, with curvature 

causing the inflexion points to approach one another, whilst an increase in azimuthal 

wavenumber causes divergence, with the divergence effect dominating for the n =  3 

and n =  5 lower inflexion points corresponding to the smaller values of a.

Duck (1990) determined that neutral subsonic axisymmetric inflexional modes 

will disappear approximately 0.013C_1Re body radii (£ »  0.11) downstream of the 

leading edge. Non-axisymmetric modes are found to be much more persistent, es­

pecially for small azimuthal wavenumbers. The first three non-axisymmetric modes 

are clearly present at (  =  0.5. The n =  2 mode disappears around £ = 5.18, while 

the n =  1 generalized inflexional mode is found to be still present for downstream 

locations as large (  =  75.0.

We now turn our attention to the eigenvalue problem. We shall focus our atten­

tion on unstable mode results. Initially, plots of cr, c,• and the temporal growth rate, 

ac,-, against a  will be presented to clarify the points being made, but the majority 

of the results presented in this subsection will be for variations of the growth rate 

with a  only, as this is considered the important quantity as far as stability theory
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is concerned.

For planar flows, Mack (1984, 1987a) determined that there exists two important 

modes of instability which he termed ‘Mode I’ and ‘Mode II’ respectively. Figures 

.3.1, 3.2 and 3.3 display variations of Cr, c,- and aci with a respectively corresponding 

to the (  — 0 location (and hence corresponds to the planar case), for Mach numbers 

of Moo = 2.8 and =  3.8, denoted by curves (1) and (2) respectively, where 

broken lines represent mode I results, and continuous lines represent mode II results. 

It is found that the planar results agree favourably with previously computed results 

(Mack (1987a), for example) and thus provides a useful check on the accuracy of 

the numerical scheme (which is found to be entirely satisfactory). Considering the 

Moo — 2.8 results first, we note the first mode of instability originates as a sonic 

neutral mode (with c, =  0, cr =  1 — 1 /Moo), for a  =  0, rises to a maximum and 

terminates as a subsonic generalized inflexional neutral mode at a  «  0.1, where 

Cr =  W 0 (7 ] i ) fy 0. FI This mode is found to continue as a decaying disturbance. 

The mode II instability originates as a subsonic neutral mode at a  ft* 0.4, rises to a 

maximum and terminates at a  «  1.13 as a (second) subsonic generalized inflexional 

neutral instability. The neutral mode at which the mode II instability originates 

is special in that c =  (cv =  iOo(*?*)) =  corresponds to a critical layer in the

freestream (where there is a trivial satisfaction of the generalized inflexion point 

condition). The second mode of instability is found, also, to continue as a decaying 

mode (c,‘ < 0) for larger values of a. Turning our attention to the Moo =  3.8 results 

we observe the same qualitative features as in the Moo — 2.8 case. We note that 

an increase in Mach number has significantly increased the importance of mode II, 

although the growth rates of mode I have also increased.

Duck (1990) determined that introducing curvature terms into the linear dis­

turbance problem, has a stabilizing effect on both modes, causing the first mode 

of instability to ultimately disappear, and greatly reducing the amplification rates
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of the second mode. In this section Duck’s (1990) work is extended to include 

non-axisymmetric disturbances.

The first set of results including curvature terms which we present, corresponds 

to a location very close to the cylinder tip, namely (  =  0.01. Figures 3.4, 3.5 and 

3.6 correspond to variations of cr, c,- and ac; with a respectively, for the mode I 

instability, and for the azimuthal wavenumbers as shown. The axisymmetric (i.e. 

n =  0) mode, as expected, has the same qualitative features as the planar mode I, but 

even though these results are at a location very close to the cylinder tip, the growth 

rates have undergone reduction due to curvature. A further effect of curvature, is 

that the neutral point at which the instability originates, has been shifted slightly 

along the a-axis, occuring at a very small positive value of a. It is found that even 

though cr at this point is very close to the sonic value, the numerical observations 

indicate that the mode has become very slighly supersonic in nature. Because a  here 

is non-zero (albeit small), and this particular type of neutral mode is not associated 

with a generalized inflexion point, it m ust be supersonic in nature. The use of 

conditions (3.18) and (3.20) permits outgoing (or indeed incoming) waves at infinity, 

and consequently such modes present no difficulty to our numerical scheme. Indeed 

the slightly supersonic nature of these modes may be confirmed asymptotically by 

the work of section 3.5.

The first non-axisymmetric instability considered corresponds to an azimuthal 

wavenumber, n =  1, The instability resembles the axisymmetric mode in that it 

originates as a very slightly supersonic mode, occuring at small positive a , rises to 

a maximum and terminates as a subsonic'generalized inflexional neutral mode. It 

is found that this mode is slightly more unstable than the axisymmetric mode.

The instability corresponding to an azimuthal wavenumber, n — 3, has a slightly 

different structure. Firstly the lower neutral mode occurs at a =  0, and from Figure

3.4 cr can be clearly seen to be quite, supersonic in nature (cr 0.4829). Figure
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3.5 shows that c is complex at this neutral mode (c,- % 0.1063). The instability
m figure. 3 - S  .

also differs in that it possesses two peaks; the significance of this will be discussed
A

later. The mode terminates as before, as a subsonic neutral mode. It is observed 

that an increase in azimuthal wavenumber has resulted in the growth rates also 

being increased. This trend of an increase in azimuthal wavenumber causing a 

destabilization of mode I is repeated for the n = 5 and n =  8 results, which we 

present, although in the latter case, it is noted that initially in a, the value of q 

is less than those of the n — 3 and n =  5 instabilities. Both the n =  5 and n =  8 

instabilities originate as supersonic neutral modes (for c, ^  0), although it is found 

that Cf becomes less supersonic in nature. The increase in azimuthal wavenumber 

also has the effect of smoothing out one of the peaks observed in the n =  3 case; in 

the case of the n =  5 mode there is only a slight hint of the second peak, whilst for 

the n =  8 results, it is found to have completely disappeared.

Figures 3.7, 3.8 and 3.9 display variations of tv, c,- and ac, with a , correspond­

ing to the mode II instability for this axial location and azimuthal wavenumbers. 

As with the mode I instability, the axisymmetric mode II instability resembles the 

corresponding planar result, originating as a subsonic generalized inflexional mode 

(cv =  c =  w0(r}i) =  1) and terminating as a (second) subsonic inflexional neutral 

mode. The stabilizing effect of curvature in this case has resulted in the maximum 

axisymmetric growth rates being approximately halved. The introduction of non- 

axisymmetric terms is found initially to have no major effect and -it is only when 

higher azimuthal wavenumbers are considered that any appreciable stabilization of 

the mode is observed. Indeed, there is found to be virtually no difference between 

the axisymmetric and 72 =  1 instability growth rates; generally, however, increase in 

azimuthal wavenumber causes a growth rate reduction (in contrast to the observed 

situation for the mode I results presented). It should be noted that the (second) gen­

eralized inflexional modes at which the non-axisymmetric disturbances terminate,
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can all be clearly seen to be subsonic from Figure 3.7, and in all cases the modes 

continue as decaying modes.

Other modes of instability are found to exist at this Mach number for larger 

values of a (as determined by Mack (1965b, 1987a) for the planar case), but have 

considerably smaller growth rates than the modes I and II shown here, and are 

consequently much less important from a practical point of view. For small a , 

it was noted that the axisymmetric and n =  1 modes I originate at very small 

positive a. In the case of the n — 1 results, it. is found that when even smaller 

a  is considered, a third mode of instability is seen to develop, not present in the 

corresponding axisymmetric (and indeed planar) results. We refer to this additional 

mode as mode 1^, distributions of cr , c,* and act- being shown in Figures 3.10, 3 .11  

and 3.12 respectively, for n = 1 and n =  2 . One important distinction between the 

n =  0  results and those for n ^  0 emerges in the limit as a  —> 0 , for which ct- /> 0 

if n 7̂  0  (the limit as a  0 , (  = 0(1) is considered in Appendix B), although of 

course the temporal growth/decay rate ac; is none the less zero at a  =  0 . As a  

increases, mode 1^  rises to a maximum and then quickly terminates as a supersonic 

neutral point (i.e., where < 1 — 1/Mqo). The n = 2 distribution is qualitatively 

similar to those of n =  l, although the the maximum growth rate is more unstable 

by a factor of about 8.7,

Comparing the growth rates of the modes I and 1^, the mode I instability is 

found to be more important. For the n =  3 case, modes I and 1^ are seen to 

amalgamate - hence the observed double peak structure in Figure 3.6. The two peaks 

would correspond to the maximum growth rates of the mode I and 1^ instabilities 

if the modes were still distinct. The amalgamation also explains why the mode I 

originates at a = 0 , with complex c, for azimuthal wavenumber values of 3 and 

higher. Comparing Figures 3.4 and 3.10 it is observed that an increase in azimuthal 

wavenumber, increases the value of cr for the neutral mode at a  =  0 .
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It is not surprising that, at £ =  0.01, the results obtained are very similar to 

corresponding planar results, as curvature will generally play a minor role in the 

physics at this location; indeed, a crude examination of (3.1*+) suggests that, as 

C -+ 0, the corresponding planar Rayleigh equation is attained. However, as a —> 0 

and £ —> 0, a nonuniformity is present; this aspect is taken up in some detail in 

section 3.5, where further light is shed on the additional mode 1^.

Moving along the cylinder to the axial location, f  =  0.05, Figures 3.13 and 3.14 

show variations of the temporal growth rate with wavenumber for the mode I and 

mode II instabilities respectively. Comparing Figures 3.13 and 3.6, the axisymmetric 

mode I is found to have been slightly stabilized due to the increasing effect of curva­

ture, resulting from movement downstream (as noted by Duck (1990)). Introducing 

non-axisymmetric terms, we note that the n =  1 modes I and 1^ have just combined, 

the two maximum growth rate peaks still being very prominent. Curvature is found 

to have a slight destabilizing effect on the n ~  1 results. This destabilization effect 

is more marked for the n =  3 instability, the maximum rates having been enhanced 

by a factor of approximately three. For higher azimuthal wavenumbers, it is found 

that curvature has the reverse effect, re-stabilizing the mode I instability, although 

the n =  5 maximum growth rate is clearly more unstable than the corresponding 

(  =  0.01 mode.

The stabilization effect of curvature, at this axial location is more noticeable 

for the mode II instabilities, the maximum growth rates of the axisymmetric mode 

having been reduced by 1.3. Introduction of non-zero azimuthal terms can be clearly 

seen to have a further stabilizing effect, the maximum growth rate of the n =  8 mode 

being 11 times less than the axisymmetric mode.

The next set of results considered corresponds to the axial location, £ =  0.1. 

Comparing Figure 3.15 with 3.13, the axisymmetric mode I instability has under­

gone further stabilization due to curvature. Again, curvature is found to have a
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destabilizing effect for low azimuthal wavenumbers; the n =  1 result is clearly more 

unstable, although the double peak structure is less pronounced. The n =  3 modes

I are very similar at both (-stations, but the mode I undergoes rapid stabilization 

for higher azimuthual wavenumbers, at the new axial location, finally becoming a 

stable mode for n = 6. This complete eradication of mode I instabilities is only to 

be expected since, as has already been noted, for azimuthal wavenumbers of n =  6 

and higher, a subsonic triply generalized inflexion point does not exist at this axial 

location.

The mode II instabilities at (  =  0.1 (Figure 3.16), are qualitatively similar to 

those presented nearer the cylinder tip, although as before, they are found to have 

undergone further stabilization due to curvature. Due to the special nature of the 

generalized inflexional point at which the mode II instabilities originate and the 

fact that it is always present irrespective of axial location and value of azimuthal 

wavenumber, the n = 8 mode is still present in this case, unlike the situation 

encountered with the mode I instabilities. In fact, for large values of n the mode

II instability is found to persist (this is found to be true for all axial locations 

considered), but with much diminished growth rates. In the next section we shall 

consider the asymptotic structure of the disturbance equations in this limit. It 

should be noted that the n =  8 instability terminates as a supersonic neutral mode, 

and does not continue as a decaying instability. This is found to be true for all 

modes where a triply generalized inflexion mode no longer exists.

At (  =  0.5, the axisymmetric mode has been completely stabilized as determined 

by Duck (1990). From Figure 3,17, the n — 1 instability is found to be the most 

unstable mode I; indeed this mode is more unstable than the corresponding (  =  0,1 

result. Again, the mode II disturbances (Figure 3.18) show growth rate reductions 

due to the stabilizing effect of both curvature and increase in azimuthal wavenumber 

on these types of instability.
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For larger distances downstream, the above trends are repeated. As noted at 

the beginning of this section, curvature ultimately results in the complete eradica­

tion of all non-axisymmetric generalized inflexional modes, for distances far enough 

downstream. This effect causes the eventual stabilization of all mode I instabilities. 

Figures 3.19 and 3.21 display results at (  = 1.0 and (  =  5.0, respectively.

The mode II instabilities are found to behave slightly differently for large (. We 

have already noted the existence of mode II instabilities for large n (even when 

mode I instabilities have been eradicated) purely due to the special nature of the 

subsonic neutral mode at which they originate. The same is found to be true for 

large (. Consequently, even though curvature and increase in azimuthal wavenum­

ber will continue to cause stabilization, as can be seen from Figures 3.20 and 3.22 

(corresponding to (  =  1.0 and (  =  5.0, respectively), for very large (, the mode II 

instability will still be present, although with much diminished growth rates. This

limit is considered in section 3.5. Note, in Figure 3.22 the presented axisymmetric
the.

instability could not be computed any closer to neutral point than that displayed
A

because the inaccuracies developed within the numerical scheme due to the increase 

in zeta, as mentioned in the previous chapter, make it almost impossible to compute 

instabilities around the critical point occuring in the freestream.

Before considering the effect heated/cooled walls have on the disturbance terms, 

we shall briefly consider a few results for Moo = 2.8, solely for comparison.

Figures 3.23 and 3.24 display growth rate variations with wavenumber for the 

mode I/IA and II instabilities, respectively, at the axial location, (  =  0.05. Note, 

the mode 1^ distributions are represented by a dashed line in Figure 3.23. Duck 

(1990) determined that no axisymmetric generalized inflexional modes exist at this 

axial location, for M = 2.8, and consequently, as expected, no axisymmetric mode 

I instabilities are found. From Figure 3.23 it is apparent that the n =  1 mode I and 

Ij^ instabilities axe still distinct. The same is found to be true for the corresponding
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n =  2 results (not shown). The higher azimuthal wavenumber mode I instabilities 

are qualitatively similar to the corresponding M ^  = 3.8 results, although the larger 

Mach number modes are more unstable. Complete stabilization of the mode I in­

stabilities for Afoo =  2.8 and this position .is achieved for values of n =  8 and higher. 

The mode II instabilities closely resemble the higher Mach number instabilites, with 

an increase in azimuthal wavenumber causing stabilization, and similarly to their 

mode I counterparts the higher Mach number modes are more unstable. It should 

be noted that the n =  8 mode II terminates as a supersonic neutral mode; the 

other mode II instabilities presented end as subsonic generalized inflexional modes, 

continuing as stable modes for higher values of a.

The next set of results presented for =  2.8, corresponds to £ =  0.5, where 

Figures 3.25 and 3.26 display the respective mode I and II distributions. Both types 

of stability have undergone stabilization due to the increased effect of curvature , 

this stabilization being quite marked in the case of the mode IPs, and the mode I is 

found to be completely eradicated for values of n = 3 and greater. On comparison 

with the higher Mach number results, both instability types are qualitatively similar, 

although, again it is noted that the lower Mach number results are more stable.

3.3.2 Cooled W all Cylinder Results

We begin by considering the effect that wall cooling has on the inflexion points 

for Mqo — 3.8. As previously mentioned, because the ‘triply generalized’ inflexion 

condition involves the ratio of the azimuthal and streamwise wavenumbers n and a, 

it is difficult to forecast, prior to a numerical investigation, the existence of neutral 

stability points of this kind. However in the case of axisymmetric disturbances, this 

is no longer the case, since the condition reduces to
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as determined by Duck (1990).

Figure 3.27 shows the axial variation of radial location of the generalized inflexion 

points for the (non-dimensional) temperatures shown. As in the insulated cylinder 

case (Duck (1990)), the graphs display two prominent features: (i) the inflexion 

points occur in pairs and (ii) there exists a critical value of f , downstream of which 

no such points exist. This was also found to be true in the previous subsection 

for non-axisymmetric generalized inflexion points. The point £ =  0 corresponds to 

the tip of the cylinder and as such corresponds to the planar case as studied by 

Mack (1984). It is.found that as the surface of the cylinder is cooled, the lower 

inflexion point lifts up off the cylinder surface. For sufficient cooling the lower point 

coalesces with the upper inflexion point and further cooling’ results in the complete 

disappearance of the inflexion points. Therefore for a given ^-station there exists a 

critical wall temperature below which no inflexion points exist.

Figure 3.28 shows the axial variation of w>o(?/i) for the displayed wall temper­

atures. From stability theory, unstable subsonic modes exist only if a generalized 

inflexion point satisfying (3.41) occurs within the boundary layer. Examination of 

the curve for Tw =  3.0 reveals that subsonic generalized inflexion points only occur 

for 0 <  £ <  0.0795; consequently the mode has completely disappeared before the 

generalized inflexion points have merged. For a wall temperature of Tw =  2.0 the 

generalized inflexion points are always both supersonic in nature (w0(rji) < 1 -  — -), 

implying for this and all cooler wall temperatures the eradication of mode I insta­

bilities.

We now turn our attention to the eigenvalue problem for both axisymmetric and 

non-axisymmetric disturbances. Again, only unstable modes are presented and all
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plots are for the growth rate t*c, variation with wavenumber a. The first set of 

results presented corresponds to the tip of the cylinder and as such are comparable 

to the planar results as obtained by Mack (1969, 1984, 1987a). The adiabatic wall 

temperature at the tip of the cylinder is Tw ~  3.448, Figure 3.29 displays distribu­

tions for the first mode of instabilty. As in the adiabatic case, all modes originate as 

sonic neutral modes (i.e. with c = 1 — ) and terminate as subsonic, generalized

inflexional modes. We note that as the surface of the cylinder is cooled this mode 

undergoes stabilization, until, with sufficient cooling it becomes completely stable, 

thus verifying Mack’s observations (and those of Lees (1947), Van Driest (1952) and 

Dunn and Lin (1955)), From our inflexion point results, this is to be expected, as 

for cool enough wall conditons, the larger value of idq (*?») drops below 1 — and 

there no longer exist the conditions necessary for a subsonic, generalized inflexional 

mode.

Figure 3.30 displays the distribution of the temporal growth rate with wavenum-
1ber a , for the second instabilty at the cylinder tip, £ =  0. Similarly to the adi- 

abatic mode II distributions, all modes originate as the special wavenumber case 

c (= ^  =  w0(r}i)) =  1. Depending on whether or not a subsonic, generalized in­

flexional mode exists for the given wall conditions, this unstable mode terminates 

as a subsonic or supersonic neutral mode, and may continue as a decaying mode 

(ac,- < 0), thereafter. Examination of our results reveals that as the cylinder surface 

is cooled, the maximum value of the growth rates increases to a peak for Tw ~  1.095 

(not shown) and further cooling causes the maximum growth rates to decrease again. 

However it is observed that for larger values of a, cooling has a completely destabi­

lizing effect on the mode II instabilty. Thus we deduce that wall cooling generally 

destabilizes the second mode of instability, in line with Mack’s observations (1969, 

1984, 1987a), but there does appear to be a critical amount of cooling beyond which 

the maximum growth rates undergo stabilization again.
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The next set of results presented corresponds to a relatively small distance from 

the tip of the cylinder in the axial direction, at the location ( =  0.05, and for an 

axisymmetric mode (i.e. n=0). The adiabatic wall temperature at this location 

is Tu, ~  3 .42. Figure 3.31 displays the mode I distributions and it is noted that 

with sufficient cooling, it is again possible to completely stabilize this mode. The 

neutral mode at which this instability originates is found to be consistent with the 

adiabatic results presented, being very slightly supersonic in nature, and occuring for 

a  slightly greater than zero. When compared with the corresponding planar results 

curvature (as noted by Duck (1990) and for the adiabatic results) has a marked 

stabilizing effect. Even though this station is only a relatively short distance along 

the cylinder from the tip, curvature has reduced the value of maximum ac, for the 

Tw =  3.0 curve by a factor of about 4.3 while for the Tw =  2.8 curve it is a much 

larger factor of about 12.3. Curvature results in the mode requiring less cooling to 

completely stabilize it. Figure 3.32 displays the axisymmetric mode II instability at 

this axial location. Again it is noted that curvature has had a stabilizing effect on 

the instability, but cooling causes the mode to become more unstable, in line with 

the planar results described previously, and it is observed that the critical value of Tw 

below which the maximum growth rates undergo stabilization again, has dropped, 

in this case, to a value of Tw — 0.805 (not shown).

The next set of results presented corresponds to the £ =  0.05 location, for az­

imuthal wavenumber n — 1. Figures 3.33, 3.34 display the mode I and II instabilities, 

respectively. We observe that in this case the mode I instability is substantially more 

unstable than the axisymmetric case. Again, with sufficient cooling this mode can 

be completely stabilized, although the mode does persist for cooler wall conditions. 

The mode II instability has the same qualitative features as the axisymmetric case, 

although it is less unstable than the axisymmetric instability.
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In the previous subsection it was noted that near the cylinder tip, for non- 

axisymmetric disturbance terms, a third mode of instability is seen to develop, 

which was termed mode 1^. At the (  = 0.05 location for n =  1 and adiabatic 

wall conditions, this new mode was found to have already amalgamated with the 

mode I instability. However, when cooled wall conditions are applied at this axial 

location and for n — 1 the mode 1^  instability is still distinct (Figure 3.35) over the 

range of Tw shown; a partial explanation of this is provided in subsection 3.6. It is 

observed that wall cooling causes the mode 1^ instability to become less unstable 

and with sufficient wall cooling it can be completely stabilized. Comparing with the 

mode I instability it is noted the maximum value of ac{ for the mode 1^ instability 

is larger for corresponding wall temperatures and the mode persists for cooler wall 

temperatures. However since the mode I instability occurs over a much larger a- 

range it is felt.that these growth rates are generally of more importance.

We now consider the situation for an azimuthal wavenumber of n = 3, at the 

same axial location. In this case the mode I and 1^ instabilities have now amal­

gamated. Similarly to the combined adiabatic modes, the new combined mode 

originates as a neutral mode (but with c, ^  0 for a  =  0 ) and terminates as a sub­

sonic generalized inflexional mode (Figure 3.36). Again it is noted that sufficient 

wall cooling can completely stabilize this mode, but the increase of n has resulted 

in the mode persisting for cooler wall temperatures. Comparing with the n =  1 

results it is found that the increase in the value of n has also caused the. mode 

to become less stable. The mode II instability (Figure 3.37), again has the same 

qualitative features, although the increase in n has resulted in further stabilization. 

However, it is found that cooling has the more dominant destabilizing effect here. 

The previous two comments regarding increase in azimuthal wavenumber mirror the 

corresponding effects observed for the adiabatic cylinder.

The next set of results presented corresponds to an azimuthal wavenumber of n =
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5, at the same axial location. The same qualitative features as the the n =  3 results 

are observed for both modes (Figures 3.38, 3.39) although a marked stabilizing effect 

due to the increase in n is noted. The mode I instability is now completely stabilized 

for higher wall temperatures, while again, it is observed that cooling causes an even 

more marked destabilizing effect on the mode II instability.

As the azimuthal wavenumber n is further increased, both the mode I and II 

instabilities developed subject to cooled wall conditions, follow the same trend as 

observed for the insulated cylinder, undergoing additional stabilization, although 

cooling maintains a destabilizing effect on mode II. Consequently, for large n, the 

mode I is completely stabilized; indeed for cooled walls the mode I will ultimately 

disappear for smaller values of n owing to the additional stabilization effect. As 

expected, the mode II instability persists, although with much diminished growth 

rates. In the next section the possibility of cooled walls is also considered for large 

n.

The final set of results presented for M = 3.8 corresponds to the axial location 

(  =  0.5 and for an azimuthal wavenumber of n =  1 . The adiabatic wall temperature 

for this axial location is Tw =  3.343. It is found that at this distance along the cylin­

der the mode I and 1^ stabilities have now combined (Figure 3.40) for cooled walls 

as well . Comparison with the n = l results at (  =  0.05, reveals that the mode has 

undergone destabilization (in line with the corresponding adiabatic observations). 

It is found that the combined mode prevails for cooler wall conditions, but again 

is completely stabilized with sufficient wall cooling. Figure 3.41 displays the mode 

II instability, and indicates that curvature has resulted in the growth rates being 

reduced, although cooling has a more marked destabilizing effect here.

Farther along the cylinder, curvature continues to cause stabilization, as noted 

in the adiabatic case. For a given wall temperature, TWf azimuthal wavenumber 

n, axial wavenumber a , there exists a critical value of (, beyond which no triply
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generalised inflexion points occur. Consequently, we expect the mode I instability 

to have disappeared for axial distances larger than this critical f , which is bourne out 

by our numerical results. The mode II instabilities persist for cooler wall conditions 

beyond this critical value of f, as expected, although with much reduced growth 

rates.

We now present a number of results for M ^ =  2 .8 . The results for this Mach 

number are for direct comparison with the =  3.8 results, and consequently the 

same wall temperatures as before are displayed, even though it is found that some 

of these conditions are higher than the adiabatic wall temperature (i.e. heated with 

respect to the adiabatic conditions). However, since the trend in wall temperatures 

is downward, we still feel that the results give a good indication of the effect wall 

cooling has on the instabilities. The first set of results presented is at the £ = 0.05 

station and for a azimuthal wavenumber n — 1 . The adiabatic wall temperature 

at this location and for the chosen Mach number is Tw ~  2.317. In this case it is 

observed that the mode I and 1^ instabilities have just combined (Figure 3.42). It 

is found that the curves for the Tw =  2 .6  and Tw =  3.0 conditions possess two peaks, 

which correspond to the maximum growth rates of the mode I and 1^ instabilities (if 

the modes were still distinct). Again it is noted that with sufficient wall cooling this 

mode can be completely stabilized. Comparing with the corresponding M<*, = 3.8 

results for this axial location and azimuthal wavenumber it is observed that the 

modes are more unstable in this case. Figure 3.43 displays the mode II instability. 

In comparison with the =  3.8 results it is found that mode II is less unstable, 

but cooling has had a more marked destabilizing effect. The wall temperature 

(Tw ps 0.47) below which the maximum growth rates undergo stabilization again, is 

found to be lower.

The next set of results considered for this Mach number corresponds to an az­

imuthal wavenumber of n =  3 at this axial location. It is observed that the mode I
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instability (Figure 3.44) is more unstable than n =  1 results for this Mach number 

and that the mode persists for cooler wall temperatures. When compared with the 

corresponding M =  3.8 modes it is again observed that lower Mach number are 

the more unstable (except the Tw =  1.6  mode which is found to be very slightly 

less stable). The increase in azimuthal wavenumber has resulted in the mode II in­

stability (Figure 3.45) becoming slightly more .stable and on comparing with the 

corresponding Moo =  3.8 instablity it is again noted that for this type of instability, 

the Mqo =  3.8 results are the .more unstable.

We now consider the effect wall coooling has on the mode I and II instabilities 

(Figures 3.46 and 3.47, respectively) at this axial location and for an azimuthal 

wavenumber of n =  5. It is found, that the increase in n has caused the mode

I instability to undergo stabilization, although it is still more unstable than the 

corresponding = 3.8 results (except for the Tw =  1.8 mode which is found to be 

more stable). The mode II instability has undergone further stabilization due to the 

increase in n and is still found to be more stable than the corresponding Moo =  3.8 

modes.

The final set of results presented for M ^ =  2 .8  is for the axial location f  =  0.5 

and an azimuthal wavenumber of n =  1 . The adiabatic wall temperature for this 

axial location and Mach number is Tw ~  2.277. Figures 3.48 and 3.49 display the 

mode I and II instabilities, respectively. It is observed, in line with the Mo© =  3.8 

results, that the combined mode I /I^  instability is more unstable at this axial 

location than the n =  1 results at the (  =  0.05 location. We observe that this mode 

persists for cooler wall temperatures. In comparison with the Mo© =  3 .8  results, the 

mode I instabilities are more unstable for the wall temperatures shown, except for 

the Tw =  1.4 curve, which is slightly less unstable. The growth rates of the mode

II instability have been reduced greater due to the stabilizing effect of curvature, 

although we do note that cooling has a very marked destabilizing effect in this case.
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It is found that for the temperatures displayed the Tw = 0 .1  curve has the largest 

maximum growth rate. As before, when compared with the corresponding M 00 =  3.8 

results, the higher Mach number results are observed to be the more unstable.

3.3.3 H eated Wall Cylinder R esults

We begin by considering the effect that wall heating has on generalized inflexion 

points. We restrict our study to the case of axisymmetric disturbances, determining 

the effect wall heating has on condition (3.41) (as in the case of cooled walls). 

Only a Mach number of M00 = 3.8 is considered, although this is expected to be 

representative of moderate Mach numbers.

Figure 3.50 shows the axial variation of (radial) position of the generalized in­

flexion points for the temperatures shown. We observe again the same features seen 

in Figure 3.23: Close to the cylinder tip, however, it is found that for a small axial 

distance measured from the tip, there no longer exist any lower generalized inflexion 

points. As the surface of the cylinder is heated further, this axial distance is found to 

increase. It is also observed that wall heating causes the critical value of £, beyond 

which no generalized inflexion points exist, to increase. For Tw =  4.5, this critical 

value of (  is about 0.216, while for Tw =  6 .0 , there is a substantial increase to a 

value of C — 0.423. This will have direct implications on the first mode of instability 

which is expected to persist for longer distances downstream. These effects are in 

many ways to be expected, being the converse of the cooling observations described 

earlier.

