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Abstract

The supersonic flow past axisymmetric bodies is investigated; in particular the as-
sociated laminar Bdunda,ry-layer flow (i.e. the velocity and temperature field) is
computed and then analysed from the point of view of linear, femporal, inviscid
stability theory. The basic, nonaxisymmetric disturbance equations are derived for
general flows of this class and a so-called ‘triply generalized’ inflexion condition is
determined for the existence of certain classes of neutral modes of instability. This
condition is analogous to the well-known generalized inflexion condition found in
planar compressible flows, aithough in the present case the condition depends on
both axial and azimuthal wavenumbers.

Extensive numerical results are presented for the stability problem at freestream
Mach numbers of M, = 2.8 and M, = 3.8, for the particular cases of a long thin,
straight circular cylinder, subject to heated, cooled or adiabatic wall conditions, and-
a sharp cone for adiabatic wall conditions, at a range of streamwise locations and
different azimuthal wavenumbers. The stability analysis reveals that curvature and
choice of wall temperature conditions both have a significant effect on the stability
of the flow. These results also reveal that a new mode of instability may occur,
peculiar to flows-of this type involving lateral curvature. This mode occurs at small
wavenumbers, but under certain circumstances may in fact be the most unstable

(and hence important) mode.
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Both the asymptotic, large azimuthal wavenumber solution and asymptotic anal-
yses valid close to the tip of the axisymmetric body and far downstream are 'pre-
sented, and compared with numeric‘a.i results,

The effects of a viscous linear critical layer and a nonlinear-non-equilibrium crit-
ical layer on the temporal evolution of certain classes of axisymmetric instability
modes on the compressible axisymmetric boundary layer formed on a thin cylinder,
are then considered. In the case of the nonlinear critical layer, matching the inner
solution with the flow outside the critical layer it is shown that the instability wave
amplitude is governed by an integro-differential eqﬁation with a cubic-type nonlin-
earity. Numerical solutions are presented and the wave amplitude is found in each
case to terminate in a singularity after a finite time evolution for all the calculations
conducted.

Additionally, the effects of a viscous nonlinear-non-equilibrium critical layer are

considered and a corresponding amplitude evolution equation is derived.
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Chapter 1

Introduction and Historical
Background

1.1 Incompressible Stability theory

It is well known from experiment that laminar flows do not persist at very large
Reynolds numbers, indeed, it is found that most naturally occuring flows are either
fully or partially turbulent. The process of transition from a laminar to a turbulent
state has interested research workers for well over a century now. Since turbulent
flows result in considerably greater skin frictions and heat transfer coefficients than
corresponding laminar flows, any method by which a boundary layer may be stabi-
lized is worthy of investigation (although in many technological applications, such
as in turbines, engines, instability is of course desirable as it aids mixing of different
fluids and enhances heat transfer). It has been found that stability analysis is a
useful tool to study this process, especially the early stages of transition. The early
research carried out using stability analysis was conducted on a purely linear basis,
but later more involved nonlinear stability theories were developed to help try and
explain more accurately experimential observations.

In the case of linear stability theory, as applied to the laminar boundary layer,
the problem that is actually solved turns out to be somewhat idealized, physically

speaking. The laminar flow is assumed to be parallel implying that the basic flow
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variables do not change in the flow direction, but only depend on their distance
from the fixed boundary. The stability analysis is usually treated in terms of the
sﬁdl amplitude perturbation method; the disturbance terms, which are linearized,
are in the form of travelling waves whose amplitude varies either with respect to
time or distance travelled, depending on the approach being used. The mathe-
matical problem is to determine the eigenvalues of the stability problem for a fixed
Reynolds number (or in the limit of infinite Reynolds numbers for the inviscid stabil-
ity problem), the phase velocity, rate of ampliﬁcé,tion, and wave number for a range
of disturbances. Generally, the amplification rates will either be growing, neutral
or decaying disturbances, although generally it has been found that only damped
disturbances exist beloyv 2;, critical Reynolds number.

The phenomenon of transition from laminar to turbulent flow was first investi-
gated by Helmholtz (1868), Kelvin (1871), Rayleigh (1880) and Reynolds (1883), at
the end of the last century. Reynolds (1883) proposed thaf, based on experimental
evidence he had determined, transition was only possible if instability was developed
in the laminar flow.

In a series of papers, Rayleigh (1880, 1887, 1892, 1595, 1913, 1916) produced a
number of notable results concerning the stability of inviscid flows. Using physical
reasoning, he determined that if the effect of viscosity is ignored, then the motion of
rofating fluids is either stable or unstable, depending on whether the square of the
circulation increases monotonically outwards. He also demonstrated, that if parallel
flows are to be unstable, then an inflexion point must occur in the velocity profile
within the flow.

Until this point in time it was commonly thought that viscosity only acted to
stabilize flows - although Reynolds (1883) did conclude from his experiments that

viscosity could be a cause of instability. The first workers to include the effects
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of viscosity in stability theory, were Orr (1907)- and Sommerfeld (1908), who in-
dependently derived a single fourth-order differential equation which governs the
disturbance amplitude in parallel, viscous flow of constant density, and now bears
‘their name. Although Taylor (1915) had already indicated that viscosity could be
a cause of instability, when Prandtl (1921) independently made the same discovery,
conjecturing that viscous forces are capable of inducing a Reynolds stress, which in
turn could convert energy from the basic flow into the disturbance, thus inducing
instability, it set into motion investigations that finally led to a viscous theory of
boundary-layer staBility, several years later (Tollmien (1929)). |

Heisenberg (1924) investigating the stability of plane Poiseuille flow to two-
dimensional disturbance terms, deduced that instability did exist for-viscous flow
at sufficiently high Reynolds numbers, but was unable to determine the critical
Reynolds number, above which instability began. Heisenberg’s solution of the Orr-
Sommerfeld eqqation was based on the method of successive approximations, em-
ploying two different approaches, the first using convergent series and the second
using asymptotic series. In the first method solutions were obtained in terms of the
small parameter ¢ = (Re)~1/3 (where a represents the spatial wavenumber and
Re the Reynolds number), and a fundamental system of four solutions involving
Hankel fﬁnctions of order 1/3 are obtained. In the second approach, two asymptotic
solutions in the small parameter (aRe)™! are obtained. The initial approximation
in this method satisfies the inviscid equation which Heisenberg solved by expanding
in powers of a®. The resultant integrations in Heisenberg’s solution are required to
pass under the singularity. - -

Using the analysis of Heisenberg (1924) and the work of Tietjens (1925), Tollmien
(1929) obtained the first solution for the stability of the boundary layer formed on a
flat plate, by an asymptotic approach. He accounted for the importance of viscosity

in the neighbourhood of the wall and in a distinct critical layer (the region which
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exists in the neighbourhood of the point where the mean flow velocity equals the
wavespeed of the disturbance). Tollmien applied the method of F'robenius to obtain
two solutions to the inviscid equation about the critical point. The first solution
is found to be regular in the neighbourhood of the critical point, but due to the
presence of a logarithmic term, the second solution will generally be multi-valued.
In the case of inviscid, neutral disturbances which are inflexional, this logarithmic
term disappears, resulting in the second solution becoming regular. However, when
inviscid theory is applied to obtain two of the four solutions in‘the asymptotic viscous
theory, inflexional theories are invalid, resulting in an ambiguity regarding which
branch of the logarithm show be taken for points below the critical point. Tollmien
resolved this problem by introducing a viscous correction term in the neighbourhood
of the critical point, which was required to match the solution away from the critical
layer. This procedure results in the correct jump across the critical layer being ‘+i7’,
meaning the path of integration for the inviscid solution must pass under the critical
point. |

A series of papers by Schlichting (1933a, 1933b, 1935, 1940) and a second paper
by Tollmien (1935) resulted in a fairly well developed viscous theory with a small
number of numerical results. In his paper, Tollmien (1935) showed that not only
was the existence of an inflexion point in the velocity profile a necessary condition
for the existence of inviscid instability, but for certain flows, eg. symmetric profiles
in a channel and for monotone profiles of the boundary layer, it also provides a
sufficient condition. However, the sufficiency condition is not valid for all flow types
as can been seen from the simple counter-example provided by Tollmien of a basic
flow which has the form siny*, where y* denotes the transverse coordinate. He
also determined that for neutral disturbances, the mean flow velocity is equal to
the wavespeed of the disturbance term. However, any hopes that instability and

transition to turbulence are synonymous for the boundary layer, were dashed as
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a result of the low values of the critical Reynolds number obtained. Tollmien’s
value for the critical Reynolds number in the case of the Blasius boundary layer was
60,000, and even in the high turbulence wind tunnels of that time, transition was
observed to occur between values of 3.5 x 10° and 1 x 10°.

Schlichting’s first paper (1933a) contains one of the earliest applications of lin-
ear stability theory to transition predications, in which for the case of the Blasius
boundary layer, he calculated the amplitude ratio of the most amplified frequency
as a function of the Reynolds number. |

In the above work only two-dimensional disturbances are considered. In 1933
Squire proved that the problem of three-dimensional disturbances of a plane flow
is equivalent to a problem with two-dimensional disturbances at a lower Reynolds -
number, so the minimum critical Reynolds number is always given by two dimen-
sional analysis.

Outside of Germany, this early development of stabiﬁty theory was not met with
much enthusiasm, and in some quarters with much scepticism, due mainly to the in-
ability to experimentally observe the predicted disturbance waves and mathematical
obscuritiéé in the theory, particularly in the asymptotic developments. In the back-
ground of this hostile atmosphere, one of the most celebrated of all fluid dynamics
experiments was carried out by Schubauer and Skramstad (1947). Through their
experiments they demonstrated that instability waves did indeed exist in bound-
ary layers, demonstrated their connection with turbulence and indicated that the
theories of Tollmien and Schlichting were correct.

The early unconvincing mathematics of stability theory (namely the asymptotic
theories), was clarified by Lin (1945) and he presented detailed calculations of the
neutral stability curve. Tollmien (1929) had argued that in the case of inviscid -
disturbances, since the critical point will be located off the real axis for both growing

and decaying instabilities, then there will be nothing to hinder integration along the
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real axis. Lin showed that if inviscid solutions are regarded as the infinite number
limit of viscous solutions, that contrary to the statement made by Tollmien, the
proper path of integration must be below the critical point, r'eéa.rdless of whether
this point is above (amplified), on or below (damped) the real axis. This resolved
ambiguities that existed in considering viscous disturbances in the limit of infinite
Reynolds numbers, and demonstrated that a consistent inviscid theory could be
constructed in which damped solutions exist that are not complex conjugates of
the amplified solutions. The arguments used by Lin were physical and heuristic
but a more rigorous justification of the results he obtained was given by Wasow
(1948). Tollmien (1947) presented improved solutions for the neutral stability case,
for real values of y* (the coordinate normal to the surface). Solutions of a similar
nature were obtained by Wasow (1953) for complex values of y* and ¢* (the complex
wavespeed) and he also gave a complete proof of the construction he used.

Rayleigh’s necessary inflexion condition was strengthened by Fjgrtoft (1950) to
give a condition which is equivalent to requiring that the modulus of the gradient
of the streamwise mean velocity term must possess a maximum somewhere in the
boundary layer for instability to occur.

The above work of Heisenberg (1924), Tollmien (1929, 1947) and Lin (1945,
1955) gave first approximations to the Orr-Sommerfeld equation for large values of
Reynolds number by somewhat heuristic methods. Although these approximations
have been successful for many computational purposes, it has long been recognised
that heuristic approximations are not uniformly valid. Subsequent attempts to
improve on these results have generally been based on either the comparison equation
method or the method of matched asymptotic expansions.

Comparison equation methods of approximation to the solutions of the Orr-
Sommerfeld equation have been extensively studied by Wasow (1953), Langer (1957,
1959), Lin (1957a,b, 1958) and Lin and Rabenstein (1960, 1969). In all these works
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the major aim was to obtain asymptotic approximations which are uniformly valid
in a bounded domain containing one single turning point and to develop an al-
goﬁthm by which higher approximations could be obtained systematically. The
actual method employed seeks to express the solutions of the Orr-Sommerfeld equa-
tion asymptotically in terms of the solutions of an appropriately chosen comparison
equation. Lakin and Reid (1970) also used the technique to obtain first order ap-
proximations to the Stokes multiplers for the Orr-Sommerfeld equation and hence
to obtain outer expansions which were complete in the sense of Watson.

The method of matched asymptotic expansions was first applied to the Orr-
Sommerfeld equation by Graebel (1966). A more systematic application of the
method, based on the general theory developed by ‘Fr:;,enkel (1969) was later given by
Eagles (1969). Eagles introduced a new independent variable involving the ‘Langer’
variable, which has the important consequence of bringing the Stokes and anti-Stokes
lines associated with the inner and outer expansions into coincidence. Although a
preliminary transform of this form is not an important proponent of the theory
of matched asymptotics, and as Eagles’ work shows, is it strictly necessary, the
subsequent solution of the central matching problem and formation of composite
approximations is substantially simplified. The introduction of the ‘Langer’ vari-
able also leads to a larger domain in which matching between the inner and outer
expansions occurs. A rigorous justification of the results obtained by Eagles has
been given by De Villers (1975).

The method of matched asymptotics was also used by Reid (1972) to obtain
_composite approximations to the solutions of the Orr-Sommerfeld equation. It was
customary, in the older work carried out on the Orr-Sommerfeld equation to express
the inner expansions in terms of modified Hankel functions of order one-third. Reid
(1972) pointed out the limitations in this approach and instead obtained the inner

expansions, to all orders, in terms of a certain class of generalized Airy functions,
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the resultant expansions being used to derive approximations to the connection for-
mulae. After matching the inner and outer expansions in certain sectors of the
complex plane, Reid (1972) considered the consequences of combining them to form
composite expansions, subject to the usudl rules (Van Dyke (1964)) for additive or-
multiplicative composition. He determined that the ‘modified’ viscous solutions of
Tollmien (1947) emerge as first-order composite approximations obtained by multi-
plicative composition and the ‘viscous correction’ to the singular inviscid solutions
conjectured by Reid (1965) emerge as first order additive composite approxima-
tions. However, because of the completeness requirement, the composite expansions
are only valid in certain restricted domains containing just one turning point: con-
nection formulae must be used to obtain approximations valid in the complementary
sectors.

Asymptotic work in connection with the Orr-Sommerfeld equation, has been
successfully continued by Reid and his collaborators (Lakin, Ng and Reid (1978)).

Smith (1979a), considering the stability of growing boundary layers found that
for sufficiently high Reynolds numbers, the linear disturbance can be described by
a triple-deck structure. Triple-deck theory was initially developed to better under-
stand and explain the separation of boundary layers; the initial success of triple-deck
theory was in dealing with the Goldstein (1930) singularity at the trailing edge of a
flat plate (see Stewartson (1969), Messiter (1970)), but it has since been applied to
a wide variety of problems. It should be noted that the raw material for triple-deck
theory can actually be found in Lin’s (1955) book. Through matching procedures,
Smith was able to obtain an asymptotic relationship-between the Reynolds number
and the neutral frequency for both parallel and non-parallel flow types. However his
analysis was limited to the lower branch of the neutral stability curve. In a second
paper, Smith (1979b) using asymptotic theory, considered the nonlinear stability of

small disturbances to the Blasius boundary layer within a rational, high Reynolds
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number framework, for a wide range of disturbance sizes. He found that the nonlin-
ear properties of the small disturbances are profoundly affected by non-parallel flow
effects. |

The book on hydrodynamic stability by Drazin and Reid (1981) explains in
further detail the methods required for the application of the two asymptotic ap-
proximation approaches described above.

The first application of modern numerical methods was carried out by Pretsch
(1942), during the war. He provided the only really large body of numerical results
for exact boundary-layer solutions, before the advent of computers, by calculating
the stability characteristics of the Falkner-Skan family of velocity profiles. The
first attempt to ma}{e Ause of the digital computer in solving a laminar stability A
problem was made by Thomas (1953). Using a finite difference method, Thomas
investigated the stability of plane Poiseuille low which Lin_ (1945) predicated was
unstable, although other authors thought was stable. Thomas was able to obtain
16 eigenvalues which confirmed Lin’s predictigne .

Around 1960 the advancés’ in the digital computer field had reached the stage
where the first direct solution of‘primarj dif»ferenti»dl equations could be obtained.
The development of ever sophisticated numerical techniques, coupled with the rapid
progress of the computer, have made it possible to obtain numerical results for many
different types of boundary-layer flows.

Brown (1959) was probably the first to apply numerical methods, using the digi-
tal computer to obtain solutions for three-dimensional boundary layers. Using finite
difference techniques, Kurtz and Crandall (1962) obtained numerical solutions of - -
the Orr-Sommerfeld equation in their study of the stability of the Blasius boundary
layer and of free convection boundary layers on a vertical heated wall.

Neutral stability curves for the two-dimensional laminar boundary layer on a

flat plate under zero pressure gradient, have been numerically determined by Kurtz
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(1961), Kaplan (1964), Osborne (1967), Wazzan et al. (1968) and Jordinson (1970).
The results of these calculations, obtained by means of slightly different numerical
methods, are all sufficiently consistent to justify the statement that the neutral curve
eigenvalues of the Orr-Sommerfeld equation are now well established. It should be
noted, however, that since all these workers solved the Orr-Sommerfeld equation,
theﬁ the parallel flow approximation is a key element of their work, but since realis-
tically if any amount of viscosity is present there is no such thing as a parallel flow,
then their results are inaccurate especially for low Reynolds numbers.

Jordinson (1970) applied the numerical techniques of Osbourne (1967) in his
study of the spatial stability of the boundary layer for a wide range of values of
frequenc& and Reynolds number.

Jordinson (1971), Mack (1976) and Corner, Houston and Ross (1976), using dif-
ferent numerical methods, determined the higher eigenvalues of the Orr-Sommerfeld
equation for Blasius flow in their studies of discrete stable eigenmodes. Jordinson
calculated eigenvalues for both spatially and temporally growing or decaying waves
for a single Reynolds number and a single wavenumber (temporal approach) or a
single frequency (spatial approach). Ai\/-Ia.ck determined eigenvalues for a number of
different values of wavenumber and Reynolds number, for the temporal problem
only. Corner et al. recalculated the spatial modes. All these authors agreed on one
conclusion - for any Reynolds number there exists only a finite and small spectrum
of discrete eigenvalues. Grosch and Salwen (1978) proved the existence of a contin-
uous spectrum of eigenvalues of the Orr-Sommerfeld equation in the case of Blasius
boundary layers, for both temporal and spatial developments.

More recent work on incompressible flows has focused on three-dimensional
boundary layers, in response to the renewed interest in laminar-flow control for

swept wings. Srokowski and Orszag (1977) were the first to apply computational
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numerical techniques to calculate the suction required to avoid transition to turbu-
lence. Mack (1979b), using a three-dimensional stability formulation, which he first
presented in 1977, studied the three-dimensional Falkner-Skan-Cooke incompressible
. boundary layer.

Using linear stability theory, Lekoudis (1980) examined the effect of wall cooling
in the leading edge region of a transonic swept wing. For both the temporal and
spatial cases he determined that wall cooling has a stabilizing effect on cross flow
disturbances, but that this stabilization is mild in comparison to the stabilizing
effect wall cooling has on Tollmien-Schlichting waves.

Except for the asymptotic suction boundary layer, it is observed that most
boundary layers grow in thickness in the downstream direction. Therefore, dis-
crepancies still existed between the existing theoretical predictions of the neutral
stability curve for the Orr-Sommerfeld equation and the experimental observations
of Schubauer and Skramstad (1947) and the later work of Ross et al. (1970), espe-
cially for low Reynolds numbers.

The first real attempt to include boundary-layer growth into stability theory was
‘made by Barry and Rés;s (1970) using a somewhat heuristic approach. They obtajnéd
an estimate of the the effect making the parallel flow assumption had, by performing
computations on a modiﬁed form of the Orr-Sommerfeld equation in which the more
important terms representing the growth of boundary layer thickness were included.
The results obtained, however, still over-predicked. the experimentally determined
value for the critical Reynolds number, in the case of Blasius flow, by 25%.

Wazzan et al. (1974) using the Barry-Ross model, calculated the stability of
Falkner-Skan flows and performed an analysis of the effects boundary-layer growth

has on the Reynolds number, frequency and pressure gradient.
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Bouthier (1972, 1973), Gaster (1974) and Saric and Nayfeh (1975) indepen-
dently determined expansions that partially accounted for all non-parallel flow ef-
fects. Gaster (1974) considered the effect boundary-layer growth has on Sf;a,bility
theory using an iterative method to generate an asymptotic series solution in terms
of the inverse Reynolds number to the power one half. He obtained neutral-stability
boundaries given by the first two terms of this series and compared the results with
existing experimental data. Saric and Nayfeh (1975) used the method of multiple
scales to analyse the spatial stability of two-dimensional incompressible boundary-
layer flows, for both Blasius and Falkner-Skan profiles. It was found that for the
Blasius flow, the non-parallel analytical results were in good agreement with the
experimental data.

Gaster’s neutral-stability curve calculations for the Blasius boundary layer were
verified to be correct by Van Stijn and Van de Vooren (1983), and have the added
advantage of being based on quantities that can be rea,dily measured experimentally.

As previously mentioned, Smith’s (1979a) triple-deck, asymptotic stability anal-
ysis is valid for both parallel and non-parallel flows. Bodonyi and Smith (1981)
-~ carried out an asymptotic analysis on the upper branch of the neutral stability
curve using a quintic-deck analysis, which led to an asymptotic result for the neu-
tral freqﬁeﬁcy, taking into consideration the effect of boundary-layer growth. In
1985, in an appendix to their paper, Smith and Burggraf considered examples of
practical importance arising from non-parallel flow effects, for example, breakaway
separation and flow over surface-mounted obstacles, in an asymptotic study based

on a two-dimensional triple-deck. -
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1.2 Compressible Stability Theory

With the development of high speed flight vehicles interest soon turned to supersonic
and hypersonic flows. Researchers tried to develop a stability theory for compress-
ible flows, similar to that which had been developed for incompressible flows, and
determine whether there was any relation between compressible stability theory and
the important problem of transition to turbulence.

The major difference between incompressible and compressible boundary layers is
thdt in the compressible case there will be an appreciable intefchange of mechanical
and thermal energies. Generally it is found in the case of supersonic boundary-
layer flows that inviscid disturbances are more important (i.e. more unstable) than
viscous disturbances. Here, we characterise inviscid disturbances as béing those with
wavelengths comparable to the boundary-layer thickness, whilst viscous disturbances
possess much longer wavelengths; this is probably the broadest definition, although
the alternative definition in which inviscid disturbances are characterised as having
finite growth rates in the limit of large Reynolds number, is equivalent for most
purposes. This is in contrast to the situation encountered in many incompressible
boundary-layer flows where viscous instabilities are generally dominanf.

Experiments performed by Laufer and Vrebalovich (1960) and Kendall (1967,
1975) demonstrated the existence of instability waves in supersonic and hypersonic .
boundary layers, but they were unable to show any real connection between linear
instability and transition. A series of stability experiments with “na.tura.lly’ occuring
transition in wind tunnels was carried out by Demetriades (1977) and Stetson et al,
6983, 1984), but many of £heir observations have yet to be explained theoretically.
Dougherty and Fisher (1980) in a flight experiment obtained probably the best
evidence yet that transition at supersonic speeds, in a low disturbance environment,

is caused by linear instability.
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One of the earliest attempts to develop a compressible stability theory was car-
ried out by Kiichemann (1938). In his work, Kiichemann, neglected the effects
of viscosity, curvature of the velocity profile, 'énd the mean temperature gradient.
As one would expect, the latter two assumptions were shown to be too restrictive -
to allow for any plausible argument to be developed. The most important early
theoretical work on the stability of compressible flows, was carried out by Lees
and Lin (1946). In their rigorous mathematical investigation of the stability of two-
dimensional boundary layers to two-dimensional linear disturbances, they developed
an asymptotic theory in close analogy to the incompressible a;symptotic work of Lin
(1945), and, in addition, gave detailed consideration to a purely inviscid theory.
They concluded that for subsonic and slighly supersonic flow, stability chafacteris-
tics are relatively unaffected by bouﬁdary conditions on temperature ﬂuctuafions,
and are determined by satisfying velocity disturbance boundary conditions.

Lees and Lin (1946) solved the viscous problem using the two methods of solution
of Heisenberg (1924), namely they determined solutions in terms of convergent series
and asymptotic series. The initial approximation in the asymptotic series method
gives the inviscid equation. It is found that the asymptotic solutions appear to be
multi-valued, but the solutions are only valid for certain regions of the complex plane,
determined by comparing them with the asymptotic expansions of the convergent
solutions. Lees and Lin solved the inviscid equation in terms of a power series in o?,
the resultant integrations possessing integrands.which are singular at the critical
layer. Consequently the path of integration must be indented into the complex
plane in the neighbourhood of the critical point. To determine the correct path of
integration Lees and Lin obtained two linearly independent solutions in the vicinity
of the singular point, y* = y, one of which is regular in (y*—y7), the other possessing
a logarithmic singularity (where y* denotes the coordinate normal to the surface).

Since these solutions are restricted to the same regions of complex space as the
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asymptotic solutions, Lees and Lin determined that in passing from Rl(y* —y?) <0
to RI(y* — y¥) > 0, the correct path lies below the critical point, y* = y?, where RI

denotes the real part. Because the second solution obtained in the neighbourhood

of the critical point possesses a logarithmic singularity, this solution will undergo a .

phase change of ‘+ix’ going from below the critical point to above., This singularity
gives rise to strong velocity gradients and has the consequence that viscous (and
conductivity) effects cannot be neglected in the critical layer.

Extending the Rayleigh/Tollmien theorems to compressible flow, Lees and Lin

* Ju*

ay'] (where u* denotes velocity tangential to the sur-

found that the quantity 3%[p
face, and p* the fluid density) plays a role very similar to that of gQT‘.‘;- in inviscid
incompressible theory. In particular,.at the point where the above express'ioxi is
zero (y* = y?), termed the generalized inflexion point, then there may exist a neu-
tral mode with wavespeed u*(y}); neutral modes are classed as being ‘subsonic’,
‘sonic’, or ‘supersonic’ depending on how the freestream Mach number is related
to the wavespeed (Mack (1984)). If the neutral disturbance is subsonic then the
mode decays in the far-field; supersonic, neutral disturbance modes exhibit an oscil-
latory behaviour in the far-field; a sonic mode occurs at the crossover point between
subsonic and supersonic cases. Mathematically, these classifications are directly re-
lated to the non-dimensional wavespeed c (defined in Chapter 3 below), and the

free-stream Mach number, M,,. For subsonic disturbances we have

1 1
le e <e<l4 —y

M, M,
for sonic disturbances we have
c=1-— MLoo or c=1+ —A%o;,
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and for supersonic disturbances we have

c<l1 ! or c>1+ 1
M, My,

Arguments relating to generalized inflexion points have no implications for super-
sonic neutral modes.

If the critical point is found to coincide with a generalized inflexion point, the
second velocity solution obtained by Lees and Lin (1946), valid in the critical layer,
no longer possesses a logaritmic singularity and thus this solution is now regular.

Lees (1947) considered the effect that wall cooling has on the stability of com-
pressible boundary layers on the basis of asymptotic theory._ ﬁe predicted. that
with sufficient wall cooling the boundary layer could be completely stabilized and
presented a criterion whereby the ratio of wall temperature to the recovery tem-
perature at which the critical Reynolds number becomes infinite, can be computed.
Even though Lee’s original work contained numerical errors, subsequent authors in-
cluding Van Driest (1952) and Dunn and Lin (1955) showed that Lee’s predictions
appeared to be correct.

Van Driest (1952) calculated ‘the cooling required to completely stabilize the
boundary layer on the flat plate at supersdnic speeds with zero pressure gradient.
Whereas Lee’s investigations were limited to slightly supersonic flows, Van Driest
predicated that complete stabilization was achieved by wall cooling over a wide range
of Mach numbers up to hypersonic flow. He found, however, that for Mach numbers
greater than 9, it is impossible to stabilize the boundary layer with any amount of
cooling when a Prandtl number of 0.75 and the Sutherland viscosity-temperature
law are assumed.

The above predications of Lees (1947) and Van Driest (1952) were based on
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the asymptotic theory of two-dimensional disturbances. Dunn and Lin (1955) ex-
tended this work to include three-dimensional disturbances. They determined that
the conclusion of Lees and Lin regarding boundary conditions on temperature fluc-
tuation terms was invalid for moderately high supersonic flows and in this Mach
number range they indicated that cooling was indeed an effective method by which
the boundary layer could be stabilized. Based on their asymptotic analysis, Dunn
and Lin, however (wrongly) concluded that at supersonic free-stream Mach numbers
the boundary layer can never be completely stabilized by cooling with respect to all
three-dimensional disturbances.

Lees and Lin (1946) used an ordering procedure valid in the neighbourhood of
the critical layer to obtain viscous solutions and tﬁen used these solutions to satisfy
wall conditions. Such a procedure can only be sensibly valid if the critical layer is
close to the wall. In the Dunn and Lin (1955) ordering procedure, the wall layer
is assumed to be distinct from the critical layer, which leads to a set of reduced
equations valid near the wall, but not necessarily valid at the critical layer.

In all of the above asymptotic compressible stability analysis, the authors.'ﬁa:s-
sumed that the boundary layer was ‘a nearly parallel flow’. In fact, Dunn (1953)
and Cheng (1953) showed that the mean vertical velocity does not enter until the
second asymptotic approximation to the viscous solution. Thus, if only the leading
terms need to be considered the parallel low approximation is a valid one.

In 1962 Lees and Reshotko presented a more accurate theoretical analysis; the
ideas developed in this work are presented in more detail in the thesis of the junior
author, Reshotko (1960). In their work, they considered two-dimensional distur-
bance terms in the two-dimensional boundary layer only, but they do include the
effect of temperature fluctuations on viscosity and thermal conductivity and also
introduced the viscous dissipation term that had been previously omitted.. Fol-

lowing the asymptotic expansion method of Heisenberg (1924) to solve the viscous
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disturbance equations, they obtained the inviscid equation in terms of the pressure
fluctuation amplitude. They showed that instead of solving the inviscid equation in
terms of a convergent series in powers of a?, the correct expansion parameter for the
compressible inviscid solutions is (aTcf)* (where Tpof ~ M2 T5,, Ty, representing
the mean flow temperature in the far-field) or (aM2)?. The most important result
they obtained was to show that temperature fluctuations have a marked influence
on the stability characteristics for compressible flow at Mach numbers greater than
two, for both the viscous and the more slowly varying inviscid disturbances. Con-
sidering the behaviour of the inviscid disturbance terms in the neighbourhood of
the critical point, by obtaining series solutions using the method of Frobenius, they
determined that the temperature ﬂﬁctuation terms possess an algebraic singularity
at the critical point, which is independent of whether or not the profiles contained a
generalized inflexion point. They also found the first indication of higher modes of
inviscid instability, and determined that instead of being constant, as had previously
been assumed, the inviscid pressure disturbance amplitude decreases abruptly with
movement away from the wall for Mach numbers greater than three. The numerical
examples given compared favourably with the experimental reéﬁlts of Laufer and
Vrebalovich (1958,-1960) and Demetriades (1958, 1960).

Reshotko (1962) generalized the above analysis, in his study of the stability of
three-dimensional boundary layer to three-dimensional disturbance terms. Intro-
ducing a suitable tra,n.sform, he reduced the problem to a two-dimensional system.

Because of the close adherence of Lees and Lin to the incompressible theory
and inadequacies of the asymptotic methods of Lees and Lin (1946), Dunn and
Lin (1955) and Lees and Reshotko (1962), which turned out only to be valid up
to low supersonic Mach numbers, major differences between incompressible and
compressible stability analyses were not uncovered until extensive calculations had

been carried out by numerical solution of the differential equations.
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The first numerical calculation of normal mode eigenvalues directly from the
viscous stability equations was carried out by Brown (1962). In a series of papers
Mack (1963, 1964, 1965a, 1965b) obtained a large number of numerical results for
different types of boundary layer. Until Mack’s study it was widely thought that
there only existed a single unstable inviscid mode. Through his extensive numerical
work, Mack determined that for an insulated surface, if there exists a region of
supersonic flow in the boundary layer relative to the phase velocity, then there
exists multiple unstable modes.

The numerical schemes employed by Mack to solve both the viscous and inviscid
boundary-layer problems, are explained clearly in his work published under refer-
ence 1965a. In this ‘WOI‘k he considered two-dimensional disturbances in a parallel
compressible flow to obtain a system of linearized stability equations. The resulting
sixth-order system of ordinary differential equations was then written as six first
order equations to aid numerical integration. These equations were solved numeri-
cally in the free stream at a specified Reynolds number and the three independent
solutions which decayed as y* — oo (normal component to the free surface) were
used as the initial conditions for the numerical ini;égration, which was taken from the
edge of the bouhdary layer to the wall. At the wall, all but one of the homogeneous
boundary conditions can be satisfied for an arbitrary choice of the complex wave
parameters, a*, 8%, w*, where a* and 3* are the streamwise and spanwise wavenun-
ber components and w* is the frequency. The remaining boundary condition was
satisfied by a Newton-Raphson eigenvalue search procedure for one of the complex
wave parameters. Considering the limit of infinite Réynolds number, Mack derived
a system of equations analogous to those obtained by Lees and Reshotko (1962)
which he then integrated numerically, deviating the contour of integration into the
complex y-plane in the neighbourhood of the critical point, to deal with problems

encountered due to the presence of this singularity. The indentation scheme used
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was based on a method developed by Zaat (1958) which Mack (1965a) generalized
" to include compressibility effects.

It soon became evident, however, that two-dimensional stability theory was inad-
equate to.explain the observations of Laufer and Vrebalovich (1960), so the numerical
method was extended by Mack (1969) to include three-dimensional normal modes.
The viscous stability equations were written in the tilde-coordinates of Dunn and
Lin (1955), forming an eighth-order system, but Mack managed to obtain good re-
sults from the eigenvalues of a sixth order system, formed when the single coupling
term responsible for the increase in order was dropped. In the same work, Mack
(1969) considered the effects of wall cooling on the corresponding inviscid boundary-
layer ﬂproblem. In the light of this study the predictims of Lees (1947) that cooling
the fixed boundary acts to stabilize the boundary layer, was found to be slightly
misleading. Mack found that in the case of the first mode of instability, even when
oblique waves were considered, complete stabilization could be achieved with suf-
ficent cooling for the Mach numbers he presented, which vindicated Lees (1947)
predications. However, in the case of the second mode of instability, Mack observed
that wall cooling had the reverse éﬁect, causing this mode to undergo destabiliza-
tion. Mack determined that the complete stabilization of mode I instabilities was a
result of sufficient cooling causing the complete eradication of the subsonic gener-
alized inflexion points. The higher modes of instability, being dependent only on a
relative supersonic region, will remain. )

Gill (1965) applied numerical techniques to consider the stability of jets or wakes
in a compressible fluid for ‘top-hat’ velocity prpﬁles, where the jet or wake is a region
of uniform velocity separated on either side from the external flow by a vortex sheet.
Like Mack’s study of the compressible boundary layer, Gill (1965) determined that
there existed multiple neutral solutions.

In further papers, Mack (1979a, 1982) applied compressible stability theory to
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sweptback wings. In 1984, Mack conducted a review of previous work carried out
on the influence of Mach number on viscous and inviscid instabilities of flat plate
boundary layers, and presented new spatial calculations. He concluded that vis-
cosity only stabilizes two and three dimensional, first mode waves above a Mach
number of 3.0, but stabilizes all mode II waves for all Mach numbers. In 1985,
Mack presented a review of inviscid compressible stability theory paying particular
attention to additional solutions that arise when there is a region of supersonic flow
relative to the phase velocity. Mack gave an example of viscous multiple solutions,
along with calculations of higher viscous modes and the compressible counterparts
of the Squire mode. basic

In spite of their great practical importance,f\ﬁows of the supersonic type, but
involving lateral curvature, have feceived lictle atbtenbion. Duck and
Hall (1989) showed how, in supersonic flows, curvature interacting with viscosity
could provoke additional instabilities (axiéymmetric in form), pfovided the body
radius was below some critical value. Duck and Hall (1990) then went on to show
how a similar effect occured with non-axisymmetric modes (which, in fact, turn out
to be generally more unstable than corresponding axisymmetric modes.

Recently, Duck (1990) considered the effects that curvature has on the inviscid,
axisymmetric linear stability of the boundary layer associated with supersonic flow
past a thin circular cylinder. Duck determined that curvature has a stabilizing effect,
causing the first mode of instability to ultimately disappear, and greatly reducing
the amplification rates of the second mode. Extending the theorems of Lees and Lin
(1946), Duck determined an inflexion condition that includes curvature terms and
termed it the ‘doubly generalized’ inflexion condition.

In Chapters 2 and 3 of this thesis the work of Duck (1990) is extended to in-

clude non-axisymmetric disturbances which, indeed, turn out to be more important
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than axisymmetric disturbances considered previously. Further, rather than study-
ing/applying our techniques to a thin straight circular cylinder, a somewhat more
practical configuration, namely that of a sharp cone, is considered. In Ch‘a;pter 2 the
boundary-layer flow is determined, whilst in Chapter 3 a full linear stability andyl—
sis is conducted. Extensive numerical results are presented for both axisymmetric
and non-axisymmetric disturbances in the compressible boundary layers formed on
adiabatic, heated and cooled cylindrical surfaces and on adiabatic cones. At the
end of Chapter 3 asymptotic studies valid for large azimuthal wavenumbers (for the
cylinder only) and analyses valid close to the tip of the cone and far downstream
from the cone tip are presented.

Mack (1987b) has performed some computations for the stability of the flow over
a cone in supersonic flow, at finite Reynolds numbers, but found little difference
with corresponding planar results. Here, we deliberately allow curvature to occur
throughout the study, both in the equations governing the basic flow, and in the

disturbance equations.

1.3 The Effect of Critical Layers

It is well known that for large Reynolds numbers, the Orr-Sommerfeld equation re-
duces in a singular manner to the Rayleigh equation. In addition to the necessity
of wall boundary layers if no slip boundary conditions are assumed, the Rayleigh
equation has a singular point, termed the critical point, anywhere in the boundary
layer where the mean flow velocity is equivalent to the wavespeed of the distur-
bance. Consequently the dynamics- in the region surrounding the critical point will -
be expected to differ considerably from those of other regions of the fluid. By the
method of Frobenius, two solutions of the Rayleigh equation can be obtained in the

neighbourhood of the critical point, but it is found that in the case of non-inflexional
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profiles the second solution contains a logarithmic singularity of the form log(y* —y2)
(where y* denotes the coordinate normal to the surface and y} the critical point).
To obtain any form of neutral stability curve, connection rformula,e relating the so-
lutions either side of the critical layer must be determined. Another consequence
of the logarithmic singularity is that the eigenvalue problem associated with the
inviscid equation cannot be resolved until it is decided how to express log(y* — y)
for y* < y5.

Essentially two theoriés exist to tackle the difficulties of the singularity arising
in the linearized inviscid problem. By re-introducing viscous-terms in a small region

-1/3 (where Re represents the Reynolds

around the critical point of thickness Re
number) - termed the viscous critical layer - Heisenberg (1924), Tollmien (1929),
and Lin (1944, 1945) for incompressible flows and Lees and Lin (1946) and Lees
and Reskohto (1962) for compressible flows, determined that the logarithmic term
undergoes a jump of ‘+in’ crossing the critical layer (where we are going from below
to above the critical layer). The correct branch of the logarithmic term, in viscous
theory, is determined by the range of validity of the Hankel functions found in the
viscous solutions.

The possibility of an alternative resolution was first mentioned by Lin and 'Ben-
ney (1962). In seperate work, Benney and Bergeron (1969) and Davis (1969) ob-
served that the Rayleigh equation was in fact the result of two limiting processes, as
opposed to just one. They noted that although the Reynolds number is large, the
stability analysis equations have actually been linearized, insuring the disturbance
amplitudes are small: -Consequently, they suggested that in the neighbourhood of
the critical layer nonlinear terms could be retained as opposed to viscous terms, to
resolve the singularity problem. The major result of this analysis is that in nonlinear

theory the logarithmic phase shift has vanished crossing the critical layer.

Considering two-dimensional disturbance terms, Benney and Bergeron (1969)
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re-introduced nonlinear terms in a critical layer of thickness O(e/?), where € is a
measure of the perturbation amplitude, and determined that nonlinear theory yields
an important class of wave-like solutions nét found in viscous theory. Assuming that
the critical layer and the wall layer were asymptotically distinct, they noted that
though viscosity is small, it could not be completely ignored. It was found that the
relative importance of nonlinear to viscous effects is measured by the parameter A =
Re~1e~3/2, Making usé of a viscous secularity condition to ensure spatial periodicity,
together with matching conditions, Benney and Bergeron determined the dominant
structure in the nonlinear critical layer is the Kelvin cat’s eyes solution, namely a
shear plus an oscillation. In the case of non-inflexional profiles, discontinuities in
vorticity occur at the cat’s eye boundaries, which Benney and Bergeron treated by
restoring viscosity in thin layers around the cell boundaries. Even though they found
vorticity was discontinuous, Benney and Bergeron derived conditions to ensure the
velocity is continuous and from these conditions and matching with the far-field
they determined that the phase change across the critical layer is zero. They also
briefly considered the possibility of more than one critical point existing and the
case of oblique modes. Benney and Bergeron’s work only determined neutral waves
- it was unclear from their work whether ‘near neutral’ solutions would be stable or
unstable - and they computed c(a) for a variety of velocity profiles.

As noted above, the nonlinear and viscous theories result in different neutral
modes. Haberman (1972) considering critical layer effects in parallel flows for two
speciﬁc- problems - symmetric flows between rigid walls and boundary-layer flows -
linked the two theories. He showed the leading order flow is indeed the cat’s eyes
pattern, and at the order which governs the jump conditions across the critical layer
he included both viscous and nonlinear terms in his analysis, considering the full
range of the parameter A\. Haberman determined that the asymptotic expansions

of Benney and Bergeron (1969) should be modified due to an O(¢!'/?) distortion of -
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the mean and fundamental harmonic. This distortion of the mean flow, in the limit
when nonlinear effects are dominant, results in both the velocity and Vorticity being
continuous across the cat’é eyes, yielding Haberman to conclude that thin viscous
layers, as introduced by Benney and Bergeron (1969), are not necessary. Haberman
also determined that provided the critical layer and the wall boundary layer are
distinct, then the phase shift of the logarithmic term depends on the local vertical
Reynolds number in the critical layer, varying monotonically from the value of 0
in nonlinear theory to +i7 as determined by viscous theory. Haberman provided
an argument by which his analysis linking the two theories is valid for long wave
neutral modes and shorter modes if the critical and wall layers are distinct. In the
case when the two layers are indistinguishable, the fully nonlinear bounda;fy-layer
equations must be considered. '

During the late 70’s and early 80’s the idea of including nonlinearity in critical
layer analysis was used by a number of authors to determine evolution equations for
small disturbance terms in a range of problems. Benney and Maslowe (1975) and
Huerre and Scott (1980) applied the technique to the problem of homogeneous shear
flows, while Redekopp (1977), Maslowe and Redekopp (1979, 1980) and Stewartson
(1981) considered disturbances with large horizontal scale to flows where critical
layers are present. Stewartson (1978, 1981), Brown and Stewartson (1978a, 1980,
1982a, b) and Warn and Warn (1978) considered forced disturbances in flows which
contained critical layers. The problem of stratified shear flows was studied by Brown
and Stewartson (1978b), and Hickernell (1984) studied the effects of nornlinearity in
the critical layers in shear flows on the beta-plane of a Rossby wave.

The work of Benney and Bergeron (1969) and Haberman (1972) deals exclusively
with steady waves, for which at most the time dependence involves simple transla-
tions of the wave in the direction of propagation. Benney and Maslowe (1975) con-

“sidered extending the nonlinear critical-layer analysis to include time dependence.
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Prior to their study a time-dependent finite amplitude analysis existed which was
valid for A >> 1, i.e. a viscous critical layer, namely the weakly nonlinear Stuart-
Watson theofy (1960), but no such amplitude equation exists for nonlinear critical
layers (A << 1). Treating a wave that evolves both spatially and temporally, Ben-
ney and Maslowe applied the technique of multiple scales to obtain an amplitude
equation valid for A << 1, and determined that to the order considered no phase
change occurs across the critical layer. If nonlinear effects are to produce any phase
change, then the slow time dependence must have some relation to the viscous scale.
In their analysis, since their inhomogeneous operator equation is singular at the crit-
ical level, they employed a modified solvability condition (which involves the correct
matching conditions at the boundaries) to determine the Landau constant. Based
on their analysis, they concluded that in order to obtain ‘instability either the ef-
fects of viscosity at a lower order or alternately a stronger time dependence must be
employed in the theory.

Using the temporal nonlinear stability approach of Schade (1964), Huerre (1_980)
considered the temporal and spatial evolution of weakly amplified waves in shear
flow, considering a critical layer where viscosity is incorporated to smooth the sin-
gularity. To successively apply the method. of matched asymptotic expa,nsions,l he
determined that the effect of viscosity could not be neglected in the outer layer,
resulting in mean flow distortion. To counteract viscous diffusion of the basic flow,
he found it necessary to apply an artificial body force. Huerre determined that for
large Reynolds numbers and A >>> 1, the weakly amplified waves do not approach an
equilibrium amplitude as time evolves or with movement downstream. He concluded
that this instability was not a result of introducing the artificial body force, since
in all previous studies this was implicitly present, and consequently for sufficiently
small amplitudes the waves will not be stabilized by weakly nonlinear interactions,

but as the wave amplitude grows, A becomes smaller and nonlinear effects become
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important in the critical layer.

In light of Huerre’s work (1980), Huerre and Scott (1980) considered the case
where both viscous and nonlinear effects are important in the critical layer for the
same problem. They derived an amplitude equation representative of these combined
effects which they also determined to be dependent upon the phase shift in the
logarithmic singularity, as determined in the work of Haberman (1972). Huerre
and Scott observed that growth of the instability waves results in the critical layer
gradually spreading, the thickness varying as the square of the amplitude. They also

- determined that wave amplification increases the importance of nonlinear effects (as
noted by Huerre (1980)) which in turn, for the particular case of spatial growth,
causes the wave growth rates to gradually decrease resulting in the high amplitude
fluctuations only having algebraic growth. .They note, however, that these temporal
and spatial changes will occur slowly when compared to the time scale of Stewartson
(1978) and Warn and Warn (1978), resulting in their quasi-steady approach being
self-consiétent.

Warn and Warn (1978) considered the evolution of inviscid Rossby waves on a
parallel flow in the pfesence of a critical layer, whose source corresponds to a switch-
on forcing at a lateral boundary at time, ¢t = 0, and they determined tha.f for earlier
times the waves will be \gvoverned by linear inviscid stability thebry. For all finite
times they assumed that a layer of transient fluid exists in the neighbourhood of the

. critical point which diminishes in thickness as time iﬁcrea,ses; note that the outer

solution will be steady. By t = O(e~'/?) the transient layer thickness is reduced to

O(€e'/?) and nonlinearity is found to be significant at leading order in the critical

layer. Warn and Warn determined that at this time, the regular expansion in € from
which the linear inviscid equations are obtained, is now non-uniform in ¢, yielding

a situation similar to the steady nonlinear solutions of Benney and Bergeron (1969)
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and Haberman (1972). Thus, the domain of validity of the expansion must be ex-
tended to the nonlinear regime. This is achieved using a combination of the methods
of multiple scales and matched asymptotic expansions, resulting in a nonlinear criti-
cal layer which when solved numerically yields the connection formulae as functions
of time.

In his study of the finite amplitude free disturbances of an inviscid shear flow
on the beta-plane of a Rossby wave, Hickernell (1984) applied perturbation theory
and the method of matched asymptotics to obtain an evolution amplitude equation
of a singular heutra.l mode of the Kuo equation. Hickernell’s critical-layer analysis
included the effects of time-dependence, nonlinearity and viscosity and he deter-
mined that as time evolves the effects of small viscosity and nonlinearity become
important much earlier inside the critical layer, than outside. Three distinguishing
features of Hickernell’s analysis are that his vorticity equation depends explicitly on
time, the flow inside the critical layer is determined to be weakly nonlinear in that
nonlinear terms enter as non-homogeneities, and nonlinear @${ects are stronger
inside the critical layer than outside. Hickernell determined a governing equation for
the evolution of the amplitude in which the nonlinear term is a typé of convolution
integral as opposed' to a simple polynomial. He postulated that the nonlinearity is
of this form because the equation for the ciitical-layer flow is first order in time and
nonhomogeneous. Hickernell also stated that any problem where the critical layer is
described by a first or higher order differential equation in time and where nonlinear
interactions are stronger within the critical layer than outside, will possess a similar
form of singularity.

Over recent years research with regard to nonlinear critical layers and their effects
on the stability of flows has been carried out by three main groups, who we shall
terfn the ‘Goldstein’ group, the ‘Gajjar’ group and the ‘Russian’ group.

Goldstein and his group have studied the effects of a nonlinear critical layer
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for a number of different problems - spatial growth of Tollmien-Schlichting waves
(Goldstein and Durbin (1986)); the roll-up of vorticity in adverse-pressure-gradient
boundary layers (Goldstein, Durbin and Leib (1987)); spatial evolution of waves
on shear layers (Goldstein and Hultgren (1988), Goldstein and Leib (1988, 1989),
Goldstein and Choi (1989) and Leib (1991)); and spatial evolution of waves on
hypersonic boundary layers (Goldstein and Wundrow (1990)).

The first work of this type carried out by Goldstein and his group was conducted
by Goldstein and Durbin (1986). Considering the effects of a nonlinear viscous
critical layer on the spatial growth of a time harmonic Tollmien- Schlichting wave,
they determined that nonlinearity acted to alter the linear disturbance terms through
its effect on_th;a instabilities phase jump across the critical layer. This phase jump
could be determined from the Haberman result, provided the Haberman parameter
was interpreted correctly. Thus they determined that nonlinearity drives the phase
jump to zero. Nonlinearity was also found to eliminate the upper branch of the
neutral stability curve in the Blasius boundary layer.

Goldstein et al. (1987) considered the mutual effects of critical-layer nonlinear-
ity and adverse-pressure-gradients on the ‘s'patial growth of time periodic inviscid
instability’ waves in boundary-layer flows. Adjusting the appropriate scalings on the
pressure gradient and the instability wave amplitude to ensure that the growth rate
and nonlinear terms occuring within the critical-layer vorticity equation are of the
same order of magnitude, the critical layer is found to be both nonlinear and un-
steady. Matching the outer and critical layers, they determined that the instability
wave amplitude now appears as a variable coeflicient rather than as a parameter,
as occurs in the Haberman problem. Consequently thé critical-layer vorticity equa-
tion. must be solved simultaneously with the external instability wave amplitude
equation. They achieved this by employing a spectral method to solve the system

numerically. Goldstein et al. find that even though the critical-layer dynamics are
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quite different from that determined by Goldstein and Durbin (1986), nonlinearity
still causes the scaled velocity jump to be driven toward zero. They also determined
that nonlinearity causes the instability wave to be ultimately stabilized, even though
the adverse pressure gradient is strong enough to cause the linear wave to grow in-
definitely. This is in constrast to the model studied by Goldstein and Durbin, who
determined that nonlinearity caused the indefinite growth of the disturbance term
for the Blasius boundary layer. The reason for the difference they concluded léy in
the sign of the vorticity gradient at the critical layer; a positive value causes the
phase jump to result in unstable growth whilst a negative value causes stabilization.
Since nonlinearity drives the phase jump to zero in both cases, anyway, ultimately
. l;oth effects will be eliminated if nonlinear effects are sufficiently large.

The first work conducted on shear layers by the Goldstein group was carried out
by Goldstein and Leib (1987). In an effort to account for the ‘roll-up’ of shear layers
in the neighbourhood of the linear stability point, Goldstein and Leib developed a
nonlinear solution which is valid in the neighbourhood of the linear stability point,
and which they also required to match onto the upstream linear (but weakly non-
parallel) instability wave solution. For this to be achieved, they noted that there
must exist an overlap domain where the two solutions could match correctly in an
asymptotic sense. Because of the necessity of introducing an artificial body force
term to counteract viscous spreading in the Stuart (1960) - Watson (1960) - Landau
theory approach (where nonlinear terms are introduced by means of a multiple
scales method), Goldstein and Leib instead opted for the nonlinear critical-layer
approach. Considering the position where the local Strouhal number (or normalized
frequency) differs from its neutral value By O(€/?), they derived an inviscid critical-
layer vorticity equation which contained both nonlinear and non-equilibrium terms,
and this choice of scaling also allowed for the correct matching with the upstream

linear instability wave. Comparing their work with Robinson’s (1974}, they noted
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that since Robinson considered the case where the normalized frequency differed
from the neutral value by O(e), then his solution will not match with the strictly
linear solution. Solving the critical layer vorticity equation, which represents a
balance of spatial evolution and (linear and nonlinear) convection terms, by means
of a spectral decomposition, they determined that nonlinearity in this case acts to
reduce the growth rates to zero over a very short streamwise distance, well upstream
of the linear neutral stability point, but with the final instability wave amplitude
oscillating about a finite non-zero value. They could not determine whether or
not a final equilibrium solution was reached, although the numerical observations
suggested that the critical-layer vorticity equation continues to develop smaller and

smaller lengthscales. Goldstein and Leib noted the close similarity between their

results and the related Rossby wave critical-layer solution obtained by Stewartson

(1978) and Warn and Warn (1978).

Based on the observations of Stewartson (1978, 1981) that even a very small
amount of viscosity causes the nonlinear critical-layer Rossby wave solutions to
evolve into an equilibrium critical layer of the Benney and Bergeron (1969) type,
Goldstein and Hultgren (1988) introduced a small amount of viscosity into the work
of Goldstein and Leib (1987). They assumed that viscous effects are of the same
order as the spatial evolution and nonlinear convection terms, noting that outside
the critical layer viscous effects are still unimportant.” Consequently, the lowest
order growth rate that they determined (O(€'/?)) is much larger than the corre-
sponding equilibrium critical-layer (O(e%/?)) solution as determined by Huerre and
Scott (1980). As had been determined previously by the Goldstein group, Goldstein
and Hultgren noted that since the instability growth rates are proportional to the
phase jump across the critical layer and nonlinearity drives the phase jump to zero,

then clearly nonlinearity can be seen to force the growth rates to zero, i.e. cause
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stabilization. However, since viscosity prevents the phase jump from being erad-
icated entirely, then the growth rates of the disturbance increase -asymptotically
downstream. They determined that even though this growth is weak - algebraic
now as opposed to exponential - nonlinear terms within the critical layer can be-
come unbounded, resulting in a new dominant critical layer balance between linear
and nonlinear convection terms. On the face of it, it appears that Goldstein and
Hultgren have arrived at the Benney and Bergeron (1969) state. However, through
careful analysis, Goldstein and Hultgren demonstrated that because of rapid spatial
development, viscosity is not given a chance to fully act on the flow. Consequently,
the vorticity in the closed streamline region within the cat’s eye boundary is vari-
able. Making use of a generalized Prandtl-Batchelor theorem, obtained from their
non-equilibrium critical-layer vorticity equation, they showed how singular eigenso-
lutions_can be precluded, while there is variable vorticity at the cat’s eye. Since the
instability wave is now growing slowly, the mean flow will diverge noticeably, result-
ing in the critical-layer structure being altered and the O(1) amplitude instability
never being reached. Goldstein and Hultgren determined that mean-flow spreading

ultimately dominates nonlinearity, forcing the growth rates towards zero, and then
the wave begins to decay. Nonlinearity is found not to effect the location of ‘the
neutral stability point.

In his linear work on the effects of compressiblity in shear layers, Gropengeisser
(1969) determined that oblique modes grow faster than two-dimensional modes. He
also determined that due to calculated reductions in the linear growth rates as the
Mach number is increased, then for supersonic flows, nonlinear critical layers have an
increased importance. Consequently, Goldstein and Leib (1989) extended their in-
compressible work into the compressible regime and treated the more general case of
three-dimensional disturbances, although to simplify their analysis >they employed

Squire transforms. They determined that the inclusion of compressibility causes
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critical-layer nonlinearity to behave quite differently. The major reason for this dif-
ference is that the temperature disturbance terms possess an algebraic singularity in
the critical layer (as first noted by Reshotko (1960)) resulting in these terms being
very large relative to velocity components. Consequently, critical-layer nonlinear-
ity is found to occur at much smaller amplitudes than in analogous subsonic flows.
Goldstein and Leib determined that nonlinearity effects will first become important
when the instability wave growth rate is O(e?/5). As a result, the critical-layer flow
is governed by linear dynamics to lowest order, nonlinearity effects only entering
through the higher-order (inhomogeneous) terms. They showed that the instabil-
ity wave amplitude is governed by an integro-differential equation, similar to that
derived by Hickernell (1984), the coefficients of which are determined numerically
from the linear solution. Solving the inviscid amplitu;ie equation numerically, Gold-
stein and Leib determined that it terminates in a singularity at a finite downstream
distance. The reason why a blow up occurs in the compressible case is because the
Hickernell type amplitude equation is a form of convolution integral, implying that
history effects are important. It is these cumulative history effects which eventually
cause the amplitude to grow and terminate in a singularity. Restoring viscosity in -
the critical layer only (although taking into account possible mean-flow spreading
over this lengthscale), Goldstein and Leib determined a generalized amplitude evo-
lution equation where the additional viscous effects are contained solely within an
exponential factor whose argument is always negative. They determined that the
viscous amplitude equation admits an equilibrium solution if the amplitude equation
coefficients lie in certain regions of determined parameter space. In these parame-
ter space regions it is found that the history effects of the convolution integral are
damped by the exponential term, resulting in the solution being a more local one.
In the above work, the unsteady flow was assumed to evolve from a single oblique

mode growing in its propagation direction, thus allowing Squire transforms to be
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employed. Goldstein and Choi (1989), considering the same overall problem, instead
assumed an initial instability wave growing in the streamwise direction. In order to
represent a fixed spanwise structure, they suppose that there are two oblique modes
with the same frequency and steamwise wavenumber but with equal and opposite
(real) spanwise wavenumbers. It is found that cross-flow velocity fluctuations, which
possess the same form of algebraic singularity in the critical layer as the temperature
disturbance terms, couple with the velocity fluctuations in the plane of the wave,
causing critical-layer nonlinearity to be more important at smaller amplitudes than
in the corresponding incompressible two-dimensional case. Goldstein and Choi also
observed that nonlinear oblique-mode interaction causes nonlinear critical layer ef-
fects to occur at even smaller amplitudes than in the single mode compressible case
- nonlinearity becomes important when the instability wave growth rate is O(e!/?)
as opposed to O(e?/%), as explained in the preceeding paragraph. Because the non-
linearity in this case is due to oblique mode interaction, the nonlinear critical-layer
dynamics will be unaffected by compressibility effects, and consequently Goldstein
and Choi conducted their analysis for the incompressible case only. They obtained
an integro-differential eduation with a cubic nonlinearity governing the instability
amplitude, similar to that obtained by Goldstein and Leib (1989) (although the
structure of the nonlinear kernel function is somewhat different), which is valid also
for supersonic shear layers. As in the single oblique mode case, nonlinearity causes
thé amplitude to grow rapidly, terminating in a finite downstream distance.

In their analysis Goldstein and Leib (1989) considered oblique subsonic modes
where the critical point coincides with a generalized inflexion point, thus allowing
them to assume the Lees and Lin (1946) generalized inflexion condition. This re-
sults in the critical point being a regular singular point for the compressible Rayleigh
equation. Leib (1991) generalized the above analysis to the case of supersonic modes,

where it is found that a generalized inflexion condition can no longer be assumed,
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resulting in the outer Frobenius solutions containing logarithmic terms. Leib also
removed the restrictions of unit Prandtl number and linear viscosity-temperature
relation, as assumed by Goldstein and Leib (1989), and derived an integral condi-
tion for the coefficients appearing in the amplitude equation based on the modified
solvability condition of Redekopp (1977). Leib conducted his analysis for a non-
equilibrium nonlinear viscous critical layer and determined a Hickernell type ampli-
tude evolution equation similar to that corresponding to Goldstein and Leib’s (1989)
generalized amplitude evolution equation, and containing terms that accounted for
all the subsequent generalizations made by Leib. As before, Leib determined that all
the inviscid solutions terminate in a singularity at a finite downstream location. In
the case of the viscous s.oh;tions, he derived a necessary condition for the existence
of an equilibrium solution, which is found to depend upon the Prandtl number, vis-
cosity law, the viscous parameter and a real parameter derived from linear inviscid
stability theory. From numerical observations, Leib determined that an equilibrium
solution could not be achieved for subsonic modes unless the temperature ratio of
the low-to high-speed streams exceeds a critical value, whilst in the case of the
most rapidly growing supersonic modes, equilibrium solutions exist over most of the
parameter range studied.
In their study of the spatial evolution of nonlinear acoustic mode instabilities
on the hypersonic boundary layer, Goldstein and Wundrow (1990) determined that
| nonlinearity is important when the amplitude of the pressure disturbance terms
is O(1/M% In M%), where M,, denotes the freestream Mach number. The linear
inviscid disturbance terms outside the critical layer are found by extending the
asymptotic analysis of Cowley and Hall (1990) into the nonlinear regime. Gold-
stein and Wundrow determined that this flow has a triple-layer structure, while the
critical layer is contained in an adjacent outer layer, which they termed the edge

layer. The resultant critical-layer nonlinearity is found to be strong in that it enters
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through a coefficient in the lowest order equations (similar to the incompressible
work of Goldstein et al. (1987)) and by employing a variable change, Goldstein
and Wundrow were able to express the critical-layer vorticity equation (along with
the energy equation) in a similar form as that determined by the Goldstein group
in the incompressible shear-layer case. The coupled set of nonlinear critical layer
equations was then solved using a numerical method based on the method of char-
acteristics. Unlike the incompressible work of Goldstein et al. (1987), it is found
here that when nonlinear effects first become important the instability wave growth
rates continue to increase, which is attributable to the effects of compressibility -
as in the work of Goldstein and Leib (1989). As the amplitude continues to grow,
however, f,ra;nsverse convection effects eventually become dominant, resulting in the
growth rates decreasing and eventually oscillating about zero. This is similar to the
incompressible work of Goldstein et al., where again critical-layer vorticity roll-up
generates smaller and smaller lengthscales resulting in viscous effects becoming im-
portant. Goldstein and Wundrow also noted that transverse convection effects must
be strong enough to counter the growth enhancing features of compressibility, before
the singularity of Goldstein and-Leib (19‘8~9) (and Leib (1991)) is encountered. They
concluded that the vorticity roll-up of this fully nonlinear solution must be strong
enough to reverse the growth build up of the weakly nonlinear compressible theory
before the singularity has a chance to form.

Making use of self-consistent asymptotic methods based on multi-deck ideas,
Gajjar and co-workers have been successful in introducing nonlinear effects due to
the presence of a critical layer, into a number of problems from the mid-eighties
onwards - Bodonyi, Smith and Gajjar (1983), Gajjar and Smith (1983), Bassom
and Gajjar (1988), Gajjar and Cole (1989) and Gajjar (1991a, 1991b).

In their work, Gajjar and Smith (1985) considered the problem of global non-

linear growth/decay, from both a spatial and temporal approach, of an unsteady
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non-neutral, small disturbance in the presence of a nonlinear viscous critical layer.
The problem they treated may be regarded as global in the sense that previous
studies assumed that outside the critical-layer travelling waves are neutral, with the
nonlinear growth or decay being treated with respect to motion within the critical
layer only - this is akin to a fixed critical layer. Gajjar and Smith removed this
restriction, considering instead a disturbance whose amplitude varies over the whole
flowfield. Considering three types of basic flow - steady quasi-parallel channel flow,
boundary-layer flow and liquid-layer flow - at high Reynolds number, i.e. the flows
considered have small but non-zero viscosities, they determined that assuming un-
steadiness is important in the problem, then the effects due to the slowly moving
critical layer (which moves to counter the divergence effect of viscosity) are more
important, generally, with regard to the evolution of the instability wave, than corre-
sponding effects developed within the critical layer due to unsteadiness factor. This
is because the critical layer being considered in this regime is relatively thin and
consequently the actual movement of this critical layer causes changes to the inter-
nal flow properties which are larger than those induced by the internal unsteadiness.
Coupled with this slow movement of the critical layer, instability wave amplitudes
are found to respond nonlinearly on faster space and time scales, both inside and
outside the critical layer, i.e. physically speaking, the slow movement of the criti-
cal layer forces the disturbance to vary on much faster scales with respect to time
or space. For the special case of fixed frequency disturbances, Gajjar and Smith
determined that for initial disturbances whose amplitude is either above or below
a certain subcritical threshold value, then these waves will be amplified/stabilized,
respectively, by nonlinear effects at later times, further downstream. In the case of
amplification, the instability waves become unbounded until they are governed by a
new subsequent structure. For the case of the general moving time-dependent non-

linear critical layer, unlike the corresponding fixed equation, there is no significant
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jump in the mean vorticity across the critical layer possible, implying that no large
mean flow disturbances can be induced outside.

In the incompressible shear layer problem treated by Goldstein and Hultgfen
(1988), the final region they study where both critical-layer nonlinearity and viscous
spreading of the mean flow are important, they observed that this region corresponds
to a regime similar to that studied by Gajjar and Smith (1985), where their critical
layer moves across the shear layer to maintain the quasi-equilibrium state against
changes in mean flow. Of course both effects of viscosity and nonlinearity see the
ultimate downfall of the wave growth rates.

In dynamical situations where cross flow vortices arise, there exists the possibility
of more than one critical point occuring in the basic profile. In their study of the
stability of non-stationary cross flow vortices in three-dimensional boundary-layer
flows, Bassom and Gajjar (1988) assumed that the basic flow was modelled by the
Von-Kérmén solution. The Von-Kérmin solution only allows two critical points
at most, but Bassom and Gajjar stated that their results are easily generalized
to the Ekman boundary-layer flows solution, where an infinite number of critical
points may-exist (Lilly (1966)). Starting with the linear theory, Bassom and Gajjar
demonstrated that if both critical points are present, then one will exist very close
to the wall while the other occurs in the main part of the boundary layer, and
balancing the critical layer jumps with the Stokes’ layer shift yields a eigensolution
for neutral modes. They also showed that the linear non-stationary modes they
considered only exist for a limited range of wave numbers between 10.6° and 39.6°,
but on including nonlinearity the wave angle range is significantly increased, since
nonlinearity results in the lower limit now being amplitude dependent.

Considering the stability of compressible boundary layers for the specific ex-
amples of a pressure gradient boundary layer (subject to both heat transfer and

insulated wall gradients) and the Blasius boundary layer (subject to insulated wall
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conditions only), Gajjar and Cole (1989), noting that in the compressible case invis-
cid disturbances are generally more important, conducted a multi-deck asymptotic
study for upper-branch stability. They conducted the work for néutral states only,
and hence equilibrium critical layers, but noted that their work provides the ba-
sis for a study with respect to growing modes, as conducted by Gajjar and Smith
(1985) and, of course, the Goldstein group. After determining the linear structure,
they introduced nonlinear terms through the action of a nonlinear viscous critical
layer. Through their analysis, they derived a nonlinear viscous compressible crit-
ical equation for the neutral modes, noting that it differs from theincompreséible
Haberman (1972) result due to the addition of a forcing term resulting from large
density fluctuations in the neighbourhood of the critical layer. It is found, however,
if the fixed boundary is subject to insulated conditions then th e problem hes to be
tescaled.. The dominance of the density disturbance terms (and temperature in-
stability terms) in the neighbourhood of the critical layer is a result of introducing
compressibility into the critical layer, of course, and is akin to the observations of
Reshotko (1960, 1962) and Goldstein and Leib (1989) regarding temperature dis-
turbance terms. Through their analysis, Gajjar and Cole determined that another
effect of compressibility is that the phase shift across the critical layer becomes pos-
itive for certain parameter values (where Gajjar and Cole considered crossing the
critical layer from above to below), which they determined. Considering the limit of
when the critical layer becomes strongly nonlinear they noted the necessity of vis-
cous critical layers in the cat’s eye boundarieé due to discontinuities in the vorticity
 gradient, which are found to be even stronger in this case due to heat transfer.
Another problem to which Gajjar (1991b) has applied nonlinear critical layer the-
ory to is the problem of the nonlinear evolution of Travelling Wave Flutter (TWF)
mpdes in the boundary-layer flow over isotropic compliant surfaces. Using the linear

work of Carpenter and Gajjar (1990), Gajjar (1991b) introduced nonlinear effects by
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means of an unsteady nonlinear critical layer. He obtained two equations governing
the amplitude evolution of the TWF mode which are very similar to equations deter-
mined by Goldstein and Wundrow (1990) in their ﬁork on the hypersonic boundary
layer. The main result of Gajjar’s analysis is that nonlinearity drives the jump in
the Reynolds stress across the critical layer to zero, and since this is directly related
to the instability wave’s growth rates, then the growth rates of the TWF mode are
reduced as it evolves downstream resulting in the roll up of vorticity within the crit-
ical layer and the generation of harmonics. Unlike the shear flow results, however,
the wave amplitude oscillates about a non-zero value implying that the wave am-
plitude is still growing. Gajjar noted that the path to vorticity roll-up is the same
as that described by Goldstein and Leib (1987) and Goldstein and Hultgren (1988),
although he points out that their work is in terms of transformed coordinates and
it is found that the picture is somewhat distorted in terms of physical coordinates.
However, regions of thin and intense shear layers will still be present.

Applying multi-deck theory to the problem of the nonlinear evolution of slowly
growing modes in the compressible boundary layer, Gajjar (1991a) obtained a pair of
coupled unsteady nonlinear equations that govern the amplitude evolutifm, which
again closely resemble those obtained by Goldstein and Wundow (1990) for the
hypersonic limit. Examining the linear growth rate he noted how wall heating can
destabilize the boundary layer. Carrying out a preliminary numerical study, Gajjar
determined that the nonlinear growth rates behaviour is dependent upon whether
the wall conditions are heated, cooled or adiabatic.

Over the last few years a number of Russians have been considering the effect of
nonlinear critical layers on fluid dynamical problems. Churilov and Shukhman (1987,
1988) and Troitskaya (1991) have considered the nonlinear stability of a weakly
supercritical shear flow with vertical temperature stratification, whilst Shukhman

(1989, 1991) has considered nonlinear effects on the stability of the shear layer in a
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rotating fluid for both the incompressible (1989) and compressible (1991) cases.

In the approach adopted by Churilov and Shukhman (1987), they specified the
relevant scales for viscous, unstea(iy and nonlinear effects to be individually im-
portant in the critical layer and noted that the critical layer will be characterised
by which of these scales is the largest. They presented a diagram of the various
critical-layer regimes on the amplitude-supercriticality plane at a fixed Reynolds
number, showing clearly the viscous, unsteady and nonlinear regions, with the rel-
evant boundaries marked showing where more than one effect will be important.
Considering the case of a viscous critical layer and assuming thal“. the instability
wave amplitude and supercriticality are small enough, Churilov and Shukhman
(1987) determined an evolution equation.which is governed by the Landau equa- -
tion (Landau and Lifshitz (1959)), and showed that higher order amplitude terms
will only be important in very narrow regions in the neighbourhood of where the
Prandtl nuniber, o, is one. Through interactions of harmonics in the critical layer,
they determined that the Landau constant is directly proportional to the Reynolds
number, changing its sign when ¢ = 1. Nonlinearity is found to substantially affect
the disturbance terms causing them to be stabilized for ¢ < 1, while for o > 1 it
causes destabilization.

In a second paper, Churilov and Shukhman (1988) considered the case where the
critical layer is unsteady as opposed to viscous. They determined that, with respect
to their critical layer region diagram,.a viscous critical layer is adjacent only to a re-
gion of an unsteady critical layer, so therefore unlike the situation described in their
- first paper, a nonlinear critical layer would not exist just above a viscous critical
layer, in their diagram. Through their analysis, Churilov and Shukhman derived an
evolution equation which is a form of integro-differential equation possessing both

cubic and quintic nonlinearity terms. They noted that Hickernell (1984) equations
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(although, as already stated above, Hickernell’s equation only possesses a cubic non-
linearity term) of this type will arise in situations with unsteady critical layers where
nonlinearity is coml;etitive. Churilov and Shukhman showed that if the amplitude
of the wave is small then the cubic term will dominate, but if it becomes of order the
inverse of the square root of the Reynolds number, then the quintic term dominates
resulting in explosive growth of the wave. This explosive growth is attributable to
the convolution integral form of the nonlinear terms, where of course past histories
will matter, and eventually accumulate.

Considering the problem of the nonlinear stability of a weakly supercritical mix-
ing layer in a rotating fluid, Shukhman (1989) conducted a study of the waves’
nonlinear evolution for the. different critical-layer regimes of viscoys,‘nonlineax and
unsteady scalings. Extending these theories into the compressible regime, Shukhman
(1991) conducted a study of the nonlinear evolution of spiral density waves generated
by the instability of the shear layer in a rotating compressible fluid, with particular
application to the problem of the structure of spiral galaxies. Considering distur-
bances which he regarded as acoustic waves in the far-field, it is found necessary to
impose a far-field radiation boundary condifion. Also, because of the form of the
disturbances he treated, the critical point no longer coincides with a compressible
inflexion point as in the work of Goldstein and Leib (1989). Consequently, the outer
solutions contain logarithmic terms which will be singular at the critical point at the
same ordering as those determined by Leib (1991). However, because of the partic-
ular model being treated, Shukhman assumed that the temperature terms will be
homogeneous, i.e. Tj(y) = 0, where T, represents the temperature field, resulting in
a much simplified energy equation. A more major consequence of this assumption is
Shukhman’s temperature disturbance term will not be singular at the critical point.
In Shukhman’s case it is the logarithmic terms which determine the critical-layer

dynamics, resulting in quite a different critical-layer structure from that determined
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by Goldstein and Leib (1989) (and Leib (1991)). Remarkably, however, the resultant
evolution equation governing the instability wave amplitude possesses a nonlinear
terr'r; which only differs from that determined by Goldstein and Leib (1989) in the
“form of the coefficient term. Considering seperately the cases of a viscous critical
layer and an unsteady critical layer, Shukhman provided conditions on the amplitude
for explosive growth for both cases.

Troitskaya (1991) considered the problem of a viscous-diffusion nonlinear critical -
layer in a stratified shear flow. Considering stationary finite amplitude wave dis-
turbances, he introduced nonlinearify through the action of a critical layer whose
structure depends upon nonlinearity, viscosity and a new factor that he introduced,
thermal conductivity. _

In Chapter 4 of this thesis the effects of the critical layer on the linear stability
analysis conducted in Chapter 3 is studied. It should be noted that all the work in
this Chapter is conducted for the case of a straight cylinder subject to axisymmetric
disturbance terms only. We begin by determining the effects curvature has on the
linear compressible viscous theory as determined by Lees and Lin (1946). Nonlinear-
ity is then introduced into the inviscid problem by means of the instability wave’s
interaction with nonlinear effects developed within the critical layer. The actual
method employed is based on the method developed by Goldstein and Leib (1989)
and allows us to consider near-neutral amplified disturbance terms. This study
will be conducted from a temporal basis, i.e. waves periodic in space but growing
in time are treated, and the aim is to determine the effects curvature has on the
Goldstein/Leib results. In the last Chapter of this thesis, the full non-equilibrium,
nonlinear viscous critical layer amplitude equation is determined for the compress-
ible boundary layer formed on a straight circular cylinder subject to axisymmetric
disturbances. Again the aim of this study is to see the effects curvature has on the

critical-layer dynamics and the resultant evolution equation governing the instability
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wave’s amplitude.
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Chapter 2

Basic Flow

2.1 Equations of Motion and State

The general layout of the problem is shown in Figure 2.1. The 2* axis lies along
the cone axis, r* denotes the radial coordinate, and @ the azimuthal coordinate.
The velocity vector v* has components v}, v3, v} in the r*, 8, and 2* directions,
respectively. The temperature field is represented by T*. Throughout it is assumed
that the basic flow is independent of 8, and the mean azimuthal velocity component,
v3, is zero, although when we go oﬁ to consider the stability of the flow, we shall be
concerned with non-axisymmetric disturbances.

In the cylindrical polar coordinate systém as defined above, the full equations of
continﬁity, momentum, and energy take on the following forms (Thompson (1972)):

ap* a 3] v*

at* + ar*( )+ *ao(p v2)+ a ,,(p )+ = 0, (2.1)

Dvl ('02) ] p* azr *r 1 aSr‘G + 62r‘z‘ + Z)r"r‘ — 280

D o trag " ar o (@2

x D'Uz* V1 %V % _ 1 ap* 329,. azgg 829,: Erto
bt = et o t e T e T2y (29
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Dvi  8p" 0% 188  0Sper | Sep
A + ® 4 +

P Dt~ 9z or* Y az* re (2:4)

o (o) - D =T ai* (K*"*g’f) + (ri)2 30 (K*aaz; )+£¥(K*%§- ‘

(2.5)
Here p* is the density of the fluid, p* is the pressure, ¢, is the specific heat (at
constant pressure), and K* is the coefficient of heat conduction. The Eulerian
operator is defined as

D o .8 wvd

D 30 T Vo T g T Ba (26)

and the viscous stress components, assuming Newtonian flow, are defined to be

Z,..,.. = 2[.11 gvl + A*V v N (2.7)

— * 1 av; v; *® *
Yoo = 2 [r,_ 5 +r*]+/\v v, (2.8)
Spepe = 24" 3”3 Vv, (2.9)

1 vy d (v
Treg = Tgre = pt [ 39 - (F)], (210
20z' — 2 z*0 — 602 I :* 861;3]3 (211)

ovy | Ovy

2 ,.i._E z‘—“ {ar*-'-g;:]. (212)

The dissipation function I'™* in (2.5) is given by
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2
I* = 24" [D,. 4 Do+ D2 o +2D%g+2D%p+2D% .| + (X = Zu")(V-v*)". (2.13)

. Here the ‘D’ terms are the components of the rate-of-deformation tensor, and are

given by,

*
oy

Dyepe = 22, (2.14)

Do = ’é%’? g, (2.15)

Dprpe = gzﬁ, (2.16)

_ [31)1 3v3 (2.17)

Bru= L5 4o )] e
Dows = 5 g”z ;1:%%5 . (2.19)

The coefficients p* and A* above denote the first coefficient of viscosity and bulk
viscosity, respectively (which are assumed to be functions of temperature only) and
A =p3+ %u*, where p3 is the second coeflicient of viscosity.

The equation of state is taken to be that which models a perfect gas, i.e.,

Pt =p*RT, (2.20)

where R* is the gas constant.




With reference to Figure 2.1, the surface of the cone is taken to lie along r* =
a* + A\2z*, z* > 0 (later, important assumptions regarding the size of the slope

parameter will be made), and so on this surface we require

vy =vy =v; =0. (2.21)

If the surface of the cone is insulated, then the following boundary condition

must also be imposed:

=0, (2.22)

(where n* denotes an outwards normal to the wall). In the case of heated/cooled
walls, then the condition .

T* =T*

wY

(2.23)

must be iﬁposed at the surface.

We now specify conditions at z* = 0. In this problem the overall intention is to
investigate the effects of curvature, in particular how curvature changés planar re-
sults. Thus, at the cone tip it is assumed that the boundary layer has zero thickness,
enabling planar conditions to be imposed at this position. This progressive intro-
duction of curvature, starting from planar conditions, is a sensible way of explicity
studying its effects. A similar assumption was made by Seban and Bond (1951) for
the laminar boundary layer formed on a cylinder in axial incompressible flow and
their comments regarding this assumption are found to be valid here. Following
previous authors, such as Mack (1984), the effect of any shock that may occur is
ignored. This is also expected to be important in the vicinity of the tip (i.e. for
z* /af = O(1) where z* is a much longer lengthscale than a*), the significance of

this region for our model being discussed above. Further, it is expected that for

64




moderate Mach numbers (such as considered throughout this thesis) downstream of
the tip, the chosen ‘thinness’ of the boundary layer is such that the shock wave will
be located well outside of the boundary layer. Since our analysis focuses attention
primarily on the boundary layer, the effects of the shock are assumed to be negligible
(see also the work of Chang et al (1990) which confirms this in the case of planar
flows).

Assuming the cone to be slender, then the far-field conditions are taken to be

uniform, to leading order, with

v =v; =0, (2.24)
vy = Uy, (2.25)
T =T. (2.26)

Subscript 0o denotes free-stream conditions.
We next go on to derive the basic (boundary-layer) flow on the surface of the

cone, assuming curvature plays a key role in the physics of the problem.

2.2 The Boundary-Layer Flow

We define our Reynolds number on the tip radius of the cone, a*, as follows:

_Usa'n,
= —, .
oo ehis thesis
and this will be assumed to be large throughout, thus allowing us to make the
A

Re (2.27)

steady boundary-layer approximation. A key element in this work is the inclusion of
curvature terms in the governing equations to leading order. To achieve this the tip

radius of the cone is assumed to be generally of the same order as the boundary-layer
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thickness (a similar approach was adopted by Seban and Bond (1951), Stewartson
(1955), Bush (1976), Duck and Bodonyi (1986) and Duck (1990) for cylindrical
bodies), except at the tip of the cone where, ra,s already mentioned, the boundary
layer is assumed to have zero thickness. As already noted the z* lengthscale is much
longer than the body radius (2* = O(a*Re), generally) and so the ‘tip effects’ of the
con e on the mean flow will be expected to be confined to z*/a* = O(1).

With the formation of a thin boundary layer, (comparable in thickness to the

body radius) the following classical assumptions are expected to hold

9 >>
or* dz*

and vz >> vy, (2.28)

(these orders will be made more precise shortly). We also must have

A = Re™ 1}, (2.29)

where

X =0(1), (2.30)
implying a slender cone.
As noted previously, the basic flow is taken to be independent of 8, and has no az-
imuthal velocity component (i.e., v; = 0). Introducing non-dimensional parameters
as follows:

*
Rev} w3

Us, "U%’ o’ Rea*’ T3, pt,” 1%,

- (vl,vS,Tyz,T,pa”') = ( (2.31)

then the leading-order governing equations may be written (assuming Re — 00)

0 /m g d svs

— (= —_— (=) =0 2.32
SCOR R ~C R (2.32)
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5 =0, (2.33)
vl% + va%? = g‘gf’;[’”#%?f]’ (2.34)
vl%cf; + Ug'g—:: = uT(y—-1)MZE ?51;—3]2 -+ g%[%&g]’ (2.35)
where the result
p= %, (2.36)

has been used and is a consequence of applying equation (2.33) to the equation of
state, in non-dimensional form; v denotes the ratio of specific heats, o is the Prandtl

number, namely

o= ‘;{—?, (2.37)

(which is assumed to be a constant in this problem), and M, is the freestream Mach

number, namely

v
M, =—2—. 2.38
GRT (239)
The boundary conditions are
v,=v3=0 on r=1+42Axz (2.39)
vz — 1, T -1, as 1 -+ 00, (2.40)

together with a wall temperature condition; in the case of insulated walls (to leading

order)




oT —
o= 0 on r=1+ Az, (2.41)

whilst in the case of heated/cooled surfaces

T=T, on r=1+)\z. (2.42)

All that remains is for us to specify a viscosity /temperature law. For the purpose

of this work we assume the linear Chapman law (Stewartson (1964)), namely

= CT, (2.43)

where C is taken to be constant (although, here, conceptually, there would be no
difficulty in taking more complex variations of viscosity with temperature).

If we wr%te

v; = C7y,
z=C"13,
X=C), (2.44)

whilst retaining other terms, then the system (2.32) - (2.35) becomes

N L2 0 (U3 _
5 (7) + 7t aE(7) =0 - (249)
. _ap
3 =0, (2.46)
— a’l}3 603 _ T o 81}3
’UlE '03?3? = —?[TT"aT ) (2.47)
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rT' 0T

r 8r[ o orl’ (2.48)

.?')-1‘—+'Ua—'— = T ( —_ ].)]‘{f2 (3?)3)2

whilst the wall boundary conditions are to be applied on

r=14 A%

As described previously, it is assumed that as z — 0 the solution approaches
planar conditions and at the cone tip the boundary layer is taken to have zero
thickness. The problem is thus singular at 2(= Z) = 0, and consequently scaled
variables must be introduced in order to solve (numerically) the system (2.45) -

_ (2.48) accurately. Specifically we write

= 1(73, C)v
V3 = 63(77’ Os
T = T(n,(), (2.49)
where
¢ =72, (2.50)
and
r—1—X?
n= —————-C—u (2.51)

The ‘hatted’ quantities are expected to behave regularly as ( — 0, approaching

the planar solution. Equations (2.45) - (2.48) now take the following form:

0 /b [N a9 /v U3
@+ B2 b D@0 e
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55:0, (2.53)
a @3663 A 61)3 303 -
ol (b5 0T o ., , (Ob5\2 T 8 (v 0T
bgrt 5 ar va[xu] —T(—l)M(an)+ranaa] (2.55)
where
r=1+ A%+ (n. (2.56)

The boundary conditions in terms of the new variables are
Uy=03=0 on 75=0, ‘ (2.57)

A

- U3 — 1, T—o1 as 7 — 00. (2.58)

Inl the case of insulated walls, the additional surface condition is

orT
= =0 = 2.5
3 on 7=>0, (2.59)

whilst for heated/cooled walls

T=T, on 5=0. (2.60)

On examination of the system of equations (2.52) - (2.55) it is found that un-
like the planar case, the introduction a Howarth-Dorodnitsyn (Stewartson (1951),
Moore (1951)) transformation does not simplify matters; in fact the equations be-

come rather untidy in an algebraic sense. Therefore it is found necessary to seek
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a numerical solution to ®y, v, and T directly. Setting ( = 0 in equations (2.52),
(2.54) and (2.55), the problem just reduces to the planar case, namely the ordinary

differential system

t1T — 0, T, — :2’363,,‘1"‘ + g-ﬁatz”“,, =0, (2.61)
D193y — 363133,, = T, 95 + T30 (2.62)

, . T2 o,
T, — gﬁaT., = Py - )ML#, + —2 + —1, (2.63)
(subject to conditions (2.57), (2.58) and (2.59) or (2.60)).
Defining the variables
’5; = 1’}3,1,
™ =T, (2.64)

the system (2.61) - (2.63) together with (2.64) can be written as a first-order system

of ordinary differential equations, namely

Tby,y — 0,1 — -g-’_i’ﬁ; + giﬂﬁg =0, (2.65)
610} - gasa; = 72! + 7741, (2.66)
By = D3y, (2.67)

n N N TZTI IRV
5T — %ﬁaTl =Ty - 1)MZL(53)* + -~ T+ T(i ) ) (2.68)
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m (2.69)

subject to

93— 1 as np—ooo. (2.70)

This system of equations is now treated numerically by approximating each term
by a second order finite difference scheme and the resultant truncated system is
solved by means of a Newton iteration. At each iteration level, the algebraic system
was of block-diagonal form, with each block comprising 10 x 5 elements.