Figure 3.51 shows the axial variation of for the displayed wall temper­

atures, The most marked feature of these curves is that as the cylinder surface 

is heated, the lower generalized inflexion point becomes subsonic beyond a critical 

value of which is temperature dependent, i.e. for axial distances greater than 

this critical value of (  but upstream of the station beyond which no inflexion points
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occur, both generalized inflexion points are now subsonic in nature. The lowest wall 

temperature for which a lower, subsonic inflexion point is observed is for a wall 

temperature of about Tw — 4.5. It is found, however, that the critical value of (  

here, is very close to the stations where the generalized inflexion points coalesce. For 

Tw =  5.0 we observe that for the range 0.2635 < (" <  0.2720 two subsonic inflexional 

modes exist, while for the hotter wall temperature of Tw =  6.0 we have the larger 

range 0.363 < (  <  0.423 for which both generalized inflexion points are subsonic. 

In these ^-ranges there exists the possibility of two subsonic generalized inflexional 

modes with the potential of a significant effect on the problem.

We now present growth rate results for axisymmetric disturbances at a Mach 

number .of M = 3.8. As in the case of cooled wall conditions attention is focused 

on unstable modes. We begin by considering the effect wall heating has on the 

mode I and II instabilities for a ^-station close to the cylinder tip (£ =  0.05) and 

consequently the lower generalized inflexion point is still supersonic in nature. Figure 

3.52 shows the mode I instability for the temperatures shown. It is observed that 

all the modes originate as neutral modes at a value of a slightly greater than zero, 

which are very slightly supersonic in nature. As the wall is heated this neutral 

mode approaches the sonic value. All the modes terminate as subsonic generalized 

inflexional modes, continuing as stable modes (ac,- < 0) for larger values of a. These 

observations are similar to the results obtained for both the axisymmetric cooled 

wall and adiabatic conditions cases at this (^-station. It is found, as expected, heating 

the surface of the cylinder causes the mode I instability to become more unstable - 

converse to the effect of cooling on this mode.

Figure 3.53 displays the mode II instabilities at £ =  0.05, for the the tempera­

tures shown. It is found that all the modes originate as subsonic generalized inflex­

ional modes, rise to a maximum and terminate as subsonic generalized inflexional 

modes (which then continue in all the cases presented as stable modes). Heating
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the cylinder wall causes the mode II instability to become less unstable and the nu­

merical evidence suggests that with sufficient heating this mode can be completely 

stabilized.

We now consider the effect that the lower generalized inflexion point becoming 

subsonic has on the mode I and II instablities. Figure 3.54 displays the growth 

rates of the mode I instability for a wall temperature of Tw = 5.0 and for the te­

stations as indicated. At £ =  0,26 (where the lower generalized inflexion point is still 

supersonic) the mode originates as a very slightly supersonic mode and terminates 

as a subsonic generalized inflexional mode. For the £ =  0.264 station the lower 

generalized inflexion point has now become subsonic in nature, and it is found the 

mode I instability now originates as a lower subsonic generalized inflexional mode. 

Consequently the value of a  for the neutral mode has increased correspondingly. As 

before, the mode I instability terminates as the upper generalized inflexional mode 

which is of course subsonic, as well. From the inflexion point curves we know that as 

we move upstream the inflexion points move closer together, eventually coalescing 

and this is reflected in the new form of the mode I instabilities. For the £ =  0.27 

station the mode I instability occurs over a much smaller a-range and the growth 

rates are greatly diminished.

Figure 3.55 displays the mode I instability for a wall temperature of Tw =  6.0  

and the indicated £-stations. Again it is noted that as the lower generalized in­

flexion point becomes subsonic the neutral point at which the instability originates 

transforms from being very slighly supersonic in nature, to this inflexional mode. 

Movement upstream causes the o-ranges and growth rates to be diminished, but 

the reduction is less marked (in comparison with the Tw — 5.0 results) due to the 

destabilizing effect brought on by wall heating.

The appearance of a second subsonic generalized inflexional mode is found to 

have little effect on the mode II instability as it always terminates as the upper
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generalized inflexional mode. It is found, however, that a third mode of instability 

exists, originating as the lower generalized inflexional mode and terminating as a 

slightly supersonic neutral mode. This new mode, which we shall term Mode 11^, 

occurs for values of a  greater than the value of a  for which the mode II instability 

terminates. It appears that the mode II instability continues as a stable mode and 

then becomes unstable again at the lower generalized inflexion point. The growth 

rates of the mode 11^ are found to be very small. For a wall temperature of Tw =  5 .0  

and the station f  =  0.27 the growth rates are in the order 10" 11, while for Tw =  6 .0  

and (  — 0.364 the growth rates are of the order of 10~13-10-14.

3.3.4 Adiabatic Cone Results

We now consider the linear stability of the compressible boundary layer formed on a 

somewhat more practical configuration, namely a sharp cone. Comparing the non- 

axisymmetric generalized inflexion condition for a cone (3.37) with the corresponding 

cylinder condition, the former case is found to be even more complex, involving terms 

in the parameter A as well as wavenumbers n and a. Consequently, we make no 

attempt to conduct a non-axisymmetric generalized inflexional mode study for the 

cone, and instead just present an eigenvalue study for the temporal growth rate 

variation with spatial wavenumber.

Since the cone surface is described by r  =  1+ A£2, then for axial distances close to 

the cylinder tip, the growth rate distributions are expected to be very similar to those 

presented for the adiabatic cylinder study. Figures 3.56 and 3.57 display mode I and 

mode II instabilities, respectively, for (  =  0.5 and the azimuthal wavenumbers as. 

shown. At this location the radius is 1.25 times the cylinder radius (and the cone tip 

radius). On comparing Figures 3,56 and 3.57 with the corresponding cylinder results, 

it is observed that the two sets of results are very similar. It is noted, however, that 

in the case of the mode I instability body radius divergence (with respect to the
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cylindrical body’s results at this axial location, namely Figure 3.17) has caused the 

n = 1 instability (the most dangerous mode I) to be slightly stabilized whilst the 

higher azimuthal wavenumbers have undergone slight destabilization. In the case of 

the mode II instabilities body radius divergence has caused both the axisymmetric 

and all the non-axisymmetric modes presented to more noteably destabilized.

The next set of results presented corresponds to the £ =  1.0  location, Figures 3.58 

and 3.59 display the respective mode I and II instabilities. Comparing these results 

with the corresponding adiabatic cylinder results (Figures 3.19 and 3.20), body 

divergence has caused a noticeable destabilization of the n — 2, mode I instability. 

It is found that the n ~  3, mode I instability is still unstable (although the growth 

rates are so small that this mode is just visible in Figure 3.58), complete stabilization 

not being achieved until n =  4 (and higher). The mode II instabilities have all been 

significantly destabilized due to body divergence. Note, that on comparing these 

results with those obtained at £ =  0.5, curvature is still found to have a stabilizing 

effect.

At f =  2 .0 , body radius divergence continues to cause destabilization to such 

an extent that this effect dominates the stabilizing effect of curvature. Comparing 

the mode I instabilities (Figure 3.60) with the corresponding results obtained at 

£ =  1 .0 , the n =  1 growth rates are observed to be similar, while the new n — 2 

mode is found to be noticeably more unstable. On comparing the new locations’s 

mode II instabilities (Figure 3.61) with corresponding (  = 1.0  results, all modes are 

markedly more unstable. It is also noted that the £ =  2.0 results are quite similar 

to £ =  0.5 instabilities.

Moving downstream to £ = 5.0, the ‘recovery1 in the maximum growth rates of 

the mode II instabilities (Figure 3.63) is found to continue, with all modes presented 

having undergone further destabilization. For the mode I instabilities (Figure 3.62), 

body divergence has caused the n — 1 mode to be stabilized, whilst the higher
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azimuthal wavenumbers have been destabilized. We also note the re-emergence of 

the n =  4, mode I instability, complete stabilization not being achieved until n =  5 . 

Indeed, these results show some resemblence to the £ =  0.2 results (not shown); 

distributions of C{ versus a  are found to be quite similar. The similarity, however, 

is found not to be as close for ac,- versus a  distributions, because in the case of the 

mode II instabilities, for £ =  5.0, the modes occur at higher values of a  and both 

instabilities are found to occur over larger o-ranges, for the further downstream 

location. This similarity is not surprising, given that, on account of the Mangier 

transformation (Mangier (1946), Stewartson (1964)), results as £ —> oo mirror those 

as £ —»> 0  (except for a multiplicative factor of \/3 in a; hence the higher a-results 

noted above).

This trend is confirmed in Figures 3.64 and 3.65 for £ =  2 0 .0 , which may be 

compared directly with the £ =  0.05 results displayed in Figures 3.13 and 3.14 for 

the adiabatic cylinder - this comparison can be made since the cone radius will 

only be 1.0025 times larger than the cylinder radius at this location. It is again 

noted, that the further downstream location results occur over larger a-ranges and 

the mode II instabilities occur at larger values of a , both these factors contributing 

to larger observed growth rates for mode I and II instabilities. Notice, also, the 

re-emergence of mode 1^ for n =  1 .

The last set of results presented is for the furthest downstream location stud­

ied, namely £ =  75.0. At this axial location, as well as growth rate variations 

(Figures 3.67 and 3.69 corresponding to mode I and II instabilities, respectively), 

distributions of c* with spatial wavenumber, a , (Figures 3.66 and 3.68 corresponding 

to respective modes) are presented to clarify comparisons being made with results 

near the cov>£ tip. A close resemblence is noted between Figures 3.66 - 3.69 

and results presented for the cylinder at £ =  0.01 (with the factor y/3 multiplying 

a , in the former case). The axisymmetric modes now correspond closely with the
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planar results of Mack (1984, 1987a, for example) (apart from the a-multiplicative 

factor), whilst mode 1^ is clearly visible for n =  1 and n =  2  - Figures 3.70 and 

3.71 display the respective mode 1^ instabilities for these azimuthal wavenumbers 

on an enhanced scale to clarify the modal structure. Inspecting Figures 34 6 and 3 - 

the union of modes I and 1^ is quite noticeable, for n =  3, from the double peaked 

structure of the newly combined growth rate curves.

We now move on to consider the form of the disturbance equations in the limit 

of large azimuthal wavenumbers in the next section.

3.4 Disturbance Equations for Large n

In this section we consider the form of the disturbance equations in the asymptotic 

limit of large azimuthal wavenumber, n, guided partly by our numerical observations. 

It should be noted that the theory developed in this section is valid for the cylindrical 

case only.

3.4.1 Formulation of the Problem

The pressure disturbance equation for supersonic flow past a cylinder, as derived in 

section 3.2 (and setting A =  0 ), has the form

w q - c  d  i ToPrj } , f (wQ- c ) (   ̂ T0pn ^  /n ^
2 j  I I v 1 i /• ) o( \ — (3.42)a 1 d p  — cJ v 1 + a 2(u;o — c)

where

*  =  T° I1 +  ^ r r ^ ]  -  " c)2- (3-43)

In the limit of large azimuthal wavenumber, n, our numerical observations sug­

gest that the corresponding streamwise wavenumbers for the instability also increase,
W  loXqe. ^2.

and that 4>(t? =  0) —» 0, asymptoting towards a constant value of
d
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$  -> 1 -  M l(  1 -  c ) \  (3.44)

Equation (3.43) suggests that if $  is to be generally 0(1), we must have

a  =  an, a  =  0(1), (3.45)

where a  is our (scaled) wavenumber, which we specify because of our temporal

approach to the problem.

Assume asymptotic expansions of the form

c =  Co +  naC! +  0 (n2a),

$  =  + na$i + 0 (n 2a), (3.46)

where a < 0 to ensure convergence and is to be determined.

In the limit of large n, to leading order, by the form of the asymptotic expansions

(3.46) the pressure equation has the form

Pm + [ j r  + ~ c  -  -  'F * oP =  °’ (3-47)l i o  1 -r- w o ~  Co J-o

where

$ 0  -  2 o[l + „ 2^ ^ 2] “  M™(wo ~  ft>)2- (3*48)

Solutions of the WKBJ type satisfy (3.47), namely

p ~  CXP [ ±  ^  f ( - * o ) 1,2dV] , (3.49)

where f(r}) is determined by substitution. This is carried out in Appendix A, where 

/(t?) is determined to have the form
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/(»)) ~  P  60f r dri■ (3.50)J r0(i + vC)
To ensure boundedness of disturbance terms in the far-field, we require a solution 

which decays as 77 -» 0 0 . The numerical observations suggest that Im[($o)1/r2] > 0 

for large 77, therefore far from the cylinder wall the required solution is

P = j i f f l  exP [ +  J \ - $ o ) 1/2dn\, (3.51)

where D0 is a constant to be determined and rjQ is the transition point, i.e. the point 

where $ 0 =  0*

In the neighbourhood of the wall the numerical observations suggest that the 

pressure has an oscillatory nature, therefore in this region we expect a WKB J solu­

tion of the form

P =  exP £  $ o % ]  + exP [ -  ^ 7 2  f  > (3-52)

where ylo and -^l 316 constants and 0 < 77 < 770- (By the form of the wall pressure 

boundary condition (3.16) and (3.50), it is expected /(0) =  1.)

We require now only to determine the form of the solution in the neighbourhood 

of the transition point, 7/ =  770. Taylor expanding the $ expansion about 77 =  770, 

such that $ —► 0 , yields

$  =  $ o&o) +  (t? -  T7o)$/ (77o) +  £(77  -  T7o)2$ o  +  * * '

+77a[$1(77o) +  (77 -  770)$ ;(770) + • • •] (3.53)

-H 2 2 a [$ 2 (* ? o )  +  ***]•

We characterise the distance 77 — 770, know as the transition layer, by the scale

123



Therefore expansion (3.53) simplifies to

$  =  [$i (Vo) +  j?$o(*?o)K + 0 (n 2a) +  ■ • •. (3.55)

In the neighbourhood of the transition point the second order derivative and the

right-hand-side of (3.42) are expected to be the important terms, resulting in the 

pressure disturbance equation having the following form, to leading order

= n°\n%(no) +  ®i{no)}p- (3.56)

Since a is chosen to ensure both sides of equation (3.56) balance it must take the

value

« =  (3.57)

which simplifies equation (3.56) to the form

o 2
p ^ = — [ffA-B}p,  (3.58)

-to

where

A  = $'0(i?o),

B  =  (3.59)

Introducing the transformation variable

(3.60)



equation (3.58) can be simplified to

P t t  =  T p .  (3.61)

Clearly (3.61) is Airy’s equation; therefore in the neighbourhood of the transition 

point the pressure disturbances must have the form

p =  B0Ai(r) +  B 1B i(r ), (3.62)

where B0 and B\ axe constants to be determined.

We appear to have a three-layered structure for the form of the pressure as we 

move from the cylinder surface to the far field. All that remains is to match the 

solutions in the three regions, giving continuity. The inner WKB J  solution (equation 

(3.52)) region shall be refered to as I, the Airy solution (equation (3.62)) layer as II 

and the outer WKBJ solution (equation (3.51)) region as III.

Matching regions II and III immediately yields that /(f?o) =  1 (which will be 

confirmed a posteriori), Bo — Do and B\ — 0, since only decaying solutions can 

exist in region III. Consequently (3.62) simplifies to

p =  A)Ai(r). (3.63)

The asymptotic expansion of equation (3.63) in the limit r  —»• —oo has the form

+ (3.64)

which in T?-space can be written as

Eq . r2/aA V 2\ , /2 jti , .
~  s m  [ 3  ( - ^ 72 - ) ^  +  4 ]  * ( 3 - 6 5 )

where E0 is a constant. Defining
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2 /a A 1/2\_ 3#2 . .
2 =  5 ( ^ 7 j - K  - (3-66)

equation (3.65) can be re-written

D n e ~ ” r/ 4

p ~  - ^ 7 4 - [ ' ' e<* -  e"“ l- (3-67)

We shall now match equation (3.67) with the pressure solution in region I (equa­

tion (3.52)). The numerical observations suggest # 0 <  0 in region I, therefore

equation (3.52) can be re-written

p  = L |$7|f/4--{A° exp j \ - * o ? l ' d V \  +  ^ e x p  [ -  J j - $ 0 ) 1 / 2 d n } } .

(3.68)

In the limit 77 —»- 770 (for r}0 <  1) we can write

$ ~  V $ o M  =  n ~2/3Wo(Vo), (3.69)

and remembering f(rf) ~  1 in this limit, (3.68) simplifies to

e-«V4
P ~  "^1/4 ' [^2e%z +  ^3e~12], (3.70)

where A2 and A3 are constants and 2 is defined by equation (3.66)

Matching equations (3.67) and (3.70) yields

A 2e“ + A3e-” = ^ \ i e '*  -  e"*'], (3.71)

which implies

A 2 — iA$ ^  Ao — iA\. 

Therefore equation (3.68) can be written in the form

126

(3.72)



p = % ,i' /(1){exp £ (- $o),/21+!exp[_ ^p £ (- ^ )1/2̂ ] }• (3-73>
Imposing the boundary conditions at the wall, namely

Pi) |r?=o— 0) (3.74)

and remembering /(0) =  1, gives

exP [ ^ 2 . /  ( -$ o )1/2*?] =  iexp [ - - ^ 2  /  ( -$ o )1/2<fy], (3.75)
Tq' •'w T0' */»7o J

which after manipulation yields

^  /  ( -$ o )1/2*? =  ^  +  2mjr, (3.76)
T0 «'»*) *

where m is a integer

From equation (3.76), if m = 0(1), then ( |  +  2m7r) =  0(1). This implies the 

left-hand-side of the equation will also be 0(1). However as n becomes large, a  also 

becomes large (a = an), therefore 7?0  must be small and thus close to the surface of 

the cylinder. In this ordering $o is also very small, approaching zero for increasingly 

large n. Note, that if instead m  —> oo, $ 0 would not be small.

The overall conclusion, therefore, is that for large n, r)0 collapses onto the cylinder 

surface, with $o —* 0 at the wall, giving a two layered structure, as opposed to three.

Therefore we have a two layered structure for the pressure disturbances consisting

of-an inner Airy solution and the outer WKBJ solution.

One further observation is that if m is large enough then t}q would become large 

and move away from the cylinder and the WKBJ solution described above would 

become valid.
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Returning attention to the asymptotic expansions for c and <f> in the neighbour­

hood of the transition point, tj0 = 0, we have

c =  Co 4* n“2/3ci +  0(n~4/3) -1----- ,

$  =  $o(0) +  n"2/3[^ (0 )q  +  $ 1(0 )]+  0(n~4/3) ------, (3.77)

where

k2
*o(0) =  T„[l +  £ ]  -  M l4 ,  (3.78)

$i(0) =  -2co ciMl, (3.79)

and for insulated wall conditions

*o(0) =  - ^  +  2 M > |, ( 0 K  (3.80)

while for heated or cooled wall conditions

«o(0) =  To„(0) [l +  J j]  -  + 2Mlw'o(0)co, (3.81)

where Tw represents the wall temperature.

If $o(0) =  0, then we must have

_ T ^ i l  +  £]»/» 
c„ -  , (3.82)

(whidi is clearly real). We now seek to determine the first order correction term 

to c, namely Ci. For this it is necessary to look at the wall layer pressure term. 

Transforming the boundary condition at the wall (equation (3.74)) to r-space, yields

p r [ A ' 1 / 3 r  =  — B ]  =  0, (3.83)
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where

a 2

a =  j u *- (3-84)

Since the solution to the pressure disturbance term in this region is given by 

Airy’s function (3.63) then

A ir [r =  -£ A 1/3] =  0 . (3.85)

Transforming back to 77-space gives the result

where t :  (where t =  1 , 2 ,-- •) represents the solutions of the equation

A * '(-rt ) =  0. (3.87)

Substituting either result (3.80) or (3.81) and equation (3.79) into equation (3.86) 

yields the first order correction term for c namely

_ _  t V3{2[m > ; ( Q K  -  ̂ ] } 2/3
1 “  2 a ^ M lc 0 Tn’ (3'88)

for insulated walls, whilst for heated/cooled wall conditions we have

_ _  T ^ {2 [M lw '0(0)co -  % £] +  T'(0)[1 +  $•]}*/»
1  2 ^  Tn’ (3-89)

where cx is obviously real for both cases.

Since Tj is a solution of equation (3.87), where r* > 0 , then there exists an 

infinite number of discrete, real possible values for r», since the derivative of the 

Airy function has an infinite number of discrete roots confined to the negative real 

axis. This suggests that there are an infinite number of discrete modes.
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We shall now compare these asymptotic results with numerically determined 

results for large values of n.

3.4.2 Numerical Results

All the results presented in this section are for a freestream Mach number of 3.8 and 

at the point (  =  0.2 along the cylinder. Only results for adiabatic wall conditions 

are presented.

Firstly consider the asymptotic expansion for c in the limit of large azimuthal 

wavenumber n. The leading order term in the c expansion, co, is given by equation 

(3.82) and using the numerically determined values

Tw ~  3.379,

a ~  0.1525, (3.90)

we find

cq ~  0.7978. (3.91)

The first order correction term, which for adiabatic wall conditions is given by 

equation (3.88), is computed to have the value

cj^O.SSOSrp (3.92)

where we have used won cz 0,1904 and r .  are the solutions of equation (3.87). The 

first six values of r  « are determined from tables (Abramowitz and Stegun (1965)) 

and the corresponding values of Ci are shown in Table 3.4

Figure 3.72 shows a plot of c(= Co +  n~2/3ci), as determined asymptotically, 

against n for the different values of the first order correction term cl5 where the
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Cl
0.3698 (I)
1.2092 (H)
1.7750 (HI)
2.5146 (IV)
2.9214 (V)
3.3282 (VI)

Table 3.4: Values of c\

numbering refers to the numbering of the correction terms in Table 3.4. (It should 

be noted that only n integer has any physical significance, although Pigs. 3.72 and 

3.73 show c as a continuous function of n.) Prom here on we shall refer to these 

different values of c as order I to VI inclusively corresponding to' the numbering 

convention of the correction terms in Table 3.4.

Now as observed above, the asymptotic analysis suggests the existence of an 

infinite, discrete number of possible values for c. When we searched for the eigen­

values numerically, for large n, we determined that there were indeed many modes. 

Figure 3.73 displays two plots of Cj. against n for order I and order V correction 

terms. Graph (1) in each case represents the asymptotic curve and graph (2) is the 

numerically determined curve. It should be noted that in this range of n and ce, 

{c,| < <  1 (c,- ~  10"10 — 10"12), comparable to the machine accuracy of our compu­

tations. Prom the two sets of plots it is noted that there is good agreement between 

the numerical solutions and asymptotic theory for large n.

Turning our attention now to the form of the pressure disturbance terms, as 

obtained numerically, it is found that they do indeed follow the pattern predicted 

by our asymptotic theory, being initially oscillatory in the Airy solution region but 

decaying to zero in the far field. It is also observed that increasing the order of the 

correction term has the effect of increasing the number of zeros of the eigensolution.
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Figure 3.74 displays the distributions of Real{p} for n =  40 corresponding to the 

orders as shown.

Examining the c expansion again, we have determined that both Cq and Ci are 

real and therefore the leading order imaginary term, c,-, is, at most 0(n~ 4̂ 3). This 

means that the leading order term in the growth rate (ac() is (^(rc"1/3) at most. 

Therefore actual growth rates will decrease as n —* oo which is confirmed to be true 

by our numerical observations.

Note that even though cq may correspond to a subsonic (or supersonic) neutral 

mode, no generalized inflexion condition is necessary as this condition of neutrality 

is only reached asymptotically as n —► oo (and correspondingly a  —*> oo), and conse­

quentially the generalized inflexion condition is not applicable/appropriate. Further 

to this point, generally the eigensolutions are to be expected to be exponentially 

small (compared with values close to the wall) in the neighbourhood of any critical 

layers, and these are expected to be generally of little consequence.

We now turn our attention to the form of the disturbance equations in the limit 

£ —* oo.

3.5 Disturbance Equations for Large (  - Cylin­
drical Bodies

In this section we consider the form of the disturbance equations in the far down­

stream region, guided by the numerical observations of section 3.3. It should be 

noted that this asymptotic analysis is valid only for cylindrical bodies. The case of 

cone-shaped bodies, in the limit of large (, is treated in the next section; it is found 

that because of the Mangier transformation (Mangier (1946); Stewartson (1964)), 

in this limit, the axisymmetric results closely resemble planar results, but for a 

multiplicative factor of \/3  on a.
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3.5.1 Formulation of the Problem

Consider the pressure disturbance equation as presented in the previous section, but 

written in terms of V  rather than 7/,

Wq -  c d r T0pr i 2 rw0 -  c ToprC2

where

} c a r  ±oPr 1 2̂ I \w0 ~ c JOPrS tn
“ — -7- 1------- JC +  I-------------Wor — (-------- r — (3.93)ot£ dr — cJ L r a l {wQ — c)

4> =  r 0[l + J J -  M l(w „ -  c ) \  (3.94)

and

r = 1 + ?/C. (3.95)

In the limit f  —» 0 0 , assume a scale on a  of the form

a  =  a+C, (3.96)

where a* is to be determined.

Guided by Duck’s (1990) work for the form of the basic flow in the far-field 

of the compressible boundary layer formed on a thin cylinder, we define a (small) 

parameter

« =  ( |lo 8 ^ ) - l  =  (logC)-1- (3-97)

In the slow moving viscous region close to the wall (namely the r  =  0(l)(4$>7? =  

0 ( l / ( ) )  lengthscale) we expect asymptotic expansions of the form

c =  Co +  ecj +  0(e2), 

$ =  $ 0  ■+■ + ^(c2)>
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?o =  Tto +  eTi +  o(e2),

w0 = bwq +  0(£2). (3.98)

Now, our numerical observations strongly suggest that $ 0 —► 0 as (  becomes 

large in the r = 0(1) region (which will be confirmed a posteriori) implying that 

$  — 0(e). Examination of the $  expression (equation (3.94)) reveals that this is 

only possible in general if

=  0 (e -1/2). (3.99)

Therefore scale (3.96) can be redefined

a  ~  c?C(logC)1/2> (3.100)

where

a  =  0 (1).

To leading order, equation (3.94) reduces to

$o = TW-  JW^cg, (3.101)

but since it has already been assumed that $ 0 —>0, as f  —»■ oo, for r  =  0(1), then

we must have

T l/2

a° = A t ’ ( 3 ' 1 0 2 )

which means cq is real.

At first order in e, equation (3.94) has the form

_  n2T
=  T  +  - — ■ -  M l ( 2coca -  2 ^ 0), (3.103)
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while the 0(e)  correction to the pressure equation (3.93) has the form

ZZjPrr +  +  fecoM^Cj -  U>0) ~ T X~ ^ j ] p  =  0. (3.104)Q OC r L Ct*T*

We now transform equation (3.104) using a similar transformation as used by 

Duck (1990) for the basic flow. Firstly employing the transform

r = l n r ,  (3.105)

gives

rp  _  „  2T">

r | e - 2iW  +  [2c„M^(c, -  ®0) -  ^  =  0. (3.106)

The second transform used has the form

— f drR = /  s r ,  (3-107)
 ̂ ttl

but since Tu, is constant with respect to f  the transform simplifies to

r ~ R T w, (3.108)

where the constant of integration is taken to be zero. Equation (3,106) can be 

re-written

P m  +  (a X fe c o llO c !  -  R) ~  ? i]e2Br“ -  n2T l}p  =  0, (3.109)

where we have made use of the result obtained by Duck (1990) for the.basic flow

w0 =  R. (3.110)

Equation (3.109) is solved numerically to obtain a value for Ci subject to the 

condition at the wall
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Pr U=0— (3.111)

and that p is bounded in the far-field. The second condition is obtained by taking 

R  —► oo limit of (3.109), i.e.

pm - p 2Re2RT'"p=0, (3.112)

where

p? = 2coM^a2Tw. (3.113)

To leading order, this equation is found to have a decaying solution of the form

p  ~  p - 1/27 T 1/4 exp [ -  -  i f l r j . (3.114)
J-U) "

We shall now compare these asymptotic results with numerically determined 

results for large values of (.

3.5,2 Num erical Results

All the results presented in this section are for a freestream Mach number of 3.8 and 

azimuthal wavenumber n = 1.

From the numerical observations the leading order term in the c expansion (3.98) 

is found to have the value

Cq =  0.4617922. (3.115)

Using a fourth order Runge-Kutta scheme equation, (3.109) was solved subject 

to conditions (3.111) and (3.114) to determine the eigenvalues c\. We find that for 

a given value of a  there appears to be a large number of discrete, real values for Ci.
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Figure 3.75 displays a plot of c\ against a  corresponding to the first five modes, as 

shown.

As observed above, our asymptotic analysis implies the existence of a large num­

ber of discrete possible values for Ci, which in turn implies the existence of a large 

number of discrete values for cr. When we searched for the eigenvalues by solving 

the full system of equations numerically, for large f , we determined that there were 

indeed many modes and we managed to identify the first five modes. Figure 3.76 

displays a comparison between the asymptotically determined value of cr and the 

numerically determined value of cr against (  corresponding to the first mode. We 

have relatively good agreement, since the error term in the asymptotic theory is 

0(e2), which is-quite large. Therefore the numerical results seem to confirm our 

asymptotic theory.

The asymptotic theory presented above tells us nothing about ct- and conse­

quently reveals no information about the growth rate o q ; such an investigation 

would require a prohibitive amount of algebra. However, our numerical observa­

tions strongly suggest that ac, —► 0 as (  —► oo.

We now move on to consider the form of the disturbance equations in the limit 

of small (large) f  for both adiabatic and heated/cooled wall conditions on a cone.

3.6 D isturbance Equations for Small (

In this section we consider the form of the disturbance equations in a number of limits 

for small (also large - for the cone only) f , to give us a better understanding of the 

details of the numerical results described in section 3.3. Note that this asymptotic 

theory is carried out for the general case of the cone, but is readily applicable to 

the cylinder problem (although this is only valid in the limit of small (  - the large 

C limit has been considered in the previous section for this axisymmetric body) b y
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setting A = 0.

Perhaps the most intriging feature of the numerical results presented in section 

3.3, is the emergence of an additional mode as f  —► 0 (or f  —> oo) with a  —> 0. This 

feature is investigated first. Throughout this section we shall consider the velocity 

perturbation equation which has the form

d r ( w o -  c)[^„ +  ( ( / ( l  +  Cv +  AC2) M  -  w0„<j> -I a 2(w0 -  c)<j>
dr, I. Ta[l +  n2( 2/ ( a 2(\  +  (r, + AC2)2)] -  M l ( w 0 -  c)2 > . T0 ' l J

3.6.1 £ -> 0 ,a  = 0 ( 0  or C -» OO,a = 0(C_1)

Since the problem as posed is basically equivalent as f  —> 0 and f  —»■ oo, we consider 

only the former limit, and later we show briefly how the results for the latter can 

be simply inferred.

As noted in Section 3,1, as £ —► 0, (3.116) is seen generally to reduce to the 

planar system as treated by Mack (1984, 1987a, for example). However, this will no 

longer be the case if a  =  0 (f) , since then the denominator on the left-hand side of 

(3.116) no longer reduces to the planar case.

Specifically, let us write (consistent with (3.10))

a  = (a,  (3.117)

where it is assumed a — 0(1) as f  0. The results for mode 1^ shown in the 

numerics section, together with other numerical results obtained, indicate that as 

f  —* 0, then c —► 0 also.

Partly guided by this, for 7} ~  0(1) we choose expansions of the form

C — fci -f f 2C2 +  f 3C3 + * * ' ,
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<i> ~  <t>o(j})+ cM ii ) + c2<t>2{v)+ e?<feo?) +  • ■ • i 

^0 == T^oo( )̂ +  CWoi(v) +  C2^02(^) +  ^ ^ 03(77) + * * * i 

2o =  ^oo(^) +  (Tqi (77) +  C2^02(»?) +  C3̂ 03(^) H 1 (3.118)

(although see (3.228) below) where Woo(r}) and Too(r)) represent the planar values 

of velocity and temperature profiles, respectively, and 1̂ 01(77) and 201(77), etc., cor­

respond to the perturbations to the basic flow due to curvature.

Substitution of expansions (3.118) into (3.116) to leading order gives

d f WWon ~  K W o  1 __ n / « n Q v

dr]XTooIl +  nV «2] -  M ^W & S  "  ’

where it is assumed that A(2,?7(  «  1 for 77 =  0 (1), -f —► 0 . Equation (3.119) can

be re-written

2

HW o„ ~  ^ W o  =  ^o{2oo[l +  ^ 2] — (3.120)

where k0 is independent of 77. By the form of the boundary conditions prescribed 

at the wall we have </>0(r] =  0 ) =  Woo(t? =  0 ) =  0 , which implies that on the cone 

surface the left-hand side of (3.120) is zero. In the far-field, namely 77 —► 0 0 , it is 

required that <f>0 does not grow exponentially. Both sets of conditions can only be 

satisfied if

ko = 0, (3.121)

since generally Too[l +  («2/« 2)] — M^W qq ^  0 . This automatically implies

W Wo, =  H W o  ^  /  ^  =  /  (3.122)

giving the result
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(J)q — AqWoo^), (3.123)

where Aq is independent of 77 and represents an arbitary constant (i.e., the unknown 

amplitude of the eigensolution).

However, (3,123) is not a uniformly valid approximation to (3.116) for all 77; 

specifically, a breakdown occurs when 77 =  0 ((~ x). Define

V =  1 +  07 =  0(1), (3.124)

(i.e., rj represents a scale comparable to the radius of the cone, and therefore corre­

sponds to the region at the edge of the boundary layer), and on this scale <f> expands 

as follows:

^ =  + (3.125)

Equation (3.124) implies that we also have

</>n = C^oa + C2̂ in + ---- (3-126)

Substituting expansions (3.125), (3.126) and the relevant parts of equation (3.118) 

into (3.116), to leading order yields

d f $0fj + (l/77)3»o } 2£ /n 197\
dij 1 [1 +  (n2/  5V )1  - M l )  °’ * ^

where it is assumed in the limit 77 — 1 , that T00, Wqo —> 1 (i.e. the far-field boundary 

conditions) and f 2A < <  1 . Also, since we are approaching the far-field, in this limit, 

the curvature perturbation terms for the temperature and velocity profiles (and their 

derivatives) will be expected to tend to zero (at least be exponentially bounded).

In the limit rj —* 1 (<& 77 —> 0 0 , f  —► 0) (3.127) has a solution similar to (3 .1̂ ),

namely
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$o ~  -  1)1/2t?], (3.128)

where K„(zi) is the Bessel function of order n, argument zx (the K n(z\) solution is 

chosen in perference to the In(zi) solution in order that disturbances are propagated 

along characteristics in the downstream direction (see Ward (1955); Kluwick et al 

(1984); Duck and Hall (1989, 1990)).
A

To determine <$o we match (3.128) with the leading order term of the inner 

solution, namely (3.123) which in the limit r) —> oo, has the form

<f>o A)- (3.129)

Therefore we have

yielding the result

4  A 0K'„\ia(ML -  l)V»j]
K'„{{s (m [ -  l ) i /2] ■ (3-131)

Returning to the rj =  0(1) layer (which can be thought of as the main part of 

the boundary layer), we now wish to determine the 0 (()  correction to </>. Defining

X -  T0[l +  _j_ ^  Mooim -  c) , (3.132)

then substituting expansions (3,118) into (3.132), making use of the fact A(2, (i) «  

1 for ( —> 0 , and applying the binomial theorem, yields

I  = __________ 1_____________T01[l +  (n2/q 2)] -  2Wq0M^o(Wqi -  oQ ,
X Too[l +  (n2/ a 2)] -  * ( r „ [ l  + (n2/q 2)] -  j*

(3.133)
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Therefore the 0(C) > ^ equation has the form

d ( (W U on ~ W ooM jT o^l +  (n2/ g 2)] -  2 WooM^(W01 -  cQ), 
dr, <• (Too[l +  (»2/« 2)] -  >

, d  f (Woi — C i)( j)0n +  Woo[^it, +  <̂ o] ~  HoiT7^o — W oo^i 1 __ n / 0 , O A \

W  Too[l +  (n2/ a 2)] -  J  "  (3‘134'

By relation (3.123) we have

Hoo^orj ~  HoOrĵ O — ^OoAjWoOij ~  ^OOfj^O^OO — 0? (3.135)

which reduces (3.134) to

d  f  ( W o i  —  Ci)<f>0q +  W o o l ^ l r j  +  “  ^ O l t j ^ O  ~  H ^ O O r j^ l  1 _  n  / o  o f i \

drj t  Too[l + (n2/ a 2)] -  W & /  “  U'

Integrating once with respect to 7/ yields

(W0i —ci)<j>on+WQQ[(j)it1-\-(l)0]—WolT}<f>0--W0oT)<t>1 =  fci{Too 1 + r j ] (3.137) 

where fcj is an arbitrary constant. Matching (3.137) with the wall conditions gives

2
-Cl^0r?(*7 =  0) = hToo{i) -  0 )(l +  ^ 2)

^  —Ci AqWoq n(rj =  0) =  kiToo(rj =  0 )(l +  =2 )1  (3.138)

where the condition W0l- =  <£,• =  0 for all integer i >  0 , at the wall, has been used.

In the far-field, $1 must not be exponentially large and again, the basic flow 

terms behave as

Woo, Too —* 1, 

Woorj, Wqi, Woi, —► 0.
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Consequently, we have

2
—  Cl<f>0T}\ +  <j>ln 4-^0 =  4- —

Irj—too ' rj—too rj—too I. q  J

which can be simplified using (3.123), to

(3.140)

<t>in 4- Ao — &i{l — 4- z^}*
r;—too v O' '

Since both <f>iv and 4>oij axe of 0(£), then to match correctly as t) 

relation must hold

(3.141) 

oo, the following

t)—too Orj f}—tl

Therefore, matching yields

(3.142)

A 0ia (M l -  i y / 2K “[ia(M l -  1)>/2] 
i - 1)>/2]

Substitution of (3.143) into (3.141) yields

TJ—tOO
(3.143)

t .  -  ,i .f1 1  i5(M ~  ~  ~  / a  m 2 + ” 5
+  i w d [ M i - i y n  i /(1 “  +  &

Eliminating kj from (3.138), we obtain the following result for cp.

). (3.144)

c, = h  +  iafM2 -  ~  1)1/211 r r°o(l =  0)(1 + »V «2) 1
1 - l ) 1/*]/tW o0, ( „ =1 0 ) [ « i - l - n 2/ 5 2] / '

(3.145)

The asymptotic forms for this expression in the limit of large and small a  may be 

found readily. Firstly, as a —> oo we have n2/ a 2 —> 0, which immediately simplifies 

the second bracketed term to

{ Too(il — 0)
Wmq(v = 0)(M l -  1) }■ (3.146)
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Defining

2 =  ia(M^ — l ) 1/2, (3.147)

then in the limit z —* oc5, we have the Bessel function expansions

K W - - ( J ) 1/2e " [ l  +  0 ( I ) ] ,  (3.148)

and

<'(*) ~  + ( ^ ) 1,2n i l  + O (i)] -  ( £ ) 1' V ' [ 0 ( i ) ]

=  ( ^ ) I/2e - ( 1 +  0 ( V " . ] .  (3.149)

This means

/Ci[ia(JW2, - 1)‘/2) +   ̂ ^
in the limit a  —> oo and equation (3.145) has the asymptotic form

Cl_> la Wm^{n = 0 ) ( M I -  1)1/2 +  °(<* ')• (3.15i)

Turning our attention to the a  —► 0 limit, since (n2/a 2) »  M ^  and 1, then in 

this case the second bracket has the reduced form

The Bessel function, K n(z )<, can be expressed as the ascending series
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where z  is defined by (3.147),

z 00 (~z2)k
!»(*) =  ( j ) ” E  jfc!r („4+ ifc +  i)

and

n —1

^(n)  =  - i /  +  2  1 (n > 2),
*=i

i/ being Euler’s constant. Therefore, as 2 —► 0, for n =  1, we have

Differentiating with respect to £ gives

which in turn give

Too(?? = 0) n /_4l
c , ~4 w w ^ o )  + 0 ( a  k a ) '

If n > 1, in the limit z —► 0, we have

(3.153)

(3.154)

(3.155)

(3.156)

(3.157)

(3.158)

(3.159)



which yields (remembering T(n) =  (rc — 1)!)

K M
*;(*)

7 2 + 1
+  0(z). (3.160)

Therefore

nToo(r) =  0) , r
CJ ~* 777— 7-------“  +  U(a ), for n > 1. (3.161)

Wm (t> =  0)

To determine the leading order imaginary term for c, higher order terms in the 

Bessel function expansion have to be considered, namely

which yields

(3.162)

KM
KM

n + l , ( -1 )”+2 ,
~  + {Z) + 22n-1u!(n — 1)! "  1}

2n_1In

X [ 1 -
(_1)"+2

n\(n — l)!22r

Employing the binomial theorem and taking the principal value of the logarithmic 

term yields

Im{ci}
7T a 2n( M l - l ) nToo(0)22- 2n

(3.164)
2 Woor,(0)[(n-l)!p *

Equations (3.158), (3.161) are precisely the (real) values found by Duck and 

Hall (1990) for the downstream limit of a non-axisymmetric viscous mode (taking 

into account the different scalings used in Duck and Hall’s paper). Consequently, 

as C -> 0/oo, on a scale smaller/larger than that of the cone tip radius, this mode 

is expected to become predominantly viscous in nature, and to be described by 

triple-deck theory.
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Figure 3.77 displays Im{ci} with a  for n =  1,2,3 (with (3.151) shown also). 

Unfortunately (perhaps) it is seen that Im{cj} < 0 for all a  (confirmed by (3.151)). 

It is also observed that Im{cj} =  0(£) as £ —* 0. Unfortunately, it is also found 

that 0 (£2) and higher corrections to this mode would require an extensive amount of 

algebra. However, progress can be made, in particular, an estimate for Im{c(a = 0 )}  

can be obtained by considering, instead, the limit £ —> 0 of (B.2), pertinent to the 

ce —> 0 case. (This aspect is considered in the next section)

Finally, for this subsection, note that the £ —+ oo results may be inferred from 

these £ —i► 0 results, simply by replacing the small parameter ” £” in the various 

expansions by the small parameter ”1/A£ ”. More subtle differences between the 

£ < <  1 and the £ > >  1 solutions only appear at higher orders. Note, this is only 

valid for the case of a cone.

3.6.2 a '= 0j £ —i 0 (or £ —» oo)

System (B.2) turns out to be easier to analyse as £ —> 0 than does the corresponding 

finite a  (— a£_1) problem. We again utilize expansions (3.118) (although for the 

full expansion, see later).

To leading order, we have, for 7/ =  0(1)

<t>o =  AoWoo^), (3.165)

where A0 is some (arbritrary) amplitude parameter.

At the next order we have the following system:

W W i„ — -AoWoorjci -f A qW^q — Woo^i + AoW01Woon — AoW0inWoo =  kiT00, (3.166)

where is a constant, and we have utilized (3.165). Setting rj =  0 in (3.166), 

assuming 4h (7/ =  0) = 0, then
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-  AoCiWm (t) =  0) =  ^Toofo = 0). (3.167)

We now match with the far-field boundary conditions. Defining the outer scale

r =  l +  i)f =  0(1), (3.168)

we assume outer expansions of the form

<i> = C V )  + C<tfut (?) +  0(C2), (3.169)

and so

*  =  « g ,t +  C*rfg,t +  - .  (3.170)

The boundary conditions must be compatible with B.4, therefore we must have an

outer solution of the form

«iout ~  i . r - ("+I), (3.171)

where

A  — A0 +  +  •«■. (3.172)

Considering (3.165) in the limit 77 0 0 , it is immediately evident that matching

with the leading order term of equation (3,171) yields

Aq = A 0. (3.173)

In the far-field, equation (3.166) reduces to

<j>lT] = k x -  A0. (3,174)
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Since both <j>in and are 0(C), then for correct matching we must have

^ lr?ltj-+oo ~  ^0F lr=i ”  +  1^ 0' (3.175)

Therefore substituting (3.175) into (3.174) and eliminating &i, using (3,167), gives

nToo(^ =  0) ,

Cl =  Woo,(i? =  0)’ (3'176)

in accord with (3.161). In order to estimate complex values of c we must proceed 

to higher orders in £.

At the next order in (  the following equation governing <j>2 is obtained:

+  2 ^ 1̂ 00^ 01) +  2t/W oo^1») +  1^02^01) ~  +  W 01<hn +  V2Woq(/>qn

n + 2WoiV<̂ oi, + WoKk — ~ ~ 2yci<t>on ~  c2̂ 0r?

+ W oo^ i +  wWoo<f>o ~  Ci<j>0 — Woon(j)2 — 2AW00fJ</>o — 2 r)4>1W00n — r)2Woon<f)0

rT] foWoo 

noo
— ^2^00 +  ft2Too f  +  kiT0i, (3.177)

Jo 100

where &2 is a constant and k\ is defined above. We defer any consideration of this 

equation, and move to the next order of f , which yields
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W o0 ^ 3 jj 4* 2AW00̂ 1f7 4" 27/W(X)̂ 2f7 +  2 A t; W oo^ o»7 4" /̂2^00^1i7 c1̂ 2r7 ~  2 A c !<^0^

—2r}Ci<f)it) ~ rj1 Ci^Qrj — C2<f>itj — 2gc2<j>on —  C 3^ orj -f- W o o  <̂>2 4~ A W q o ^ o  4~ t / W q o ^ i

— C\<f>i — Cirj<f>Q — C2 <j>0 — W’oorj^ ~  2AHqo^^i — T ^ W q i ^ q  — 2 ^ 2 ^ 0 0 *

— ?72 W o O » j^ 1  4" W o j $2ri 4 “ 2 A W o i< ^ O r ? 4" 2 ^ W o i< ^ lr 7  4~  ?72 W / oi<^Orj 4 ” ^ 0 2 ^ 1 r j  

4 " 2 7 /W (3 2 ^ 0 f7  4 -  W o3<^O rj 4 ~  W ' O l ^ l  4 -  ^ 0 1 ^ 0 0  4" W o 2 ^ 0  ■”  ^ 0 3 r ; < ^ 0  ~  2 7 ? W o 2 » j^ O

—2XWoin(f>o — 2A?;Hoot?̂ o — ^ 0 2 ^ 1  — 2?/Woirj^i ~  ^ 0117^2

Now since the above equations just contain real coefficients, any imaginaries must, of 

necessity, only arise at a critical point, where, c = W00. Since c =  0 ( f ), this implies 

that in the neighbourhood of the critical point, Wqo =  <2(0- However, Woo =  0(1), 

but Wqo =  Woo(?/); therefore this must occur when 7? =  0 (f) . Consequently, consider 

a thin layer relative to the 77 =  0 ( 1 )  scale, namely

where the $,• are expected to be normalized in such a way as to be generally 0(1) 

quantities.

[<fti?oo ~  ^0^01]Wqq — qToo^o 4* Wqi^o^oo dr), (3.178)

Our main goal here is to determine the leading-order imaginary component of the 

complex wavespeed c (we do, of course, already know the leading-order real term).

77 =  7 7 / C  =  0 ( 1 ) . (3.179)

On this scale, the expansion for <f> is expected to develop as

<f> =  ( $ 0(77) 4- C2$i(*?) 4- f 3$2(*?) 4- • * •, (3.180)
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From the governing equations for the basic flow (as defined in Chapter 2), the 

2-momentum equation has the form

A dw0 (w0div0 , ^ dwo T0 d f dw0l
VlW + ~ ^  + 2 J W  = 7 ^ r r° at J ’ (3'1?1)

where

r = 1 +  ( 7/ +  AC2. (3.182)

Substituting the basic flow expansions for T0 and w0, with respect to f , yields to 

leading order

Si Woo, -  |WooWoo, =  Too^ploW-ooJ. • (3.183)

Evaluating on the surface of the cone and assuming adiabatic conditions gives

Woo^(0) =  0. (3.184)

The 0 (Q  equation has the form

SiWoi, +  -  r±(wmW01n + W01Woon) +  XWmWMn =

TooToor}Woin +  T^oWoinn +  TooTqi^Woo  ̂+  TooToiWoow -1- T^Wooq 

-f t̂ TooToô Woô  4- r}T$oWoonT) -j- (Toi — ?/Too)(Toor?WoofJ +  TooWooqn)1 (3.185)

which when evaluating on the cone surface and adiabatic conditions are again as­

sumed, yields

^ 011)17(0 ) =  “ Woorj(O)* (3.186)
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In the thin, critical layer, adjacent to the wall, basic flow expansions for velocity 

and temperature are Taylor expanded about t)(— fj() = 0 , giving the critical layer 

expansions

W0 =  fWWO)*? +  C'IjW W O))?2 +  Woi„(0)>7]

C^g^WooriiwCO) + +  Wo2tj(0)?] +  0 ( ( 4), (3.187)

and

To = Too(0) +  f  PWO)*) +  Toi( 0)) +  C2[TO2(0) +  Toln(0)ij +  ^ W O ) ? 2] 

C3[7o3(0) +  j?To2„(0) + - f T olm(0) +  —̂32oo»j»)tj(0)] +  0 (£4), (3.188)

where the no-slip boundary condition has been applied. Also, since Won = ^Wo^, 

then

Wo n =  W oor,(0) +  C[^OOfjrj(0)^f +  W^Olg(0)]

d"C2 ^ 00^ 17(0 ) +  Woi^(0)^ -f Wo2»7(0)] -j- * • • (3.189)

Substituting expansions (3.180), (3.187) - (3.189), and the c expansion into (B.2 ), 

and integrating through with respect to rj, to leading order in the critical layer, we 

have

^oToo(O) =  0 k0 = 0, (3.190)

where kQ is the leading order term in the constant of integration, the whole term 

having the form
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k — 4* C l̂ +  C2̂ 2 +  * • ■ *

At the next order in (, we obtain

[WW0)tf -  cil$0n “  $oWoo„(°) =  ^ ( O ) .

Integrating, gives

= ~~ w M°°(o j+  ~  Cll»

where A q is the constant of integration. Applying the wall condition $o {v = 

yields

^i^oo(O) _  %

”  °Cl*

Therefore

*o =  A o W o o ^fj,

where we have matched with (3.165) taken in the limit rj —> 0, obtaining Ac 

At 0(C2) the following system governs $i:

[jWoo„„(0)i72 +  WWO)? -  c2]$o5 +  [Woon(0)v -  <*]$!, -  $ ,W o o ,(0 )  

—[Woo^O)?) +  Woi,,(0)]$o — &2^oo(0) +  ^i[2oori(0)v +  T01 (0)],

Utilizing (3.195), this can be simplified to

(3.191)

(3.192)

(3.193) 

: 0) =  0

(3.194)

(3.195)

=  A q .

(3.196)

[Woorj(O)?? — ci]$itj — ^00^(0) — + -VUoo^(0)^2^ô ^ 0017(0 ) +  (3.197)

where the constant k\ is given by
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k\ — ^2^ 00(9 ) + &i7oi(0) "f c2^o^oo»j(0)- 

Assuming adiabatic conditions (3.197) reduces to

(3.198)

[Woon(Q)fj — Ci]$lf? — ^jWocfO) — fcj. (3.199)

Integrating with respect to 77 and applying the wall condition $ 1(77 =  0 ) =  0 gives 

the solution

$1  = jW oo^i? =  0%  (3.200)

where Ai is a constant, linearly related to A0.

At the next order in f  the equation of $  has the form

Woomu(O)^ 3 +  -W W O ) ,;2 +  WQ2r}(0)f} -  c3] +  Woo„(0)

+Woiii(0)v ”  c2] +  $2«[WW°)* — Ci] 4  2(A 4- T7)^ofj[l^oon(0)?7 — ci]

$01^00,(0)77 — ci] — $ 2Woo,(0) — 2(A 4- 7?)$oWoorf(0) — $ i[W oo^ (0)t7 4-

-  ^ W o o ^ fO ) ,)2 + -  * 0W « ,(0)

— h{Toa„(0)f, -f Toi(0)] +  kiPoj(O) +  Tmrl(0)rj ■+• ~7oor3r)(0)^2] +  fc32oo(0). (3.201)

Utilizing (3.195) and (3.200) and assuming adiabatic wall conditions this system 

reduces to

$2^[B'oo,(0)t7 — Ci] — $ 2^ 00,(0) =  k2 ~h 3^AoWoo^(0)ci 

+ |^ W i 0wiI(0)Woo,(0)i4o -  ?AoW ^ ( 0 ) f  -  ^ l ^ f A o C . W o ^ O ) ,  (3.202)

A

where the constant k2 is given by
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k2 — &2^Ol(0) +  ^1^02(0 ) -f ^3^Oo(0) +  C3A0 Wixĵ fO) + -^l^OOrj(0)c2

-|“2Aj4oCi W/oorj(0)J (3.203)

and ki has been eliminated from (3.202), using (3.194).

If we take (as we are quite at liberty to do) Aq and k2 to be real constants 

(this is not essential for our arguments, but simplifies the following argument), then 

we now consider only 4>*2 (where here and elsewhere a superscript i denotes an 

imaginary component). This quantity is triggered by the well-known -f«7T jump in 

the logarithm (Mack, 1984, for example) across the critical layer. Specifically, here,

this is caused by the ry dependency on the right-hand side of (3.202) (k2 plays no

role being ^-independent). If (3.202) is written symbolically as

[WoOfj(O)̂  ”  cl]$2rj — II/OOrJ(0)^2 =  -̂ } (3.204)

then

*2 =  [Wm „(0)v -  c ]  r   =J. (3.205)
Jo [W o o ^ O p h -C j]2

Evaluating this integral, taking only the imaginaries together with the limit fj —* oo 

yields

^ ~ B ''[W " o o ,(0 )v -c i] ,  (3.206)

where

d«  a ~ f WoonwiOfa Toow(0)c! -j (
8  ~  ( 3 - 2 0 7 )

Equation (3.206) then provides lower boundary conditions for the system (3.177) 

and (3.178).
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Since (3.177) contains only real coefficients (taking c2 to be real as well, which 

will be justified a posteriori) and assuming <f>o, <f> 1 and all their derivatives are real, 

then we must have

^ o o ^ - W o o ^  =  0, (3.208)

which on integration yields

4 ,(77) -  AWooW, (3.209)

where A  is  a  constant of integration. Matching the expansions for <j> in the 77 and 77 

layers, at 0 (f3) yields

=  A W o o ^ fj  +  4 (0) , (3.210)

where the Taylor expansion of (3.209) about 77 =  0 has been utilized and the bound­

ary condition W'oo(O) = 0 has been applied. Matching (3.206) with (3.210) gives

A  =  B' and 4 (0 ) =  (3.211)

Therefore (3.209) can be written

4 (77) =  B'Woofy). (3.212)

The imaginary part of equation (3.178) has the form

Woo4 t7 +  277tl'oo4 r? — C14 t) +  1^004  “  ^ 00q<f>3

+Woi4rj — 2t74^00»j — Ŵ 01ij4 ~ ^^Ot? = &3^00- (3.213)

In the far-field this equation reduces to
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43n T)—tOO+ 4**2T}—*00 — k*
—  rc3 5 (3.214)

where it has been assumed <f>̂n 0, by the form of (3.212).

Equation (3.214) must match the far-held solution as given by (B.4). In the limit 

7) —> oo all the perturbation terms are expected to behave like (B.4) (resulting in 

decay), therefore

3rj q—*oo

(ti +  l )B \ (3.215)

and so

k'3 = - n B \ (3.216)

Setting Tj =  0 in (3.213) yields

”  Cl^ L  ~  =  _ n -B*3 oo(0).

However, from (3.211) and (3.212) we have

(3.217)

(3.218)

4  „ =  - c i  S '.rj=0

Consequently (after substituting for <\ and 4n),

(3.219)

J  =  n3r oo(0K  f roo(0)iyoo,m (0) _  W O ) .
waUito)*- w a,(o ) w a ,(o )J ‘

(3.220)
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Prom the governing equations for the basic flow (as defined in Chapter 2), the 

energy equation has the form

BTo , (w0 dT0 h / . , V]dTQ m2f f dw0^2 r 0 d rT0dT0] /n

where r is defined by (3.182). Substituting the basic flow expansions for To and Wq, 

with respect to yields to leading order

■O.Too, -  |WooToo„ =  T^(7 -  \)MlW^n + (3.222)

Evaluating on the surface of the cone and assuming adiabatic conditions gives

W O )  = -<*1 -  l)* iW & ,(0 ). (3-223)

The governing equation for continuity has the form

+  =  (3'224)

Substituting the revelant terms of (3.118) and evaluating the resultant leading order 

equation on the body surface, yields

#ir} — 0, (3.225)

where, again, adiabatic wall conditions are assumed.

Differentiating the leading equation in (  of the basic flow ^-direction momentum 

equation, i.e. (3.183) with respect to t? and evaluating on the boundary yields

M )  =  - T^ f ^ ' (0), (3.226)

where (3.225) has been utilized and again, the cone surface is assumed to act as an 

insulator. Substituting results (3.223) and (3.226) into (3.220) gives
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4  =  2 ™ M 7 - 1 ) M £ | H | .  (3.227)

In fact, the expansion for <f> in (3.118) is not quite complete as it stands, since 

the analysis of the fj ~  0 (1) layer above indicates the presence of logarithmic terms; 

specifically, we require

=  <M j?)+C^i07) + C2<M t7) + C3^3(7?) +  * ' •+l°gC[C2^?i(77)+C3<̂3i(?7) +  * * ■]> (3.228) 

where

^21 (*?) =  ■^2i^oo(7?)? (3.229)

with A21 a constant.

A comparison of the fully numerical computation of Real{c(o: =  0 )}, with the 

asymptotic formula (3.176), as f  —> 0 , is shown in Figure 3.78. The agreement is 

seen to be entirely satisfactory. Unfortunately, the correlation between the com­

puted Im{c(o: =  0)} and that obtained using (3.22jJ) is found to be less agreeable. 

However, this poor correlation is not unexpected for two reasons. Firstly, accurate 

computations of Im{c} in this limit become exceedingly difficult, as confirmed by 

the quite complex asymptotic structure detailed above, with both short (rj =  O(Q) 

and long (77 =  0 (l/£ ))  lengthscales emerging. Secondly, the asymptotic form for 

Im{cj} is achieved very slowly as £ —* 0 , at least in one particular configuration, 

where with n =  1 , the imaginary wavespeed has a leading-order coefficient of ap­

proximately 3.898 x 105( 3. A comparison between numerical and asymptotic results 

is not shown in this case.