The finite difference scheme employed is the central difference analogue which

for a function u(z) has the form

du

=1
de ~ 2h
where h is the step size and is determined by the fineness of the grid. The grid has

u(z + k) — u(z — k)| + O(h?), (2.71)

the form

| | I 1 — ~ g-direction

In this problem, to make the scheme more compact, instead of evaluating at
successive grid points, all functions and finite differences are evaluated at a point
half-way between the mesh points, although we still step up in amounts equivalent

to the mesh size. In effect we are evaluating the functions and finite differences at
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two successive mesh points and then averaging the resultant. Note, the accuracy
will still be the same as the error term is O(h?). Therefore the mesh employed to

solve the ODE system under consideration has the form

.1
JT 3
X X X *% -X n-direction

where j — 1 is the point where the central differencing is carried out. The central

difference expansion for a function v(n), in terms of the new grid, has the form

dv _v(n+52) —v(n -4
dng Ay

where A7 represents the step size.

+ O(Aﬂz), (2'72)

Applying the central difference expansion (2.72) to the differential quantities in
the ODE system (2.65) - (2.69) the following finite difference approximations are

obtained. for the d;\g?ecent‘sm\ quankities

) 5 () — (i — 1
vl,,=w(]) :;(.7 )+O(AT}2),

i
)

ALy » A1 .
X — (-1
v%n - "03(.?) Av;(] ) + O(Aﬂz),

7 - TG -TG-1)

O 2
n A’] + (A?] )7

TG -1 -1)
n A1

+ O(An?). (2.73)
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To apply the Newton iteration to the truncated finite difference system, at the

(n 4 1)th iteration level we write

) = £700) + 85 (), . (274)
with the understanding that terms of O(§?) and higher are neglected. Substituting
(2.74) into the truncated finite difference system, and collecting 6 f terms on one
side of the system of equations, the resultant system can be expressed in the matrix

form

AX =B, O (2.75)

where A is the cofficient term matrix, B contains the matrix elements to be deter-

mined, and X contains the §f terms having the form
[ 60:(1) )

8, (5 — 1)
6d3(j — 1)
693(5 — 1)
0T(j — 1)
8T (5 —1)
691(7) ’
603(7)
693(4)
6T(j)
6T (5)

\ STI(jmaw) /

where jmax represents the grid point where the far-field conditions are satisfied.
The 6 f’s are evaluated repeatedly until suitable convergence at a given j station is

achieved.
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The -banded matrix system (2.75) is then solved using Gaussian elimination and
banded matrices. Finally a relaxation condition is applied at each iteration level to
speed up calculations.

"Once obtained the solution to the ODE system then provides the initial condi-
tions for a (straightforward) Crank-Nicolson scheme in { to solve equations (2.52)
- (2.55). Values are determined for all 7-stations along a row of (-stations and we
march forward in {, determining each new row of 5 stations. Overall, this may be
described as an implicit scheme.

The mesh used to approximate equations (2.52) - (2.55) has the following form

direction of 7

j+1

J 1 x 1 —— direction of ¢

j—1
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where X marks the point (i —}, 7 — 1) about which the central diﬂ'érencing is carried
out. The central difference expansion for a function U;; in the 5-direction has the

form

OUij Ui —=Uj1+Ui1;—Uisg 0

whilst in the (-direction it takes the form
an,J’ - Ui,J' + Ui.J'—l - U-'-l.j - Ui—l,j—l (2 77)

¢ 2A¢
where An and A( represent the respective step sizes.

Applying (2.76) and (2.77) to the various differential quantities in the system of

75




equations (2.52) - (2.55), yields the following Crank-Nicolson approximations

%1 _ D1(4,5) = 01(5,5 — 1)+c;1£(:'n~ LI =0 =17 =1 L ap),
28 _ () =i = 1)+ 0 Li) =i =13 =1) | n.2
%_7_7_ = %(0d) ~ 83(hi = 1) +§£(kin_ L) = 03i=1i=1) | nmy
g _ P6,9) - 16,5 - 1) +'§§7;-1,j) “PlE-15=1) | e,
ot _ T, 5) — T (6,5 — 1) + T - ‘1,j) ~-Ti-1,7-1) (A,

an 2An

Bb3 _ D5(3,4) —D3(6 = 1,7) + Ds(s, 5 — 1) —B3(i — 1,5 — 1) 2

o _ TG, )~ T(-1,5)+T(,i—1) -G -1,j-1)
¢ 2A¢

The first set of mean flow results presented corresponds to a straight circular

+(AL). (2;78)

cylinder (i.e. A = 0) subject to adiabatic wall conditions and are the same as those
presented by Duck (1990). Distributions of wall temperature with ax1a1 coordinate
¢ (= 7'/?) for Mach numbers of M, = 2.8 and M,, = 3.8T denoted by curves (1)
and (2) respectively, are shown in Figure 2.2; the corresponding distributions of
wall shear 03,|y=0 are shown in Figure 2.3. The fluid constants are assumed to have
values of ¢ = 0.72 and v = 1.4. Results are only presented up to an axial location
of 10.0 as it is found that as we integrate downstream it becomes more difficult to
determine accurate numerical solutions. The reason for this is that when the scaled
radial mesh size, An, is expressed in terms of the unscaled variables, namely the
radial coordinate r, we have Ar = Anz'/2. Clearly the further downstream the
integration proceeds in the axial direction, then the larger Ar becomes resulting in

the radial integration becoming increasingly inaccurate. Studying Figure 2.2, the
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wall temperatures are observed to decline slightly from their planar values at { = 0,
for both Mach numbers presented, whilst the wall shear increases monotonically with
movement downstream. Note, at ( = 0, the wall shears have small but non-zero
positive values, for both Mach numbers.

Duck (1990) carried out a far downstream study of the basic flow following
the incompressible work of Glauert and Lighthill (1955), Stewartson (1955) and
Bush (1976). He determined that, in the limit of large {, there are two important
radial lengthscales, namely » = O(1) and r = O(z/?). Matching between these
respective layers and applying suitable boundary conditions, Duck determined that

for adiabatic wall conditions,
Tlr:l = 1 + %0(7 - I)Mgo + O(E), (2'79)
and

Ovs _ €
arlr=1 14 lo(y—1)MZ

+ O(é?), (2.80)

where € = (In{)~! and the expansions for T and v3 are valid in the inner layer, only.

For cooled/heated surfaces matching yields

aT € 1 . . .
Frlear = L+ 507 = DML~ T] + O(€), (2.81)
and
Jdvs _ € 2
Br e = T, T O, (2.82)

where T, corresponds to the wall temperature.
The adiabatic asymptotic temperature results (i.e. (2.79) for respective Mach
numbers) are displayed as broken lines in Figure 2.2. The wall shear as defined by

expansion (2.80), in terms of the scaled coordinates 7 and ¢ has the form {93, |,=o-
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Plots of (~1d3y|p=0 against { as determined numerically, are displayed in Figure 2.4,
where the broken lines, again, represent asymptotically determined results. The
agreement is satisfactory given the relative ‘largeness’ of the small parameter €. If
we precede further downstream it is found that the inner layer, i.e. the r = O(1)
layer, which can be regarded as an inner boundary layer, retains its thickness whilst
the outer layer spreads due to the action of viscosity. As a result, comparison
between asymptotically determined results and numerically determined solutions
will become increasingly less accurate. This provides another reason why a mean
flow study beyond ¢ = 10.0 is not conducted.

Examining Figure 2.4, it is noted that the (~'03;|,=0 distribution is singular
in the planar limit as ( — 0 and then appears to (slowly) fall continuously as ¢
increases, for both Mach numbers considered.

Figure 2.5 displays variations of wall shear, 93,|,=0, with { for both heated and
cooled wall surfaces. It is apparent that cooling causes the wall shear to increase
more sharply with movement downstream, whilst heating causes the converse effect.
It also appears that wall heating causes the wall shear variation with { gradient to
be asymptoting to some undetermined value.

Turning our attention to the boundary layer formed on a cone, we now present
a few results for mean flow variations subject to adiabatic wall conditions only. It
should be noted that in the case of the cone, the surface of the cone occurs at
increasingly larger radii as we move downstream, as defined by (2.56), i.e. O(%),
but the far-field point used in the numerical integration is held fixed. It is found
that the effect of body divergence conteracts the divergence of radial mesh size, Ar,
as observed in the case of cylindrical bodies and the boundary layer growth, both
of which are O(/?), thus making it possible to present results for relatively large
downstream locations, with a high degree of accuracy.

Distributions of wall temperature with axial location ¢ are shown in Figure 2.6
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(M = 2.8) and Figure 2.7 (M, = 3.8), and the corresponding distributions of
wall shear d3y|y=0 are shown in Figure 2.8 (M., = 2.8) and Figure 2.9 (M, = 3.8),
for the slope parameter values as shown. In all cases, these distributions are quite
different to the corresponding A = 0 distributions, as presented above, with the
wall temperatures no longer undergoing monotonic decrease, and the wall shears no
longer increasing monotonically. It is also quite clear that the results evolve from
the planar case to the far downstream limit, as predicted by the Mangler transform

(Mangler (1946), Stewartson (1955)), namely

b ] — /39 ) :
3n n=0,{—o0 \/_ 3n n=0,(=0’

(2.83)

[ ln::[),(—»oo - T(,,:o,(:o'

In the next chapter we investigate the stability of flows of this type, subject to

small amplitude inviscid disturbances.
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Figure 2.1: Layout

80



4.0
3.8
3.6
3.4
3.2
*% 3.0
2.8
2.6
2.4
2.2

2.0
0 4 6 8 10

<

Figure 2.2: Axial wall temperature distributions for adiabatic cylinder.
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Figure 2.3: Axial distributions of vajq-o for adiabatic cylinder.
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Figure 2.5: Axial distributions of €3£ |,=o for heated/cooled cylinder.
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Figure 2.9: Axial distributions of ¢3r,),,=o for adiabatic cone, M0 =38,
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Chapter 3

Linear Stability Theory

3.1 Inviscid Stability of the Flow

In order to study the stability of the basic flow determined in the previous.chapter,
we now investigate the effects of small amplitude disturbances. As mentioned in
Chapter 1, for the supersonic boundary layer, inviscid disturbances are generally
found to be more important (i.e. more unstable) than viscous disturbances. There-
fore, the limit of infinite Reynolds numbers is assumed. It is also assumed that the
disturbance wavelength is generally comparable to the boundary-layer thickness and
therefore also of the (tip) radius of the cone (O(a*)), in which case the parallel flow
approximation is asymptotically correct. (L"i.. of CouTse, 15 assumed small,

At a fixed Z station the flow parameters of velocity, i)ressure, temperature and
density are expressed as the sum of a mean flow term plus a small, first order

disturbance term, i.e.

vy = éaULd,(r)E + 0(62),
v} = §ULD,(r)E + O(8%),
v = U% [wo(r) + 653(r) E] + O(6?),

T* = T [To(r) + 6T(r)E] + O(62),
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P = pm[T( 5 + 85(r)E] + O(8?),
P = PR TL[1+ 65 (r)E) + O(8), (3.1)

where

E = explia(z ~ ct) + ind), o (3.2)

and ¢ is the scale of the disturbance (taken to be diminishingly small), whilst

t=( a?)t*a
z*
Z = 'a—;,

wU(T) = ‘!33(7‘, E)a

To(r) = (r,2), (3.3)

where 95 and 7' are determined from the computations in the previous section, @
is the non-dimensional spatial wavenumber, ¢ the non-dimensional wavespeed and
n the azimuthal wavenumber. We note the Z = O(1) (& 2* = O(a*)) scale is very
much shorter than the basic flow scale z = O(1) (¢ 7= 0(1) & 2* = O(a*Re)).A
Substitution of the flow parameters into the full system of equations of continuity,
momenta, energy and state (as defined in Chapter 2), discarding O(6?) terms and

all but the largest terms in Re, yields the following linear system

~ TOr _
TO To TO T Ul-j—;oz— = 0, (34)
ic .Wol3 . Wy, _ tp
B GRRLE elt ah ML (3.5)
ic . WoDa mp
- = 3.
Tov2 T To ’YMozo'CTT’ ( 6)
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-1\, . .
T[ ch+zon+v1To,-]+( p” ')(ch—-zwop)=0’
0

Whiting

% = (¢, a= %7

where ( is defined by (2.50), after some a.lgeb‘ra and using (2.56) we obtain

b, + ¢ _ wopd 1p®
"TTENTA () wo—c  YML(wo—c)’
together with
= = S
where
22 '
‘I’=T0[1+ n C ] —Mfo(wg—c)2.

o(L+ A2 +(n)?
Equations (3.11) and (3.12) can be combined, eliminating §, to give

{(wo-c) [¢,,+(C/(1;Ac2+€v>)¢ Loudy To(wo-—c)¢

Alternatively ¢ may be eliminated to give

— 50 = {U’On _ ((wo —¢) } = PyTo 3 — (wo— )dn{ Topy, }

1+ A¢2 +(n’ a?(wo —
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(3.8)

(3.9)
(3.10)
(‘3.11)
(3.12)

(3.13)

(3.14)

(3.15)




Equation (3.14) is very similar to the planar, inviscid, compressible disturbance
equation, as obtained by Lees and Lin (1946), Lees and Reshotko (1962) and Mack
(1984), the only difference being the inclusion of a non-axisymmetric term and a
curvature term on the left-hand-side of the equation, in our case. Indeed, in the
limit ¢ — 0, the planar result can be recovered. We also observe that setting n = 0
(i.e. axisymmetric disturbances) and A = 0 (zero cone angle), equations (3.14) and
(3.15) reduce to those considered by Duck (1990). Similar results are to be found
in the work on the stability of jets by Michalke (1971).

To close the problem appropriate boundary conditions need to be determined.

On the surface of the c©®we we shall prescribe the impermeability condition, i.e.

¢=p,=0 on n=0. (3.16)
The second condition is that ¢ be bounded as 7 — co. This is achieved by consid-

ering equation (3.14) in this limit, i.e.

Y S
(]5,7,, + 1+22+(n (1 + /\42 + C")Z =a [1 Afoc(l c) ]Qb, (3.17)

which has the s_olution

8= gbon (Enia () + Kiosi ()}, (3.18)

where

i = afl — ML(1— o)2]/2 (% + ¢ +1), (3.19)
and K, () denotes the modified Bessel function of order n, the a,rgunient of which
(i.e. the appropriate sign in (3.19)) is chosen to ensure boundedness in the far-
field. ¢oo is a constant. Substituting equation (3.18) into (3.12) gives the far-field

boundary condition for the pressure disturbance term, namely
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In this problem, attention is focused on temporal stability for which the growth

(3.20)

rate is ac;, where ¢; is the imaginary part of the wavespeed (most related work
has also been temporal in nature, although there is no conceptual difficulty .with
the treatment of spatial stability). If ¢; > 0 then the disturbance grows, if ¢; = 0
the disturbance is neutral and if ¢; < 0 the disturbance decays. The system of
~ equations (3.11), (3.12) was solved using a fourth-order Runge-Kutta scheme for
the eigenvalue ¢ (generally complex), given n and « (real), subject to the boundary
conditions (3.16), (3.18) and (3.20).

Consider a first order differential equation of the form

dy .
7 = [(@ ) (3.21)
The fourth-order numerical approximation to this equation using a Runge-Kutta
scheme is
. h 7
Ynt1 = Yn + "6-(k1 + 2k; + 2k3 + k), (3.22)
where
k h
k= f(wm yn), ky = f(mn + é’: Yn + Ekl)’
h h
ks = f(zn + 3 Yn + §k2)’ ky = f(zp+ Ry + hks), (323)

_and h represents the step size, which in our case is Ay.

We apply this method to the re-arranged equations

4, = Wond <2 1p®

= - 3.24
wo—c 1+A2+(n  yMZ(wo—c)’ (3:24)
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. 1a?(wyg — ¢
Py = ————(.—1—,3——)7M3°¢, (3.25)

where shooting begins at a suitably large value of 7 - where conditions (3.18) and
(3.20) are applied - and the computation proceeds inwards towards = 0. A suitable
value of ¢ is chosen in order to satisfy the impermeability condition on the surface of
the cone. This is achieved by making a sensible initial guess for ¢ a;nd then by means
of a Newton iteration scheme, the shooting process is repeated until the difference
in ¢, between successive iterations, is sufﬁcientiy small to warrant bonvergence.

It should be noted that (3.24) possesses a simple pole at the poini;, in the boundary
layer where wy = ¢, i.e. at the the critical point. Since wq i‘::r“:atﬂlbthis implies that
the singularity will lie on the real axis in the complex 5 plane for neutral disturbance
terms, i.e. ¢; = 0. However, owing to the smallness of ¢; in a number of the numerical
calculations it is found necessary to divert the computation below the real 5-axis (for
neutral and damped disturba.ncés only) in the neighbourhood of the critiéal layer.
The technique used is based on the methods of Zaat (1958) and Mack (1965a).

To continue the mean flow terms wy, wy, and T onto the indented contour, these

are expressed as truncated power series, i.e. they are written in the form

1 1,
wo = we + wi(n — 10) + sw{(n - 1e)” + swe'(n - 1e)® + O((n — uc)*),
1
Wop = 'wf: + wi'(‘a? - Wc) + 5 :;”(77 - 77(:)2 + O((’I - Wc)s)s
1, 1
To="T.+T(n—ne) + 5T (n - ne)* + 5T (n - 1e)° + O((n —ne)*),  (3.26)

where the contour of integration has the form
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The integration is started at some suitable point. in the far-field m, and continues
inward on the real axis to n_ . We then follow the rectangular indentation below the
real 7 axis to the point 7, , where the integration proceeds to 7 = 0 along the real
axis once more. This method is found to be highly accurate.

Before carrying out a detailed numerical study of the eigenvalue problem posed
above, we shall derive an important necessary condition for the possible existence

of unstable modes, using the method of Lees and Lin (1946).

3.2 The ‘Triply Generalized Inflexion Condition’

In stability theory, great emphasis is placed on the condition for the existence of
neutral disturbance terms, Lord Rayleigh (1880), derived a condition for the ex-
istence of a neutral term in the case of incompressible flow, which he termed the

‘inflexional condition’, namely -

o _ =0, (3.27)

(where 7; denotes the critical point) which Tollmien (1929) later demonstrated was
also a sufficiency condition. It is also found that if the incompressible flow is to be
unstable to disturbances, a point of inflexion must exist in the velocity profile at

some point within the flow, i.e. (3.27) must be satisfied.
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A series of authors, including Lees and Lin (1946)
_ generalized the inflexion condition to give a condition for the existence

of neutral disturbance terms in compressible planar flows, namely

d [z (3.28)

dn To ]ﬂ—m =

Equation (3.28) also provides a necessary condition for the existence of subsonic
amplified disturbance terms in the supersonic planar boundary layer.

In 1990, Duck generalized the in'ﬁexion condition further to inc¢lude curvature

terms, in the case of supersonic flow along a thin cylinder, determining an axisym-

metric generalized condition (or ‘doubly generalized’ inflexion condition) of the form

d — [ (3.29)

dr) To(1+ nC)]n—n.
We now wish to determine a corresponding condition for non-axisymmetric

modes in the case of supersonic flow past a sharp cone. Multiplying equation (3.14)

by ¢*/(wo — ¢) (where an asterisk denotes a complex conjugate) yields

o ¢ (wo — c)(¢y + (1/R)) — woyé
- To ¢ wo—cdn{ 0 X } (2:30)

where we have written

n2
x=To{1+ = Rz} — M2 (wp — ¢)?, ‘ (3.31)
and
2
PO S ) (3.32)

¢

Subtracting the complex conjugate of equation (3.30) from itself gives
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¢ {("”0 —c)(¢y+ (1/R)¢) — wOnd’}

wp — ¢ dy X
4 (wo — &)(¢5 + (1/R)¢") — wond”
g dn{ - }. (3.33)
After some algebra, (3.33) can be written
Ayt (YR d b+ (R
LR
* d Wy Wo
R¢¢{ - X};’] wﬂ_c*dn[ "]}. (3.34)
Writing
c= ¢ +ic, (3.35)

then for neutral disturbances we consider the limit ¢; — 0. In this limit we can-
automatically deduce x = x*, since n and « are both real by the temporal approach
being considered. However, the limit must be applied with more care on the right-

~ hand-side of the equation. We re-write equation (3.34) in the form

1 d (RI$ (bn+ (/R)E) = 868 + (YR _ . Bldles d g,
Rt X ity S

In the limit ¢; — 0, the left-hand-side of equation (3.36) will tend to zero,
except possibly at the point 7;, where wy = ¢, i.e. at the critical point. By the
impermeability condition the term inside the parenthesis must be zero at the wall
(n = 0) and asymptote to zero at infinity if the wave under consideration is to
be subsonic, as this form of wave must be bounded in the far-field (Lees and Lin

(1946)). Since the derivative term is always zero (except possibly at the critical
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point), then the term inside the parenthesis must be constant and by the form of
the boundary conditions this constant must be zero. | ‘
Examining the right-hand-side of 'eduation (3.36) again, it is noted that this acts
as a delta function as ¢; ~ 0. This implies that the term in parentheses on the left-
hand-side of (3.36) undergoes a finite jump. This clearly leads to contradication,
unless the right-hand-side is zero at the critical point. This requires (re-casting the

equation in terms of the original variables)

d Woy B
& T T I F @ e e =% 030

This result represents a further generalization of the so-called ‘doubly generalized
inflexion condition’ as determined by Duck(1990}; setting n = A = 0 retrieves Duck’s -
results. It should be noted that the general inflexion condition for any shape of cone

surface described by

P =14 M), (3.38)

is easily determined by replacing ‘A¢*’ in (3.37) by ‘Af(¢)’.

We now move on to numerically solve the eigenvalue problem in the next section.-

3.3 Numerical Results

Clearly there are many choices of parameter that can be made in this study. The
strategy here is to carry out a detailed study for one choice of Prandtl number (0.72),
ratio of specific heats (1.4) and in the case of the cone, one cone angle (A = 1). We
begin the study by considering the stability of the compressible boundary layer
formed on a cylinder, subject to adiabatic wall conditions, for a Mach number of 3.8
(Figs 3.1 - 3.22). Extensive results are given in this subsection for a range of values

of n, at fixed values of (. At the end of the subsection we present some results
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for My = 2.8, for comparison (Figs 3.23 - 3.26). Most of subsection 3.3.2 will
be devoted to the effects of wall-cooling on the stability of compressible boundary
layers and its interacfion with curvature as these conditions are likely to be of
interest in important applications (for example, in the case of high-speed flight
vehicles frictional forces result in metal heating which in turn causes buckling and
corrosion). Note that here, we shall refer to the term ‘wall cooling’ as being relative
to the adiabatic wall temperature. The main body of results presented are for a
Mach number, M,, =.3.8 (Figs 3.27 - 3.41), although we also present a number of
results for M, = 2.8 (Figs 3.42 - 3.49) for comparison. At the end of this subsection
we shall give some heated wall results (Figs 3.50 - 3.55) which exhibit additional
interesting physical features..In the last subsection, the stability chgralcteristics of
supersonic flow along a somewhat more practical configuration, namely a sharp cone,
are presented (Figs 3.56 - 3.71). For this stability problem, the results presented are
for one Mach number (Mo, = 3.8) and for insulated wall conditions.

All numerical computations were carried out on the Amdahl VP1100. All the
results may be regarded as being independent of numerical grid. Generally, two
grid sizes were used to check consistency, namely An = 0.0046875 extending out
to n = 30, together with An = 0.00234375 extending out to 7 = 15. For the far
downstream results (for example, { = 20.0 and { = 75.0), the grid in ( is coarser
than nearer the cone tip due to the maximum limit of 300 minutes CPU time allowed
on the Amdahl VP1100. For ¢ < 20.0, A¢{ = 0.0005, while for ¢ = 20.0, A¢ = 0.0125
and for { = 75.0, A{ = 0.0395.

3.3.1 Adiabatic Cylinder Results

We begin by attempting to numerically determine the existence of non-axisymmetric
generalized inflexion points. In section 3.2 a condition was derived for the existence

of the so called ‘triply generalized’ inflexion points. In the case of the cylinder the
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¢=0.01 o T Wy 2 Wo
n=1 [0.139165 | 0.8349 { 0.0854 | 8.2513 | 0.8440
0.398645 | 0.8388 | 0.0858 | 8.2507 | 0.8440
n=3 |0.140835 | 0.8014 | 0.0820 | 8.2566 | 0.8445
0.399315 | 0.8345 | 0.0853 | 8.2514 | 0.8440
n=>5 |0.143525 | 0.7447 | 0.0762 | 8.2655 | 0.8453
0.400665 | 0.8259 | 0.0845 | 8.2527 | 0.8442
n=28 |0.147715 | 0.6417 | 0.0657 | 8.2820 | 0.8467
0.403995 | 0.8063 | 0.0825 | 8.2558 | 0.8444

Table 3.1: Triply Generalized Inflexion Points at ¢ = 0.01

non-axisymmetric inflexion condition has the reduced form (A = 0)

wo,, :

d
E}}-{To(l + 7]()[1 + (n2C2/a2(1 + 7?02)] }'7=ni =0. (3.39)

In previous works (Duck (1990), for example) numerical solutions of the mean

flow yielded continuous plots of the radial position, 1;, at which inflexion points
occur, against ¢ and these plots clearly demonstrate the existence and behaviour of
the inflexion points. However, for non-axisymmetric disturbances it can be clearly
seen that due to the inter-dependence of the variables n, a and (, it is difficult to. .
forecast, prior to any numerical investigation of the stability equations, the existence
of neutral stability points of this kind. Equation (3.39) could be solved in a idealistic
manner where for given mean flow characteristics, values of the ratio h/a which
satisfy (3.39) could be determined. However, if solutions do exist, the value of a (for
a given n) must still be determined by a full numerical solution of the disturbance
equations. This has been conducted for the adiabatic cylinder case, although it is
found that due to the discrete and almost unique form of the results, these are best
presented in tabular form.

Table 3.1 shows the radial position of the non-axisymmetric inflexion points

and the corresponding values of wg(7;), at the location { = 0.01, for the displayed
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C = 0.05 (a4 m w n2 Wy
n=1 {0.127125 | 2.7123 | 0.3231 | 7.2544 | 0.8218
0.517785 | 3.0499 | 0.3620 | 7.1936 | 0.8160
n=3 |0.152865 | 1.5936 | 0.1927 | 7.4410 | 0.8393
0.529265 | 2.8776 | 0.3422 | 7.2251 | 0.8190
n=25 |0,155735 | 0.8283 | 0.1015 | 7.5777 | 0.8518
0.553865 | 2.6111 | 0.3114 | 7.2720 | 0.8235
n =238 |0.086265 | 0.1198 | 0.0149 | 7.7411 | 0.8662
0.614795 | 2.2237 | 0.2665 | 7.3371 | 0.8297

Table 3.2: Triply Generalized Inflexion Points at ¢ = 0.05

(=01 o /3 wy 12 wy
n=1 |0.123635 | 3.0902 | 0.4126 | 6.5532 | 0.8091
0.740695 | 4.4630 { 0.5781 | 6.1450 | 0.7672
n=3 | 0163505 | 1.0607 | 0.1507 | 6.9524 | 0.8477
0.752825 | 4.0859 | 0.5334 | 6.2864 | 0.7820
n=25 | 0.118255 | 0.2071 |} 0.0305 | 7.1895 | 0.8692
0.810095 | 3.5914 | 0.4739 | 6.4330 | 0.7970

Table 3.3: Triply Generalized Inflexion Points at ¢ = 0.1
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azimuthal wavenumbers. For each value of n we observe that there are two values of
a for which ¢; =0 (;vhere ¢ = ¢, +1ic;). Note that a third neutral mode exists where
the generalized inflexion condition is satisfied trivially, namely ¢ = 1: this mode
shall be considered more fully. when the eigenvalue problem is treated. As in the
axisymmetric work of Duck (1990), the non-axisymmetric points occur in pairs, the
upper points (72) being an extension of the doubly generalized inflexion condition.
In light of our earlier comments, we do have an additional condition for the existence

of neutral subsonic disturbances, namely that

1 1
iy — 3.40
1 Moo<c<1+Moo (3.40)

This has direct implications on the first mode of instability as this generally requires
the presence of a generalized inflexion point in the profile satisfying (3.40). There-
fore, we note, that for all the azimuthal numbers presented at this axial location,
subsonic generalized inflexional modes of instability will occur.

It is observed that an increase in n causes the lower inflexion point (m1) to
approach the surface of the cylinder for both values of a, while the upper inflexion
points occur at increasingly large radii. From ﬁumerical evaluations carried out for
higher azimuthal wavenumbers (ﬁot displayed here), it is observed that subsonic
generalized inflexion points occur for azimuthal wavenumbers as high as n = 29, for
this axial location.

Moving along the cylinder to the axial position, ( = 0.05, Table 3.2 displays
values of n; and w(7;) for the non-axisymmetric generalized inflexion points corre-
sponding to same set of azimuthal wavenumbers. Again, it is found that for each
value of n there exists two neutral modes, each corresponding to a pair of generalized
inflexion points. Movement downstream has resulted in the lower generalized inflex-

ion points occuring further from the wall, except for the n = 8 lower inflexion point
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corresponding to the smaller value of e, whilst the upper points occur at smaller
radii; this effect which is due to curvature was also noted by Duck (1990) for the
axisymmetric case. At this location, an increase in n, again, causes the inflexion
points to diverge. This divergence is so marked for the lower inflexion points corre-
sponding to the smaller values of «, that the effect dominants the convergence effect
of curvature for the n = 8 generalized inflexional point, causing this point to occur
closer to the cylinder surface than in the corresponding ¢ = 0.01 case, as previously
observed. For azimuthal wavenumbers higher than n = 8, the triply generélized
inflexional points are found to disappear. Consequently, it is expected mode I type
instabilities will only be present for n < 9.

The ﬁnai set of non-axisymmetric generalized inflexion point results presented
are for the position ¢ = 0.1. The same trends as before are observed, with curvature
causing the inflexion points to approach one another, whilst an increase in azimuthal
wavenumber causes divergence, with the divergence effect dominating for the n = 3
and n = 5 lower inflexion points corresponding to the smaller values of o.

Duck (1990) determined that neutral subsonic axisymmetric inflexional modes
will disappear approximately 0.0130‘1Ré body radii ({ = 0.11) downstream of the
leading edge. Non-axisymmetric modes are found to be much more persistent, e.s-
pecially for small azimuthal wavenumbers. The first three non-axisymmetric modes
are clearly present at ( = 0.5. The » = 2 mode disappears around { = 5.18, while
the n = 1 generalized inflexional mode is found to be still present for downstream
locations as large { = 75.0.

We now turn our attention to the eigenvalue problem. We shall focus our atten-
tion on unstable mode results. Initially, plots of ¢, ¢; and the temporal growth rate,
oc;, against a will be presented to clarify the points being made, but the majority
of the results presented in this subsection will be for variations of the growth rate

with o only, as this is considered the important quantity as far as stability theory
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is concerned.

For planar flows, Mack (1984, 1987a) determined that there exists two important
modes of instability which he termed ‘Mode I’ and ‘Mode II’ respectively. Figures
3.1, 3.2 and 3.3 display variations of ¢, ¢; and ac; with e respectively corresponding
to the { = 0 location (and hence corresponds to the planar case), for Mach numbers
of My = 2.8 and M, = 3.8, denoted by curves (1) and (2) respectively, where
broken lines represent mode I results, and continuous lines represent mode II results.
It is found that the planar results agree favourably with previously computed results
(Mack (1987a), for example) and thus provides a useful check on the accuracy of
the numerical scheme (which is found to be entirely satisfactory). Considering the
M., = 2.8 results first, we note the first mode of instability originates as a sonic
neutral mode (with ¢; = 0, ¢, = 1 —1/M,,), for @ = 0, rises to a maximum and
terminates as a subsonic generalized inflexional neutral mode at « & 0.1, where
¢ = wo(n) ~ 0.33. This mode is found to continue as a decaying disturbance.
The mode II instability originates as a subsonic neutral mode at o & 0.4, rises to a
maximum and terminates at o & 1.13 as a (second) subsonic generalized inflexional
neutral instability. The- neutral mode at which the mode I instability originates
is special in that ¢ = (¢, = wp(7:)) = 1; this corresponds to a critical layer in the
freestream (where there is a trivial satisfaction of the generalized inflexion point
condition). The second mode of instability is found, also, to continue as a decaying
mode (¢; < 0) for larger values of a. Turning our attention to the M,, = 3.8 results
we observe the same qualitative features as in the M, = 2.8 case. We note that
an increase in Mach number has significantly increased the importance of mode II,
although the growth rates of mode I have also increased.

Duck (1990) determined that introducing curvature terms into the linear dis-
turbance problem, has a stabilizing effect on both modes, causing the first mode

of instability to ultimately disappear, and greatly reducing the amplification rates
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of the second mode. In this section Duck’s (1990) work is extended to include
non-axisymmetric disturbances.

The first set of results including curvature terms which we present, corresponds
to a location very close to the cylinder tip, namely ( = 0.01. Figures 3.4, 3.5 and
3.6 correspond to variations of ¢,, ¢; and a¢; with a respectively, for the mode I
instability, and for the azimuthal wavenumbers as shown. The axisymmetric (i.e.
n = 0) mode, as expected, has the same qualitative features as the planar mode I, but
even though these results are at a location very close to the cylinder tip, the growth
rates have undergone reduction due to curvature. A further effect of curvature, is
that the neutral point at which the instability originates, has been shifted slightly
along the a-axis, occuring at a very small positive value of a. It is found that even
though ¢, at this point is very close to the sonic value, the numerical observations
indicate that the mode has become very slighly supersonic in nature. Because o here
is non-zero (albeit small), and this particular type of neutral mode is not associated
with a generalized inflexion point, it must be supersonic in nature. The use of
conditions (3.18) and (3.20) permits outgoing (or indeed incoming) waves at infinity,
and conse;quently such modes present no difficulty to our numerical scheme. Indeed
the slightly supersonic nature of these modes may be confirmed asymptotically by
the work of section 3.5.

The first non-axisymmetric instability considered corresponds to an azimuthal
wavenumber, n = 1. The instability resembles the axisymmetric mode in that it
originates as a very slightly supersonic mode, occuring at small positive a, rises to
a maximum and terminates as a subsonic” generalized inflexional neutral mode. It
is found that this mode is slightly more unstable than the axisymmetric mode.

The instability corresponding to an azimuthal wavenumber, n = 3, has a slightly
different structure. Firstly the lower neutral mode occurs at a = 0, and from Figure

3.4 ¢, can be clearly seen to be quike supersonic in nature (¢, & 0.4829). Figure
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3.5 shows that ¢ is complex at this neutral mode (¢; = 0.1063). The instability
also differs in that it possesses two pea‘,l?s; iinzuérie—gn?f.iia;nce of this will be discussed
later. The mode terminates as before, a: a subsonic neutral mode. It is observed
that an increase in azimuthal wavenumber has resulted in the growth rates also
being increased. This trend of an increase in azimuthal wavenumber causing a
destabilization of mode I is repeated for the n = 5 and n = 8 results, which we
present, although in the latter case, it is noted that initially in o, the value of ¢;
is less than those of the » = 3 and n = 5 instabilities. Both then = 5 and n = 8
instabilities originate as supersonic neutral modes (for ¢; 3# 0), although it is found
that ¢, becomes less supersonic in nature. The increase in azimuthal wavenumber
also has the effect of smoothing out one of the peaks observed in the n = 3 case; in
the case of the n = 5 mode there is only a slight hint of the second peak, whilst for
the n = 8 results, it is found to have completely disappeared.

Figures 3.7, 3.8 and 3.9 display variations of ¢, ¢; and ac¢; with «, correspond-
ing to the mode II instability fdr this axial location and azimuthal wavenumbers.
As with the mode I instability, the axisymmetric mode II instability resembles the
corresponding planar result, originating as a subsonic generalized inflexional mode
(er = ¢ = wp(m;) = 1) and terminating as a (second) subsonic inflexional neutral
mode. The stabilizing effect of curvature in this case has resulted in the maximum
axisymmetric growth rates being approximately halved. The introduction of non-
axisymmetric terms is found initially to have no major effect and it is only when
higher azimuthal wavenumbers are considered that any appreciable stabilization of
the mode is observed. Indeed, there is found to be virtually no difference between
the axisymmetric and n = 1 instability growth rates; generally, however, increase in
azimuthal wavenumber causes a growth rate reduction (in contrast to the observed
situation for the mode I results presented). It should be noted that the (second) gen-

eralized inflexional modes at which the non-axisymmetric disturbances terminate,
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can all be clearly seen to be subsonic from Figure 3.7, and in all cases the modes
continue as decaying modes.

Other modes of instability are found to exist at this Mach number for larger
values of a (as determined by Mack (1965b, 1987a) for the planar case), but have
considerably smaller growth rates than the modes I and II shown here, and are
consequently much less important from a practical point of view. For small a,
it was noted that the axisymmetric and » = 1 modes I originate at very small
positive a. In the case of the n = 1 results, it. is found that when even smaller
« is considered, a third mode of instability is seen to develop, not present in the
corresponding axisymmetric (and indeed planar) results. We refer to this additional
mode as mode I A» distributions of ¢;, ¢; and ac; being shown in Figures 3.10, 3.11
and 3.12 respectively, for n = 1 and » = 2. One important distinction between the
n = 0 results and those for n # 0 emerges in the limit as a — 0, for which ¢; /4 0
if n 5 0 (the limit as & — 0, { = O(1) is considered in Appendix B), although of
course the temporal growth/decay rate ac; is none the less zero at o = 0. As «
increases, mode I rises to a maximum and then quickly terminates as a supersonic
neutral point (i.e., where ¢, < 1 —1/M). The n = 2 distribution is qualitatively
similar to those of n = 1, although the the maximum growth rate is more unstable
by a factor of about 8.7.

Comparing the growth rates of the modes I and I A, the mode I instability is
found to be more important. For the n = 3 case, modes I and I A are seen to
amalgamate - hence the observed double peak structure in Figure 3.6. The two peaks
would correspond to the maximum growth rates of the mode I and I, instabilities
if the modes were still distinct. The amalgamation also explains why the mode I
originates at @ = 0, with complex ¢, for azimutha,i wavenumber values of 3 and
higher. Comparing Figures 3.4 and 3.10 it is observed that an increase in azimuthal

wavenumber, increases the value of ¢, for the neutral mode at a = 0.

103




It is not surprising that, at { = 0.01, the results obtained are very similar to
corresponding planar results, as’ curvature will generally play a minor role in the
physics at this location; indeed, -a. crude examination of (3.14) suggests that, as
¢ — 0, the corresponding planar Rayleigh equation is attained. However, as o — 0
and ¢ — 0, a nonuniformity is present; this aspect is taken up in some detail in
section 3.5, where further light is shed on the additional mode I4.

Moving along the cylinder to the axial location, { = 0.05, Figures 3.13 and 3.14
show variations of the temporal growth rate with wavenumber for the mode I and
mode II instabilities respectively. Comparing Figures 3.13 and 3.6, the axisymmetric
mode I is found to have been slightly stabilized due to the increasing effect of curva-
ture, resulting from movement downstream (as noted by Duck (1990)). Introducing
non-axisymmetric terms, we note that the » = 1 modes I and I have just combined,
the two maximum growth rate peaks still being very prominent. Curvature is found
to have a slight destabilizing effect on the n = 1 results. This destabilization effect
is more marked for the n = 3 instability, the maximum rates having been enhanced
by a factor of approximately three. For higher azimuthal wavenumbers, it is found
that curvature has the reverse effect, re-stabilizing the mode I instability, although
the n = 5 maximum growth rate is clearly more unstable than the corresponding
¢ = 0.01 mode.

The stabilization effect of curvature, at this axial location is more noticeable
for the mode II instabilities, the maximum growth rates of the axisymmetric mode

having been reduced by 1.3. Introduction of non-zero azimuthal terms can be clearly

- seen to have a further stabilizing effect, the maximum growth rate of the n = 8 mode

being 11 times less than the axisymmetric mode.
The next set of results considered corresponds to the axial location, ¢ = 0.1.
Comparing Figure 3.15 with 3.13, the axisymmetric mode I instability has under-

gone further stabilization due to curvature, Again, curvature is found to have a
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destabilizing effect for low azimuthal wavenumbers; the n = 1 result is clearly more
unstable, although the double peak structure is less pronounced. The n = 3 modes
I are very similar at both (-stations, but the mode I undergoes rapid stabilization
for higher azimuthual wavenumbers, at the new axial location, finally becoming a
stable mﬁde for n = 6. This complete eradication of mode I instabilities is only to
be expected since, as has already been noted, for azimuthal wavenumbers of n = 6
and higher, a subsonic triply generalized inflexion point does not exist at this axial
location. ‘

The mode II instabilities at { = 0.1 (Figure 3.16), are qualitatively similar to
those presented nearer the cylinder tip, although as before, they are found to have
undergone further stabilization due to curvature. Due to the special nature of the
generalized inﬁexior.lal point at which the mode II instabilities originate and the
fact that it is always present irrespective of axial location and value of azimuthal
wavenumber, the n = 8 mode is still present in this case, unlike the situation
encountered with the mode I instabilities. In fact, for large values of n the mode
IT instability is found to persist (this is found to be true for all axial locations
considered), but with much diminished growth rates. In the next section we shall
consider the asymptotic structure of the disturbance equations in this limit. It
should be noted that the n = 8 instability terminates as a supersonic neutral mode,
and does not continue as a decaying instability. This is found to be true for all
modes where a triply generalized inflexion mode no longer exists.

At ¢ = 0.5, the axisymmetric mode has been completely stabilized as determined
by Duck (1990). From Figure 3.17, the n = 1 instability is found to be the most - -
unstable mode I; indeed this mode is more unstable than the corresponding ¢ = 0.1
result. Again, the mode II disturbances (Figure 3.18) show growth rate reductions
due to the stabilizing effect of both curvature and increase in azimuthal wavenumber

on these types of instability.
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For larger distances downstream, the above trends are repeated. As noted at
the beginning of this section, curvature ultimately results in the complete eradica-
tion of all non-axisymmetric generalized inflexional modes, for distances far enough
downstream. This effect causes the eventual stabilization of all mode I instabilities.
Figures 3.19 and 3.21 display results at ( = 1.0 and { = 5.0, respectively.

The mode II instabilities are found to behave slightly differently for large (. We
have already noted the existence of mode II instabilities for large n (even when
mode I instabilities have been eradicated) purely due to the special nature of the
subsonic neutral mode at which they originate. The same is found to be true for
large (. Consequently, even though curvature and increase in azimuthal wavenum-
ber will continue to cause stabilization, as can be seen from Figures 3.20 and 3.22
(corresponding to { = 1.0 and { = 5.0, respectively), for very large {, the mode II
instability will still be present, although with much diminished growth rates. This
limit is considered in section 3.5. Noté, in Figure 3.22 the presented axisymmetric
instability could not be computed any closer tot:::l%utra,l point than that displayed
because the inaccuracies developed within the numerical scheme due to the increase
in zeta, as mentioned in the previous chapter, make it almost impossible to compute
instabilities around the critical point occuring in the freestream.

Before considering the effect heated/cooled walls have on the disturbance terms,
we shall briefly consider a few results for M,, = 2.8, solely for comparison.