In the case of £ —► 0 0 , we may only replace the small parameter in the above 

by the small parameter ‘l/AC’ (valid for the cone only).
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When we impose heated/cooled wall conditions, instead of adiabatic conditions, 

the asymptotic theory is rather different. In the case of heated/cooled walls results 

(3.184) and (3.186) are no longer valid. Equation. (3.195) is found to be still valid, 

but equation (3.197) no longer simplifies. Using this equation as the starting point, 

in this case, we are now only interested in terms , which following the theory set 

out for the adbiabatic case, will be triggered by the *+*>’ jump in the logarithm 

term across the critical layer. Rewritting (3.197) in the form

[WooijfO)̂ / — “  $iWoor?(0) =  Rj (3.230)

where

R  — &i + -W mTiri(0)ij2A oWm {0) -f kiToan(0)fj, (3.231)

then

$1 =  M  -  d ] f  Tw- -fofo =y. (3.232)
JO [W oo^(0)7/1  -  C iJ2

As before, this integral is evaluated, taking only the imaginaries together with the 

limit fj —> oo, yielding

$1 ~  S{[VVoo,(0)7 -  ci], (3.233)

where

D« _  A [ tyoO»w(Q) 0̂0T7(Q) 'I / q

° d w a , ( 0) Too(0)Woo,(0 ) J -  ( 34)

Equation (3.233) provides lower boundary conditions for the system (3.166) and 

(3.177).
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Assuming (3.166) contains real coefficients only (ci is assumed real, an assump­

tion that may be justified a posteriori) and matching the expansion for <j> in the 77 

and 77 layers, in a manner similar to the adiabatic case, yields

rfj =: B[Woo(v),

where B[ is defined by (3.234)

The imaginary part of system (3.177) taken in the limit 77

(3.235)

0 0 , has the form

T)—*00 = jfei.rj—fco (3.236)

Following the adiabatic theory, by the form of ij> in the far-field, it is required

2t) IJ-+0O
-{n  + 1) $

q—nx>

yielding

(3.237)

The imaginary part of (3.177), evaluated on the fixed boundary is

(3.238)

Making use of the results

TJ=0

^2  n “  B\ĈT,=0
(3.240)
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which axe obtained by matching <j> in the two layers, and equation (3.238), gives the 

result

1 _  2 *TOo{V ~  0) f WqOtjtjj7? — Q) ÔOrjiV — 0) 1 (‘iOAl)
2 W&nltl =  0 ) I  Woon(V =  0 ) Too(V =  0) ( l )

Evaluating equation (3.183) on the cone surface yields

t \ r  _  T oon W o o , /  o \WQoqn - ------- ------, (3.242)
-too

which simplifies (3.241) to

^2wTSo{0)Woonn( 0)
c’ = n - wi m  ■.  ( 3 ' 2 4 3 )

Comparing this result with the adiabatic result, as obtained above, it is noted 

that the first imaginary term in c is an order in (  larger for heated/cooled wall 

conditions, implying larger growth rates in the present case. The ratio of the leading- 

order imaginary terms has the form

Heated/Cooled c, _  Wqô Q ) , *
Adiabatic C^wr}(0)o'M^C)('y — l')n’

A comparison of the fully numerical computations (solid lines) of Re{c(a =  0)}

and Im{c(a =  0)}, with the asymptotic formulae (3.176) and (3.243), (broken lines),

as (  —> 0, are shown in Figures 3.79 and 3.80, respectively, for a wall temperature

Tw =  5.0, and =  3.8. The agreement is seen to be entirely satisfactory, although

f  is required to be quite small for these asymptotics to be valid. It is interesting

to note that (3.243) predicts that if the cylinder surface is cooled, then c\ < 0, and
>©

hence this mode is stabilized, whilst heated cylinder surfaces exhibit cj, and hence
A

the mode remains unstable.

In the following subsection the behaviour of mode I as f  —> 0, is considered.

162



3.6.3 C -» 0, a  =  0(C1/2)

The numerical results presented in section 3.3 strongly suggest that generally, as 

£ 0, mode I has a structure very similar to the planar case, for all values of n.

However, there is one important exception found in the comparison, namely the 

behaviour of the lower neutral point in this limit. In the planar case, as a  —► 0, c —► 

1 — 1/Mqo, corresponding to the so-called ‘sonic’ mode. However, . the numerical 

evidence (section 3.3) suggests that on introducing curvature terms there is a shift 

in the neutral point, along the positive real-a axis, and the neutral point becomes 

(slightly) supersonic, with c < 1 — l/M*,, as £ —> 0.

A (sensible) balancing of terms suggests that we might look for a solution of the 

form

c = Co +  fci -f • • • ,

<f> — <i>o +  C^i +  • ’ * i 

Wo ~  Woo +  fWoi H” • • *»

To =  Too + CToi -f • * *, (3.245)

with

a  =  C1/2a, a  =  0(1). (3.246)

To leading order, (3.116) yields

■ M  <“ *’>
where

To =  T o o - M^iWoo -  Co)2. (3.248)
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Integrating (3.24R-) subject to the impermeability wall condition gives

(3-249)
a

where K q is some arbitrary constant and the integral is to be taken underneath the 

critical point to avoid any singularities arising. In the limit 77 —► oo, <j>Q is required 

to be at least expondentially bounded and by the form of the imposed boundary 

conditions must tend to a constant. If fo ~  constant, then the integral would be 

0 (77), which of course, does not converge as 77 —> 0 0 . Consequently the integral will 

only be convergent as 77 —> 0 0 , if fo =  0 , giving

(3.250)

Further, the negative sign is taken to be appropriate with the numerical results and 

the comments made above: indeed, this is simply a repeat of the planar calculation 

(Lees and Lin (1946)).

Curvature plays an important role at the next order, namely 0(C). The governing 

equation in this case is

d 1
^~{t-[(Woo — &o){K <M  ~  ci'/'oij — » W i  +  w w o , — n w d

-^[(W oo -  £o)A>„ -  W00M f ^ 2 + T01 +  2M l(W w -  co)c,
Tq 1 or

- 2 M l( W m -  co)W0i] } = c,2(-Wm ~ Cô ° . (3.251)
J'  -*00

Integrating with respect to 77 and utilizing (3.24*1), yields
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(Woo — £o)(<Aln “  M  ~ Clfor) “  WoOrj<̂ i — W01 ^ 0  -f Wqi(f>Qr 

■K0 +  T01 + 2Af£(Woo -  Co)£i -  2 M l(W 00 -  Co)W01

r> * I -2- (Woo — Co)<f>0 J ,0 nrn\AaTo +  a  r0 / ----- - --------- dr), (3.252)
•/o ioo■00 

A
where i£i is a constant.

(3.25Z) is required to match correctly at the outer edge (r/ —» oo) with (3.18). In 

the limit f  —»■ 0, (3.18) has the form

^ ~ ^ C [V o ( l+ » ? C )  +  C>(C2)], (3.253)

where

tjo = MU2&(2ci)I/\  (3-254)

the positive sign being taken for the argument of the modified Bessel function since 

the real part of rj (as defined by (3.19)) is required to be positive in the limit 77 —► 00 

and by the form of (3.2S.C).

Taylor expanding the Bessel function around 170, yields

«S0 =  ^ /C W o ) ,  (3.255)

and

<h = o K tio ) ,  (3.256)

in the limit 77 —> 0 0 .

Matching (3.24ft) with (3.25s) taken in the limit 77 —> 0 0 , yields
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<t>oc K o l
2

where

(3.257)

i = r  ( w j - c o ) ^ ’ ( 3 - 2 5 8 )

and we have employed (3.2-S'o). This clearly yields

K\  = H ^ aL- (3-259)KnVtOjMoo

(3.252) in far-held reduces to

T(T 2
< U  = - ^ o ( l - £ o K + r - V f ^  +  2 M i ( l - c 0)c1]. (3.260)

'ft,-*oo 1 — Co LQ 2 J

Matching (3.25d) and (3.266) yields the following nonlinear dispersion relationship 

for Ci:

p p r  + 1 =  ^  [ ^  +  . (3.261)Kn(Vo) I  la
j

The integral (3.25%) was evaluated numerically, and for the conditions prevailing 

in all the numerical results it was found that I  «  —228.4 — 59.3i. Equation (3.260) 

was solved using a Newton iteration, and results for Realfcj} and Im{cj} for various 

n are shown in Figures 3.81 and 3.82, respectively.

Making use of result K„(fjo)/ K^rjo) —> —1 -f O (^), in the limit a —> oo, (3.260) 

predicts that one family of solutions has the form

d 2/ 2
*  ^  53f t -  (3 '2 6 2 )

which is in agreement with the a «  1 expansion for c in the planar case, namely
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(3.263)

Equation (3.262) is shown as an asymptote in Figures 3.81 and 3.82. Note, a

where we have made use of the relation K"(in)/ K'n(in) =  —(1 /(in)). The impor-

the freestream conditions considered throughout this paper, for n — 0 this position 

is given by a  «  O.l^1/2, n — 1 by a «  0.20C1/2, and for n =  2 by a  0.295C1/2.

correspond very closely to the cone results at this axial location, as explained in 

subsection 3.4.4) reveals a fair degree of agreement.

In the case of £ > >  1, the above results may be easily transposed, by the 

replacement of by ‘l/A ^’; the corresponding positions for lower neutral point are 

then a  «  0.1(A£)-1/2 for n =  0, a & 0.20(A£)-1/2 for n =  1, and a  w O.295(A0-1/2 

for n = 2. These results are seen to agree quite well with the f  =  75 results shown 

in Figure 3.66 and 3.67.

Finally, it is found that altering the wall conditions from adiabatic conditions to 

heated/cooled wall conditions, has little significant effect on the asymptotic analysis

(real) family of ci, which may exist is an exact solution of (3.26if), namely

(3.264)

tance of this mode is not thought to be great. The complex families of ci’s axe seen 

to terminate at a finite value of d, corresponding to the (lower) neutral point of 

mode I. Notice that in all cases, because Real{ci} < 0 at the termination point, 

these modes correspond to supersonic modes.

From the result shown in Figure 3.82, we are therefore able to offer an estimate 

of the position of the lower neutral point of mode I as f  —» 0. In particular, for

Comparing these asymptotic results with the (  = 0.01 results displayed in Figures 

3.5 and 3.6 (which even though axe cylinder results, because of the smallest of (
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for the mode I lower neutral point.
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Figure 3.1: Variation of <v with a  for adiabatic cylinder, £ =  0 (Planar).
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Figure 3.2: Variation of c, with a  for adiabatic cylinder, (  =  0 (Planar).
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Figure 3.3: Vaxiation of ac, with a  for adiabatic cylinder, (  = 0 (Planar).
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Figure 3.4: Variation of Cr with a  for adiabatic cylinder, Moo — 3.8, (  =  0 .01 ,
Mode I.
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Figure 3.5: Variation of c, with a  for adiabatic cylinder, M*, =  3.8, (  = 0.01, 
Mode I.
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Figure 3.6: Variation of ac, with a  for adiabatic cylinder, M00 =  3.8, £ =  0 .01 ,
Mode I.
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Figure 3.7: Variation of cv with a for adiabatic cylinder, M00 =  3.8, (  =  0.01, 
Mode II.
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Figure 3.8: Variation of c, with a  for adiabatic cylinder, =  3.8, £ =  0 .01 ,
Mode II.
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Figure 3.10: Variation of Cp with a for adiabatic cylinder, = 3.8 (  =  0.01
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Figure 3.11: Variation of c, with a  for adiabatic cylinder, =  3.8, C =  0 01 
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Figure 3.12: Variation of ac, with a  for adiabatic cylinder, M =  3 .8 , C -  0 01
Mode IA .
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Figure 3.13: Variation of ac, with a  for adiabatic cylinder, M00 =  3.8, (  =  0.05, 
Mode I.
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Figure 3.14: Variation of ac, with a  for adiabatic cylinder, M00 =  3.8, f  =  0.05,
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Figure 3.15: Vaxiation of ac* with a  for adiabatic cylinder, M00 =  3.8, (  =  0.1, 
Mode I.
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Figure 3.16: Variation of ac, with a  for adiabatic cylinder, M00 =  3.8, £ =  0 .1,
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Figure 3.18: Variation of ac,- with a  for adiabatic cylinder, M00 =  3 .8 , f  =  0 .5 ,
Mode II.
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Figure 3.19: Variation of ac, with a  for adiabatic cylinder, =  3.8, (  =  1,0, 
Mode I.
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Figure 3.20: Variation of ac; with a  for adiabatic cylinder, =  3.8 (  =  1 0
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Figure 3.22: Variation of ac, with a  for adiabatic cylinder, =  3 .8 , £ =  5 0
Mode II.
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Figure 3.23: Variation of acj with a  for adiabatic cylinder, M <*> =  2.8, £ =  0.05, 
Mode I.
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Figure 3.24: Variation.of ac,- with a  for adiabatic cylinder, =  2 .8 , (  — 0.05,
Mode II.
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Figure 3.25: Variation of ac, with a for adiabatic cylinder, M00 = 2.8, £ =  0.5, 
Mode I.
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Figure 3.26: Variation of ac, with a  for adiabatic cylinder, MQ0 =  2 .8 , (  =  0 .5 ,
Mode II.

181



W0 
Pfc

)

002 00U 006 000 010 012

Figure 3.27: Variation of transverse positions of inflexion points (77,) with axial 
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Figure 3.28: Variation of w0(r] =  77,) with £ for cooled cylinder, M = 3.8.
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Mode I.
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Figure 3,33: Variation of ac{ with a  for cooled cylinder, =  3.8, £ =  0.05, n =  1, 
Mode I.
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Figure 3.34: Variation of ac,- with a  for cooled cylinder, =  3.8, (  — 0.05, n =  1 ,
Mode II.
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Figure 3.35: Vaxiation of ac, with a  for cooled cylinder, =  3.8, (  =  0.05, n =  1, 
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Figure 3.38: Variation of ac, with a  for cooled cylinder, M00 =  3.8, (  =  0.05, n =  5, 
Mode I.
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Figure 3.39: Variation of ac, with a  for cooled cylinder, =  3 .8 , (  =  0.05, n =  5,
Mode II.
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Figure 3.40: Variation of ac, with a  for cooled cylinder, =  3.8, (  =  0.5, n =  1, 
Mode I.
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Figure 3.42: Variation of ac, with a  for cooled cylinder, M*, =  2.8, C =  0 05 n =  1 
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Figure 3.44: Variation of ac, with a  for cooled cylinder, M =  2.8, (  =  0.05, n =  3, 
Mode I.
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Figure 3.45: Variation of ac, with a  for cooled cylinder, M00 =  2 .8 , £ =  0.05, n =  3
Mode II.
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Figure 3.46: Variation of ac, with a  for cooled cylinder, =  2.8, (  = 0.05, n =  5,
Mode I.
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Figure 3.47: Variation of ac, with a  for cooled cylinder, =  2 .8 , (  =  0.05, n =  5,
Mode II.
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Figure 3.48: Variation of ac, with a  for cooled cylinder, M =  2.8, (  =  0.5, n 
Mode I.
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Figure 3.49: Variation of ac, with a  for cooled cylinder, M«> =  2 .8 , (  =  0.5, n
Mode II.
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Figure 3.50: Variation of transverse positions of inflexion points (77.) with axial 
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Figure 3.51: Variation of w0(r] =  77,) with (  for heated cylinder, M 00 =  3.8.
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Figure 3.52: Variation of ac, with a  for heated cylinder, =  3.8, (  =  0.05, n =  0, 
Mode I.
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Figure 3.54: Variation of ac, with a  for heated cylinder, AT*, =  3.8, Tw =  5.0, n =  0, 
Mode I.
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Figure 3.55: Variation of ac, with a  for heated cylinder, M^ =  3.8, Tw =  6.0, n =  0,
Mode I.
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Figure 3.56: Variation of ac, with a  for adiabatic cone, A/<*, =  3.8, 0.5,
Mode I.
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Figure 3.57: Variation of ac,- with a  for adiabatic cone, =  3.8, C =  0.5,
Mode II.
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Figure 3.58: Variation of ac, with a  for adiabatic cone, M 00 =  3.8, £ =  1.0, 
Mode I.
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Figure 3.59: Variation of ac, with a for adiabatic cone, — 3.8, £ =  1.0,
Mode II.
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Figure 3.60: Variation of q c ,  with a  for adiabatic cone, AT*, =  3.8, (  =  2.0, 
Mode I.
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Figure 3.61: Variation .of ac; with a  for adiabatic cone, M0Q =  3.8, £ =  2.0,
Mode II.
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Figure 3.63: Variation of acj with a  for adiabatic cone, M0c =  3.8, £ =  5.0,
Mode II.
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Figure 3.64: Variation of q c ,  with a  for adiabatic cone, M0Q =  3.8, £ =  20.0, 
Mode I.
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Figure 3.65: Variation of ac, with a  for adiabatic cone, M00 =  3.8, (  =  20.0,
Mode II.
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Figure 3.66: Variation of c, with a  for adiabatic cone, M00 =  3.8, £ =  75.0, 
Mode I.
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Figure 3.67: Variation of qc, with a  for adiabatic cone, M =  3.8, (  =  75.0,
Mode I.
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Figure 3.68: Variation of c, with a for adiabatic cone, = 3.8, (  =  75.0, 
Mode II.
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Figure 3.69: Variation of ac, with a  for adiabatic cone, M00 =  3.8, (  =  75.0,
Mode II.
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Figure 3.71: Variation of ac, with a  for adiabatic cone, =  3.8, (  =  75.0,
Mode 1^.
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Figure 3.73: Comparison of computed cr with asymptotic form.
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Figure 3.79: Comparison of computed c,(o =  0) with asymptotic form, =  3.8, 
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Figure 3.80: Comparison of computed c,(a =  0) with asymptotic form, =  3.8
w  — O.U.
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Chapter 4 

Critical Layer Theory

In this chapter we consider the effects of the critical layer on the temporal evolu­

tion of subsonic instability modes in the compressible boundary layer formed on a 

cylinder. Only two-dimensional disturbances are considered, i.e. axisymmetric dis­

turbances only. As remarked upon in Chapter 1, two theories have been developed 

to determine inviscid, neutral stability characteristics of quasi-parallel flows. Both 

resolve difficulties which arise when the linearized inviscid problem is considered. 

The first is due essentially to Heisenberg (1924), Tollmien (1929) and Lin (1944, 

1945) and is termed linear viscous theory. Lin (1955) summarizies the overall the­

ory, the essence of which is the retention of viscous terms in the neighbourhood of 

the critical point. In the second method, the effects of finite amplitude are assumed 

to dominate over viscous terms: this theory is known as nonlinear theory. Benney 

and Bergeron (1969) and Davis (1969) independently suggested that the inviscid 

singularity could be resolved by including nonlinear terms in the critical layer.

We begin this chapter by applying the linear viscous theory to the stability 

problem we have developed, to determine whether curvature terms have any signif­

icant influence on the theory. It should be noted that the analysis developed in the 

following section is based on the work of Heisenberg (1924), Tollmien (1929) and

Sbucke t  O * ' ^ S  V>doV. (

211



4.1 Linear Critical Layer Equation Derivation

In Chapter 3 we have shown that for supersonic flow past axisymmetric bodies, 

the disturbance equations reduce to a compressible Rayleigh type equation which 

possesses a singularity at the critical point, i.e. a singularity exists at the point r,*, 

where wo(ri) =  c. Since the disturbance equations are of the Rayleigh form, then in 

the neighbourhood of the critical point, applying the method of Frobenius, solutions 

of the Tollmien form can be obtained. In Appendix C the pressure disturbance term 

is found to have a solution of the form

Pa  = (r -  r t)3 -f a i(r  -  r,)4 -f )
,2

Pb  =  1 +  b2(r -  r {) +  64(r -  r*) -+••■ +  — ̂ / n ( r  -  r,), (4.1)

where

W or (r i )  T0(r.) n  

and the coefficients a.j and bj are defined in Appendix C.

Clearly the first solution is regular, whilst the second is generally not, due to the 

presence of the logarithmic term. If an axisymmetric generalized inflexional mode 

exists somewhere in the boundary layer, i.e. if condition (3.3?) holds (with \  = n = 

0), then the term ln (r  — r,) will be absent and the second solution becomes regular. 

However, generally the generalized inflexion condition will not be satisfied, giving 

rise to a a dilema - which branch of the logarithm should be taken on either side 

of r  =  r; if the eigenvalue problem associated with the compressible axisymmetric 

Rayleigh-type equation is to be solved. To allow for all possibilities, we now write

Jrc(r — Tf) =  ln\r — r,*| +  i0 r  < r,-, (4.3)
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where 0 is to be determined.

A second consequence of the logarithmic term is that it gives rise to strong gra­

dients in the perturbation pressure (and consequently the other disturbance terms) 

in the neighbourhood of the critical point.

Before proceeding to determine the form of the solution in the critical layer, we 

shall make use of (4.1) to determine the form of the normal velocity and temper­

ature disturbance terms outside the critical layer. To achieve this we consider the 

behaviour of the disturbance equations, as derived in Chapter 3, as the critical layer 

is approached.

From equation (3.12) p and {q are related by

iT0 „
Vl ~  7M > 2(u>„-c)Pr’ (4-4)

where a  refers to the unsealed form of the spatial wavenumber (a  s  a  of Chapter

3)-
Therefore in the limit r  —► r,-, vi will have the form

via =  M r ~  ri) +  <fc(r ~ Vi)2 +  d3(r -  r,)3 + • • ■,
a 2

vib =  e0 +  ei(r -  r,-) -f e2(r -  r*)2 - f  (- —  j3v1Aln(r -  r,-), (4.5)
o

where

A -  3ffi0(r,)
1 ^ M ^ W o r ^ i Y

(4.6)

A __ ? r4QiTo(r,-) « / ^orQ%) Tp(rj)u;orr(r,)\ i  .
2 t f 'y M 2, L u>0r(r.) \w 0r(r^  2u;gr(r;) ' J ’
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d  =  * r^ T o C r ,)  ; r 0r(rt) To(ri)worr{ri)x o W

3 «,0r(rt) ^W orfa) 2u>gr(r,) '  '  4wgr(r,)

^Orrr(^)r o(n) T0r (r.JtfJorr^i) , Torr(r,)

and

i
ei =

rrryiJJ-O\r i) _  ÔrV» iJWQrrin; -tQrrV* i) \1
6wgP(rl-) ' 2wgr (r1) 2«;0r(ri)

eo=  -l hf : {ri) (4.9)
7  M ^ a 2w0r(ri)

j-g /3Tp(rj) / 2 pr(rt-) 7p(rj)i{;Qrr(r,)\ i  /'ain'i
a 2j M ^  I- 3i»or(n*) 2^ o r ( r ,)  2u&(r.)

e 2
f ro(rj) / , a 2/? \ a2/?/Tor(r,-) r0(rt> 0rr(rO\
[— 7 zU 464 +  - 5- a i ;  +  7 -r  -  — ^ j T - x — ytt27 M 2) l to0r ( n ) V 3 '  3 vn>0r(r,) 2 u & (r.)

I 2jL /'^Orr(r »)-̂ o(r ») __ w 0rr r(^i)^0( )    ^Pr ( r  t)^Orr( )  , ^Orr(r») \1 t .  - - \

2'  4 ^ r(r,) 6u;gr(rt) 2u&(r,-) 2u>or(rt) ' J '

Considering the energy equation (3.8) in the limit r  —> r,-, yields an outer solution

for T  of the form

Ta =  /o +  / i ( r  -  r,) +  / 2(r ~  n )2 +  • • *,
a 2 '

Tj? =  — —  +  gi +  #2 (r -  r;) +  • • ■ +  ~ - p f Aln{r  -  rf), (4.12)
r  T{ O

where

f — 3Tor(r,)7o(r<)
/o a ^ t t & O * ) ’ ( }

4a1Tor(rl-)r0(rl-) t „/T 02r (rt) +  To(ri)T0rr(rf)f  1 4ax^or (n )2 p(ri) /
1 O ^ M 2, 'Wor(n)  ̂ ^Or(n)

30r(n)2b(ri)uJtorr(»*i)’
^Or(n)
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/»=■
5 a 2 ro r(r ,)r0(r,) , ,  /T 02r(r ,) +  T0(r i)To„(ri)

I togr(rj)
+ 4ai(

U>Or(2'.')

5or(ri)7o(r,)toorr(r,')\ „ /■3T0r(ri)T0{ri)w lrr(ri) 2’'or( r ,) r 0(»-,')«'orrr(r ,)
- ) + 3 ( 4u»0r(»-i)

^O rr(n)(J’o3r(r.') +  ^ (r .O ^ O rrM ) 3 r 0r(r ,)r 0rr(r,) +  T0rrr (r ,)7 o (r ,)

“ Orff.) 2u,Or(r i)
) ] , ( 4 .1 5 )

a n d

<7o =
262r 0r(n)ro(r,-) 

a ^ M ^ u ^ r . )  ’ (4.16)

9i =
a a/8ror(ri)T0(rj) , / ^ ( r . - ) +  r o (r j)2brr(ri)— + 2̂ 2 (

a 27 lk f i  I 3u»gr(r i) v u>or(n)

- Z°^ ; ) r o ( r L)u,orr(r(h j l ^ i r  ( } ( 4 17)
“ Orln) /J 7

1 [ T 0 r ( r i ) r 0 ( r i ) ,

53 -  - 5 w l  >§r(n) ^ + - r ai>+ ~ r(-------t o — ~
T o r j r ^ T o i r ^ W o r r j r i ) ^  / 3 r 0 r ( r , - ) T 0 ( ^ ) w g r r ( r t )  _  r o r C r ^ J p ^ ) ^ , . ^ ^ )

W r ( r i )  '  ^  * W 0 r ( r i )  3 u & .  ( r , * )

^ 0 rr(r ,)(r02r(rt) +  3o(rt) r Qt.r(rt)) 37or(rt)r 0rr(rj) +  TorrrCrprgCr,)^  

w,or(r») 2u)gr(r,-) 'J

+ ^ i r 0r(r i). (4.18)

Note that the leading order term for Tg possesses an algebraic singularity at its 

critical point.

Since viscous effects cannot be ignored in regions of rapid change as, for example, 

near the singularities of the inviscid equation, we wish to retain the leading order
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viscous terms in the neighbourhood of the critical point, to determine whether vis­

cous effects will remove the unwanted singularities. For this purpose we now return 

to the full system of equations of continuity, momentum, energy and state, as de­

fined by equations (1 .1) - (1.5) and (1 .2 0 ). Substituting disturbance terms (3.1) into 

this system, and collecting 0(6) terms, gives the following system

• / \ ~ . Vlr V\Tqt . V3 Vi , .
t(too -  c)p +  —-----= 3-  +  I—  + —  =  0, (4.19)

- f o  J- 0  - l o  r i 0

i a 2(tOo — c) „ 1 2 a r  .    (i0r r V\ _  -1

55 “  ~ :y M ^ Pr +  ^ ^ 0rVlr +  ^°Vlrr +  T  \-Vlr +  ~r +  tV3i

, v l r  1̂ , 11 , a  f — r -  . -I r -  , ^ l rVlrr + ~  “ 2̂ + ™3rJ J + r lr + *7 + iU3J + 0̂2 [̂ Irr 4 —3"

vi , 11 . lOL r ~ . 9 .  2 a  r_  „ Wn r~
•^2 +  **>3r] j  4  4  /*o(*>3r 4  « * » }  4  4  y  [ulr

+ 7  + *e»]} + ^77 [*»■• + 7  + i8s] }> (4-20)

ck ict 1 e
— [i(u;0 -  c)S3 4- WOrVi] =  -  — — p 4  —  {/?0r[*<*2Vl 4  ^3r] 4  JZ0[ia2Vlr 4  V3rr] 

+  lV0rrA +  WOrAr 4  2ia2 (ijtQV3 +  y  [vlr +  y  4  ®V3] ) +  ^(w0rfi

+7ofer 4  i'a2Vi])} +  “ -{Fo2plr +  — +  ^ 3]}, (4.21)  ̂ ne? r

(i(tflo -  c ) f  + «aTor] -  a ( 2 _ l ) j ( u)0 _  c)p = 2(7 R1)M* {-p0w„r(i>3r

-\-ia2V\) 4  -lVor/t} +  — { » ( r0r// 4  /^o^r) 4  T0rr/t 4  ?Or/V 4  fl>QrTr 4  /^o^rr

- a 2/J0f } ,  (4.22)
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\

p =  T0p + (4.23)
J-o

where it is assumed

0* -  0»[0o +  $fr(r)exp(ia(z -  ct))] +  0(62),

02 =  0200[7*02 + ^02 (r ) exp(ia(^ -  ci))] +  0(<52), (4.24)

and

U* a* o*
R e 2 =  Po° . (4.25)

M2oo

Near the critical layer we wish to retain viscous terms at leading order, therefore

we now have to determine the necessary scales to ensure this. Consider the z-

momentum equation (4.21). The viscous term which will be expected to undergo 

the most rapid change across the critical layer is

i t 53-  (4-26)

Balancing the term ^-[i(wo — c)^3] with term (4.26), i.e. requiring them to be the 

same order, leads to the relation

(r -  n)  =  0 ( R e '1/s). (4.27)

Therefore defining

(r — r,-) =  tY, where e =  Re~1̂ 3 and Y  — 0(1), (4.28)

viscous terms are expected to be dominant in a critical layer of thickness e .

Making use of the scaling (4.28) the ^-momentum equation is expected to have 

the following leading order form

217



jT^jy[i^3 « '0 r(ri) +  «)or(r,)«i] =  +  V(ri)v3YY, (4.29)

where vx and p are assumed to be 0(e), v3 — 0(1) and p =  0(1). However, taking 

the inner limit of the outer expansion for vi, we determine v\ — 0(1), Therefore to 

achieve a sensible balancing, p =  0 (1) and #3 =  0 (e-1) (and p will most likely be 

0 (6-*)).

Turning our attention to the energy equation (4.22), we determine that for a 

sensible balancing to be achieved, it is required that T — 0 (e -1), p =  0 (e -1) 

and p =  0 (e-1). However, taking the inner limit of the outer solution for p , it is 

determined that p — 0 (1) and therefore it can be deduced that at leading order the 

pressure makes no contribution to the critical layer energy equation.

Examining the r-momentum equation (4.20), it is found that since the left-hand- 

side is 0(e), then~pr =  0(e), which in turn implies p(Y)  =  0(e2), i.e. pressure terms 

less than 0(e2) will be independent of Y.

Guided by the form of the outer solution and the above work, we propose ex­

pansions for the inner (critical) layer of the form

tq =  Ui{Y) +  elneU2(Y) +  S 3(Y) + 

S3 =  e~1W0(^) +  IneW^Y)  +  W2(Y) +  • * •,

P =  Pi +  ep2 +  e2p3(V) +  e3lnepA(Y) + * ■ •,

T  =  c“1fb(K) +  lneTt(Y) +  T2(Y) +  • • .,

p =  e~1/f0( l r) -f lnepi(Y) +  p2 +  • • •, (4.30)

where Y  and e are defined by (4.28) and it is noted that the pressure logarithmic 

term does not entry until 0 (e3/ne), because of the form of the outer solution.

Substituting the expansions (4.30) into the equation of continuity (4.19) and



Taylor expanding mean flow terms about the critical point, to leading order gives

UlY  + iW 0 =  0. (4.31)

The next order equation (0(lne)) has the form

U2Y +  i W x =  0. (4.32)

The 0(1) equation is

-  t M w To +  u3y -  +  m  +  ^  =  0. (4.33)
■LOyt) ^*

Substituting expansions (4.30) into the z-momentum equation and Taylor ex­

panding mean flow terms yields the leading order equation

+  8k] =  +  U n)W oY Y .  (4.34)

Using result (4.31), equation (4.34) can be re-written

' T o W  ^  ~  ~ M 2~Pl +  ^ rm 'V /Io(r *)- (4.35)

Differentiation with respect to Y  yields

& 1YYYY ~~ iX Y U \Y Y  = 0, (4.36)

where

T -  au,Qr(r.) u  , 7\

Equation (4.36) is of course Airy’s equation in the variable U i y y , therefore

u1YY =  <M;[(a)1/3y] +  6Bi[(kX)1/3r], (4.38)
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where a and 6 are constants. Since U\ is required to be bounded in the far-held

(Y  —> oo), then we must have 6 =  0. Therefore the leading order term for the radial

velocity, in the critical layer, has the form

Vi = r  d Y  r  aAi[{i\)xlriY]dY + d Y  + e, (4.39)

where a, c and d are constants which are determined by matching with the outer 

layer. In the limit Y  —► 0 equation (4.5) can be written in the form

Via — d\eY  -f d2t2Y 2 +  d$t3Y^ -J- • • ■,

2 2 

Si b  =  eo +  j M W w  +  e[eiY  + y W t t r j  +  • • •. (4.40)

Making use of the asymptotic result

f  f  Ai{(i\)1/3Y \dY dY  ~  \  as Y  -» oo, (4.41)JO vQ O

and matching 0(1) terms of the inner and outer solutions yields

a = d =  0, e =  e0. (4.42)

Therefore we have

U1{Y)=:e  o =*> W o(r) =  0. (4.43)

Substitution of expansions (4.30) into the energy disturbance equation yields the 

leading order equation

Toyy ~  ittwor(ri)YTo =  fWZorfr,), (4.44)

where
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°  2 o (r iK (r»)'

Equation (4.44) has a solution of the form

f 0(K) =  —3re~"^3e0Tor(rj)[—5^ —r]1 ,̂Gi[(ifiu)0r(rl-))1/3Y],
L̂ 0r

where the function Gi is defined by Abramowitz and Stegun (1965, p.448).

Since

G?(a:) ~  as x —* oo, (4*47)

then in the limit Y  —► oo, equation (4.46) becomes

f  m  ^  geo^or(n) =  262ror(rI)JTo(r,)
° w0r(ri)Y  ck27  M ^w l.(r i)Y '

Comparing (4.48) with the outer solution taken in the limit Y  —> 0, to leading 

order we have perfect agreement. Consequently, it is noted that the critical layer

solution confirms that there exists an algebraic discontinuity in the temperature as

the critical layer is crossed.

Returning to the inner expansion we now determine the next two terms in the 

series. The O(elne) ^-momentum equation has the form

+  >Y Wi] =  P o M W W . (4.49)

Making use of result (4.32) and differentiating with respect to Y yields

& 2 Y Y Y Y  “  i X Y U i Y Y  ^  0) (4.50)

where A is defined by (4.37). A solution to (4.50) has the form

(4.45)

(4.46)
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U2 = f  dY f Y _Mi[(iA)1/3Y]<iy +  gY'+ h, (4.51)Jo Jo
where again boundness in the far-held has been assumed and the constants / ,  g and 

h are determined by matching with the outer solution. Matching the-inner limit of 

the outer solution with the critical layer solution as Y  —» oo, at order O(elne) gives

j - M Y  = ( I  + g)Y +  h. (4.52)

Therefore

f a2
h = 0 and (4.53)

which in turn implies

Ui = [  dY £  fAi[(X)'(3Y)dY + ( y M  -  t )Y .  (4.54)

At this point it should be noted that in the inviscid region, well away from the 

critical layer, the velocity perturbation term has a solution of the form

Vi(r) =  vw(r) +  £ v iR'(r) + ■■■. (4.55)

Therefore it can be clearly seen that in this region there will be no terms of or­

der c, efrce, etc. As the critical point is approached it is the leading order term, 

namely ui0(r), that is produced by the method of Frobenius, as this term satisfies 

the Rayleigh-type equation. The double integral of the Airy function, in the far- 

field, will overlap into the inviscid region where it will be required to be zero, since 

no 0(elne) terms exist in this region. This can only be achieved if /  =  0, thus 

simplifing equation (4.54) to

- a 2 
U2 =  y ^ y .
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We now consider the next order term in the V\ expansion, namely C/3(K). The 

0(e) 2-momentum equation has the form

w 0r ( r i ) < * r  ~ ~ / w 0rr(r i ) Z b r ( r , ) \
■ ) ' \iYW2 + 1/3 +  * 4  T -f  ~  t T/' T ) e o

T o ( r f )  L A w o r M  T o ( r ,-)'

%a
p2 +  7*o(r.)WW +  t^or(r()/toy, (4.57)

7 M l

where results (4.43) have been used to simplify matters.

In the limit Y  —♦ 00  using results (4.43) and (4.48), the 0(1) continuity equation 

(4.33) has the form

iW 2 = -  U3Y. (4.58)
r,-

Therefore, in the limit Y  —> 00  (4.57) has the form

-  y O „  +  u3 +  y [ ^ M  _  _  I ] eo}
To (r<) ^Or(^i) T0(r,) r,-J J

iot ~
P2 +  ^Po{f'i)UzYYY +  WQr(?i)fioY' (4.59)7 M l

Differentiation of (4.59) with respect to Y  yields

* V V~Y'U$yy  -  Z?e0] =  ijio(ri)U3YYYY +  W0r{ri)pOYYi (4.60)

where /? is defined by (4.2)

It is now necessary to determine the form of /z0yy in the limit Y —► oo. Write

fi(T) =  Wo (To +  f  (r)) =  Po(To) +  t | |  +  •. ■■.. (4.61)

Comparing (4.61) with the non-dimensional //(= /**//*«>) equation in (4.24) yields
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Differentiating twice with respect to r gives

a - f d P o .  n f  d 2~Po 3T0 f d 3 ] I 0  dT0 2 ~92f t ,a 2r 0
Mrr ~  T r r ^ r  +  2 T ' Q j f - f r  +  T a j f ( - f r )  +  T d T f - W -  (4 ‘6 3 )

Substituting expansions (4.30) into (4.63) and transforming to the Y  variable gives 

the leading order

f i o Y Y  = P o T 0 { r i ) T o Y Y  - (4.64)

In the limit Y  —» oo, Gin =  O(y^) (where Gi is defined by equation (4.47)), 

resulting in fioyy —* 0 much faster than the other terms . Therefore equation (4.60) 

can be re-written in the simplified form

% y y y y  — iXYUgyy = (4.65)

(where X is defined by equation (4.37)) and has the solution (in the limit Y  —► oo)

U$yy =  — /6 \ l/30eoGi[(i\)1/3Y\. (4.66)

Consequently, making use of the asymptotic form of Gi, i.e. relation (4.47), in the

same limit, we can write

& 3YY ~  ~  (4-67)

which in turn implies

UzY ~  ~{3eQlnY  

and U3 ~  -~j3e0Y ln Y  +  ^ 61 , (4.68)



where si is a constant.

Matching 0 (e) terms of (4.40) with the 63  equation in (4.68) reveals that we 

have perfect matching between the inner and outer Y ln Y  terms, since — 0eo =

(see equations (4.6) and (4.9)). The constant Si will be equivalent to some linear 

combination of the eY  terms occuring in the Probenius solutions Via and {q#.

Therefore we conclude that when curvature terms are important in the linear 

stability problem, the retention of viscous terms in the neighbourhood of the criti­

cal point, is still an adequate method by which the singularity in the Rayleigh-type 

equation can be smoothed out. Indeed the determined results are found to closely re­

semble the compressible work of Lees and Lin (1946) and Lees and Reshotko (1962), 

although in the former case solutions are determined in terms of Hankel functions. 

In our work the effects of curvature on the results is found to be restricted to the 

constant /?, which if the critical point coincided with an axisymmetric generalized 

inflexional mode is zero, anyway.

All that is left is to determine the form of Y ln Y  across the critical layer. For 

Y  > 0 the solution is valid, we now seek the form of the solution that is valid for 

large negative Y . In the region of the singularity the term Y ln Y  is re-expressed 

a s N(Y),  Following Lees and Lin (1946), any contour of integration present in the 

solutions, must be indented below the critical point since the solutions are only valid 

in certain regions of the complex plane. Consequently N (Y )  behaves like Y ln Y  for 

large positive Y  and like Y l n Y —wi for large negative Y f provide ^  0 , i.e., provided 

the critical point is not a axisymmetric generalized inflexional point. Therefore it 

follows that /n (r—r,*) tends to ln \r—r,| — ni for r  < r,-, i.e., $ — —n in equation (4.3). 

For the eigenvalue problem it is sufficient to use the asymptotic forms of ln(z — zc) 

and ln\z — zc\ — 7T2, since on the critical scale, Y  will be very large at the boundaries, 

and the asymptotic form of N (Y )  is valid. For r  < rc, the pressure perturbation 

term ps  has the form
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Pb  =  1 +  b2(r -  r t-)2 +  64(r -  r , ) 4 +  h -p /% 4[/n|r -  r,| -  7ri]. (4.69)
o

The other irregular disturbance perturbation terms occuring in (4.5) and (4.12) can 

be expressed in a similar manner.

We now consider the case where nonlinear effects are used to smooth out the 

singularity in our axisymmetric compressible inviscid equations.

4.2 Nonlinear Critical Layers

In the previous section we considered removing the singularity which occurs in the 

axisymmetric, compressible Rayleigh equation by restoring viscosity in the neigh­

bourhood of the critical point. In this section, we consider instead, retaining nonlin­

ear terms in the critical layer and what role, if any, curvature plays in the nonlinear 

problem. The method used is based on the method developed by Goldstein and his 

many co-authors (Goldstein et al (1987), Goldstein and Hultgren (1988), Goldstein 

and Leib (1988, 1989), Goldstein and Choi (1989), Goldstein and Wundrow (1990)

and Leib (1991)); al\A\c>o^Yi celt tVu$ vajovK W s&A. ©v\  VYickerv^el\' $
\N)or\< .

In this problem the temporal evolution of a growing, small amplitude instability 

wave (which is harmonic in space) is treated. To ease the analysis that will be 

carried out inside the critical layer, it is found convenient to work in terms of the 

streamwise coordinate £, where

£ — z — coi, . {4-70)

represents a coordinate in the z  direction moving downstream with the neutral phase 

velocity cq. The streamwise velocity component, U3 , as measured relative to this new 

coordinate, is related to the streamwise velocity as measured in the stationary frame 

of reference, by
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v3 ~ v 3 -  cq, (4.71)

Consequently, even though in the stationary frame of reference at a fixed point 

mean flow terms do not vary with time, in the moving frame, since we are moving 

downstream with respect to the stationary frame, at a fixed point mean flow terms 

appear to vary temporally, if sufficient time has evolved. It should be stressed that 

this variance of the mean flow terms actually occurs over long viscous lengthscales, 

but since the measurement is made with respect to the moving frame of reference 

is has the appearance of time variance. Therefore, in the following analysis when 

we talk of the boundary layer varying over given timescales, it should always be 

remembered that the changes are occuring within a moving frame of reference, and 

in reality the variance is occuring over lengthscales, i.e., as time evolves we move 

over these lengthscales.

For earlier times the wave amplitude will be small and is well described by the 

linear, inviscid temporal theory developed in Chapter 3. However, as time increases 

and the instability amplitude contains to grow, this will no longer be the case. 

The boundary layer is assumed to thicken over the long (when compared with the 

timescales over which the instability wave varys) viscous timescale and this mean 

flow spreading will act to reduce the local growth rate while the instability wave 

amplitude continues to grow temporally. After a long enough time interval, the 

amplitude is found to be sufficiently large and the growth rate sufficiently small, 

that nonlinear effects are of the same order as the instability growth rates. When 

this occurs the growth rate of the instability wave, which is otherwise governed by 

linear dynamics, is determined by the nonlinear effects developed within the critical 

layer.

We shall begin by determining the form of the solution outside the critical layer
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for the particular time when nonlinear critical layer effects are important.

4.2.1 The Outer Layer

Since the viscous timescale is assumed long (with respect to local timescales) then 

locally the mean flow will be nearly parallel and we can assume the inviscid limit. 

The full system of equations of continuity, momentum, energy and state in the 

axisymmetric cylindrical polar system, in non-dimensional form and in the inviscid 

limit are

% + i lpv']+ + T i = 0, (4-72)

.O n    u  w \
P Dt d r '  ̂ ^

Ov3 _  1 dP
P Dt t f M l d V

D T j - I D P  .
' ¥ = T ¥ '  ^

P  =  pT, (4.76)

where we are in the moving frame of reference as defined by (4.70), and in this frame 

the Eulerian operator has the form

D a . d _ d
m  = Ft + Vld ; + *3W  ( 4 - 7 7 )

Since temporally growing waves are being considered and for the particular time 

being treated the growth rates will be assumed small, then nonlinear critical layer 

effects will be expected to cause changes to the flow over the slow timescale

228



*  5 <4',8 >

where S represents the disturbance amplitude and it is assumed that S <C 1. fi is a 

number to be determined.

For early times before nonlinear terms have had any significant effect, the gradual 

thickening of the boundary layer due to the action of viscosity causes the temporal 

growth rate of the linear instability wave to gradually decrease, finally approaching 

its neutral stability condition (i.e. point of zero growth).' We denote the linear, 

neutral spatial and temporal wavenumbers by a 0 and Co, respectively. Nonlinear 

effects will first become important in the critical layer at the time when the local

spatial wavenumber, a  (where as in the previous section, a  =  a  of Chapter 3),

differs from its neutral value by an amount of order 61*, so that

a = ocoS^Qiy (4-79)

where a i =  0(1).

Outside the critical layer the instability wave is assumed to continue behaving 

linearily (to leading order). Consequently the flow parameters are expected to ex­

pand in the following manner

u i  =  5 a i J l [ A t ( t i ) u i ( r ) e ,Q°^] *f ••  • ,  • 

v3 =  Wo(r) + SR l[A \h )v3(r)e” °<] +  • • •, (4.80)

T  =  r 0(r) +  £i?Z[j4, (ii)!f(r)eic'of] +  • • •, 

p =  1/To + 6Rl{A'(h)p(r)eia°(] + ■ ■ ■, 

P = 1 +  6'tM lRl[A '(t1)P(r)ei°<'<] + ■■■,
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where the mean flow velocity, as measured in the stationary frame, is given by 

Wo(r ) +  Co (= woM of Chapter 3),

C =  ( l  +  - « " ) ! .  (4-81)v «o '

and the slowly varying amplitude function, is to be determined by matching

with the nonlinear flow in the critical layer. This amplitude function, which is 

governed by the nonlinear dynamics of the critical layer is also required to match

onto the initial linear solution. This matching process will be carried out once the

evolution equation governing -A ^i) has been determined. Note, that the temporal 

growth rates are contained solely within the amplitude function, A*(ii), the phase 

velocity contribution to the exponential terms, as measured in the stationary frame 

of reference is the neutral value Co only. The pressure disturbance term has been 

normalized by the factor to ease the analysis and also aid the determination

of numerical results when we come to compute the amplitude evolution equation.

Substituting expansions (4 .7 9 ) and (4 .8 0 ) into the system of equations (4 .7 2 )  - 

(4 .7 6 ) and making use of result (4 .7 8 ) to the required level of approximation we 

obtain the following system of equations

' ( \ X T  \ ~  i -^Or ~ V i , .i(Wo -  c)/> +  —  -  7= fV l +  —  +  —  =  0 , (4 .8 2 )
i  0 -*0 fo r J o

IC S ?  • ~
— (W o -  c K  =  - P „  (4 .8 3 )
-*0

i - [ i ( V F o - c ) 5 3 +  W0r5 I] =  - i P ,  (4 .8 4 )
•to

i - [ j ( W o  -  c)T +  TorSi] =  i ( y  -  1 ) M l ( W 0 -  c)P, (4 .8 5 )
J-Q

230



l M l P  = T0p + ^ ,  ' (4.86)
io

where

^  dAf O
c = - i s i t * r -  ( 4 - 8 7 )

Examining (4.87), it is noted that c represents the deviation of the phase speed from 

its neutral value (remembering that we are in a frame of reference moving with the 

neutral phase velocity), therefore the disturbance terms must have expansions of the 

form

f?i =  610 •+ S^v n  +  • • • ,

#3 =  ^30 +  31 +  ’ * '  j

T =  T’0 +  ^ T 1 +  . . . ,

P — Po +  +  ’ * * ,

P — Po +  -f • • ■ .

(4.88)

Substituting these expansions into system (4.82) - (4.86) and making use of (4.79) 

yields the leading order system

-v , V iO r  T o r ,  IV30 6 1 0  , .
i W qPq H- - j T  -  j u Vl° +  "2^“ +  =  (4.89)

-j=rWo#io =  ~Por, (4.90)

~ [ iW 0v30 +  W0rv10] -  - i f a  (4.91)
•*0
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^-[zW0T0 +  r 0rvio] =  1(7  -  tfM^Wopo, (4.92)
Jo

lM lop0 = T0pa +?p-. ■ (4.93)
Jo

The system (4.89) - (4.93), as one would expect, corresponds to the linear ax­

isymmetric disturbance equations as determined by Duck (1990) and can be reduced 

to the form

*i°r +  f  ~  =  j g p i  -  j£ W * ] f (4.94)

ia?
Tir^ o ^ io  =  Por* (4.95)

0

Combining equations (4.94) and (4.95) to eliminate velocity terms, yields

W4 r  [ t S t ]  ~  K  (4 ‘9 6 )dr^ W0 J V ur r  / W0

where

$  =  To -  (4.97)

Defining the compressible Rayleigh-type operator for axisymmetric flows, lCR\  

to have the form

equation (4.96) reduces to

C Rp 0 =  0. (4.99)

In the notation of Goldstein et al., equation (4.96) can be re-written
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-  K  -  v l f e  -  ^ l 1 -  ] »  - « .

resulting in the Goldstein-Rayleigh type operator l£ G’ having the form

(4.100)

1 d x— d Wo

and equation (4.96) now becomes

_ L A
W0 c?r — Or (4.101)

£°Po =  0. (4.102)

Making use of equations (4.90) and (4.91) the streamwise velocity perturbation 

term t530 has the form

a5«*o =
W rOr ~ . 2 ~
^  POr O0P0 (4.103)

The next order system of equations obtained from substituting expansions (4.88) 

into equations (4.82) - (4.86) (this corresponds to the 0(£/i+1) system for the outer 

solution) has the form

n~ i ~ tnr i ^llr -̂ 0r~ . ẑ 31 ! vu . nSlpo +  ip iW 0 +  —  -  - j - t ) , !  +  — - +  —  =  0 ,
■to t 0 Tl 0

(4.104)

— [aofivto + 2iaQQiWov10 +  zaoWo0n] =  - p \ T, 
J-o

(4.105)

1 rX
[0030 +  2WO031 +  WOr0u] =  - ip i , (4.106)

To
[nfo +  tWo?! +  T0rvn ] =  (7 -  l)M£[Op0 +  iWoPil (4.107)
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where

7 J & ft  = ■Lq
(4.108)

1 d A t 
0At dti

After a little algebra the system (4,104) - (4.108) can be reduced to

* r -  (4-109)

5llr +  f ~  W  +  r l 5n ~  =  Wa [To ~  M~ W«\P1 ~  W $  [T° +  M ^ Wo}po,
(4.110)

and

^ -[« o ^ io  +  2ia0a 1W0v10 -f W nagwy = - p lr. (4.111)

Equations (4.90), (4.110) and (4.111) can be combined to eliminate velocity 

terms, yielding an equation in terms of pressure disturbances terms only

i a o W o & h  =  a 0f t { ~ - ^ ( T 0p 0r) +  [ -  4 W 0r +  ^  -  « j [ l  +  ^ ~ } p 0 }

+ 2 ia1M/0{— — (ToPor) +  ( — 2 Ho, +  (4.112)

Making use of equations (4.91), (4.105) and (4.106) the streamwise velocity u31 

perturbation equation is found to have the form

2 - To rrWhr. 2~ 1 , 0 r* . 1 A 2r^3o , po n
a°Vn = ~ W 0i  \-WoPlr + ° oPl\ + 201100 lPo +  T ^Vw\ ~  t(l°o +

(4.113)

To determine the form of the solution in the boundary layer, away from the 

critical point, both the linear and nonlinear systems of equations represented by
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(4.89) -(4.93) and (4.104) - (4.108) respectively, must be solved numerically. In this 

study, fortunately, we only require to determine the behaviour of the solutions in 

the neighbourhood of the critical layer. Another assumption that shall be made 

is that at the critical point the axisymmetric generalized inflexion condition holds. 

Duck (1990) has shown that from linear axisymmetric compressible stability theory, 

if the critical point is inflexional in nature, then the following condition is assumed 

to hold for subsonic neutral modes

* & ] \  = 0  *  4 _ P _ I  =  0, (4.114)
d r 1 tTq J '»•=»•»• w'c Tc r,-

which corresponds to setting A =  n — 0 in equation (3.37). The subscript V

implies evaluation at the critical level. It should be noted that the non-dimensional

mean flow velocity W0(r) is monotonic, thus insuring that there only exists just

one subsonic generalized inflexional point coinciding with a critical point in the

boundary layer.

The form of the solution to the homogeneous equation (4.102) in the asymptotic 

limit r —► r, has already been considered in the previous section for the more compli­

cated case of non-inflexional profiles, although this was carried out in the stationary 

frame of reference. This equation will have the same solution in a frame reference
•A

moving with the neutral phase velocity, however, since WQ — w0 — Co, yielding the 

Taylor expansion

W0(y) = w'cy +  \ jw " y 2 + ■•*• (4.115)

Prom Appendix C, it can clearly be seen that setting (3 =  0 (which corresponds 

to the axisymmetric generalized inflexional condition being satisfied) logarithmic 

contributions are removed from the leading order pressure disturbance term solu­

tion, yielding the two completely non-singular linearly independent homogeneous
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solutions

as y —* 0  where

and

Po1’ =  i - Y y 2  +  a *y 4  +  ’ " '  (4.116)

Po*’ =  S® H > (4.117)

y = ( r -  r,), (4.118)

a ’ X '  2 <  1 <  2 ,  a j  2 K ) *
4 _  4 l r e w  2 ( rfc ~ t  M ° ° ^ r ]- ( 4 - 1 1 9 )

We shall assume that the pressure solution po will be a linear combination of 

(4.116) and (4.117), i.e.

Po =  Po* +  M o2)- (4.120)

The constant &i must be generally determined numerically. Since both p ^  and 

will be unbounded as y —► ± 0 0 , then 61 is chosen to ensure that the linear combi­

nation po satisifies the far-field conditions, namely, that for subsonic disturbances 

Po is bounded. In the case of generalized inflexion points, when the critical layer 

solution is examined, bi is found to take the same value above and below the critical 

layer. For non-inflexional profiles this is not true, causing 6j to undergo a finite 

jump passing from one side of the critical layer to the other.

Making use of result (4.120) and considering equation (4.95) in the limit y 0 

the radial velocity t510 is determined to have the form

236

V



where

T»- w^T1 T  wm T(w ")2
y  =  J Z S  _  C c -  4 . < r L  ( A  122)
X 2to' 2(w'c)2 6(w'c)2 +  4 « ) 3 ' V ;

To simplify equation (4.121) we re-define the pressure solution equation (4.120) 

to have the form

( 4 - i 2 3 )

where the generalized inflexion condition (4.114) has been applied. Equation (4.121) 

can now be re-expressed in the simplified form

• fi 1  2 / ^ a 4 /T ' UJg \ r, /Ti w" \ i
^ 0  =  - . { 1  -  h y - y +  (¥ : -  — ) [fti +  ( ^  -  — )] - x ^ ) }

+ 0 (y3)

+ 0 ( j / 3 ). (4 .1 2 4 )

Substituting equations (4.123) and (4.124) into equation (4.91) and taking the 

limit y —> 0 yields the following result for the streamwise velocity V30



where again we have made use of the generalized inflexional condition (4.114). Sub­

stituting equation (4.123) and (4.124) into equation (4.92) taken in the limit y —► 0, 

the temperature disturbance term To, in the neighbourhood of the critical layer, is 

found to have the form

*■ -  S + ( S f  ■  S  ■  ‘■i + -  , K > + o ( , )

=  b * ( | [ $  -  7, *■] + M~h  -  ‘X )  + °<»
As noted in the previous section, as the critical layer is approached the leading 

order temperature disturbance term develops an algebraic singularity (as noted also 

by Reshotko (1960, 1962), Goldstein and Leib (1989)). Consequently in the critical 

layer the energy equation and in particular temperature terms are expected to be 

important in the determination of the revelant scaling in this problem, since these 

terms will be large relative to the velocity components.

Before considering the form of the solution in the critical layer, it is found nec­

essary to determine the next order term in the pressure expansion, namely p i , as 

defined by (4.112). Making use of the homogeneous equation (4.102), the inhomo- 

geneous equation (4.112) can be re-written as

5 M 'LW q  „ 1 2»1 r « /„ M^LilVn — C q)2 \  „ 1

+  4 - j r ^ P o ]  +  ~ H ( l  ) 4

(4.127)

Defining

(4.127) simplifies to

,  2cx\w' „ . n .
Pi =  - j — P \a  +  - ^ j r P i B ,  (4.128)
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£°Pi — 2i&£GpiA H - ^ P iB i  (4.129)
ao

where

CgPia =  +  « S ^ | y P o ] , (4 .130)

and

C°P1B =  ^ X ( l  -  - y y - j p o -  (4 .131)

The general solutions to (4.130) and (4.131) have the form

Pia =  Pi,i +  C tJ o "  +  y  ( fc* i +  ~  ^ ) p 8 ° .  (4 .132)

and

PiB =  P i,j +  +  y ( J * 2 +  ~  ^ )? o 2), (4 .133)

where bftn and C^n are constants, and pi,i and axe particular solutions of (4.130) 

and (4.131), respectively, whose form can be determined by the method of variation 

of parameters.

Therefore the solution satisfying (4.127) has the form

Pi =
2z(iw'c f ± (!) Oil / ± 1 \ „(2)1

Pl,J + 2,1̂ 0 + T l J2,l + W  “  JTc 3 ^ ’* 2u;'

+  +  (4,34)

The particular solutions pi,i and axe assumed to be continuous, but are 

unbounded generally as y —> ±oo. As y —» 0, pitl is expected to behave as
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giving a solution of the form

#1,1 =  h  +  h y  +  h y 2 +  hy*lny +  e5y3 +  • ■ •, (4.136)

while # i t2 must be regular as y —> 0.

The constants bf̂ n and C2ln arising from the complementary solutions may take 

different values either side of the critical point and this is indicated by the ‘4-’ and 

*—* superscripts. From the form of the inner solution it is found that C^n =  C2i„ 

because the critical layer cannot support an 0(£1+#i) pressure discontinuity (see the 

streamwise momentum critical layer equation in the subsection concerning the form 

of the solution the critical layer). Therefore we define

c 2,„ =  C+, =  C2-„, n  =  1 or 2. (4.137)

As with the two functions that add to give the homogeneous solution, the par­

ticular solution and the two complementary functions that make up the inhomo- 

geneous solutions (4.132) and (4.133), will generally be unbounded as y —> dtoo. 

Consequently, the constants bf n and C2fn are determined to ensure that the far field 

conditions are satisfied (i.e. the modes decay exponentially since they are subsonic). 

This involves a complete numerical solution of the 0 (£ 1+M) problem for the pressure. 

An alternative method, known as the modified solvability condition, exists to de­

termine the constants in (4.132) and (4.133) which requires only the determination 

of the local behaviour of the pressure term pi, near the critical point, and has been 

used by Benney and Maslowe (1975), Redekopp (1977), Heurre (1980), Hickernell 

(1984), Churilov and Shukhman (1987), and Leib (1991), among others. In this



problem we make use of the modified solvability condition to determine the jump 

constants.

If the axisymmetric compressible Goldstein-Rayleigh type operator, £ G, were 

non-singular at the critical point then the necessary and sufficient condition for 

the solvability of the non-homogeneous equations (4,130) and (4.131), would be the 

standard orthogonality condition

f ° °  m s ( z ) p ^ \ z ) d z  =  0, (4.138)
J  — OO

where ‘RHS’ refers to the respective right-hand-sides of (4.130) and (4.131). How­

ever, since CG is singular at the critical point, this integral diverges, and a modified 

solvability condition must be determined. This is achieved by employing the far-field 

conditions. As y —» ±oo, pressure disturbance terms are required to be bounded, 

since only subsonic modes are being considered. Therefore, the 0 (£ 1+/1) pressure 

terms must satisfy the condition

pi —► 0 as y —> ±oc. (4.139)

Since pi is a linear combination of p\A and piB with respect to y and the factors 

multiplying these terms (which are y independent) cannot be specified by employing 

suitable boundary conditions on t/, then we also have

PiAyPiB “ > 0 as y -> ±oo. (4.140)

By the method of variation of parameters, equation (4.132) can be re-written in 

the form
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PiA = j  ^ { [P o ’M Po^z) -  PoHz)Pon (y)]^[Tr£po> + - °-Mf W°p0] }K l W 2 ^ ‘ ' To

3 V 2.! +  2w'c n+C2, 4 1) +  ^ f e  +  g - - ^ .  (4.141)

Applying the limit y  —> ±oo, yields

f a T° -W/ JWo* - , “ oM£W0 .  1 j  ^
-S o  J t f / o  ^  l w J POz +  Tq Pai %u ( ^y-+±oo

and

i« .[y Tc „(t)/ NfWb*~ , a lM ^ W o ^ ^ j  « § / L± , w" 1 ^
5 j »  W l i ^ P *  +  — T T ~ Va\ dz t ( 6̂  + ^ c ~ r ) -  (4-143)

In the limit y —► -foo we choose the lower limit of integration to be just above 

the critical point, i.e. the point yc -f e where e < <  1, and for y —> —oo choose a 

point just below the critical point, i.e. yc — e. Subtracting the y -+ -foo equation 

from the y —> —oo equation in (4.142) gives

<4 -144>

while in (4.143) yields

,+ 3 [+« .m , ,Tc fW0. -  a l M l W o _ i ,
4  "  2'1 -  " ^  J ™ , j i y  P° +  To POl ’ (4 -145)

where f- denotes the Cauchy principle value integral.