Figures 3.23 and 3.24 display growth rate variations with wavenumber for the
mode I/IA and II instabilities, respectively, at the axial location, { = 0.05. Note,
the mode I distributions are represented by a dashed line in Figure 3.23. Duck
(1990) determined that no axisymmetric generalized inflexional modes exist at this
axial location, for My, = 2.8, and consequently, as expected, no axisymmetric mode
I instabilities are found. From Figure 3.23 it is apparent that the n = 1 mode I and

I, instabilities are still distinct. The same is found to be true for the corresponding
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n = 2 results (not shown). The higher azimuthal wavenumber mode I instabilities
are qualitatively similar to the corresponding M, = 3.8 results, although the larger
Mach number modes are more unstable. Complete stabilization of the mode I in-
stabilities for M, = 2.8 and this position is achieved for values of n = 8 and higher.
The mode II instabilities closely resemble the higher Mach number instabilites, with
an increase in azimuthal wavenumber causing stabilization, and similarly to their
mode I counterparts the higher Mach number modes are more unstable. It should
be noted that the n = 8 mode II terminates as a supersonic neutral mode; the
other mode II instabilities presented end as subsonic generalized inflexional modes,
continuing as stable modes for higher values of .

The next set of results presentgd ;for M, = 2.8, corresponds to { = 0.5, where
Figures 3.25 and 3.26 display the respective mode I and II distributions. Both types
of stability have undergone stabilization due to the increased effect of curvature ,
this stabilization being quite marked in the case of the mode II's, and the mode I is
found to be completely eradicated for values of n = 3 and greater. On comparison
with the higher Mach number results, both instability types are qualitatively similar,

although, again it is noted that the lower Mach number results are more stable.

3.3.2 Cooled Wall Cylinder Results

We begin by considering the effect that wall cooling has on the inflexion points
for My, = 3.8. As previously mentioned, because the ‘triply generalized’ inflexion
condition involves the ratio of the azimuthal and streamwise wavenumbers n and «,
it is difficult to forecast, prior to a numerical investigation, the existence of neutral
stability points of this kind. However in the case of axisymmetric disturbances, this

is no longer the case, since the condition reduces to
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dr [:‘D;,;E:;]r_n - (3.41)

as determined by Duck (1990).

Figure 3.27 shows the axial variation of radial location of the generalized inflexion
points for the (non-dimensional) temperatures shown. As in the insulated cylinder
case (Duck (1990)), the graphs display two prominent features: (i) the inflexion
points occur in pairs and (ii) there exists a critical value of ¢, downstream of which
no such points exist. This was also found to be true in the previous subsection
for non-axisymmetric generalized inflexion points. The point { = 0 corresponds to
the tip of the cylinder and as such corresponds to the planar case as studied by
Mack (1984). It is.found that as the surface of the cylinder is cooled, the lower
inflexion point lifts up off the cylinder surface. For sufficient cooling the lower point
coalesces with the upper inflexion point and further cooling results in the complete
disappearance of the inflexion points. Therefore for a given (-station there exists a
critical wall temperature below which no inflexion points exist.

Figure 3.28 shows the axial variation of wq(7;) for the displayed wall temper-
atures. From stability theory, unstable subsonic modes exist only if a generalized
inflexion point satisfying (3.41) occurs within the boundary layer.. Examination of
the curve for T, = 3.0 reveals that subsonic generalized inflexion points only occur
for 0 < ¢ < 0.0795; consequently the mode has completely disappeared before the
generalized inflexion points have merged. For a wall temperature of T, = 2.0 the
generalized inflexion points are always both supersonic in nature (wo(n;) < 1— }T};-),
implying for this and all cooler wall temperatures the eradication of mode I insta-
bilities. |

We now turn our attention to the eigenvalue problem for both axisymmetric and

non-axisymmetric disturbances. Again, only unstable modes are presented and all
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plots are for the growth rate ac; variation with wavenumber a. The first set of
results presented corresponds to the tip of the cylinder and as such are comparable
to the planar results as obtained by Mack (1969, 1984, 1987a). The adiabatic wall
temperature at the tip of the cylinder is T, ~ 3.448. Figure 3.29 displays distribu-
tions for the first mode of instabilty. Asin the adiabatic case, all modes originate as
sonic neutral modes (i.e. with ¢ = 1 — 37-) and terminate as subsonic, generalized
inflexional modes. We note that as the surface of the cylinder is cooled this mode
undergoes stabilization, until, with sufficient cooling it becomes completely stable,
thus verifying Mack’s observations (and those of Lees (1947), Van Driest (1952) and
Dunn and Lin (1955)). From our inflexion point results, this is to be expected, as
for cool enough wall conditons, the larger value of wy(n;) drops below 1 — Hl; and
there no longer exist the conditions necessary for a subsonic, generalized inflexional
mode. |

Figure 3.30 displays the dis’tributionof the temporal growth rate with wavenum-
ber a, for the second instabi}:cy at the cylinder tip, { = 0. Similarly to the adi-
abatic mode II distributions, all modes originate as the special wavenumber case
¢ (= ¢, = wo(n;)) = 1. Depending on whether or not a subsonic, generalized in-
flexional mode exists for the given wall conditions, this unstable mode terminates
as a subsonic or supersonic neutral mode, and may continue as a decaying mode
(arei < 0), thereafter. Examination of our results reveals that as the cylinder surface
is cooled, the maximum value of the growth rates increases to a peak for T}, ~ 1.095
(not shown) and further cooling causes the maximum growth rates to decrease again.
However it is observed that for larger values of ¢, cooling has a completely destabi-
lizing effect on the mode II instabilty. Thus we deduce that wall cooling generally
destabilizes the second mode of instability, in line with Mack’s observations (1969,
1984, 1987a), but there does appear to be a critical amount of cooling beyond which

the maximum growth rates undergo stabilization again.
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The next set of results presented corresponds to a relatively small distance from
the tip of the cylinder in the axial direction, at the location { = 0.05, and for an
axisymmetric mode (i.e. n=0). The adiabatic wall temperature at this location
is T, ~ 3.42. Figure 3.31 displays the mode I distributions and it is noted that
with sufficient cooling, it is again possible to completely stabilize this mode. The
neutral mode at which this instability originates is found to be consistent with the
adiabatic results presented, being very slightly supersonic in nature, and‘occuring for
«a slightly greater than zero. When compared with the cofrésponding planar results
curvature (as noted by Duck (1990) and for the adiabatic results) has a marked
stabilizing effect. Even though this station is only a relatively short distance along
the cylinder from the tip, curvature has reduced the value of maximum ac; for the
T, = 3.0 curve by a factor of about 4.3 while for the T, = 2.8 curve it is a much
larger factor of about 12.3. Curvature results in the mode requiring less cooling to
completely stabilize it. Figure 3.32 displays the axisymmetric mode II instability at
this axial location. Again it is noted that curvature has had a stabilizing effect on
the instability, but cooling causes the mode to become more unstable, in line with
the planar results deééribed previously, and it is observed that the critical value of T,
below which the maximum growth rates undergo stabilization again, has dropped,
in this case, to a value of T}, = 0.805 (not shown).

The next set of results presented corresponds to the { = 0.05 location, for az-
imuthal wavenumber n = 1. Figures 3.33, 3.34 display the mode I and Il instabilities,
respectively. We observe that in this case the mode I instability is substantially more
unstable than the axisymmetric case. Again, with sufficient cooling this mode can
be completely stabilized, although the mode does persist for cooler wall conditions.
The mode II instability has the same qualitative features as the axisymmetric case,

although it is less unstable than the axisymmetric instability.
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In the previous subsection it was noted that near the cylinder tip, for non-
axisymmetric disturbance terms, a third mode of instability is seen to develop,
which was termed mode I4. At the { = 0.05 location for n = 1 and adiabatic
wall conditions, this new mode was found to have already amalgamated with the
mode I instability. However, when cooled wall conditions are applied at this axial
location and for n = 1 the mode I instability is still distinct (Figure 3.35) over the
range of T,, shown; a partial explanation of this is provided in subsection 3.6. It is
observed that wall cooling causes the mode I, instability to become less unstable
and with sufficient wall cooling it can be completely stabilized. Comparing with the
mode I instability it is noted the maximum value of ac; for the mode I instability
is larger for corresponding wall temperatures and the mode persists for cooler wall
temperatures. However since the mode I instability occurs over a much larger a-
range it is felt_that these growth rates are generally of more importance.

We now consider the situation for an azimuthal wavenumber of n = 3, at the
same axial location. In this case the mode I and I, instabilities have now amal-
gamated. Similarly to the combined adiabatic modes, the new combined mode
origina;tes as a neutral mode (but with ¢; # 0 for @ = 0) and terminates as a sub-
sonic generalized inflexional mode (Figure 3.36). Again it is noted that sufficient
wall cooling can completely stabilize this mode, but the increase of n has resulted
in the mode persisting for cooler wall temperatures. Comparing with the n = 1
results it is found that the increase in the value of n has also caused the.mode
to become less stable. The mode II instability (Figure 3.37), again has the same
qualita,tivé features, although the increase in n has resulted in further stabilization.
However, it is found that cooling has the more dominant destabilizing effect here.
The previous two comments regarding increase in azimuthal wavenumber mirror the
corresponding effects observed for the adiabatic cylinder.

The next set of results presented corresponds to an azimuthal wavenumber of n =
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5, at the same axial location. The same qualitative features as the the n = 3 results
are observed for both modes (Figures 3.38, 3.39) although a marked stabilizing effect
due to the increase in n is noted. The mode I instability is no'v;r completely stabilized
for higher wall temperatures, while again, it is observed that cooling causes an even
more marked destabilizing effect on the mode II instability.

As the azimuthal wavenumber n is further increased, both the mode I and II
instabilities developed subject to cooled wall conditions, follow the same trend as
observed for the insulated cylinder, undergoing additional stabilization, although
cooling maintains a destabilizing effect on mode II. Consequently, for Iarge n, the
mode I is completely stabilized; indeed for cooled walls the mode I will ultimately
disappear for smaller values of n owing to the additional stabilization effect. As
expected, the mode II instability persists, although with much diminished growth
rates. In the next section the possibility of cooled walls is also considered for large
n.

The final set of results presented for M., = 3.8 corresponds to the axial location
¢ = 0.5 and for an azimuthal wavenumber of » = 1. The adiabatic wall temperature
for this axial location is T,, = 3.343. It is found that at this distance along the cylin-
der thé mode I and I stabilities have now combined (Figure 3.40) for cooled walls
as well . Comparison with the n=1 results at { = 0.05, reveals that the mode has
undergone destabilization (in line with the corresponding adiabatic observations).
It is found that the combined mode prevails for cooler wall conditions, but again
is completely stabilized with sufficient wall cooling. Figure 3.41 displays the mode
IT instability, and indicates that curvature has resulted in the growth rates being
reduced, although cooling has a more marked destabilizing effect here.

Further along the cylinder, curvature continues to cause stabilization, as noted
in the adiabatic case, For a given wall temperature, T,, azimuthal wavenumber

n, axial wavenumber «, there exists a critical value of ¢, beyond which no triply

112




generalised inflexion points occur. Consequently, we expect the mode I instability
to have disappeared for axial distances larger than this critical ¢, which is bourne out
by our numerical results. The mode II instabilities persist for cooler wall conditions
beyond this critical value of (, as expected, although with much reduced growth
rates.

We now present a number of results for My, = 2.8. The results for this Mach
number are for direct comparison with the M, = 3.8 results, and consequently the
same wall temperatures as before are displayed, even though it is found that some
of these conditions are higher than the adiabatic wall tempefature (i.e. heated with
respect to the adiabatic conditions). However, since the trend in wall temperatures
is downward, we still feel that the results give a good indication of the effect wall
cooling has on the instabilities. The first set of results presented is at the { = 0.05
station and for a azimuthal wavenumber n = 1. The adiabatic wall temperature
at this location and for the chosen Mach number is Tw = 2.317. In this case it is
observed that the mode I and I instabilities have just combined (Figure 3.42). It
is found that the curves for the T\, = 2.6 and T, = 3.0 conditions possess two peaks,
which correspond to the maximum growth rates of the mode I and I, instabilities (if
the modes were still distinct). Again it is noted that with sufficient wall cooling this.
mode can be completely stabilized. Comparing with the corresponding M, = 3.8
results for this axial location and azimuthal wavenumber it is observed that the
modes are more unstablé in this case. Figure 3.43 displays the mode II instability.
In comparison with the My, = 3.8 results it is found that mode II is less unstable,
but cooling has had a more marked destabilizing effect. The wall temperature
(T = 0.47) below which the maximum growth rates undergo stabilization again, is
found to be lower.

The next set of results considered for this Mach number corresponds to an az-

imuthal wavenumber of n = 3 at this axial location. It is observed that the mode I
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instability (Figure 3.44) is more unstable than n = 1 results for this Mach number
and that the mode persists for cooler wall temperatures. When compared with the
corresponding M., = 3.8 mo&es it s again observed that lower Mach number are
the more unstable (except the T,, = 1.6 mode which is found to be very slightly
less stable). The increase in azimuthal wavenumber has resulted in the mode II in-
stability (Figure 3.45) becoming slightly more stable and on comparing with the
corresponding M, = 3.8 instablity it is again noted that for this type of instability,
" the M, = 3.8 results are the more unstable.

We now consider the effect wall coooling has on the mode I and II instabilities
(Figures 3.46 and 3.47, respectively) at this axial location and for an azimuthal
wavenumber of » = 5. It is found. that the increase in n has caused thfe r;rlode
- 1 instability to undergo stabilization, although it is still more unstable than the
corresponding M, = 3.8 results (except for the T\, = 1.8 mode which is found to be
more stable). The mode II instability has undergone further stabilization due to the
increase in n and is still found to be more stable than the corresponding M., = 3.8
modes.

The final set of results presented for M, = 2.8 is for the axial location ¢ = 0.5
and an azimuthal wavenumber of n = 1. The adiabatic wall temperature for this
axial location and Mach number is T, ~ 2.277. Figures 3.48 and 3.49 display the
mode I and II instabilities, respectively. It is observed, in line with the M, = 3.8
results, that the combined mode I/I, instability is more unstable at this axial
location than the n = 1 results at the ( = 0.05 location. We observe that this mode
persists for cooler wall temperatures. In comparison with the M,, = 3.8 results, the
mode I instabilities are more unstable for the wall temperatures shown, except for
the T,, = 1.4 curve, which is slightly less unstable. The growth rates of the mode
I instability have been reduced greater due to the stabilizing effect of curvature,

although we do note that cooling has a very marked destabilizing effect in this case.
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It is found that for the temperatures displayed the T,, = 0.1 curve has the largest
maximum growth rate. As before, when compared with the corresponding M, = 3.8

results, the higher Mach number results are observed to be the more unstable.

3.3.3 -Heated Wall Cylinder Results

We begin by considering the effect that wall heating has on generalized inflexion
points. We restrict our study to the case of axisymmetric disturbances, determining
the effect wall heating has on condition (3.41) (as in the case of cooled walls).
Only a Mach number of M,, = 3.8 is considered, although this is expected to be
representative of fnoderate Mach numbers.

Figure 3.50 shows the axial variation of (radial) position of the generalized in-
flexion points for the temperatures shown. We observe again the same features seen
in Figure 3.2% Close to the cylinder tip, however, it is found that for a small axial
distance measured from the tip, there no longer exist any lower generalized inflexion
points. As the surface of the cylinder is heated further, this axial distance is found to
increase. It is also observed that wall heating causes the critical value of ¢, beyond
which no generalized inflexion points exist, to increase. For T,, = 4.5, this critical
value of ( is about 0.216, while for T,, = 6.0, there is a substantial increase to a
value of ( ~ 0.423. This will have direct implications on the first mode of instability
which is expected to persist for longer distances downstream. These effects are in
many ways to bg expected, being the converse of the cooling observations described
earlier.

Figure 3.51 shows the axial variation of wg(7;) for the displayed wall temper-
atures, The most marked feature of these curves is that as the cylinder surface
is heated, the lower generalized inflexion point becomes subsonic beyond a critical
value of (, which is temperature dependént, i.e. for axial distances greater than

this critical value of { but upstream of the station beyond which no inflexion points
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occur, both generalized inflexion points are now subsonic in nature. The lowest wall
temperature for which a lower, subsonic inflexion point is observed is for a wall
temperature of about T, = 4.5. It is found, however, that the critical value of ¢
here, is very close to the stations where the generalized inflexion points coalesce. For
T = 5.0 we observe that for the range 0.2635 < ¢ < 0.2720 two subsonic inflexional
modes exist, while for the hotter wall temperature of T,, = 6.0 we have the larger
range 0.363 < ( < 0.423 for which both generalized inflexion points are subsonic.
In these {-ranges there exists the possibility of two subsonic generalized inflexional
modes with the potential of a significant effect on the problem.

We now present growth rate results for axisymmetric disturbances at a Mach
number of M, = 3.8. As in the case of cooled wa;ll conditions attention is focused
on unstable modes. We begin by considering the effect wall heating has on the
mode I and II instabilities for a (-station close to the cylinder tip ({ = 0.05) and
consequently the lower generalized inflexion point is still supersonic in nature. Figure
3.52 shows the mode I instability for the temperatures shown. It is observed that
all the modes originate as neutral modes at a value of a slightly greater than zero,
which are very slightly supersonic in nature. As the wall is heated this neutral
mode approaches the sonic value. All the modes terminate as subsonic generalized
inflexional modes, continuing as stable modes (a¢; < O)l for larger values of a. These
observations are similar to the results obtained for both the axisymmetric cooled
wall and adiabatic conditions cases at this (-station. It is found, as expected, heating
the surface of the cylinder causes the mode I instability to become more unstable -
converse to the effect of cooling on this mode.

Figure 3.53 displays the mode II instabilities at { = 0.05, for the the tempera-
tures shown. It is found that all the modes originate as subsonic generalized inflex-
ional modes, rise to a maximum and terminate as subsonic generalized inflexional

modes (which then continue in all the cases presented as stable modes). Heating
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the cylinder wall causes the mode II instability to become less unstable and the nu-
merical evidence suggests that with sufficient heating this mode can be completely
stabilized.

We now consider the effect that the lower generalized inflexion point becoming
subsonic has on the mode I and II instablities. Figure 3.54 displays the growth
rates of the mode I instability for a wall temperature of T, = 5.0 and for the (-
stations as indicated. At { = 0.26 (where the lower generalized inflexion point is still
supersonic) the mode originates as a very slightly supersonic mode and terminates
as a subsonic generalized inflexional mode. For the { = 0.264 station the lower
generalized inflexion point has now become subsonic in nature, and it is found the
mode I instability now originates as a lower subsonic generalized inflexional mode.
Consequently the value of « for the neutral mode has increased correspondingly. As
before, the mode I instability terminates as the upper generalized inflexional mode
which is of course subsonic, as well. From the inflexion point curves we know that as
we move upstream the inflexion points move closer together, eventually coalescing
and this is reflected in the new form of the mode I instabilities. For the ¢ = 0.27
station the mode I instability occurs over a much smaller a-rahge and the growth
rates are greatly diminished.

Figure 3.55 displays the mode I instability for a wall temperature of T,, = 6.0
and the indicated (-stations. Again it is noted that as the lower generalized in-
flexion point becomes subsonic the neutral point at which the instability originates
transforms from being very slighly supersonic in nature, to this inflexional mode.
Movement upstream causes the a-ranges and growth rates to be diminished, but
the reduction is less marked (in comparison with the T, = 5.0 results) due to the
destabilizing effect brought on by wall heating,.

The appearance of a second subsonic generalized inflexional mode is found to

have little effect on the mode II instability as it always terminates as the upper
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generalized inflexional mode. It is found, however, that a third mode of instability
exists, originéting as the lower generalized inflexional mode and terminating as a
slightly supersonic neutral mode. This new mode, which we shall term Mode II,,
occurs for values of o greater than the value of « for which the mode II instability
terminates. It appears that the mode II instability continues as a stable mode and
then becomes unstable again at the lower generalized inflexion point. The growth .
rates of the mode 115 are found to be very small. For a wall temperature of T, = 5.0
and the station ¢ = 0.27 the growth rates are in the order 10™!!, while for T, = 6.0

and ¢ = 0.364 the growth rates are of the order of 10~13-10~14,

3.3.4 Adiabatic Cone Results

We now consider tlhe linear stability of the compressible boundary layer formed on a
somewhat more practical configuration, namely a sharp cone. Comparing the non-
axisymmetric generalized inflexion condition for a cone (3.37) with the corresponding
cylinder condition, the former case is found to be even more complex, involving terms
in the parameter A as well as wavenumbers n and . Consequently, we make no
attempt to conduct a non-axisymmetric generaliied inflexional mode study for the

“cone, and instead just present an eigenvalue study for the temporal growth rate
variation with spatial wavenumber:

Since the cone surface is described by r = 14-A(?, then for axial distances close to
the cylinder tip, the growth rate distributions are expected to be very similar to those
presented for the adiabatic cylinder study. Figures 3.56 and 3.57 display mode I and
mode II instabilities, respectively, for ¢ = 0.5 and the azimuthal wavenumbers as.
shown. At this location the radius is 1.25 times the cylinder radius (and the cone tip
radius). On comparing Figures 3.56 and 3.57 with the corresponding cylinder results,
it is observed that the two sets of results are very similar. It is noted, however, that

in the case of the mode I instability body radius divergence (with respect to the
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cylindrical body’s results at this axial location, namely Figure 3.17) has caused the
n = 1 instability (the most dangerous mode I) to be slightly stabilized whilst the
higher azimuthal wavenumbers have undergone slight destabilization. In the case of
the mode II instabilities body radius divergence has caused both the axisymmetric
and all the non-axisymmetric modes presented to more noteably destabilized.

The next set of results presented corresponds to the { = 1.0 location, Figures 3.58
and 3.59 display the respective mode I and II instabilities. Comparing these results
with the corresponding adiabatic cylinder results (Figures 3.19 and 3.20), body
divergence has caused a noticeable destabilization of the n = 2, mode I instability.
It is found that the n = 3, mode I instability is still unstable (although the growth
rgteé are so small that this mode is just visible in Figure 3.58), complete stabilization
not being achieved until n = 4 (and higher). The mode II instabilities have all been
significantly destabilized due to body divergence. Note, that on comparing these
results with those obtained at ¢ = 0.5, curvature is still found to have a stabiliéing
effect.

At ( = 2.0, body radius divergence continues to cause destabilization to such
an extent that this effect dominates the stabilizing effect of curvature. Comparing
the mode I instabilities (Figure 3.60) with the corrésponding results obtained at
¢ = 1.0, the n = 1 growth rates are observed to be similar, while the new n = 2
mode is found to be noticeably more unstable. On comparing the new locations’s
mode II instabilities (Figure 3.61) with corresponding { = 1.0 results, all modes are
markedly more unstable. It is also noted that the { = 2.0 results are quite similar
to ¢ = 0.5 instabilities.

Moving downstream to { = 5.0, the ‘recovery’ in the maximum growth rates of
the mode II instabilities (Figure 3.63) is found to continue, with all modes presented
having undergone further destabilization. For the mode I instabilities (Figure 3.62),

body divergence has caused the n = 1 mode to be stabilized, whilst the higher
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azimuthal wavenumbers have been destabilized. We also note the re-emergence of
the n = 4, mode I instability, complete stabilization not being achieved until n = 5.
Indeed, these results show some resemblence to the ( = 0.2 results (not shown);
distributions of ¢; versus a are found to be quite similar. The similarity, however,
is found not to be as close for ac; versus a distributions, because in the case of the
‘mode IT instabilities, for C = 5.0, the modes occur at higher values of o and both
instabilities are found to occur over larger a-ranges, for the further downstream
location. This similarity is not surprising, given that, on account of the Mangler
transformation (Mangler (1946), Stewartson (1964)), results as { — oo mirror those
as ( — 0 (except for a multiplicative factor of /3 in a; hence the higher a-results
noted above).

This trend is confirmed in Figures 3.64 and 3.65 for { = 20.0, which may be
compared directly with the { = 0.05 results displayed in Figures 3.13 and 3.14 for
the adiabatic cylinder - this comparison can be made since thé cone radius will
only be 1.0025 times larger than the cylinder radius at this location. It is again
noted, that the further downstream location results occur over larger a-ranges and
the mode II instabilities occur at larger values of @, both these factors contributing
to larger observed growth rates for mode I and II instabilities. Notice, also, the
re-emergence of mode I A forn=1

The last set of results presented is for the furthest downstream location stud-
ied, namely ¢ = 75.0. At this axial location, as well as growth rate variations
(Figures 3.67 and 3.69 corresponding to mode I and II instabilities, respectively),
distributions of ¢; with spatial wavenumber, a, (Figﬁres 3.66 and 3.68 corresponding
to respective modes) are presented to clarify comparisons being made with results
near the cone tip. A close resemblence is noted between Figures 3.66 - 3.69
and results presented for the cylinder at ¢ = 0.01 (with the factor /3 multiplying

@, in the former case). The axisymmetric modes now correspond closely with the
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planar results of Mack (1984, 1987a, for example) (apart from the a-multiplicative
factor), whilst mode I is clearly visible for n =1 and n = 2 - Figurés 3.70 and
3.71 display the respective mode I instabilities for these azimuthal wavenumbers
on an enhanced scale to clarify the modal structure. Inspecting Figures34éand 3.
the union of modes I and I is quite noticeable, for n = 73, from the double peaked
structure of the newly combined growth rate curves.

We now move on to consider the form of the disturbance equations in the limit

of large azimuthal wavenumbers in the next section.

3.4 Disturbance Equations for Large n

In this section we consider the form of the disturbance equations in the asymptotic
limit of large azimuthal wavenumber, n, guided partly by our numerical observations.
It should be noted that the theory developed in this section is valid for the cylindrical

case only.

3.4.1 Formulation of the Problem

The pressure disturbance equation for supersonic flow past a cylinder, as derived in

section 3.2 (and setting A = 0), has the form

Wy ~ C_c_l_ Top, (wo — €)¢ 3 Topg
C'l.’2 d?? ['U)O — C] ( 1 + 77( 0'7) a2(l.UQ — C) = q’p, (3_42)
where
2
@=T0[1+——-——a2(1 fn()z] — M2 (wo — )2 (3.43)

In the limit of large azimuthal wavenumber, n, our numerical observations sug-
gest that the corresponding streamwise wavenumbers for the instability also increase,

. for large 2
and that ®(y = 0) — 0, asymptoting towards a constant value of
' A
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®—1-MI(1-c)2 (3.44)

Equation (3.43) suggests that if ® is to be generally O(1), we must have

a=an, a=o0(l), (3.45)

where @ is our (scaled) wavenumber, which we specify because of our temporal
approach to the problem.

Assume asymptotic expansions of the form

¢ = co + n%¢ + O(n?),

® = &, + n*®, + O(n?), (3.46)

where a < 0 to ensure convergence and is to be determined.
In the limit of large n, to leading order, by the form of the asymptotic expansions

(3.46) the pressure equation has the form

Ton ¢ }_ Zwon Lo
p,,,,+[T0+1+nC wo_cg]p,, 7 2op =0, (3.47)
where
Bo = To[l + o] = M2 (wo — co)? 3.48)
o =Bl + G gy~ Ml o) @

Solutions of the WKBJ type satisfy (3.47), namely

£() e
P~ (:Tsf;mexp[izhm / (—®o)*/2dn], (3.49)

where f(n) is determined by substitution. This is carried out in Appendix A, where

f(n) is determined to have the form
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n ‘wo— 2 .
f(n) ~ %ﬁg)—dn- (3.50)

To ensure boundedness of disturbance terms in the far-field, we require a solution
which decays as 7 — oco. The numerical observations suggest that Im[(®¢)/?] > 0

for large 75, therefore far from the cylinder wall the required solution is

Bl [, o

where Dy is a constant to be determined and 7o is the transition point, i.e. the point
where &, = 0.

In the neighbourhood of the wall the numerical observations suggest that the
pressure has an oscillatory nature, therefore in this region we expect a WKBJ solu-

tion of the form

_Aof(fi) 1/2/ ¢1/2 1f(77 1/2/ @1/2 , (3.52)

1/4 1/4

where Ay and A, are constants and 0 < 5 < 7. (By the form of the wall pressure
boundary condition (3.16) and (3.50), it is expected f(0) = 1.)

We require now only to determine the form of the solution in the neighl;ourhood
of the transition point, » = 5. Taylor expanding the  expansion about 7 = 7q,

such that ® — 0, yields

® = Bo(io) + (1 = 10)®'(m) + 5(n ~ )Ty +
+n[81(10) + (1 — 10); (70) + -+ ] (3.53)

+n”?[@a(n0) ++-].
We characterise the distance 5 — 15, know as the transition layer, by the scale
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n=m",  7=0(). ' (3.54)

Therefore expansion (3.53) simplifies to

= [®1(n0) + 7B (mo)In® + O(n*®) + - (3.55)

In the neighbourhood of the transition point the second order derivative and the
right-hand-side of (3.42) are expected to be the important terms, resulting in the

pressure disturbance equatfon having the following form, to leading order

T, 1

=53 n®[7®o(n0) + 21(no)]p. - (3.56)

n? n2a
Since a is chosen to ensure both sides of equation (3.56) balance it must take the

value

= —= 3.57
a 3’ ( )

which simplifies equation (3.56) to the form

o’ '
pm=lA=Blp, (3.58)
0
where
A= @3(110),

Introducing the transformation variable

= (g A2)1’3(An B), (3.60)
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equation (3.58) can be simplified to

Prr = TD. (3.61)

Clearlsr (3.61) is Airy’s equation; therefore in the neighbourhood of the transition

point the pressure disturbances must have the form

p = BoAi(r) + B, Bi(7), (3.62)

where By and B, are constants to be determined.

We appea.r. to have a three-layered structure for the form of the pressure as we
move from the cylinder surface to the far field. All that remains is to match the
solutions in the three regions, giving continuity. The inner WKBJ solution (equation
(3.52)) region shall be refered to as I, the Airy solution (equation (3.62)) layer as II
and the outer WKBJ solution (equation (3.51)) region as IIL

Matching regiéns IT and IIT immediately yields that f(no) = 1 (which will be
confirmed a posteriori), By = Do and B, = 0, since only decaying solutions can

exist in region III. Consequently (3.62) simplifies to

p = Dodi(r). . (3.69)

The asymptotic expansion of equation (3.63) in the limit 7 — —oo has the form

Dy

~ ——— 32y Z
P~ Spar sin [ ] (3.64)
which in -space can be written as
ED aAllz __3/2
p~ =y sin [3( 1/2 )1) 4], (3.65)
where Ey is a constant. Defining
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z= g(a——A—l/i)f/?, (3.66)

1/2
3\
equation (3.65) can be re-written
D —in/4 . .
P~ _2.‘%17[2'.3" — e, | (3.67)

We shall now match equation (3.67) with the pressure solution in region I (equa-
tion (3.52)). The numerical observations suggest ®; < 0 in region I, therefore

equation (3.52) can be re-written

e~/ f(n) ia 1 ia
_e i) o N & 12 _ a1 e N1/2
= T {AO exp [TO‘“ /m( ®o) d”] + Arexp [ Tslz‘/m(_ %o) d”]}'
(3.68)
In the limit  — 7, (for 7y < 1) we can write
@ ~ n®(10) = n~ 7%} (o), (3.69)
and remembering f(7) ~ 1 in this limit, (3.68) simplifies to
e-—i‘;r/tl - .
p ~ W[Age’z + Ase—‘z], (3.70)
where A; and Aj are constants and z is defined by equation (3.66)
Matching equations (3.67) and (3.70) yields
Aze” + Aze™ = 2—;[3'6”" - e7¥], (3.71)
which implies

Therefore equation (3.68) can be written in the form
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e~/ o0 Y .
p=2 |<1>u|1——;f(") {exe [ [ (=20)?] +iexp [ - —mf (~®0)"/*dn]}. (3.73)

Imposing the boundary conditions at the wall, namely

Py ly=0= 0, (3.74)
and remembering f(0) = 1, gives
2O g 20 = fexpl— i (o)1
xp 57z [ (~20)V2dn) = iespl= [ (~@0) e, @79)
which after manipulation yields
2
ij’; / (—@o)2dp = T +2m7r, (3.76)

where m is a integer

From equation (3.76), if m = O(1), then (§ + 2mn) = O(1). This implies the
left-hand-side of the equation will also be O(1). However as n becomes large, o also
becomes large (a = @n), therefore 7, must be small and thus close to the surface of
the cylindér. In this ordering ®, is also very small, approaching zero for increasingly
large n. Note, that if instead m — oo, ®; would not be small.

The overall conclusion, therefore, is that for large n, 5y collapses onto the cylinder
surface, with §o — 0 at the wall, giving a two layered structure, as opposed to three.
Therefore we have a two layered structure for the pressure disturbances consisting
of.an inner Airy solution and the outer WKBJ solution.

One further observation is that if m is large enough then 7, would become large
and move away from the cylinder and the WKBJ solution described above would

become valid.
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Returning attention to the asymptotic expansions for ¢ and ¢ in the neighbour-

hood of the transition point, 79 = 0, we have

c=co+n"e + 003 +...,

& = 80(0) + n 3@ (0)7 + &1(0)] + O(n™¥3) 4 ..., (3.77)
where
C2 .
(I'O(O) = Tw[1 + g] - Mgocga : (3'78)
$,(0) = —2coe M2, T (3.79)

and for insulated wall conditions

2¢°T,

az

&,(0) = + 2M%uh(0)co, (3.80)

while for heated or cooled wall conditions

20%T,,

-&—2

6(0) = To,(0) [1 + EC"-"] - + 2MZ w(0)co, (3.81)

where T,, represents the wall temperature.

If ®(0) = 0, then we must have

To/’l1 + ]2
AR 7 A

(which is clearly real). We now seek to determine the first order correction term

(3.82)

to ¢, namely ¢;. For this it is necessary to look at the wall layer pressure term.

Transforming the boundary condition at the wall (equation (3.74)) to 7-space, yields

p [\ = —B] =0, (3.83)
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where

- ot
A= A" (3.84)

Since the solution to the pressure disturbance term in this region is given by

Airy’s function (3.63) then

Ai,[r = -BA/) =0, (3.85)

Transforming back to 5-space gives the result -

o’ ] 1/3

= [W (—‘1’1(0)), _ (3'86)

where 7; (where 1 =1,2,--") represents the solutions of the equation
C

Ail(=7) = 0. (3.87)
Substituting either result (3.80) or (3.81) and equation (3.79) into equation (3.86)

yields the first order correction term for ¢ namely

_ TP {2(MEw(0)co — ]}

(5] 262/3M°2°CO Tny (3.88')
for insulated walls, whilst for heated/cooled wall conditions we have
Ta/*{2MEwi(0)eo — Zef] + TY(O)L + &1}/
= n = 7 (3.89)

2a%/* M2 ¢, "

where ¢, is obviously real for both cases.
Since is a solution of equation (3.87), where 7 ; > 0, then there exists an
infinite number of discrete, real possible values for T, since the derivative of the

Airy function has an infinite number of discrete roots confined to the negative real

axis. This suggests that there are an infinite number of discrete modes.
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We shall now compare these asymptotic results with numerically determined

results for large values of n.

3.4.2 Numerical Result’é

All the results presented in this section are for a freestream Mach number of 3.8 and
at the point ( = 0.2 along the cylinder. Only results for adiabatic wall conditions
are presented.

Firstly consider the asymptotic expansion for ¢ in the limit of large azimuthal
wavenumber n. The leading order term in the ¢ expansion, ¢, is given by equation

(3.82) and using the numerically determined values

T, =~ 3.379,
@ o~ 0.1525, (3.90)
we find
co = 0.7978. (3.91)

The first order correction term, which for adiabatic wall conditions is given by

equation (3.88), is computed to have the value

o1 = 0.36987, (3.92)

where we have used wq, =~ 0.1904 and 7, are the solutions of equation (3.87). The

first six values of Ty are determined from tables (Abramowitz and Stegun (1965))
and the corresponding values of ¢; are shown in Table 3.4

Figure 3.72 shows a plot of ¢(= ¢ +‘n‘2/3cl), as determined asymptotically,

against n for the different values of the first order correction term ¢;, where the
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51

0.3698  (I)
1.2092 (II)
1.7750 ()
2.5146 (IV)
2.9214 (V)
3.3282 (VI

Table 3.4: Values of ¢;

numbering refers to the numbering of the correction terms in Table 3.4. (It should
be noted that only » iﬁteger has any physical significance, although Figs. 3.72 and
3.73 show ¢ as a continuous function of n.) From here on we shall refer to these
different values of ¢ as order I to VI inclusively corresponding to the numbering
convention of the correction terms in Table 3.4.

Now as observed above, the asymptotic analysis suggests the existence of an
infinite, discrete number of possible values for ¢. When we searched for the eigen-
values numerically, for large n, we determined that there were indeed many modes.
Figure 3.73 displays two plots of ¢, against n for order I and order V correction
térms. Graph (1) in each case represents the asymptotic curve and graph (2) is the
numerically determined curve. It should be noted fhat in this range of n and o,
lei] << 1 (¢ ~1071° - 10712), comparable to the machine accuracy of our compu-
tations. From the two sets of plots it is noted that there is good agreement between
the numerical solutions and asymptotic theory for large n.

Turning our attention now to the form of the pressure disturbance terms, as
obtained numerically, it is found that they do indeed follow the pattern predicted
by our asymptotic theory, being initially oscillatory in the Airy solution region but
decaying to zero in the far field. It is also observed that increasing the order of the

correction term has the effect of increasing the number of zeros of the eigensolution.
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Figure 3.74 displays the distributions of Real{p} for n = 40 corresponding to the
orders as shown. '

Examining the ¢ expansion again, we have determined that both ¢y and ¢, are
real and therefore the leading order imaginary term, c;, is.at most O(n=%/3). This
means that the leading order term in the growth rate (ac;) is O(n"1/%) at most.
Therefore actual growth rates will decrease as n — oo which is confirmed to be true
by our numerical observations.

Note that even though ¢y may correspond to a subsonic (or supersonic) neutral
mode, no genera.lizéd inflexion condition is necessary as this condition of neutrality
is only reached asymptotically as n — oo (and correspondingly o — 00), and conse-
quentially the generalized inflexion condition is not qppiicable/appropriate. Further
to this point, generally the eigensolutions are to be expected to be exponentially
small (compared with values close to the wall) in the neighbourhood of any critical
layers, and these are expected to be generally of little consequence.

We now turn our attention to the form of the disturbance equations in the limit

¢ — oo.

3.5 Disturbance Equations for Large { - Cylin-
drical Bodies

In this section we consider the form of the disturbance equations in the far down-
stream region, guided by the numerical observations of section 3.3. It should be
noted that this asymptotic analysis is valid only for cylindrical bodiés. The case of
cone-shaped bodies, in the limit of large (, is treated in the next section; it is found
that because of the Mangler transformation (Mangler (1946); Stewartson (1964)),
in this limit, the axisymmetric results closely resemble planar results, but for a

multiplicative factor of v/3 on a.
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3.5.1 Formulation of the Problem

Consider the pressure disturbance equation as presented in the previous section, but

written in terms of 'r’ rather than 7,

wg—cdy Topr 7,9 wo — € Tope(? _
a2 dr [w() _ C]C + [ r wOr] az(wo _ C) - Qp’ (3'93)
where
n2(?
?=To [1 + 0252] — MZ (wq — c)?, (3.94)
and
r=1+nC. (3.95)

In the limit { — oo, assume a scale on a of the form

a=a(, (3.96)

where @t is to be determined.

Guided by Duck’s (1990) work for the form of the basic flow in the far-field

of the compressible boundary layer formed on a thin cylinder, we define a (small)

parameter

¢= (% logz)™ = (log ¢)". (3.97)

In the slow moving viscous region close to the wall (namely the r = O(1)(& n =

0(1/()) lengthscale) we expect asymptotic expansions of the form

c = & + €6, + O(€?),
® = &y + ed, + 0(e?),
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To =Ty + €T1 + o(€?),

wy = €W + O(€?). (3.98)

Now, our numerical observations strongly suggest that $, — 0 as ¢ becomes
large in the r = O(1) region (which will be confirmed a posteriori) implying that
® = O(¢). Examination of the @ expression (equation (3.94)) reveals that this is

only possible in general if

at = 013, (3.99)

Therefore scale (3.96) can be redefined

o = ¢ (log ()2, (3.100)

where

@ = 0(1).

To leading order, equation (3,94) reduces to

&y =T, — M22, (3.101)
but since it has already been assumed that &, — 0, as { — oo, for r = O(1), then

we must have

go= 22—, (3.102)

which means &g is real.
At first order in €, equation (3.94) has the form
n?T,

—5 M2 (28081 — 28), (3.103)

‘i’1=T—+
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while the O(¢) correction to the pressure equation (3.93) has the form

T Tw A ~ —_— =1 nsz
a_t;}’rr + 2 Pr + [QCOMOZO(Q —Wp) - T4 — —s ]p =0, (3.104)

We now transform equation (3.104) using a similar transformation as used by

Duck (1990) for the basic flow. Firstly employing the transform

r=lnr, (3.105)
- gives
- _ 2p
%;%e—zrp'__? + [ZéoMfo(cl —Wo) — Ty — n_dzw e_zr]p = 0. (3.106)
The second transform used has the form
R= ;—r, (3.107)

but since T, is constant with respect to ¥ the transform simplifies to

F= RT,, ~ (3.108)

where the constant of integration is taken to be zero. Equation (3.106) can be

re-written

prr + (@ Tu[26M2 (& — R) — Ty]eRTw — n*T2}p = 0, (3.109)

where we have made use of the result obtained by Duck (1990) for the basic flow

Wo = R. (3.110)

Equation (3.109) is solved numerically to obtain a value for ¢ subject to the

condition at the wall
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PR |g=0=0, (3.111)
and that p is bounded in the far-field. The second condition is obtained by taking
" R — oo limit of (3.109), i.e.

prr — W ReMTop =0, (3.112)
where
u? = 28 ML &?T,,. (3.113)

To leading order, this equation is found to have a decaying solution of the form

_ 7z, 12 Lo
p~u VR 1/4 exp [_ ;‘l eFlw B2 _ ERTw]_ (3.114)
w

We shall now compare these asymptotic results with numerically determined

results for large values of (.

3.5.2 N umerical Results

All the results presented in this section are for a freestream Mach number of 3.8 and
azimuthal wavenumber n = 1.
From the numerical observations the leading order term in the ¢ expansion (3.98)

1s found to have the value

& = 0.4617922. - (3.115)

Using a fourth order Runge-Kutta scheme equation, (3.109) was solved subject
to conditions (3.111) and (3.114) to determine the eigenvalues é. We find that for

a given value of @ there appears to be a large number of discrete, real values for ¢.
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Figure 3.75 displays a plot of ¢, against @& corresponding to the first five modes, as
shown.

As observed above, our asymptotic analysis implies the existence of a large num-
ber of discrete possible values for é;, which in turn implies the existence of a large
number of discrete values for ¢,. When we searched for the eigenvalues by solving
the full system of equations numerically, for large ¢, we determined that there were
indeed many modes and we managed to identify the first five modes. Figure 3.76
displays a comparison between the asymptotically determined value of ¢, and the
numerically determined value of ¢, against ¢ corresponding to the first mode. We
have relatively good agreement, since the error term in the asymptotic theory is
O(e?), which is.quite large. Therefore the numerical .reéults seem to confirm our
asymptotic theory. |

The asymptotic theory presented above tells us nothing about ¢; and conse-
quently reveals no information about the growth rate ac;; such an investigation
would require a prohibitive amount of algebra. However, our numerical observa-
tions strongly suggest that a¢; — 0 as { — oo.

We now move on to consider the form of the disturbance equations in the limit

of small (large) { for both adiabatic and heated/cooled wall conditions on a cone.

3.6 Disturbance Equations for Small ¢

In this section we consider the form of the disturbance equations in a number of limits
for small (also large - for the cone only) (, to give us a better understanding of the
details of the numerical results described in section 3.3. Note that this asymptotic
theory is carried out for the general case of the cone, but is readily applicable to
the cylinder problem (although this is only valid in the limit of small ¢ - the large

¢ limit has been considered in the previous section for this axisymmetric body) by-
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setting A = 0.