Substituting (4.123) into (4.145) and making use of result (4.144) gives that 

the jump in the constant b2,i across the critical layer in terms of the leading order 

pressure disturbance has the form
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k+ u-  3  1- f * y ( T c \ 2 r> f \ \ W 0 * b  < a o M Z>W o ~ l j  f A * A C\
*4. -  h i  =  ^  j ™  t y l ^ J  *■(*) +  ■ r”  poj & . (4 .146)

Applying a similar agrument to the piB terms, i.e. equation (4.133) yields the 

jump condition

-  i 2-,2 =  3 Um £ J  ( | ) ’ [ l  -  (4 .147)

We now wish to determine the form of the streamwise velocity term i531 which 

is defined by equation (4.113), as the critical layer is approached, by making use 

of results (4.123), (4.125) and (4.134). Firstly it is found necessary to determine 

the coefficients of the solution for plti in equation (4.136). Since pltl is a particular 

solution of (4.130), then substituting expansion (4.136) into (4.130) taken in the 

limit y 0 and equating powers of y gives

O (I)

0 (1)

0(v)

e>2 —2w' »

2e3 +  ale, = -  jj| [&i +  ,

3e4 +  (» -  al)e2 =  £  _ (4.148)

where k is defined by equation (C.5) in Appendix C.

It is also found necessary to obtain the first few terms in the pi t2 solution, which 

by the form of equation (4,131) is assumed to be regular in the limit ?/->0 and of 

the general form

A, 2 — A + h v  + h y 2 +  hy*  +  ■ ■ •. (4 .149)

Again, substituting the particular expansion (4.149) into equation (4.131) in the 

y —► 0 and equating corresponding powers in y yields
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O i1- )  : h  = 0,

0 (1) : 2/3 +  o j /, =  -og ,

0(y) : f2 = 0,

0(*/2) : 4 /5 +  (2k -  c £ ) / ,  +  ‘j l i & M l f ,  =  - a 0  + - * £ £ i £ ] .  (4.150)

Making use of results (4.116), (4.117), (4.136), (4.148) - (4.150) and solutions 

(4.123), (4.124), (4.134), in the limit y —»> 0, the streamwise velocity is determined 

to have the form

£31 =  -  [ci +  e2ln\y\ + 2i£lbf1 +  — + 0{y)- (4.151)

which, by the form of equation (4.109), can be re-expressed as

^ 3 1  =  -  [* (* 1) +  e2(U)ln\y\ +  +  ~ A ' b ± 2] +  0(y) ,  (4.152)
OCq d l\ Oq j

It should be noted that the coefficients of the O(p-) and O(-)  terms are both 

zero, resulting in the leading term being 0(lny), It should also be noted that the 

undetermined function ei(ti) is the same order as the 2z'fi&2,i ^ ^ 2  terms.

The temperature perturbation term at this order, T1} has the form

t  - i [ * 5 S . u I \ ^ H L ( To <  h  , 2 ± x
)/2 K><)2' t/l(iu ')2 '- r c' >»' r J + lei +  c%i)to; n ' w'

+  c w )]  +  °(y)-  (4 .153)
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We note that the leading order term is 0(4p). Since the To temperature term was 

O(^), we see no reason to discount that the nth perturbation term, Tn, would have 

the leading order term O(T-). This presents no problem to the solution as we move 

away from the critical layer, since as y —► ± 0 0  it can be clearly seen that successively 

higher terms will tend to zero faster. However, as the critical layer is approached 

this means that the higher terms will approach the singular condition faster.

We now turn our attention to the form of the solution in the critical layer.

4.2.2 The Critical Layer

The form of the temperature expansion clearly shows that the complete outer ex­

pansion becomes singular at the critical layer. This has also been determined to 

be true by Reshotko (1960, 1962) for compressible boundary layers and Goldstein 

and Leib (1989) for compressible shear layers. Consequently, in the neighbourhood 

of the critical point the equations will have to be re-scaled to obtain the so-called 

critical-layer solution. Since the thickness of the linear, small-growth rate critical 

layer is of the same order as the growth rate of the disturbance wave, i.e. 0(6**) 

in the present case, for the reasons given at the beginning of this section, then the 

appropriate scaled radial coordinate in this region is

Y  =  y /S** — (r — r t)/<^, where y «  1. (4.154)

To obtain the form of the critical layer expansions, the inner limit of the outer 

solution, as determined in the previous subsection, is re-expanded in terms of the 

critical layer radial coordinate Y, to give

Vj =  — + ^ (b o u n d ed  Y-independent terms) -f • • •, (4.155)
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y3
\~q~w " bounded Y-independent terms) +  — R /^e* 0̂ ] )

+«‘“«{! '̂(-1 - 5 ( § ’ *k(i - %>'+•*+u-4f  ~ !*■

4 &  +  f )  -  ( » . « . ) + W W + +  ^ , ‘ t . ) H “ ‘ }

+0(S4>‘), (4.156)

U)
P  =  1 +  -f S3**(Y-independent terms) -f • • •, (4.157)

r  = t c+ rev y + s1~“r i { ^  [ I + ~ +... ] + I t ' ^ y 2+• ■ •, (4.i58)

where it is known from the previous section that

C =  A(z -  co<), (4 .159)

<! =  SH, (4.160)

and

A = l  +  «"— . (4.161)
«o

Examining (4.158) it is noted that there exists the possibility of an infinite arithmetic 

series in the parameter Y~n, at 0(81~ti)1 where n is a positive integer. Therefore

as the critical layer is approached this term will tend to the singular condition very

rapidly, as noted at the end of the previous subsection.



From the form of expansions (4.155) - (4.158) the critical layer solution is ex­

pected to expand in the following manner

i/1 =  -<SaoiJ /[iJ4 t e,'“0<] +  «3',^ ( C , t i )  +  «1+“^  +  - - ' ,  ■ (4 .162)

v3 =  Y v /J"  +  y w"S2“ +  +  •••, (4-163)

P  =  1 +  « f t i ( C, * i )  +  ^"p,2(C , t i )  +  SU “P13 +  ■■■, (4 .164)

T  =  Tc +  T '̂ Y  +  +  6 ^ f n  +  tf f13 +  • • • , '  (4 .165)

where etc., are functions of f, f1} and Y at most, and it is assumed that

£1-/i > 82ti. The Irifi term occuring in (4.156) has been incorporated in the term ^3 .

Each term in the expansions (4.162) -(4.165) is determined by solving the inviscid 

equations of momentum, energy, and continuity, where we begin by absorbing the 

equation of state into the other four equations. Since the disturbance terms are now

dependent on (, tj and Y, it is found necessary to transform the Eulerian operator,
D_\
D ti D ’, by applying the chain rule, i.e. since

P = P ( t t  V) £ ^ ^  +  £ ^ 1  +  ^ 1
15 * dx d (  dx +  dtt dx +  d Y  dx  ’  ̂ ^

and so on, then the Eulerian operator in terms of f , ti and Y, where it should be

remembered that we are in a frame of reference moving with velocity Co, has the

form
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Combining the energy equation (4.75) with the equation of continuity (4.72), 

both re-expressed in terms of f, tj, and Y, yields

>  =  = +  +  ^  < « „ )  

The momenta equations (4.73), (4.74) in terms of (, t 1 and Y have the form

1-rr 1 1 & P  ,
T  V l ~  -fM * S t ' P d Y '  ^

and

1 _ _  1
t Dv3 = ~ w 6  F ^ a c -' (4'17°)

It is found easier in this problem to work in terms of the vorticity vector which 

has the form

curl v =  (4-171)

where

n = A ^ - r " S ’ (4-172)

and A is defined by equation (4.161), £ represents the azimuthal coordinate. There­

fore taking 4A ^ ’ of equation (4.169) and l—£“**§7 * of equation (4.170) and adding 

yields

™  , c-udvU 1 A d T d P  d T d P 1 , „ x
[ ac ayl “ ■yMi p s* lay ac “ ac ay l ' * ^

Making use of (4.168) equation (4.173) can be simplified to

2>n  - n t l - V P  +  H I =  — ___ —  m .? *  - * * » * ] .  (4 174)L7p  t  r j 7m i  psk  \d Y  d (  d (  o y  J K }
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Equation (4.174) can be regarded as the critical layer vorticity equation.

Substituting expansions (4.162) - (4.165) into (4.168) and equating equal powers 

yields (from the comparison between the pressure equation and right-hand-side)

0 (6 )  : fa y  +  +  —  =  0, (4 .175)
t*i

0 (S 3li) : fa y  +  fa( +  —  =  0, (4 .176)
n

:  $ 4 Y  +  <f>3( +  ~ ^ i c  H— 2  ^ o l  =  — i ' P i i i  (4.177)a0 n L r t- J 7

where the operator £  is defined to have the form

*  =  i V - £ + £ -  (4'178)
For the temperature terms on the left-hand-side of equation (4.168) the leading

order equation (i.e. 0(5)) has the form

j — L ^ l C T n  +  T ’M  =  -  [fay  +  fa ( +  . (4 .179)

However, by the form of (4.175) equation (4.179) simplifies to

£ T „  =  T ^ aoR H iA 'e^ }, (4 .180)

where we have defined

&  =  —Q'o72/[i-4teloro<:). (4.181)

The next order temperature/continuity equation has the form
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+  S ' - ^ o f n r  =  - [ * » -  +  fa< +  (4.182)

Again the right-hand-side is just zero by equation (4.176).

In this problem it is required that nonlinear effects are present at the lowest 

possible level. This is possible only if we choose S3fJ — 0(S2~2fI), i.e. nonlinear 

effects will then be of the same order as the other terms in the equation. This 

implies that n must take the value

/* =  | .  (4-183)

which is the same as the scaling determined by Hickemell (1984) for time-dependent 

critical layers in shear flows on the beta-plane, by Goldstein and Leib (1989) and 

Leib(1991) in their work on compressible shear layers and recently by Shukhman 

(1991) in his study of spiral density waves generated by the instability of the shear 

layer in a rotating compressible fluid.

Applying the scale (4.183) simplifies (4.182) to

C T \2  — —T'Jfci — V>oTiiy. (4.184)

Substituting expansions (4.162) - (4.165) into (4.170) yields the following useful 

results

0(6) :
w'

-PllC: (4.185)

0( 66 / s ) (4.186)
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0 ( i7/5) : JT [ c k  +  Y w '^ o  + w'cj>2 -  ^ Y w ’j , 0\ =  -  J L -  [p13c +  . (4.187)

Substituting expansions (4.162) - (4.165) into (4.174) yields the leading order 

vorticity equation ( i.e., 0(5))

' - & x y - v& » + ^  =  (4-188)

Malting use of (4.185) and the doubly generalized inflexion condition obtained 

by Duck (1990) (i.e. (4.114)), (4.188) reduces to the form

£<?i =  0, (4.189)

where

Qi = fa y  (4.190)

At the next order (0 (5 6̂ 5)) the vorticity equation has the form

-  C[fay\ +  fa  [ ~  -  to"] -  ^o-^ylfav] =  - -jĵ 2  [ff il2C +  2 liy p n J . (4.191)

Applying the results (4.185), (4.186), (4.190) and the doubly generalized inflexion 

condition, (4.191) simplifies to

C[fay] = ^o[«r?iiy  — Qiy]* - (4.192)

Making use of (4.184) equation (4.192) can be re-expressed as

c  [foy -  — r 12 +  n ]  =  a o R l i iA 'e ^ )  [q iY -  2 ^ f n y ] +  (4.193)
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where equation (4.181) has been applied and term tj, which is assumed to be a 

function of Y  only and therefore is independent of the operator, will be determined 

by the boundary conditions. Defining

U)f »

Q2 =  <j)2Y ~  ~ ? 1 2  +  Ti, (4.194)
-*c

then (4.193) simplifies to

£ &  =  a 0iH(M*efa«<) [<?iy  -  2 ^ f n y ] +  (4-195)

At the next order (0(67/5)) we obtain the vorticity equation

^ 1 V"
“  w ' A  +  — [ ^ 2  +  Y w '$ o  -  w'ci>0—]

=  ~jM2 [^cPiac +  TuYpi2t + ?W piic +  % i c — 1 * (4.196)

MaJking use of equations (4.185), (4.186) and (4.187) and the doubly generalized 

inflexion condition equation, (4.196) simplifies to

CQ3 =  a 0i? /M V W ]Q2F -  f^u>* +  —
1 2 a 0 J

+$oTi y + Ct2 — i>\Q\Y +  » r [—^ o  +  TnFtAi], (4.197)
-*c

where

u/ T '»
Qs =  -  ^0C £Pll ~  ~f<£i +  7-2. (4,198)

7  c

Q2 is given by equation (4.194) and t2 which will be determined by applying the 

boundary and matching conditions, is generally a function of all three variables.
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It is now found necessary to match the above vorticity results with the inner 

limit of the outer solution in order to determine Ti and r2. Clearly Tu  =  0 ( f )  as 

Y  becomes large, therefore

? n  —► 0 as Y  —•> io o . (4.199)

Since the leading order disturbance term in the v$ outer expansion is independent 

of Y  then

Qi =  <f>iY —> 0 as Y  —> ± 0 0 . (4.200)

At the next order matching yields

Y 2 w"’ T"
<?2 -* y » « c ( ^ 7  -  j r )  +  Ti as Y  ± 0 0 , (4.201)

and &ivy:e it is required that Q2 —* 0 as Y  —» ± 0 0 , -

Y 2 , ( w'" T"
n  = — —w, B - w ) -  (4'202)

At the 0(87!*) order matching gives

as V —> ± 0 0 .

Again, requiring the boundary condition Q3 —*■ 0 , as Y  —> ± 0 0 , to be satisfied 

then

r2 =  —TiJ/[J4,ei“0̂ ], (4.204)

where
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Making use of results (4.202) and (4.204) Q2 and Q3 are re-defined to have the 

form

=  (4.206)

and

Q3 =  fo r  -  foe -  — pu -  p f i  -  (4.207)
7 ■‘C

and equation (4.197) can be simplified to

CQ3 =  atiR l[ iA 'e '^ ]Q 2Y -  [ ~ w ’:  +  - Y w 'c]QK
L Go

- T J a ^ e ^  +  M T u y y  -  Oiy]- (4.208)

As was stated in the previous subsection, the slowly varying amplitude function 

is determined by matching the entire critical solution to the inner limit of the outer 

solution (4.155) - (4.158) (to the order of approximation of the analysis). Inspecting 

the outer solution, it is observed that the 0 (8 7fb) streamwise velocity undergoes a 

finite jump crossing the critical layer, so this term is expected to be important in 

the matching process. Inspecting, now, the inner solution determined above, it is 

noted that the 0 (87/5) streamwise velocity term is contained within the component 

Q3. Since this term is required to match the outer solution, it is found necessary to 

consider Q3 , in terms of the inner expansions of the outer solution, i.e. the term



1  -  ;(=[)’ + i ( | -  J)‘ + “5 + " It ?  - 1». +

+ — .4 *612) }e“ oCl -  aJ i« [A , ei<wt] -  Ŵ'c^ ^  Rl[A^eiao<:\
&  0 J - c

-  ̂  ( -  6, +  - )  JU ^e''"0*] -  TR![A, eioo(], (4.209)
■*c . Ti

which on applying result (4,205) simplifies to

R l [ - A ( e 1(i1) +  e2(6l )M |r | + ^ ^ 6 ± 1 +  ^ * 6 ± 2 ) e i“»«]. (4.210)

Integrating (4.210) with respect to Y  over the boundary layer and matching 

with the critical layer solution, it is found that since the 6* j and b f2 terms will be 

discontinuous across the critical layer (the other terms in (4.210) being continuous), 

then we have the matching condition

« [  -  -  %  1] +  ~ A % + 2 -  fc2-,2]}e‘-<] =  / "  Q3dY. (4.211)
1 '•ao Qi 1 otQ * i J -  00

It is now found necessary to determine Q3 (as defined in the critical layer) by 

solving equations (4.180), (4.184), (4.189) (4.195) and (4.208), which can be done 

seriatim, since £  is a simple linear operator (Stewartson (1978,1981)).

The revelant solution to (4.189) is the trival solution

Qi =  0. (4.212)

It is found convenient to work in terms of the following normalized variables
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t =  --0^10%  -  tQ,

-X" — — Xo,

(4.213)

(4.214)

ij =  V. (4 .215)

The coordinate shifts to and Xo are introduced to ensure that the slow varying
£.amplitude function matchs onto the initial linear wave. Their actual values will be

A

calculated once the equation governing the amplitude has been determined.

From the form of equation (4.180) it is assumed that T\\ has the form

Tu =  R l[fl? (n,i)e ix]

=  (4 .216)

Substituting (4.216) into (4.180) and collecting 0 (e tX) terms yields

f(0) =  f* _ ‘̂ I l A USiy X aeinndsi  (4 .217)
J -  oo a ito '

- 2iotpT'c
- o o  O L \W c

It is found convenient to introduce the normalized variable

A  =  ■ 2a °—  Afe,T°. (4.218)
4ag£> 

alw cw'c

The form of this normalized variable is based on the normalization carried out by 

Goldstein and Leib (1989) on their corresponding amplitude function (which in their 

case is a function of a slow spatial scale), although an axbitraxy constant T> has been 

introduced here, to allow for any differences which may occur. The actual value 

of V  will be determined by numerical computations when the amplitude evolution

256



equation is solved. This will be discussed in more detail once the evolution equation 

has been determined.

Making use of (4.218), equation (4.217) can be re-written in the form

=  - l̂ L A ^ ct- ‘0ds-  (4-219)

From the form of equation (4.195) it is assumed that Q2 has the form

= RI{Q ?\n, <)] +  i { $ 2)(», t)e2ix +  [<?|2)(>?, ?)]*e-2« } .  (4.220)

It is also assumed that ipi has the form

^  =  ^ ( ° ' ( f/,?) +  ^ 2)(v,?)e2iX]

=  +  j { $ 2)(’M )e2‘* +  [^i2)(v. t)]*e_2,Jf}. (4.221)

Substituting equations (4,220) and (4.221) into equation (4.195) and collecting 

0(1) terms gives

iJ/[Q'0)] =  R l [ j £ - ^ ° ^ .(A 'Y e-ix° j T  A(Sl)(S, -  s.2)e-" < ^-^ ds2dSl

( 4 -2 2 2 )

Making use of (4.218) equation (4.222) can be re-written in the form

RHqW] =  71/[ jT A(aa)(s, -  s2) e - ^ ~ ^ d s 2ds,

9^/

- ^ r J - J ' )ist)ds^  (4'223)
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Introducing the normalizing variable,

< « « >

equation (4.223) simplifies to

jy [0 '2>] = r i [ -  f £  A *(si) a (s2){si _  S2)e- ^ - » ) dS2dsl

Turning our attention to the 0 (e2iX) terms we obtain the equation 

<?<’> =  e_2i’,F/ too

97V

~ ^ t  n<l~’i)dsi- (4226)

Making use of equations (4.218) and (4.224) equation (4.226) can be re-written 

^  ~  2TcOiP2C~2tT)t j  ̂  M si)e%VSl j_ ^  ^ (« 2)(si ~  s2)elx]82ds2ds1

<4-227)

' Prom the form of (4.208) Q3 is assumed to have the form

Qs =  Rl[Qi%ix + Qi3)e3ix]

=  + [Q ^ re - '* }  +  i{Q l3)e3ix +  [Ql3)r<T3i*}. (4.228)

Substitution of (4.228) into (4.208) and collecting 0(e*x ) terms yields
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p(3) _ .  ^  f  4  j .  ictoT'l.wc
y i  iw cv L o e

J ^ e ~ " ,^ ~ n ^ 2 A ( $ 1) R i ^ J  A ‘ (sj)  j  i4 (s3)(«2 -  S3)2e~",('s-M ,<fa3<fs2<2.Si]

+ X * (a i) r  A (s 2) r  A (s 3){s2 -  S3)(23l - s 2 -  s 3 ) e - ir>V‘ ' - ' - K U s 3 d s 2 d S l \  
J  — OO J ~ 0 O J

iT%k>{2L *£?*,*,]a lw cw cr c

JTjT r  8 S n * i ,  (4.229)afu)cy r c y -»  -  ^  ■ 2

where again equations (4.218) and (4.224) have been used to simplify matters. Fol­

lowing the approach of Goldstein and Leib (1989), it is now found-necessary to 

evaluate Q^dr), in order to match with the outer solution as defined by (4.211) 

(which is, of course, in terms of the un-normalized variables). Since equation (4.229) 

is rather cumbersome this shall be carried out in stages. Firstly consider

/ oo r  ft
~ - 4 < D L e' ^ )A^ dr>- <4-23°)

This equation can be re-written in the form 

T  [*
- - — ^  / /  A3l {cos 7](t — s-i) — i sin r)(t — s^jdsjd jj. (4.231)

QWq & J — QQ j —oo

Remembering that sin j3r) is odd in rj and employing integration by parts with 

respect to Sj, (4.231) becomes

sin?/(? — Si)\-]< 1 [*
4 WrV j_ x  { K ‘ ( -  Sm)? v 61 )]‘_x  + -  j_ x  A nn  s in ?(•* ~  * 1  )d s2 }di). (4.232)
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Assuming that A(si —> —oo) —> ^ ( s j  —> —oo) —> 0 and changing the order of 

integration yields

T d2A  Z*00 sm7](t — Si)
' 4wcV

which in turn gives the result

r a _ A  s m r ] [ t  (

J~oo ds{ J-oo 7?

,fT A-, (4.234)4wcV

where it has been assumed that sgn(t — Si) > 0, Vsi 6 (—0 0 , f ].

Equation (4.230) can be evaluated by another method. Firstly re-write the equa­

tion in the form

T /**
4 wcV

Making use of the delta function, (4.235) becomes

f  A .t f°° (4.235)
J — OO j  — OO

7 /  A(5l )27rtf(i-5i)d6i, (4.236)
4wcU  J —00 -»|

which when evaluated has the form

4 wcT>

where we have made use of the result

,rT A h (4.237)

/  f(x)S(x)dx = i / (0 ) .  (4.238)
J  — OO /

Clearly there is agreement between the two different methods.

The next integral considered is

H Vl f  e - W - ’^ A 'is i )  r  A ( s 2 )  r  f i s J e - ^ ' - ’i-^ d ssd sid sid y , (4.239)
J—oo J—oo J—oo J—oo
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where

f ( s3) — A(s3)(s2 ~  s3)(2sj — s2 — 53), (4.240)

and '

which can be re-written in the form

m / ‘ A*(«!) r  A(s2) r  r  f ( s 3)e-‘,’<i+''-> -n )d$3dvds2ds1. (4.242)
J —o o  J —o o  J —o o  J — o o

Considering the two inner integrations of (4.242), applying integration by parts 

yields

£ {[ /< » ,

Applying the boundary conditions and changing the order of integration yields

r  r  ± i ^ - ŝ dVdS3, (4 .2 4 4 )
J-0 0  d s 3 J - OO T]

which is zero.

Alternatively, (4.239) could be re-written in the form

Vi f  A*(s1) /  A(s2) /  / ( s 3) f  e“,T7(*+5l_'2~53)d7/ds3ds2ds1. (4.245)
J —OO J —OO J —o o  J — o o

Again, using the properties of the delta-function (4.245) becomes
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V i  f A*(si) f A (s2) f f ( s 3)2irS(t + sx -  (s2 + s 3))ds3ds2dsi. (4.246)
J — o o  J —o o  J —o o

In the range of integration, ?+ ^ 1  > «s2-fS3 , hut since at the point t = s\ = s2 = s3 

the integrand is zero, then clearly equation (4.246) is just zero , as before.

We now consider the integration

f ° °  f ‘ e~i,’<J- ‘>2A(s1).RZ{ / “ A*(s2) H  g ( s 3) e - i'’^ - ^ d s 3d s 2d s 1d v } ,
J  — OO J —o o  J —o o  J —o o  J

(4.247)

where

g ( s 3) =  A ( s 3) ( s 2 - s 3)2, (4.248)

which can be expressed in the form

t>! f  A (« 0  r  A ' ( s 2) r  g ( s 3) r  2d S i  +
J  — OO • J  — OO J  — OO J —OO

V i  f ‘ A ( s i )  / * '  A (s2) r  g - { s 3) r  e - ^ - ^ - ^ - ’^ d v d s ^ d s i .  (4.249)
J  — OO J  — o o  J  — o o  J  — o o

Consider the integral

/ * 2  tO O

A (s3)(s2 -  s3)2 /  e - W - ’ t + v - ^ d r i d s s .  (4.250)
■oo J —o o

Integrating once gives

f  A(s3)(s2 -  s3)227r6(t -  si -f s2 -  s3)ds3. (4.251)J—oo

Since t — sj -f s2 — s3 > 0 except at the point t =  Si, s2 ~  s3i where the integrand 

is zero anyway, then the first integration term in (4,249) is zero.
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The integral

/«2 roo _
A ‘ ( s 3) ( s 2 - s 3)2 e - i')<,- “ - < « -« » < V s 3, (4.252)

-OO J—oo

can be evaluated to be

2 ttA * ( s 2 +  s t -  t ) ( i  -  s ^ 2, (4.253)
ft

and therefore (4.231) can be simplified to

2irvi f  A($i) f  A(s2)A*(si — s2 — t)(t — s i)2ds2dsi. (4.254)
J —o o  J —o o

Looking at the form of the inner limit of the outer solution corresponding to 

the critical layer term, Q3, it is observed that there appears to be no outer terms 

for which the critical layer term, (or any °f its derivatives), can match onto, 

i.e. there are no 66/5, radial velocity terms in the inner limit of the outer solution. 

Indeed, it is found that outer radial velocity terms at this order are purely viscous 

in nature and since we are investigating inviscid nonlinear terms in this section 

(implying that over a local timescale/lengthscale viscous effects are negligible to 

this order), then outside the critical layer there will be no contributions at this 

ordering. Consequently, there is nothing for the other integration terms in (4.229), 

namely the integrations, to match onto. Therefore, it can be concluded that 

these terms will make no contribution to the /  Q^dri integration. In fact the only

way that matching can be achieved is if vy is zero. Therefore, we can now write
\

i  r
7r J—oo 4u>cZ>

a0T^wc
2otiTcTP f  M si) f  A(s2)A*(siAs2 — t)(t — Si)2ds2dsi. (4.255)

J —o o  J oo
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Note that the curvature terms are contained within the constant T only, which is 

defined by (4.205).

Substituting (4.2S5) into equation (4.2ft \) yields the amplitude evolution equa­

tion

A j =  — kA  — — I  A(si) f  A(s2)A*(si 4* s2 — t)(t ~  s i)2ds2dsi1 (4.256)
1 J —OO J —o o

where

r =  i a i TcV ‘
2 a0T'wl

and

K -  ^ T ' w l T (h^  (4'258)

Equation (4.256) is required to match onto the initial linear solution. Assuming

for small times nonlinear terms are insignificant in the evolution equation, then we

have

A(t) —> e~K* as t —> —oo. (4.259)

Therefore, in terms of the unshifted time ti, the un-normalized amplitude A* is 

expected to behave like

A ' as t, -> -c o . (4.260)4 olqD

Inspecting (4.260) the growth rate of the linear wave is expected to be

-KrOi^, (4.261)
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where kt = -/?/{«}. Therefore the coordinate shifts Xo and to are chosen to ensure 

the following condition is achieved, namely

Af (4.262)

where at represents some initial amplitude of the initial linear growth wave, which 

will be complex. Therefore, substituting (4.262) into (4.260) yields

Ot e ^orito'ti _  e - iXoe - * ( - w'cti -to)^ (4.263)
‘±CXqU

which on rewritting a* in terms of its complex modulus/argument representation, 

i.e.

a* =  |a'|e*ei where 0 = arg a \  (4.264)

gives the conditions

<0 =  > (4.265)

and

Kr 1 alwcwl.

X 0 = Kit0 -  0. (4.266)

Ki is of course the imaginary part of k.

Equation (4.256) is the main result of the nonlinear theory developed in this 

Chapter and represents the governing equation for the growth of the instability 

wave. It is found to be of the Hickernell type, in that the nonlinearity occurs 

through a type of integral convolution and can be regarded as a cubic nonlinearity 

in the slow varying amplitude function. On comparing (4.256) with the evolution 

equation obtained by Goldstein and Leib (1989) the nonlinear term is found to have
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exactly the same form - although Goldstein and Leib’s equation is in terms of the 

slow streamwise distance, x , by virtue of their spatial approach, as opposed to the 

slow time, ?, in our temporal approach - the only difference being in the coefficient 

terms k and F. In his study of the nonlinear evolution of a mixing layer in a rotating 

compressible fluid, Shukhman’s (1991) critical layer is fundamently different from 

that presented here (and also that treated by Goldstein and Leib) in that the nonlin­

earity is developed from the irregular pressure disturbance logarithmic contribution 

resulting from the critical point not coinciding with a generalized inflexional point. 

However, the nonlinear term in his evolution equation is found to be exactly the 

same form as that determined here and by Goldstein and Leib. Shukhman noted 

that the only difference occurs in the coefficient terms which are determined by 

neutral mode analysis peculiar to the fluid dynamic problem being considered, but 

these turn out only to be constants, thus resulting in an even greater universality 

between Hickernell’s (1984), Goldstein and Leib’s (1989) and Shukhman’s (1991) 

results. The results obtained in this section add even more weight to the validity of 

Shukhman’s statement.