Perhaps the most intriging feature of the numerical resulté_presented in section
3.3, is the emergence of an additional mode as { — 0 (or { — oo0) with @ — 0. This
feature is investigated first. Throughout this section we shall consider the velocity

perturbation equation which has the form

d (wo — ¢)[$q + ({/(1 + {0 + A(?)) 8] — won _ o?(wo — c)¢
37 T w03/ (@20 + G F AP - MZ (w0 — F=— o (9

3.6.1 (—0,a=0(C) or { = oo,a=0((™)

Since the problem as posed is basically equivalent as { — 0 and { — oo, we consider
only the former limit, and later we show briefly how the results for the latter can
be simply inferred.

As noted in Section 3.1, as ( — 0, (3.116) is seen generally to reduce to the
planar system as treated by Mack (1984, 1987a, for example). However, this will no
longer be the case if @ = O((), since then the denominator on the left-hand side of
(3.116) no longer reduces to the planar case.

Specifically, let us write (consistent with (3.16))

o= (g, (3.117)

where it is assumed @ = O(1) as { — 0. The results for modé I shown in the
numerics section, together with other numerical results obtained, indicate that as
¢ — 0, then ¢ — 0 also.

Partly guided by this, for # = O(1) we choose expansions of the form

e={(cr+Cer+Ces+0v,
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¢ = do(n) + Co1(n) + Cba(n) + BPba(n) + -,
wo = Woo(n) + (Wor (1) + ¢ Woa(n) + (Wos(n) + -+,
Ty = Too(n) + (Tor (n) + (*Toa(n) + C*Toa(n) + (3.118)

(although see (3.228) below) where Wyo(n7) and Too(n) represent the planar values
of velocity and temperature profiles, respectively, and Wy;(n) and To1(n), etc., cor-
respond to the perturbations to the basic flow due to curvature.

Substitution of expansions (3.118) into (3.116) to leading order gives

_C_l_{ Wooon — Woon o b=0
dn ‘Tl + n?/a?%] — MLWG ’

where it is assumed that A(%,9¢ << 1 for n = O(1),( — 0. Equation (3.119) can

(3.119)

be re-written

Wooon — Waundo = ko{Too[1 + Z—,-z—] - MLWE}, (3.120)

where ko is independent of n. By the form of the boundary conditions prescribed
at the wall we have ¢o(n = 0) = Woo(n = 0) = 0, which implies that on the cone
surface the left-hand side of (3.120) is zero. In the far-field, namely n — oo, it is
required that ¢p does not grow exponentially. Both sets of conditions can onl‘y be

satisfied if

ko=0, (3.121)

since generally Too[1 + (n®/a?)] — MZ w}, # 0. This automatically implies

dby _ [ W

Wt =Toute & 55 =]

(3.122)

giving the result
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do = AcWoo(n), © (3.123)
where Ay is independent of 5 and represents an arbitary constant (i.e., the unknown
amplitude of the eigensolﬁtion).

However, (3.123) is not a uniformly valid approximation to (3.116) for all 7;
| specifically, a breakdown occurs when 7 = O({~!). Define

H=14(n=0(1), (3.124)

(i.e., i represents a scale comparable to the radius of the cone, and therefore corre-
sponds to the region at the edge of the boundary layer), and on this scale ¢ expands

as follows:

¢ =Bo(h) + ¢Bi (i) + -+ (3.125)

Equation (3.124) implies that we also have

by = (Bos + 2By + -+ (3.126)
Substituting expansions (3.125), (3.126) and the relevant parts of equation (3.118)
into (3.116), to leading order yields

d ( o5 + (1/7) &0
d 1+ (n?/@9?)] — M,
where it is assumed in the limit §j — 1, that Tpg, Woo — 1 (i.e. the far-field boundary

} = &d,, (3.127)

conditions) and (*A << 1. Also, since we are approaching the far-field, in this limit,

the curvature perturbation terms for the temperature and velocity profiles (and their

derivatives) will be expected to tend to zero (at least be exponentially bounded).
In the limit § — 1 (& 7 — c0,{ — 0) (3.127) has a solution similar to (3.1§),

namely
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o ~ doK![im(M2, ~ 1)/%), (3.128)

where K, (z) is the Bessel function of order n, argument z, (the K,(z;) solution is
chosen in p;?rference to the I,(21) solution in order that disturbances are propagated
along characteristics in the downstream direction (see Ward (1955); Kluwick et al
(1984); Duck and Hall (1989, 1990)).

To determine ¢o we match (3.128) with the leading order term of the inner

solution, namely (3.123) which in the limit #» — oo, has the form

bo — Ag. ‘ (3.129)
Therefore we have
A . AO
_ 3.
%= Kifia(iz, — 1) (10
yielding the result |
X e 2 _ 1)1/22
&, — AoKulia(MZ, — 1)V/%) (3.131)

Kqlia(MZ, —1)'/2]
Returning to the 5 = O(1) layer (which can be thought of as the main part of

the boundary layer), we now wish to determine the O(() correction to ¢. Defining

nZCZ
a®(1+n¢ + A¢?)
then substituting expansions (3.118) into (3.132), making use of the fact A(2,(n <<

X=Tof1+ J-Mim-of, @i

1 for { — 0, and applying the binomial theorem, yields

1 1 _ (Funll+ (/%)) - Woo M2, (Wor — 1)
X  Twll+(n?/a@)] - MLWE (Too[L + (n?/a®)] — MZLWE)?

+0(¢?).
(3.133)
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“Therefore the O((), ¢ equation has the form

__i{ (Woodon — Woon o) (Ton[1 + (n?/a?)] — 2Woo MZ(Wor — Cl))}
dn (Tool1 + (n*/2%)] — MLWE)*

+a{l_{(W01 — ¢1) oy + Woo b1y + do] — Wm;,(ﬁo — Wooq¢1} = 0.
7

Tooll + (n?/@)] — MLWE, (3.134)
By relation (3.123) we have
Woodoq — Woogdo = WooAoWooy — Woos Ao Woo = 0, (3.135)
which reduces (3.134) to
d ((Wor — ¢1)$on + Woo[drn + do] — Worndo — Wooné _
it Tooll + (n2/a?)] — MEWE, j=0. (3130)

Integrating once with respect to 7 yields

(Wor—c¢1) don+Woo [d1n+ o] — Worndo— Woon b1 = k1{T00 [H‘;—z] —M;Wgo}, (3.137)

where k; is an arbitrary constant. Matching (3.137) with the wall conditions gives

2

—c1¢0p(n = 0) = k1 Too(n = 0) (1 + C%)

2
& =1 AgWaon(1 = 0) = kyToo(n = 0)(1 + Z_-_;) (3.138)

where the condition Wy; = ¢; = 0 for all integer ¢ > 0, at the wall, has been used.
In the far-field, ¢; must not be exponentially large and again, the basic flow

terms behave as

Wo(), TOO - 1,
Woon, Wor, Worq — 0. (3.139)
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Consequently, we have

- C1¢onln_’°° + ¢1"|n—>oo + ¢o]n_’°° = k1{1 - MZ + 1;_3}, (3.140)

which can be simplified using (3.123), to

2
n
¢1,,|n_’°° + Ao = ki {1 - M2 + bq}. (3.141)
Since both ¢y, and é‘oﬁ are of O((), then to match correctly as  — oo, the following

rgla.tion must hold

(3.142)
Therefore, matching yields
Aviz(MZ — D2 K"ia(M2, ~ 1)’/2]

¢1"ln~oo - K![ia(M2 —1)1/?]
Substitution of (3.143) into (3.141) yields

(3.143)

M2 - 1)1/2I{"[ZQ(M2 - 1)1/2 .
K [ia(MZ, — 1)\/2 B0 a4 2) (3.144)

Eliminating k; from (3.138), we obtain the following result for ¢;:

b= Aof1+ &

- e 12 Kliw(MZ, — 1)'/3) Too(n = 0)(1 + n?/a?)
= {1 +ia(MZ, — 1) / K [ia(MZ, ~ 1)1/2]}{W00n (n=0)[MZ —1— nz/agl}
(3.145)

The asymptotic forms for this expression in the limit of large and small & may be
found readily. Firstly, as @ — oo we have n?/a? — 0, which immediately simplifies

the second bracketed term to

Too(n = 0) )} (3.146)

{Wﬂﬂn(n =0)(MZ ~1
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Defining

z =ig(M2% - 1)1/2, (3.147)

then in the limit z — oo, we have the Bessel function expansions

Ky(z) ~ ~(Z e 1+ O, (3.145)

and

Ki(2) ~ [;21-( %)‘”e“% + ()l + 0(3)] ~ (%)1/2e_z[0(:_2)]
= (g;)‘/ e 14 0(;_—) +eef (3.149)

This means

K!iw(M2, —1)1/2)
Knliw(ME, —1)'/?]

~14 0(%), (3.150)

in the limit @ — oo and equation (3.145) has the asymptotic form

Tow(n = 0)
an(’? 0)(MZ, — 1)1/

Turning our attention to the @ — 0 limit, since (r%/@?) >> M2 and 1, then in

€ — — +0(@™?). (3.151)

this case the second bracket has the reduced form

Toofn = 0
{- Woof?’] 3)} (3.152)

The Bessel function, K,(z), can be expressed as the ascending series
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Ko(2) = 2(39)°" :% b D L4 () E)(e)

1,2)k
+(— 1)"2(2)" ;){d)(k +1)+¥(n+E+1)} k'% +)k),,
where z is defined by (3.147),
ABIEaL) pn o
" 2" EkT(n+k+1)

and

P(n)=—v+ nz_i k! (n 2 2),

k=1

v being Euler’s constant. Therefore, as z — 0, for n = 1, we have

1
Ki(2) ~ i %lu |z] + O(z).

Differentiating with respect to z gives

1 1
K{(z) ~ —;2— - 5111 IZI -I- 0(1),

which in turn give

_, Too(n =0
WOOn(’? 0)

If n > 1, in the limit z — 0, we have

+ O(@*Ina).

Kuld) ~ 3327 I0) + 0,
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(3.153)

(3.154)

(3.155)

(3.‘156)

(3.157)

(3.158)

(3.159)




which yields (remembering I'(n) = (n — 1)})

K!(z) n+1

— . A
K (2) . + 0(z) (3.160)
Therefore
¢y — Tooln =0) + 0(a?), fé)r n> 1. (3.161)
WOOn(U = 0)

To determine the leading order imaginary term for c, higher order terms in the

Bessel function expansion have to be considered, namely

Kn(z) ~ %(%)'"[F(n) +0(2)] + %mg(g)" +eee (3.162)
which yields
Kl(= n+1 —1)"? 2n—1
zq,8 ~ -0+ 22"‘(1n!()n —pim e 2)
—1)nt2 27-1
x[1-~ (7§ _11))! ez 4 (3.163)

Employing the binomial theorem and taking the principal value of the logarithmic
term yields
T @ MZ —1)"Tw(0)2?"

e} = = oo Ol — DI

Equations (3.158), (3.161) are precisely the (real) values found by Duck and

(3.164)

Hall (1990) for the downstream limit of a non-axisymmetric viscous mode (taking
into account the different scalings used in Duck and Hall’s paper). Consequently,
as ( — 0/c0, on a scale smaller/larger than that of the cone tip radius, this mode
is expected to become predominantly viscous in nature, and to be described by

triple-deck theory.
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Figure 3.77 displays Im{c;} with « for n = 1,2,3 (with (3.151) shown also).
Unfortunately (perhaps) it is seen that Im{c;} < 0 for all @ (confirmed by (3.151)).
It is also observed that Im{¢,;} = O({) as {( — 0. Unfortunately, it is also found
that O(¢?) and higher corrections to this mode would require an extensive amount of
algebra. However, progress can be made, in particular, an estimate for Im{c(a = 0)}
can be obtained by considering, instead, the limit { — 0 of (B.2), pertinent to the
a — 0 case. (This aspect is considered in the next section)

Finally, for this subsection, note that the { — oo results may be inferred from
these ( — 0 results, simply by replacing the small parameter ”(” in the various
expansions by the small parameter "1/A{ . More subtle differences between the
¢ << 1 and the { >> 1 solutions only appear at higher orders. Note, this is only

valid for the case of a cone.
3.6.2 @=0,{— 0 (or { — 00)

System (B.2) turns out to be easier to analyse as { -+ 0 than does the corresponding
finite @ (= a(™') problem. We again utilize expansions (3.118) (although for the
full ¢ expansion, see later).

To leading order, we have, for n = O(1)

¢‘0 = AGWOO(W), (3165)

where Ag is some (arbritrary) amplitude parameter.

At the next order we have the following system:

Woo b1y — Ao Woone1 + AoWE — Woandy + AoWoy Woop — AoWo1n Woo = k1Tno, (3.166)

where k; is a constant, and we have utilized (3.165). Setting = 0 in (3.166),

assuming ¢; (7 = 0) = 0, then
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— AOCIlWOOq(n = 0) = leoo(ﬂ = 0). (3.167)

We now match with the far-field boundary conditions. Defining the outer scale

F=1479¢=0(1), (3.168)

we assume outer expansions of the form

¢ = ¢ (F) + (69U (F) + O(¢), (3.169)
and so
dn = COOE + g0t 4 e (3.170)

The boundary conditions must be compatible with B.4, therefore we must have an

outer solution of the form

$ou ~ A, (3.171)

where

A=Ag+CA + .. (3.172)

Considering (3.165) in the limit n — oo, it is immediately evident that matching

with the lea,diﬁg order term of equation (3.171) yields

Ay = A,. (3.173)

In the fai—ﬁeld, equation (3.166) reduces to

(]51,7' = kl - AQ. (3.174)
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Since both ¢;, and ¢%2t are O((), then for correct matching we must have

¢1nl : ¢00F11t Fam

=00 F=

= —(n+1)4. (3.175)

Therefore substituting (3.175) into (3.174) and eliminating &y, using (3.167), gives

6 = W=7 3.176
! Wowz(" = 0) ( )

in accord with (3.161). In order to estimate complex values of ¢ we must proceed
to higher orders in (.

At the next order in ¢ the following equation governing ¢; is obtained:

Woodan + 2AWoodon + 20Woo b1y + Woadoy —~ Wozndo + Wor b1y + 7* Woodan
—c1$1q + 2Warndog + Wordo — Wor,é1 — 20Worndo — 21¢1 G0y — 2o,

+Wooér + nWoodo — 100 — Woon bz — 2AWoo,do — 2061 Woo, — 1 Woon do

" o Woo
Too

= szOO + nzToo A d77 + leOI, (3.177)

where k;, is a constant and &, is defined above. We defer any consideration of this

equation, and move to the next order of ¢, which yields
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Wooday + 2AWoaod1, + 2nWood2q + 20 Woodon + 1°Woodry — €1$2n — 2Ae1 oy
—2n¢1¢1y — N C1don — C2P1y — 20C2bon — Cadoy + Woo?sz + AWaodo + nWoo oy
—a1d1 — cingo — c2d0 — Woon¢s = 2AWoon s — 7*Wornbo — 27¢2Woon
—1*Woon1 + Woidan + 2AWo1doy + 20Wor d1y + 02 Wordon + Woz iy
+2nWozdon + Wosdon + Words + Worndo + Wozdo — Woando — 201 Woando
—2AWoraéo — 2AnWoondo — Wozndr — 20Woi,61 — Woinds

n oW,
= koTo1 + k1T02 + kaToo + n?To, /0 $oWoo

d
Tog 7

+n? Ty f” [¢1T00 — ¢0T01]W00;261T00¢0 + WDl%den. (3.178)
0 00"

Our main goal here is to determine the leading-order imaeginary component of the
complex wavespeed ¢ (we do, of course, already know the leading-order real term).
Now since the above equations just contain real coefficients, any imaginaries must, of
necessity, only arise at a critical point, where, ¢ = Wyo. Since ¢ = O((), this implies
that in the neighbourhood of the critical point, Wy, = O(¢). However, Woy = O(1),
but Woo = Wyo(n); therefore this must occur when 5 = O(¢). Consequeﬁtly, consider

a thin layer relative to the n = O(1) scale, namely

7 =n/¢=0(1). (3.179)

On this scale, the expansion for ¢ is expected to develop as

¢ = C®o(i) + a7} + () + -, (3.180)

where the ®; are expected to be normalized in such a way as to be generally O(1)

quantities.
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From the governing equations for the basic flow (as defined in- Chapter 2), the

z-momentum equation has the form

(3.181)

0o—

o Owo | Cuwodwg 0[ ]awn _ [
T 37] n

+ awo]
o T2 o ’

where

r=14{n+ "% (3.182)

Substituting the basic flow expansions for Ty and wp, with respect to {, yields to

leading order

. - 3
& Woon — gwmwoon = Tuo 5 [TooWoor]. . (3.183)

Evaluating on the surface of the cone and assuming adiabatic conditions gives

Woonn(0) = 0. (3.184)

The O(¢) equation has the form

Woo W, ‘
002 L %(WOOWUIn + W01W00q) + AWooWoo, =

TooTo0; Woin + TaoWotnn + TooTo1n Woon + TooTor Woons + TiyWoon

01 Woig +

+1To0Toon Woon + nTé’on,,,, + (To1 — 9T00)(Toon Woon + TooWoonn),  (3.185)

which when evaluating on the cone surface and adiabatic conditions are again as-

sumed, yields

Wornn(0) = —Woon(0). (3.186)
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In the thin, critical layer, adjacent to the wall, basic flow expansions for velocity
and temperature are Taylor expanded about n(= 7j¢) = 0, giving the critical layer

expansions -

wo = (Woo,(0)7 + <,“"[%Woo,,,,(0)ﬁ2 + Wo1,(0)7]
43[%773%0,,,,.,(0) + %Wmnq(o)ﬁz + Wz (0)i] + O(CY), (3.187)

and

To = Too(0) + ¢[To0q (0)7 + To1(0)] + ¢*[T2(0) + Tor(0) + %Tmnn(o)ﬁzl
¢*[To3(0) + 71Tozq(0) + %ﬁzTOInn(O) + %ﬁaTﬂonnn(O)] +0(¢Y), (3.188)

where the no-slip boundary condition has been applied. Also, since Wy, = %Wo,-,,

then

Wm; = Woon(o) + C[Wpﬂnn(o)ﬁ + IVOln(O)]

1. . .
+C2 [5"2W00'mn(0) + Wﬁlnn(o)n + WOZn(O)] +eer ) (3-189)

Substituting expansions (3.180), (3.187) - (3.189), and the ¢ expansion into (B.2),
and integrating through with respect to #, to leading order in the critical layer, we

have

koToo(0) =0 = k=0, (3.190)

where ky is the leading order term in the constant of integration, the whole term

having the form
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k=lo+Chy + %y 4-en. (3.191)

At the next order in (, we obtain

’ [(Woor (0} — €1]@05 — BoWoon(0) = &1 To(0). (3.192)

Integrating, gives

BTo(0) |, }
= ——Fr-= 0)77 — .
| ° =~ oo 0) + Ao[Woo, (0)f — €1, (3.193)
where Ag is the constant of integration. Applying the wall condition ®@4(n = 0) = 0
yields '
kiToo(0)
= —Apc;. 3.194
Woan(0) ~ 104 (3:194)
Therefore

where we have matched with (3.165) taken in the limit  — 0, obtaining Ay = A,.

At O((?) the following system governs ®;:

1 . . -
IEWDOW(O)UZ) + Wo14(0)7 — ¢2] o5 + [Woor (0)i] — ¢1]@15 — &1 Woon(0)

~[Woon(0)77 + Worq(0)]®0 = k2To0(0) + F1[Toon (0)7 + Tor (0)].  (3.196)

Utilizing (3.195), this can be simplified to

. X .1 i _ i
[WOOU(O)U - Cl]@lq - @1 WOO;;(O) = kl + §W00,m(0)7]2A0W00,7(0) + kl TOGn(O)na (3.197)

where the constant f; is given by

153




k1 = ko Too(0) + k1 To:(0) + 240 Woon(0). (3.198)

Assuming adiabatic conditions (3.197) reduces to

[WOOW(O)ﬁ - Cl](I’lq - @1W00q(0) = ]:;1. (3.199)

Integrating with respect to # and applying the wall condition ®;(n = 0) = 0 gives

the solution

where A, is a constant, linearly related to Ap.

At the next order in ( the equation of ¢ has the form

1 . 1 . . 1.
‘I’Oﬁ[gwoonnn(o)ﬂ?' + §W01nn(0)7?2 + Woan(0)7 — 3] + ‘I’lﬁ['z‘ﬂzwoow(o)
+Woin(0)7 — c2] + ®25[Woor (0)7 — c1] + 2(A + 7) P03 [Woon (0)7 — 1]
Bo[Woon (0)i] — 1] — B2 Woon(0) — 2(X + 7)o Woo,(0) — 1 [Waog,(0)7 +

Worq(0)] - %[%me,(o)fﬁ + Worn(0)7i] — BoWozy (0)
= Ea[To0n (0)7 + Tox (0)] + £1{Toa(0) + Toa (0} + %Tm,,,,(o)ﬁ"’] + EksTo0(0). (3.201)

Utilizing (3.195) and (3.200) and assuming adiabatic wall conditions this system

reduces to

B[ Woon (0)ii — 1] ~ 3 Wopn(0) = k3 + 37 A0 Woon (0)cy

3 2 Toon(0).
§A0W020n(0)nz - ﬁ“f("o*)‘ﬂzflocl Woo,(0), (3.202)

1,
+§’73W00nnn(0)W00ﬂ(0)A0 -
where the constant k; is given by
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kg = i:zTo]_(O) + ’;]_ Toz(O) + ]E;;Too((]) + C3A(]W00,-,(0) + A] Wmn(O)Cg

+2/\A061 WODV)(O), (3.203)

and &; has been eliminated from (3.202), using (3.194).

If we take (as we are quite at liberty to do) Ao and k, to be real constants
(this is not essential for our arguments, but simplifies the following argument), then
we now consider only ®, (where here and elsewhere a superscript ¢ denotes an
imaginary component). This quantity is triggered by the well-known +i7 jump in
the logarithm (Mack, 1984, for example) across the critical layer. Specifically, here,
this is ca.used‘b); the n dependency on the right-hand side of (3.202) (;:2 plays no
role being n-independent). If (3.202) is written symbolically as

[Woon(0)ii — €1]®2 — Woon(0)®2 = R, (3.204)
then
) ~ '-'. . Rdﬁl
®; = [Woon(0)ij — ¢ f . : 3.205
| 2 [ 00'7( )77 71] o [WOUn(O)n] _ 01]2 ( )
Evaluating this integral, taking only the imaginaries together with the limit 4 — oo
yields
&% ~ B [Woo, (0)7 — 1], (3.206)
where
: WOO (O)C] TOQ (O)Cl
B' = 71Apc o - 7 . 3.207
W@ Too030 0)) (3.207)

Equation (3.206) then provides lower boundary conditions for the system (3.177)
and (3.178).
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Since (3.177) contains only real coefficients (taking c; to be real as well, which
will be justified e posteriori) and assuming ¢o, ¢; and all their derivatives are real,

then we must have

WOO(#;Q - WOOn‘tblz =0, (3‘208)

which on integration yields

oh(n) = AWw(n), ' | (3.209)

where A is a constant of integration. Matching the expansions for ¢ in the 5 and 7

layers, at O(¢®) yields

B% = AWpo,(0)77 + 65(0), (3.210)

where the Taylor expansion of (3.209) about 7 = 0 has been utilized and the bound-
ary condition Woo(0) = 0 has been applied. Matching (3.206) with (3.210) gives

A=FB  and  4i(0) = —B'c,. (3.211)

Therefore (3.209) can be written

¢32(n) = BWoo(n)- (3.212)

The imaginary part of equation (3.178) has the form

Woodhy + 20Woodh, — ¢1¢3, + Woods — Woondh

+Wor s, — 2063 Woon — Wornd}h — oy = ki Too. (3.213)

In the far-field this equa,tioﬁ reduces to
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P

+, . =K

n—o0

where it has been assumed q%n ~+ 0, by the form of (3.212).

(3.214)

Equation (3.214) must match the far-field solution as given by (B.4). In the limit

n — oo all the perturbation terms are expected to behave like (B.4) (resulting in

decay), therefore

¢;;n|n_m ~~(n 4 Dy« —(n + 1);3;]”_’00

—(n +1)B,

and so

ki = —nB',

Setting 7 = 0 in (3.213) yields

— 8|y~ Woon(0)43],_, — cidon| _ = —nB'Tuo(0).

However, from (3.211) and (3.212) we have

4]0 = B Won(0),

2n n=0

¢§L;=0 = _CIBi'

Consequently (after substituting for ¢; and ¢y,),

oo (0)7" { To0(0) Woosnn(0) Tmnn(o) }
Wioq(0) Wi (0)  Wa,(0)
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(3.215)

(3.216)

(3.217)

(3.218)

(3.219)

(3.220)




From the governing equations for the basic flow (as defined in Chapter 2), the

energy equation has the form

0Ty | (wo 8Ty 11976
e wo[/\c+§]a—n*

6w0)2 To 8 ’I'ToaTo
o 2 9

o) T oo o 2], (3.221)

T2 (v-1)M2(

where r is defined by (3.182). Substituting the basic flow expansions for Ty and wy,

with respect to (, yields to leading order

9 TooToon
On

Evaluating on the surface of the cone and assuming adiabatic conditions gives

1 o0y — gWOOTm,, = Ty — 1)M2LWE, + Toomr .- (3.222)

Toonn(0) = —a(y — 1) MZWg, (0). (3.223)

The governing equation for continuity has the form

(1 9 swo 9
37:(Te)+r_’ii}‘§+ga_§(w) ¢+ ]an(;ﬁz) 0, (3.224)

Substituting the revelant terms of (3.118) and evaluating the resultant leading order

equation on the body surface, yields

61"lf,=o =0, (3.225)

where, again, adiabatic wall conditions are assumed.
Differentiating the leading equation in ¢ of the basic flow z-direction momentum

equation, i.e. (3.183) with respect to 7 and evaluating on the boundary yields

TOOnn(O)WOOn(O)
To0(0) ’

. where (3.225) has been utilized and again, the cone surface is assumed to act as an

Woonna(0) = — (3.226)

insulator. Substituting results (3.223) and (3.226) into (3.220) gives
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| T3(0)
¢y = 2mnlo(y — 1)M2E 2 3.227
¢ (- DML (3.227)

In fact, the expansion for ¢ in (3.118) is not quite complete as it stands, since
the analysis of the 7 = O(1) layer above indicates the presence of logarithmic terms;

specifically, we require

¢ = do(n)+{b1(n)+ B2 (n)+3Bs(n)++ - «+log ([P daa () + b1 (n)+- - -], (3.228)

where

$21(n) = AnWoo(n), A (3.229)

with Ay, a constant.

A comparison of the fully numerical computation of Real{c(c = 0)}, with the
asymptotic formula (3.176), as { — 0, is shown in Figure 3.78. The agreement is
seen to be entirely satisfactory. Unfortunately, the correlation between the com-
puted Im{c(a = 0)} and that obtained using (3.22% is found to be less agreeable.
However, this poor correlation is not unexpected for two reasons. Firstly, accurate
computations of Im{c} in this limit become exceedingly difficult, as confirmed by
the quite complex asymptotic structure detailed above, with both short ( = 0O(¢))
and long (7 = O(1/(¢)) lengthscales emerging. Secondly, the asymptotic forx;l for
Im{c,} is achieved very slowly as { — 0, at least in oﬁe particular configuration,
where with n = 1, the imaginary wavespeed has a leading-order coefficient of ap-
proximately 3.898 x 10°¢3. A comparison between numerical and asymptotic results
is not shown in this case.

In the case of { — oo, we may only replace the small parameter ‘¢’ in the above

by the small parameter ‘1/A(’ (valid for the cone only).
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When we impose heated/cooled wall conditions, instead of adiabatic conditions,
the asymptotic theory is rather different. In the case of heated/cooled walls resulis
(3.184) and (3.186) are no longer valid. Equation. (3.195) is found to be still valid,
but equation (3.197) no longer simplifies. Using this equation as the starting point,
in this case, we are now only interested in terms @i, which following the theory set
out for the adbiabatic case, will be triggered by the ‘+ir’ jump in the logarithm

term across the critical layer. Rewritting (3.197) in the form

[Woon(0)if — ¢1]@15— ®1Woon(0) = R, (3.230)
where
O | . " .
R=k + EWOQ,,,,(O)qZAoWOO,,(O) + ky Toon (0)77, (3.231)
then
. i Rd,
By = [Woonfi — i X 3.232
1 = [Woonif Cl]/o [(Woon (0} — ¢12 ( )

As before, this integral is evaluated, taking only the imaginaries together with the

limit i — oo, yielding

8] ~ Bj[Wooy(0)i] — 1], (3.233)
where
i Wooyn(0) To04(0)
B} = mAoer{ W&:, 0 " T (OO)OWoo,, ( 0)}. (3.234)

Equation (3.233) provides lower boundary conditions for the system (3.166) and
(3.177). |
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ottt =

Assuming (3.166) contains real coefficients only (c; is assumed real, an assump-

tion that may be justified a posteriori) and matching the expa,nsic"n for ¢ in the 5

and 1j layers, in a manner similar to the adiabatic case, yields

¢ = BiW(n), (3.235)

where Bj is defined by (3.234)

The imaginary part of system (3.177) taken in the limit » — oo, has the form

bl HH| L= H (3.236)

f]—co

Following the adiabatic theory, by the form of ¢ in the far-field, it is required

Binlyoe ~ (DA
~ ~(n+1)Bj, (3.237)
yielding
ki = —Bi. (3.238)
The imaginary part of (3.177), evaluated on the fixed boundary is
~ 18], -y — bon],_, — Woon(0)dh|_, = FiToo(0). (3.239)
Making use of the results
¢§”|q=0 = BiWOGfI(O)f
¢;[n=o = —Bic, (3.240)
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which are obtained by matching ¢ in the two layers, and equation (3.238), gives the

result

27T50(n = 0) ¢ Woou(n = 0) Tﬁﬂn n=0)
n 3.241
%= Waon(n = 0){ Woon(n =0)  Too(n =0) b (3:241)
Evaluating equation (3.183) on the cone surface yields
Toon Wt
Woony = ———20, (3.242)
Too
which simplifies (3.241) to
_ 2
t n2 2?TT00(0)W00’7'7(0). (3.243)

o =
’ Waba(0) .
Comparing this result with the adiabatic result, as obtained above, it is noted
that the first imaginary term in ¢ is an order in ( larger for heated/cooled wall

conditions, implying larger growth rates in the present case. The ratio of the leading-

order imaginary terms has the form

Heated/Cooled ¢; Waoonn(0)
Adiabatic ¢; = (Wyo(0)o M2 (y = 1)n’

(3.244)

A comparison of the fully numerical computations (solid lines) of Re{c{a = 0)}
and Im{c(a = 0)}, with the asymptotic formulae (3.176) and (3.243), (b;oken lines),
as { — 0, are shown in Figures 3.79 and 3.80, respectively, for a wall temperature
Tp = 5.0, and M, = 3.8. The agreement is seen to be entirely satisfactory, although
¢ is required to be quite small for these asymptotics to be valid. It is interesting
to note that (3.243) predicts that if the cylinder surface is cooled, then ¢! < 0, and
hence this mode is stabilized, whilst heated cylinder surfaces exhibit c?,oand hence

A

the mode remains unstable.

In the following subsection the behaviour of mode I as ( — 0, is considered.
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. 3.6.3 (—0,a=0(CY?

The numerical results presented in section 3.3 strongly suggest that generally, as
¢ — 0, mode I has a structure very similar to the planar case, for all values of n.
However, there is one important exception found in the comparison, namely the
behaviour of the lower neutral point in this limit. In the planar case, as o — 0, ¢ =
1 —1/M,,, corresponding to the so-called ‘sonic’ mode. However, .the numerical
evidence (section 3.3) suggests that on introducing curvature terms there is a shift
in the neutral point, along the positive real-« axis, and the neutral point becomes
(slightly) supersonic, with ¢ <1~ 1/M,,, as ( — 0.

A (sensible) balancing of terms suggests that we might look for a solution of the

férm
C=50+C<31 + ey,
¢=d¢do+ P+,
wo = Woo + (Woy + -+,
Tﬂ = TOO + CTO]_ + e, - (3.245)
with
a = (Y%, & = 0(1). (3.246)

To leading order, (3.116) yields

( _WD'Z ¢o
dr(Woo—6) . y_
pat 7 } =0, (3.247)
where
7o = Too — M2 (Woeo — &)™ (3.248)
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Integrating (3.241) subject to the impermeability wall condition gives

do = Ko(Woo &) [ T (3.249)
where K is some arbitrary constant and the integral is to be taken underneath the
critical point to avoid any singularities arising. In the limit 7 — oo, ¢ is required
to be at least expondentially bounded and by the form of the imposed boundary
conditions must tend to a constant. If 7, ~ constant, then the integral would be
O(n), which of course, does not converge as 7 — oo. Consequently the integral will

only be convergent as  — o0, if 7o = 0, giving

=1+ Ml— (3.250)

Further, the negative sign is taken to be appropriate with the numerical results and
the comments made above: indeed, this is simply a repeat of the planar calculation
(Lees and Lin (1946)).
Curvature plays an important role at the next order, namely O((). The governing
equation in this case is
dl n A g
a1 Woo = &) (B + 9o) = &xdn — Woon1 + Won bon ~ Woradhl

1 . niT, .\
Y] (Woo — €0)Poy — Woon o) [?[2 + Tor + 2M30(W00 — &g)é
0

—2MZ (Woo — &0)War ) } = &2(%;,0: So)do. (3.251)

Integrating with respect to n and utilizing (3.244), yields
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(Woo - 60)(‘?5111 - ¢0) - 61450:; - W00n¢1 - W01n¢0 + W01¢0n
nsz
a2

~Ko[ =52 + Ton + 2M2 (Woo — &0y — 2M 2, (Woo — &)W
. Wan — &
= Rifo + 60 / "Woo—o)doy, (3 .959)
0 Tog .

where K; is a constant.
(3.252) is required to match correctly at the outer edge (7 — oo) with (3.18). In
the limit ¢ — 0, (3.18) has the form

Poo

¢ ~ S Kliio(1 +n¢) + O(¢), (3.253)
where
o = MY?&(28,)'/?, (3.254)

the positive sign being taken for the argument of the modified Bessel function since
the real part of 1j (as defined by (3.19)) is required to be positive in the limit n — oo
and by the form of (3.25¢). '

Taylor expanding the Bessel function around 7, yields

bo.= S KL ), (5.255)
and
— ¢co A 1ty A o
$1 = n—-1o Ky (o), (3.256)
2 ‘

in the limit 7 — oo.

Matching (3.24%) with (3.255) taken in the limit  — oo, yields
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boo Kol

N T TR (3.257)

2 MoK (%)

where
= 7’?-0

I= —_— 3.258

and we have employed (3.250). This clearly yields

oK (o) Kol
= e 3.
¢m|n_m K (o) Me, (3.259)
(3.252) in far-field reduces to
_ ) a I’{'Q n2 2 A \a

¢1,,]n_m =Kol = &) + 1= [55 +2ME(1 — &)éy). (3.260)

Matching (3.259) and (3.26¢) yields the following nonlinear dispersion relationship

for &:

. K (o) MZ o’ .
7o I{,’,(ﬁo) +1= T[Ez- + 2M°°CI] . (3261)

The integral (3252&) was evaluated numerically, and for the conditions prevailing
in all the numerical results it was found that J ~ —228.4 — 59.3i. Equation (3.260)
was solved using a Newton iteration, and results for Real{¢; } and Im{é, } for various
n are shown in Figures 3.81 and 3.82, respectively. |

Making use of result K7(7jo)/ K}, (o) = —14 O —.’}5), in the limit & — oo, (3.260)

predicts that one family of solutions has the form

&
M

a~

C1

(3.262)

which is in agreement with the @ << 1 expansion for c in the planar case, namely
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1 o?I? 4 -
c-—-l-—'M.—oo-f-z—AE‘l‘O(a ) (3.263)

Equation (3.262) is shown as an asymptote in Figures 3.81 and 3.82. Note, a

(real) family of &, which may exist is an exact solution of (3.264}, namely

R n?
& = — o
2M, 42’

where we have made use of the relation K/(:n)/K!(in) = —(1/(in)). The impor-

(3.264)

tance of this mode is not thought to be great. The complex families of é,’s are seen
to terminate at a finite value of &, corresponding to the (lower) neutral point of
mode I. Notice that in all cases, because Real{¢;} < 0 at the termination point, -
these modes correspond to supersonic mod;as.

From the result shown in Figure 3.82, we are therefore able to offer an estimate
of the position of the lower neutral point of mode I as ( — 0. In particular, for
the freestream conditions considered throughout this paper, for n = 0 this position
is given by a & 0.1¢V/%, n = 1 by & = 0.20¢!/2, and for n = 2 by a & 0.295¢1/2,
Comparing these asymptotic results with the { = 0.01 results displayed in Figures
3.5 and 3.6 (which even though are cylinder results, because of the smallest of ¢
correspond very closely to the cone results at this axial location, as explained in
subsection 3.4.4) reveals a fair degree of agreement.

In the case of ( >> 1, the above results may be easily transposed, by the
replacement of ‘¢’ by ‘1/A(’; the correéponding positions for lower neutral point are
then & = 0.1(A()™Y/2 for n = 0, a = 0.20(A()"Y2 for n = 1, and a ~ 0.295(A\¢)~}/2
f<-)r n = 2. These results are seen to agree quite well with the { = 75 results shown
in Figure 3.66 and 3.67.

Finally, it is found that altering the wall conditions from adiabatic conditions to

heated/cooled wall conditions, has little significant effect on the asymptotic analysis
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for the mode I lower neutral point.
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Figure 3.1: Variation of <v with a for adiabatic cylinder, £ = 0 (Planar).
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Figure 3.2: Variation of ¢, with a for adiabatic cylinder, ( = o (Planar).
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Figure 3.3: Vaxiation of ac, with a for adiabatic cylinder, ( = 0 (Planar).
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Figure 3.4: Variation of G- with a for adiabatic cylinder, Moo — 3.8, ( = o.01,
Mode 1.
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Figure 3.5: Variation of ¢, with a for adiabatic cylinder, M*, = 3.8, ( = 0.01,
Mode L.
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Figure 3.6: Variation of ac, with a for adiabatic cylinder, M@ = 3.8, £ = o.01,
Mode 1.
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Figure 3.7: Variation of cv with a for adiabatic cylinder, M0 = 3.8, ( = 0.01,
Mode II.
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Figure 3.8: Variation of ¢, with a for adiabatic cylinder, 3.8, £ = o.01,

Mode II.
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Figure 3.9: Variation of ac, with a for adiabatic cylinder, =38 C=001
Mode II. S v
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Figure 3.10: Variation of (p with a for adiabatic cylinder,
Mode 1.
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Figure 3.11: Variation of ¢, with a for adiabatic cylinder, =38, C= 001
Mode IA.
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Figure 3.12: Variation of ac, with a for adiabatic cylinder, M = 3.8, C- o0 01
Mode IA.
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Figure 3.13: Variation of ac, with a for adiabatic cylinder, M0 = 3.8, ( = 0.05,
Mode 1.
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Figure 3.14: Variation of ac, with a for adiabatic cylinder, M® = 3.8, f = 0.05,
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Figure 3.15: Vaxiation of ac* with a for adiabatic cylinder, M0 = 3.8, ( = 0.1,
Mode 1.
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Figure 3.17: Variation of ac; with o for adiabatic cylinder, M,, = 3.8, (.= 0.5,
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Mode II.
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Figure 3.19: Variation of ac; with a for adiabatic cylinder, M,, = 3.8, ( = 1.0,
Mode 1. ,
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Mode 1.
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Figure 3.22: Variation of ac, with a for adiabatic cylinder,
Mode II.
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Figure 3.23: Variation of ac¢; with « for adiabatic cylinder, M, = 2.8, { = 0.05,
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Figure 3.24: Variation of ac¢; with « for adiabatic cylinder, M, = 2.8, { = 0.05,
Mode II. '
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Figure 3.25: Variation of ac, with @ for adiabatic cylinder, M) = 2.8, £ = 0.5,
Mode L
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Figure 3.26: Variation of ac, with a for adiabatic cylinder, MQ = 2.8, ( = 0.5,
Mode II.
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Figure 3.27: Variation of transverse positions of inflexion points (7,) with axial
locations (£) for cooled cylinder, M = 3.8.
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Figure 3.28: Variation of wl@#/ = 7) with £ for cooled cylinder, M = 3.8.
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Figure 3.36: Variation of ae; with « for cooled cylinder, M,, = 3.8, ¢ = 0.05, n = 3,
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Figure 3.38: Variation of ac, with a for cooled cylinder, M0 = 3.8, ( = 0.05, n = 5,
Mode 1.
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Figure 3.40: Variation of ac, with a for cooled cylinder, =38, (=05 n=1,
Mode 1.
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Figure 3.41: Variation of 3¢, with a for cooled cylinder, =38, (=05 n=1,
Mode II.
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Figure 3.44: Variation of ac, with a for cooled cylinder, M = 2.8, ( = 0.05, n = 3,
Mode 1.
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Figure 3.45: Variation of ac, with a for cooled cylinder, Moo = 2.8, £ = 0.05, n = 3
Mode II.
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Figure 3.46: Variation of ac, with a for cooled cylinder, =28, (=005 n=25,

Mode 1.
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Figure 3.47: Variation of ac, with a for cooled cylinder, =2.8,(=0.05 n=2>5,
Mode II.
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Figure 3.48: Variation of ac, with a for cooled cylinder, M = 2.8, ( = 0.5, n
Mode 1.
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Figure 3.49: Variation of ac, with a for cooled cylinder, M&= 2.8, ( = 0.5, n

Mode II.
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Figure 3.50: Variation of transverse positions of inflexion points (7.) with axial
locations (£) for heated cylinder, M) = 3.8.
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Figure 3.51: Variation of w0@/ = 7,) with ( for heated cylinder, Moo = 3.8.
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Figure 3.52: Variation of ac, with a for heated cylinder, =3.8,(=0.05n=0,
Mode L.
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Figure 3.53: Variation of ac, with a for heated cylinder, M@= 3.8, ( = 0.05,n = 0
ode II.
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Figure 3.54: Variation of ac, with a for heated cylinder, AT* = 3.8, Tw= 5.0, n = 0,
Mode 1.
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Figure 3.55: Variation of ac, with a for heated cylinder, M* = 3.8, Tw= 6.0, n = 0,
Mode 1.
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Figure 3.58: Variation of ac, with a for adiabatic cone, MM = 3.8, £ = 1.0,
Mode 1.
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Figure 3.59: Variation of ac, with a for adiabatic cone, — 38, £ = 1.0,
Mode II.
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Figure 3.60: Variation of oc, with a for adiabatic cone, AT*, = 3.8, ( = 2.0,
Mode L.
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Figure 3.61: Variation .of ac; with a for adiabatic cone, MD = 3.8, £ = 2.0,
Mode II.
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Figure 3.62: Variation of ac, with a for adiabatic cone,
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Figure 3.63: Variation of acj with a for adiabatic cone, Mk = 3.8, £ = 5.0,
Mode II.
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Figure 3.64: Variation of ¢c, with a for adiabatic cone, M = 3.8, £ = 20.0,
Mode L.
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Figure 3.65: Variation of ac, with a for adiabatic cone, MW = 3.8, ( = 20.0,

Mode II.
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Figure 3.66: Variation of ¢, with a for adiabatic cone, M) = 3.8, £ = 75.0,
Mode L
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Figure 3.67: Variation of qc, with a for adiabatic cone, M = 3.8, ( = 75.0,
Mode 1.
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Figure 3.68: Variation of ¢, with ¢ for adiabatic cone, = 3.8, ( = 75.0,
Mode II.
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Figure 3.69: Variation of ac, with a for adiabatic cone, M® = 3.8, ( = 75.0,
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Figure 3.73: Comparison of computed cr with asymptotic form.
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Chapter 4

Critical Layer Theory

In this chapter we consider the effects of the critﬁcal layer on the temporal evolu-
tion of subsonic instability modes in the compressible boundary layer formed on a
cylinder. Only two-dimensional disturbances are considered, i.e. axisymmetric dis-
turbances only. As remarked upon in Chapter 1, two theories have been developed
to determine inviscid, neutral stability characteristics of quasi-parallel flows. Both
resolve difficulties which arise when the linearized inviscid problem is considered.
The first is due essentially to Heisenberg (1924), Tollmien (1929) and Lin (1944,
1945) and is termed linear viscous theory. Lin (1955) summarizies the overall the-
ory, the essence of which is the retention of viscous terms in the neighbourhood of
the critical point. In the second method, the effects of finite amplitude are assurnéd
to dominéte over viscous terms: this theory is known as nonlinear theory. Benney
and Bergeron (1969) and Davis (1969) independently suggested that the inviscid
singularit}; could be resolved by including nonlinear terms in the critical layer.

We begin this chapter by applying the linear viscous theory to the stability
* problem we have developed, to determine whether curvature terms have any signif-
icant influence on the theory. It should be noted that the analysis developed in the
following section is based on the work of Heisenberg (1924), Tollmien (1929) and
Stuarct (in Rosenhead's book C\C&GB\\ .

211




4.1 Linear Critical Layer Equation Derivation

In Chapter 3 we have shown that for supersonic flow past axisymmetric bodies,
the disturbance equations reduce to a compressible Rayleigh type equation which
possesses a singularity at the critical point, i.e. a singularity exists at thé point 7y,
where wo(7;) = c. Since the disturbance equations are of the Rayleigh form, then in
the neighbourhood of the critical point, applying the method of Frobenius, solutions
of the Tollmien form can be obtained. In Appendix C the pressure disturbance term

is found to have a soiution of the form

Pa=(—rfta(r—r)+---,

2
P =14b(r—m)? +ba(r —r)*+ - + %-517A1n(7' - i), (41)

. where

_ Worr (ri) TOr (T'i) _1_
worlrs) | To(rs) |7’

and the coeflicients a; and b; are defined in Appendix C.

B= (4.2)

Clearly the first solution is regular, whilst the second is generally not, due to the
presence of the logarithmic term. If an axisymmetric generalized inflexional mode
exists somewhere in the boundary layer, i.e. if condition (3.3%) holds (with A = n =
0), then the term In(r — ;) will be absent and the second solution becomes regular.
However, generally the generalized inflexion condition will not be satisfied, giving
rise to a a dilema - which branch of the logarithm should be taken on either side
of r = r; if the eigenvalue problem associated with the compressible axisymmetric

Rayleigh-type equation is to be solved. To allow for all possibilities, we now write

In(r —r) =Inlr —r| +40 r<ry, (4.3)
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where @ is to be determined.

A second consequence of the logarithmic term is that it gives rise to strong gra-

dients in the perturbation pressure (and consequently the other disturbance terms)

in the neighbourhood of the critical point.

Before proceeding to determine the form of the solution in the critical layer, we

shall make use of (4.1) to determine the form of the normal velocity and temper-

ature disturbance terms outside the critical layer. To achieve this we consider the

behavipur of the disturbance equations, as derived in Chapter 3, as the critical layer

is approached.

From equation (3.12) § and 9; are related by

I
T A MZLa(wo — )"

~

(5

(4.4)

where a refers to the unscaled form of the spatial wavenumber (o = @ of Chapter

3).
Therefore in the limit r — r;, 9; will have the form
b1a = dy(r — i) + do(r — mi)* + da(r =)+ -1,
2
Bim = e+ ex(r = 1) & ealr = i) 4 oo+ S Foraln(r — 1),
where

di = 3?:T0(T|‘)
e YMZ o?wo,(r;)’

d ) [4:0,1T0(7‘,') n B(To,-(ri) _ To(ri)wOrr(rs'))],

- alyM2 L we (i) wor (1) 2wd, (r:)
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_ 2 5a2T (r,-) .To,-(r.') _ To(r;)wo,,(r,-) w?,,r(r.-)To(r.-)
RS o M o s Rl v A9 M Gy
Wopyr (T,‘)T()(Ti ) TDr (ri)wﬂrr (1",‘) TOrr (1‘,‘)
B 6wd, (r;) B 2wl (r;) 2wg,.(r.-))]’ (4.8)
and
_ 2b2iT0(!‘;)
= M2 o2wy, (r;)’ (49)
i ra?BTo(ry) Tor(ri)  To(ri)woer(rs)
“1= a27M3°[ 3wo,(r;) + 25 (wo,.(r,-) - 2w, (r;) )]’ (4.10)
4 To(rs) a?B B (Tor(ri)  Tolri)wore(r:)
= TME oy (5 5 Gy ™ () )
wgrr(”'l‘)T (ri)  woree(ri)To(r:) Tor (ri)wore (74) Tore(rs) ’
+2bz( 4w8,(r?) - Dﬁw?,,(r,-o) - 2wE, (r;) 2w0,,(r,-))}' (4.11)

Considering the energy equation (3.8) in the limit r — r;, yields an outer solution

for T' of the form

TA=f0+f1(7’—1‘;)+f2(r——r,-)2+...,
. 2 '
Tp = r——‘f’—or' +oatgr—r)+--+ %ﬁTﬂn(r-—ri), (4.12)

where

_ 8T, (ri)To(r:)
027M3°w(2],. (7‘;) '

fo= (4.13)

— 1 4a; Tor (1) To(r:) TOZr (ri) + To(ri)Torr(r:)
R T e G oy
Tor (i) To(r: )worr (ri) :
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1 (saTe(r)To(r) |, (Ta(ri) + To(ri) Tors(r:)
h= —azfyMgo [ wi.(r;) + 4a1( wi.(r;)

TOr(Ti)Tn(Ti)WOrr (Ti ) . 3To, (r.-)To(r;)wS,,. (T'i) Tor (?‘i)To (Ti)wﬂrrr(ri)
- wgr(ri) ) * 3( 4103,.(1‘,') B 3’&1)8,. (7‘.‘)

Wopr (r,-)(Tg,(r,-) + TO(ri)TOrr(ri)) 3T0r(ri)T0rr(ra') -+ TOrrr (ri)TO(Ti)
} w3 (7) ¥ 2u, () )} 419

_ 25T () To(rs)
>y MZwd (ri)’

o = (4.16)

1 | a? BTor (r;)To(r)

_ T3, (ri) + To(ri)Torr (ri)
" e

wgr (Ti )

_ Tor(ri)To(ri)wore(riyy |, —1
wey NS

+2%(

oty M2,

To(rs),  (4.17)

]

1 TO,. ('r‘,-)To(r,-)
[ ;

_ azﬁ.(Tﬂzr(ri) + TO(Ti)TOrr(ri)
T T T ()

3 w(zlr(rt')

_ Tor(ri)To(rs)wore () 3o (i) To(ri)whee (ri) _ Tor(r:)To(rs)wores (r:)
wSr(ri) ) * 2b2 ( 4?.03,. (T‘,‘) 3wgr (7‘,‘)

(4174 + al') +

_wOrr(ri)(T(?r (7‘.‘) + To(ri)TOrr(ri)) + 3T, (ri)TDrr(ri) + TOrrr(Ti)TO(ri))]
wd, (1) 2wi, (r:)

-1
47

Tg,-(T‘.'). (4.18)

Note that the leading order term for T5 possesses an algebraic singularity at its
critical point.
Since viscous effects cannot be ignored in regions of rapid change as, for example,

near the singularities of the inviscid equation, we wish to retain the leading order
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viscous terms ig the neighbourhood of the critical point, to determine whether vis-
cous effects will remove the unwanted singularities. For this purpose we now return
to the full system of equations of continuity, momentum, energy and state, as de-
fined by equations (1.1) - (1.5) and (1.20). Substituting disturbance terms (3.1) into
this system, and collecting O(§) terms, gives the following system

Uy 01 Tor U3 1y

+ =+ — =0, (4.19)

Z(wo - C)P + T .—?0—2"‘ To I"TD

iaz(wo - C) . 1 w 20 . . EO . ‘51 o
—Tvo_—vl = —mpr + E{uOrvlr + fpV1rr + Tr [vlr + 7 + 2’03]

+§.[«sm + ’% ~ f—;+ iar] } + o S (7 A 4o i) Tl e + '5_
—f_; Fita] 4+ %{wﬂf’"‘ + To(¥sr +ia’t)} + %{Es% + 5[5,
+571 +ibo|} 4 s { Tl + 2 4]}, (4.20)

o

M2

= [i(wo — )3 + wordr] =

T + 2 {uo, [ia®5y + Bay] + [t ® 1y + Taer]
]

" e iar 2 n  Folx D1, .. 1,
“+Wore it + Wor ity + 2?’&2 (U‘o”a + !13'_0 [vlr + TI + w;,]) + ;(wOrou

— [ . D ia2 S (%1 .
+T[03r + i 1’1])} + Rew {Foz[B1r + — + i3]}, (4.21)
€2 T

¢)p= '__"'"‘“""‘_"'{ owﬂr(v:}r

%[i(WO - C)T + 5, Tor] — 0(7 — 1)2-(100 —op= 2(y — 1) M,

. 9w 1 . 1 (1 - - . S
+Za2’01) + 'iwgrru} + @{;(Tﬂrﬂ + .u'OTr) + TOrnu + TOrﬂr + .u'OrTr + ﬂOTrr

5T}, (4.22)
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p=Top+ 7, (4.23)

where 1t is assumed

B = pg,[fo + 8(r) exp(ic(z — ct))] + (6%,

13 = HieolBlor + 8fia(r) exp(ia(z — ct))] + O(6?), (4.24)
and
Rey = JT P, (4.25)
200

Near the critical layer we wish to retain viscous terms at leading order, therefore
we now have to determine the necessary scales to ensure this. Consider the z-
momentum equation (4.21). The viscous term which will be expected to undergo

the most rapid change across the critical layer is

%%53,,. (4.26)

Balancing the term 7-[i(wp — ¢)i3] with term (4.26), i.e. requiring them to be the

same order, leads to the relation

(r—r;) = O(Re™Y/3), (4.27)

Therefore defining

(r — i) = €Y, where e¢=Re™* and Y =0(1), (4.28)

viscous terms are expected to be dominant in a critical layer of thickness ¢ .
Making use of the scaling (4.28) the z-momentum equation is expected to have

the following leading order form
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ap
TMZ, ,
where ¥; and j are assumed to be O(e), 3 = O(1) and i = O(1). However, taking

x

To(rs)

[{Y B30, (r;) + wo,(r:)1] = — + B(ri)dsyy, :(4-29)

the inner limit of the outer expansion for #;, we determine %; = O(1). Therefore to
achieve a sensible balancing, # = O(1) and ¥3 = O(¢™*) (and jt will most likely be
O(e™)).

Turning our attention to the energy equation (4.22), we determine that for a
sensible balancing to be échieved, it is required that T = O(¢™!), 5 = O(e™?)
and i = O(e™!). However, taking the inner limit of the outer solution for p, 1t is
determined that § = O(1) and therefore it can be deduced that at leading order the
pressure makes no contribution to the critical layer energy equation.

Examining the r-momentum equation (4.20), it is found that since the left-hand-
side is O(e), then'f, = O(¢), which in turn implies f(Y) = O(e?), i.e. pressure terms
less than O(e?) will be independent of Y.

Guided by the form of the outer solution and the above work, we propose ex-

pansions for the inner (critical) layer of the form

% = Uy(Y) + elnely(Y) + el3(Y) +---,
By = € Wo(Y) + IneWy (Y) + Wo(Y) + -+,
B =1+ ey + E5s(Y) + Elnepa(Y) +-- -,
T = e To(Y) + Inely (V) + To(Y) + -+,
fi= € oY) + Inefin (V) + fiz + -+, (4.30)
where Y and ¢ are defined by (4.28) and it is noted that the pressure logarithmic

term does not entry until O(€*Ine), because of the form of the outer solution.

Substituting the expansions (4.30) into the equation of continuity (4.19) and
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Taylor expanding mean flow terms about the critical point, to leading order gives

ﬁnf + iWo = 0. . (4.31)

The next order equation (O(Ine)) has the form

Uy +iW; = 0. (4.32)
The O(1) equation is
Wor(78) v & Tor(rs) 7o .z Oy
— - =L Wy + — = 0. .
To(?‘.‘) YT + Usy TQ(T‘,') Up + W, + m 0 (4 33)

Substituting expansions (4.30) into the z-momentum equation and Taylor ex-

panding mean flow terms yields the leading order equation

Oﬁ‘wUr(Ti) 3 ¥ ) - ia ~ _— ¥
YW, = — I Wovy. 34
To(rs) (YW, + U] 7M30P1 + Fori) Woyy (4.34)

Using result (4.31), equation (4.34) can be re-written

awg,(r;) i

— J (:T = —— D 14 1, i) 4.35
To(r) [-YUy + Uy ’YMgopl + lyyy fio(rs) ( )
Differentiation with respect to Y yields
ﬁlyyyy - ZIXYﬁlyy =0, (436)
where
g
A= ———— 4.37
To(ri)Fo(rs) (37)

Equation (4.36) is of course Airy’s equation in the variable U;yy, therefore

Uiy = aAi[(iX)*Y] + bBi[(:X)3Y], (4.38)
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where @ and b are constants. Since [; is required to be bounded in the far-field

(Y — o0), then we must have b = 0. Therefore the leading order term for the radial

velocity, in the critical layer, has the form

i = / ay f Y aAi[(iX) PY)dY + dY + e
1 o o )

(4.39)

where @, ¢ and d are constants which are determined by matching with the outer

layer. In the limit Y — 0 equation (4.5) can be written in the form

tha = di€Y + d2€2Y2 + d3€3Y3 4,

2 2
B = € + %ﬂdl}’dne + e[elY+ %—ﬁdlYlnY] deen,

Making use of the asymptotic result

Yy ;¥ %
ary 1/3 ~
/D jo Al PYIAYAY ~ 3 as Y — oo,

and matching O(1) terms of the inner and outer solutions yields

Therefore we have

ﬁl(Y) =€y = W@(Y) = 0.

(4.40)

(4.41)

(4.42)

(4.43)

Substitution of expansions (4.30) into the energy disturbance equation yields the

leading order equation

fZ:OYY - iQ?.U{),-(T,‘)YTQ = QeOTOr-(ri)r

where
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Equation (4.44) has a solution of the form

To(Y) = ~me™PegTy, (r:)| | Gil(i0w0r (r))?Y],  (4.46)

_8
wﬁ,(r; )

where the function Gi is defined by Abramowitz and Stegun (1965, p.448).

Since

Gi(z) ~ 7 1z7! as T — 00, (4.47)

then in the limit Y — o0, equation (4.46) becomes

Z.CQT(),.(T;) - _ 2b2T0,-(7‘,‘)T0(T‘.‘)
weor(r;)Y oty M2 wi (r)Y’

Comparing (4.48) with the outer solution taken in the limit Y — 0, to leading

To(Y) ~ (4.48)

order we have perfect agreement. Consequently, it is noted that the critical layer
solution confirms that there exists an algebraic discontinuity in the temperature as
the critical layer is crossed.

Returning to the 9; inner expansion we now determine the next two terms in the

series. The O(elne) z-momentum equation has the form

oo (7
To(r:)
Making use of result (4.32) and differentiating with respect to Y yields

)[U2 + zYW'l] Eo(r.-)ley. (4.49)

Uavyyy — idY Uyyy =0, (4.50)

where X is defined by (4.37). A solution to (4.50) has the form
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. Y Y - .
U, = / dy / FA(ENBY)AY + gY + b, (4.51)
0 0
where again boundness in the far-field has been assumed and the constants f, g and
h are determined by matching with the outer solution. Matching the.inner limit of

the outer solution with the critical layer solution as ¥ — oo, at order O(elne) gives

%f-ﬂdlY - (g +9)Y + k. (4.52)

Therefore

fd,, . (4.53)

which in turn implies

0= [ av [ fAilaR) vy + (%fgdl L

At this point it should be noted that in the inviscid region, well away from the

)Y. (4.54)
critical layer, the velocity perturbation term has a solution of the form

B1(r) = Bro(r) + E}gﬁm{(r) Feeel (4.55)
Therefore it can be clearly seen that in this region there will be no terms of or-
der ¢, elne, etc. As the critical point is approached it is the leading order term,
namely f10(r), that is produced by the method of Frobenius, as this term satisfies
the Rayleigh-type equation. The double integral of the Airy function, in the far-
field, will overlap into the inviscid region where it will be required to be zero, since
no O(elne) terms exist in this region. This can only be achieved if f = 0, thus

simplifing equation (4.54) to

~ a2
Uy = S-pdiY. (4.56)
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. We now consider the next order term in the #; expansion, namely U3(Y). The

O(¢) z-momentum equation has the form

wO,(r,)a[ YW, + U +Y(w0m-(?"-) Tw(ri))ee]

To T,) wﬁr('rz) To(T‘,‘)
i« . B
T TAM? P2 + Fio(ri)Wayy + wor (i) oy (4.57)

where results (4.43) have been used to simplify matters.
In the limit ¥ — oo using results (4.43) and (4.48), the O(1) continuity equation
(4.33) has the form
€o -~

W, = —=- Usy. (4.58)

Therefore, in the limit ¥ — oo (4.57) has the form

w()r(rs)a wDrr(ri) T(}r(ri) 1
To(f“ { YUaY * U3 +Y[ U)Or(?“i) B To("i) - ;;]80}

o . = - _ N
—;A—ﬁ*m + 1o (ri)Vsyyy + wor(7i)fioy - (4.59)

Differentiation of (4.59) with respect to Y yields

Wor (T‘. )

To(r:)
where 3 is defined by (4.2)

= [=YUsyy — Beo] = ifio(r:)Usyyyy + wor(rs)fioyy, (4.60)

It is now necessary to determine the form of jigyy in the imit Y — co. Write

w(T) = Bo(To + T(r)) = Mo(To) + T5170 + - (4.61)

Comparing (4.61) with the non-dimensional u(= p*/u2,) equation in (4.24) yields
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i = 72Fo

= . 4.62
f=Tam (4.62)
Differentiating twice with respect to r gives
. & O 2 0%hy 0To | 0%, ,0T0., | 0%, 0°Th
e =T g Y252 o T 1w ar ) T o2 Bt (4.63)

Substituting expansions (4.30) into (4.63) and transforming to the Y variable gives

the leading order

flovy = Bog, (ri)Tory- (4.64)

In the limit ¥ — oo, Gi" = O(s) (where Gi is defined by equation (4.47)),
resulting in figyy — 0 much faster than the other terms . Therefore equation (4.60)

can be re-written in the simplified form

ff3yyyy - z'_XYﬁ:;yy = ?:ﬁeg—)-\_, (4.65)

(where X is defined by equation (4.37)) and has the solution (in the limit ¥ — co)

Usyy = —1e™6X° Beo Gi[ ()37, (4.66)

Consequently, making use of the asymptotic form of Gt i.e. relation (4.47), in the

same limit, we can write

03}*)/ ~ __EEQ (4.67)

which in turn implies

Usy ~ ~BeglnY
and Us ~ —feoYinY +Ys,, (4.68)
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where s; is a constant.

Matching ‘O(e) terms of (4.40) with the Us equation in (4.68) reveals that we
have perfect matching between the inner and outer YinY terms, since —ffey = i‘éjﬁdl
(see equations (4.6) and (4.9)). The constant s; will be equivalent to some linear
combination of the €Y terms occuring in the Frobenius solutions ¥, 4 and ;5.

Therefore we conclude that when curvature terms are ilﬁportant in the linear
stability problem, the retention of viscous terms in the neighbourhood of the criti-
cal point, is still an adequate method by which the singularity in the Rayleigh-type
equation can be smoothed out. Indeed the determined results are found to closely re-
semble the compressible work of Lees and Lin (1946) and Lees and Reshotko (1962),
although in the fgrrﬁer case solutions are determined in terms of Hankel functions.
In our work the effects of curvature on the results is found to be restricted to the
constant 4, which if the critical point coincided with an axisymmetric generalized
inflexional mode is zero, anyway.

All that is left is to determine the form of YinY across the critical layer. For
Y > 0 the solution is valid, we now seek the form of the solution that is valid for
large negative Y. In the region of the singulaﬂty the term YInY is re-expressed
as N(Y). Following Lees and Lin (1946), any contour of integration present in the
solutions, must be indented below the critical point since the solutions are only valid
in certain regions of the complex plane. Consequently N(Y') behaves like YinY for
large positive Y and like YInY — i for large negative Y, provide f# # 0, i.e., provided
the critical point is not a axisymmetric generalized inflexional point. Therefore it
follows that In(r —r;) tends to In|r —r;| — =i for r < ry,ie., 8 = —7 in equation (4.3).
For the eigenvalue problem it is sufficient to use the asymptotic forms of In(z — 2.)
and In|z — z.| — m¢, since on the critical scale, Y will be very large at the boundaries,
and the asymptotic form of N(Y') is valid. For r < r., the pressure perturbation

term ppg has the form
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2
BB =14b(r =) +by(r — 7)) 4+ + %ﬁm[lnlr —ri| — i, (4.69)

The other irregular disturbance perturbation terms occuring in (4.5) and (4.12) can
be expressed in a similar manner.
We now consider the case where nonlinear effects are used to smooth out the

singularity in our axisymmetric compressible inviscid equations.

.
4.2 ")Nonlinear Critical Layers

In the previous section we considered removing the singularity which occurs in the
axisymmetric, compressible Rayleigh equation by restoring viscosity in the neigh-
boﬁrhood of the critical point. In this section, we consider instead, retaining nonlin-
ear terms in the critical layer and what role, if any, curvature plays in the nonlinear
problem. The method used is based on the method developed by Goldstein and his
many co-authors (Goldstein et el (1987), Goldstein and Hultgren (1988), Goldstein
and Leib (1988, 1989), Goldstein and Choi (1989), Goldstein and Wundrow (1990)
and Leib (1991)), althoogh all ths werk 19 based. on Hickernell's
In this problem the temporal evolution of a growing, sma&l\ gﬁlz}itua%?;\siabﬂity
wave (which is harmonic in space) is treated. To ease the analysis that will be

carried out inside the critical layer, it is found convenient to work in terms of the

streamwise coordinate £, where

£ = 2 — cot, - {4.70)
represents a coordinate in the z direction moving downstream with the neutral phase
velocity ¢g. The streamwise velocity component, T3, as measured relative to this new
coordinate, is related to the streamwise velocity as measured in the stationary frame

of reference, by
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U3 = v3 — Cp. (4.71)

Consequently, even though in the stationary frame of reference at a fixed point
mean flow terms do not vary with time, in the moving frame, since we are rnoving
downstream with respect to the stationary frame, at a fixed point mean flow terms
appear to vary temporally, if sufficient time has evolvéd. It should be stressed that
this variance of the mean flow terms actually occurs over long viscous lengthscales,
but since the measurement is made with respect to the I'noving frame of reference
is has the appearance of time variance. Therefore, in the following analysis when
we talk of the boundary layer varying over given timescales, it should always be
remembered that the changes are occuring within a moving frame of reference, and
in reality the variance is occuring over lengthscales, i.e., as time evolves we move
over these lengthscales.

For earlier times thé wave amplitude will be small and is well described by the
linear, inviscid temporal theory developed in Chapter 3. However, as time increases
and the instability amplitude contains to grow, this will no longer be the case.
The boundéry layer is assumed to thicken over the long (when compared with the
timescales over which the instability wave varys) viscous timescale and this mean
ﬂowl spreading will act to reduce the local growth rate while the instability wave
amplitude continues to grow temporally. After a long enough time interval, the
amplifude is found to be sufficiently large and the growth rate sufficiently small,
that nonlinear effects are of the same order as the instability growth rates. When
this occurs theA growth fate of the instability wave,. which is otherwise governed by
linear dynamics, is determined by the nonlinear effects developed within the critical
layer.

We shall begin by determining the form of the solution outside the critical layer
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for the particular time when nonlinear critical layer effects are important.

4.2.1 The Outer Layer

Since the viscous timescale is assumed long (with respect to local timescales) then
locally the mean flow will be nearly parallel and we can assume the inviscid limit.
The full system of equations of continuity, momentum, energy and state in the
axisymmetric cylindrical polar system, in non-dimensional form and in the inviscid

limit are

g—i + g;lpw] + :—E[pﬁal + % =0, (4.72)
P 11);;1 - “71\1430 %};’ (4.73)
755 B 61

P = T, (4.76)

where we are in the moving frame of reference as defined by (4.70), and in this frame

the Eulerian operator has the form

D 3 a 0

Di - §+”1"é';+ﬁ35‘§' (4.77)

Since temporally growing waves are being considered and for the particular time
being treated the growth rates will be assumed small, then nonlinear critical layer

effects will be expected to cause changes to the flow over the slow timescale
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d d
ty = 6"t = — = §*—, 4,78
! dt - dt (4.78)
where §é represents the disturbance amplitude and it is assumed that § Ll pisa
number to be determined. .

For early times before nonlinear terms have had any significant effect, the gradual
thickening of the bounda:ry layer due to the action of viscosity causes the temporal
growth rate of the linear instability wave to gradually decrease, finally approaching
its neutral stability conditi‘on (i.e. point of zero growth). We denote the linear,
neutral spatial and temporal wavenumbers by ap and cg, respectively. Nonlinear
effects will first become important in the critical layer at the time when the local

spatial wavenumber, o (where as in the previous section, & = @ of Chapter 3),

differs from its neutral value by an amount of order é#, so that

a = ag+ 6oy, (4.79)

where a; = O(1).
Outside the critical layer the instability wave is assumed to continue behaving
linearily (to leading order). Consequently the flow parameters are expected to ex-

pand in the following manner

o= aaRl[A*(tl)al(r)e-'a#H e
Ty = Wo(r) + SRI[AY(8,)Ba(r)e™¢] + -+ -, (4.80)
T To(r) + SRI[AY(t;)T(r)e™™o¢] 4 - -,
p =1/To + 6RIAY(t1)p(r)e™™] + -+,

P =1+ 6yMZLRI[AY(,)P(r)e o] + ...
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where the mean flow velocity, as measured in the stationary frame. is given by

Wo(r) + co (= wo(r) of Chapter 3),

Q1 o\
¢=(1+ a—;&‘)g, (4.81)
and the slowly varying amplitude function, A'(#;), is to be determined by matching
with the. nonlinear flow in the critical layer. This amplitude function, which is
governed by the nonlinear dynamics of the critical layer is also required to match
onto the initial linear solution. This matching process will be carried out once the
evolution equation governing At(?;) has been determined. Note, that the temporal
growth rates are contained solely within the amplitude function, A'(¢;), the phase
velocity contribution to the exponential terms, as measured in the stationary frame
of reference is the neutral value ¢ only. The pressure disturbance term has been
normalized by the factor YM?2,, to ease the analysis and also aid the determination
of numerical results‘ when we come to compute the amplitude evolution equation.
Substituting expansions (4.79) and (4.80) into the system of equations (4.72) -
(4.76) and making use of result (4.78) to the required level of approximation we

obtain the following system of equations

Vir TOr ~ iU3 U1

Z(Wg - C)p + 'i_'-; - Tgvl + FO + ﬁ; = 0, (482)
10? ~ .
- (Wo — 0)by = — P, (4.83)
Ty
1., . . .
E[Z(Wo - C)'Ua -+ Wo,-'vl] = —-1P, (4.84)
,I,l[z'(w0 — ) + o] = i(y — 1) M2(Wo — ), (4.85)
0
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YM2P =Typ+ =, ' (4.86)

where

o+ aat
iCIAT dtl )

(4.87)

Examining (4.87), it is noted that ¢ represents the deviation of the phase speed from
its neutral value (remembering that we are in a frame of reference moving with the
neutral phase velocity), therefore the disturbance terms must have expansions of the

form

¥y = tyo + 60 + -+,
U3 = O30 + 603 + - - -,
T=T0+5”T1+"':
P = fio+ 8fy + -,
B = ot 8+

(4.88)

Substituting these expansions into system (4.82) - (4.86) and making use of (4.79)

yields the leading order system

. ~ 6101‘ Tl}r ~ 7'630 610
W, —— —— — — =10 .89
1Wopo + T, ~ T2 V10 + T T, Y (4.89)
iod . N
TWOUIO = —Pors (4.90)
0
) - .
F[ﬁwo'vso + Wor D10} = —iy, (4.91)
0
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| SP— N . —
'ITD'[ZWQTO + T(),-’U10] = 2(")’ — l)MiW()pg, (492)

. . T
TMZ.fo = Tofo + - : (4.93)

0
The system (4.89) - (4.93), as one would expect, corresponds to the linear ax-
isymmetric disturbance equations as determined by Duck (1990) and can be reduced

to the form

o  Wor. tPo

Dyor + T W, v10 = ﬁ,’;[To - M2W¢), (4.94)
4 .
X0 Wt = —Fop (4.95)
To

Combining equations (4.94) and (4.95) to eliminate velocity terms, yields

d Topor WoyTobor 2.
Wo—d;[ Wo ] - (Wgr - -1"_) Wo - aOQpO = 0, (4.96)
where
=T, - MLW.. (4.97)

Defining the compressible Rayleigh-type operator for axisymmetric flows, ‘L®’,

to have the form

dTod WU Tﬂd 2
]"‘[ Or

R == — ] —— —— — ——— — —— ——
= Wodr Wo dr r 1 Wodr %®, (4.98)

equation (4.96) reduces to

LR%, = 0. (4.99)
In the notation of Goldstein et al., equation (4.96) can be re-written
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1d .. Woyhor 2 WE .
7 g Tofor) [2Wo T] W o [1- M2 7 |70 =0, (4.100)

resulting in the Goldstein-Rayleigh type operator ‘L%’ having the form

Woy 1l d

1d d w2
C=rE [Tog] - [2Wor - = ]Wo oL My, (4.101)

and equation (4.96) now becomes
£%0 = 0. (4.102)

Making use of equations (4.90) and (4.91) the streamwise velocity perturbation
term .*1730 has the form
To (W, )
25— O[O0 25
QyUzg = Wo [ Wo Por + a{,po] . (4.103)
The next order system of equations obtained from substituting expansions (4.88)

into équations (4.82) - (4.86) (this corresponds to the O(§#+!) system for the outer

solution) has the form

v11r  Tor. 1y | Uy,

Qpo + iy Wo + T, " rn t ot 0, (4.104)

Tio[ags’zﬁm + 2agay Wobho + tad Woby] = —pyr, (4.105)
%[ﬁi’ao + iWoiar + Wo 1] = —ify, (4.106) |

I-l,—o[ﬂfo FiWR, 4 Todn] = (v - DML + iWesl],  (4107)
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M2 5 = Top, + o (4.108)
where
N 1 dAt
= AT (4.109)

After a little algebra the system (4.104) - (4.108) can be reduced to

Wo 1. iOW,, i .0 i
Y11 + ["- : ;]Uu - '—W',Tvm = WO[TD - M:owg]Pl W2 [To + M&Wg}po,
(4.110)
and
1 . . . - -
ﬁ[agﬂvlo + 220001 Wg’vlg -+ ZUHC!gWg] = —Pir. ) (4.111)

Equations (4.90), (4.110) and (4.111) can be combined to eliminate velocity

terms, yielding an equation in terms of pressure disturbances terms only

, i c1d . Wo 1 fior MLW2
200W0£GP1 = aon{ﬁd_r(ropﬂr) + [" 4Wor + ""2] % - [1 + To ]Po}
| 1d. . Wor for
+2ies Wo{ g 2-(Tofior) + (= 2Way + 0)1;;0} (4.112)

Making use of equations (4.91), (4.105) and (4.106) the streamwise velocity ¥,

perturbation equation is found to have the form

00'031 {[‘;’S"ﬁlr + 0!0])1} + 2&1050 [po + _—'v.'iﬂ] ZQ [2?)30 1};20] }

(4.113)

To determine the form of the solution in the boundary layer, away from the

critical point, both the linear and nonlinear systems of equations represented by
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(4.89) -(4.93) and (4.104) - (4.108) respectively, must be solved numerically. In this
study, fortunately, we only require to determine the behaviour of the solutions in
the neighbourhood of the critical layer. Another assumption that shall be made
is that at the critical point the axisymmetric generalized inflexion condition holds.
Duck (1990) has shown that from linear axisymmetric compressible stability theory,
if the critical point is inflexional in nature, then the following condition is assumed

to hold for subsonic neutral modes

d (W, w! T 1
& - We _Ze_2_9 )
dr [rTo] r=r; 0 = w, T, ? (4114)

which corresponds to setting A = n = 0 in equation (3.37). The subscript ‘¢’
implies evaluation at the critical level. It should be noted that the non-dimensional
mean flow velocity Wy(r) is monotonic, thus insuring that there only exists just
one subsonic generalized inflexional point coinciding with a critical point in the
boundary layer. |
The form of the solution to the homogeneous equation (4.102) in the asymptotic
limit » — r; has already been considered in the previous section for the more compli-
cated case of non-inflexional profiles, although this was carried out in the stationary
frame of reference. This equation will have the same solution in a framé: é:eference

moving with the neutral phase velocity, however, since Wy = wp — ¢, yielding the

Taylor expansion

1
Wo(y) = wey + swey” + -+ (4.115)

From Appendix C, it can clearly be seen that setting # = 0 (which corresponds
to the axisymmetric generalized inflexional condition being satisfied) logarithmic
contributions are removed from the leading order pressure disturbance term solu-

tion, yielding the two completely non-singular linearly independent homogeneous
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solutions

2
[a 4
O =y geen, (4.117)
as y — 0 where
y=(r—r), (4.118)
and
2 1 m " 2
ao Tc 2wc 1 wc 2 2 aO 2 (wc)
= Qopfc _We W 2 ] 4.119
Ga 4'T. 3w 2wl r;) 2 Tk ( )

We shall assume that the pressure solution fp will be a linear combination of

(4.116) and (4.117), i.e.

Y (4.120)

The constant b must be generally deternnned numerically. Since both pm and 3 '(2)
will be unbounded as y — +o0, then b, is chosen to ensure that the linear combi-
nation f, satisifies the far-field conditions, namely, that for subsonic disturbances
Po is bounded. In the case of generalized inflexion points, when the critical layer
solution is examined, b; is found to take the same value above and below the critical
layer. For non-inflexional profiles this is not true, causing bl to undergo a finite
jump passmg from one side of the critical layer to the other.

Making use of result (4.120) and considering equation (4.95) in the limit y — 0

the radial velocity #;0 is determined to have the form
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. iT, 3, T w'\ y? e wiy 5w 3y
D10 = _.__t;é. -—y[gg——(-ﬁ 2w’)] _Zg[4a4+3b1(i—m)_QOXE]}+O(3’ )!‘
(4.121)
where
" nt o 2
Tc wcTc Tcwc Tc(wc) . (4.122)

7 2] T 3wl T Byl T 4wl
To simplify equation (4.121) we re-define the pressure solution equation (4.120)

to have the form

o = 9_[41) F B (4 - 28]

T T ~
e w1y
T T3 (b T ow Lz J (4.123)

where the generalized inflexion condition (4.114) has been applied. Equation (4.121)

can now be re-expressed in the simplified form

So=tfib (G (g~ 5+ (- 5] )

z{l b] ( : (2“;": r‘.) [bl (2“):: . . ri)] :L)}

Substituting equations (4.123) and (4.124) into equation (4.91) and taking the

limit y — 0 yields the following result for the streamwise velocity 30

. Tlf
530-(—b1+;1:)+ [—-F—%(%)2 %(g.z._f')uag
TRV R UM A 4 (4.125)




where again we have made use of the generalized inflexional condition (4.114). Sub-
stituting equation (4.123) and (4.124) into equation (4.92) taken in thi_a limity — 0,
the temperature disturbance term Ty, in the neighbourhood of the critical layer, is

found to have the form

! 1] ] "
‘2 Tc ( Tc Tc W,

= 2
To= yw! ;U_Z T ﬂu—é - bl] + M (v — l)wé) + O(y)
T, Trw! 1 - |
~ yul (J 2w 1 b+ MLy~ 1)w}) +O(y). - (4126)

As noted in the previous section, as the critical layer is approached the leading
order temperature disturbance term develops an algebraic singularity (as noted also
by Reshotko (1960, 1962), Goldstein and Leib (1989)). Consequently in the critical
layer the energy equation and in particular temperature terms are expected to be
important in the determination of the revelant scaling in this problem, since these
terms will be large relative to the velocity components.

Before considering the form of the solution in the critical layer, it is found nec-
essary to determine the next order term in the pressure expansion, namely p,, as
defined by (4.112). Making use of the homogeneous equation (4.102), the inhomo-

geneous equation (4.112) can be re-written as

~ r WL M2 W, 20 M2 (wo — cp)?
Gx _ o Oy ~ 2700 "0 ~ “A1 2fq oo\ o
L£7p = ZzQ[WGZ Poy + g T 4po] + - ao(l — )po].
(4.127)
Defining
. 20w 2eqw), .
¢ %58, (4.128)

n= T. D14 + ool

(4.127) simplifies to

238

'\




2&1

L%, = 20,4 + ——c Pig, (4.129)
where
Woy .. M2IW, .
L4 = [Wé’pw +ed =21, (4.130)
and
M2W2,
2 0)-
LCPp = -———ao(l— °,}0 )pov. : (4.131)
The general solutions to (4.130) and (4.131) have the form
Bia=pia+CHpY + 2 (Ifh Ll 2)5 (4.132)
and
ci ) + , we 1y
Pip = Pi2 + C + 3 (b22 5 ™ r—'_) L, (4.133)

where b3, and C, are constants, and f; ; and 1,2 are particular solutions of (4.130)
and (4.131), respectively, whose form can be determined by the method of variation
of parameters.

Therefore the solution satisfying (4.127) has the form

P = 2221‘) [Pl v+ Cilﬁgl) (bil + o wé ,.'.)ﬁ ‘(-’2)]
20‘1"’ [P4 2+ C3 215(()1) + (b-ﬁh ;:: )ﬁ 82)]' (4.134)

The particular solutions p; and f;, are assumed to be continuous, but are

unbounded generally as y — oo. As y — 0, p;, is expected to behave as
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d’pra  2dpry _a

d? y dy y

giving a solution of the form

+eteytoey’+eee, (4.135)

Pia=&+&y+&y’ +aytny+ &y’ 4, (4.136)

while $; » must be regular as y — 0.

The constants b, and Cf,n arising from the complementary solutions may take
different values either side of the critical point and this is indicated by the ‘+ and
‘—? superscripts. From the form of the i.imer solution it is found that CJ, = Cj,
because the critical layer cannot support an O(611#) pressure discontinuity (see the
streamwise momentum critical layer equation in the subsection concerning the form

of the solution the critical layer). Therefore we define

Con =Cf, =Cy,, n=1 or 2. (4.137)

As with the two functions that add to give the homogeneous solution, the par-
ticular solution and the two complementary functions that make up the inhomo-
geneous solutions (4.132) and (4.133), will generally be unbounded as y — Zoo.
Consequently, the constants by, and Cy, are determined to ensure that the far field
conditions are satisfied (i.e. the modes decay exponentially since they are subsonic).
This involves a complete numerical solution of the O(§'*#) problem for the pressure.
An alternative method, known as the modified solvability condition, exists to de-
termine the constants in (4.132) and (4.133) which requires only the determination
of the local behaviour of the pressure term p;, near the critical point, and has been
used by Benney and Maslowe (1975), Redekopp (1977), Heurre (1980), Hickernell
(1984), Churilov and Shukhman (1987), and Leib (1991), among others. In this
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problem we make use of the modified solivability condition to determine the jump
constants.

If the axisymmetric compressible Goldstein-Rayleigh type operator, £%, were
non-singular at the critical point then the necessary and sufficient condition for
the solvability of the non-homogeneous equations (4.130) and (4.131), would be the

standard orthogonality condition

/ * RES(2)p)(2)dz = 0, (4.138)

where ‘RHS’ refers to the respective right-hand-sides of (4.130) and (4.131). How-
ever, since L€ is singular at the critical point, this integral diverges, and a modified
solvability condition must be détermined. This is achieved by employing the far-field
conditions. As y — 00, pressure disturbance terms are required to be bounded,
since only subsonic modes are being consiaered. Therefore, the O(§'*#) pressure

terms must satisfy the condition

ph—0 as y — *oc. (4.139)

Since p; is a linear combination of py4 and f;p with respect to y and the factors
multiplying these terms (which are y independent) canwe)¢ be specified by employing

suitable boundary conditions on y, then we also have

Brasbrp — 0 as y — Foo. (4.140)

By the method of variation of parameters, equation (4.132) can be re-written in

the form
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_ 5O ()i (2) — 50 (2)5® Wo, . | oAMZWo.
pua= [ {057 (z) - 3 (=) WIZ [ngo,,+——ﬁ-s——po]}

C

(1) + W )
+C1 55 +3(b21 T r)ﬁ’ (4.141)

Applying the limit y — o0, yields

. il iz ~ '“4 2 I i -~
ylﬂ%o 32)( )[ 22 - + = To : ]dz — —Ca, (4:142)
and
. (;) W’Oz 5 fMZW, of iy, Wwo _1
y}{g}w ()57 7z Pos e pg]dz 3 (bz,1 + o r;) (4.143)

In the limit y — 400 we choose the lower limit of integration to be just above
the critical point, i.e. the point y, + € where ¢ << 1, and for y — —o0 choose a
point just below the critical point, i.e. y. —e. Subtracting the y — +o00 equation
from the y — —oo equation in (4.142) gives

2 2
W"’ fo —"]‘i:‘-—;vz‘lﬁo] dz =0, (4.144)
0

lim 9)( )[

y—oo

while in (4.143) yields

- 3 .. o ay, \Te (Wo: .. alM2Z W,
b{l —byy =~ C—)lg ylgg - pgl)(z)g[w;z-p()z + T ]dz, (4.145)

where F denotes the Cauchy principle value integral.
Substituting (4.123) into (4.145) and making use of result (4.144) gives that
the jump in the constant by, across the critical layer in terms of the leading order

pressure disturbance has the form
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- 3 .. +v T, Wo. ~ alMIW, .
b;:; ""62,1 = &_g!}}_{g " (w) Po( ) 0 P()z+ 0 To Dpo]dz. (4146)

Applying a similar agrument to the f;p terms, i.e. equation (4.133) yields the

jump condition

M2W

bt — by, =3 1100][ ( ]”2d (4.147)

We now wish to determine the form of the stréamwise velocity term @3; which
is defined by equation (4.113), as the critical layer is approached, by making use
of results (4.123), (4.125) and (4.134). Firstly it is found necessary to determine
the coefficients of the solution for py ; in equation (4.136). Since py, is a particular
solution of (4.130), then substituting expansion (4.136) into (4.130) taken in the

limit y — 0 and equating powers of y gives

1 w o2
O(g) . €2 = ETDOT')
0(1) : 263 + ofer = — 2 [y + 2 — 1],
O(y): 3&4+ (s —-ad)e; = [g(l:—)g:_)f %%25] + af,Mgo%‘. (4.148)

where £ is defined by equation (C.5) in Appendix C.
It is also found necessary to obtain the first few terms in the ;2 solution, which
by the form of equation (4.131) is assumed to be regular in the limit y - 0 and of

the general form

D2 = A+ fe?f + fay? + FaP e (4.149)

Again, substituting the particular expansion (4.149) into equation (4.131) in the Wimi\c

y — 0 and equating corresponding powers in y yields
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1 "
O(;) : f2 301

0(1): 2fs + agfl = —a?,
O(y) : ' f2 = 0,
O@W"): 4fs+(2x— ) fo+ M2 = 2[5+ MBL")  (4150)

Making use of results (4.116), (4.117), (4.136), (4.148) - (4.150) and solutions

(4.123), (4.124), (4.134), in the limit y — 0, the streamwise velocity is determined

to have the form

Ug1 = ~— [el + egln|y| + 2sz2i1 + -——bﬂ: ] + O(y). (4.151)

which, by the form of equation (4.109), can be re-expressed as

" 2 dAt , 2
A*v31=—[el(t1)+eg(t1)ln|y|+—i . by, + "‘Afb;b,]+0(y) (4.152)

It should be noted that the coefficients of the O(gy) and O(}) terms are both
zero, resulting in the leading term being O(Iny). It should also be noted that the
undetermined function & (¢,) is the same order as the Zz‘flb’{l and %‘—:}Lbfz terms.