It is now required to solve (2,3,55). This is achieved by using a straightforward 

Crank-Nicolson scheme to advance the solution in time starting from the initial linear 

solution (4.259). The double integrals are solved using the trapezoidal rule with early 

time ‘tails’ evaluated analytically from the initial linear solution. To determine the 

values of k and T, suitable subsonic, axisymmetric, generalized inflexional neutral 

modes from Chapter 3 are chosen and the constants appearing in equations (4.257) 

and (4.258) are determined for each of these modes. The jump constants, (& î — 6j i )  

and (6^2 “  ^ 2)5 appearing in (4.257) and (4.258) are determined by solving (4.146) 

and (4.147) respectively, for each of the chosen neutral modes. It is found that by 

adjusting the term D, the nonlinear constant jr can be varied relative to the linear 

constant k - which remains fixed - thus allowing us to control
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when nonlinearity becomes important, i.e. we are varying the level of competitive 

nonlinearity. The axisymmetric generalized inflexional neutral mode occuring for the 

axisymmetric mode I instability, on an adiabatic cylinder at the location (  =  0.05 

(see F igures'll) was chosen as our standard. By numerical .experimentation it is 

found that arbitrarily setting V  =  w'c, causes p to be large enough relative k to allow 

for nonlinearity to produce a significant effect after a reasonable enough timescale 

and thus allow us to study its effects. It should be emphasised that the choice for 

T> is completely arbitrary - any value may be taken.

Figures 4.1, 4.2 and 4,3 display variations of Im{A} and |A| with scaled

time, t , respectively. For all curves presented the constants k and T are determined 

with respect to -axisymmetric subsonic neutral modes only, where (1) and (4) cor­

respond to adiabatic neutral modes at (  =  0.01 and (  =  0.05 respectively, and (2) 

and (3) correspond to neutral modes at £ =  0.01 for wall temperatures of Tw =  4.0 

and Tw =  4.5 respectively. It is found that in all the cases presented the amplitude 

growth rates terminate explosively in a singularity after a finite time evolution, as 

expected.

The explosive growth of the slow varying amplitude terms, as noted above, is 

attributrible to nonlinear effects which are in characterized by critical layer effects 

only, and are independent of the constant coefficient terms. Since the aim of this 

study was to see what difference including curvature terms would have on Goldstein 

and Leib’s (1989) results, it is concluded that since curvature term contributions are 

confined to the constant coefficient terms only, then there is no direct effect on the 

nonlinearity within the problem, i.e. nonlinearity effects here have exactly the same 

form as the Goldstein and Leib (1989) results. However, when the numerical study 

was conducted it was found the the level of competitive nonlinearity, i.e. the ratio 

of ac to 1/T, is important. It is found that 1/P must be large enough relative to k in 

order for nonlinear effects to be observed over the timescales being considered. For
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some of the neutral modes considered (but not presented here) tcT »  1, resulting 

in the linear terms completely dominating nonlinear contributions. However, even 

in these cases it is felt that if sufficient time were allowed to evolve - and provided 

the numerical scheme remains accurate - cumulative history effects of the nonlinear 

terms should eventually cause explosive growth. Care must be taken with regard to 

this statement, however, since the timescales involved may be of the same ordering 

as the viscous timescale, and if this where so then the effects of viscosity could no 

longer be ignored. It appears that in such a case the explosive growth conditions 

may never be achieved since viscous effects may supress any rapid growth, but this 

can only be answered by conducting a full viscous, nonlinear critical layer analysis.

In the problem treated here we have introduced a parameter T> to help control 

the product acI\ For a given neutral mode values of V  can be varied until kV ~  0(1), 

but once V  is fixed, then there will still exist neutral modes where kT »  1.

In light of the numerical results and what we have said above it can be clearly 

seen that even though the explosive growth of the amplitude terms is independent 

of the particular fluid dynamical problem being treated (as stated by Shukhman 

(1991)), it is found that since the product kT controls when it occurs, if at all, 

then indirectly the constant coefficient terms are still important when considering 

the amplitude evolution. Therefore, curvature will be important in the problem 

through its effects on the constant coefficient terms and the resultant effects on the 

values of competitive nonlinearity.

Since the nonlinear term calculated here has the same form as that determined 

by Goldstein and Leib (1989) then it is expected that if explosive growth occurs, 

in the neighbourhood of the singularity the amplitude terms will have the same 

asymptotic form as that determined by Goldstein and Leib, i.e. in the limit t —► 

where tB represents the. time when the singularity will occur,
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A = 7=---- =7i±.T, (4.267)
(ts -  i ) ( = + , < T )

where cr is a real constant and 6 is a complex constant. As yet values for a and b 

for our particular problem have yet to be determined, but this will be conducted 

sometime in the near future.

In the next chapter of this thesis we consider the problem of a viscous nonlin­

ear critical layer to see whether or not the observed growth rate blow ups can be 

eliminated.
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Figure 4.1: Variation of Rl{A]  with scaled time t.
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Figure 4.2: Variation of Im{A} with scaled time t.
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Figure 4.3: Variation of |A| with scaled time t.
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Chapter 5 

The Viscous Nonlinear Critical 
Layer Solution

In the previous chapter it was found that when nonlinear terms were retained in 

favour of viscous terms, for the particular unsteady- critical layer problem being 

treated in this thesis, after sufficient time had evolved the growth rate of the in­

stability wave was found to terminate in a singularity. The reason for this is that 

the nonlinear term is a form of convolution integral in which past histories are im­

portant and the cumulative effect of this integral results in explosive growth after 

a finite time evolution. This occured because in the formulation of the nonlinear 

critical layer problem important physics has been disregarded, or more precisely, in 

the neighbourhood of the critical point viscous effects have been totally ignored. 

In this chapter we consider the case where viscous effects are of the same order as 

the nonlinearity developed within the critical layer. Examining the critical layer 

solution of Chapter 4, it is noted that nonlinearity first becomes important in the 

temperature equation at 0(£6/5), therefore viscous effects are now required to be 

important at the same ordering, implying that the Reynolds number, Rey now has 

the form

Re ~  <T6/5. (5.1)'
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If Re is chosen smaller than 8~6/5 viscous effects will dominate the nonlinear 

critical layer effects, while if Re is larger then viscosity will not significantly effect 

the solution.

We introduce the scaled viscous parameter

where A =  0(1) and the inviscid solution obtained in the previous chapter can be 

retrieved by setting A =  0.

Again, it is found convenient to work in terms of a frame of reference moving 

with streamwise velocity Cq, namely (4.70). Therefore, we again stress that even 

though the boundary layer varies over long viscous lengthscales in the stationary 

frame of reference, since fixed points in the moving frame translate downstream 

as time evolves with respect to the stationary frame, then mean flow terms can be 

regarded as functions of time in the moving frame. Since viscous effects are no longer 

ignored, then mean flow terms are expected to vary as the boundary layer spreads 

over the long viscous timescale (as measured in the moving frame of reference)

t2 = ^  = h S 415, (5.3)

which is of course longer than the nonlinear timescale, defined in the previous 

chapter.

Locally, i.e. for short time intervals, the mean flow terms can be Taylor expanded 

about t2 =  0, to obtain

(5.4)

(5.5)

^*1 ^
uo(r, t2) =  u0(r) +  0)AfiS4/b +  • • •,

ctt2

Wo(r, *2) =  w>o(r) + (r, 0)Afa£4/5 +  ■ • •,ot2
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'T0(r, t2) =  T0(r) +  f ^ ( r ,  0)A +  . . . ,  (5 .6 )
0t2

1 1 dT
Pa('r ’ ^  =  2^(r) _  3g (r) * 2  ° ^ * li4/S +  5̂ '7^

where «o(r, represents mean flow velocity terms in the radial direction and the

0(64/s) terms represent the effects on the basic flow due to viscous spreading. 

Consequently the solutions outside the critical layer now expand in the form

v! =  feiJ/[Xt(«1)51(r)ei“»̂ ] +  6V*vlm +  ■ • •, (5.8)

v 3 =  W o(r) +  a(r) A < !^ 5 +  tfi«[A , ( t , )03(r)e ,'"*<] + S°/5v3m + ■■■, (5 .9 )

T  =  T (r) +  d(r)M t£4/ 5 +  6 J U [A '(t ,)f  (r )e ‘'“°<] +  ^ T m +  • • ■, (5.10)

P =  t T T  +  e(r ) ^ i^ 4/S +  « ^ [ A , (* i)p (r)ei“”c] +  6«/5p m +  ■■■,  (5.11)

P  =  1 +  S'lM lR l{A '(U )f,(T )ja°(] +  <58/sPm +  • • •, (5.12)

where a(r), d(r) and e(r) can be determined from the basic flow, Wo(r ) +  cb =  w>o(r) 

since we are in a frame of reference moving with streamwise velocity Co, and

f  =  (1 +  fi2/ 5 £ l ) f  =  (1 +  _  c t ) .  (5 .1 3 )
<*0 Go

The 0(66' 5) terms have been introduced in expansions (5.8) - (5.12) to match 

with the solution within the critical layer - which we know exists at this ordering by
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the form of the inviscid solution - and to account for the slowly varying ba-sic flow 

terms.

Fortunately, outside the critical layer the additional viscous terms do not effect 

the solutions already determined in the inviscid case, i.e. to the required order, 

outside the critical layer viscous effects are not important.

We are not so fortunate with the solutions inside the critical layer. Re-expanding 

the inner limit of the outer solution in terms of the critical layer radial coordinate Y, 

namely (4.154), and including viscous terms, suggests that in the case of a viscous 

nonlinear critical layer the flow parameters possess the following expansions

Uj =  -~£ao/W[i.AVao ]̂ +  86/$\u c +  S7̂ ^  2 +  • • •, (5.14)

v3 =  Yw ' ^ 5 +  <54/5 (y w" +  «cA<i) +  4 ,  +  15«/‘02 +  6V ik  +  • • •, (5.15)

P  =  1 -f £pn(C,<i) -f <$6/sp12(f,*i) +  ^ 5Pi3 4-----5 (5.16)

T  — Tc + T ^ 5Y  +  S ^ T u  +  84̂ f 12 +  tffis +  • ■ ■. (5.17)

Examining the radial velocity expansion (5.14), it is noted that the 0(8 6̂ 5) term
A______ ___

has been set to ucA. This needs some explanation. Since by the locally parallel 

flow assumption it is assumed that there is no basic flow contribution in the radial 

direction, this implies that the first order correction term to this assumption will 

have the form uo(r)/Re. Clearly, a Taylor expansion about the critical point, will 

yield a correction term of the form uc\8P/5.

It is now found necessary to consider the full viscous equations of momenta and 

energy (as presented in Chapter 2), which in non-dimensional form are
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Dv i
' u r =

i  a

i  a p +  A [ E £ * ! l + ( - »  + ! J L Y ^ i | +
dr dr'-Re dr 'J?e2 312e' -*

r / ^ 3  . ^ i \ l  . 1 r 2 / i d v i  (  f i 2 2 u \  i
/ Z e ^ K a r  +  a J i  +  r [ j t e  +  +  ( 5 *1 8 )r  LPe a r  'P e 2 3 Pe

X>U3 
' Dt

d p  1 a  f ,dvz
+ «  rv [M ( +7 M 2 dz Re dr

^ 1 \ 1  a  r 2fi dv3
dz '  J a,sr iPe a*

+ ( j ± . + E J L W  • vl +  ^
vPe2 ^ 3 P e / “  * Re r '  dr ~dz P

(5.19)

d t  7 - 1  d p  2 f 2/ i f^av^ 2  r au3^  l^au j
^ — ~ ^  =  (7 - 1)M ~ \ 7d b r )  +  b r )  +  * U 7  +Dt 7  Dt v' ' ' " '" I J i e l V f t . /  ' V 3 z ' ' 2 ^ 3 *

+  J ± m .  v ) 7  +  +  J - 1 ( W
dr '  J Re2 -* cr Re r dr  ̂ d r ' a Re dz '  dz

where

^ T W Z -  Wr o o v  0 0

From the inviscid nonlinear critical layer analysis developed in the previous chap­

ter, we note that we are only interested in terms up to 0 (<$7/5), therefore to the 

required order of approximation we can write (in terms of the transform variables 

(, Y  and ti, which are defined by (4.159), (4.154) and (4.160), respectively)

Dvi  =  - ^ k s ~2,sV w + 0 ^ :  <5 -2 2 >

A TdP , WCTtffTdK , md*v3] , W c p a i h  ,
Dvs = - W l P ^ ( + ~ p - ^ d Y W  + T&^\ + ~7p— W  + ° {s } ’

(5.23)
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T3T -  = ML(7 -  l) ^ £l/5{ ^ ) 2

X C S ^ T ^  +  f l 'T T y  +  r r y y j +  0 ^9 /5)| (524)
<j P

where the non-dimensional linear Chapman viscosity law has been assumed, i.e.

A* =  C T ,  • (5.25)

C being assumed constant and A is defined by equation (4.161). The ‘IF  operator 

is the same as defined in the inviscid case (equation (4.167)).

Substituting the equation of continuity (4.72) into equation (5.24), gives

w  + ^ ' w  + * 7)'- W -+ (S'2/W  + + 7)

=  « i ( 7  -  1 ) ^ 2/5@ ) 2 +  + « 2/5^  +  n w ) .  (5.26)

Following in the manner of the theory developed for the inviscid case, it is again 

found convenient to use the azimuthal vorticity component,

n= 4 H ' 2/5S ’ ( 5 . 2 7 )

as a dependent variable. The critical-layer vorticity equation now has the form

m  -  — D P  =  Ar2/5 i i d P d T  _  d P d T ,  _  n A g ,( 7 . - i ) c r A rit/5^ 2
7 p  7 m i , p  lay ac ac ay I p la y /

- a ^ l [ n  +  ^  +  n w ]  -  AC ™  [ r *3y]} +

I5'28)
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0  -z i )
Substituting expansions (5.14) - (5.17) into equation ... J and equating powers 

in 5 gives a sequence of partial differential equations for the temperature terms of 

the form

A F n  =  -i>0 T', (5.29)

C\T\2 ~ i’oTny^ (5.30)

CxT 13 =  § ( i  -  £L)Rl{e'°»<[iaoY W'cA ' + A!,]} +  C .T n

where

K  Vr« 2wc

W W  +  r cY ( %  -  £ )  &  +  - ^ [ A 3 ,  +•< _ ^ u 0+J S
<  T‘ >Va + ' a 0‘

t £c t ? 6  ACT'T - ACT.r_ _ _ y i y   — [lcQiy  +  wcT nY  J +  — -[2Tcr liy

+ ^ ^  +  r ' r r u y r ], (5 .3 1 )

\ i  — ^ 11? (5.32)

T u  = Tu  -  ~ T "Y 2 -  XCtWv2 u rpi rp2rpt,

+I L ( I L + W
a xr.- r~)]> (5-33)

^13 =  Tis —7 - 1, 
7

+ (5.34)
u ^ r , 2 <

and we have defined the operators
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the operator C having been defined in Chapter 4, namely (4.178).

Substituting expansions (5.14) - (5.17) into the critical-layer vorticity equation 

(5.28) yields the following sequence of partial differential equations

C2Qi =  A c r e(— V r „ r r ,
v <J '

C2Q2 = —tyoQ iY  + + 2Tcw'c\ c (  ^)Ti2YYi±c v <J *

=  “ <3ic +  acXti H— — 4>oQ2Y
I  ao J

A A

+ ^ r 3 W  -  +  ACBt -  — B 2,If. <7

where

(5.37)

(5.38)

(5.39)



T is defined, as before, by

2 + i ( <  
2 W

2x2
+

w
w

(5.43)

and

Bi =  +  ^ ) Q iy  +  +  ^ ) T u yy  +  V A y y

+ 2  t j t A yy  +  r . » j p £  +  - } t 11y +  £ [ | ? r U y  -  S i rw' ri ‘ c 1 r . (5.44)

@  +  - ]  T n r  +  to'T, W +  Yw'cTc [ p  +  4 ]  r n K y , (5.45)
L i c r , J Li c

whilst we have defined the operator

C2 =  C -  \ C T > ~ .  (5.46)

Inspecting (5.32) - (5.34) and (5.40) - (5.42) it is noted that these terms have 

been matched with the appropriate inner expansions of the outer solution and far- 

field conditions. As before, T u , T13, Qi and Q3 have been matched in such a way 

as to ensure all four terms tend to zero as Y  —+ ± 0 0 . In the case of the T 12 and Q2 

terms, because of the additional viscous contributions, we have to be more careful in 

our matching procedure. Matching is used to remove V-dependent terms, ensuring 

that both terms tend to a constant as Y  —► ± 0 0 , i.e. are bounded. It is found, 

however, that there is no matching procedure by which these respective constants 

can be removed, as this results in the solution for these respective terms acquiring 

unwanted singularities. It is found necessary, therefore, to carry these constants 

through our solution procedure.
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Following in the manner of the inviscid theory the normalized variables t, X  

and 77, as defined by (4.213) - (4.215) are introduced to aid the analysis, where the 

coordinate shifts X q and tQ again ensure that the instability wave matches correctly 

with the initial linear upstream disturbance term.

From inviscid theory T u  is assumed to have a solution of the form

T u  =  ,i)e ijr]. (5.47)

Substitution of equation (5.47) into equation (5.29) and equating 0 (e iX) terms 

yields

1   i T c O i \ W c  / C  A O \

T u J  + i i iT n  a T n n n -  2a 0w f '  (5.48)

where

8 al\CT?
> (5-49)u>;or,

and A(t) is defined by (4.218), and we have set T> =  w'c.

To solve the above equation the Fourier transform method of Hickernell (1984) 

must be employed. Defining

Zl(K ,t)  =  f "  (ij,t)e~iKndi], (5.50)
J — OO

equation (5.48) can be re-expressed in the form

£  ^  = £  { -  ( 5 - s i )

Integrating term by term we have

£  =  ^  [ £  T f f e - " * * ]  =  (5.52)
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and

j T  i v T f ie - iK'di, =  -  A  [ j T  (5.53)

Integrating by parts twice and making use of the result

21![!,, -* 0, M »/-+±oo, (5.54)

gives

J ^ T f l m e- iK'dr, =  (iJT)J [ J ^ ^ e - ^ d r i ]  =  - J f V  (5.55)

Thus equation (5.51) can be re-written as

i l K 2 iT'otiW c / x
z i t  — z i K  -I— ~ Zl =  — 2 o~u/~  (5.56)

Switching to the variables K  and t =  t +  K, reduces equation (5.56) to the

first-order ordinary differential equation

<7 a0w'c

where we have made use of the result

dzi dz\ dt dzi d K  dz1 dzx .
I k  ~  I h I k  +  I k I k  =  ~ M + I k ' 5̂ '58^

Solving equation (5.57) gives

Zi  =  B l J lK,/3a if K  <  0,

_  f ^ a i Wc ^  B if K  > 0, (5.59)
1 a 0w ' > v '
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where B\ is a constant to be determined. Since < 0, then by (5.49) S7 > 0, 

implying that z\ will grow exponentially as K  —► oo. However, in the far field z\ is 

required to be bounded and this can only be achieved if

6 i * T ^ A(i)

Therefore equation (5.57) has a solution of the form

zx{K,l) =  +  K )H (-K ) ,  (5.61)

where H (K)  represents the Heaviside function.

Defining the inverse Fourier transform of z1 (K, t) to have the form

^ j T  z1(K ,t)e 'K”dK, (5.62)

then by the form of (5.61) we have

i f i ’O /J) =  - . lT*aiW‘ f° A(t + K)ei>K’/3°eiK’>dK. (5.63)
ZOCq‘Wc J—oo

Introducing the transform variable si — 14- K ,  equation (5.63) can be re-written

= " i S r  / - I  (5.64)

Comparing (5.64) with the corresponding inviscid result, namely (4.219), it is 

noted that the only difference is the term exp(—Cl(t — s1)3/3<j).

Guided by the inviscid work of Chapter 4, it is assumed that Qi can be expressed 

in the form

(?! =  Rl[QP(v  JK '* ] . (5.65)
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Substituting equation (5.65) into equation (5.37), collecting 0( e tX) terms, ap­

plying Fourier transforms and switching to the variables K  and t, yields

S H E l — ( » • )

where

Y l ( I < , i )  =  r  Q ? \ v , t ) e - iK ' d v .  (5 .6 7 )
J—00

A /-t \
Note that ' has been normalized by employing relation (4.224), where ‘tilde’ 

terms have been replaced by ‘hatted’ terms here.

Integrating equation (5.66) gives

y '  -  * -  « * < - ' ■ > “ - [ -  ? ( £ 7 i ) l " '

+ B 2}efijr3/3, (5.68)

A

where J?2 is a constant. Integrating (5.68) by parts yields

(5 .6 9 )

Since Y) is required to be bounded as K  —> oo, then

A  =  - - - T-̂ - ; A(t), (5.70)aiWcTcW'c

where <r <  1 is a necessary condition if Vi is to be zero for K  —► —oo. Note, if cr = 1 

then the first exponential term in (5.69) disappears. Therefore equation (5.66) has 

a solution of the form
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Y' (K ’V  =  - ^ f e e t e > / 3 A ( ? + i f ) K ( “ / 0 ^ " e x p I '  ° r ( V ) ] > -  ( 5 -71)

By the fgrm of equation (5.30) T u  is assumed to have the form

T 12 =  R l[T ^ (r ,J )  +  j f 2\ n , t ) e 2ix]. (5 .72)

Substituting equation (5.72) into equation (5.30), and collecting 0(1) terms 

yields

i U [ T $  -  ^ T g l j  =  (5 .73)

Because the real parts of the respective sides of (5.73) are equated, great care must 

be taken when applying Fourier transforms. Defining

z2(K , I) =  / ”  7 i % ,  t )e - iK"dv , (5 .74)
J — OO

then clearly

4 ( - K ,  ?) =  /_ “  [T^(rh f)] ’e- iK”dr,. (5 .75)

Therefore the Fourier transform of (5.73) is

z2j(K ,t) + - K 2z2(K ,i)  +  z l j ( -K , t )  +  - K 2z ; ( - K , t )  =cr a
in  in

'  lK A '( tM K , t ) \  -  - ^ [ K A ( T ) z l ( ~ K , t ) l  . . (5.76)2 u?' 2w'c

——  /0\
where it has been assumed that T12 and T UtJ (and their respective complex conju­

gates) are bounded as rj —► ± 0 0 , respectively tending towards the same constant in 

both limits, giving zero resultant.
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Discarding complex conjugate terms in Z{ (where i — 1,2) occuring in (5.76) and 

integrating with respect to K  yields

<5' 77>

where

F(K , i) =  iK  exp [ -  -  n )  -  «)}  A *(rj)^(r, +  K ). (5.78)

Note, if the complex conjugate terms in (5.76) are integrated instead, the resul­

tant equation for 2j(—K ,i)  confirms the identity (5.75).

The Fourier transformed 0(e2tX) equation has the form

t lK 2 wc s K  
z™ -  I T * 3 =  4 ^ cA(i -  T )K z i’ (5-79)

where

z3(K , t )=  f  T ^ ( iq,t)e~tKTldri, (5.80)
J—oo

and we have introduced the transform variable

i  =  * +  y .  (5.81)

Integrating equation (5.79) gives

_ i^ T lcw2ca i
4a0( S H{- K) iC 'l 6XP & {I<3 + ^ A(ir  ^ A(i + (5'82)

where z3 = z3( I { J -  £ ).

By the form of (5.38), we assume Q2 can be expressed in the form

*)«“ ]•
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Substituting equation (5.83) into equation (5.38), collecting 0 (1 ) terms, and

Fourier transforming yields

Y21(K J )  +  n K 2Y2(K ,t)  =  - ^ K A ' ^ Y ^ K J )
2u)'

 = ? V 7 0 * P h ( J r , I ) - - ^ = r  ( - -----)K *z2(K ,t) ,  (5.84)

while the complex conjugate equation has the form

V S(-iU ) + nK%"(-K,i)  =

where

K2(A',t) =  j "  Q(0% J ) e ~ 'K^ .  (5.86)
J—00

Integrating equation (5.84) with respect to t gives

*-< * ■  * ) - £ .  e ' " " 2(f_ri) [2 K A ' ( r i ) A ( r i + e x p  ( i B

-irA *(rO exp  ( ^ - ) A ( n  +  A ) A ( - A ) { l - e x p  [ -  ) ] } ] * V

+ 5 S ^ 5 ( £ 7 i ) / I K V “ ‘<,' ' , ,J ,< - ii:> ( / - > ' * - } ' ,r>' (5-8 7 >

where

rt ClK*

k m n

{>i =  M*(r3)A(r2 +  tf)  exp ( -  “3^ -[3(r i -  r2) -  K]) • (5-88)
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Before proceeding it is found necessary to simplify the . third contribution to 

(5.87), i.e. the term involving the double integral. Changing the order of integration 

this term can be expressed in the form

J - J 2l l eXP (5.89)Tca  i

where

n  zy-2
v2 = iH ( -K )A '( r 2)A(r2 +  K )K 3eTnK' 1 ex? [——  (3r2 + itT)]. (5.90)

On carrying out the inner integration, (5.89) simplifies to

L  +  K )K {  exp [ -  -  r .)  -  K)}

— exp — ri)] exp (5.91)

where we have set r2 =  r i .

Equation (5.87) can now be re-expressed in the simplified form

Y2(K,t)

1rT'a°7^ f  iK H ( -K )A - ( ri)A(ri +  /0 {2 ex p  [ -  ^ ( 3 ( <  -  r ,)  -  Jf)]2Tca1(w,c)2 J-oo

- { l  -  exp [ -  ^ j - ( ^ y ^ ) ] } exP [ -  ^ j - ( 3 ( i - n )  -  /0]}< M 5.92)

The Fourier transformed 0(e2%x) equation in terms of the variables K  and t, has 

the form
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* *  -  * £ * = - ^ A r a ^ ~  f  + f

<5-93>

where

Yz(K,t) =  f  Q¥\ri,T)e~tKridi). (5.94)
J — OO

Integrating equation (5.93) yields

K -  /«<- 2' t 's ‘~'” Al1 ~ ' P ' A (U  *> “ p )
+ { ,  _  „ p | -  I ) . * '* ’* ® } *

- i £ « “ >> [?<*’ -  «l jf <5-“ )
where

n3 = s2 exp — (^  +  4 ) ] j4 (< -^ )A (<  +  ^ ) ,  (5.96)

and the boundary condition I 3 0 as K  —> 00  has been applied.

Again, changing the order of integration in the third contribution to the right-

hand-side of (5.95), yields the simplified equation

r -  =  1 hMA -  ' P A<I + ? x  -  + * ’ >]

+ {l - '« P  [ - ^ |1( ^ L̂ )!} .^ p [ |(A 'j I (5.97)

where Y3 = >3(/C,t -  f ) .
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Following in the manner of. the above work, it is assumed that T 13 can be ex­

pressed in the form .

T n  = R l[ T ^ ( v ,i)eix +  T ^ ( V,t)e3iX}. (5.98)

Substituting equation (5.98) into (5.31), collecting the 0 (e tX) terms, and Fourier 

transforming yields the following system in terms of K  and t

tIK2 T ^ a l w c / w" 2 \ f ~ 4alT^Xuc

A

iTL&i . . 2ao r2ac\ __ .. ofiwL,
+ 2 ^ r c{ZllK + zm) + )lZl ~  ~25[ {zik +  Zli) '

,/alT^wfc iv'c'a j \ ,  . ’i

- t  ( l ^ 5 T  “  (ziKK +  1Ki+Zl i l ) }

ct\wcT'cA (i — K)ir /w" T ' \  r 2ia0 i
— + ^ r 5(7sr)J

iw°\A rt tr \ l 'Tr~ A* ( t ~ K )>Ts 1 Tcwlo%. t - - * ( a - l \
~ Z r [ W  -  >2* 2 -  )

, ttifl \Tc . t . 2a07Y 2 .m/T, 2/ , vi <X\T'tl

where

z4(K ,t)  = f°°  T ^( ti ,J )e - iK"dn, (5.100)
J — OO

Z 2 { K J -  K ) = Z2 ( K , i - K )  + z ; ( - K , i - K ) ,  (5.101)

and it has been assumed that
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and

(5.102)

p13 =  +  A(33)(<)e3iX]- (5-103)

It should be noted that p13 is determined to independent of Y ,  from equation (5.22).