The temperature perturbation term at this order, T}, has the form

QT a1 T W QT
[zwl)Z] [Zwl)2 (T' ivu;z - i‘) + % c (81 + 02 1)
et (f1 +¢5,)] +0(y). (4.153)
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We note that the leading order term is 0(;15) Since the Ty temperat'ure term was
O(3), we see no reason to discount that the n** perturbation term, Ty, would have
the leading order term 0(51,7). This presents nc; problem to the solution as we move
away from the critical layer, since as y — =00 it can be clearly seen that successively
higher terms will tend to zero faster. However, as the critical layer is approached
this means that the higher terms will approach the singular condition faster.

We now turn our attention to the form of the solution in the critical layer.

4.2.2 The Critical Layer

The form of the temperature expansion clearly shows that the complete outer ex-
pansion becomes singular at the critical layer. This has also been determined to
be true by Reshotko (1960, 1962) for compressible boundary layers and Goldstein
and Leib (1989) for compressible shear layers. Consequently, in the neighbourhood
of the critical point the equations will have to be re-scaled to obtain the so-called
critical-layer solution. Since the thickness of the linear, small-growth rate critical
layer is of the same order as the growth rate of the disturbance wave, i.e. O(6¥)
in the present case, for the reasons given at the beginning of this section, then the

appropriate scaled radial coordinate in this region is

Y =y/6"=(r-nr)/6*, where y<<l. . (4.154)

~To obtain the form of the critical layer expansions, the inner limit of the outer
solution, as determined in the previous subsection, is re-expanded in terms of the

critical layer radial coordinate Y, to give

vy = —8aoRI[iAle**¢] 4 6% (bounded Y-independent terms) + -, (4.155) |
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B = Yuldh + SY*ulls + (= by + —)SRI[ATE]

+¢S‘*“(-1—;3

pormpi[yat(— T Ly Lwe  2yr, g e (W0

o
wh ooy T,

T /1 w)! 2; dAt
+E(E) + '{Dz) - (81(t1)+ &(t)In]Y] + o di,

w)' 4+ bounded Y-independent terms) + 6”"173/1( — Rl[e; e""“’c])

b+ 20“ L At)] o)

+O(6%),  (4.156)

P=1+6yM22e T° Ri[A'e'¢] 4 6% (Y-independent terms) + - -,

z‘ﬁ
Y Y2 I

T=T, +T’6“Y+61‘“Rl{ [

where it is known from the previous section that

(= A(Z ~ ¢ot),
t]. = 6‘“t,
and
A=1462,
Qo

oo | Ateionc) 4 %T;’é"’“Yz 4eee,

(4.157)

(4.158)

(4.159)

(4.160)

(4.161)

Examining (4.158) it is noted that there exists the possibility of an infinite arithmetic

series in the parameter Y~", at O(6!1~*), where n is a positive integer. Therefore

as the critical layer is approached this term will tend to the singular condition very

rapidly, as noted at the end of the previous subsection.
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From the form of expansions (4.155) - (4.158) the critical layer solution is ex-

pected to expand in the following manner

vy = —8coRI[EA ™) 4 6%9hy (¢, 1) 4 Dy 4+ -+, (4.162)

2
T3 = Ywlé* + z;—w,’__'62" + 61 + 6%y + 3 + - (4.163)
P=1+ 6511(C, 1) + 8% Pra(C 1) + 8P + - -, (4.164)
T =T, + T/8*Y + 6" # Ty, + 6% Ty + 6T+ - -+, (4.165)

where ,,, ¢, etc., are functions of ¢, #;, and Y at most, and it is assumed that
6'~# > §%. The Iny term occuring in (4.156) has been incorporated in the term ds.

Each term in the expansions (4.162) -(4.165) is determined by solving the inviscid
equations of momentum, energy, and continuity, where we begin by absorbing the
equation of state into the other four equations. Since the disturbance terms are now

dependent on (, t; and Y, it is found necessary to transform the Eulerian operator,

«D>

Di » by applying the chain rule, i.e. since

oP 9POC 9P3t, OPOY
=PGY) = =it TV os

(4.166)
and so on, then the Eulerian operator in terms of ¢, ¢, and Y, where it should be
remembered that we are in a frame of reference moving with velocity ¢y, has the
form

0 a 3]

D=v (1+5"a0) + 6 +vl6""aY

3 (4.167)
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Combining the energy equation (4.75) with the equation of continuity (4.72),
both re-expressed in terms of (, ¢, and Y, yields
- 1 0,

~pDP = W—ﬁT = _[6 A2 3¢ + (4.168)

The momenta equations (4.73), (4.74) in terms of ¢, ; and Y have the form

3’01

1o 1 1 8P
0% =~ M 5P oy (4.169)
and
1 1 1+6e2 gp
T Uz = —'7M30( P )—a?. (4.170)

It is found easier in this problem to work in terms of the vorticity vector which

has the form

curly = QQ, (4.171)
where
Bvl _“3'273
Q= I— a -6 5 (4.172)

and A is defined by equation (4.161), Q represents the azimuthal coordinate. There-
fore taking ‘)\5‘%’ of equation (4.169) and ‘—§~*#22: of equation (4.170) and adding

yields

av3

—_ v, 1 X (8T oP OTOP
—u 1 A 3ToP 9T OP
Do +apgr 5t gyl = M Pen oy a¢ ~ B¢ 37" (4.173)
Making use of {4.168) equation (4.173) can be simplified to
1 A {8ToP 9TAP ' :

fyP
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Equation (4.174) can be regarded as the critical layer vorticity equation.
Substituting expansions (4.162) - (4.165) into (4.168) and equating equal powers

yields (from the comparison between the pressure equation and right-hand-side)

-~

0(6) : by + ie + ibr—" =0, (4.175)
3py ' 7 ?Zl _
O(6™) : Yor + ¢a¢ + = =0, (4.176)
144 A ;o o1y 1 Y.
O(6™):  tay +¢ac+ —dic + —[?/)2 — —tho| = ——Lp11, (4.177)
Qp r; L vy

where the operator £ is defined to have the form

% ,0 0
L= chb_(' + al-' (4.178)
For the temperature terms on the left-hand-side of equation (4.168) the leading

order equation (i.e. O(6)) has the form

1 - . - 3 -
(y=1)T. [£Th + Totpo) = - [¢2Y + ¢ + if-?-] (4.179)

However, by the form of (4.175) equation (4.179) simplifies to

LTy = TlagRI[1Atei], (4.180)
where we have defined
o = —agRI[1ATe™C). _ (4.181)

The next order temperature/continuity equation has the form
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(T‘_j}ﬁ“ﬁ{aaylﬁf’n + Tl ]} + 6% HejoThy = — [tz‘ay + du + %’] 6. (4.182)
Again the right-hand-side is just zero by equation (4.176).

In this problem it is required that nonlinear effects are present at the lowest
possible level. This is possible only if we choose §%* = O(§?~2#), i.e. nonlinear

effects will then be of the same order as the other terms in the equation. This

implies that p must take the value

o

rE=7 (4183)

which is the same as the scaling determined by Hickernell (1984) for time-dependent
critical layers in shear flows on the beta-plane, by Goldstein and Leib (1989) and
Leib(1991) in their work on compressible shear layers and recently by Shukhman
(1991) in his study of spiral density waves genera,ted' by the instability of the shear

layer in a rotating compressible fluid.

Applying the scale (4.183) simplifies (4.182) to

ETN == ——Té’l[ﬁ)'I - ’lz;()Tuy. ' (4184)

Substituting expansions (4.162) - (4.165) into (4.170) yields the following useful

results
Wy, ~ I S
0(9) : Tb0= ~Saz e (4.185)
6/5 w(’: ~ 1 ~ .
0(6°°) : T. P =~ Mgoplzc, . (4.186)

250




) 1ra~ . N i . 1 g, o .
0(6™%) : T [£¢1 + Y w1+ withy, — EYth/)o] =T [Pmc + ;;-Puc]- (4.187)

Substituting expansions (4.162) - (4.165) into (4.174) yields the leading order

vorticity equation ( i.e., O(9))

B ’ ¥ ’-
o gl wc¢0 - T‘;Pu(;
Ly — weiho + T M (4.188)

Making use of (4.185) and the doubly generalized inflexion condition obtained
by Duck (1990) (i.e. (4.114)), (4.18%) reduces to the form

£0, =0, (4.189)

where

01 = dry. (4.190)

At the next order (O(8%?)) the vorticity equation has the form

!

e, .0 1 e
= Llov] + %1 | =2 — w.| = oz [brv] = - [Tihra¢ + Tavhrae).  (4.191)
L li)g TMZ

Applying the results (4.185), (4.186), (4.190) and the doubly generalized inflexion

condition, (4.191) simplifies to

S T -
Llgar) = o[z Tuy — Qur]- L (4192)
Making use of (4.184) equation (4.192) can be re-expressed as
o gt oot o gl T4 W
Ll - 7l + 71| = aoRI(iAe™) [y — z-ﬁn,y] + b, (4199
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where equation (4.181) has been applied and term 7, which is assumed to be a
function of Y only and therefore is independent of the operator, will be determined

by the boundary conditions. Defining

!

o - w! .
Q2 = ¢y — E,ETm + 7, (4.194)
then (4.193) simplifies to
1 - !
£G, = coRI(iATE) [Quy — Z%Tuy] + -l;,—‘::,bch'. (4.195)

At the next order (O(67/°)) we obtain the vorticity equation

!

ﬁ[ﬂﬁoc — dsy + %1311} [Y2 + Yw ]-ai((ﬁly) ./,0 (¢2y)
—¢1 (¢1y) ~wihy + — [w V2 + Ywlho — w t,bo—]

._____1 5 o A . o
= M [Tc'lhsc + Tuyprae + Taavbie + Tibing ai-]. (4.196)

Making use of equations (4.185), (4.186) and (4.187) and the doubly generalized

inflexion condition equation, (4.196) simplifies to

s P, .
£Qs = aoRIAt\Qay — [Sul + .Z—;Yw:_.] Or

. " o
+thoriy + L£ma — P1Qry + 22 T [ <Y 1o + T11Y¢1] (4.197)
where
o ~ w! | T .
Qs = ¢y — oc — jfpn - Fqﬁ + T2. (4.198)

Q, is given by equation (4.194) and 7, which will be determined by applying the

boundary and matching conditions, is generally a function of all three variables.

252




It is now found necessary to match the above vorticity results with-the inner
limit of the outer solution in order to determine 7, and 7,. Clearly T}; = O(—l}) as

Y becomes large, therefore

&

Tu — 0 as Y — 4oo. (4.199)

Since the leading order disturbance term in the 73 outer expansion is independent

of Y then

Qr=dv =0 as Y — too. (4.200)

At the next order matching yields

2 n "
x Y? ,w T

| Q, — .E.w;(-j{ — Tc—) 47 as Y - oo, (4.201)
and Since it is required that Q; — 0 as ¥ — £60, . thew

2 " 1]
¥ (e - I

w, B
c
2 w, T,

(4.202)

=

At the O(8/%) order matching gives

I 1 (wé' )? 1(w_i' - 3)2 + Z’v_i:'}RI(A*e‘f'oC) +7m (4.203)

f)
wc T

as Y — Zoo.

Again, requiring the boundary condition Q3 — 0, as Y — o0, to be satisfied

then

72 = =Y RI[Atei™(], (4.204)

where
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T" 1 wf)z 1(wg 242 - w

Y= —2c _Z(Zc —(—< - = -, 4.20
T, 2(w3 2 w, i w!, (4:205)

Making use of results (4.202) and (4.204) @, and Q; are re-defined to have the

form
~ " ~ w:: ~ Y? , w::.rl T:f
Q2= doy — 7T ~ ?wc(ZEZ - ":F) (4.206)
and
= . . w! T . ;
Q3 = ¢3y — tho¢ — jyﬁﬁn - ch;él — TRI[Atei™t], (4.207)
and equation (4.197) can be simplified to
-~ . ~ 2 ~
£0s = aoRI[iAte*s\ay — [l + ¥ ul)yc
' 0
~ ’ -~
—TRI[A}, &) + "/’1[T11Y;£ - Quyl]. (4.208)

As was stated in the previous subsection, the slowly varying amplitude function
is determined by matching the entire critical solution to the inner limit of the outer
solution (4.155) - (4.158) (to the order of approximation of the analysis). Inspecting
the outer solution, it is observed that the O(67/%) streamwise velocity undergoes a
finite jump crossing the critical layer, so this term is expected to be important in
the matching process. Iﬁspecting, now, the inner solution détermined above, it is
noted that the O(67/%) streamwise velocity term is contained within the component
Q. Since this term is r:eéluired to match the outer solution, it is found necessary to

~ consider @3, in terms of the inner expansions of the outer solution, i.e. the term
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Rl[_‘?_{YAt(_Ic’_'_1(&)2+2(&_%)2+a3+M2 (w)? Tc’,, .

T (2 w! 2; dAt
5‘:(;) .+ ! ) (el(tl) + & (t2)In|Y]| + _._.(_i_t__b

2pf
-}--211-4‘1”):h )}ewoc] gRl[A*e“’“] (wC)T'. Rl[Af aaoC]

TI
(-

[

b+ )Rz[Af iaol] _ TRI[Ate™™C), (4.209)

which on applying result (4.205) simplifies to

RI[- (el(t1)+eg(t1)ln|Y|+ ?i%‘i‘—b;kl + 2"“A*b*) ). (4210)

Integrating (4.210) with respect to ¥ over the boundary layer and matching
with the critical layer solution, it is found that since the b3, and bf, terms will be
discontinuous across the critical layer (the other terms in (4.210) being continuous),

then we have the matching condition

22 dAt 2o,

R?[* o ik = Bl R ATBS, — bl ] f QsdY. (4211

It is now found necessary to determine Q3 (as defined in the critical layer) by
solving equations (4.180), (4.184), (4.189) (4.195) and (4.208), which can be done
seriatim, since £ is a simple linear operator (Stewartson (1978,1981)).

The revelant solution to (4.189) is the trival solution

0.=0. (4.212)

It is found convenient to work in terms of the following normalized variables
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{ = —'%alwétl - to, ’ (4.213)

X = ool — Xo, (4.214)
g = -2y, (4.215)
431

The coordinate shifts ¢y and Xp are introduced to ensure that the slow varying
amplitude function ma.tclfé onto the initial linear wave. Their actual values will be
calculated once the equation governing the amplitude has been determined.

From the form of equation (4.1_80) it is assumed that T}, has the form

T = RITY (n, T)e ]
1

= QD™ + EP (0D}, (4.216)

Substituting (4.216) into (4.180) and collecting O(e*X) terms yields

N o 2Tt o
T = [ 2l )eTocmds, (a7

’
—00 alwc

It is found convenient to introduce the normalized variable

A= 52— Ateio, (4.218)

The form of this normalized variable is based on the normalization carried out by
Goldstein and Leib (1989) on their corresponding amplitude function (which in their
case is a function of a slow spatial scale), although an arbitrary constant D has been
introduced here, to allow for any differences which may occur. The actual value

of D will be determined by numerical computations when the amplitude evolution
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equation is solved. This will be discussed in more detail once the evolution equation
has been determined.

Making use of (4.218), equation (4.217) can be re-written in the form

< iTiweey [ —in(is
Tl(f)=———2‘;—05—1 Alsy)e n(t-n)gs,, (4.219)

From the form of equation (4.195) it is assumed that @, has the form

Q2 = RUQT (1, %) + O (n, D)eX)
= RI[Q (n,9)] + %{Q(z)(n, DX 4 [P (n, D] e~ %X}, (4.220)

It is also assumed that ¥; has the form

b1 = RGO (1,7) + 347 (n, D]
= RO @,B] + 3 (00,9 + P, D). (4.221)

Substituting equations (4.220) and (4.221) into equation (4.195) and collectlng

O(1) terms gives
N t %a,T! . s .
RO = Rl [ — Tt (Aly e [7 Afe)(sn - sa)e = dsyds,

-2 Tf DO (s1)dst].  (4.222)

Making use of (4.218) equation (4.222) can be re-written in the form

~ T’

RI[Q&O)] =Rl[/_ %.&* 1)/ A(82)(81 — s3)e~ o1~ dg,ds,
- (0)

alT / FO(ss)dsy].  (4.223)
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Introducing the normalizing variable,

2 A
() — _%%@n 4.924

equation (4.223) simplifies to

Z.Q’ TZ g * -8y -8
RI| ((32)] = Rl[- 27!1{’%1—)3/— AY( 81)/ A(s2)(81 —~ s2)e n(e1=42) g, ds,

2010
o Swiw!T,

/ PO (s1)ds]. (4.225)

Turning our attention to the O(e%X) terms we obta.in the equation

. - T . , T! . 8 .
ng) - e..z.,,t/ e2ine %%;_:#Ai(sl)eah/ 1 Alsg)(s; ~ 32)6-—m(s1—a2)d32d51
—o0 ettl —oo

- T / P~ rin-o) g (4.226)
1

Making use of equations (4.218) and (4.224) equation (4.226) can be re-written

iOtT —2int E' ins [ ins
gz) 2T, c:lD?e o /_oo Afsy)e™ /_oo A(sy)(s1 82).8 M2 ds,ds,
_____ZQgT' ) e—2in(t—21)
B2l Ty J—oo 41 ds;.  (4.227)

" From the form of (4.208) Q3 is assumed to have the form

Qs = RIQSe™ + GfYe¥]

1o am) Ay _—i 1,50 3i 33« ~3i
= Q™ + (@} 4 {QPes 4 (O] eoX). (4.228)

Substitution of (4.228) into (4.208) and collecting O(e'X) terms yields
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4&1 T:;Da

(3 _ /z —in(E-s1) _
1 4ch —ooe A,ldsl

i1 . 2 s .
/ 6~m(t_’1){2A(81)Rl[/ A*(Sz)/ ’ A(S3)(82 - 83)26—"’('2_’3)d83d82d31]
+A*(81)./'u A(Sz) /‘2 A(Sa)(32 - 83)(231 — 89 — 33)8_""(2’1 _.2—’3)d33d32d81}

/
iT, ao
alwcw’ T.D

{2/ —iﬂ(f—sl)A(sl)Rl[/:; 'J){?,)dSstl]

£ —in(f—s * a0 .- ~2in(sy—s
__/—ooe (¢ 1)A (81)/_00 57)—[2,05”6 2in(sy z)]dszdsl}

o [ e RGOS + LA s, (4229
where again equations (4.218) and (4.224) have been used to simplify matters. Fol-
lowing the approach of Goldstein and Leib (1989), it is now found -necessary to
evaluate [°, Qgs)dn, in order to match with the outer solution as defined by (4.211)

(which is, of course, in terms of the un-normalized variables). Since equation (4.229)

is rather cumbersome this shall be carried out in stages. Firstly consider

e T d —in({f-s)
[-m T )¢ A, dsydn. (4.230)

This equation can be re-written in the form

= . o
~ D /_m [_m A, {cosn(t — s1) — isinp(f — s;)}ds,dn. (4.231)

Remembering that sin 87 is odd in  and employing integration by parts with

respect to s;, (4.231) becomes

4ch / {[A’l ( Mﬁ_ﬂ—)—) f Aysy sIn ﬂ(t —51)ds; }dn (4.232)
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Assuming that A(s; — —o0) — A,, (s = —o0) — 0 and changing the order of

integration yields

T [ 9%A >~ sinp(f-s)
- d 4.233
© 4wD Jooo 042 /_oo 1 ndsy, ( )
which in turn gives the result
Y
— ———Ar 4.234

where it has been assumed that sgn(f — s;) > 0, Vs; € (—00,%].
Equation (4.230) can be evaluated by another method. Firstly re-write the equa-

tion in the form .

I E o —in(f—al)
s f_ A, /_ e dnds,. (4.235)

Making use of the delta function, (4.235) becomes

T i -
4ch j-oo As'(l31)27l‘6(t - S])dsl, (4.236)

which when evaluated has the form . -

Y
- T (4.237)
where we have made use of the result
0 1
/_ _ f(2)8(z)dz = 3£(0). (4.238)

Clearly there is agreement between the two different methods.

The next integral considered is

00 T o 81 82" .
_/_ vy /_ e~ M=) 4% () /; A(sz) _[- ’ flsg)e™n—02=203) gs dg,ds, dy, (4.239)
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where

f(s3) = A(s3)(s2 — 3)(281 — 82 — 83), (4.240)
and -
_ taTiw,
" = —-40!1TCD3, (4.241)

which can be re-written in the form

t s o0 182 ,
(U3 Lm A*(S1) L; A(Sg)./;m [-m f(33)6_m(?+31~.z—‘3)d33d7]d82d31. (4.242)

Considering the two inner integrations of (4.242), applying integration by parts

yields

/;: {[f(ss)(_ sinn(f + 81 — s; — 53))]‘2

?7 -_0

L[ (nn+ S s)) gi dsq }di. (4.243)

Applying the boundary conditions and cﬁanging the order of integration yields

dndss, (4249

/"2 ﬁ © sinn(t 4+ 51 — 52 — $3)

-00 333 -0 n
which is zero.

Alternatively, (4.239) could be re-written in the form

t 8 82 o0 s
(4 _L” x‘l"‘(sl)/_;o A(sy) Lm f(ss) _/_oo e~iEta—n=a) g ds.ds,ds,. (4.245)

Again, using the properties of the delta-function (4.245) becomes
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vy [ - A*(s1) /_:o A(sy) /-; f(83)2m8( + 81 — (2 + 53))dsadsads;.  (4.246)

In the range of integration, +s; > s, 53, but since at the point f = sy = 53 = 83
the integrand is zero, then clearly equation (4.246) is just zero , as before.

We now consider the integration

f o 5 5 . .
/oo vlf e'“’("")ZA(sl)Rl{/ A"(sg)/ i g(s;,)e""’(”””)d33d52dsldn},
(4.247)

where

g(s3) = A(s3)(s2 — s3)?, (4.248)

which can be expressed in the form

t s s o0 .
) ./;w A(ﬁ)/_w A*(Sz)f_; g(s3) /_oo e~l-nt=0)dndsds,dsy -+

'3 s s oo .
01/ A(s1)/ l A(s2) f’z 9*(s3) e (t-a1=(s2=0)) g d 53 ds,yds,. (4.249)
-0 -0 -0 —-00

Consider the integral

/ N A(83)(sg — s3)* / ” eminlE-ataz—a) gy g (4.250)
-0 -0

Integrating once gives

/02 A(s3)(s2 — $3)*216(T — 51 + 89 — 53)ds3. (4.251)

Since £ — 83 + 52 — 83 > 0 except at the point f = 81, s; = s3, where the integrand

is zero anyway, then the first integration term in (4.249) is zero.
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The integral

s o0 . ’
/2 A*(33)(32-33)2f e~t-n—(z-03))dpds, (4.252)
-0 -0

can be evaluated to be

ZTFA*(S2 + 81 — -t-)(f - 31)2, (4.253)

and therefore (4.231) can be simplified to

t I3 | ’
2o, /_ A1) /_ A(s2)A" (81 — 82 ~ B)( — 1) dsydss. (4.254)

Looking at the form of the inner limit of the outer solution corresponding to
the critical layer term, Qa, it is observed that there appears to be no outer terms
for which the critical layer term, \!31 (or any of its derivatives), can match onto,
i.e. there are no §%/%, radial velocity terms in the inner limit of the outer solution.
Indeed, it is found that outer radial velocity terms at this order are purely viscous
in nature and since we are investigating inviscid nonlinear terms in this section
(implying that over a local timescale/lengthscale viscous effects are negligible to
this order), then outside the critical layer there will be no contributions at this
ordering. Consequently, there is nothing for the other integration terms in (4.229),
>namely the \ﬁl mtegrations, to match onto. Therefore, it can be concluded that
these terms will make no contribution to the f Qsdy integration. In fact the only

way that matching can be achieved is if \y is zero. Therefore, we can now write
i

AT
4w0,.D
CYolec
2T D0 Jooo A1) f (s2)4" (31 + 82 — E)(T — 51)"dsadsy. (4.255)
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Note that the curvature terms are contained within the constant T only, which is
defined by (4.205).
Substituting (4.255) into equation (4.2{1) yields the amplitude evolution equa-

tion
17 o i
Af= —KA — f\'/ A(Sl)/ A(sz)A*(sl‘l“Sz —{)(t"“sl)zdszdsl, (4256)
where
zlo-'lT‘cID2 22?.0:: _
P = eoTru? [= T+ =28, - 030)], (4.257)
and
2ia1TcD2 _
= ~raaTmurr ez ~ B2 (4.258)

Equation (4.256) is required to match onto the initial linear solution. Assuming
for small times nonlinear terms are insignificant in the evolution equation, then we

have

A@) —e™  as T —oo. (4.259)
Therefore, in terms of the unshifted time #;, the un-normalized amplitude At is
expected to behave like

2 /
ajwew

Af N ce—iXoe—K(—%alwétl—‘O) as 1 = —o0. (4260)

T 40dD
Inspecting (4.260) the growth rate of the linear wave is expected to be

1
5rc w, (4.261)
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where x, = Rl{x}. Therefore the coordinate shifts X and ¢, are chosen to ensure

the following condition is achieved, namely

At — glerronuihs, (4.262)

where a' represents some initial amplitude of the initial linear growth wave, which

will be complex. Therefore, substituting (4.262) into (4.260) yields

dwaw!

tobranwits __ ¢ ,—iXo ,—K(~taywity ~t5)
alezRovelt = e tt0gTrm AN (4.263)
2 . ’
4afD

which on rewritting a! in terms of its complex modulus/argument representation,

ie.

a' = |dle®®, where 6 =arga', (4.264)
gives the conditions
1, 4c3|d]D
= —ln|{—=> .
to= n| T i (4.265)
and
X, = k;to — 6. : (4.266)

&; is of course the imaginary part of «.

E(iua,tion (4.256) is the main result of the nonlinear theory developed in this
Chapter and represents the governing equation for the growth of the instability
wa:s;'e-. It is found to be of the Hickernell type, in that the nonlinearity occurs
through a type of integral convolution and can be regarded as a cubic nonlinearity
in the slow varying amplitude function. On cbmparing (4.256) with the evolution

equation obtained by Goldstein and Leib (1989) the nonlinear term is found to have
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exactly the same form - although Goldstein and Leib’s equation is in terms of the
slow streamwise distance, 7, by virtue of their spatial approach, as opposed to the
slow time, %, in our tem-poral approach - the only difference being in the coefficient
terms x and I. In his study of the nonlinear evolution of a mixing layer in a rotating
compressible fluid, Shukhman’s (1991) critical layer is fundamently different from
that presented here (and also that treated by Goldstein and Leib) in that the nonlin-
earity is developed from the irregular pressure disturbance logarithmic contribution
resulting from the critical point not coinciding with a generalized inflexional point.
However, the nonlinear term in his evolution equation is found to be exactly the
same form as that determined here and by Goldstein and Leib. Shukhman noted
that the only difference occurs in the coefficient terms which are dgte;'mined by
neutral mode analysis peculiar to the fluid dynamic problem being considered, but
these turn out only to be constants, thus resulting in an even greater universality
between Hickernell’s (1984), Goldstein and Leib’s (1989) and Shukhman’s (1991)
results. The results obtained in this section add even more weight to the validity of
Shukhman’s statement,. )

It is.now required to solve (2.%1,55). This is achieved by using a straightforward
Crank-Nicolson scheme to advance the solution in time starting from the initial linear
solution (4.259). The double integrals are solved using the trapezoidal rule with early
time ‘tails’ evaluated analytically from the initial linear solution. To determine the
values of £ and T, suitable subsonic, axisymmetric, generalized inflexional neutral
modes from Chapter 3 are chosen and the constants appearing in equations (4.257)
and (4.258) are determined for each of these modes. The jump constants, (b3, —b7)
and (b3, — b3,), appearing in (4.257) and (4.258) are determined by solving (4.146)
and (4.147) respectively, for each of the chosen neutral modes. It is found that by
adjusting the term D, the nonlinear constant § can be varied relative to the linear

constant & . - which remains fixed - thus allowing us to control
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when nonlinearity becomes important, i.e. we are varying the level of competitive
nonlinearity. The axisymmetric generalized inflexional neutral mode occuring for the
axisymmétric mode I instability, on an adiabatic cylinder at the location { = 0.05
(see Figure3-1%) was chosen as our standard. By numerical experimentation it is
found that arbitrarily setting D = w}, causes { to be large enough relative & to allow
for nonlinearity to produce a significant effect after a reasonable enough timescale
and thus allow us to study its effects. It should be emphasised that the choice for
D is completely arbitrary - any value may be taken.

Figures 4.1, 4.2 and 4.3 display variations of RI{A}, In{A} and |A| with scaled
time, £, respectively. For all curves presented the constants x and I’ are determined
with respect to axisymmetric subsonic neutral modes (')nl.y, where (1) and (4) cor-
respond to adiabatic neutral modes at { = 0.01 and { = 0.05 respectively, and (2)
and (3) correspond to neutral modes at ¢ = 0.01 for wall temperatures of T, = 4.0
and T, = 4.5 respectively. It is found that in all the cases presented the amplitude
growth rates terminate explosively in a singularity after a finite time evolution, as
expected.

The explosive growth of the slow varying amplitude terms, as noted above, is
attributrible to nonlinear effects which are in characterized by critical layer effects
only, and are independent of the constant coefficient terms. Since the aim of this
study was to see what difference including curvature terms would have on Goldstein
and Leib’s (1989) results, it is concluded that since curvature term contributions are
confined to the constant coefficient terms only, then there is no direct effect on the
nonlinearity within the problem, i.e. nonlinearity effects here have exactly the same
form as the Goldstein and Leib (1989) results. However, when the numerical study
was conducted it was found the the level of competitive nonlinearity, i.e. the ratio
of £ to 1/T, is important. It is found that 1/T" must be large enough relative to & in .

order for nonlinear effects to be observed over the timescales being considered. For
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some of the neutral modes considered (but not presented here) «xI' >> 1, resulting
in the linear terms completely dominating nonlinear contributions. However, even
in these cases it is felt that if sufficient time were allowed to evolve - and provided
the numerical scheme remains accurate - cumulative history effects of the nonlinear
terms should eventually cause explosive growth. Care must be taken with regard to
this statement, however, since the timescales involved may be of the same ordering
as the viscous timescale, and if this where so then the effects of viscosity could no
longer be ignored. It appears that in such a case the explosive growth conditions
may never be achieved since viscous effects may supress any rapid growth, but this
can only be answered by conducting a full viscous, nonlinear critical layer analysis.

In the problem treated here we have introduced a parameter D to help control
the product «T'. For a given neutral mode values of D can be varied until xT' = O(1),
but once D is fixed, then there will still exist neutral modes where «I" >> 1.

In light of the numerical results and what we have said above it can be clearly
seen that even though the explosive growth of the amplitude terms is independent
of the particular fluid dynamical problem being treated (as stated by Shukhman
(1991)), it is found that since the product «I' controls when it occurs, if at all,
then indirectly the constant coefficient terms are still important when considering
the amplitude evolution. Therefore, curvature will be important in the problem
through its effects on the constant coefficient terms and the resultant effects on the
values of competitive ﬁonlinearity.

Since the nonlinear term calculated here has the same form as that determined
by Goldstein and Leib (1989) then it is expected that if explosive growth occurs,
in the neighbourhood of the singularity the amplitude terms will have the same
asymptotic form as that determined by Goldstein and Leib, i.e. in the limit f — %,

where I, represents the time when the singularity will occur,
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_ Zt_::')'iT_) (4.267)
where ¢ is a real constant and b is a complex constant. As yet values for o and b
for our particular problem have yet to be determined, but this will be conducted
sometime in the near future.

‘ In the next chapter of this thesis we consider the problem of a viscous nonlin-

ear critical layer to see whether or not the observed growth rate blow ups can be

elimfnated.
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Figure 4.1: Variation of RI{A} with scaled time 7.
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Figure 4.2: Variation of Im{A} with scaled time 1.
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Chapter 5

The Viscous Nonlinear Critical
Layer Solution

In the previous chapter it was found that when nonlinear terms were retained in
favour of viscous terms, for the particular unsteady- critical layer problem being
treated in this thesis, after sufficient time had evolved the growth rate of the in-
stability wave was found to terminate in a singularity. The reason for this is that
the nonlinear term is a form of convolution integral in which past histories are im-
portant and the cumulative effect of this integral results in explosive growth after
a finite time evolution. This occured because in the formulation of the nonlinear .
critical layer problem important physics has been disregarded, or more preciAsely, in
the neighbourhood of the critical poin£ viscous effects have been totally ignored.
In this chapter we consider the case where viscous effects are of the same order as
the nonlinearity developed within the critical layer. Examining the critical layer
solution of Chapter 4, it is noted that nonlinearity first becomes important in the
temperature equation at O(8%/%), therefore viscous effects are now required to be
important at the same ordering, implying that the Reynolds number, Re, now has

the form
Re ~ 67815, (5.1)
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If Re is chosen smaller than §-%/% viscous effects will dominate the nonlinear
critical layer effects, while if Re is .larger then viscosity will not significantly effect
the solution.

We introduce the scaled viscous parameter

1
Reb8/5’

where A = O(1) and the inviscid solution obtained in the previous chapter can be

A= (5.2)

retrieved by setting A = 0.

Again, it is found convenient to work in terms of a frame of reference moving
with streamwise velocity ¢y, namely (4.70). Therefore, we again stress that even
though the boundary layer varies over-long viscous lengthscales in the stationary
frame of reference, since fixed points in the moving frame translate downstream
as time evol\}es with respect to the stationary frame, then mean flow terms can be
regarded as functions of time in the moving frame. Since viscous effects are no longer
ignored, then mean flow terms are expected to vary as the boundary layer spreads
over the long viscous timescale (as measured in the moving frame of reference)
ty = 4 = 51,6, (5.3)

Re :
which is of course longer than the nonlinear timescale, ¢;, defined in the previous
chapter. ,

Locally, i.e. for short time intervals, the mean flow terms can be Taylor expanded

about t; = 0, to obtain

uD(r: t2) = U()(T) + %’q(r, 0):\t16415 +--- ’ (5.4)
2
awo [ 4/5 .
wo(r, tg) = WQ(T) + W(?‘, 0))\t16 + ey, (5.5)
2
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To(r,ty) = To(r) + %tz‘l(r, 0)At, 645 4 .. ., (5.6)
2

it L] aT,
AT 22) = () ~ TR(r) oty

where uq(r, ¢2) represents mean flow velocity terms in the radial direction and the

(r, 0)At,645 + ..., (5.7)

O(6*/%) terms represent the effects on the basic flow due to viscous spreading,

Consequently the solutions outside the critical layer now expand in the form

vy = SaRI[A(¢;)5,(r)e™ ]+ 8%/50y + - -+, (5.8)

T3 = Wo(r) + a(r)‘:\t164/5 + SRI[AY (1, )53(r)e™ ] + 65/5T3p 4+« -, (5.9)
T = T(r) + d(r}3t, 65 + SRI[A} (#,)T(r)e’¢) + 88/5T,, + - - -, (5.10)
p= Tol(r) + o(r)it, 695 + SRILA!(1)3(r)e ] ¢ 5 pmtoee,  (511)
P =14 6yM2 RIAY()p(r)e ] + 6°P,, + - - -, (5.12)

where a(r), d(r) and e(r) can be determined from the basic flow, Wy(r) +co = wo(r)

since we are in a frame of reference moving with streamwise velocity ¢y, and

¢ = (14820 = 1+ 67524 (2 — o). (5.13)
: Qg Qg

The O(65/°) terms have been introduced in expansions (5.8) - (5.12) to match

with the solution within the critical layer - which we know exists at this ordering by
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the form of the inviscid solution - and to account for the slowly varying basic flow
terms,

Fortunately, outside the critical layer the additional viscous terms do not effect
the solutions already determined in the inviscid case, i.e. to the required order,
outside the critical layer viscous effects are not important.

We are not so fortunate with the solutions inside the critical layer. Re-exlz;anding
the inner limit of the outer solution in terms of the critical layer radial coordinate Y,
namely (4.154), and including viscous terms, suggests that in the case of a viscous

nonlinear critical layer the flow parameters possess the following expansions

vy = ~8aoRI[1ATe o] + 855w, + §7/53py + + - -, (5.14)

, .
75 = Yw!6*/5 4+ §4/5 (%—w;’ + ac)\tl) + 6y + 655G, + 675Gy + - -, (5.15)

P =1+ 68p13(C,tn) + 6%°p1a(C, t1) + 6 Pprg + - -+, (5.16)
T =T, + T'6*°Y + 85Ty, + 65Ty + 6Th5+ - -. (5.17)

Examining the radial velocity expansion (5.14), it is noted that the O(6%/%) term
has been set to uc\. This needs some explanation. Since by the locally parallel
flow assumption it is assumed that there is no basic flow contribution in the radial
direction, this implies that the first order correction term to this assumption will
have the form ug(r)/Re. Clearly, a Taylor expansion about the critical point, will
yield a correction term of the form u A5,

It is now found necessary to consider the full viscous equations of momenta and

energy (as presented in Chapter 2), which in non-dimensional form are
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Dv 1 8P 0 {2udv 7] 2 u
’ Dtl =~z tor [Re o (Ej}" EE)E'!] +
0 2u 0 2
Re 0z [ﬂ( 6: a‘:)] tr Rl: 3?;1 + (‘R% + gﬁﬂg)y_'}’.], (5.18)
Dv. 1 0P 1 8 ,8v3 Ov 9 12y v
P Dt3 = “'yMgo EN + EEE;[”(E; + —B_zl)] t 5 9zl Re 32:3
2 1 p/0v3 8
+(£% 15622 + )]+ = E (24 ), (5.19)
DT —1DP o 1,8
"Dt“77 oy~ (=Y w{ Al vl) )2+§('avz_l
v, - 118, 8T 1 8, 8T
"5')1.3)2] + -ﬁé(_V_- !)2} + G—R;;E;(ﬂr—a-F) + ;I—zga(ﬂ—a-;)’, (5.20)
where
Re, = ;;:‘—5:-;- (5.21)

From the inviscid nonlinear critical layér analysis developed in the previous chap-
ter, we note that we are only interested in terms up to O(67/%), therefore to the
required order of approximation we can write (in terms of the transform variables
¢, Y and ¢;, which are defined by (4.159), (4.154) and (4.160), respectively)

TaP

. : -2/5+ 01" jsh o
Dw, 7M25 P aY+0(59 ), (5.22)

+0(6"7%),
(5.23)

A _:_r_aP+A52/50T T 8vs 3253] §4/°CT? o,
T UaMLPO T P - layay T ay? rP 0Y
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(Y=UTpp i, CT?X 0 0ay2
FT—TﬁP_Mm(fy 1)=5—6 (ay)

\cssT §25TT,
+ [+ —

o(8%/° (524
+P +TTYY]+ (8°7°), (5.24)

where the non-dimensional linear Chapman viscosity law has been assumed, i.e.

p=CT, . (5.25)
C being assumed constant and ) is defined by equation (4.161). The ‘D’ operator
is the same as defined in the inviscid case (equation (4.167)).

Substituting the equation of continuity (4.72) into equation (5.24), gives

DT ~-1 Y N _Dp ,2/56111 0t; vy
T —(s v et )==5+(6 a7 Tt )
CTA 8% \csHs TT,
= M? (7——1) 52/5(31’3) + ip (12 + 627X Y+TTyy) (5.26)

Following in the manner of the theory developed for the inviscid case, it is again

found convenient to use the azimuthal vorticity component,

3v1 _2/5(963
R=2Gr -6, (5.27)

as a dependent variable. The crztmal—layer vorticity equation now has the form

— — —2/5 8T 2 (n
o-pp. M1 [?ﬁ?_@ _or ?I_] _ UMy 1)CT'\5215(3’3)
P yMZ Play'al — acay P %

Ao s 2/5TTY T 9 mﬂ

~Q= [T} +$ + TTyy| - e Tl Fay L]} + 2

T2 5%

B Ver L ov3

ic§ 6Y[ PBY]' (5.28)
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Substituting expansions (5.14) - (5.17) into equation - ... and equating powers

in 6 gives a sequence of partial differential equations for the temperature terms of

the form
élTll = "’Z’OTZ,
£1T1y = =Ty,
A T ¢ t o
LT3 = ! (7_ 2w,)Rl{e liaoYw! At 4+ A} 1} + C, T
wl! T T'T -
! c*+cC - ~
~goT1ay + T Y(sz - -1-,7)1/’ + Wy ME, [Plsc + ;;Pnc]
T'z\C’T2 ACT’T /\CTc —
¢ Quy — ~[T: ~ Ty
T.T
+ ny + T'YTu}’Y]
where
Tn = Tn,
uch TZTH

Ty = Tu - -T"Y2 ,\Ct [— +ete MR (y— 1)T2(w )2

I (T
+—(r—+ﬂ—>>1,

[ § Tc

-1 T, T
Y Tpu - —-'¢1 + = [—-— -

wl

5] Ri[Ateie),

c

Tla = T13 -
and we have defined the operators
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)




ier: 82

£1 =L - = 6—1’2’ (5.35)
= Yo 1 (I 8 Ry 7 2
Ca - [— "é—wc - acAtl + ch(T )] ac atl ’\ucTc 8Y’ (536)

the operator £ having been defined in Chapter 4, namely (4.178).
Substituting expansions (5.14) - (5.17) into the critical-layer vorticity equation

(5.28) yields the following sequence of partial differential equations

£yQ1 = iCTc(G ; l)w;TuY)', (5.37)

cW AC( I)Tlgyy, (5.38)

£2Q, =

N .
L£2Q3 = "Ql(['z—wc +acAty + iywé] — YoQay

ac/\_ ic

+o- Ty = TRI{AL*} + OB, — By, (5.39)
where
@1 = duy, (5.40)
Q = <)A5 Yy — w—',’ff“ + :\Ctl [ _Y u°T’ +o2M2 (v~ 1)(w')3T T 'T”(a 2)
2 2 T 12 CT ] c W p

— 1w T « Y2 ol T
~Toul - 2Tl (To= 2 - )] - et + o (VS — u), (541)
A - A / T . .
Q3 =-gay — Yo; — %ﬁu - ’1'-,2961 - TR][A]‘C'GOC], (5.42)
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Y is defined, as before, by

T! 1wl 1,07 2y w”
T=—i-—§(t—vi) +§(T_UZ—;:) +‘w_":’ . (5.43)
and
3TI " T.r __ N
B, =T ( Tc )an + YT.w, (ﬁc + F:)Tun’ + Tew Thayy
1 )
]Tuy + c[ cTuY QIY] (5.44)

2T' 1 T w!