Equation (5.99) is now integrated with respect to K  and the far-held condition 

%4 —t 0 as K  —► 00  is applied. It is found that great care must be taken when 

applying this condition. Defining

z4(I<, t -  K)  =  H ( - K ) z4(K, t -  K ), ■ (5.104)

where

A A

a t ts z tir\ f , iTc&i 1 a  ̂ 2«o f 2gcA jyz4( K , t -  K ) = {  r -r - iK z i  +  +  Zut) + -----------  -(t -  K
1 w fca i  2 a 0 T c c ^ u ; ' v

■ w o *  -  ^ + % )  -  -  § ) ( w + + i i s) ]}

- ^ [ \ A{i - K ) i K ^  -  £ & ^ } » a 3) -  T ^ i K U ( ^ . )

, r . ,  . 2a0T ' r̂ 2A 'rriTs2f* . A a!
In  1 +  1 "  c {Z1K *‘r)J “

(5.105)

and

*1 a0wt

'KW^T1Oil ft
* * ’ > * ' •  <5 1 0 7 >
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« ® £ ( * " + « ] • « ■ ' - ) > « > + 1 » .  (»•>«») 

* < * ■ • > - * > { ■ — ■>[-T f r 1)]}. <“ «)
the integrand .F(iC,t) being defined by (5.78). For K  < 0, equation (5.99) has a 

solution of the form

z4 = exp ( ^ - ) { / oo *<(Ji J  -  h) exp ( -  J^)dh +B4}, (5.110)

while for i f  >  0 the solution is given by

Z i  =exp(^-){A(J?,i) + j  ̂ Z i ( h , t - h ) e x p ( - ^ - ) d h

+ 1  ~ h)ti%(-l,i~ /i) exp ( — ~)dh  + (5.111)

where

-  7) ^ -  W1U -  *>«■* ( -  ! £ r ) w

w *  ( -  S ) i  u  - - 1 ) { ^ )

+Afi-  X) exp ( -  ~ ) m  -  £  [Mi-  M e x p ( - g ) ]  |Ii=0}, (5.112)

A t
and B4 is a constant of integration.
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Applying the far-held condition yields

B a =  -  exp J  ^  z4(lu t -  /i)exp ( -

A

+  / fl 7 ^ M i - li ) h % ( - l , i - l i ) e x p ( -  (5-113)

Therefore equation (5.99) has a solution of the form

A
fO O  o/i r O  -a

24 =  - H ( K )  JK ^ h A ( i -  h ) n ( - h , t -  h)exp [ -  - ( I f  -  K 3)]dh

- H ( - K ) c x p  1>* “  ;i ) exP ( ~  +  M-K'i*)}- (5.114)

It is now found necessary to determine the 0(£7/5) vorticity component. We 

dehne Q3 to have the form

Q3 =  -f Q33)(^ J)e3,X]. (5.115)

Substituting equation (5.115) into equation (5.39), collecting 0(e'x ) terms and 

Fourier transforming gives in terms of K  and t
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YiK -  h K 2Y4 =    r ~ { A ( i  -  K)}6(K) +  _ K  + t ) Y
2wcw'c d t l J <*iwc <̂xiivc

+ y1k) +  ^ ( r l t 7 + 2 K I(- «  +  W ]

-  iU * ( i-  K)KY3\  +
w '  1  v 2  2  v } J 2al w,cwlT*C  ’

QqA / a  — 1 \ tX, a 0A r/<7 — 1 \  2io" /3 a  —
+ 2 ^ | ( — ) 7C ) - = f  "  ( — )* ]•* * >

+ - 4 V  - l ) (— ) [* * *  -  +»»*)]a : i i u ' u ; * X c v  « > ' r / v  a  2a0 J

a i f i r t o "  ^ /< 7  +  l x ,  2 T ' c 1 f i /  ,

£  I— “S j j p "  * +  2 ^  ( ' * +

where

YA(K, t) =  r Q \% ,  t)c-iK"dn, (5.117)
J  — OO

and

Y2(K, t  — K) = Y2(K , f  -  JT) + i -  ). (5.118)

Integrating (5.116) and requiring that Y4 is bounded as K  —> oo yields
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»i -  - ra p  ) { W 0  / “  4>=P ( -  x ) Jf|

+"(-ir)2 S i|W ''- « 1 U

i "  ! S (! -  + + + >

-  ( ^ ) ; ] “  -  S f e l f f i f c r ' ” '  -  i r t l 

+^ ( f - s ) ( £2 i ) [ ^ - S « i”'+s"»i
aiH  ru>" /^  +  l \ y . T,% 2T'cifi / , *
2«„ 5  -  -  ^ (  -  « $ + 5 ^ +**»

-  \A - ( i  -  h )h % }}  exp ( - ^ ) d h ) ,  (5.119) 

where zy, z4, and Yy are defined by (5.106), (5.105) and (5.109), respectively, and

=  r S k ^  L  tK A ' {r' )A ^  +  * > { 2 e x p  [ -  ^ (3 (?  -  r ‘ ) -  K )\
UK2

2Tca i « )

' { I exp
UK3 ,<y - 1 SIK2

( - 3—)]} exp [ -  —g—(3(i -  n )  -  JC)] }<*n,

(5.120)
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* < * • ' -  f  > -  jC  ' ' m ‘ -  T>x ( i + 1>( -  2“ P + * ’>!

(5.121)

V i(K j)  =  exp ( -  ^ - )  7j ~ f h A ( i -  h )% (- lu t  -  7i)exp [ -  -  K 3)]dlu

(5.122)

+ H ? ( H  -  W ) L + £ [ 4 f  -  Mexp ( -  M ) ] U

a:?u)cT '7 r /  tu ' '  T c" \  r 2 ia o  , , rx 9  r -  /  . .

- -  f ^ - K m  -  adA(< - ( ■ -  3̂ )1 U  (5-123)
Now that the term I 4 has been determined, it is found necessary to determine 

the corresponding value of t). We define the inverse Fourier transform

Qiw fo,i) =  T  n ( J r , i ) e * W ,  (5.124)
Z7T J —oo

where it is noted from (5.119) that I 4 is a function of K  and t — K ,  therefore care 

must be taken when applying the inverse Fourier transform of the right-hand-side. 

Secondly, (5.119) as it stands is a fairly lengthy expression and carrying out the 

inverse Fourier transform of every term on the right-hand-side can be a very tedious 

and time consuming process. However, since it is only the term  Q^\r],t)d7] 

which we are ultimately interested in, as it is this term that is matched with the
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outer solution (see the inviscid theory in Chapter 4), it is found more convenient, 

and indeed the analysis is greatly simplified, to consider the double integration,

r  Q i \ v , i ) d v  =  ; r  f  f°° Y i M ^ ' d K d r , ,  (5.125)
J —oo Z7T J —oo J —oo

in one step.

On carrying out this process all terms in (5.119) contained within the l\ integra­

tion are found to be zero; for example, consider the term

h  L  C  jf + * -
(5.126)

where it is noted that in the inner integration the variables have been converted

back to F, K  (although in terms of the inner integration this coordinate is now l\)

space to facilitate the application of the inverse Fourier transform.
A

Substituting in the value for V3 as defined by (5.121) (where again care must be
A A

applied since I 3 is a function of K  and t — ~  in (5.121)), and changing the order of 

integration yields

1 ( 5 - i 2 7 )

where

v5(t, I<, lu  l2) = A(t +  K - lj - lj ) A ( t  +  K  -  |  +  | ) {  -  2 e x p  [ i i  ( / |  +  Jj)]
2 2 y v 2 2

n
6cr

+ { l  -  exp  [ -  } exP [ | ( i ?  +  »?)]}a * (? +  X  -  / i ) e x p  [ j ( j r 3 -  1®)].

(5.128)

On carrying out the inner-most integration we have
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f  h h i iS ,  K, lu l2)2K&(-K)dK. (5.129)
J —oo

Since /j < 0, the delta function is only switched on when the upper limit of integra­

tion equals zero, but clearly the integrand will equal zero at this point. Moreover, 

the l2 integration in (5.127) disappears when this occurs since the upper and lower 

limits of integration will now be equal. Therefore (5.126) is zero for all values, i.e. 

this term makes no contribution to the jump term on the left-hand-side of (5.125).

Similar arguments applied to each term within the /j integration appearing in 

(5.119) yields that each one is zero.

Consider now the term

1 too  roo  , Q 7 i f 3 N T V  Fi .- 2 ?L L e ”exp + *  -  (5-13°)

Changing the order of integration yields

T (qf ) h ^ i+ K - l' A J l e'K̂ dK- (5-131)4 wcwc

Carrying out both integrations gives

+ (5.132)^Wcw'c dt

Consequently this gives

T tr
. 7Ah (5.133)

Awcw'c

where A  =  A(t).

Comparing this result with the inviscid theory developed in the previous chapter 

it is found that this term corresponds to the linear inviscid term.
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This next term which is considered has the form

exp — JdKdr/. (5.134)

Again, changing the order of integration and carrying out the inner integration yields

(5 -1 3 5 >

Clearly on conducting the /{"-integration the term inside the curly-brackets will equal 

zero, resulting in (5.135) making no contribution to the jump across the critical layer. 

The next term examined has the form

~ i J U Z eiK"H (K )Jk  ^ A Ct + K - h ) Y 2' ( - h , t  + K - - l 1)eT<KS-V d I1dKdv .

(5.136)

Substituting for Y? where t) is defined by (5.120) yields

i w  f ° °  f t + K —li

- B ^ R f L / o  L  L  (5.137)

where



Changing the order of integration gives

^ f % {  f  J  ~ 7 1 F  ^ d K d r . d k
i T c ^ w ' j *  ^ Jo J - o o  Jo J - oo

r o o  p l i  f l i  /oo .»
+  /  /  /  f?u6 /  e '^ d n d K d ^ d lA .  (5.139)

/o  ./*-/, / r i+ i i - F  / - o o  J

Considering the second quadruple integration first, conducting the inner-most 

integration yields

-  f ° ,  r  f ' [ '  llve2 rS (-K )d K d r idh. (5.140)
S ^ r c ^ ) 3 ^  J t - h  J n + h - i  1 v J v }

The delta function will be switched on if Zf =  0 at some point within the K-

integration range. If /i =  0, the integrand will be zero, therefore li > 0, and it is

required that ri +  /i — t  < 0. Examining the -integration it is noted that the lower 

limit of integration is t — /j. Therefore, the smallest value that the lower limit of 

the Zf-integration can take is zero. But, as already stated, this corresponds to the 

lower limit of the ri integration and since there is no delta function multiplying this 

integrand, then this integration makes no contribution to (5,140). Consequently the 

second of the quadruple integrations in (5.139) makes no contribution to the jump 

across the critical layer.

Consider now the first quadruple integration in (5.139), which on carrying out 

the inner integration yields

iw T fcxn ft—h rh
" S a ^ K f / o  L  I  l^ S ( - K ) d K d r idh. (5.14!)

Since the Heaviside function in (5.136) is switched on at K  =  0, then the full 

contribution of the delta function will be felt at the lower limit of integration in 

(5.141). This statement was checked by Fourier transforming the second integration 

term occuring in equation (4.249), where the rj integration is omitted here. On
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carrying out this transform, the inner integrand was found be multiplied by the 

delta function, 8 ( I {  + t — S i  — (s2 — S3 ) ) .  Over the integration range for the inner 

^-integration, the delta funtion will only be switched on if K  >  0. This corresponds 

to introducing the Heaviside function H (K )y with the understanding that K  — 0 

is included. Employing a variable change it is easy to show that when the inverse 

Fourier transform of the Fourier transformed inviscid equation is applied and the 

resultant is integrated over all 77, then this equation will have exactly the same 

form as (5.136) if tl — 0 (corresponding to the inviscid case for (5.136,)). Clearly, 

therefore, applying the inverse Fourier transform in (5.136) and integrating over all 

77, the delta function contribution will be exactly the same as in the inviscid case.

Carrying out the inner integration in (5.141) yields

“  S S J f / - V  (5.142)

Introducing the transform variables si and s2 where

s1 = t - l 1,

s2 =  ri, (5.143)

equation (5.142) can be written in the form

S i & T  / I  J - J  -  sJ A M M s2)A*(s2 -  t +  *0 exp [ -  £ ( I  -  *0

X{2  exp [ -  (3(? -  s*) “  2(? -  S i ) ) ]  { l  -

3 ^  CXP t “  3~ ' ' (3^  ~  ^  2(? ~  5 i ) ] } ^ 2^ i -exp

(5.144)
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The last term considered has the form

ocltl /O' — 1\ /ClK3\ l2 / H/?\ /°° u;c
5 S & l ( — ) e x p ( — ) H W I  ^

x/2A ( ? + - - /2)zJ(—/2, i  + I f -  /2)exp -  ~ ( / |  — (5.145)
3<r J

Substituting for £J, where z2(if,7) is defined by (5.107) yields

' Afc'O /“OO fOO /I+X—12 r 0/3 / /t   1 V 1
f i e - r H ( K ) j K j  j  ^  l]v7(t, I<, h ,  n ) exp [ -  y  ( — )] dr,dl2d h , (5.146)

where

inavWcT'Jil (O — 1
43^0! (i/j')

and

ina0wcT ^n ( o - l ^
, (5-147)

6 / 2  ftf3

t>7(?, /<", *2, r i)  =  l l A ( i + K - l 2)A(ri)A*(r2 -  h) exp [— —̂ -(3(t+i4T — ri) — 2/2)]
3(7

(5.148)

Changing the order of integration in (5.146) gives

— A
a ^ s  ro o  /“t + i f —I2 f /2  0 / 3  t  r e __ 1 \  i

(3e— H(I<) I I j  l\ex.p [ - —1 (  ) drjdM /j. (5.149)
J K  J - 00 o  x <7 '  J

Carrying the inner integration, and then setting l2 =  /1 yields

5 © -  j:  L  -  « * +  '  - «

X exp [ -  ^ -(3 (1  +  Jf -  n )  -  2/j)] exp ( -

n/?,<T-K, r QK3, a -  1
:T W ]  (5-15°)
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Inverse Fourier transforming (5.150) and then integrating over all 77, following 

arguments similar those developed in (5.136) - (5.144) yields the result

L  j y -  * + - o i l

-e x p  [ -  — j — ^ —) ] }exp [ -  (3(? ~ r i) -  C? — JSi))]ds2dai,

(5.151)

where Si and s2 are defined by (5.143).

Substituting the relevant results obtained between equations (5.126) and (5.151) 

into (5.125) yields that the jump across the critical layer is given by

i7ra0TcWc f* 1
4w cw'c 4Tca i ( w 'c)3 J-00 J - 0 0

x A * ( s 2 — t  +  s i ) w 4 ( t , s i , s 2 ) e x p  [ -  —  ^  ( 3 ( t  — s 2) — ( t  ~  3 X))]c?s2c?3i,

(5.152)

where

A

A ( i ,s u s2) =  2 exp [ -  —  (3 (? -  s2) -  2(t -  -si))(~— )]
1 — <7>

f l ( t  — Si)3 /(T — 1

x exp
Cl(t — Si)1

Matching (5.152) with the outer solution, namely (4.211) (where it is remem­

bered that this equation is in terms of the non-normalized variables), gives that the
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amplitude evolution equation for the viscous nonlinear critical layer, as considered 

in this problem, has the form

Af  =  ~ k A  -  ~  f  A(si) f  A(s2)j4*(s1 +  s2 -  t)(t -  si)2-4(f, su  s2)
Zi. J —oo J  —oo

x exp [ -  (3(? — s2) — C* — jSi ))] <is2* i ,  (5.154)

where k and T are defined by (4.258) and (4.257) respectively.

Equation (5.154) represents the main result of this chapter. Setting <7 =  1 in 

(5.154) retrieves the viscous nonlinear amplitude evolution equation as determined 

by Goldstein and Leib (1989) for the compressible shear layer problem (although, 

as already noted at the end of Chapter 4, the constants k and T are dependent on 

neutral mode characteristics and consequently will be different in both cases). As 

noted by Leib (1991), when a ^  1 then there is an extra contribution to the non­

linear term resulting from an interaction between the radial change in the 0(84̂ 5) 

temperature solution, i.e. the term T w ,  and the leading order term in the radial

velocity expansion, namely $ 0 . It is also noted, that there are additional exponen­
t s

tial terms multiplying the nonlinear terms, due to^assumption <7^1.  Since Leib 

(1991) assumed that his normalized viscosity has a power-law dependence with tem­

perature, then setting the constant n in his work to one (which corresponds to the 

linear Chapman law, as assumed throughout this thesis), retrieves the result (5.154) 

(although the constants k and T are different, of course). It should be noted that 

although Leib mentions the 0(8) temperature contribution to the nonlinear term, 

it has actually been omitted from his equation (3.37).

As yet, a numerical study of (5.154) has not been conducted. However, owing to 

the similarity between our results and those obtained by Goldstein and Leib (1989) 

and Leib (1991) it is expected that for certain parameter ranges, if 0  is large enough,
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then the singularity which occurs in the inviscid nonlinear theory can be eliminated 

and the solution will tend to a finite-amplitude equilibrium. In his work, Leib 

(1991) determined a necessary condition for the existence of an equilbrium solution 

which is equivalent to requiring ft to be large enough, resulting in the exponential 

term being small enough, to damp the history effects of the convolution integral, 

forcing the solution to become more local. In the case of subsonic disturbance 

terms, he determined that unless the temperature ratio of the low-to high-speed 

streams (for the compressible shear layer model he was treating) exceeds a critical 

value, no equilibrium solution is possible. Leib concluded that cooling the low- 

speed stream and decreasing the Mach number appears to destabilize the nonlinear 

evolution of subsonic disturbance terms, in that only explosive growth is observed, 

while increasing both the temperature ratio and Mach number appear to have the 

converse effect, with equilibrium solutions being achieved.

In the near future we shall determine what parameter range, if any, equilibrium 

solutions exist for our amplitude equation.

\
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Chapter 6 

Conclusions

In this thesis the supersonic boundary layer flow over axisymmetric bodies for the 

particular cases of a long thin, straight circular cylinder subject to heated, cooled 

or adiabatic wall conditions and a sharp cone subject to adiabatic wall conditions , 

has been investigated. The basic boundary layer flow has been obtained, and it is 

noted that in the case of the sharp cone that it is seen to evolve from one planar 

state to a second, as predicted by the Mangier (1946) transform.

A linear inviscid temporal non-axisymmetric stability analysis of this boundary 

layer flow is conducted and a ‘triply generalized inflexional condition1 is derived, 

this being the necessary condition for the existence of subsonic neutral modes, and 

is a (second) generalization of the well-known generalized inflexion condition, as 

obtained by Lees and Lin (1946). The importance of condition (3.37) is because 

it is possible to predict, a priori, whether subsonic neutral modes exist (and if so 

the corresponding wavespeeds). However, it is somewhat more difficult to use than 

the planar generalized inflexion condition of Lees and Lin (1946), since in our case 

the azimuthal and axial wavenumbers (which are of course unknown) are present in 

the condition, and so prediction of subsonic neutral modes must be made on a trial 

basis (i.e., to determine if any value of the ratio n ja  satisfies (3.37)). However, if 

solutions do exist,- the value of a  (for a given n) must still be determined by a full
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numerical solution of the disturbance equations, as was carried out in obtaining the 

results presented in Tables 3.1 - 3.3.

In the case of cylindrical bodies, the effect of surface body curvature is seen to  

im m ediately (and significantly) reduce the importance of the ‘first m ode’ of inviscid  

instability, which for axisymmetric disturbances is com pletely eradicated a relatively  

short distance down the axis of the cylinder. The maximum growth rate of the 

‘second m ode’ of invisid instability also suffers substantial reduction at locations 

increasingly further down the axis of the cylinder, although all the evidence, suggests 

that it is not com pletely stabilized. These observations are very similar to  those 

obtained by Duck (1990).

Non-axisym m etric ‘first m odes’ of instability are found to be generally more 

im portant that the corresponding axisym m etric m odes, and are found to  persist well 

downstream of the location where the axisym m etric m ode is com pletely stabilized. It 

is found that these non-axisymmetric modes, however, will be com pletely stabilized  

for sufficiently large azimuthal wavenumber, or far enough downstream location. In 

the case of the ‘second m ode’ of instability, non-axisym m etric m odes are generally 

less im portant than the corresponding axisym m etric modes, and it is found that 

increasing n  results in further stabilization, although all the numerical evidence 

suggests that they are still present, with much diminished growth rates, for very 

large n .

The effect of cooled-wall conditions on cylindrical bodies is generally seen to re­

duce the im portance of the ‘first m ode’ of instability, while the am plification rates 

of the ‘second m ode’ of instability are generally increased. Therefore we have agree­

ment w ith the effect wall cooling has on planar boundary layers (Mack (1987), for 

exam ple).

.The converse effect is observed with wall heating. The am plification rates of 

the ‘first m ode’ of instability increase, while wall-heating causes the ‘second m ode’
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of instability to be stabilized. W all-heating may also cause the form ation of a sec­

ond subsonic generalized inflexional m ode, which results in the appearance of an 

additional m ode of instability, not found in adiabatic or cooled-wall studies.

In the case of the sharp cone, for locations not too far from the cone tip , since 

the body divergence will be small, the results closely resemble those obtained for 

the cylinder. It is found, however, that as a result of the Mangier transform, results 

far downstream from the cone tip mirror those in the neighbourhood of the tip  

except for a m ultiplicative factor of \ /3  in a . Varying the wall conditions and the  

introduction of non-axisym m etric term s is found to have the same effect on both  

modes of instability, as encountered in the cylindrical body case.

Significantly, the numerical results point to the occurrence of an extra m ode of 

instability, not found in similar planar studies - this mode is found to be present 

.for both cooled, heated and adiabatic wall conditions. An asym ptotic study of this 

m ode suggests this m ode to be linked to a viscous mode found by Duck and Hall 

(1990), a study based on triple-deck theory.

The ‘sonic’ neutral m ode (which is the genesis of the planar ‘first m ode’ of 

instability) is found to be altered by curvature (and in fact becom es a supersonic 

neutral m ode as revealed by the asym ptotic analysis as f  —► 0 and f  —> oo, as carried 

out in Chapter 3).

Significantly, our results show that the ‘second mode’ of instability is not always 

the m ost unstable, at least in the case of non-axisymmetric m odes, and indeed our 

results indicate the new m ode that occurs as a  —> 0, as found in this work, may 

possess the largest growth rates, and therefore is the most significant from a practical 

point of view.

Asym ptotic studies for cylindrical bodies valid for large azim uthal wavenumbers 

reveal that the eigenvalue c  is non-unique in this lim it, suggesting that there exists  

an infinite number of discrete possible values for the real part of c, although the
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corresponding values of the imaginary part of c are exceedingly small. One question 

that still remains is the ultim ate behaviour of c  as £ increases in the case of cylindrical 

bodies. Asym ptotic analysis suggests that in this lim it, c —► However, this

analysis failed to provide an estim ate for the scale of c,- (except c,- =  o ( l) , although 

all the numerical evidence presented here, and also found in other computations 

performed, strongly pointed to  (acj)m ax —» 0) as £ —> oo, i.e ., a diminishingly small 

growth rate with increasing distance downstream.

On completing the linear stability analysis, a weakly nonlinear stability inves­

tigation of the compressible boundary formed on a long straight circular cylinder, 

is conducted. The m ethod by which nonlinearity is introduced into this specific 

boundary-layer problem is through the interaction of the linear disturbance terms, 

with nonlinear effects developed within the critical layer. Considering initially a 

linear viscous critical layer, curvature is found only to effect the constant m ultiply­

ing the logarithmic singularity in the neighbourhood of the critical layer. Since this 

constant generally corresponds to the generalized inflexion condition relevant to the  

flow being considered, then it is not unexpected that in our anaylsis we determine 

it is equilvalent to the axisym m etric generalized inflexion condition of Duck (1990).

Upon considering a nonlinear critical layer (in which viscous term s are assumed 

negligible), m atching between the critical layer and the outer solution leads to an 

integro-differential equation governing the evolution of the slowly varying am plitude 

of the instability wave, which possesses a cubic nonlinearity term . The nonlinear 

term  has the form of the convolution integral of the Hickernell (1984) type, and 

since past histories are important the growth rates are found to  term inate explo­

sively in a singularity after a finite tim e evolution. Comparing our results to those 

of Goldstein and Leib (1989) and Shukhman (1991), adds weight to Shukhman’s 

observation, that the nonlinear term is independent of the particular fluid dynam­

ical problem being considering. The only difference between our results and those
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of Goldstein and Leib (1989) and Shukhman (1991) are the values of the constant 

terms m ultiplying the linear and nonlinear contributions, which are dependent upon  

neutral-mode characteristics peculiar to the flow being treated. However, the nu­

merical observations indicate that the constant coefficient term s are im portant in 

that they control when nonlinear effects, if at all, are first felt.

Lastly the case of a viscous nonlinear critical layer is treated and the correspond­

ing am plitude evolution equation is obtained. As yet a full numerical study of this 

equation has not been carried put, but it is expected that the additional exponential 

term will behave in the sam e way as in the Goldstein and Leib case, causing the 

solution to becom e more local through its damping action, and for certain parameter 

ranges resulting in  the equilbrium state being achieved.
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A ppendix A
e>

Large n am plitude function

In this appendix the amplitude function f(7 ) )  in the W KBJ solution (3. VI) is deter­

m ined. Substituting (3 Aft) into (3.4£f), gives to leading order

/ " + [ 5 2 +  T T - 7 - ^ - ] / '  =  °- (A-1)1 T o  1  +  T}( W 0  -  C o J 

Integrating once with respect to i) yields

/ '  =  A exp  [ — f  +  —~ t  ~  - 2<th| (A .2)
L J  '  T q T) - f -  £  W o — Cq '  J

where A  is a constant. Making use of the result

f  +  ——r  -  — ) d V =  I n  +  +  B .  (A .3)J 'T0 + i  W o - C o '  C ( w o - C o ) 2 ’

A .2 simphfies to

f  =  (A .4)
Ib(i + Ci?)  ̂ '

where £? and C are constants. A further integration yields
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A ppendix B

The Zero Wavenumber lim it

In the case of axisym m etric m odes (and indeed of planar m odes, as considered by 

Lees and Lin (1946) and Mack (1965a,b, 1984, 1987a), for exam ple), as a  —» 0, the 

wavespeed c approaches the sonic lim it, i.e.,

(B .l)

In the case of nonasym m etric m odes, however, this is no longer the case. As the 

numerical results clearly indicate, when n  ^  0, c, 0 as a  —► 0. The explanation  

for this is as follows:

Considering the sim ple lim it a  —>■ 0 (assuming n  ^  0), then (3.116) reduces to

+ AC2 + fv][(! + AC2 + <v)h + Cfl -  uWl + + W }

=  -  c). (B.2)
1 0

As Tj —► oo, this system  has the form

+  # ]  =  n 2<l>, (B.3)

which clearly adm its solutions of the form
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<f> ~  rj n 1 (B*4)

which can be shown to be com pletely com patible w ith the outer solution, where 

T} =  0 ( 1 )  (37 defined by (3.19)), namfcly (3.18), by considering the Bessel function  

ascending series expression (3.153). System  (B .2) also satisfies the im perm eability  

wall condition, i.e. <f> =  0 on 7/ =  0.

Equation (B .2) then represents a reduced problem as a  -+  0, and in this lim it 

the triply generalized inflexion condition also has a reduced form, nam ely

The system  (B .2) and (B.4) was solved in a number of cases (in an identical 

manner to the a  =  0 (1) eigenvalue system ) and its correctness was confirmed. 

N otice, however, since the actual tem poral growth rate is arc,-, this still reduces to  

zero as a  —> 0.
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A ppendix C

Outer Frobenius solution

From (3.15) the linear pressure equation for axisym m etric disturbances in  the com­

pressible boundary layer formed on a cylinder can be written in the form

Clearly this equation possesses a singularity at the critical point, i.e. the point 

where the phase speed of the disturbance is equal to the m ean flow velocity. In the  

lim it r —> r; (where r,- represents the critical point) we expand all basic flow terms as 

Taylor series about the critical point resulting in the pressure disturbance equation  

having the form

^ - + ( - ^ + ^ + 2 / « + A 2 /2+ r y 3+ 0 ( y 4) ) ^ —a 2[ l —(At/2+e2/3+ 0 (? /4))]po=: 0, (C.2) 

where

y — r — ri ~  Ar, (C.3)

and

w" T' 1
/ ? = - 4 + ^ + - >  « u )
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W J  + T C 3 v l + 2 W  r V  ( >

3 T ' X  / T ' x s  T '“ w jv  «  1 , 1
22? W  2T C 4w'c +  2(w ')2 4 L ' J  i f ’ ' '

_  , T c y  ( T " Y  2 { T ’f T ’’ 2T"'T 'C T ™  w vc
\ T J  9IT2 T3  3T2 +  fiT„ 1 W  +

K u,i*vr
22?  2?  32? 6TC 15w'. 6(iu')2

K ) V  l f - < \ 4 1 ,r ? s
9 '  u ij' 3« ) 3 8 ' to '' r f  { '

= K (- ^ ,  (C.8)

, ,2 {<?T’C w'wfi ,e =  M i [ - i r ^  +  - ^ j ,  (C.9)

where subscript c denotes evaluation at the critical layer.

The expansion for p  is obtained by applying the method of Frobenius, i.e. we 

substitute into (C.2) a solution of the form

oo

#  =  £ « ■ » ■ * •, (C .io)
n=0

where the number s  and the coefficients an are to be determined. For n  =  0, we

have, since cto i 1 an indicia! equation of the form

s ( s  -  3) =  0. -  (C .l l )

Considering the larger root of (C .l l )  first, i.e. s =  3, substituting (C.IO) (with

5 =  3) into (C.2) and equating powers in j/, yields

c0 = 1, «i = -fao/?, °2 -  tfift#2 + «2 -  3«]a0,

Ct3 =  ̂ r [—6/?3 -  5j3a2 +  18(3k  -  12A]a0. (C .12)
I «
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Thus, as y —► 0 (r —» r,) equation (C.l ) has one solution of the form

p' ‘ =  s'3 + i ( $ - | - ^ 4 + ^ s + - -  (c -13)

W e now turn our attention to the second solution. Since the roots of ( C .l l )  

differ by an integer this implies the second solution will have the form

p 2 =  B l n y  Y j  a ny n+3 +  5 3  bnVn i (C-14)
n—0 n=0

where the coefficients a n are defined by (C .12) and the constant B  and coefficients 

bn are to be determined. Substituting (C.14) into (C .2) and equating powers in y ,  

from the 0 ( y )  equation gives the relation

B  =  ~ 3 ^ b2' (C '15)3a0

Equating the other powers in y  yields
.2&0 =  1, bl =  0, b2 =  - Y ^ o ,

. 2 w ': l ( w \ 2  ,T > y  1 a 3 2 (w'cf  11 2]

12M-, 
a 2 J ’

b$ =  jQ { —B̂ [7 u2 +  Gi/? 4" k«o] ~  -f (a 2 — 3k)63 -+• a 2[A — €]6q}.(C.16) 

Thus m aking use of (C.12) and (C.16), relation (C.15) can be rewritten as

B  =  ^ f .  . (C.17)

Inspection of (C.16) yields that there exists no means by which the coefficient 

63 can be determined. Consequently it is expected, as m ost, b$ =  1. However, since 

the coefficient of the y 3 term in the regular solution is also unity, setting 63 =  1 will 

only re-generate terms in the regular solution. Therefore we must have b3 =  0.
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Thus, in the lim it y  —► 0, (r —> rj) the second solution to (C .l)  takes the form  

P2 =  l - y y 2 +  ^ 3i n s , - ^ 4/ny +  64!,4 +  . . . .  (C.18)
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