By = Tcw:;[ T ]Tnv +w, TT13YY + Yuw!T, [T + ]TllYY9 (5.45)
[+ C

B, = Tcw;[_fz:c JTllY + w T .Thayy + Yw.T, IT cJTuYY, (5.45)

[

whilst we have defined the operator

Ly=L—-ACT?—. (5.46)

Inspecting (5.32) - (5.34) and (5.40) - (5.42) it is noted that these terms have
been matched with the appropriate inner expansions of the outer solution and far-
field conditions. As before, Ty1, Tys, QI and Q;», have been matched in such a \-wa,y
as to ensure all four terms tend to zero as Y — Zoo. In the case of the T, and Qz
terms, because of the additional viscous contributions, we have to be more careful in
our matching procedure. Matching is used to remove Y-dependent terms, ensuring
that both terms tend to a constant as ¥ — +oo, i.e. are bounded. It is found,
~ however, that there is no matching procedure by which these respective constants
can be removed, as this results in the solution for these respecti\.re terms acquiring
unwanted singularities. It is found necessary, therefore, to carry these constants

through our solution procedure.
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Following in the manner of the inviscid theory the normalized variables f, X
and 7, as defined by (4.213) - (4.215) are introduced to aid the analysis, where the
coordinate shifts Xy and ty again ensure that the instability wave matches correctly
with the initial linear upstream disturbance term.

From inviscid theory T, is assumed to have a solution of the form

Ty = RITS (n,9)e™]. (5.47)

Substitution of equation (5.47) into equation (5.29) and equating O(e'X) terms

yields
(1) (1) Q—(l) _ lleqw, o ‘
Tllt + ZﬂT 11 Tlln!} -Z—EEQLZ-A(t), . (5.48)
where
A 8a2\CT?
Q= ——%&?—- (5.49)

and A(?) is defined by (4.218), and we have set D = w!.
To solve the above equation the Fourier transform method of Hickernell (1984)

must be employed. Defining

a(&H = [ T, He o, (5.50)

equation (5.48) can be re-expressed in the form

1 y Q) ) o iT! oy w, i
/ {Tgl)t -T-L) - Tgl)nn Kndn = [.w{ - : AD} Kndn,  (5.51)

2&‘010’

Integrating term by term we have

1) _ ® =) i
._[_oo Tgn ’Knd az[_[_m T-i1 e Knd’?] = &1, (5.52)
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and .

o = a oo —
/ znTﬁﬁ)e Kndp = _B_I_(-[.[-oo Tgll)e K"dn] = —21K. (5.53)

—00

integrating by parts twice and making use of the result

Tﬁ),,, TR =0, as 1 — oo, (5.54)
gives
/_ ‘: T e~ ndy = K| /_ °; THe ) = K2z (5.55)

Thus equation (5.51) can be re-written as

K2 1Tl o,

2= —
2apw’,

2y — 2k + A@)S(K)2r. (5.56)

Switching to the variables K and { = ¥ + K, reduces equation (5.56) to the

first-order ordinary differential equation

QK 2z _ T eqw,
1= )
QoW,

%K — At — K)§(K), ' (5.57)‘

where we have made use of the result

8z, 0z 8 0200K 0z 92_1

3K =~ 818K T 3K9K ~ o T 9K’ (5.58)
Solving equation (5.57) gives
2 = By Ko if K<o,
inTioayw, | - A Y AR )
% = {_ao_%_A(t) + B} K>, (5.59)
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where Bj is a constant to be determined. Since a; < 0, then by (5.49) & > 0,
implying that z; will grow exponentially as K — oo, However, in the far field 2 is

required to be bounded and this can only be achieved if

; !
o _ T o w,

Bl=

A(?). (5.60)

apw!,

Therefore equation (5.57) has a solution of the form

irTloqw, LK

P 13 A(t + K}H(-K), (5.61)

zl(K,f) = -

where H(K) represents the Heaviside function.

Defining the inverse Fourier transform of z,(X,?) to have the form

TH(07) = 517—; /_ 2 % (K, T)eX"dK, (5.62)

then by the form of (5.61) we have

iT oy w,

1),
Tll (n)t) = 2a0w,

0 A .
/ A + K)o gikng g (5.63)

Introducing the transform variable s; = + K, equation (5.63) can be re-written

- iTloWe [F  _aGe1®/20 L
Tgll)(vq,t) = —ﬁ[me a( 1)3/30A(5k)e it ‘l)dsl. (5.64)

Comparing (5.64) with the corresponding inviscid result, namely (4.219), it is
noted that the only difference is the term exp(—Q(Z — s;)3/30).
Guided by the inviscid work of Chapter 4, it is assumed that @, can be expressed

in the form

Q1 = RIQ{M (5, D)e' ], (5.65)
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Substituting equation (5.65) into equation (5.37), collecting O(e'*) terms, ap-

plying Fourier transforms and switching to the variables K and #, yields

i o0—1 9
Yi[{ QI(Y; -'-Zx—%—j;( pn )K 21, (566)
where
Yi(K,T) = /_ Qi Be vy, (5.67)

Note that Q{ has been normalized by employing relation (4.224), where ‘tilde’
terms have been replaced by ‘hatted’ terms here.

Integrating equation .(5.66) gives

iﬂ'TéaoQ

QB
Weay Tow!, l (

(2= — A(t)/ BH(-h)exp| - = )]dz1
+B,}e" 3, (5.68)

hi={-

where B, is a constant. Integrating (5.68) by parts yields

?:7('T’ao Ql 11K ~ NK%/3 .
Yi {m (t) exp '—'—3—( p )],_m'l‘Bz}e if ‘K<O,
inéag - ﬁl% o —1\1(0 3 K33 .
Yi = {mA(t) exp [w —3—( p )] ’—oo + Bg}e if K >0.
(5.69)
Since Y] is required to be bounded as K — oo, then
s irTlag :
By = — ot A, | (5.70)

where ¢ < 1 is a necessary condition if ¥} is to be zero for K — ~oc0. Note, if o =1
then the first exponential term in (5.69) disappears. Therefore equation (5.66) has

a solution of the form
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Vil D) = — e P AT+ K)H(-K){1 - exp | - aK® () )

By the form of equation (5.30) T, is assumed to have the form

T2 = RITS (1,8) + T2 (n, He*™ ). o (5.72)
Substituting equation (5.72) into equation (5.30), and collecting O(1) terms

yields

Q) 1 W e
RI[Ty; = —Tiony) = — -5 RIGA* @i (5.73)

12nn

q

Because the real parts of the respective sides of (5.73) are equated, great care must

be taken when applying Fourier transforms. Defining

28,0 = [ TR0, B vy, (5.74)
then clearly
A~k = [ [T %y, (5.75)

Therefore the Fourier transform of (5.73) is

0 , - O _
zﬂKﬁ+;K%AKﬂ+&hKQ+;W%EK@=

(B)n(K,?)] -

(-K,1)], . (5.76)

where it has been assumed that T{n and T _ﬁ)n (and their respective complex conju-
gates) are bounded as 7 — oo, respectively tending towards the same constant in

both limits, giving zero resultant.
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Diécarding complex conjugate terms in z; (where i = 1,2) occuring in (5.76) and

integrating with respect to K yields

rwiTle
" 2a0 (wl)?

z(K,1) =

{ / H(-K)F(K,?)dr}, (5.77)
where

A

F(K, %)= iKexp[—-

(= r1) = K)|A*(ry) A(ry + K). (5.78)

Note, if the complex conjugate terms in (5.76) are integrated instead, the resul-
tant equation for z§(—K, ) confirms the identity (5.75).

The Fourier transformed O(e*%) equation has the form

QK2 K
7K = 52 = 4w )Kzl, (5.79)
where
w(K0) = [ T, De ke, (5.80)

and we have introduced the transform variable

(5.81)

. - K
t= —_
t'f'z

Integrating equation (5.79) gives

irT!wla

%= Zao(wl)?

LH(-K / lexp | (K3+13)}A(t— )A(f+%)dll, (5.82)

where 23 = z(K,{ - £).

By the form of (5.38), we assume Q, can be expressed in the form

= RIQV (n,7) + 0P (5, 7)e¥X]. - (5.83)
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Substituting equation (5.83) into equation (5.38), collecting O(1) terms, and

Fourier transforming yields

Yo (K,7) + QK?Y,(K,T) = (HYi(K,T)
2 W20
o - o 205 o—1y -
oot KA (KD a_..-__%ngc( — ) K*2(K, ), (5.84)
while the complex conjugate equation has the form
YZ.%("’K-’ )+ QK2Y2*("-K’ f)=-— T(=K,?)
+-——2——KA(t) *(—K, %) - 2040 ("‘ 1)K2z"(—K 7) (5.85)
wel.alw! # aAdwT.\ o 2 o '
where
Yy(K,7) = / QP (n, e~ Kndy,. (5.86)

-Integrafihg equation (5.84) with respect to  gives

. 7 E
imag T / e~ @) [2K A () A(ra + K) H(— K)GXP{QK

Yz(K,T) = ST (@) o

- | AKE o —
— KA () exp (Z=) s+ KOR(-KOL - exp [ - Z5=(557)] s

+Tf?£32(”"1) f_ K2R - g(— k) / dudr fdra, (5.87)

where

Iy

Q;j 2 [3(ry — r2) — K]). (5.88)

= 1A*(r;)A(r2 + K) exp ( -
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Before proceeding it is found necessary to simplify the. third contribution to
(5.87), i.e. the term involving the double integral. Changing the order of integration

this term can be expressed in the form

'iTT aoﬂ —~ 1 2
Toon (wc)2 ] Vg f exp [QK )rl]drldrg, (5.89)
where
) * 3 —-0K? QK* .
= iH(—K)A*(ro) A(ry + K) K™ exp 5 (3r2 +K)|. (5.90)
On carrying out the inner integration, (5.89) simplifies to
T ] ' H(—K)A*(r)A(r + K)K{ exp [ - A K)]
Tea (w?)? oo ! ! P

— exp [UK?(E - ry)| exp [%{—3] }dry, (5.91)

where we have set ry = ry.

Equation (5.87) can now be re-expressed in the simplified form

Y2 (K%)=
xTlag
2T, al( )2

—{1—exp[—9£—( —1)]}exp[—n 2(3(t~—r1 K)| }dri.(5.92)

/' iK H(—K) 4" (ry)A(ry + K) {26xp[—Q—K—(3(t—r1) K)|

The Fourier transformed O(e*X) equation in terms of the variables K and #, has

the form
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QK2 o? . K
- Vie —— % 4 &
Yox 2 ° 2wcTca¥w{:A(t 2 .)Kzl
0
+w2a§Tc( ) K25, (5.93)
where
G(KD = [ Qfn,B)e  ndy. (5.94)

Integrating equation (5.93) yields

Iy

Ys = 4;:’5 (‘::)2H( K) / {— 26801 ¢ — )IIA(t-}--w exp (%g)
+{1—exp [— ——( — 1)]}A(£- %)IIA(f + 1—2‘- e%'-(ff’“i)}dzl
_4;’;"32-’;09)2 (”;I)H(—K) f: B exp [%(K"‘—lf)] /:asdszdl], (5.95)
where
3-82exp[ (I3+32)]A(t———)A(t+ (5.96)

and the boundary condition Y3 — 0 as K — oo has been applied.
Again, changing the order of integration in the third contribution to the right-
hand-side of (5.95), yields the simplified equation

‘er'ao £ a 3
%= oK) / I A( —)At+ ){ 2exp[-—(1 + k%)

+{1—exp[- 9311( ;1)]}exp [%—(K3+l§)]}dll, (5.97)

where V3 = Y3(X,{ - X).
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Following in the manner of the above work, it is assumed that Tw can be ex-

pressed in the form

Tha = RITS (n,D)e™™ + T3 (1, 8)e%*]. (5.98) |

Substituting equation (5.98) into (5.31), collecting the O(e'X ) terms, and Fourier

transforming yields the following system in terms of K and #

L
S g+ ) + - {f“j (i~ K + toizy - 28 (ot )

(e~ e v 25 1)

_ dfwTIA@{ - K)r (w_;' T”) [51{ + 2iag 6(K)]

20kw! w!

_tw, . A(-K), T!w? Towie] . rro—1
— [ad - K)«—zK —-2—-sz3] e iKY (— )

t
[

A

alﬂ O WV 11
200T0 T K (215 + zu)] ST, Kz

22.T‘_{Tcao (1) (3] (1)1

W( D - K) + P~ K))2r6(K), (5.99)
where
— o0 - .

2(K,7) = /_ ) T (,3)e=Fndy, (5.100)
Z(K,t — K) = z(K, ~ K) + z3(—K, — K), : (5.101)

and it has been assumed that
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pu = RIPJ (B)eX], ' (5.102)

and

pis = RIPR @)™ + PP ()], (5.103)

It should be noted that p;3 is determined to independent of Y, from equation (5.22).
Equation (5.99) is now integrated with respect to K and the far-field condition

z4 — 0 as K — oo is applied. It is found that great care must be taken when

applying this condition. Defining

#(K,t - K) = H(-K)3 (K, - K), - (5.104)
where
. . 402T! /\uc Ty 200 (2a.) .
24(K,f—K) = {_m_zK 1+ g (i + ) + alw;{alwg(t - K
R LT, . a3Tiw!, w "o
+to)izy — 21a§ (Z1k + 337) — ( 2T ™ 21)(21KK + 22 ki + zm)]}
*(F L] —
“"°[ LG - Kyiks - A=) s 3] — T“’ al ik V(2 1)
wl, o (o)
) (T,
25‘;30 [-—zK 3+ 20‘°T 1{2‘ — TR (b + 243)| - ‘“Tz? iK#},
04 ¢
(5.105)
and
5(K,T) = —%’& K f30 (% 1K), (5.106)
5(K,T) = % f F(K,)dry, (5.107)
c
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Tw?
z;»,(Kt ’:a (‘:’u,g'; / llexp[ (K +13 ]A(t—-—)A(t-i— Lydly, (5.108)
N _ z'7rTéao K/ QK3 o—1

the integrand F(K,?) being defined by (5.78). For K < 0, equation (5.99) has a

solution of the form

24 = exp QK:;){/ 11,t — i) exp ( — g--)dll + B4} (5.110)

while for' K > 0 the solution is given by

z4=exp( {A(K t)+f 24( ll,t——ll)exp(——gl—a-)dl]

+], 5

A

- R -
)11 ( I,t—ll)exp(— 3—;-)dll+B4}, (5111)

where
+T2’ijluzvc (2wf ){at (- ’1)1| — A~ K)exp (- %)6(1*{)
o . Ql3 2 cTc’ " Tél
+§1'[A(t —h)exp ( 30 )] L;-—O} - %gg—w;(i_i _ E) 2zao

QK3 {

+A(F ~ K)exp (- -~ )6(K) —

2= tyew (- 2]} 02

and B, is a constant of integration.
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Applying the far-field condition yields

84 = TOxp (9{2_3){1\“{,{) + _/_Ooo 5’4(11,{— l;)exp ( - %—?)dh
© We e o . Qlili
+ [0 A - hs(-Li-h)ep (- 31)dn}.  (5.113)

Therefore equation (5.99) has a solution of the form

© We , ar (g F 1)
2= —H(K) [~ b A= h)3(=h,f — h)exp [ - (8 - K*)]dn

—H(~K)exp (9—3‘?){ /}: ;z,(zl,{—zl)exp(-%?)dzﬁA(K,f)}. (5.114)

It is now found necessary to determine the O(67/%) vorticity component. We

define Q3 to have the form

Qs = RIQY (1, )e™™ + QP (n,T)e¥X). (5.115)

Substituting equation (5.115) into equation (5.39), collecting O(e'X) terms and

Fourier transforming gives in terms of K and ¢
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Tn 0
2w.w!, ot

Yix - QK°Y, = F-K +to)¥4

[ i K)](S(K) + 2ty [Zac

103w’ " 2

A w
+ 2;% M+ YIK) (Yut + 2Yjix + YIKK)]

A

ch Op acﬂ

{A(t - K )—zK = —A“(t - K)KY3} + Wz‘lle,
2'\ A "
ogfl o —1\ ., @t [o0~1\2w" (80—1\1;,
Tca%wg( o )I( 24—201Tcw(2:[( o )wé —“( e )T_;IZI{ZI
20) " -
o 2w]  1yo—1\[,2 ), )
alw;ngc( “,“.,T)( )& 2 oK (21k + 2)]
CYI‘cz wl Tiso+ 141, 2T'01Q '
— == KY, — —= - K%*, cKi(Y; Yi;
20 [w; Tc( o )]Z h o' T, ( K 1+2a0 (Yix + 1:))
alﬂuc .
T aCT? T 2 szl zKYl], (5.116)
0
where
Yq(I{,{) = ./-W‘lei)(n,f)e—ih’ﬂdm
and

Ya(K,f - K) = Y3(K,T - K) + Y (=K, i - K).

Integrating (5.116) and requiring that Y is bounded as K — oo yields
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Y= —oxp () (100 [ 2 1,4~ )% 1~ By e (~ )

afQd (=) EE) [ Boa(o,Ddsy + H(-K )2r:r w57 slac-n)l,,

T Toadw?
M

2 2c iatw]
$H(-K) [ {220 [0 G by o)+ " B o)

aiwl tagwl

OK3 o
(=

+H(-K) T 2 2B(t {1—»exp[—-

w'a? o . . aoacfl o
+'"8-&g‘(yiii +2Y3, + Yum)] + W“lzl

245 _ 3
_T:;)%?w (a o 1)’1 (%) fl 24(lo,t — Ip)exp ( - Q-—)d’z

iK% — z'K}‘q]

Q ~1\ 20" 3o —1y19. . Qu,
_ZaC:;’cwz[(aa );v' - (= )r_,-]“l""1 z:c;‘?[:/’alwz

+ zn)]

alﬂ " TI c+1 2T’Clﬁ 2 c 2
e S )

(= h)hYs}}exp (- —I—)dll} (5.119)

zwc

where %, 24, and l?’l are defined by (5.106), (5.105) and (5.109), respectively, and

A

Vy(K,7) = ZTZTSFO' E [ LKA () Al + K){2exp |~ 2 ——(3(t —n) - K)]

3 _ - A 12
~fi-ep [~ () o[- - ) - K,
(5.120)
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(K, i 5) = 5% "1 - A6+ D) - 2exp [+ K°)
+{1=ep [~ B () Yerp (St 4 )],

(5.121)

" QK3\ o A . )
Sa(K, ) = exp (- =) f A~ 1)25(~1, ~ h)exp [ — (18 = K%)]dh,

3 K 2 !
(5.122)
B(f) = :‘%__3_%( (1)(t)-|- (1)(t))
T’ 2 A n le
igor g~ 2= 0, gl (- ]|}
edulin T30 4 2 Lty (- S]], ). a2

Now that the i;érm Y, has been determined, it is found necessary to determine

the corresponding value of Q§3)(n, ). We define the inverse Fourier transform

Q¥(n, %) = /w Yi(K, DeKndK, (5.124)

where it is noted from (5.119) that ¥ is a function of K and f — K, therefore care
must be taken when applying the inverse Fourier transform of the right-hand-side.
Secondly, (5.119) as it stands is a fairly lengthy eipression and carrying out the
inverse Fourier transform of every term on the right-hand-side can be a very tedious
and time consuming process. However, since it is only the term f°2 (3)(77, 1)dy

which we are ultimately interested in, as it is this term that is matched with the
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outer solution (see the inviscid theory in Chapter 4), it is found more convenient,

and indeed the analysis is greatly simplified, to consider the double integration,

L4 - 1 oo 0o .
f_ - QP (m,B)dn = 5 ]_ o f_ . Ya(n, D)eFdKdy, (5.125)
in one step.

On carrying out this process all terms in (5.119) contained within the /, integra-

tion are found to be zero; for example, consider the term

E+ K — L, T+ K — 1)e3E-Danax dy,
(5.126)

e L L[5

where it is noted that in the inner integration the variables have been converted
back to ¥, K (although in terms of the inner integration this coordinate is now )
space to faciiita.te the application of the inverse Fourier transform.

Substituting in the value for ¥; as defined by (5.121) (where agaiﬁ care must be
applied since Y; is a function of K and £ — X in (5.121)), and changing the order of

integration yields

w.Tlag Ko i
160,7. (wc):s_/ ./l; / hizbs(t, K, 11-,12)_/ dndKdl,ydl,, (5.127)

where

05(E, K, Iy, Ip) = A(E+ K — %— By -n + -){ 2exp [ B +8)

ﬂl(

+Hi-exp[- 32 )]} ex [ (l3+1)]}A*(_+K—-ll)exp[ (K - B)].

(5.128)

On carrying out the inner-most integration we have
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{
/ ' Los@ K, 1y, 1) 2n6(— K)dK. (5.129)

Since l; < 0, the delta function is only switched on when the upper limit of integra-
tion equals zero, but clearly the integrand will equai zero at this point. Moreover,
the I, integration in (5.127) disappears when this occurs since the upper and lower
limits of integration wiil now be equal. Therefore (5.126) is zero for all values, i.e.
this term makes no contribution to the jump term on the left-hand-side of (5.125).

Similar arguments appiied to each term within the [/, integration appearing in
(5.119) yields that each one is zero.

Consider now the term

L[> [ ke, (QK° Tr 8, , - |
[ enexp (S3-) K)o sglA 4+ K = W), _dKdn. (5.130)

Changing the order of integration yields

1 /0 exp(ﬂm)%[A(ﬂK—h)” [ éknanax.  (sa31)

dwaw! J-o 3 h=0_

Ca,riying out both integrations gives

Tr 0, -
~ Twwr TG K - ) . (5.132)
Consequently this gives
Tr
" T P (5.133)

where A = A(%).
Comparing this result with the inviscid theory developed in the previous chapter

it is found that this term corresponds to the linear inviscid term.
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This next term which is considered has the form

/ / K0 exp QI(3)H( K)T ; 2B(t+K){1_

QK3 01
=

exp | - )| K dn. (5.134)

Again, changing the order of integration and carrying out the inner integration yields

2
ap

R -
" T.olw? /-1; B(t+K)exp (9_;{_3) {1 —exp .[— .Qéf_(“

Clearly on conducting the K-integration the term inside the curly-brackets will equal

= )| }s(-K)dK. (5.135)

zero, resulting in (5.135) making no contribution to the jump across the critical layer.

The next term examined has the form

1 fo fo i © wly | - e - Bps_p3
B 7./—«; ./;oo € K"H(K) _/K 2w’ A(t+K—-4L)Y; (—h,t+ K—-1;)e? K=K g1, dK dn.
(5.136)
Substituting for l}{ where %(K ,1) is defined by (5.120) yields

4 +K -l
8::)’1’ :? / / / / vas(t K, 11,r1)e"°"d'r1d11den, (5.137)

where

' A3
O6(F, K, b, 1) = A(F+ K — 1) A*(ry — ) {2exp [ - %(3(2 + K —ry) - 21y)]

—{1-exp [9;3 (Z=D)]Yexn [ - Q—g—q(s'(ﬂ K — 1)) —2h)| JA(ry e $E-K°),

g

(5.138)
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Changing the order of integration gives

iw Tl i~ rh ,M
~Ea TP e { / / / 15 / dpdK drydl,

+/:; / /M,l_, B / eKndnd K drydly }. (5.139)

Considering the second quadruple integration first, conducting the inner-most

integration yields

ﬁwcT (213

~ Satel / ft / :1+h—f 126521 8(~ K )dK drdl,;. (5.140)
The delta function will be switched on if K = 0 at some point within the K-
integration range. If }; = 0,.the integrand will be zero, therefore I; > 0, and it is
required that r; +{; —% < 0. Examining the ry-integration it is noted that the lower
limit of integration is ¥ — l;. Therefore, the smallest value that the lower limit of
the K-integration can take is zero. But, as already stated, this corresponds to the
lower limit of the ry integration and since there is no delta function multiplying this
integrand, then this integration makes no contribution to (5.140). Consequently the
second of the quadruple integrations in (5.139) makes no contribution to the jump
across the critical layer.
Consider now the first quadruple integration in (5.139), which on carrying out

the inner integration yields

iwcTéa o0 E—'h 1 .
—-—SalT(w'o)?‘/o /_oo /; Boe2m6(—~K)dKdr dl,. (5.141)

Since the Heaviside function in (5.136) is switched on at K = 0, then the full
contribution of the delta function will be felt at the lower limit of integration in
(5.141). This statement was checked by Fourier transforming the second integration

term occuring in equation (4.249), where the 7 integration is omitted here. On
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carrying out this transform, the inner integrand was found be multiplied by the
delta function, 6(X + % — s; — (52 — s3)). Over the integration range for the inner
sz-integration, the delta funtion will only be switched on if K > 0. This corresponds
to introducing the Heaviside function H(K), with the understanding that K = 0
is included. Employing a variable change it is easy to show that when the inverse
Fourier transform of the Fourier transformed inviscid equation is applied and the
resultant is integrated over all , then this equation will have exactly the same
form as (5.136) if = 0 (corresponding to the inviscid case for (5.136)). Clearly,
therefore, applying the inverse Fourier transform in (5.136) and integrating over all
7, the delta function contribution will be exactly the same as in the inviscid case.
Carrying out the inner integration in (5.141) yields

zwcT Qo -
4a1T 0 / f 2 Us(t 0,1, 7;)drydl. (5.142)

Introducing the transform variables s; and s, where

S1 ZZ-—-I]_,

Sy =1, (5.143)

equation (5.142) can be written in the form

A

42}%1(3)0’7;3 / / (t 31)A(32)A (82 - t + 31) exp [ - -—(t - 81)3]

x{2 exp [ - ) ————BF - s2) - 2(f - 31))] {1 -~

exp [Q(t - 5)° (a;- 1)] exp [ M(3({ —8p) —2( ~ 81)] }dszdsl.

(5.144)
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. The last term considered has the form

o2 o—-1 / fll‘f © W,
Tootu? (—-—0 ) exp ( H(K) B exp 3 ) 3w

xlp A+ K ~ 1)23(~l, T+ K — 1) exp [ - %(zg —B)]dldl;.  (5.145)

Substituting for 23, where %;(K, %) is defined by (5.107) yields

e H(K) / / / ® 6., K, by, ry) exp —QTP( )] drsdizdy, (5.146)

where

B=-

i aiow T (0"— 1)

o0 (5.147)

and

A /T — « le - _m=
02, K, b, 1) = BAF+ K — 1) A(r1) A (rz—lz)exp[—-3—;(3(t+K—r1)—212)]e ¥,
(5.148)

Changing the order of integration in (5.146) gives

Ql(

aK? co pit+K-lp Iy -1
Be™ H(K) /K /_ Cn@ K by /K Bexp[- = )] dridlydty. (5.149)

Carrying the inner integration, and then setting l; = I; yields

ool w, QK3 o [F+K-h . )
oo () °F p (=) H(K) fK / _ BAr)A (- h)AG+ K ~h)

o B
X exp [ - 3—;(3(1‘ +K—r)— ZII)J exp | — —3—;—)

X{exp ( — —Qli(a — 1)] — exp [—- fK* ((Jr — 1)]}dr1d11. (5.150)

3 3
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Inverse Fourier transforming (5.150) and then integrating over all 5, following

arguments similar those developed in (5.136) - (5.144) yields the result

42;2(1%:::)6 / / (‘t - 31)2A(31)A(32)A*(82 - t + 81){1

R e e e

(5.151)

where 3; and s, are defined by (5.143).
Substituting the relevant results obtained between equations (5.126) and (5.151)

into (5.125) yields that the jump across the critical layer is given by

@) L Tr zwaDT w,
f Q (771 dT] 4wcw{c At 4T, c1 (w [—oo./ A(81)A(32)

A

W A* (83— T+ 1) AG, 81, 82) exp [ = m(——?—)(S(t — 53) = (F— )] dsadsy,

(5.152)

where

Q7 S1 -0
B —21) (37 - ) 20 - 1)) (29

~1+exp | (t;sm(g_l)] {1“""1’[%“81) (0—1)]}

A(Z, 81, 82) = 2exp [ -

%"éﬁi(a(z— 82) = (= 32)) (= D] - (5.159)

Xexp[m

Matching (5.152) with the outer solution, namely (4.211) (where it is remem-

bered that this equation is in terms of the non-normalized variables), gives that the
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amplitude evolution equation for the viscous nonlinear critical layer, as considered

in this problem, has the form

1 . _ i
ar=—rA— = [ As) /_ " A(s2)A™(s1 + 52 — D(E — 51)2A(, 51, 82)

X exp [ — 9“@'—1—3—31—)2(3(5 — 32) - ({ - 8]))] ngdS], (5154:)

where « and I' are defined by (4.258) and (4.257) respectively.

Equation (5.154) represents the main result of this chapter. Setting ¢ =1 in
(5.154) retrieves the viscous nonlinear amplitude evolution equation as determined
by Goldstein and Leib (1989) for the compressible shear layer problem (although,
as already noted at the end of Chapter 4, the constants « and T' are dependent on
neutral mode characteristics and consequently will be different in both cases). As
noted by Leib (1991), when ¢ # 1 then there is an extra ;:ontribution to the non-
linear term resulting from an interaction between the radial change in the O(§%/%)
temperature solution, i.e. the term T2y, and the leading order term in the radial
velocity expansion, namely 9. It is also noted, that there are additional exponen-
tial terms multiplying the nonlinear terms, due tol\assumption o # 1. Since Leib
(1991) assumed that his normalized viscbsity has a power-law dependence with tem-
perature, then setting the constant n in his work to one (which corresponds to the
linear Chapman law, as assumed throughout this thesis), retrieves the result (5.154)
(although the constants x and T' are different, of course). It should be noted that
although Leib mentions the O(§) temperature contribution to the nonlinear term,
it has actually been omitted from his equation (3.37).

As yet, a numerical study of (5.154) has not been conducted. However, owing to
the similarity between our results and those obtained by Goldstein and Leib (1989)

and Leib (1991) it is expected that for certain parameter ranges, if €} is large enough,
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then the singularity which occurs in the inviscid nonlinear theory can be eliminated
and the solution will tend to a finite-amplitude equilibrium. In his work, Leib
(1991) determined a necessary condition for the existence of an equilbrium solution
which is equivalent to requiring £ to be large enough, resulting in the exponential
term being small enough, to damp the history effects of the convolution integral,
forcing the solution to become more local. In the case of subsonic disturbance
terms, he determined that unless the temperature ratio of the low-to high-speed
streams (for the compressible shear layer model he was treating) exceeds a critical
value, no equilibrium solution is possible. Leib concluded that cooling the low-
speed stream and decreasing the Mach number appears to destabilize the nonlinear
evoh'lti;m of subsonic disturbance terms, in that only explosive growth is observed,
while increasing both the temperature ratio and Mach number appear to have the
converse effect, with equilibrium solutions being achieved.

In the near future we shall determine what parameter range, if any, equilibrium

solutions exist for our amplitude equation.




Chapter 6

Conclusions

In this thesis the supersonic boundary layer flow over axisymmetric bodies for the
particular cases of a long thin, straight circular cylinder subject to heated, cooled
or adiabatic wall conditions and a sharp cone subject to adiabatic wall conditions ,
has been investigated. The basic boundary layer flow kas been obtained, and it is
noted that in the case of the sharp cone that it is seen to evolve from one planar
state to a second, as predicted by the Mangler (1946) transform. |

A linear inviscid temporal non-axisymmetric stability analysis of this boundary
layer flow is conducted and a ‘triply generalized inflexional condition’ is derived,
this being the necess'a,ry condition for the existence of subsonic neutral modes, and
is a (second) generalization of the well-known generalized inflexion condition, as
obtained by Lees and Lin (1946). The importance of condition (3.37) is because
it 1s possible to predict, ¢ priori, whether subsonic neutral modes exist (and if so
the corresponding wavespeeds). However, it is somewhat more difficult to use than
the planar generalized inflexion condition of Lees and Lin (1946), since in our case
the azimuthal and axial wavenumbers (which are of course unknown) are present in
the condition, and so prediction of subsonic neutral modes must be made on a trial
basis (i.e., to determine if any value of the ratio n/a satisfies (3.37)). However, if

solutions do exist; the value of « (for a given n) must still be determined by a full
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numerical solution of the disturbance equations, as was carried out in obtaining the
results presented in Tables 3.1 - 3.3.

In the case of cylindrical bodies, the effect of surface body curvature 1s seen to
immediately (and significantly) reduce the importance of the ‘first mode’ of inviscid
instability, which for axisymmetric disturbances is completely eradicated a relatively
short distance down the axis of the cylinder. The maximum growth rate of the
‘second mode’ of invisid instability also suffers substantial reduction at locations
increasingly further down the axis of the cylinder, although all the evidence suggests
that it is not completely stabilized. These observations are very similar to those
obtained by Duck (1990).

Non-axisymmetric ‘first modes’ of instability are found to be generally more
important that the corresponding axisymmetric modes, and are found to persist well
downstream of the location where the axisymmetric mode is completely stabilized. It
is found that these non-axisymmetric modes, howevér, will be completely stabilized
for sufficiently large azimuthal wavenumber, or far enough downstream location. In
the case of the ‘second mode’ of instability, non-axisymmetric modes are generally
less irﬁportant than the corresponding axisymmetric modes, and it is found that
increasing n results in further stabilization, although all the numerical evidence
suggests that they are still present, with much diminished growth rates, for very
large n.

The effect of cooled-wall conditions on cylindrical bodies is generally seen to re-
duce the importance of the ‘first mode’ of instability, while the amplification rates
of the ‘second mode’ of instability are generally increased. Therefore we have agree-
ment with the effect wall cooling has on planar boundary layers (Mack (1987}, for
example).

The converse effect is observed with wall heating. The amplification rates of

the “first mode’ of instability increase, while wall-heating causes the ‘second mode’
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of instability to be stabilized. Wall-heating may also cause.the formation of a sec-
ond subsonic generalized inflexional mode, which results in the appearance of an
additional mode of instability, not found in adiabatic or cooied-wall studies.

In the case of the sharp cone, for locations not too far from the cone tip, since
the body divergence will be small, the results closely resemble those obtained for
the cylinder. It is found, however, that as a result of the Mangler transform, results
far downstream from the cone tip mirror those in the neighbourhood of the tip
except for a multiplicative factor of /3 in a. Varying the wall conditions and the
introduction of non-axisymmetric terms is found to have the same effect on both
modes of instability, as encountered in the cylindrical body case.

Significantly, the numerical results point to the occurrence of an extra mode of
instability, not found in similar planar studies - this mode is found to be present
_for both cooled, heated and adiabatic wall conditions. An asymptotic study of this
mode suggests this mode to be linked to a viscous mode found by Duck and Hall
(1990), a study based on triple-deck theory.

The ‘sonic’ neutral mode (which is the genesis of the planar ‘first mode’ of
instability) is found to be altered by curvature {(and in fact becomes a supersonic
neutral mode as revealed by the asymptotic analysis as { — 0 and ( — oo, as carried
out in Chapter 3).

Significantly, our results show that the ‘second mode’ of instability is not always
the most unstable, at least in the case of non-axisymmetric modes, and indeed our
results indicate the new mode that occurs as @ — 0, as found in this work, may
possess the largest growth rates, and therefore is the most significant from a practical
“point of view.

Asymptotic studies for cylindrical bodies valid for large azimuthal wavenumbers
reveal that the eigenvalue ¢ is non-unique in this limit, suggesting that there exists

an infinite number of discrete possible values for the real part of ¢, although the
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corresponding values of the imaginary part of ¢ are exceedingly small. One question
that )still remains is the ultimate behaviour of ¢ as { increases in the case of cylindrical
bodies. Asymptotic analysis suggests that in this limit, ¢ — T'Y/2M,,. However, this
analysis failed to provide an estimate for the scale of ¢; (except ¢; = o(1), although
all the numerical evidence presented here, and also found in other computations
performed, strongly pointed to (a¢i)max — 0) as { — o0, i.e., a diminishingly small
growth rate with increasing distance downstream.

On coxﬁpleting the linear stability analysis, a weakly nonlinear stability inves-
tigation of the compressible boundary formed on a long straight circular cylinder,
is conducted. The method by which nonlinearity is introduced into this specific
boundary-layer problem is through the interaction of the linear disturbance terms,
with nonlinear effects developed within the critical layer. Considering initially a
linear viscous critical layer, curvature is found only to effect the constant multiply-
ing the logarithmic singularity in the neighbourhood of the critical layer. Since this
constant generally corresponds to the generalized inflexion condition relevant to the
flow being considered, then it is not unexpected that in our anaylsis we determine
it is equilvalent to the axisymmetric generalized inflexion condition of Duck (1990).

Upon considering a nonlinear critical layer (in which viscous terms are assumed
negligible), matching between the critical layer and the outer solution leads to an
integro-differential equation governing the evolution of the slowly varying amplitude
of the instability wave, which possesses a cubic nonlinearity term. The nonlinear
term has the form of the convolution integral of the Hickernell (1984) type, and
since past histories are important the growth rates are found to terminate explo-
sively in a singularity after a finite time evolution. Comparing our results to those
of Goldstein and Leib (1989) and Shukhman (1991), adds weight to Shukhman’s
observation, that the nonlinear term is indepen(ient of the particular fluid dynam—

ical problem being considering. The only difference between our results and those
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of Goldstein and Leib (1989) and Shukhman (1991) are the values of the constant
terms multiplying the linear and nonlinear contributions, which are deperident upon
neutral-mode characteristics p»eculiar to the flow being treated. However, the nu-
merical observations indicate that the constant coefficient terms are important in
that they control when nonlinear effects, if at all, are first felt.

| Lastly the case of a viscous nonlinear critical layer is treated and the correspond-
ing amplitude evolution equation is obtained. As yet a full numerical study of this
" equation has not been carried out, but it is expected that the additional éxponential
term will behave in the same way as in the Goldstein and Leib case, causing the
solution to become more local through its damping action, and for certain parameter

ranges resulting in the equilbrium state being achieved.
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Appendix A

Laf'ge n amplitude function

In this appendix the amplitude function f(7) in the WKBJ solution (3.49) is deter-

mined. Substituting (3.49) into (3.47), gives to leading order

" T'i 2 n
o+ {0+1—f77f wow0 ]f_O

Integrating once with respect to 1 yields

f'=Aexp |- /T°O" ',,Jlr%—wili')" Jan],

where A is a constant. Making use of the result

f(T0n+ 1 2w, )dy —In |¢°(1+Cn)|+3'

To n+g wo—co (wo — co)?

A.2 simplifies to

((wo — ¢0)?
¢ To(l + C’])

where B and C are constants. A further integration yields

y'=

n ((wo — co)?

o~ | navey®
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Appendix B

The Zero Wavenumber limit

In the case of axisymmetric modes (and indeed of planar modes, as considered by
Lees and Lin (1946) and Mack (1965a,b, 1984, 1987a), for example), as a — 0, the
wavespeed ¢ approaches the sonic limit, i.e.,

1

In the case of nonasymmetric modes, however, this is no longer the case. As the
numerical results clearly indicate, when n # 0, ¢; # 0 as @ — 0. The explanation
for this is as follows:

Considering the simple limit @ — 0 (assuming n # 0), then (3.116) reduces to

d ((wo —¢) won[l + A% + (n]*¢
U LA + Ol + 0 + ()b + (4] - ol )
2,2
_n 1€0¢(w0 —¢). (B2)
Asq — 00, this system has the form
L1t 4 n4] = n? B.3
P =n¢, (B.3)

which clearly admits solutions of the form
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¢~y , (B.4)

which can be shown to be completely compatible with the outer solution, where
i1 = O(1) (7 defined by (3.19)), namely (3.18), by considering the Bessel function
ascending series expression (3.153). System (B.2) also satisfies the impermeability
wall condition, i.e. ¢ =0 o0n 5 = 0.

Equation (B.2) then represents a reduced problem as a — 0, and in this limit

the triply generalized inflexion condition also has a reduced form, namely

8 ;woy(1+ AC? + Cn)?
55{ UFI(_- To } o =0. (B5)

The system (B.2) and (B.4) was solved in a number of cases (in an identical
manner to the « = O(1) eigenvalue system) and its correctness was confirmed.
Notice, however, since the actual temporal growth rate is ag;, this still reduces to

zero as a — 0.
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Appendix C

Outer Frobenius solution

From (3.15) the linear pressure equation for axisymmetric disturbances in the com-

pressible boundary layer formed on a cylinder can be written in the form

;v‘ ~ _ 2
d*p pATI _Tgl_lc_ig_ag[l_Mgo(wo c)

dr? wo—c Tp ridr To ]p =0 (C.1)

Clearly this equation possesses a singularity at the critical point, i.e. the point
where the phase speed of the disturbance is equal to the mean flow velocity. In the
limit r — 7y (where r; represents the critical point) we expand all basic flow terms as
Taylor series about the critical point resulting in the pressure disturbance equation

having the form

Py 2 dp .
47t AU TR0 ) 22~ 1= (A e’ + 0o = 0, (C:2)
where
y=r—r;=Ar, (é.S)
and
w! T 1
B=——+ Tt (C.4)
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T! T!I Q'™ 1 U 1
n=-(f)2+i—%+§(z——z)z-— (C.5)

_O3TITY Thhs T wlV o wlw! 1wl\s 1
= () o a e @) e ©9)
= _(Ec')‘* (L) 2TPT 2T0Te | LY wl | wlw!
\T, 2T2 T3 3T 6Tc 15w, 6(w.)?
1wz (WPl | 1wl\e 1
*ster) ~ St T @0
w!)?
A=zt Tc) , (C.8)
12 [/ §
¢ = Mfo[ _ (wc) Tc wcwc} (Cg)

- 2—1:2 Tc
where subscript ¢ denotes evaluation at the critical layer.

The expansion for p is obtained by applying the method of Frobenius, i.e. we

substitute into (C.2) a solution of the form

F=3 ay™, (C.10)

n=0

where the number s and the coefficients a,, are to be determined. For n = 0, we

have, since ag # 0, an indicial equation of the form

s(s—3)=0. ~ (C.11)
Considering the larger root of (C.11) first, i.e. s = 3, substituting (C.l¢) (with
s = 3) into (C.2) and equating powers in y, yields

ap =1, a; = —2aof, a; = %[3‘32 + a?® — 3k]ao,
as = -7-15[—6,83 _ 5Ba? + 188x — 12\]ac. - (Cc12)
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Thus, as y — 0 (r — ;) equation (C.1.") has one solution of the form

~ 3w 1
By =y3+—(—°———°-—;-_)y“+azy5+---- (C.13)
We now turn our attention to the second solution. Since the roots of (C.11)

differ by an integer this implies the second solution will have the form

P2 = Blny Z any"td 4+ Z bay™, (C.14)

n=0 n=0

where the coefficients a,, are defined by (C.12) and the constant B and coefficients
b, are to be determined. Substituting (C.14) into (C.Z) and equating powers in y,

from the O(y) equation gives the relation

B= _%bz, (C.15)

bo =1, b =0, by = —%-bo,

2 " " " /] 2
_a {[Tc 2w, 1 wc)Z“(Tc)Z’_%_%__MQ (1;::) +1 ﬂ2]

12b3ﬂ }

bs = ——-{ B[7a; + a1 + kaq] — 4548 + (@ — 3k)b3 + o[\ — €] }.(C.16)

Thus making use of (C.12) and (C.16), relation {C.15) can be rewritten as

B:“—;ﬁ- (C.17)

Inspection of (C.16) yields that there exists no means by which the coefficient
bs can be determined. Consequently it is expected, as most, b3 = 1. However, since
the coefficient of the y® term in the regular solution is also unity, setting b3 = 1 will

only re-generate terms in the regular solution. Therefore we must have b3 = 0.
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Thus, in the limit y — 0, (r — r;) the second solution to {C.1) takes the form

N o ,  Ba?
Pr=1- —2‘3/2 + Ty3lny -

ﬂ2 012

Ty“lny + oyt - (C.18)
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